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Preface

Statistics is, or should be, about scientific investigation and how to do it
better ....

Box (1990)

Statistics is the science of extracting useful information from data, and
a statistical model is used to provide a useful approximation to some of the
important characteristics of the population which generated the data.

A case or observation consists of the random variables measured for one
person or thing. For multivariate location and dispersion the ith case is
xi = (xi,1, ..., xi,p)

T . There are n cases. Outliers are cases that lie far away
from the bulk of the data, and they can ruin a classical analysis.

Olive (2013) and this book give a two volume presentation of robust
statistics. Olive (2013) emphasized the location model, visualizing regres-
sion models, high breakdown regression, highly outlier resistant multivariate
location and dispersion estimators such as the FCH estimator, and applica-
tions of the FCH estimator for visualizing regression models.

Robust Multivariate Analysis tries to find methods that give good results
for multivariate analysis for a large group of underlying distributions and
that are useful for detecting certain types of outliers. Plots for detecting
outliers and prediction intervals and regions that work for large classes of
distributions are also of interest.

This book covers robust multivariate analysis. Topics include applications
of the easily computed robust estimators to multivariate analysis and when
can multivariate procedures give good results if the data distribution is not
multivariate normal.

Many of the most used estimators in statistics are semiparametric. For
multivariate location and dispersion (MLD), the classical estimator is the
sample mean and sample covariance matrix. Many classical procedures orig-
inally meant for the multivariate normal (MVN) distribution are semipara-

vi



Preface vii

metric in that the procedures also perform well on a much larger class of
elliptically contoured (EC) distributions.

An important goal of robust multivariate analysis is to produce easily
computed semiparametric MLD estimators that perform well when the clas-
sical estimators perform well, but are also useful for detecting some important
types of outliers.

Two paradigms appear in the robust literature. The “perfect classifica-
tion paradigm” assumes that diagnostics or robust statistics can be used to
perfectly classify the data into a “clean” subset and a subset of outliers. Then
classical methods are applied to the clean data. These methods tend to be
inconsistent, but this paradigm is widely used and can be very useful for a
fixed data set that contains outliers.

The “asymptotic paradigm” assumes that the data are iid and develops
the large sample properties of the estimators. Unfortunately, many robust
estimators that have rigorously proven asymptotic theory are impractical to
compute. In the robust literature for multivariate location and dispersion,
often no distinction is made between the two paradigms: frequently the large
sample properties for an impractical estimator are derived, but the examples
and software use an inconsistent “perfect classification” procedure. In this
text, some practical MLD estimators that have good statistical properties are
developed (see Section 4.4), and some effort has been made to state whether
the “perfect classification” or “asymptotic” paradigm is being used.

Olive (2013, ch. 10, 11) provides an introduction to robust multivariate
analysis. Also see Atkinson, Riani and Cerioli (2004), and Wilcox (2012).
Most work on robust multivariate analysis follows the Rousseeuw Yohai
paradigm. See Maronna, Martin and Yohai (2006).

What is in the Book?
This book examines robust statistics for multivariate analysis. Robust

statistics can be used to improve many of the most used statistical proce-
dures. Often practical robust outlier resistant alternatives backed by large
sample theory are also given, and may be used in tandem with the classi-
cal method. Emphasis is on the following topics. 1) The practical robust√
n consistent multivariate location and dispersion FCH estimator is devel-

oped, along with reweighted versions RFCH and RMVN. These estimators
are useful for creating robust multivariate procedures such as robust princi-
pal components, for outlier detection and for determining whether the data is
from a multivariate normal distribution or some other elliptically contoured
distribution. 2) Practical asymptotically optimal prediction regions are de-
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veloped.
Chapter 1 provides an introduction and some results that will be used

later in the text. Chapters 2 and 3 cover multivariate distributions and
limit theorems including the multivariate normal distribution, elliptically
contoured distributions, and the multivariate central limit theorem. Chapter
4 considers classical and easily computed highly outlier resistant

√
n con-

sistent robust estimators of multivariate location and dispersion such as the
FCH, RFCH and RMVN estimators. Chapter 5 considers DD plots and ro-
bust prediction regions. Chapters 6 through 13 consider principal component
analysis, canonical correlation analysis, discriminant analysis, Hotelling’s T 2

test, MANOVA, factor analysis, multivariate regression and clustering, re-
spectively. Chapter 14 discusses other techniques while Chapter 15 provides
information on software and suggests some projects for the students.

The text can be used for supplementary reading for courses in multivariate
analysis and pattern recognition. See Duda, Hart and Stork (2000) and
Bishop (2006). The text can also be used to present many statistical methods
to students running a statistical consulting lab.

Some of the applications in this text include the following.
1) The first practical highly outlier resistant robust estimators of multi-

variate location and dispersion that are backed by large sample and break-
down theory are given with proofs. Section 4.4 provide the easily computed
robust

√
n consistent highly outlier resistant FCH, RFCH and RMVN esti-

mators of multivariate location and dispersion. Applications are numerous,
and R software for computing the estimators is provided.

2) Practical asymptotically optimal prediction regions are developed in
Section 5.2, and should replace parametric prediction regions, which tend to
be far too short when the parametric distribution is misspecified, and also
replace bootstrap intervals that take too long to compute. These prediction
regions are extended to multivariate regression in Section 12.4.

3) Throughout the book there are goodness of fit and lack of fit plots
for examining the model. The main tool is the DD plot, and Section 5.1
shows that the DD plot can be used to detect multivariate outliers and as
a diagnostic for whether the data is multivariate normal or from some other
elliptically contoured distribution with second moments.

4) Applications for robust and resistant estimators are given. The basic
idea is to replace the classical estimator or the inconsistent zero breakdown
estimators (such as cov.mcd) used in the “robust procedure” with the easily
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computed
√
n consistent robust RFCH and RMVN estimators from Section

4.4. The resistant trimmed views methods for visualizing 1D regression mod-
els graphically are discussed in Section 14.3.

The website (www.math.siu.edu/olive/multbk.htm) for this book pro-
vides more than 20 data sets for Arc, and over 60 R/Splus programs in
the file mpack.txt. The students should save the data and program files on
a flash drive. Section 15.2 discusses how to get the data sets and programs
into the software, but the following commands will work.

Downloading the book’s R/Splus functions mpack.txt into R or
Splus:

Download mpack.txt onto a flash drive G. Enter R and wait for the cursor
to appear. Then go to the File menu and drag down Source R Code. A
window should appear. Navigate the Look in box until it says Removable
Disk (G:). In the Files of type box choose All files(*.*) and then select
mpack.txt. The following line should appear in the main R window.

> source("G:/mpack.txt")

If you use Splus, the above “source command” will enter the functions
into Splus. Creating a special workspace for the functions may be useful.

Type ls(). Over 60 R/Splus functions from mpack.txt should appear. In
R, enter the command q(). A window asking “Save workspace image?” will
appear. Click on No to remove the functions from the computer (clicking on
Yes saves the functions on R, but the functions are on your flash drive).

Similarly, to download the text’s R/Splus data sets, save mrobdata.txt on
a flash drive G, and use the following command.

> source("G:/mrobdata.txt")

Background
This course assumes that the student has had considerable exposure to

statistics, but is at a much lower level than most texts on robust statistics.
Calculus and a course in linear algebra are essential. The level of the text
is similar to that of Johnson and Wichern (2007), Mardia, Kent, and Bibby
(1979), Press (2005) and Rencher (2002). Anderson (2003) is at a much
higher level.

Lower level texts on multivariate analysis include Flury and Riedwyl
(1988), Grimm and Yarnold(1995, 2000), Hair, Black, Anderson and Tatham
(2005), Kachigan (1991) and Tabachnick and Fidell (2006).
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An advanced course in statistical inference, especially one that covered
convergence in probability and distribution, is needed for several sections of
the text. Casella and Berger (2002), Olive (2012b), Poor (1988) and White
(1984) easily meet this requirement.

If the students have had only one calculus based course in statistics (eg
Wackerly, Mendenhall and Scheaffer 2008), then skip the proofs of the theo-
rems. Chapter 2, Sections 3.1-3.3, 4.4, and Chapter 5 are important. Then
topics from the remaining chapters can be chosen.

Need for the book:
As a book on robust multivariate analysis, this book is an alternative

to the Rousseeuw Yohai paradigm and attempts to find practical robust
estimators that are backed by theory. As a book on multivariate analysis,
this book provides large sample theory for the classical methods, showing
that many of the methods are robust to nonnormality and work well on large
classes of distributions.

The Rousseeuw Yohai paradigm for high breakdown multivariate robust
statistics is to approximate an impractical brand name estimator by com-
puting a fixed number of easily computed trial fits and then use the brand
name estimator criterion to select the trial fit to be used in the final robust
estimator. The resulting estimator will be called an F-brand name estimator
where the F indicates that a fixed number of trial fits was used. For example,
generate 500 easily computed estimators of multivariate location and disper-
sion as trial fits. Then choose the trial fit with the dispersion estimator
that has the smallest determinant. Since the minimum covariance deter-
minant (MCD) criterion is used, name the resulting estimator the FMCD
estimator These practical estimators are typically not yet backed by large
sample or breakdown theory. Most of the literature follows the Rousseeuw
Yohai paradigm, using estimators like FMCD, FLTS, FMVE, F-S, FLMS, F-
τ , F-Stahel-Donoho, F-Projection, F-MM, FLTA, F-Constrained M, ltsreg,
lmsreg, cov.mcd, cov.mve or OGK that are not backed by theory. Maronna,
Martin and Yohai (2006, ch. 2, 6) and Hubert, Rousseeuw and Van Aelst
(2008) provide references for the above estimators.

The best papers from this paradigm either give large sample theory for
impractical brand name estimators that take too long to compute, or give
practical outlier resistant methods that could possibly be used as diagnostics
but have not yet been shown to be consistent or high breakdown. As a
rule of thumb, if p > 2 then the brand name estimators take too long to
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compute, so researchers who claim to be using a practical implementation
of an impractical brand name estimator are actually using a F-brand name
estimator.

Some Theory and Conjectures for F-Brand Name Estimators
Some widely used F-brand name estimators are easily shown to be zero

breakdown and inconsistent, but it is also easy to derive F-brand name esti-
mators that have good theory. For example, suppose that the only trial fit
is the classical estimator (x,S) where x is the sample mean and S is the
sample covariance matrix. Computing the determinant of S does not change
the classical estimator, so the resululting FMCD estimator is the classical
estimator, which is

√
n consistent on a large class of distributions. Now sup-

pose there are two trial fits (x,S) and (0, Ip) where x is a p × 1 vector, 0
is the zero vector and Ip is the p× p identity matrix. Since the determinant
det(Ip) = p, the fit with the smallest determinant will not be the classical
estimator if det(S) > p. Hence this FMCD estimator is only consistent on a
rather small class of distributions. Another FMCD estimator might use 500
trial fits, where each trial fit is the classical estimator applied to a subset
of size dn/2e where n is the sample size and d7.7e = 8. If the subsets are
randomly selected cases, then each trial fit is

√
n consistent, so the resulting

FMCD estimator is
√
n consistent, but has little outlier resistance. Choosing

trial fits so that the resulting estimator can be shown to be both consistent
and outlier resistant is a very challenging problem.

Some theory for the F-brand name estimators actually used will be given
after some notation. Let p = the number of predictors. The elemental con-
centration and elemental resampling algorithms use K elemental fits where
K is a fixed number that does not depend on the sample size n. To produce
an elemental fit, randomly select h cases and compute the classical estima-
tor (Ti,Ci) (or Ti = β̂i for regression) for these cases, where h = p + 1 for
multivariate location and dispersion (and h = p for multiple linear regres-
sion). The elemental resampling algorithm uses one of the K elemental fits
as the estimator, while the elemental concentration algorithm refines the K
elemental fits using all n cases. See Olive and Hawkins (2010, 2011) for more
details.

Breakdown is computed by determining the smallest number of cases dn

that can be replaced by arbitrarily bad contaminated cases in order to make
‖T‖ (or ‖β̂‖) arbitrarily large or to drive the smallest or largest eigenvalues
of the dispersion estimator C to 0 or ∞. High breakdown estimators have
γn = dn/n→ 0.5 and zero breakdown estimators have γn → 0 as n→ ∞.
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Note that an estimator can not be consistent for θ unless the number
of randomly selected cases goes to ∞, except in degenerate situations. The
following theorem shows the widely used elemental estimators are zero break-
down estimators. (If Kn → ∞, then the elemental estimator is zero break-
down if Kn = o(n). A necessary condition for the elemental basic resampling
estimator to be consistent is Kn → ∞.)

Theorem P.1: a) The elemental basic resampling algorithm estimators
are inconsistent. b) The elemental concentration and elemental basic resam-
pling algorithm estimators are zero breakdown.

