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Abstract

In the literature, estimators for regression or multivariate location and

dispersion that have been shown to be both consistent and high break-

down are impractical to compute. This paper shows that a simple modi-

fication to existing concentration algorithms for multiple linear regression

and multivariate location and dispersion results in high breakdown robust
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√
n consistent estimators that are easy to compute, and the applications

for these estimators are numerous.

KEY WORDS: minimum covariance determinant estimator, mul-

tivariate location and dispersion, outliers, robust regression.
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1 Introduction

The multiple linear regression (MLR) model is Y = Xβ +e where Y is an n× 1

vector of dependent variables, X is an n × p matrix of predictors, β is a p × 1

vector of unknown coefficients and e is an n × 1 vector of errors. The ith case

(xT
i , yi) corresponds to the ith row xT

i of X and the ith element of Y .

A multivariate location and dispersion (MLD) model is a joint distribution

for a p × 1 random vector x that is completely specified by a p × 1 population

location vector µ and a p × p symmetric positive definite population dispersion

matrix Σ. The multivariate normal distribution is an important MLD model.

The observations xi for i = 1, ..., n are collected in an n × p matrix W with n

rows xT
1 , ...,xT

n .

In the literature there are many estimators for MLR and MLD that have

been shown to be consistent and high breakdown (HB), but to our knowledge,

none of these estimators is practical, computationally. Conversely, if the “robust

estimator” for MLR or MLD is practical to compute, then it has not been shown

to be both consistent and HB.

For example, the “state of the art” for robust MLD estimators are the FMCD

estimator of Hawkins and Olive (1999), the Fast–MCD estimator of Rousseeuw

and Van Driessen (1999), the OGK estimator of Maronna and Zamar (2002) and
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the MBA estimator of Olive (2004). Hawkins and Olive (2002) proved that sim-

plified versions of the FMCD and Fast–MCD estimators are inconsistent with

zero breakdown. Maronna and Zamar (2002, p. 309) claim that it is straightfor-

ward to prove that the OGK estimator is consistent and HB, but fail to provide

the proofs.

As another illustration, consider the cross checking estimator that uses a clas-

sical asymptotically efficient estimator if it is “close” to a consistent high break-

down robust estimator and uses the robust estimator otherwise. The resulting

estimator is a high breakdown asymptotically efficient estimator. He and Wang

(1997) show that the all elemental subset approximation to S estimators for MLD

is consistent for (µ, aΣ) for some constant a > 0. This estimator could be used as

the robust estimator, but then the cross checking estimator is impractical. If the

inconsistent zero breakdown FMCD algorithm is used as the robust estimator,

then the resulting estimator is zero breakdown since both the “robust estimator”

and the classical estimator are zero breakdown. This cross checking estimator is

inconsistent since the probability that the “robust” and classical estimators are

“close” does not go to one as the sample size n → ∞.

Section 2 reviews the elemental basic resampling and concentration algo-

rithms. Section 3 proves that the MBA estimator is a HB
√

n consistent estima-
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tor. The FMCD, Fast–MCD and least trimmed sum of squares (LTS) concentra-

tion algorithms are also modified so that they are HB
√

n consistent estimators.

Section 4 provides some examples.

2 Concentration Algorithms

Some notation is needed before describing concentration and elemental algo-

rithms. Let the p× 1 column vector T (W ) be a multivariate location estimator,

and let the p × p symmetric positive definite matrix C(W ) be a dispersion esti-

mator. Then the ith squared sample Mahalanobis distance is the scalar

D2
i = D2

i (T (W ),C(W )) = (xi − T (W ))TC−1(W )(xi − T (W )) (2.1)

for each observation xi. Notice that the Euclidean distance of xi from the es-

timate of center T (W ) is Di(T (W ), Ip) where Ip is the p × p identity matrix.

The classical Mahalanobis distance corresponds to the sample mean and sample

covariance matrix

T (W ) = x =
1

n

n∑

i=1

xi and C(W ) = S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T.

