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Abstract

It is shown that the property of being a high breakdown estimator is weaker than

the property of being an asymptotically unbiased estimator. Hence the breakdown

and maximal bias properties should only make up a small part of a research paper.

In particular, papers solely on breakdown or maximal bias should no longer be

published.
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Introduction

The multiple linear regression (MLR) model is Y = Xβ + e where Y is an n × 1

vector of dependent variables, X is an n × p matrix of predictors, β is a p × 1 vector of

unknown coefficients and e is an n×1 vector of errors. The ith case (xT
i , Yi) corresponds

to the ith row xT
i of X and the ith element of Y .

A multivariate location and dispersion (MLD) model is a joint distribution for a p×1

random vector x that is completely specified by a p× 1 population location vector µ and

a p×p symmetric positive definite population dispersion matrix Σ. Elliptically contoured

distributions are important MLD models. The data is collected in an n × p matrix X

with n rows xT
i .

Let the p × 1 column vector T (X) be a multivariate location estimator, and let the

p× p symmetric positive definite matrix C(W ) be a dispersion estimator. Then the ith

squared sample Mahalanobis distance is the scalar

D2
i = D2

i (T (X),C(X)) = (xi − T (X))T C−1(X)(xi − T (X)) (1.1)

for each observation xi. Notice that the Euclidean distance of xi from the estimate

of center T (X) is Di(T (X), Ip) where Ip is the p × p identity matrix. The classical

Mahalanobis distance corresponds to the sample mean and sample covariance matrix

T (X) = x =
1

n

n∑

i=1

xi and C(X) = S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T.

Many of the most used practical “robust estimators” generate a sequence of K trial

fits called attractors: b1, ..., bK for MLR and (T1,C1), ..., (TK,CK) for MLD. Then some

criterion is evaluated and the attractor bA or (TA,CA) that minimizes the criterion is used
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as the final estimator. One way to obtain attractors is to generate trial fits called starts,

and then use the concentration technique. For multivariate data, let (T0,j,C0,j) be the jth

start and compute all n Mahalanobis distances Di(T0,j,C0,j). At the next iteration, the

classical estimator (T1,j,C1,j) is computed from the cn ≈ n/2 cases corresponding to the

smallest distances. This iteration can be continued for k steps resulting in the sequence

of estimators (T0,j,C0,j), (T1,j,C1,j), ..., (Tk,j,Ck,j). Then (Tk,j,Ck,j) = (xk,j ,Sk,j) is the

jth attractor. For MLR, let b0,j be the jth start and compute all n residuals ri(b0,j) =

Yi − bT
0,jxi. At the next iteration, the OLS estimator b1,j is computed from the cn ≈ n/2

cases corresponding to the smallest squared residuals. This iteration can be continued

for k steps resulting in the sequence of estimators b0,j, b1,j, ..., bk,j. Then bk,j is the jth

attractor for j = 1, ...,K. Using k = 10 concentration steps often works well, and the

basic resampling algorithm is a special case with k = 0, i.e., the attractors are the starts.

A common method for generating starts is to use randomly selected “elemental sets”

of p cases for MLR and p+1 cases for MLD. The jth elemental fit is a classical estimator

bj or (Tj,Cj) computed from the jth elemental set.

Hampel, Ronchetti, Rousseeuw and Stahel (1986, p. 96-98) and Donoho and Huber

(1983) provide some history for breakdown. Maguluri and Singh (1997) have interesting

examples on breakdown. If d of the cases have been replaced by arbitrarily bad contam-

inated cases, then the contamination fraction is γ = d/n. Then the breakdown value of

β̂ or of a multivariate location estimator is the smallest value of γ needed to make ‖β̂‖

or ‖T‖ arbitrarily large. Let 0 ≤ λp(C(X)) ≤ · · · ≤ λ1(C(X)) denote the eigenvalues

of the dispersion estimator applied to data X. The breakdown value of a dispersion

estimator C is the smallest value of γ needed to drive the smallest eigenvalue to zero or
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the largest eigenvalue to ∞.