Proof: a) Note that you can not get a consistent estimator by using Kh
randomly selected cases since the number of cases Kh needs to go to ∞ for
consistency except in degenerate situations.

b) Contaminating all Kh cases in the K elemental sets shows that the
breakdown value is bounded by Kh/n → 0, so the estimator is zero break-
down. QED

Theorem P.1 shows that the elemental basic resampling PROGRESS es-
timators of Rousseeuw (1984), Rousseeuw and Leroy (1987) and Rousseeuw
and van Zomeren (1990) are zero breakdown and inconsistent. Yohai’s two
stage estimators, such as MM, need initial consistent high breakdown estima-
tors such as LMS, MCD or MVE, but were implemented with the inconsistent
zero breakdown elemental estimators such as lmsreg, Fake-LMS, Fake-MCD,
MVEE or Fake-MVE. See Hawkins and Olive (2002, p. 157). You can get
consistent estimators if Kn → ∞ or hn → ∞ as n → ∞. You can get high
breakdown estimators and avoid singular starts if all Kn = C(n, h) = O(nh)
elemental sets are used, but such an estimator is impractical.
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Chapter 1

Introduction

1.1 Introduction

Multivariate analysis is a set of statistical techniques used to analyze corre-
lated data containing observations on p ≥ 2 random variables measured on a
set of n cases. Let x = (x1, ..., xp)

T where x1, ..., xp are p random variables.
Usually context will be used to decide whether x is a random vector or the
observed random vector. For multivariate location and dispersion the ith
case is xi = (xi,1, ..., xi,p)

T .
Notation: Typically lower case boldface letters such as x denote column

vectors while upper case boldface letters such as S denote matrices with 2 or
more columns. An exception may occur for random vectors which are usually
denoted by x, y or z. If context is not enough to determine whether x is a
random vector or an observed random vector, then X = (X1, ..., Xp)

T and Y

will be used for the random vectors, and x = (x1, ..., xp)
T for observed value

of the random vector. This notation is used in Chapter 3 in order to study
the conditional distribution of Y |X = x. An upper case letter such as Y will
usually be a random variable. A lower case letter such as x1 will also often be
a random variable. An exception to this notation is the generic multivariate
location and dispersion estimator (T,C) where the location estimator T is a
p× 1 vector such as T = x. C is a p× p dispersion estimator and conforms
to the above notation. Another exception is in Chapter 3 where

1



CHAPTER 1. INTRODUCTION 2

Assume that the data xi has been observed and stored in an n×p matrix

W =




xT

1
...

xT
n



 =





x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p
...

...
. . .

...
xn,1 xn,2 . . . xn,p



 =
[

v1 v2 . . . vp

]

where the ith row of W is the ith case xT
i and the jth column vj of W

corresponds to n measurements of the jth random variable xj for j = 1, ..., p.
Often the n rows corresponding to the n cases are assumed to be iid

or a random sample from some multivariate distribution. The p columns
correspond to nmeasurements on the p correlated random variables x1, ..., xp.
The n cases are p× 1 vectors while the p columns are n× 1 vectors.

Methods involving one response variable will not be covered in depth in
this text. Such models include multiple linear regression, many experimental
design models and generalized linear models. Discrete multivariate analysis
= categorical data analysis will also not be covered.

Most of the multivariate techniques studied in this book will use esti-
mators of multivariate location and dispersion. Typically the data will be
assumed to come from a continuous distribution with a joint probability dis-
tribution function (pdf). Multivariate techniques that examine correlations
among the p random variables x1, ..., xp include principal component analysis,
canonical correlation analysis and factor analysis. Multivariate techniques
that compare the n cases x1, ...,xn include discriminant analysis and cluster
analysis. Data reduction attempts to simplify the multivariate data without
losing important information. Since the data matrix W has np terms, data
reduction is an important technique. Prediction and hypothesis testing are
also important techniques. Hypothesis testing is important for multivariate
regression, Hotelling’s T 2 test, and MANOVA.

Robust multivariate analysis consists of i) techniques that are robust
to nonnormality or ii) techniques that are robust to outliers. Techniques
that are robust to outliers tend to have some robustness to nonnormality.
The classical covariance matrix S is very robust to nonnormality, but is not
robust to outliers. Large sample theory is useful for both robust techniques.
See Section 3.4.
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1.2 Things That Can Go Wrong with a Mul-

tivariate Analysis

In multivariate analysis, there is often a training data set used to predict or
classify data in a future data set. Many things can go wrong. For classifica-
tion and prediction, it is usually assumed that the data in the training set
is from the same distribution as the data in the future set. Following Hand
(2006), this crucial assumption is often not justified.

Population drift is a common reason why the above assumption, which
assumes that the various distributions involved do not change over time, is vi-
olated. Population drift occurs when the population distribution does change
over time. As an example, perhaps pot shards are classified after being sent
to a lab for analysis. It is often the case that even if the shards are sent to the
same lab twice, the two sets of lab measurements differ greatly. As another
example, suppose there are several variables being used to produce greater
yield of a crop or a chemical. If one journal paper out of 50 (the training set)
finds a set of variables and variable levels that successfully increases yield,
then the next 25 papers (the future set) are more likely to use variables and
variable levels similar to the one successful paper than variables and variable
levels of the 49 papers that did not succeed. Hand (2006) notes that classifi-
cation rules used to predict whether applicants are likely to default on loans
are updated every few months in the banking and credit scoring industries.

A second thing that can go wrong is that the training or future data
set is distorted away from the population distribution. This could occur
if outliers are present or if one of the data sets is not a random sample
from the population. For example, the training data set could be drawn
from three hospitals, and the future data set could be drawn from two more
hospitals. These two data sets may not represent random samples from the
same population of hospitals.

Often problems specific to the multivariate method can occur. Often
simpler techniques can outperform sophisticated multivariate techniques be-
cause the user of the multivariate method does not have the expertise to get
the most out of the sophisticated technique. For supervised classification,
Hand (2006) notes that there can be error in class labels, arbitrariness in
class definitions and data sets where different optimization criteria lead to
very different classification rules. Hand (2006) suggests that simple rules
such as linear discriminant analysis may perform almost as well or better
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than sophisticated classification rules because of all of the possible problems.
See Chapter 8.

1.3 Some Matrix Optimization Results

The following results will be useful throughout the text. Let A > 0 denote
that A is a positive definite matrix.

Theorem 1.1. Let B > 0 be a p× p symmetric matrix with eigenvalue
eigenvector pairs (λ1, e1), ..., (λp, ep) where λ1 ≥ λ2 · · · ≥ λp > 0 and the
orthonormal eigenvectors satisfy eT

i ei = 1 while eT
i ej = 0 for i 6= j. Let d

be a given p× 1 vector and let a be an arbitrary nonzero p× 1 vector. See
Johnson and Wichern (1988, p. 64-65, 184).

a) max
a6=0

aT ddTa

aTBa
= dT B−1d where the max is attained for a = cB−1d

for any constant c 6= 0. Note that the numerator = (aT d)2.

b) max
a6=0

aTBa

aT a
= max

‖a‖=1
aT Ba = λ1 where the max is attained for a = e1.

c) min
a6=0

aTBa

aT a
= min

‖a‖=1
aTBa = λp where the min is attained for a = ep.

d) max
a⊥e1,...,ek

aT Ba

aT a
= max

‖a‖=1,a⊥e1,...,ek

aT Ba = λk+1 where the max is

attained for a = ek+1 for k = 1, 2, ..., p− 1.
e) Let (x,S) be the observed sample mean and sample covariance matrix

where S > 0. Then max
a 6=0

aT (x− µ)(x− µ)T a

aT Sa
= n(x−µ)TS−1(x−µ) = T 2

where the max is attained for a = cS−1(x − µ) for constant c 6= 0.

f) Let A be a p × p symmetric matrix. Then max
a 6=0

aT Aa

aTBa
= λ1(B

−1A),

the largest eigenvalue of B−1A.

1.4 The Location Model

The location model
Yi = µ+ ei, i = 1, . . . , n (1.1)
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is a special case of the multivariate location and dispersion model with p =
1. The location model is often summarized by obtaining point estimates
and confidence intervals for a location parameter and a scale parameter.
Assume that there is a sample Y1, . . . , Yn of size n where the Yi are iid from
a distribution with median MED(Y ), mean E(Y ), and variance V (Y ) if they
exist. Also assume that the Yi have a cumulative distribution function (cdf)
F that is known up to a few parameters. For example, Yi could be normal,
exponential, or double exponential. The location parameter µ is often the
population mean or median while the scale parameter is often the population
standard deviation

√
V (Y ). The ith case is Yi.

Point estimation is one of the oldest problems in statistics and four of
the most important statistics for the location model are the sample mean,
median, variance, and the median absolute deviation (mad). Let Y1, . . . , Yn

be the random sample; ie, assume that Y1, ..., Yn are iid.

Definition 1.1. The sample mean

Y =

∑n
i=1 Yi

n
. (1.2)

The sample mean is a measure of location and estimates the population
mean (expected value) µ = E(Y ). The sample mean is often described as
the “balance point” of the data. The following alternative description is also
useful. For any value m consider the data values Yi ≤ m, and the values Yi >
m. Suppose that there are n rods where rod i has length |ri(m)| = |Yi −m|
where ri(m) is the ith residual of m. Since

∑n
i=1(Yi − Y ) = 0, Y is the value

of m such that the sum of the lengths of the rods corresponding to Yi ≤ m
is equal to the sum of the lengths of the rods corresponding to Yi > m. If
the rods have the same diameter, then the weight of a rod is proportional
to its length, and the weight of the rods corresponding to the Yi ≤ Y is
equal to the weight of the rods corresponding to Yi > Y . The sample mean
is drawn towards an outlier since the absolute residual corresponding to a
single outlier is large.

If the data Y1, ..., Yn is arranged in ascending order from smallest to largest
and written as Y(1) ≤ · · · ≤ Y(n), then Y(i) is the ith order statistic and the
Y(i)’s are called the order statistics. Using this notation, the median

MEDc(n) = Y((n+1)/2) if n is odd,
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and
MEDc(n) = (1 − c)Y(n/2) + cY((n/2)+1) if n is even

for c ∈ [0, 1]. Note that since a statistic is a function, c needs to be fixed.
The low median corresponds to c = 0, and the high median corresponds to
c = 1. The choice of c = 0.5 will yield the sample median. For example, if
the data Y1 = 1, Y2 = 4, Y3 = 2, Y4 = 5, and Y5 = 3, then Y = 3, Y(i) = i for
i = 1, ..., 5 and MEDc(n) = 3 where the sample size n = 5.

Definition 1.2. The sample median

MED(n) = Y((n+1)/2) if n is odd, (1.3)

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(Y1, ..., Yn) will also be used.

Definition 1.3. The sample variance

S2
n =

∑n
i=1(Yi − Y )2

n− 1
=

∑n
i=1 Y

2
i − n(Y )2

n− 1
, (1.4)

and the sample standard deviation Sn =
√
S2

n.

The sample median need not be unique and is a measure of location while
the sample standard deviation is a measure of scale. In terms of the “rod
analogy,” the median is a value m such that at least half of the rods are to
the left of m and at least half of the rods are to the right of m. Hence the
number of rods to the left and right of m rather than the lengths of the rods
determine the sample median. The sample standard deviation is vulnerable
to outliers and is a measure of the average value of the rod lengths |ri(Y )|.
The sample mad, defined below, is a measure of the median value of the rod
lengths |ri(MED(n))|.

Definition 1.4. The sample median absolute deviation is

MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n). (1.5)

Since MAD(n) is the median of n distances, at least half of the obser-
vations are within a distance MAD(n) of MED(n) and at least half of the
observations are a distance of MAD(n) or more away from MED(n).
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Example 1.1. Let the data be 1, 2, 3, 4, 5, 6, 7, 8, 9. Then MED(n) = 5
and MAD(n) = 2 = MED{0, 1, 1, 2, 2, 3, 3, 4, 4}.

Since these estimators are nonparametric estimators of the corresponding
population quantities, they are useful for a very wide range of distributions.

1.5 Mixture Distributions

Mixture distributions are often used as outlier models, and certain mixtures
of elliptically contoured distributions have an elliptically contoured distribu-
tion. The following two definitions and proposition are useful for finding the
mean and variance of a mixture distribution. Parts a) and b) of Proposition
1.2 below show that the definition of expectation given in Definition 1.6 is the
same as the usual definition for expectation if Y is a discrete or continuous
random variable.

Definition 1.5. The distribution of a random variable Y is a mixture
distribution if the cdf of Y has the form

FY (y) =

k∑

i=1

αiFWi(y) (1.6)

where 0 < αi < 1,
∑k

i=1 αi = 1, k ≥ 2, and FWi(y) is the cdf of a continuous
or discrete random variable Wi, i = 1, ..., k.

Definition 1.6. Let Y be a random variable with cdf F (y). Let h be a
function such that the expected value Eh(Y ) = E[h(Y )] exists. Then

E[h(Y )] =

∫ ∞

−∞
h(y)dF (y). (1.7)

Proposition 1.2. a) If Y is a discrete random variable that has a pmf
f(y) with support Y, then

Eh(Y ) =

∫ ∞

−∞
h(y)dF (y) =

∑

y∈Y
h(y)f(y).

b) If Y is a continuous random variable that has a pdf f(y), then

Eh(Y ) =

∫ ∞

−∞
h(y)dF (y) =

∫ ∞

−∞
h(y)f(y)dy.
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c) If Y is a random variable that has a mixture distribution with cdf FY (y) =∑k
i=1 αiFWi(y), then

Eh(Y ) =

∫ ∞

−∞
h(y)dF (y) =

k∑

i=1

αiEWi[h(Wi)]

where EWi[h(Wi)] =
∫∞
−∞ h(y)dFWi(y).

Example 1.2. Proposition 1.2c implies that the pmf or pdf of Wi is
used to compute EWi [h(Wi)]. As an example, suppose the cdf of Y is F (y) =
(1 − ε)Φ(y) + εΦ(y/k) where 0 < ε < 1 and Φ(y) is the cdf of W1 ∼ N(0, 1).
Then Φ(y/k) is the cdf of W2 ∼ N(0, k2). To find EY, use h(y) = y. Then

EY = (1 − ε)EW1 + εEW2 = (1 − ε)0 + ε0 = 0.

To find EY 2, use h(y) = y2. Then

EY 2 = (1 − ε)EW 2
1 + εEW 2

2 = (1 − ε)1 + εk2 = 1 − ε+ εk2.

Thus VAR(Y ) = E[Y 2] − (E[Y ])2 = 1 − ε+ εk2. If ε = 0.1 and k = 10, then
EY = 0, and VAR(Y ) = 10.9.

To generate a random variable Y with the above mixture distribution,
generate a uniform (0,1) random variable U which is independent of theWi. If
U ≤ 1−ε, then generate W1 and take Y = W1. If U > 1−ε, then generate W2

and take Y = W2. Note that the cdf of Y is FY (y) = (1−ε)FW1(y)+εFW2(y).