Robust estimators are often computed by applying the classical estimator to a

subset of the data. Consider the subset Jo of cn ≈ n/2 observations whose sample

covariance matrix has the minimum determinant among all C(n, cn) subsets of
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size cn. Let TMCD and CMCD denote the sample mean and sample covariance

matrix of the cn cases in Jo. Then the minimum covariance determinant MCD(cn)

estimator is (TMCD(W ),CMCD(W )). See Rousseeuw (1984).

Many high breakdown robust estimators are impractical to compute, so algo-

rithm estimators are used instead. The “elemental basic resampling” algorithm

for robust estimators uses Kn “elemental starts.” For MLR an elemental set con-

sists of p cases while an elemental set for MLD is a subset of p + 1 cases where

p is the number of variables. The jth elemental fit is a classical estimator (bj or

(Tj,Cj)) computed from the jth elemental set. This fit is the jth start, and for

each fit a criterion function that depends on all n cases is computed. Then the

algorithm returns the elemental fit that optimizes the criterion.

Another important algorithm technique is concentration. Starts are again

used, but they are not necessarily elemental. For multivariate data, let (T0,j,C0,j)

be the jth start and compute all n Mahalanobis distances Di(T0,j,C0,j). At the

next iteration, the classical estimator (T1,j,C1,j) is computed from the cn ≈ n/2

cases corresponding to the smallest distances. This iteration can be continued for

k steps resulting in the sequence of estimators (T0,j,C0,j), (T1,j,C1,j), ..., (Tk,j,Ck,j).

The result of the iteration (Tk,j,Ck,j) = (xk,j,Sk,j) is called the jth attractor.

For MLR, let b0,j be the jth start and compute all n residuals ri(b0,j) = yi−bT
0,jxi.
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At the next iteration, a classical estimator b1,j is computed from the cn ≈ n/2

cases corresponding to the smallest squared residuals. This iteration can be con-

tinued for k steps resulting in the sequence of estimators b0,j, b1,j, ..., bk,j. The

result of the iteration bk,j is called the jth attractor. The final concentration

algorithm estimator is the attractor that optimizes the criterion. Using k = 10

concentration steps often works well, and the basic resampling algorithm is a

special case with k = 0.

These algorithms are widely used in the literature, and the basic resampling

algorithm can be used as long as the criterion can be computed. For most im-

plementations, the number of elemental sets Kn ≡ K does not depend on n. For

a fixed data set with small p and an outlier proportion γ < 0.5, the probability

that a clean elemental set is selected will be high if Kn ≡ K ≥ 3(2d) where d = p

for MLR and d = p + 1 for MLD. Such estimators are sometimes called “high

breakdown with high probability,” although Hawkins and Olive (2002) showed

that if Kn ≡ K, then the resulting elemental basic resampling estimator is incon-

sistent with zero breakdown, regardless of the criterion. Many authors, including

Maronna and Yohai (2002) and Singh (1998), have mistaken “high breakdown

with high probability” for “high breakdown.”

Concentration algorithms for multivariate data have been suggested for the
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MCD criterion. For multiple linear regression, concentration algorithms have

been suggested for the LTS, least trimmed sum of absolute deviations (LTA) and

least median of squares (LMS) criteria. The classical estimators used for these

concentration algorithms are the ordinary least squares (OLS), least absolute de-

viations (L1) and Chebyshev (L∞) estimators, respectively. The notation CLTS,

CLMS, CLTA and CMCD will be used to denote concentration algorithms for

LTS, LMS, LTA and MCD, respectively. If k > 1, the jth attractor bk,j has

a criterion value at least as small as the criterion value for b1,j for the CLTS,

CLTA and CLMS algorithms. Rousseeuw and Van Driessen (1999) proved the

corresponding result for the CMCD algorithm.

Some LTS concentration algorithms are described in Rousseeuw and Van

Driessen (2000, 2002, 2006) and Vı́̌sek (1996). Salibian-Barrera and Yohai (2006)

give a concentration type algorithm for S-estimators. Ruppert (1992) gives con-

centration estimators for LTS and LMS and also considers algorithms for regres-

sion S-estimators, the minimum volume ellipsoid (MVE) and MLD S-estimators.