Breakdown for MLR

The following result greatly simplifies some breakdown proofs and shows that an MLR

estimator basically breaks down if the median absolute residual MED(|ri|) can be made

arbitrarily large. The result implies that if the breakdown value ≤ 0.5, breakdown can

be computed using the median absolute residual MED(|ri|(W n
d )) instead of ‖T (W n

d )‖.

Suppose that the proportion of outliers is less that 0.5. If the xi are fixed, and the

outliers are moved up and down the Y axis, then for high breakdown (HB) estimators,

β̂ and MED(|ri|) will eventually be bounded. Thus if the |Yi| values of the outliers are

large enough, the |ri| values of the outliers will be large.

If the Yi’s are fixed, arbitrarily large x-outliers tend to drive the slope estimates to 0,

not ∞. If both x and Y can be varied, then a cluster of outliers can be moved arbitrarily

far from the bulk of the data but still have small residuals. For example, move the outliers

along the regression plane formed by the clean cases.

Let W be the n × (p + 1) matrix with ith row (xT
i , Yi). Let W n

d denote the data

matrix where any d of the cases have been replaced by arbitrarily bad contaminated

cases.

Proposition 1 (Olive 2005): If the breakdown value ≤ 0.5, computing the breakdown

value using the median absolute residual MED(|ri|) is asymptotically equivalent to using

‖β̂‖.

Proof: Consider a fixed data set W n
d with ith row (wT

i , Zi)
T . If the regression esti-

mator T (W n
d) = β̂ satisfies ‖β̂‖ = M for some constant M , then the median absolute
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residual MED(|Zi − β̂
T
wi|) is bounded by maxi=1,...,n |Yi − β̂

T
xi| ≤ maxi=1,...,n[|Yi| +

∑p
j=1 M |xi,j|] if d < n/2.

Now suppose that ‖β̂‖ = ∞. Since the absolute residual is the vertical distance of

the observation from the hyperplane, the absolute residual |ri| = 0 if the ith case lies on

the regression hyperplane, but |ri| = ∞ otherwise. Hence MED(|ri|) = ∞ if fewer than

half of the cases lie on the regression hyperplane. This will occur unless the proportion

of outliers d/n > (n/2 − q)/n → 0.5 as n → ∞ where q is the number of “good” cases

that lie on a hyperplane of lower dimension than p. In the literature it is usually assumed

that the original data is in general position: q = p − 1. QED

If the contamination is high but less than 0.5, then ||β̂|| and MED(|ri|) stay bounded.

If the x values of the outliers are fixed, add a constant c to Y values of the outliers. As

|c| goes to infinity, the outliers will eventually have the largest squared residuals. Notice

that if the HB estimator is Ŷ = x, then the point (109, 109) will have zero residual.

For estimators like LMS, LTS and LTA that have a narrowest band interpretation, let

the outliers tilt the narrowest band away from the true regression plane xT β, then slide

the outliers up and down the narrowest band. They will have small squared residuals

although both the x and Y values can be arbitrarily large. The correlation of the clean

cases is important in that if xT β and Y are highly correlated, then the narrowest band

is more narrow and |c| is smaller. The limiting cases are exact fit with band width of 0

and correlation 1, and 0 correlation where |c| is huge.

Rousseeuw and Leroy (1987, p. 29, 206) conjectured that high breakdown (HB)

regression estimators can not be computed cheaply, and that if the algorithm is also
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affine equivariant, then the complexity of the algorithm must be at least O(np). The

following counterexample shows that these two conjectures are false.

Proposition 2 (Olive 2005): Suppose that the MLR model has an intercept β1. Let

β̂J be the OLS estimator applied to the set J of approximately n/2 cases that have

Yi ∈ [MED(Yi) ± MAD(Yi)] where MED(Yi) is the median and MAD(Yi) = MED(|Yi −

MED(Yi)|) is the median absolute deviation of the response variable. Then β̂J is an

affine equivariant HB regression estimator.