Remark 1.1. Warning: Mixture distributions and linear combinations
of random variables are very different quantities. As an example, let

W = (1 − ε)W1 + εW2

where W1 and W2 are independent random variables and 0 < ε < 1. Then
the random variable W is a linear combination of W1 and W2, and W can
be generated by generating two independent random variables W1 and W2.
Then take W = (1 − ε)W1 + εW2.

If W1 and W2 are as in the previous example then the random variable
W is a linear combination that has a normal distribution with mean

EW = (1 − ε)EW1 + εEW2 = 0
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and variance

VAR(W ) = (1 − ε)2VAR(W1) + ε2VAR(W2) = (1 − ε)2 + ε2k2 < VAR(Y )

where Y is given in the example above. Moreover, W has a unimodal normal
distribution while Y does not follow a normal distribution. In fact, if X1 ∼
N(0, 1), X2 ∼ N(10, 1), and X1 and X2 are independent, then (X1+X2)/2 ∼
N(5, 0.5); however, if Y has a mixture distribution with cdf

FY (y) = 0.5FX1(y) + 0.5FX2(y) = 0.5Φ(y) + 0.5Φ(y − 10),

then the pdf of Y is bimodal.

1.6 Summary

1) Given a small data set, find Y , S, MED(n) and MAD(n). Recall that

Y =

∑n
i=1 Yi

n
and the sample variance

VAR(n) = S2 = S2
n =

∑n
i=1(Yi − Y )2

n− 1
=

∑n
i=1 Y

2
i − n(Y )2

n− 1
,

and the sample standard deviation (SD) S = Sn =
√
S2

n.
If the data Y1, ..., Yn is arranged in ascending order from smallest to largest

and written as Y(1) ≤ · · · ≤ Y(n), then the Y(i)’s are called the order statistics.
The sample median

MED(n) = Y((n+1)/2) if n is odd,

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(Y1, ..., Yn) will also be used. To find the
sample median, sort the data from smallest to largest and find the middle
value or values.

The sample median absolute deviation

MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n).

To find MAD(n), find Di = |Yi − MED(n)|, then find the sample median
of the Di by ordering them from smallest to largest and finding the middle
value or values.
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1.7 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

1.1. Consider the data set 6, 3, 8, 5, and 2. Show work.

a) Find the sample mean Y .

b) Find the standard deviation S

c) Find the sample median MED(n).

d) Find the sample median absolute deviation MAD(n).

1.2∗. The Cushny and Peebles data set (see Staudte and Sheather 1990,
p. 97) is listed below.

1.2 2.4 1.3 1.3 0.0 1.0 1.8 0.8 4.6 1.4

a) Find the sample mean Y .

b) Find the sample standard deviation S.

c) Find the sample median MED(n).

d) Find the sample median absolute deviation MAD(n).

e) Plot the data. Are any observations unusually large or unusually small?
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Multivariate Distributions

2.1 Introduction

Definition 2.1. An important multivariate location and dispersion model is
a joint distribution with joint probability density function (pdf)

f(z|µ,Σ)

for a p×1 random vector x that is completely specified by a p×1 population
location vector µ and a p×p symmetric positive definite population dispersion
matrix Σ. Thus P (x ∈ A) =

∫
A
f(z)dz for suitable sets A.

Notation: Usually a vector x will be column vector, and a row vector
xT will be the transpose of the vector x. However,

∫

A

f(z)dz =

∫

A

f(z1, ..., zp)dz1 · · · dzp.

The notation f(z1, ..., zp) will be used to write out the components zi of a
joint pdf f(z) although in the formula for the pdf, eg f(z) = c exp(zT z), z

is a column vector.

Definition 2.2. A p× 1 random vector x = (x1, ..., xp)
T = (X1, ..., Xp)

T

where X1, ..., Xp are p random variables. A case or observation consists of
the p random variables measured for one person or thing. For multivariate
location and dispersion the ith case is xi = (xi,1, ..., xi,p)

T . There are n cases,
and context will be used to determine whether x is the random vector or the

11
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observed value of the random vector. Outliers are cases that lie far away
from the bulk of the data, and they can ruin a classical analysis.

Assume that x1, ...,xn are n iid p× 1 random vectors and that the joint
pdf of xi is f(z|µ,Σ). Also assume that the data xi has been observed and
stored in an n× p matrix

W =




xT

1
...

xT
n



 =





x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p
...

...
. . .

...
xn,1 xn,2 . . . xn,p



 =
[

v1 v2 . . . vp

]

where the ith row of W is the ith case xT
i and the jth column vj of W

corresponds to n measurements of the jth random variable Xj for j = 1, ..., p.
Hence the n rows of the data matrix W correspond to the n cases, while the
p columns correspond to measurements on the p random variables X1, ..., Xp.
For example, the data may consist of n visitors to a hospital where the p = 2
variables height and weight of each individual were measured.

Notation: In the theoretical sections of this text, xi will sometimes be
a random vector and sometimes the observed data. Johnson and Wichern
(1988, p. 7, 53) uses X to denote the n× p data matrix and a n× 1 random
vector, relying on the context to indicate whether X is a random vector or
data matrix. Software tends to use different notation. For example, R/Splus
will use commands such as

var(x)

to compute the sample covariance matrix of the data. Hence x corresponds
to W , x[,1] is the first column of x and x[4, ] is the 4th row of x.

2.2 The Sample Mean and Sample Covari-

ance Matrix

Definition 2.3. If the second moments exist, the population mean of a
random p× 1 vector x = (X1, ..., Xp)

T is

E(x) = µ = (E(X1), ..., E(Xp))
T ,
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and the p× p population covariance matrix

Cov(x) = E[(x− E(x))(x −E(x))T ] = E[(x− E(x))xT ] =

E(xxT ) − E(x)[E(x)]T = ((σi,j)) = Σx.

That is, the ij entry of Cov(x) is Cov(Xi, Xj) = σi,j =

E([Xi−E(Xi)][Xj−E(Xj)]).The p×p population correlation matrix Cor(x) =
ρ = ((ρij)). That is, the ij entry of Cor(x) is Cor(Xi, Xj) =

σi,j

σiσj
=

σij√
σiiσjj

.

Let the p× p population standard deviation matrix

∆ = diag(
√
σ11, ...,

√
σpp).

Then
Σx = ∆ρ∆, (2.1)

and
ρ = ∆−1Σx∆−1. (2.2)

Let the population standardized random variables

Zi =
Xi − E(Xi)√

σii

for i = 1, ..., p. Then Cor(X) = ρ is the covariance matrix of z =
(Z1, ..., Zp)

T .

Definition 2.4. Let random vectors x be p × 1 and y be q × 1. The
population covariance matrix of x with y is the p× q matrix

Cov(x,y) = E[(x− E(x))(y − E(y))T ] =

E[(x − E(x))yT ] = E(xyT ) − E(x)[E(y)]T = Σx,y

assuming the expected values exist. Note that the q× p matrix Cov(y,x) =
Σy,x = ΣT

x,y, and Cov(x) = Cov(x,x).
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A p × 1 random vector x has an elliptically contoured distribution, if x

has pdf
f(z) = kp|Σ|−1/2g[(z − µ)TΣ−1(z − µ)], (2.3)

and we say x has an elliptically contoured ECp(µ,Σ, g) distribution. See
Chapter 3. If second moments exist for this distribution, then

E(x) = µ and Cov(x) = cxΣ = Σx

for some constant cx > 0 where the ij entry is Cov(Xi, Xj) = σi,j.

Definition 2.5. Let x1j, ..., xnj be measurements on the ith random
variable Xj corresponding to the jth column of the data matrix W . The

jth sample mean is xj =
1

n

n∑

k=1

xkj. The sample covariance Sij estimates

Cov(Xi, Xj) = σij, and

Sij =
1

n − 1

n∑

k=1

(xki − xi)(xkj − xj).

Sii = S2
i is the sample variance that estimates the population variance

σii = σ2
i . The sample correlation rij estimates the population correlation

Cor(Xi, Xj) = ρij , and

rij =
Sij

SiSj
=

Sij√
SiiSjj

=

∑n
k=1(xki − xi)(xkj − xj)√∑n

k=1(xki − xi)2
√∑n

k=1(xkj − xj)2
.

Definition 2.6. The sample mean or sample mean vector

x =
1

n

n∑

i=1

xi = (x1, ..., xp)
T =

1

n
W T1

where 1 is the n× 1 vector of ones. The sample covariance matrix

S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T = ((Sij)).

That is, the ij entry of S is the sample covariance Sij. The classical estimator
of multivariate location and dispersion is (x,S).
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It can be shown that (n− 1)S =
∑n

i=1 xix
T
i − x xT =

W TW − 1

n
W T 11TW .

Hence if the centering matrix H = I − 1

n
11T , then (n− 1)S = W THW .

Definition 2.7. The sample correlation matrix

R = ((rij)).

That is, the ij entry of R is the sample correlation rij.

Let the standardized random variables

Zi =
xi − xi√

Sii

for i = 1, ..., p. Then R is the sample covariance matrix of z = (Z1, ..., Zp)
T .

The population and sample correlation are measures of the strength of a
linear relationship between two random variables, satisfying −1 ≤ ρij ≤ 1
and −1 ≤ rij ≤ 1. Let the p× p sample standard deviation matrix

D = diag(
√

S11, ...,
√

Spp).

Then
S = DRD, (2.4)

and
R = D−1SD−1. (2.5)

2.3 Distances

Definition 2.8. Let A be a positive definite symmetric matrix. Then the
Mahalanobis distance of x from the vector µ is

Dx(µ,A) =
√

(x − µ)T A−1(x − µ).

Typically A is a dispersion matrix. The population squared Mahalanobis
distance

D2
x(µ,Σ) = (x − µ)T Σ−1(x − µ). (2.6)
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Estimators of multivariate location and dispersion (µ̂, Σ̂) are of interest.
The sample squared Mahalanobis distance

D2
x(µ̂, Σ̂) = (x − µ̂)T Σ̂

−1
(x − µ̂). (2.7)

Notation: Recall that a square symmetric p× p matrix A has an eigen-
value λ with corresponding eigenvector x 6= 0 if

Ax = λx. (2.8)

The eigenvalues of A are real since A is symmetric. Note that if constant
c 6= 0 and x is an eigenvector of A, then c x is an eigenvector of A. Let
e be an eigenvector of A with unit length ‖e‖ =

√
eT e = 1. Then e and

−e are eigenvectors with unit length, and A has p eigenvalue eigenvector
pairs (λ1, e1), (λ2, e2), ..., (λp, ep). Since A is symmetric, the eigenvectors are
chosen such that the ei are orthogonal: eT

i ej = 0 for i 6= j. The symmetric
matrix A is positive definite iff all of its eigenvalues are positive, and pos-
itive semidefinite iff all of its eigenvalues are nonnegative. If A is positive
semidefinite, let λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0. If A is positive definite, then
λp > 0.

Theorem 2.1. Let A be a p × p symmetric matrix with eigenvector
eigenvalue pairs (λ1, e1), (λ2, e2), ..., (λp, ep) where eT

i ei = 1 and eT
i ej = 0

for i = 1, ..., p. Then the spectral decomposition of A is

A =

p∑

i=1

λieie
T
i = λ1e1e

T
1 + · · · + λpepe

T
p .

Using the same notation as Johnson and Wichern (1988, p. 50-51),
let P = [e1 e2 · · · ep] be the p × p orthogonal matrix with ith column
ei. Then PP T = P TP = I . Let Λ = diag(λ1, ..., λp) and let Λ1/2 =
diag(

√
λ1, ...,

√
λp). If A be is positive definite p× p symmetric matrix with

spectral decomposition A =
∑p

i=1 λieie
T
i , then A = PΛP T and

A−1 = PΛ−1P T =

p∑

i=1

1

λi
eie

T
i .

Theorem 2.2. Let A be a positive definite p× p symmetric matrix with
spectral decomposition A =

∑p
i=1 λieie

T
i . The square root matrix A1/2 =

PΛ1/2P T is a positive definite symmetric matrix such that A1/2A1/2 = A.
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Points x with the same distance Dx(µ,A−1) lie on a hyperellipsoid. Let
matrix A have determinant det(A) = |A|. Recall that

|A−1| =
1

|A| = |A|−1.

See Johnson and Wichern (1988, p. 49-50, 102-103) for the following theorem.

Theorem 2.3. Let h > 0 be a constant, and let A be a positive definite
p×p symmetric matrix with spectral decomposition A =

∑p
i=1 λieie

T
i where

λ1 ≥ λ2 ≥ · · · ≥ λp > 0. Then {x : (x − µ)T A(x − µ) ≤ h2} =

{x : D2
x(µ,A−1) ≤ h2} = {x : Dx(µ,A−1) ≤ h}

defines a hyperellipsoid centered at µ with volume

2πp/2

pΓ(p/2)
|A|−1/2hp.

Let µ = 0. Then the axes of the hyperellipsoid are given by the eigenvectors
ei of A with half length in the direction of ei equal to h/

√
λi for i = 1, ..., p.

In the following theorem, the shape of the hyperellipsoid is determined by
the eigenvectors and eigenvalues of Σ: (λ1, e1), ..., (λp, ep) where λ1 ≥ λ2 ≥
· · · ≥ λp > 0. Note Σ−1 has the same eigenvectors as Σ but eigenvalues
equal to 1/λi since Σe = λe iff Σ−1Σe = e = Σ−1λe. Then divide both
sides by λ > 0 since Σ > 0 and is symmetric. Let w = x − µ. Then points
at squared distance wTΣ−1w = h2 from the origin lie on the hyperellipsoid
centered at the origin whose axes are given by the eigenvectors of Σ where
the half length in the direction of ei is h

√
λi. Taking A = Σ−1 or A = S−1

in Theorem 2.3 gives the volume results for the following two theorems.