Hawkins and Olive (1999) suggest concentration algorithms for LMS, LTA, LTS,

and MCD. A faster MVE algorithm is also given. Rousseeuw and Van Driessen

(1999) give an MCD concentration algorithm. None of these algorithm estimators

have been shown to be consistent or high breakdown.
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The DGK estimator of MLD (Devlin, Gnanadesikan, and Kettenring 1975,

1981) uses the classical estimator computed from all n cases as the only start

and Gnanadesikan and Kettenring (1972, pp. 94–95) provide a similar algo-

rithm. The Olive (2004) median ball algorithm (MBA) estimator of MLD uses

two starts (T0,M,C0,M) = (x0,M ,S0,M) where (x0,M ,S0,M) is the classical estima-

tor applied after trimming the M% of cases furthest in Euclidean distance from

the coordinatewise median MED(W ) where M ∈ {0, 50}. Then concentration

steps are performed resulting in the Mth attractor (Tk,M ,Ck,M ) = (xk,M ,Sk,M).

The M = 0 start is the classical estimator and the attractor is the DGK esti-

mator. The M = 50 attractor is HB but generally inconsistent. Let (TA,CA)

correspond to the attractor that has the smallest determinant. Then the MBA

estimator (TMBA,CMBA) takes TMBA = TA and

CMBA =
MED(D2

i (TA,CA))

χ2
p,0.5

CA (2.2)

where χ2
p,0.5 is the 50th percentile of a chi–square distribution with p degrees of

freedom. Olive (2002) shows that scaling the best attractor CA results in a better

estimate of Σ if the data is multivariate normal (MVN).
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3 Practical Robust Estimators

Theorems 3, 4 and 5 below present practical HB
√

n consistent estimators, but no-

tation and preliminary results are needed. Following Lehmann (1999, pp. 53-54),

recall that the sequence of random variables Wn is tight or bounded in probability,

Wn = OP (1), if for every ε > 0 there exist positive constants Dε and Nε such that

P (|Wn| ≤ Dε) ≥ 1 − ε for all n ≥ Nε. Also Wn = OP (Xn) if |Wn/Xn| = OP (1).

Wn has the same order as Xn in probability, written Wn �P Xn, if Wn = OP (Xn)

and Xn = OP (Wn).

If Wn = ‖β̂n − β‖ �P n−δ for some δ > 0, then we say that both Wn

and β̂n have rate nδ. Similar notation is used for a k × r matrix A = [ai,j]

if each element ai,j has the desired property. For example, A = OP (n−1/2) if

each ai,j = OP (n−1/2). Notice that if Wn = OP (n−δ), then nδ is a lower bound

on the rate of Wn. As an example, if LMS, OLS or L1 is used for β̂, then

Wn = OP (n−1/3), but Wn �P n−1/3 for LMS while Wn �P n−1/2 for OLS and L1.

Assumption (E1): Assume that x1, ...,xn are iid from an elliptically contoured

ECp(µ,Σ, g) distribution with probability density function

f(z) = kp|Σ|−1/2g[(z − µ)TΣ−1(z − µ)]

where kp > 0 is some constant, µ is a p×1 location vector and Σ is a p×p positive

definite matrix and g is some known function. Also assume that Cov(x) = aXΣ
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for some constant aX > 0. See Johnson (1987, pp. 107-108).

We will say that x is “spherical about µ” if x has an ECp(µ, cIp, g) distribu-

tion where c > 0 is some constant.