Proof. Consider the estimator

β̂M = (MED(Yi), 0, ..., 0)
T

which yields the predicted values Ŷi ≡ MED(Yi). The squared residual r2
i (β̂M) ≤

(MAD(Yi))
2 if the ith case is in J . Hence the OLS fit β̂J to the cases in J has

∑

i∈J

r2
i (β̂J ) ≤ n(MAD(Yi))

2,

and

MED(|ri(β̂J )|) ≤
√

nMAD(Yi) < ∞

if MAD(Yi) < ∞. Hence the estimator β̂J is HB, but it only resists large Y –outliers. β̂J

is affine equivariant because the cases that determine the OLS fit do not depend on X.

(Note that β̂J is scale but not regression equivariant.) QED

Proposition 3 (Hawkins and Olive 2002). The breakdown value of MLR concentration

algorithms that use K elemental starts is bounded above by K/n.

Proof: To cause an MLR algorithm to break down, simply contaminate one observa-

tion in each starting elemental set so as to displace the fitted coefficient vector by a large
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amount. Since K elemental starts are used, at most K points need to be contaminated.

QED

Proposition 4. If a high breakdown start is added to an MLR concentration algorithm,

then the resulting estimator is HB.

Proof: The MLR algorithm uses the LTS(cn) criterion, and concentration reduces the

HB LTS criterion that is based on cn ≥ n/2 absolute residuals, so the median absolute

residual of the resulting estimator is bounded as long as the criterion applied to the HB

estimator is bounded. QED

For example, suppose the ordered squared residuals from the mth start b0m are ob-

tained. Then b1m is simply the OLS fit to the cases corresponding to the cn smallest

squared residuals. Denote these cases by i1, ..., icn. Then

cn∑

i=1

r2
(i)(b1m) ≤

cn∑

j=1

r2
ij
(b1m) ≤

cn∑

j=1

r2
ij
(b0m) =

cn∑

j=1

r2
(i)(b0m)

where the second inequality follows from the definition of the OLS estimator. Hence

concentration steps reduce the LTS criterion. If cn = (n+1)/2 for n odd and cn = 1+n/2

for n even, then the criterion is bounded iff the median squared residual is bounded.

Notice that if b0m = β̂J is the m = (K + 1)th start, then the attractor bkm found

after k concentration steps is also a HB regression estimator. Let β̂k,B = 0.99bkm. Then

β̂k,B is a HB biased estimator of β (biased if β 6= 0). The following result shows that

it is easy to make a HB estimator that is asymptotically equivalent to any consistent

estimator, although the outlier resistance of the HB estimator is poor.

Proposition 5: Let β̂ be any consistent estimator of β and let β̂H = β̂ if MED(r2
i (β̂H))

≤ MED(r2
i (β̂k,B)). Let β̂H = β̂k,B, otherwise. Then β̂H is a HB estimator that is
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asymptotically equivalent to β̂.

Proof: Since β̂ is consistent, MED(r2
i (β̂)) → MED(e2) in probability where MED(e2)

is the population median of the squared error e2. Since the LMS estimator is consistent,

the probability that β̂ has a smaller median squared residual than the biased estimator

β̂k,B goes to 1 as n → ∞. Hence β̂H is asymptotically equivalent to β̂. QED

Breakdown for MLD

Let W = X and let W n
d denote the data matrix where any d of the cases have

been replaced by arbitrarily bad contaminated cases. The following result shows that a

multivariate location estimator T basically “breaks down” if the d outliers can make the

median Euclidean distance MED(‖wi − T (W n
d)‖) arbitrarily large where wT

i is the ith

row of W n
d . Thus a multivariate location estimator T will not break down if T can not

be driven out of some ball of (possibly huge) radius R about the origin.

Proposition 6. If nonequivariant estimators (that have a breakdown value of greater

than 1/2) are excluded, then a multivariate location estimator has a breakdown value

of dT /n iff dT is the smallest number of arbitrarily bad cases that can make the median

Euclidean distance MED(‖wi − T (W n
dT

)‖) arbitrarily large.