Theorem 2.4. Let Σ be a positive definite symmetric matrix, eg a
dispersion matrix. Let U = D2

x = D2
x(µ,Σ). The hyperellipsoid {x|D2

x ≤
h2} = {x : (x−µ)T Σ−1(x−µ) ≤ h2}, where h2 = u1−α and P (U ≤ u1−α) =
1−α, is the highest density region covering 1−α of the mass for an elliptically
contoured ECp(µ,Σ, g) distribution (see Definition 3.3) if g is continuous and
decreasing. Let w = x−µ. Then points at squared distance wTS−1w = h2

from the origin lie on the hyperellipsoid centered at the origin whose axes



CHAPTER 2. MULTIVARIATE DISTRIBUTIONS 18

are given by the eigenvectors ei where the half length in the direction of ei

is h
√
λi. The volume of the hyperellipsoid is

2πp/2

pΓ(p/2)
|Σ|1/2hp.

Theorem 2.5. Let the symmetric sample covariance matrix S be positive
definite with eigenvalue eigenvector pairs (λ̂i, êi) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p >
0. The hyperellipsoid

{x|D2
x(x,S) ≤ h2} = {x : (x− x)T S−1(x − x) ≤ h2}

is centered at x. The volume of the hyperellipsoid is

2πp/2

pΓ(p/2)
|S|1/2hp.

Let w = x − x. Then points at squared distance wT S−1w = h2 from the
origin lie on the hyperellipsoid centered at the origin whose axes are given

by the eigenvectors êi where the half length in the direction of êi is h
√
λ̂i.

From Theorem 2.5, the volume of the hyperellipsoid {x|D2
x ≤ h2} is

proportional to |S|1/2 so the squared volume is proportional to |S|. Large
|S| corresponds to large volume while small |S| corresponds to small volume.

Definition 2.9. The generalized sample variance = |S| = det(S).

Following Johnson and Wichern (1988, p. 103-106), a generalized variance
of zero is indicative of extreme degeneracy, and |S| = 0 implies that at least
one variable Xi is not needed given the other p − 1 variables are in the
multivariate model. Two necessary conditions for |S| 6= 0 are n > p and that
S has full rank p. If 1 is an n× 1 vector of ones,then

(n− 1)S = (W − 1xT )T (W − 1xT ),

and S is of full rank p iff W − 1xT is of full rank p.
If X and W have dispersion matrices Σ and cΣ where c > 0, then the

dispersion matrices have the same shape. The dispersion matrices determine
the shape of the hyperellipsoid {x : (x − µ)TΣ−1(x − µ) ≤ h2}. Figure 2.1
was made with the Arc software of Cook and Weisberg (1999). The 10%,
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30%, 50%, 70%, 90% and 98% highest density regions are shown for two
multivariate normal (MVN) distributions. Both distributions have µ = 0.
In Figure 2.1a),

Σ =

(
1 0.9

0.9 4

)
.

Note that the ellipsoids are narrow with high positive correlation. In Figure
2.1b),

Σ =

(
1 −0.4

−0.4 1

)
.

Note that the ellipsoids are wide with negative correlation. The highest
density ellipsoids are superimposed on a scatterplot of a sample of size 100
from each distribution.

2.4 Predictor Transformations

Predictor transformations are used to remove gross nonlinearities in the pre-
dictors, and this technique is often very useful. Power transformations are
particularly effective, and the techniques of this section are often useful for
general regression problems, not just for multivariate analysis. A power
transformation has the form x = tλ(w) = wλ for λ 6= 0 and x = t0(w) =
log(w) for λ = 0. Often λ ∈ ΛL where

ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1} (2.9)

is called the ladder of powers. Often when a power transformation is needed,
a transformation that goes “down the ladder,” eg from λ = 1 to λ = 0 will
be useful. If the transformation goes too far down the ladder, eg if λ = 0 is
selected when λ = 1/2 is needed, then it will be necessary to go back “up
the ladder.” Additional powers such as ±2 and ±3 can always be added.

Definition 2.10. A scatterplot of x versus Y is used to visualize the
conditional distribution of Y |x. A scatterplot matrix is an array of scat-
terplots. It is used to examine the marginal bivariate relationships between
the predictors.

Often nine or ten variables can be placed in a scatterplot matrix. The
names of the variables appear on the diagonal of the scatterplot matrix. The
software Arc gives two numbers, the minimum and maximum of the variable,
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Figure 2.1: Highest Density Regions for 2 MVN Distributions
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along with the name of the variable. The software R/Splus labels the values
of each variable in two places, see Example 2.2 below. Let one of the variables
be W . All of the marginal plots above and belowW haveW on the horizontal
axis. All of the marginal plots to the left and the right of W have W on the
vertical axis.

If n is large and the p random variables come from an elliptically con-
toured distribution, then the subplots in the scatterplot matrix should be
linear. Nonlinearities suggest that data does not come from an elliptically
contoured distribution. There are several rules of thumb that are useful for
visually selecting a power transformation to remove nonlinearities from the
predictors.

Notation. A rule of thumb is a rule that often but not always works well
in practice.

Rule of thumb 2.1. a) If strong nonlinearities are apparent in the
scatterplot matrix of the predictors w2, ..., wp, it is often useful to remove the
nonlinearities by transforming the predictors using power transformations.

b) Use theory if available.

c) Suppose that variable X2 is on the vertical axis and X1 is on the
horizontal axis and that the plot of X1 versus X2 is nonlinear. The unit rule
says that if X1 and X2 have the same units, then try the same transformation
for both X1 and X2.

Assume that all values of X1 and X2 are positive. Then the following six
rules are often used.

d) The log rule states that a positive predictor that has the ratio between
the largest and smallest values greater than ten should be transformed to logs.
So X > 0 and max(X)/min(X) > 10 suggests using log(X).

e) The range rule states that a positive predictor that has the ratio
between the largest and smallest values less than two should not be trans-
formed. So X > 0 and max(X)/min(X) < 2 suggests keeping X.

f) The bulging rule states that changes to the power of X2 and the power
of X1 can be determined by the direction that the bulging side of the curve
points. If the curve is hollow up (the bulge points down), decrease the power
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of X2. If the curve is hollow down (the bulge points up), increase the power
of X2. If the curve bulges towards large values of X1 increase the power of
X1. If the curve bulges towards small values of X1 decrease the power of X1.
See Tukey (1977, p. 173–176).

g) The ladder rule appears in Cook and Weisberg (1999a, p. 86).
To spread small values of a variable, make λ smaller.
To spread large values of a variable, make λ larger.

h) If it is known that X2 ≈ Xλ
1 and the ranges of X1 and X2 are such

that this relationship is one to one, then

Xλ
1 ≈ X2 and X

1/λ
2 ≈ X1.

Hence either the transformation Xλ
1 or X

1/λ
2 will linearize the plot. Note that

log(X2) ≈ λ log(X1), so taking logs of both variables will also linearize the
plot. This relationship frequently occurs if there is a volume present. For
example let X2 be the volume of a sphere and let X1 be the circumference
of a sphere.

i) The cube root rule says that if X is a volume measurement, then cube
root transformation X1/3 may be useful.

Theory, if available, should be used to select a transformation. Frequently
more than one transformation will work. For example if W = weight and X1

= volume = (X2)(X3)(X4), thenW versusX
1/3
1 and log(W ) versus log(X1) =

log(X2) + log(X3) + log(X4) may both work. Also if W is linearly related
with X2, X3, X4 and these three variables all have length units mm, say, then
the units of X1 are (mm)3. Hence the units of X

1/3
1 are mm.

Suppose that all values of the variable w to be transformed are positive.
The log rule says use log(w) if max(wi)/min(wi) > 10. This rule often works
wonders on the data and the log transformation is the most used (modified)
power transformation. If the variable w can take on the value of 0, use
log(w + c) where c is a small constant like 1, 1/2, or 3/8.

To use the ladder rule, suppose you have a scatterplot of two variables
xλ1

1 versus xλ2
2 where both x1 > 0 and x2 > 0. Also assume that the plotted

points follow a nonlinear one to one function. Consider the ladder of powers

ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1, }.
To spread small values of the variable, make λi smaller. To spread large
values of the variable, make λi larger.



CHAPTER 2. MULTIVARIATE DISTRIBUTIONS 23

0.0 0.5 1.0 1.5 2.0 2.5
0
.2

0
.6

1
.0

1
.4

w

x

a)

0.0 0.5 1.0 1.5 2.0 2.5

1
2

3
4

5
6

7

w

x

b)

0.0 0.5 1.0 1.5 2.0 2.5

0
2
0

4
0

6
0

w

x

c)

0.0 0.5 1.0 1.5 2.0 2.5
2

4
6

8
1
0

1
2

w

x

d)

Figure 2.2: Plots to Illustrate the Bulging and Ladder Rules

For example, if both variables are right skewed, then there will be many
more cases in the lower left of the plot than in the upper right. Hence small
values of both variables need spreading.

Consider the ladder of powers. Often no transformation (λ = 1) is best,
then the log transformation, then the square root transformation, then the
reciprocal transformation.

Example 2.1. Examine Figure 2.2. Let X1 = w and X2 = x. Since w is
on the horizontal axis, mentally add a narrow vertical slice to the plot. If a
large amount of data falls in the slice at the left of the plot, then small values
need spreading. Similarly, if a large amount of data falls in the slice at the
right of the plot (compared to the middle and left of the plot), then large
values need spreading. For the variable on the vertical axis, make a narrow
horizontal slice. If the plot looks roughly like the northwest corner of a square
then small values of the horizontal and large values of the vertical variable
need spreading. Hence in Figure 2.2a, small values of w need spreading.
Notice that the plotted points bulge up towards small values of the horizontal
variable. If the plot looks roughly like the northeast corner of a square, then
large values of both variables need spreading. Hence in Figure 2.2b, large
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values of x need spreading. Notice that the plotted points bulge up towards
large values of the horizontal variable. If the plot looks roughly like the
southwest corner of a square, as in Figure 2.2c, then small values of both
variables need spreading. Notice that the plotted points bulge down towards
small values of the horizontal variable. If the plot looks roughly like the
southeast corner of a square, then large values of the horizontal and small
values of the vertical variable need spreading. Hence in Figure 2.2d, small
values of x need spreading. Notice that the plotted points bulge down towards
large values of the horizontal variable.
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Figure 2.3: Scatterplot Matrix for Original Mussel Data Predictors

Example 2.2: Mussel Data. Cook and Weisberg (1999a, p. 351, 433,
447) gave a data set on 82 mussels sampled off the coast of New Zealand.
The response is muscle mass M in grams, and the predictors are a constant,
the length L and height H of the shell in mm, the shell width W and the
shell mass S. Figure 2.3 shows the scatterplot matrix of the predictors L,
H, W and S. Examine the variable length. Length is on the vertical axis
on the three top plots and the right of the scatterplot matrix labels this
axis from 150 to 300. Length is on the horizontal axis on the three leftmost
marginal plots, and this axis is labelled from 150 to 300 on the bottom of the
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Figure 2.4: Scatterplot Matrix for Transformed Mussel Data Predictors

scatterplot matrix. The marginal plot in the bottom left corner has length
on the horizontal and shell on the vertical axis. The marginal plot that is
second from the top and second from the right has height on the horizontal
and width on the vertical axis. If the data is stored in x, the plot can be
made with the following command in R.

pairs(x,labels=c("length",‘"width","height","shell"))

Nonlinearity is present in several of the plots. For example, width and
length seem to be linearly related while length and shell have a nonlinear
relationship. The minimum value of shell is 10 while the max is 350. Since
350/10 = 35 > 10, the log rule suggests that logS may be useful. If logS
replaces S in the scatterplot matrix, then there may be some nonlinearity
present in the plot of logS versus W with small values of W needing spread-
ing. Hence the ladder rule suggests reducing λ from 1 and we tried log(W ).
Figure 2.4 shows that taking the log transformations of W and S results in
a scatterplot matrix that is much more linear than the scatterplot matrix of
Figure 2.3. Notice that the plot of W versus L and the plot of log(W ) versus
L both appear linear. This plot can be made with the following commands.
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z <- x; z[,2] <- log(z[,2]); z[,4] <- log(z[,4])

pairs(z,labels=c("length","Log W","height","Log S"))

The plot of shell versus height in Figure 2.3 is nonlinear, and small values
of shell need spreading since if the plotted points were projected on the
horizontal axis, there would be too many points at values of shell near 0.
Similarly, large values of height need spreading.

2.5 Summary

The following three quantities are important.
1) E(x) = µ = (E(x1), ..., E(xp))

T .
2) The p× p population covariance matrix

Cov(x) = E(x − E(x))(x −E(x))T = ((σi,j)) = Σx.

3) The p× p population correlation matrix Cor(x) = ρ = ((ρij)).
4) The population covariance matrix of x with y is Cov(x,y) = Σx,y =

E[(x− E(x))(y − E(y))T ].
5) Let the p × p matrix ∆ = diag(

√
σ11, ...,

√
σpp). Then Σx = ∆ρ∆,

and ρ = ∆−1Σx∆−1.
6) The n× p data matrix

W =




xT

1
...

xT
n



 =





x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p
...

...
. . .

...
xn,1 xn,2 . . . xn,p



 =
[

v1 v2 . . . vp

]

7) The sample mean or sample mean vector

x =
1

n

n∑

i=1

xi = (x1, ..., xp)
T =

1

n
W T1

where 1 is the p× 1 vector of ones.
8) The sample covariance matrix

S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T = ((Sij)).
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9) (n− 1)S =

n∑

i=1

xix
T
i − x xT = (W − 1xT )T (W − 1xT ) =

W T W − 1

n
W T 11TW . Hence if the centering matrix H = I − 1

n
11T , then

(n− 1)S = W T HW .
10) The sample correlation matrix R = ((rij)).
11) Let the p×p sample standard deviation matrix D = diag(

√
S11, ...,

√
Spp).

Then S = DRD, and R = D−1SD−1.
12) The spectral decomposition A =

∑p
i=1 λieie

T
i =

λ1e1e
T
1 + · · · + λpepe

T
p .

13) Let A =
∑p

i=1 λieie
T
i be a positive definite p× p symmetric matrix.