Remark 1. The following results from the literature will be useful for exam-

ining the properties of MLD and MLR estimators.

a) Butler, Davies and Jhun (1993): The MCD(cn) estimator is a HB
√

n

consistent estimator for (µ, aMCDΣ) where the constant aMCD > 0 depends on

the EC distribution.

b) Lopuhaä (1999): If (T,C) is a consistent estimator for (µ, aΣ) with rate

nδ where the constants a > 0 and δ > 0, then the classical estimator (xM ,SM)

computed after trimming M% (where 0 < M < 100) of the cases with the largest

distances Di(T,C) is a consistent estimator for (µ, aMΣ) with the same rate nδ

where aM > 0 is some constant. Notice that applying the classical estimator to

the cn ≈ n/2 cases with the smallest distances corresponds to M = 50. In the

MLR setting, He and Portnoy (1992) consider applying OLS to the cases with

the smallest squared residuals. Again the resulting estimator has the same rate

as the start. Also see Ruppert and Carroll (1980, p. 834), Dollinger and Staudte

(1991, p. 714) and Welsh and Ronchetti (2002).

c) Rousseeuw and Van Driessen (1999): Assume that the classical estimator

11



(xm,j,Sm,j) is computed from cn cases and that the n Mahalanobis distances

Di ≡ Di(xm,j ,Sm,j) are computed. If (xm+1,j,Sm+1,j) is the classical estimator

computed from the cn cases with the smallest Mahalanobis distances Di, then

the MCD criterion det(Sm+1,j) ≤ det(Sm,j) with equality iff (xm+1,j,Sm+1,j) =

(xm,j,Sm,j).

d) Pratt (1959): Let K be a fixed positive integer and let the constant d > 0.

Suppose that (T1,C1), ..., (TK,CK) are K consistent estimators of (µ, d Σ) each

with the same rate nδ. If (TA,CA) is an estimator obtained by choosing one

of the K estimators, then (TA,CA) is a consistent estimator of (µ, d Σ) with

rate nδ. Similarly, suppose that β̂1, ..., β̂K are K consistent estimators of β each

with the same rate nδ. If β̂A is an estimator obtained by choosing one of the K

estimators, then β̂A is a consistent estimator of β with rate nδ.

e) Olive (2002): Suppose that (Ti,Ci) are consistent estimators for (µ, aiΣ)

where ai > 0 for i = 1, 2. Let Di,1 and Di,2 be the corresponding distances and

let R be the set of cases with distances Di(T1,C1) ≤ MED(Di(T1,C1)). Let rn

be the correlation between Di,1 and Di,2 for the cases in R. Then rn → 1 in

probability as n → ∞.

f) Olive (2004): (x0,50,S0,50) is a high breakdown estimator. If the data

distribution is EC but not “spherical about µ,” then for m ≥ 0, Sm,50 underes-
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timates the major axis and overestimates the minor axis of the highest density

region. Concentration reduces but fails to eliminate this bias. Hence the esti-

mated highest density hyperellipsoid based on the attractor is “shorter” in the

direction of the major axis and “fatter” in the direction of the minor axis than

estimated regions based on consistent estimators. Also, see Croux and Van Aelst

(2002). Arcones (1995) and Kim (2000) showed that x0,50 is a HB
√

n consistent

estimator of µ.

For MLR, if the start is a consistent estimator for β, then so is the attractor if

OLS is used. Hence He and Portnoy (1992) can be used with Pratt (1959) to pro-

vide simple proofs for MLR concentration algorithms. The following proposition

shows that if (T,C) is a consistent start, then the attractor is a consistent esti-

mator of (µ, aMCDΣ). Since aM ≡ aMCD does not depend on a, the population

parameter estimated by MLD concentration algorithms is (µ, aMCDΣ). Hence

Lopuhaä (1999) can be used with Pratt (1959) with d = aMCD to provide simple

proofs for MLD concentration algorithms.

Proposition 1. Assume that (E1) holds and that (T,C) is a consistent

estimator of (µ, aΣ) with rate nδ where the constants a > 0 and δ > 0, then the

classical estimator (xm,j,Sm,j) computed after trimming the cn ≈ n/2 of cases

with the largest distances Di(T,C) is a consistent estimator for (µ, aMCDΣ) with
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the same rate nδ.