Proof. Note that for a fixed data set W n
d with ith row wi, if the multivariate location

estimator T (W n
d) satisfies ‖T (W n

d )‖ = M for some constant M , then the median Eu-

clidean distance MED(‖wi−T (W n
d )‖) ≤ maxi=1,...,n ‖xi−T (W n

d )‖ ≤ maxi=1,...,n ‖xi‖+M

if d < n/2. Similarly, if MED(‖wi−T (W n
d )‖) = M for some constant M , then ‖T (W n

d)‖

is bounded if d < n/2. QED

Since the coordinatewise median MED(X) is a HB estimator of multivariate location,
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it is also true that a multivariate location estimator T will not break down if T can not

be driven out of some ball of radius R about MED(X). Hence (MED(X), Ip) is a HB

estimator of MLD. The proof of the following result shows that if the classical estimator

(xJ ,SJ ) is applied to a subset J of cn ≈ n/2 cases zj such that the zj are not arbitrarily

far from the coordinatewise median in Euclidean distance, then (xJ ,SJ) is a HB estimator

of MLD.

Proposition 7 (Olive 2004). Let J consist of the cn cases xi such that ‖xi−MED(X)‖ ≤

MED(‖xi − MED(X)‖). Then the classical estimator (xJ ,SJ ) applied to J is a HB es-

timator of MLD.

Proof. Note that xJ is HB by Proposition 6. From numerical linear algebra, it is

known that the largest eigenvalue of a p × p matrix C is bounded above by pmax |ci,j|

where ci,j is the (i, j) entry of C. See Datta (1995, p. 403). Denote the cn cases by

z1, ...,zcn. Then the (i, j)th element ci,j of C ≡ SJ is

ci,j =
1

cn − 1

cn∑

k=1

(zi,k − zk)(zj,k − zj).

Hence the maximum eigenvalue λ1 is bounded if fewer than half of the cases are out-

liers. Unless the percentage of outliers is high (higher than a value tending to 0.5 as

n → ∞), the determinant |CMCD(cn)| of the HB minimum covariance determinant

(MCD) estimator is greater than 0. Thus 0 < |CMCD(cn)| ≤ |SJ | = λ1 · · · λp, and

λp > |CMCD(cn)|/λp−1
1 > 0. QED

Additional Comments

Morgenthaler (1989) and Stefanski (1991) conjectured that high breakdown estimators

with high efficiency are not possible. These conjectures have been shown to be false by
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Proposition 5 and Olive (2007,
∮

8.2 and 10.7).

For many elemental basic resampling algorithms, the number of elemental sets Kn ≡

K does not depend on n. For a fixed data set with small p and an outlier proportion γ <

0.5, the probability that a clean elemental set is selected will be high if Kn ≡ K ≥ 3(2d)

where d = p for MLR and d = p + 1 for MLD. Such estimators are sometimes called

“high breakdown with high probability,” although Proposition 3 shows that the resulting

estimator has zero breakdown (asymptotically), regardless of the MLR criterion. Many

authors, including Maronna and Yohai (2002) and Singh (1998), have mistaken “high

breakdown with high probability” for “high breakdown.”

There are several important points about breakdown that do not seem to be well

known. First, a breakdown result is weaker than even a result such as an estimator being

asymptotically unbiased for some population quantity such as β. This latter property

is useful since if the asymptotic distribution of the estimator is a good approximation

to the sampling distribution of the estimator, and if many independent samples can be

drawn from the population, then the estimator can be computed for each sample and the

average of all the different estimators should be close to the population quantity. The

breakdown value merely gives a yes or no answer to the question of whether the median

absolute residual can be made arbitrarily large when the contamination proportion is

equal to γ, and having a bounded median absolute residual does not imply that the high

breakdown estimator is asymptotically unbiased or useful.

Secondly, the literature implies that the breakdown value is a measure of the global

reliability of the estimator and is a lower bound on the amount of contamination needed
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to destroy an estimator. These interpretations are not correct since the complement of

complete and total failure is not global reliability. The breakdown value dT /n is actually

an upper bound on the amount of contamination that the estimator can tolerate since

the estimator can be made arbitrarily bad with dT maliciously placed cases.

In particular, the breakdown value of an estimator tells nothing about more important

properties such as consistency or asymptotic normality. Certainly we are reluctant to

call an estimator robust if a small proportion of outliers can drive the median absolute

residual to ∞, but this type of estimator failure is very simple to prevent.
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