Let P = [e1 e2 · · · ep] be the p× p orthogonal matrix with ith column ei.
Let Λ1/2 = diag(

√
λ1, ...,

√
λp). The square root matrix A1/2 = PΛ1/2P T is

a positive definite symmetric matrix such that A1/2A1/2 = A.
14) The population squared Mahalanobis distance

D2
x(µ,Σ) = (x − µ)T Σ−1(x − µ).

15) The sample squared Mahalanobis distance

D2
x(µ̂, Σ̂) = (x − µ̂)T Σ̂

−1
(x − µ̂).

16) The generalized sample variance = |S| = det(S).
17) The hyperellipsoid {x|D2

x ≤ h2} = {x : (x − x)T S−1(x − x) ≤ h2}
is centered at x and has volume is

2πp/2

pΓ(p/2)
|S|1/2hp.

Let S have eigenvalue eigenvector pairs (λ̂i, êi) where λ̂1 ≥ · · · ≥ λ̂p. If
x = 0, the axes are given by the eigenvectors êi where the half length in the

direction of êi is h
√
λ̂i. Here êT

i êj = 0 for i 6= j while êT
i êi = 1.

18) A scatterplot of x versus y is used to visualize the conditional dis-
tribution of y|x. A scatterplot matrix is an array of scatterplots. It is used
to examine the bivariate relationships of the p random variables.

19) There are several guidelines for choosing power transformations.
First, suppose you have a scatterplot of two variables xλ1

1 versus xλ2
2 where

both x1 > 0 and x2 > 0. Also assume that the plotted points follow a
nonlinear one to one function. The ladder rule: consider the ladder of
powers

−1,−0.5,−1/3, 0, 1/3, 0.5, and 1.
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To spread small values of the variable, make λi smaller. To spread large
values of the variable, make λi larger.

20) Suppose that all values of the variable w to be transformed are posi-
tive. The log rule says use log(w) if max(wi)/min(wi) > 10.

21) If p random variables come from an elliptically contoured distribution,
then the subplots in the scatterplot matrix should be linear.

2.6 Complements

Section 2.3 will be useful for principal component analysis and for prediction
regions.

2.7 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

2.1. Assuming all relevant expectations exist, show
Cov(Xi, Xj) = E(XiXj) − E(Xi)E(Xj).

2.2. Suppose Zi =
Xi − E(Xi)√

σii
. Show Cov(Zi, Zj) = Cor(Xi, Xj).

2.3. i) Let Σ be a p × p matrix with eigenvalue eigenvector pair (λ,x).
Show that cx is also an eigenvector of Σ where c 6= 0 is a real number.

ii) Let Σ be a p×pmatrix with eigenvalue eigenvector pairs (λ1, e1), ..., (λp, ep).
Find the eigenvalue eigenvector pairs of A = cΣ where c 6= 0 is a real number.

2.4. i) Let Σ be a p × p matrix with eigenvalue eigenvector pair (λ,x).
Show that cx is also an eigenvector of Σ where c 6= 0 is a real number.

ii) Let Σ be a p×pmatrix with eigenvalue eigenvector pairs (λ1, e1), ..., (λp, ep).
Find the eigenvalue eigenvector pairs of A = cΣ where c 6= 0 is a real number.

2.5. Suppose A is a symmetric positive definite matrix with eigenvalue
eigenvector pair (λ, e). Then Ae = λe so A2e = AAe = Aλe. Find an
eigenvalue eigenvector pair for A2.
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2.6. Suppose A is a symmetric positive definite matrix with eigenvalue
eigenvector pair (λ, e). Then Ae = λe so A−1Ae = A−1λe. Find an
eigenvalue eigenvector pair for A−1.

Problems using ARC

To quit Arc, move the cursor to the x in the northeast corner and click.

2.7∗. This problem makes plots similar to Figure 2.1. Data sets of n =
100 cases from two multivariate normal N2(0,Σi) distributions are generated
and plotted in a scatterplot along with the 10%, 30%, 50%, 70%, 90% and
98% highest density regions where

Σ1 =

(
1 0.9

0.9 4

)
and Σ2 =

(
1 −0.4

−0.4 1

)
.

Activate Arc (Cook and Weisberg 1999a). Generally this will be done by
finding the icon for Arc or the executable file for Arc. Using the mouse, move
the pointer (cursor) to the icon and press the leftmost mouse button twice,
rapidly. This procedure is known as double clicking on the icon. A window
should appear with a “greater than” > prompt. The menu File should be
in the upper left corner of the window. Move the pointer to File and hold
the leftmost mouse button down. Then the menu will appear. Drag the
pointer down to the menu command load. Then click on data and then click
on demo-bn.lsp. (You may need to use the slider bar in the middle of the
screen to see the file demo-bn.lsp: click on the arrow pointing to the right
until the file appears.) In the future these menu commands will be denoted
by “File > Load > Data > demo-bn.lsp.” These are the commands needed
to activate the file demo-bn.lsp.

a) In the Arc dialog window, enter the numbers
0 0 1 4 0.9 and 100. Then click on OK.

The graph can be printed with the menu commands “File>Print,” but it
will generally save paper by placing the plots in the Word editor.

Activate Word (often by double clicking on the Word icon). Click on the
screen and type “Problem 2.4a.” In Arc, use the menu commands “Edit>Copy.”
In Word, click on the Paste icon near the upper left corner of Word and hold
down the leftmost mouse button. This will cause a menu to appear. Drag
the pointer down to Paste. The plot should appear on the screen. (Older
versions of Word, use the menu commands “Edit>Paste.”) In the future,
“paste the output into Word” will refer to these mouse commands.
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b) Either click on new graph on the current plot in Arc or reload demo-
bn.lsp. In the Arc dialog window, enter the numbers
0 0 1 1 -0.4 and 100. Then place the plot in Word.

After editing your Word document, get a printout by clicking on the
upper left icon, select “Print” then select “Print”. (Older versions of Word
use the menu commands “File>Print.”)

To save your output on your flash drive G, click on the icon in the upper
left corner of Word. Then drag the pointer to “Save as.” A window will
appear, click on the Word Document icon. A “Save as” screen appears.
Click on the right “check” on the top bar, and then click on “Removable
Disk (G:)”. Change the file name to HW2d4.docx, and then click on “Save.”

To exit from Word and Arc, click on the “X” in the upper right corner of
the screen. In Word a screen will appear and ask whether you want to save
changes made in your document. Click on No. In Arc, click on OK.

2.8∗. In Arc enter the menu commands “File>Load>Data” and open the
file mussels.lsp. Use the commands “Graph&Fit>Scatterplot Matrix of.” In
the dialog window select H, L, S, W and M (so select M last). Click on
“OK” and include the scatterplot matrix in Word. The response M is the
edible part of the mussel while the 4 predictors are shell measurements. Are
any of the marginal predictor relationships nonlinear? Is E(M |H) linear or
nonlinear?

2.9∗. Activate the McDonald and Schwing (1973) pollution.lsp data set
with the menu commands “File > Load > Removable Disk (G:) > pollu-
tion.lsp.” Scroll up the screen to read the data description. Often simply
using the log rule on the predictors with max(x)/min(x) > 10 works won-
ders.

a) Make a scatterplot matrix of the first nine predictor variables and
Mort. The commands “Graph&Fit > Scatterplot-Matrix of” will bring down
a Dialog menu. Select DENS, EDUC, HC, HOUS, HUMID, JANT, JULT,
NONW, NOX and MORT. Then click on OK.

A scatterplot matrix with slider bars will appear. Move the slider bars
for NOX, NONW and HC to 0, providing the log transformation. In Arc, the
diagonals have the min and max of each variable, and these were the three
predictor variables satisfying the log rule. Open Word.

In Arc, use the menu commands “Edit > Copy.” In Word, use the menu
commands “Edit > Paste.” This should copy the scatterplot matrix into the
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Word document. Print the graph.

b) Make a scatterplot matrix of the last six predictor variables. The
commands “Graph&Fit > Scatterplot-Matrix of” will bring down a Dialog
menu. Select OVR65, POOR, POPN, PREC, SO, WWDRK and MORT.
Then click on OK. Move the slider bar of SO to 0 and copy the plot into
Word. Print the plot as described in a).

R/Splus Problems

2.10. Use the following R/Splus commands to make 100 multivariate
normal (MVN) N3(0, I3) cases and 100 trivariate non-EC lognormal cases.

n3x <- matrix(rnorm(300),nrow=100,ncol=3)

ln3x <- exp(n3x)

In R, type the command library(MASS).

Using the commands pairs(n3x) and pairs(ln3x) and include both scatter-
plot matrices in Word. (Click on the plot and hit Ctrl and c at the same time.
Then go to file in the Word menu and select paste.) Are strong nonlineari-
ties present among the MVN predictors? How about the non-EC predictors?
(Hint: a box or ball shaped plot is linear.)



Chapter 3

Elliptically Contoured
Distributions

The multivariate location and dispersion model of Definition 2.1 is in many
ways similar to the multiple linear regression model. The data are iid vectors
from some distribution such as the multivariate normal (MVN) distribution.
The location parameter µ of interest may be the mean or the center of
symmetry of an elliptically contoured distribution. Hyperellipsoids will be
estimated instead of hyperplanes, and Mahalanobis distances will be used
instead of absolute residuals to determine if an observation is a potential
outlier. Review Section 2.1 for important notation.

Although usually random vectors in this text are denoted by x, y or
z, this chapter will usually use the notation X = (X1, ..., Xp)

T and Y for
the random vectors, and x = (x1, ..., xp)

T for the observed value of the ran-
dom vector. This notation will be useful to avoid confusion when studying
conditional distributions such as Y |X = x.

3.1 The Multivariate Normal Distribution

Definition 3.1: Rao (1965, p. 437). A p × 1 random vector X has
a p−dimensional multivariate normal distribution Np(µ,Σ) iff tT X has a
univariate normal distribution for any p× 1 vector t.

If Σ is positive definite, then X has a pdf

f(z) =
1

(2π)p/2|Σ|1/2
e−(1/2)(z−µ)TΣ−1

(z−µ) (3.1)

32
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where |Σ|1/2 is the square root of the determinant of Σ. Note that if p = 1,
then the quadratic form in the exponent is (z − µ)(σ2)−1(z − µ) and X has
the univariate N(µ, σ2) pdf. If Σ is positive semidefinite but not positive
definite, then x has a degenerate distribution. For example, the univariate
N(0, 02) distribution is degenerate (the point mass at 0).

Definition 3.2. The population mean of a random p × 1 vector X =
(X1, ..., Xp)

T is
E(X) = (E(X1), ..., E(Xp))

T

and the p× p population covariance matrix

Cov(X) = Σx = E(X − E(X))(X −E(X))T = ((σi,j)).

That is, the ij entry of Cov(X) is Cov(Xi, Xj) = σi,j.

The covariance matrix is also called the variance–covariance matrix and
variance matrix. Sometimes the notation Var(X) is used. Note that Cov(X)
is a symmetric positive semidefinite matrix. If X and Y are p× 1 random
vectors, a a conformable constant vector and A and B are conformable
constant matrices, then

E(a + X) = a + E(X) and E(X + Y ) = E(X) + E(Y ) (3.2)

and
E(AX) = AE(X) and E(AXB) = AE(X)B. (3.3)

Thus
Cov(a + AX) = Cov(AX) = ACov(X)AT . (3.4)

Some important properties of MVN distributions are given in the follow-
ing three propositions. These propositions can be proved using results from
Johnson and Wichern (1988, p. 127-132).

Proposition 3.1. a) If X ∼ Np(µ,Σ), then E(X) = µ and

Cov(X) = Σ.

b) If X ∼ Np(µ,Σ), then any linear combination tTX = t1X1 + · · · +
tpXp ∼ N1(t

Tµ, tT Σt). Conversely, if tTX ∼ N1(t
Tµ, tT Σt) for every p× 1

vector t, then x ∼ Np(µ,Σ).
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c) The joint distribution of independent normal random vari-
ables is MVN. If X1, ..., Xp are independent univariate normal N(µi, σ

2
i )

random vectors, then X = (X1, ..., Xp)
T is Np(µ,Σ) where µ = (µ1, ..., µp)

and Σ = diag(σ2
1, ..., σ

2
p) (so the off diagonal entries σi,j = 0 while the diag-

onal entries of Σ are σi,i = σ2
i ).

d) If X ∼ Np(µ,Σ) and if A is a q×pmatrix, then AX ∼ Nq(Aµ,AΣAT ).
If a is a p× 1 vector of constants, then a + X ∼ Np(a + µ,Σ).

It will be useful to partition X, µ, and Σ. Let X1 and µ1 be q × 1
vectors, let X2 and µ2 be (p− q)× 1 vectors, let Σ11 be a q × q matrix, let
Σ12 be a q × (p− q) matrix, let Σ21 be a (p− q)× q matrix, and let Σ22 be
a (p− q)× (p− q) matrix. Then

X =

(
X1

X2

)
, µ =

(
µ1

µ2

)
, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Proposition 3.2. a) All subsets of a MVN are MVN: (Xk1 , ..., Xkq)
T

∼ Nq(µ̃, Σ̃) where µ̃i = E(Xki) and Σ̃ij = Cov(Xki , Xkj ). In particular,
X1 ∼ Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22).

b) If X1 and X2 are independent, then Cov(X1,X2) = Σ12 =
E[(X1 − E(X1))(X2 −E(X2))

T ] = 0, a q × (p− q) matrix of zeroes.

c) If X ∼ Np(µ,Σ), then X1 and X2 are independent iff Σ12 = 0.

d) If X1 ∼ Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22) are independent, then
(

X1

X2

)
∼ Np

( (
µ1

µ2

)
,

(
Σ11 0
0 Σ22

) )
.

Proposition 3.3. The conditional distribution of a MVN is
MVN. If X ∼ Np(µ,Σ), then the conditional distribution of X1 given
that X2 = x2 is multivariate normal with mean µ1 + Σ12Σ

−1
22 (x2 −µ2) and

covariance matrix Σ11 − Σ12Σ
−1
22 Σ21. That is,

X1|X2 = x2 ∼ Nq(µ1 + Σ12Σ
−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).