Proof. The result follows by Remark 1b if a50 = aMCD. But by Remark 1e

the overlap of cases used to compute (xm,j ,Sm,j) and (TMCD,CMCD) goes to

100% as n → ∞. Hence the two sample covariance matrices Sm,j and CMCD

both estimate the same quantity aMCDΣ. �

The following proposition shows that it is very difficult to drive the de-

terminant of the dispersion estimator from a concentration algorithm to zero.

Olive (2004) showed that the largest eigenvalue λ1 of S0,50 is bounded above by

pmax |si,j| where si,j is the (i,j) entry of S0,50. Hence the smallest eigenvalue λp

is bounded below by det(CMCD)/λp−1
1 .

Proposition 2. Consider the CMCD and MCD estimators that both cover cn

cases. For multivariate data, if at least one of the starts is nonsingular, then the

CMCD estimator CA is less likely to be singular than the high breakdown MCD

estimator CMCD.

Proof. If all of the starts are singular, then the Mahalanobis distances cannot

be computed and the classical estimator can not be applied to cn cases. Suppose

that at least one start was nonsingular. Then CA and CMCD are both sample

covariance matrices applied to cn cases, but by definition CMCD minimizes the

determinant of such matrices. Hence 0 ≤ det(CMCD) ≤ det(CA). �
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The following theorem shows that the MBA estimator has good statistical

properties.

Theorem 3. Suppose (E1) holds. If (TA,CA) is the attractor that minimizes

det(Sk,M), then (TA,CA) is a HB
√

n consistent estimator of (µ, aMCDΣ). Hence

the MBA estimator is a HB
√

n consistent estimator.

Proof. The estimator is HB since 0 < det(CMCD) ≤ det(CA) ≤ det(S0,50) <

∞ if up to nearly 50% of the cases are outliers. If the distribution is spherical

about µ, then the result follows from Remark 1b since both starts are
√

n consis-

tent. Otherwise, the estimator with M = 50 trims too much data in the direction

of the major axis and hence the resulting attractor is not estimating the highest

density region. Hence Sk,50 is not estimating aMCDΣ. But the DGK estimator

Sk,0 is a
√

n consistent estimator of aMCDΣ and ‖CMCD − Sk,0‖ = OP (n−1/2).

Thus the probability that the DGK attractor minimizes the determinant goes to

one as n → ∞, and (TA,CA) is asymptotically equivalent to the DGK estimator

(Tk,0,Ck,0). �

The following theorem shows that fixing the inconsistent zero breakdown el-

emental CMCD algorithm is simple. Just add the two MBA starts.

Theorem 4. Suppose (E1) holds and that the CMCD algorithm uses Kn ≡ K

randomly selected elemental starts (e.g., K = 200 or 0), the start (T0,0,C0,0) and
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the start (T0,50,C0,50). Then this CMCD estimator is a HB
√

n consistent esti-

mator. If the EC distribution is not spherical about µ, then the CMCD estimator

is asymptotically equivalent to the DGK estimator.

Proof. The estimator is HB since 0 < det(CMCD) ≤ det(CCMCD) ≤ det(S0,50)

< ∞ if up to nearly 50% of the cases are outliers. Notice that the DGK estimator

is the attractor for (T0,0,C0,0). Under (E1), the probability that the attractor

from a randomly drawn elemental set gets arbitrarily close to the MCD estimator

goes to zero as n → ∞. But DGK − MCD = OP (n−1/2). Since the number of

randomly drawn elemental sets K does not depend on n, the probability that the

DGK estimator has a smaller criterion value than that of the best elemental at-

tractor also goes to one. Hence if the distribution is spherical about µ, then (with

probability going to one) one of the MBA attractors will minimize the criterion

value and the result follows. If (E1) holds and the distribution is not spherical

about µ, then the probability that the DGK attractor minimizes the determinant

goes to one as n → ∞, and (TCMCD,CCMCD) is asymptotically equivalent to the

DGK estimator (Tk,0,Ck,0). �

The following theorem shows that the inconsistent zero breakdown elemental

CLTS estimator can be fixed by adding two carefully chosen attractors. Hawkins

and Olive (2002) suggested adding a classical estimator as a start and Maronna
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and Yohai (2002) claim (without proof) that the resulting estimator is consistent.

