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Abstract

Elemental sets are subsets of the data which are just large enough to produce

an estimate b of the coefficients β. In the elemental basic resampling algorithm, Kn

elemental sets are randomly selected. An exact fit of the regression is performed for

each subset, producing the estimators b1,n, ..., bKn,n. Then the algorithm estimator

bA,n is the elemental fit that minimized the regression criterion Q. Suppose that

Kn ∝ n elemental sets are randomly selected. Let bo,n be the “best” elemental fit

examined by the algorithm. Then ‖bo,n − β‖ = OP (n−1/p), and elemental fits are

“dense” since β can be replaced by any vector c.
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1 Introduction

Consider the Gaussian regression model

Y = Xβ + e (1.1)

where Y is an n × 1 vector of dependent variables, X is an n × p matrix of predictors,

and e is an n× 1 vector of errors. The ith case (yi, x
T
i ) corresponds to the ith row xT

i of

X and the ith row of Y .

Elemental sets are subsets of p cases and are just large enough to produce an estimate

b of the coefficients β. In the elemental set or basic resampling algorithm, Kn elemental

sets are randomly selected. An exact fit of the regression is performed for each subset,

producing the estimators b1,n, ..., bKn,n. Then the algorithm estimator bA,n is the elemen-

tal fit that minimized the regression criterion Q. Let β̂Q,n denote the estimator that the

algorithm is approximating, e.g., β̂LTS,n. Let bo,n be the “best” elemental fit examined

by the algorithm in that

bo,n = argminj=1,...,Kn
‖bj,n − β‖

where the Euclidean norm is used. Since the algorithm estimator is an elemental fit,

‖bA,n − β‖ ≥ ‖bo,n − β‖, and an upper bound on the rate of bo,n is an upper bound on

the rate of bA,n. Hawkins and Olive (2002) proved that ‖bo,n − β‖ ≤ OP (K−1/p
n ).

2 Behavior of the Best Elemental Fit

The main result of this paper is an analytic proof that the best elemental subset has

a n−1/p convergence rate if the errors are Gaussian and Kn = [n/p] nonoverlapping
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elemental sets from the n cases are used. Let

Ji = {j1, ..., jp}

be the ith of these. Let bJ1,m, . . . , bJK ,m be the Kn coefficients for the mth predictor

variable among the K fits obtained from these disjoint elemental sets. Let

vki = 1/
√

Ai,kk

be the inverse of the square root of the kth diagonal element of Ai = (XT
Ji

XJi
)−1.

We make the following two assumptions on the Gaussian regression model.

H1) Assume that Ai is nonsingular for i = 1, ..., Kn.

2) Let q ≥ p. Assume that [n/q] of the vki satisfy

0 < a ≤ vki ≤ b.

These assumptions are slightly different than those of Hawkins (1993). The proof of the

following lemma follows from the proof of Theorem 2.3.

Lemma 2.1 (Hawkins 1993). Under H1) and 2), for any real number cm,

dm ≡ min
i=1,...,K

|bJi,m − cm| = OP (n−1).

If all p components of bJi
satisfied the above equation, and if the components were

independent, then

do ≡ min
i=1,...,K

‖bJi
− c‖ = OP (n−1/p) (2.1)

where the mth component of the p × 1 vector c is cm. In particular, if c = β, then the

best fit obtained from the disjoint elemental sets may have a very poor rate. Hence the

rate for the fit selected by the algorithm would be even worse.
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Theorem 2.3 below will show that Equation 2.1 holds even if the vector components

are not independent provided that the sizes hi of the disjoint subsets are bounded. We

will choose at least [n/r] nonoverlapping sets of size hi, p ≤ hi ≤ r, from the n cases,

and we will let

Ji,n = Ji = {j1, ..., jhi
}

be the ith of these. Let

Ai,n = Ai = (XT
Ji

XJi
)−1,

and let

Bi,n = Bi = XT
Ji

XJi
. (2.2)

Note that Ai and Bi are p×p matrices and that the jth diagonal element Bi,jj is bounded

if the jth predictor is bounded. If we bound the determinant det(Bi) from below and

the largest diagonal element of Bi from above, we will be able to bound fbJi
(xT ) from

below when x falls in a bounded closed set.

We add one assumption to the Gaussian regression model.

A1) Let Kn = [n/q] where q ≥ r. Assume that there is an N such that for n ≥ N, at

least Kn of the XJi
are disjoint and satisfy 0 < a ≤

√
det(Bi), maxk,j |XJi,kj| ≤ L, and

p ≤ hi ≤ r.

This assumption says that if n > N , then some percentage of the disjoint sets Ji have a

determinant det(Bi) that is bounded below by some positive number a2. So for elemental

sets, the condition becomes 0 < a < det(XJi
). The main purpose of assumption A1) is to

bound the density corresponding to the fit bJi
in some neighborhood of a fixed p-vector

c. If a is a number between 0 and the smallest positive computer number, then the first
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part of A1) must hold or the estimator can not be computed. In other words, if det(Bi)

is too close to zero, then the fit bJi
can not be computed numerically. The second part of

A1) implies that some fraction of the cases have predictors that are bounded from above.