Example 3.1. Let p = 2 and let (Y,X)T have a bivariate normal distri-
bution. That is,

(
Y
X

)
∼ N2

( (
µY

µX

)
,

(
σ2

Y Cov(Y,X)
Cov(X, Y ) σ2

X

) )
.



CHAPTER 3. ELLIPTICALLY CONTOURED DISTRIBUTIONS35

Also recall that the population correlation between X and Y is given by

ρ(X, Y ) =
Cov(X, Y )√

VAR(X)
√

VAR(Y )
=

σX,Y

σXσY

if σX > 0 and σY > 0. Then Y |X = x ∼ N(E(Y |X = x),VAR(Y |X = x))
where the conditional mean

E(Y |X = x) = µY + Cov(Y,X)
1

σ2
X

(x− µX) = µY + ρ(X, Y )

√
σ2

Y

σ2
X

(x− µX)

and the conditional variance

VAR(Y |X = x) = σ2
Y −Cov(X, Y )

1

σ2
X

Cov(X, Y )

= σ2
Y − ρ(X, Y )

√
σ2

Y

σ2
X

ρ(X, Y )
√
σ2

X

√
σ2

Y

= σ2
Y − ρ2(X, Y )σ2

Y = σ2
Y [1 − ρ2(X, Y )].

Also aX + bY is univariate normal with mean aµX + bµY and variance

a2σ2
X + b2σ2

Y + 2ab Cov(X, Y ).

Remark 3.1. There are several common misconceptions. First, it is not
true that every linear combination tT X of normal random variables
is a normal random variable, and it is not true that all uncorre-
lated normal random variables are independent. The key condition in
Proposition 3.1b and Proposition 3.2c is that the joint distribution of X is
MVN. It is possible that X1, X2, ..., Xp each has a marginal distribution that
is univariate normal, but the joint distribution of X is not MVN. See Seber
and Lee (2003, p. 23), Kowalski (1973) and examine the following example
from Rohatgi (1976, p. 229). Suppose that the joint pdf of X and Y is a
mixture of two bivariate normal distributions both with EX = EY = 0 and
VAR(X) = VAR(Y ) = 1, but Cov(X, Y ) = ±ρ. Hence f(x, y) =

1

2

1

2π
√

1 − ρ2
exp(

−1

2(1 − ρ2)
(x2 − 2ρxy + y2)) +

1

2

1

2π
√

1 − ρ2
exp(

−1

2(1 − ρ2)
(x2 + 2ρxy + y2)) ≡ 1

2
f1(x, y) +

1

2
f2(x, y)
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where x and y are real and 0 < ρ < 1. Since both marginal distributions of
fi(x, y) are N(0,1) for i = 1 and 2 by Proposition 3.2 a), the marginal distri-
butions of X and Y are N(0,1). Since

∫ ∫
xyfi(x, y)dxdy = ρ for i = 1 and

−ρ for i = 2, X and Y are uncorrelated, but X and Y are not independent
since f(x, y) 6= fX(x)fY (y).

Remark 3.2. In Proposition 3.3, suppose that X = (Y,X2, ..., Xp)
T . Let

X1 = Y and X2 = (X2, ..., Xp)
T . Then E[Y |X2] = β1 + β2X2 + · · · + βpXp

and VAR[Y |X2] is a constant that does not depend on X2. Hence Y =
β1 + β2X2 + · · · + βpXp + e follows the multiple linear regression model.

3.2 Elliptically Contoured Distributions

Definition 3.3: Johnson (1987, p. 107-108). A p× 1 random vector X

has an elliptically contoured distribution, also called an elliptically symmetric
distribution, if X has joint pdf

f(z) = kp|Σ|−1/2g[(z − µ)TΣ−1(z − µ)], (3.5)

and we say X has an elliptically contoured ECp(µ,Σ, g) distribution.

If X has an elliptically contoured (EC) distribution, then the character-
istic function of X is

φX (t) = exp(itTµ)ψ(tTΣt) (3.6)

for some function ψ. If the second moments exist, then

E(X) = µ (3.7)

and
Cov(X) = cXΣ (3.8)

where
cX = −2ψ′(0).

Definition 3.4. The population squared Mahalanobis distance

U ≡ D2 = D2(µ,Σ) = (X − µ)T Σ−1(X −µ). (3.9)
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For elliptically contoured distributions, U has pdf

h(u) =
πp/2

Γ(p/2)
kpu

p/2−1g(u). (3.10)

For c > 0, an ECp(µ, cI, g) distribution is spherical about µ where I is
the p×p identity matrix. The multivariate normal distribution Np(µ,Σ) has
kp = (2π)−p/2, ψ(u) = g(u) = exp(−u/2) and h(u) is the χ2

p pdf.

The following lemma is useful for proving properties of EC distributions
without using the characteristic function (10.6). See Eaton (1986) and Cook
(1998, p. 57, 130).

Lemma 3.4. Let X be a p × 1 random vector with 1st moments; ie,
E(X) exists. Let B be any constant full rank p× r matrix where 1 ≤ r ≤ p.
Then X is elliptically contoured iff for all such conforming matrices B,

E(X|BT X) = µ + MBBT (X − µ) = aB + MBBTX (3.11)

where the p× 1 constant vector aB and the p× r constant matrix MB both
depend on B.

A useful fact is that aB and MB do not depend on g:

aB = µ −MBBTµ = (Ip − MBBT )µ,

and
MB = ΣB(BT ΣB)−1.

See Problem 3.11. Notice that in the formula for MB, Σ can be replaced by
cΣ where c > 0 is a constant. In particular, if the EC distribution has 2nd
moments, Cov(X) can be used instead of Σ.

To use Lemma 3.4 to prove interesting properties, partition X, µ, and
Σ. Let X1 and µ1 be q×1 vectors, let X2 and µ2 be (p− q)×1 vectors. Let
Σ11 be a q× q matrix, let Σ12 be a q× (p− q) matrix, let Σ21 be a (p− q)× q
matrix, and let Σ22 be a (p− q)× (p− q) matrix. Then

X =

(
X1

X2

)
, µ =

(
µ1

µ2

)
, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.
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Also assume that the (p+1)× 1 vector (Y,XT )T is ECp+1(µ,Σ, g) where Y
is a random variable, X is a p× 1 vector, and use

(
Y
X

)
, µ =

(
µY

µX

)
, and Σ =

(
ΣY Y ΣY X

ΣXY ΣXX

)
.

Proposition 3.5. Let X ∼ ECp(µ,Σ, g) and assume that E(X) exists.

a) Any subset of X is EC, in particular X1 is EC.

b) (Cook 1998 p. 131, Kelker 1970). If Cov(X) is nonsingular,

Cov(X|BTX) = dg(B
TX)[Σ− ΣB(BTΣB)−1BT Σ]

where the real valued function dg(B
TX) is constant iff X is MVN.

Proof of a). Let A be an arbitrary full rank q×r matrix where 1 ≤ r ≤ q.
Let

B =

(
A

0

)
.

Then BTX = AT X1, and

E[X|BT X] = E[

(
X1

X2

)
|ATX1] =

(
µ1

µ2

)
+

(
M 1B

M 2B

) (
AT 0T

) ( X1 − µ1

X2 − µ2

)

by Lemma 3.4. Hence E[X1|ATX1] = µ1 +M1BAT (X1−µ1). Since A was
arbitrary, X1 is EC by Lemma 3.4. Notice that MB = ΣB(BTΣB)−1 =

(
Σ11 Σ12

Σ21 Σ22

) (
A

0

)
[
(

AT 0T
)( Σ11 Σ12

Σ21 Σ22

)(
A

0

)
]−1

=

(
M 1B

M 2B

)
.

Hence
M 1B = Σ11A(ATΣ11A)−1

and X1 is EC with location and dispersion parameters µ1 and Σ11. QED
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Proposition 3.6. Let (Y,XT )T be ECp+1(µ,Σ, g) where Y is a random
variable.

a) Assume that E[(Y,XT )T ] exists. Then E(Y |X) = α + βTX where
α = µY − βT µX and

β = Σ−1
XXΣXY .

b) Even if the first moment does not exist, the conditional median

MED(Y |X) = α + βT X

where α and β are given in a).

Proof. a) The trick is to choose B so that Lemma 3.4 applies. Let

B =

(
0T

Ip

)
.

Then BTΣB = ΣXX and

ΣB =

(
ΣY X

ΣXX

)
.

Now

E[

(
Y
X

)
| X] = E[

(
Y
X

)
| BT

(
Y
X

)
]

= µ + ΣB(BTΣB)−1BT

(
Y − µY

X − µX

)

by Lemma 3.4. The right hand side of the last equation is equal to

µ +

(
ΣY X

ΣXX

)
Σ−1

XX(X − µX) =

(
µY − ΣY XΣ−1

XXµX + ΣY XΣ−1
XXX

X

)

and the result follows since

βT = ΣY XΣ−1
XX .

b) See Croux, Dehon, Rousseeuw and Van Aelst (2001) for references.
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Example 3.2. This example illustrates another application of Lemma
3.4. Suppose that X comes from a mixture of two multivariate normals with
the same mean and proportional covariance matrices. That is, let

X ∼ (1 − γ)Np(µ,Σ) + γNp(µ, cΣ)

where c > 0 and 0 < γ < 1. Since the multivariate normal distribution is
elliptically contoured (and see Proposition 1.2c),

E(X|BT X) = (1 − γ)[µ + M1B
T (X − µ)] + γ[µ + M2B

T (X − µ)]

= µ + [(1 − γ)M 1 + γM 2]B
T (X − µ) ≡ µ + MBT (X − µ).

Since MB only depends on B and Σ, it follows that M 1 = M 2 = M = MB.
Hence X has an elliptically contoured distribution by Lemma 3.4.

Let x ∼ Np(µ,Σ) and y ∼ χ2
d be independent. Let wi = xi/(y/d)

1/2 for
i = 1, ..., p. Then w has a multivariate t-distribution with parameters µ and
Σ and degrees of freedom d, an important elliptically contoured distribution.

Cornish (1954) shows that the covariance matrix of w is Cov(w) =
d

d− 2
Σ

for d > 2. The case d = 1 is known as a multivariate Cauchy distribution.
The joint pdf of w is

f(z) =
Γ((d + p)/2)) |Σ|−1/2

(πd)p/2Γ(d/2)
[1 + d−1(z − µ)TΣ−1(z − µ)]−(d+p)/2.

See Mardia, Kent and Bibby (1979, p. 43, 57). See Johnson and Kotz (1972,
p. 134) for the special case where the xi ∼ N(0, 1).

If x ∼ Np(µ,Σ) and ui = exp(xi) for i = 1, ..., p, then u has a multivariate
lognormal distribution with parameters µ and Σ. This distribution is not an
elliptically contoured distribution.

3.3 Sample Mahalanobis Distances

In the multivariate location and dispersion model, sample Mahalanobis dis-
tances play a role similar to that of residuals in multiple linear regression.
The observed data X i = xi for i = 1, ..., n is collected in an n× p matrix W

with n rows xT
1 , ...,x

T
n . Let the p × 1 column vector T (W ) be a multivari-

ate location estimator, and let the p × p symmetric positive definite matrix
C(W ) be a dispersion estimator.
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Definition 3.5. The ith squared Mahalanobis distance is

D2
i = D2

i (T (W ),C(W )) = (X i − T (W ))TC−1(W )(X i − T (W )) (3.12)

for each point X i. Notice that D2
i is a random variable (scalar valued).

Notice that the population squared Mahalanobis distance is

D2

X (µ,Σ) = (X − µ)T Σ−1(X − µ) (3.13)

and that the term Σ−1/2(X − µ) is the p−dimensional analog to the z-
score used to transform a univariate N(µ, σ2) random variable into a N(0, 1)
random variable. Hence the sample Mahalanobis distance Di =

√
D2

i is an
analog of the absolute value |Zi| of the sample Z-score Zi = (Xi−X)/σ̂. Also
notice that the Euclidean distance of xi from the estimate of center T (W )
is Di(T (W ), Ip) where Ip is the p× p identity matrix.

Example 3.3. The contours of constant density for the Np(µ,Σ) dis-
tribution are ellipsoids defined by x such that (x − µ)TΣ−1(x − µ) = a2.
An α−density region Rα is a set such that P (X ∈ Rα) = α, and for the
Np(µ,Σ) distribution, the regions of highest density are sets of the form

{x : (x− µ)TΣ−1(x −µ) ≤ χ2
p(α)} = {x : D2

x(µ,Σ) ≤ χ2
p(α)}

where P (W ≤ χ2
p(α)) = α if W ∼ χ2

p. If the X i are n iid random vectors
each with a Np(µ,Σ) pdf, then a scatterplot of Xi,k versus Xi,j should be
ellipsoidal for k 6= j. Similar statements hold if X is ECp(µ,Σ, g), but the
α-density region will use a constant Uα obtained from Equation (3.10).

The classical Mahalanobis distance corresponds to the sample mean and
sample covariance matrix

T (W ) = X =
1

n

n∑

i=1

X i,

and

C(W ) = S =
1

n− 1

n∑

i=1

(X i −X)(X i −X)T

and will be denoted by MDi. When T (W ) and C(W ) are estimators other
than the sample mean and covariance, Di =

√
D2

i will sometimes be denoted
by RDi.
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3.4 Large Sample Theory

The first three subsections will review large sample theory for the univariate
case, then multivariate theory will be given.

3.4.1 The CLT and the Delta Method

Large sample theory, also called asymptotic theory, is used to approximate
the distribution of an estimator when the sample size n is large. This theory
is extremely useful if the exact sampling distribution of the estimator is
complicated or unknown. To use this theory, one must determine what the
estimator is estimating, the rate of convergence, the asymptotic distribution,
and how large n must be for the approximation to be useful. Moreover, the
(asymptotic) standard error (SE), an estimator of the asymptotic standard
deviation, must be computable if the estimator is to be useful for inference.