If the algorithm evaluates the criterion on trial fits, then these fits will be called

the attractors. Using OLS as an attractor instead of a start results in estimator

with 100% Gaussian asymptotic efficiency. Let bk be the attractor from the start

consisting of OLS applied to the cn cases with y’s closest to the median of the yi

and let β̂k,B = 0.99bk. Then β̂k,B is a HB biased estimator of β (biased if β 6= 0,

see Olive 2005).

Theorem 5. Suppose that the CLTS algorithm uses Kn ≡ K randomly

selected elemental starts (e.g., K = 500) and the attractors β̂OLS and β̂k,B. Then

the resulting estimator is a HB
√

n consistent estimator that is asymptotically

equivalent to β̂OLS.

Proof. Olive (2005) showed that an MLR estimator is high breakdown if

the median absolute residual stays bounded under high contamination. (Notice

that if ‖β̂‖ = ∞, then the MED(|ri|) = ∞, and if ‖β̂‖ = M then MED(|ri|) is

bounded if fewer than half of the cases are outliers.)

Concentration insures that the criterion function of the cn ≈ n/2 absolute

residuals gets smaller. Hence LTS concentration algorithms that use a HB start

are HB, and β̂k,B is a HB estimator.

The LTS estimator is consistent by Maš̈ıček (2004), Čı́žek (2006) or Vı́̌sek
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(2006). The LTS criterion is QLTS(b) =
∑cn

i=1 r2
(i)(b) where r2

(i) are the ordered

squared residuals. As n → ∞, consistent estimators β̂ satisfy QLTS(β̂)/n −

QLTS(β)/n → 0 in probability. Since β̂k,B is a biased estimator of β, with prob-

ability tending to one, OLS will have a smaller criterion value. With probability

tending to one, OLS will also have a smaller criterion value than the criterion

value of the attractor from a randomly drawn elemental set (by He and Portnoy

1992, also see Remark 4 in Hawkins and Olive 2002). Since K random elemental

sets are used, the CLTS estimator is asymptotically equivalent to OLS. �

Remark 2. a) Basic resampling algorithms that uses a HB MLR criterion

that is minimized by a consistent estimator for β (e.g., for LMS or LTS) can be

fixed. Assume that the new algorithm uses Kn ≡ K randomly selected elemental

starts, the start β̂OLS and the start β̂k,B. The resulting HB estimator is asymp-

totically equivalent to the OLS estimator if the OLS estimator is a consistent

estimator of β. The proof is nearly identical to that of the proof for Theorem 5.

Note that the resulting LMS algorithm estimator is asymptotically equivalent to

OLS, not to LMS.

b) From the proof of the Theorem 5, it can be seen that the OLS attractor can

be replaced by any
√

n consistent estimator, say β̂D, and the resulting estimator

will be a HB
√

n consistent estimator that is asymptotically equivalent to β̂D. To
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obtain an easily computed HB MLD estimator with 100% Gaussian asymptotic

efficiency, use the MBA and classical estimators in the cross checking estimator.

c) To robustify the Rousseeuw and Van Driessen (1999, 2006) Fast–MCD and

Fast–LTS algorithms, which use 500 starts, partitioning, iterates 5 starts to con-

vergence, and then a reweight for efficiency step, consider the following argument.

Add the consistent and high breakdown biased attractors to the algorithm. Sup-

pose the data set has nD cases. Then the maximum number of concentration

steps until convergence is bounded by kD, say. Assume that for n > nD, no more

than kD concentration steps are used. (This assumption is reasonable. Asymp-

totic theory is meant to simplify matters, not to make things more complex. Also

the algorithm is supposed to be fast. Letting the maximum number of concen-

tration steps increase to ∞ would result in an impractical algorithm.) Then the

elemental attractors are inconsistent so the probability that the MCD or LTS

criterion picks the consistent estimator goes to one. The “reweight for efficiency

step” does not change the
√

n rate by Lopuhaä (1999) or He and Portnoy (1992).

d) The notation “CLTS” means that the attractors were evaluated using the

LTS criterion; however, the CLTS estimator in not estimating the LTS estima-

tor, but is asymptotically equivalent to β̂OLS. Similarly, the CMCD estimator

given by Theorem 4 is not estimating the MCD estimator, but is asymptotically
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equivalent to the DGK estimator.