Since Bi is a symmetric positive definite matrix if det(Bi) > 0, the element of Bi with

the largest magnitude lies on the diagonal. Moreover, the jth diagonal element of Bi

is the sum of hi squared observations from the jth predictor. Hence the magnitudes of

these elements are bounded above by D = rL2 if XJi
satisfies A1).

Lemma 2.2. Suppose XJi
satisfies condition A1). Let c be a p × 1 vector, and let

0 < δ. If the p× 1 vector x is contained in a cube centered at c with edge length 2δ, that

is, if xi ∈ [ci − δ, ci + δ] for i = 1, ..., p, then

fbJi
(xT ) ≥ a

σp(2π)p/2
exp[−hδD]

where D = rL2 and

hδ →
p2

2σ2
max

i
(ci − βi)

2

as δ → 0.

Proof. As noted by Hawkins (1993),

Y ∼ Nn(Xβ, σ2In),

and

Y Ji
∼ Nhi

(XJi
β, σ2Ihi

).

Hence

bJi
= (XT

Ji
XJi

)−1XT
Ji

Y Ji
∼ Np(β, σ2Ai).
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Thus

fbJi
(xT ) =

√
det(Bi)

σp(2π)p/2
exp[− 1

2σ2
(x − β)T Bi(x − β)]

=

√
det(Bi)

σp(2π)p/2
exp[− 1

2σ2

p∑

k=1

p∑

j=1

(xk − βk)(xj − βj)Bi,kj].

Since Bi is positive definite and symmetric,

|Bi,kj| ≤ max(Bi,kk, Bi,jj) ≤ max
j

Bi,jj.

See Datta (1995, p. 23).

Since xk ∈ [ck ± δ],

| 1

2σ2

p∑

k=1

p∑

j=1

(xk − βk)(xj − βj)Bi,kj| ≤

1

2σ2

p∑

k=1

p∑

j=1

max
k,xk∈[ck±δ]

|xk − βk| max
j,xj∈[cj±δ]

|xj − βj|max
j

Bi,jj ≤

p2

2σ2
[ max
k,xk∈[ck±δ]

|xk − βk|]2D = hδD

where D = rL2. Hence

exp[− 1

2σ2

p∑

k=1

p∑

j=1

(xk − βk)(xj − βj)Bi,kj] ≥ exp[−hδD]

for xk ∈ [ck − δ, ck + δ] where

hδ →
p2

2σ2
max

k
(ck − βk)

2

as δ → 0, and

fbJi
(xT ) ≥ a

σp(2π)p/2
exp[−hδD].

QED
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Theorem 2.3. Suppose the regression model with iid Gaussian errors holds. If A1)

holds and c is a p-dimensional vector, then

do = min
i=1,...,Kn

‖bJi
− c‖ = OP (n− 1

p ). (2.3)

Proof. Relabel the XJi
such that the first Kn bJi

satisfy condition A1). If the

vector x is contained in a sphere of radius δ centered at c, then x is contained in the

cube of Lemma 2.2 and

fbJi
(xT ) ≥ a

σp(2π)p/2
exp[−hδD].

The independence of the bJi
implies that

P (n1/pdo > γ) =
K∏

i=1

P (‖bJi
− c‖ > γ/n1/p)

=
K∏

i=1

[1 − P (‖bJi
− c‖ ≤ γ/n1/p)]

≤
K∏

i=1

[1 −
∫ c1+

γ√
2n1/p

c1− γ√
2n1/p

. . .
∫ cp+ γ√

2n1/p

cp− γ√
2n1/p

fbJi
(w1, . . . , wp)dw1 . . . dwp]

since if bJi
is in a sphere centered at c with radius γ/n1/p, then bJi

is in a cube centered

at c with edge length
√

2γ/n1/p. For large enough n, Lemma 2.2 can be applied and

hence

P (n1/pdo > γ) ≤
K∏

i=1

[1 − ae−hδD

σp(2π)p/2
(

√
2γ

n1/p
)p]

= [1 −
ae−hδD

σp(2π)p/2 (
√

2γ)p

n
]K = [1 −

K
n

ae−hδD

σp(2π)p/2 (
√

2γ)p

K
]K

→ exp[− ae−hδD

qσp(2π)p/2
(
√

2γ)p]

which can be made arbitrarily small by making γ large. QED

The proofs in Hawkins and Olive (2002) are much simpler, but it is useful to have

multiple proofs of results and this proof corrects some errors in Hawkins (1993).

7



3 References

Datta, B.N. (1995), Numerical Linear Algebra and Applications, Pacific Grove: Brooks/Cole

Publishing Company.

Hawkins, D.M. (1993), “The Accuracy of Elemental Set Approximations for Regres-

sion,” Journal of the American Statistical Association, 88, 580-589.

Hawkins, D.M., and Olive, D.J. (2002), “Inconsistency of Resampling Algorithms for

High Breakdown Regression Estimators and a New Algorithm,” With Discussion.

Journal of the American Statistical Association, 97, 136-159.

8