Theorem 3.7: the Central Limit Theorem (CLT). Let Y1, ..., Yn be
iid with E(Y ) = µ and VAR(Y ) = σ2. Let the sample mean Y n = 1

n

∑n
i=1 Yi.

Then √
n(Y n − µ)

D→ N(0, σ2).

Hence
√
n

(
Y n − µ

σ

)
=

√
n

(∑n
i=1 Yi − nµ

nσ

)
D→ N(0, 1).

Note that the sample mean is estimating the population mean µ with
a
√
n convergence rate, the asymptotic distribution is normal, and the SE

= S/
√
n where S is the sample standard deviation. For many distributions

the central limit theorem provides a good approximation if the sample size
n > 30. A special case of the CLT is proven after Theorem 3.20.

Notation. The notation X ∼ Y and X
D
= Y both mean that the random

variables X and Y have the same distribution. Hence FX(x) = FY (y) for all

real y. The notation Yn
D→ X means that for large n we can approximate the

cdf of Yn by the cdf of X. The distribution of X is the limiting distribution
or asymptotic distribution of Yn. For the CLT, notice that

Zn =
√
n

(
Y n − µ

σ

)
=

(
Y n − µ

σ/
√
n

)
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is the z–score of Y . If Zn
D→ N(0, 1), then the notation Zn ≈ N(0, 1), also

written as Zn ∼ AN(0, 1), means approximate the cdf of Zn by the standard
normal cdf. Similarly, the notation

Y n ≈ N(µ, σ2/n),

also written as Y n ∼ AN(µ, σ2/n), means approximate the cdf of Y n as if
Y n ∼ N(µ, σ2/n).

The two main applications of the CLT are to give the limiting distribution
of

√
n(Y n −µ) and the limiting distribution of

√
n(Yn/n−µX) for a random

variable Yn such that Yn =
∑n

i=1 Xi where the Xi are iid with E(X) = µX

and VAR(X) = σ2
X .

Example 3.4. a) Let Y1, ..., Yn be iid Ber(ρ). Then E(Y ) = ρ and
VAR(Y ) = ρ(1 − ρ). Hence

√
n(Y n − ρ)

D→ N(0, ρ(1 − ρ))

by the CLT.

b) Now suppose that Yn ∼ BIN(n, ρ). Then Yn
D
=
∑n

i=1Xi where
X1, ..., Xn are iid Ber(ρ). Hence

√
n(
Yn

n
− ρ)

D→ N(0, ρ(1 − ρ))

since √
n(
Yn

n
− ρ)

D
=

√
n(Xn − ρ)

D→ N(0, ρ(1 − ρ))

by a).
c) Now suppose that Yn ∼ BIN(kn, ρ) where kn → ∞ as n→ ∞. Then

√
kn(

Yn

kn
− ρ) ≈ N(0, ρ(1 − ρ))

or
Yn

kn
≈ N

(
ρ,
ρ(1 − ρ)

kn

)
or Yn ≈ N (knρ, knρ(1 − ρ)) .

Theorem 3.8: the Delta Method. If g′(θ) 6= 0 and

√
n(Tn − θ)

D→ N(0, σ2),
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then √
n(g(Tn) − g(θ))

D→ N(0, σ2[g′(θ)]2).

Example 3.5. Let Y1, ..., Yn be iid with E(Y ) = µ and VAR(Y ) = σ2.
Then by the CLT, √

n(Y n − µ)
D→ N(0, σ2).

Let g(µ) = µ2. Then g′(µ) = 2µ 6= 0 for µ 6= 0. Hence

√
n((Y n)2 − µ2)

D→ N(0, 4σ2µ2)

for µ 6= 0 by the delta method.

Example 3.6. Let X ∼ Binomial(n, p) where the positive integer n is

large and 0 < p < 1. Find the limiting distribution of
√
n

[ (
X

n

)2

− p2

]
.

Solution. Example 3.4b gives the limiting distribution of
√
n(X

n
− p). Let

g(p) = p2. Then g′(p) = 2p and by the delta method,

√
n

[ (
X

n

)2

− p2

]
=

√
n

(
g(
X

n
) − g(p)

)
D→

N(0, p(1 − p)(g′(p))2) = N(0, p(1 − p)4p2) = N(0, 4p3(1 − p)).

Example 3.7. Let Xn ∼ Poisson(nλ) where the positive integer n is
large and 0 < λ.

a) Find the limiting distribution of
√
n

(
Xn

n
− λ

)
.

b) Find the limiting distribution of
√
n

[ √
Xn

n
−

√
λ

]
.

Solution. a)Xn
D
=
∑n

i=1 Yi where the Yi are iid Poisson(λ). HenceE(Y ) =
λ = V ar(Y ). Thus by the CLT,

√
n

(
Xn

n
− λ

)
D
=

√
n

( ∑n
i=1 Yi

n
− λ

)
D→ N(0, λ).
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b) Let g(λ) =
√
λ. Then g′(λ) = 1

2
√

λ
and by the delta method,

√
n

[ √
Xn

n
−

√
λ

]
=

√
n

(
g(
Xn

n
) − g(λ)

)
D→

N(0, λ (g′(λ))2) = N(0, λ
1

4λ
) = N(0,

1

4
).

Example 3.8. Let Y1, ..., Yn be independent and identically distributed
(iid) from a Gamma(α, β) distribution.

a) Find the limiting distribution of
√
n
(
Y − αβ

)
.

b) Find the limiting distribution of
√
n
(

(Y )2 − c
)

for appropriate con-
stant c.

Solution: a) Since E(Y ) = αβ and V (Y ) = αβ2, by the CLT√
n
(
Y − αβ

) D→ N(0, αβ2).
b) Let µ = αβ and σ2 = αβ2. Let g(µ) = µ2 so g′(µ) = 2µ and

[g′(µ)]2 = 4µ2 = 4α2β2. Then by the delta method,
√
n
(

(Y )2 − c
) D→

N(0, σ2[g′(µ)]2) = N(0, 4α3β4) where c = µ2 = α2β2.

3.4.2 Modes of Convergence and Consistency

Definition 3.6. Let {Zn, n = 1, 2, ...} be a sequence of random variables
with cdfs Fn, and letX be a random variable with cdf F. Then Zn converges
in distribution to X, written

Zn
D→ X,

or Zn converges in law to X, written Zn
L→ X, if

lim
n→∞

Fn(t) = F (t)

at each continuity point t of F. The distribution of X is called the limiting
distribution or the asymptotic distribution of Zn.

An important fact is that the limiting distribution does not depend
on the sample size n. Notice that the CLT and delta method give the
limiting distributions of Zn =

√
n(Y n − µ) and Zn =

√
n(g(Tn) − g(θ)),

respectively.
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Convergence in distribution is useful because if the distribution of Xn is
unknown or complicated and the distribution of X is easy to use, then for
large n we can approximate the probability that Xn is in an interval by the

probability that X is in the interval. To see this, notice that if Xn
D→ X,

then P (a < Xn ≤ b) = Fn(b) − Fn(a) → F (b)− F (a) = P (a < X ≤ b) if F
is continuous at a and b.

Warning: convergence in distribution says that the cdf Fn(t) of Xn gets
close to the cdf of F(t) of X as n → ∞ provided that t is a continuity
point of F . Hence for any ε > 0 there exists Nt such that if n > Nt, then
|Fn(t)−F (t)|< ε. Notice that Nt depends on the value of t. Convergence in
distribution does not imply that the random variables Xn ≡ Xn(ω) converge
to the random variable X ≡ X(ω) for all ω.

Example 3.8. Suppose that Xn ∼ U(−1/n, 1/n). Then the cdf Fn(x) of
Xn is

Fn(x) =






0, x ≤ −1
n

nx
2

+ 1
2
, −1

n
≤ x ≤ 1

n

1, x ≥ 1
n
.

Sketching Fn(x) shows that it has a line segment rising from 0 at x = −1/n
to 1 at x = 1/n and that Fn(0) = 0.5 for all n ≥ 1. Examining the cases
x < 0, x = 0 and x > 0 shows that as n→ ∞,

Fn(x) →






0, x < 0
1
2

x = 0
1, x > 0.

Notice that if X is a random variable such that P (X = 0) = 1, then X has
cdf

FX(x) =

{
0, x < 0
1, x ≥ 0.

Since x = 0 is the only discontinuity point of FX(x) and since Fn(x) → FX(x)
for all continuity points of FX(x) (ie for x 6= 0),

Xn
D→ X.

Example 3.9. Suppose Yn ∼ U(0, n). Then Fn(t) = t/n for 0 < t ≤ n
and Fn(t) = 0 for t ≤ 0. Hence limn→∞ Fn(t) = 0 for t ≤ 0. If t > 0 and
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n > t, then Fn(t) = t/n → 0 as n → ∞. Thus limn→∞ Fn(t) = 0 for all
t and Yn does not converge in distribution to any random variable Y since
H(t) ≡ 0 is not a cdf.

Definition 3.7. A sequence of random variables Xn converges in distri-
bution to a constant τ (θ), written

Xn
D→ τ (θ), if Xn

D→ X

where P (X = τ (θ)) = 1. The distribution of the random variable X is said
to be degenerate at τ (θ).

Definition 3.8. A sequence of random variables Xn converges in prob-
ability to a constant τ (θ), written

Xn
P→ τ (θ),

if for every ε > 0,

lim
n→∞

P (|Xn − τ (θ)| < ε) = 1 or, equivalently, lim
n→∞

P(|Xn − τ (θ)| ≥ ε) = 0.

The sequence Xn converges in probability to X, written

Xn
P→ X,

if Xn −X
P→ 0.

Notice that Xn
P→ X if for every ε > 0,

lim
n→∞

P (|Xn −X| < ε) = 1, or, equivalently, lim
n→∞

P(|Xn − X| ≥ ε) = 0.

Definition 3.9. A sequence of estimators Tn of τ (θ) is consistent for
τ (θ) if

Tn
P→ τ (θ)

for every θ ∈ Θ. If Tn is consistent for τ (θ), then Tn is a consistent esti-
mator of τ (θ).

Consistency is a weak property that is usually satisfied by good estima-
tors. Tn is a consistent estimator for τ (θ) if the probability that Tn falls in
any neighborhood of τ (θ) goes to one, regardless of the value of θ ∈ Θ.
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Definition 3.10. For a real number r > 0, Yn converges in rth mean to
a random variable Y , written

Yn
r→ Y,

if
E(|Yn − Y |r) → 0

as n→ ∞. In particular, if r = 2, Yn converges in quadratic mean to Y ,
written

Yn
2→ Y or Yn

qm→ Y,

if
E[(Yn − Y )2] → 0

as n→ ∞.

Lemma 3.9: Generalized Chebyshev’s Inequality. Let u : < →
[0,∞) be a nonnegative function. If E[u(Y )] exists then for any c > 0,

P [u(Y ) ≥ c] ≤ E[u(Y )]

c
.

If µ = E(Y ) exists, then taking u(y) = |y − µ|r and c̃ = cr gives
Markov’s Inequality: for r > 0 and any c > 0,

P (|Y − µ| ≥ c] = P (|Y − µ|r ≥ cr] ≤ E[|Y − µ|r]
cr

.

If r = 2 and σ2 = VAR(Y ) exists, then we obtain
Chebyshev’s Inequality:

P (|Y − µ| ≥ c] ≤ VAR(Y )

c2
.

Proof. The proof is given for pdfs. For pmfs, replace the integrals by
sums. Now

E[u(Y )] =

∫

<
u(y)f(y)dy =

∫

{y:u(y)≥c}
u(y)f(y)dy +

∫

{y:u(y)<c}
u(y)f(y)dy

≥
∫

{y:u(y)≥c}
u(y)f(y)dy
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since the integrand u(y)f(y) ≥ 0. Hence

E[u(Y )] ≥ c

∫

{y:u(y)≥c}
f(y)dy = cP [u(Y ) ≥ c]. QED

The following proposition gives sufficient conditions for Tn to be a con-
sistent estimator of τ (θ). Notice that MSEτ (θ)(Tn) → 0 for all θ ∈ Θ is

equivalent to Tn
qm→ τ (θ) for all θ ∈ Θ.

Proposition 3.10. a) If

lim
n→∞

MSEτ (θ)(Tn) = 0

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

b) If
lim

n→∞
VARθ(Tn) = 0 and lim

n→∞
Eθ(Tn) = τ (θ)

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

Proof. a) Using Lemma 3.9 with Y = Tn, u(Tn) = (Tn − τ (θ))2 and
c = ε2 shows that for any ε > 0,

Pθ(|Tn − τ (θ)| ≥ ε) = Pθ[(Tn − τ (θ))2 ≥ ε2] ≤ Eθ[(Tn − τ (θ))2]

ε2
.

Hence
lim

n→∞
Eθ[(Tn − τ (θ))2] = lim

n→∞
MSEτ (θ)(Tn) → 0

is a sufficient condition for Tn to be a consistent estimator of τ (θ).
b) Recall that

MSEτ (θ)(Tn) = VARθ(Tn) + [Biasτ (θ)(Tn)]
2

where Biasτ (θ)(Tn) = Eθ(Tn)−τ (θ). SinceMSEτ (θ)(Tn) → 0 if both VARθ(Tn)
→ 0 and Biasτ (θ)(Tn) = Eθ(Tn)−τ (θ) → 0, the result follows from a). QED

The following result shows estimators that converge at a
√
n rate are

consistent. Use this result and the delta method to show that g(Tn) is a con-
sistent estimator of g(θ). Note that b) follows from a) with Xθ ∼ N(0, v(θ)).
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The WLLN shows that Y is a consistent estimator of E(Y ) = µ if E(Y )
exists.

Proposition 3.11. a) Let X be a random variable and 0 < δ ≤ 1. If

nδ(Tn − τ (θ))
D→ X

then Tn
P→ τ (θ).

b) If √
n(Tn − τ (θ))

D→ N(0, v(θ))

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

Definition 3.11. A sequence of random variables Xn converges almost
everywhere (or almost surely, or with probability 1) to X if

P ( lim
n→∞

Xn = X) = 1.