4 Examples and Simulations

Suppose that the concentration algorithm covers cn cases. Then Hawkins and

Olive (2002) suggested that concentration algorithms using K starts each con-

sisting of h cases can handle roughly a percentage γo of huge outliers where

γo ≈ min(
n − cn

n
, 1 − [1 − (0.2)1/K]1/h)100% (3.1)

if n is large. Empirically, this value seems to give a rough approximation for

many simulated data sets.

However, if the data set is multivariate and the bulk of the data falls in one

compact ellipsoid while the outliers fall in another hugely distant compact ellip-

soid, then a concentration algorithm using a single start can sometimes tolerate

nearly 25% outliers. For example, suppose that all p + 1 cases in the elemental

start are outliers but the covariance matrix is nonsingular so that the Maha-

lanobis distances can be computed. Then the classical estimator is applied to the

cn ≈ n/2 cases with the smallest distances. Suppose the percentage of outliers is

less than 25% and that all of the outliers are in this “half set.” Then the sample

mean applied to the cn cases should be closer to the bulk of the data than to the
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cluster of outliers. Hence after a concentration step, the percentage of outliers in

the cn cases will be reduced if the outliers are very far away. After the next con-

centration step the percentage of outliers will be further reduced and after several

iterations, all cn cases will be clean. (For outliers of this type, using cn ≈ 2n/3

might be able to handle an outlier percentage near 33%.)

Rocke and Woodruff (1996) suggest that the hardest shape that outliers can

take is when they have the same covariance matrix as the clean data but shifted

mean. In simulations, estimators based on concentration estimators were much

more effective on such data sets than estimators based on the basic resampling

algorithm.

The Rousseeuw and Van Driessen (1999) DD plot is a plot of classical versus

robust Mahalanobis distances and is very useful for detecting outliers. In a small

simulation study, 20% outliers were planted for various values of p. If the outliers

were distant enough, then the minimum DGK distance for the outliers was larger

than the maximum DGK distance for the nonoutliers, and thus the outliers were

separated from the bulk of the data in the DD plot. For example, when the

clean data comes from the Np(0, Ip) distribution and the outliers come from the

Np(2000 1, Ip) distribution, the DGK estimator with 10 concentration steps was

able to separate the outliers in 17 out of 20 runs when n = 9000 and p = 30.
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With 10% outliers, a shift of 40, n = 600 and p = 50, 18 out of 20 runs worked.

Olive (2004) showed similar results for the Rousseeuw and Van Driessen (1999)

Fast–MCD algorithm and that the MBA estimator could often correctly classify

up to 49% hugely distant outliers.

We examined several data sets from (www.math.siu.edu/olive/ol-bookp.htm)

to illustrate the DGK, MBA and Fast–MCD estimators. For each data set the

d outliers were deleted and then made the first d cases in the data set. Then

the last n − m cases were deleted so that the outliers could not be detected in

the DD plot. The Buxton (1920) data cyp.lsp consists of measurements bigonal

breadth, cephalic index, head length, height and nasal height. There were 76 cases

and cases 61–65 had heights about 0.75 inches with head lengths well over 5 feet.

The DGK, Fast–MCD and MBA estimators failed when there were 21, 14 and

10 cases remaining, respectively.

The Gladstone (1905-6) data consists of the variables age, ageclass, breadth,

brnweight, cause, cephalic, circum, head height, height, length, sex and size. There

were 267 cases and cases 230, 254, 255, 256, 257 and 258 were outliers correspond-

ing to infants. The variables ageclass, cause and sex were categorical and caused

the Fast–MCD estimator to be singular. Hence these three variables were deleted

and there were 6 outliers and 9 variables. The DGK, Fast–MCD and MBA esti-
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mators failed when there were 30, 20 and 18 cases remaining, respectively.

The Schaaffhausen (1878) data museum.lsp consists of the variables head

length, head breadth, head height, lower jaw length, face length, upper jaw length,

height of lower jaw, eye width, traverse diagonal length and cranial capacity.

There were 60 cases and the first 47 were humans while the remaining 13 cases

were apes (outliers). The DGK, Fast–MCD and MBA estimators failed when

there were 38, 34 and 26 cases remaining, respectively.

All three estimators gave similar DD plots when all of the cases were used and

the DGK estimator had considerable outlier resistance. For MLD, concentration

is a very effective technique even if the classical estimator is used as the only

start. For two of the data sets, the MBA estimator failed when the number of

outliers was equal to the number of clean cases, as might be expected from a HB

estimator.

5 Conclusions

The literature on HB MLR or MLD estimators has major flaws: estimators that

have been shown to be HB and consistent are impractical to compute, while

estimators that are practical to compute have not been shown to be both HB

and consistent. This paper has shown that it is possible to create estimators that
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have attractive theory and that are easy to compute, and multivariate robust

statistics can now be used for inference as well as outlier detection.

The MBA estimator has good outlier resistance, is asymptotically equivalent

to a scaled DGK estimator and is about two orders of magnitude faster than the

inconsistent FMCD estimator. The RMBA estimator that uses two “reweight for

efficiency steps” could also be used and is HB and
√

n consistent by Lopuhaä

(1999).

The CLTS estimator is HB with 100% Gaussian asymptotic efficiency, but

the outlier resistance is not much better than that of FLTS. The CLTS estima-

tor is affine equivariant but not regression equivariant. The MBA estimator is

not affine equivariant. The properties of computability, outlier resistance and

√
n consistency are far more important than the property of equivariance, and

the CLTS and CMCD estimators are asymptotically equivalent to equivariant

estimators.

Estimators can easily be made affine equivariant if they are allowed to depend

on the initial data collected in an n × p matrix W (and practical elemental

“robust estimators” depend on W since they are not permutation invariant).

To see this, let B = 1bT where 1 is an n × 1 vector of ones and b is a p × 1

constant vector. Hence the ith row of B is bT
i ≡ bT for i = 1, ..., n. Consider
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the affine transformation Z = WA + B where A is any nonsingular p × p

matrix. Let (T (W ),C(W )) be the MBA estimator. Define (TW (Z),CW (Z))

by TW (W ) = T (W ) and CW (W ) = C(W ), and TW (Z) = ATT (W ) +

b = ATTW (W ) + b and CW (Z) = AT C(W )A = ATCW (W )A. Thus

(TW ,CW ) is affine equivariant.

The applications of the estimators from Theorems 3–5 and Remark 2 are

numerous. For example, they can be used to robustify the “robust estimators”

for multivariate techniques and generalized linear models that use Fast–MCD as

a “plug in” estimator. The MBA estimator can also be used to create an easily

computed HB
√

n consistent Mahalanobis depth estimator.

The Maronna and Zamar (2002) OGK estimator may be a competitor to the

MBA and CMCD estimators, but theory is needed. See Mehrotra (1995) for

a similar estimator. Exact computation of the MCD estimator is surveyed by

Bernholt and Fischer (2004).

For any given estimator, it is easy to find outlier configurations where the

estimator fails. One of the most useful techniques for robust statistics is to make

scatterplot matrices of residuals and of fitted values and the response y, or of

Mahalanobis distances from several estimators including starts and attractors.

The R/Splus software has a function cov.mcd for computing the Fast–MCD
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estimator. The group of functions rpack.txt, available from (www.math.siu.edu/

olive/rpack.txt), contains functions covdgk, covmba2 and rmba for computing the

scaled DGK, MBA and RMBA estimators. The function ddcomp2 makes the DD

plots of the above four estimators.
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