This type of convergence will be denoted by

Xn
ae→ X.

Notation such as “Xn converges to X ae” will also be used. Sometimes
“ae” will be replaced with “as” or “wp1.” We say that Xn converges almost
everywhere to τ (θ), written

Xn
ae→ τ (θ),

if P (limn→∞Xn = τ (θ)) = 1.

Theorem 3.12. Let Yn be a sequence of iid random variables with
E(Yi) = µ. Then

a) Strong Law of Large Numbers (SLLN): Y n
ae→ µ, and

b) Weak Law of Large Numbers (WLLN): Y n
P→ µ.

Proof of WLLN when V (Yi) = σ2: By Chebyshev’s inequality, for
every ε > 0,

P (|Y n − µ| ≥ ε) ≤ V (Y n)

ε2
=

σ2

nε2
→ 0

as n→ ∞. QED

In proving consistency results, there is an infinite sequence of estimators
that depend on the sample size n. Hence the subscript n will be added to
the estimators.
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Definition 3.12. Lehmann (1999, p. 53-54): a) A sequence of random
variables Wn is tight or bounded in probability, written Wn = OP (1), if for
every ε > 0 there exist positive constants Dε and Nε such that

P (|Wn| ≤ Dε) ≥ 1 − ε

for all n ≥ Nε. Also Wn = OP (Xn) if |Wn/Xn| = OP (1).
b) The sequence Wn = oP (n−δ) if nδWn = oP (1) which means that

nδWn
P→ 0.

c) Wn has the same order as Xn in probability, written Wn �P Xn, if for
every ε > 0 there exist positive constants Nε and 0 < dε < Dε such that

P (dε ≤
∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε) = P (
1

Dε
≤
∣∣∣∣
Xn

Wn

∣∣∣∣ ≤
1

d ε
) ≥ 1 − ε

for all n ≥ Nε.
d) Similar notation is used for a k × r matrix A = [ai,j] if each element

ai,j has the desired property. For example, A = OP (n−1/2) if each ai,j =
OP (n−1/2).

Definition 3.13. Let Wn = ‖µ̂n − µ‖.
a) If Wn �P n−δ for some δ > 0, then both Wn and µ̂n have (tightness)

rate nδ.
b) If there exists a constant κ such that

nδ(Wn − κ)
D→ X

for some nondegenerate random variable X, then both Wn and µ̂n have
convergence rate nδ.

IfWn has convergence rate nδ, thenWn has tightness rate nδ, and the term
“tightness” will often be omitted. Notice that ifWn �P Xn, thenXn �P Wn,
Wn = OP (Xn) and Xn = OP (Wn). Notice that if Wn = OP (n−δ), then nδ is
a lower bound on the rate of Wn.

Proposition 3.13. Suppose there exists a constant κ such that

nδ(Wn − κ)
D→ X.
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a) Then Wn = OP (n−δ).
b) If X is not degenerate, then Wn �P n−δ .

The above result implies that if Wn has convergence rate nδ , then Wn has
tightness rate nδ, and the term “tightness” will often be omitted. Part a) is
proved, for example, in Lehmann (1999, p. 67).

The following result shows that if Wn �P Xn, then Xn �P Wn, Wn =
OP (Xn) and Xn = OP (Wn). Notice that if Wn = OP (n−δ), then nδ is a
lower bound on the rate of Wn. As an example, if the CLT holds then
Y n = OP (n−1/3), but Y n �P n−1/2.

Proposition 3.14. a) If Wn �P Xn then Xn �P Wn.
b) If Wn �P Xn then Wn = OP (Xn).
c) If Wn �P Xn then Xn = OP (Wn).
d) Wn �P Xn iff Wn = OP (Xn) and Xn = OP (Wn).

Proof. a) Since Wn �P Xn,

P (dε ≤
∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε) = P (
1

Dε
≤
∣∣∣∣
Xn

Wn

∣∣∣∣ ≤
1

d ε
) ≥ 1 − ε

for all n ≥ Nε. Hence Xn �P Wn.
b) Since Wn �P Xn,

P (|Wn| ≤ |XnDε|) ≥ P (dε ≤
∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε) ≥ 1 − ε

for all n ≥ Nε. Hence Wn = OP (Xn).
c) Follows by a) and b).
d) If Wn �P Xn, then Wn = OP (Xn) and Xn = OP (Wn) by b) and c).

Now suppose Wn = OP (Xn) and Xn = OP (Wn). Then

P (|Wn| ≤ |Xn|Dε/2) ≥ 1 − ε/2

for all n ≥ N1, and

P (|Xn| ≤ |Wn|1/dε/2) ≥ 1 − ε/2

for all n ≥ N2. Hence

P (A) ≡ P (

∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε/2) ≥ 1 − ε/2
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and

P (B) ≡ P (dε/2 ≤
∣∣∣∣
Wn

Xn

∣∣∣∣) ≥ 1 − ε/2

for all n ≥ N = max(N1, N2). Since P (A∩B) = P (A)+P (B)−P (A∪B) ≥
P (A) + P (B)− 1,

P (A ∩ B) = P (dε/2 ≤
∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε/2) ≥ 1 − ε/2 + 1 − ε/2 − 1 = 1 − ε

for all n ≥ N. Hence Wn �P Xn. QED

The following result is used to prove the following Theorem 3.16 which
says that if there are K estimators Tj,n of a parameter β, such that ‖Tj,n −
β‖ = OP (n−δ) where 0 < δ ≤ 1, and if T ∗

n picks one of these estimators, then
‖T ∗

n − β‖ = OP (n−δ).

Proposition 3.15: Pratt (1959). Let X1,n, ..., XK,n each be OP (1)
where K is fixed. Suppose Wn = Xin,n for some in ∈ {1, ..., K}. Then

Wn = OP (1). (3.14)

Proof.

P (max{X1,n, ..., XK,n} ≤ x) = P (X1,n ≤ x, ..., XK,n ≤ x) ≤

FWn(x) ≤ P (min{X1,n, ..., XK,n} ≤ x) = 1 − P (X1,n > x, ..., XK,n > x).

SinceK is finite, there exists B > 0 and N such that P (Xi,n ≤ B) > 1−ε/2K
and P (Xi,n > −B) > 1 − ε/2K for all n > N and i = 1, ..., K. Bonferroni’s

inequality states that P (∩K
i=1Ai) ≥

∑K
i=1 P (Ai) − (K − 1). Thus

FWn(B) ≥ P (X1,n ≤ B, ..., XK,n ≤ B) ≥

K(1 − ε/2K) − (K − 1) = K − ε/2 −K + 1 = 1 − ε/2

and
−FWn(−B) ≥ −1 + P (X1,n > −B, ..., XK,n > −B) ≥

−1 +K(1 − ε/2K) − (K − 1) = −1 +K − ε/2 −K + 1 = −ε/2.
Hence

FWn(B)− FWn(−B) ≥ 1 − ε for n > N. QED
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Theorem 3.16. Suppose ‖Tj,n − β‖ = OP (n−δ) for j = 1, ..., K where
0 < δ ≤ 1. Let T ∗

n = Tin,n for some in ∈ {1, ..., K} where, for example, Tin,n

is the Tj,n that minimized some criterion function. Then

‖T ∗
n − β‖ = OP (n−δ). (3.15)

Proof. Let Xj,n = nδ‖Tj,n − β‖. Then Xj,n = OP (1) so by Proposition
3.15, nδ‖T ∗

n − β‖ = OP (1). Hence ‖T ∗
n − β‖ = OP (n−δ). QED

3.4.3 Slutsky’s Theorem and Related Results

Theorem 3.17: Slutsky’s Theorem. Suppose Yn
D→ Y and Wn

P→ w for
some constant w. Then

a) Yn +Wn
D→ Y + w,

b) YnWn
D→ wY, and

c) Yn/Wn
D→ Y/w if w 6= 0.

Theorem 3.18. a) If Xn
P→ X then Xn

D→ X.

b) If Xn
ae→ X then Xn

P→ X and Xn
D→ X.

c) If Xn
r→ X then Xn

P→ X and Xn
D→ X.

d) Xn
P→ τ (θ) iff Xn

D→ τ (θ).

e) If Xn
P→ θ and τ is continuous at θ, then τ (Xn)

P→ τ (θ).

f) If Xn
D→ θ and τ is continuous at θ, then τ (Xn)

D→ τ (θ).

Suppose that for all θ ∈ Θ, Tn
D→ τ (θ), Tn

r→ τ (θ) or Tn
ae→ τ (θ). Then

Tn is a consistent estimator of τ (θ) by Theorem 3.18.

Example 3.10. Let Y1, ..., Yn be iid with mean E(Yi) = µ and variance
V (Yi) = σ2. Then the sample mean Y n is a consistent estimator of µ since
i) the SLLN holds (use Theorem 3.12 and 3.18), ii) the WLLN holds and iii)
the CLT holds (use Proposition 3.11). Since

lim
n→∞

VARµ(Y n) = lim
n→∞

σ2/n = 0 and lim
n→∞

Eµ(Y n) = µ,

Y n is also a consistent estimator of µ by Proposition 3.10b. By the delta
method and Proposition 3.11b, Tn = g(Y n) is a consistent estimator of g(µ)
if g′(µ) 6= 0 for all µ ∈ Θ. By Theorem 3.18e, g(Y n) is a consistent estimator
of g(µ) if g is continuous at µ for all µ ∈ Θ.
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Theorem 3.19. a) Generalized Continuous Mapping Theorem: If

Xn
D→ X and the function g is such that P [X ∈ C(g)] = 1 where C(g) is the

set of points where g is continuous, then g(Xn)
D→ g(X).

b) Continuous Mapping Theorem: If Xn
D→ X and the function g is

continuous, then g(Xn)
D→ g(X).

Remark 3.3. For Theorem 3.18, a) follows from Slutsky’s Theorem

by taking Yn ≡ X = Y and Wn = Xn − X. Then Yn
D→ Y = X and

Wn
P→ 0. HenceXn = Yn+Wn

D→ Y +0 = X. The convergence in distribution
parts of b) and c) follow from a). Part f) follows from d) and e). Part
e) implies that if Tn is a consistent estimator of θ and τ is a continuous
function, then τ (Tn) is a consistent estimator of τ (θ). Theorem 3.19 says
that convergence in distribution is preserved by continuous functions, and
even some discontinuities are allowed as long as the set of continuity points
is assigned probability 1 by the asymptotic distribution. Equivalently, the
set of discontinuity points is assigned probability 0.

Example 3.11. (Ferguson 1996, p. 40): If Xn
D→ X then 1/Xn

D→ 1/X
if X is a continuous random variable since P (X = 0) = 0 and x = 0 is the
only discontinuity point of g(x) = 1/x.

Example 3.12. Show that if Yn ∼ tn, a t distribution with n degrees of

freedom, then Yn
D→ Z where Z ∼ N(0, 1).

Solution: Yn
D
= Z/

√
Vn/n where Z Vn ∼ χ2

n. If Wn =
√
Vn/n

P→ 1,

then the result follows by Slutsky’s Theorem. But Vn
D
=
∑n

i=1Xi where the

iid Xi ∼ χ2
1. Hence Vn/n

P→ 1 by the WLLN and
√
Vn/n

P→ 1 by Theorem
3.14e.

Theorem 3.20: Continuity Theorem. Let Yn be sequence of random
variables with characteristic functions φn(t). Let Y be a random variable
with cf φ(t).

a)

Yn
D→ Y iff φn(t) → φ(t) ∀t ∈ <.

b) Also assume that Yn has mgf mn and Y has mgf m. Assume that
all of the mgfs mn and m are defined on |t| ≤ d for some d > 0. Then if

mn(t) → m(t) as n→ ∞ for all |t| < c where 0 < c < d, then Yn
D→ Y .
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Application: Proof of a Special Case of the CLT. Following
Rohatgi (1984, p. 569-9), let Y1, ..., Yn be iid with mean µ, variance σ2 and
mgf mY (t) for |t| < to. Then

Zi =
Yi − µ

σ

has mean 0, variance 1 and mgf mZ(t) = exp(−tµ/σ)mY (t/σ) for |t| < σto.
Want to show that

Wn =
√
n

(
Y n − µ

σ

)
D→ N(0, 1).

Notice that Wn =

n−1/2

n∑

i=1

Zi = n−1/2

n∑

i=1

(
Yi − µ

σ

)
= n−1/2

∑n
i=1 Yi − nµ

σ
=
n−1/2

1
n

Y n − µ

σ
.

Thus

mWn(t) = E(etWn) = E[exp(tn−1/2

n∑

i=1

Zi)] = E[exp(
n∑

i=1

tZi/
√
n)]

=

n∏

i=1

E[etZi/
√

n] =

n∏

i=1

mZ(t/
√
n) = [mZ(t/

√
n)]n.

Set ψ(x) = log(mZ(x)). Then

log[mWn(t)] = n log[mZ(t/
√
n)] = nψ(t/

√
n) =

ψ(t/
√
n)

1
n

.

Now ψ(0) = log[mZ(0)] = log(1) = 0. Thus by L’Hôpital’s rule (where the
derivative is with respect to n), limn→∞ log[mWn(t)] =

lim
n→∞

ψ(t/
√
n )

1
n

= lim
n→∞

ψ′(t/
√
n )[−t/2

n3/2 ]

(−1
n2 )

=
t

2
lim

n→∞

ψ′(t/
√
n )

1√
n

.

Now

ψ′(0) =
m′

Z(0)

mZ(0)
= E(Zi)/1 = 0,
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so L’Hôpital’s rule can be applied again, giving limn→∞ log[mWn(t)] =

t

2
lim

n→∞

ψ′′(t/
√
n )[ −t

2n3/2 ]

( −1
2n3/2 )

=
t2

2
lim

n→∞
ψ′′(t/

√
n ) =

t2

2
ψ′′(0).

Now

ψ′′(t) =
d

dt

m′
Z(t)

mZ(t)
=
m′′

Z(t)mZ(t) − (m′
Z(t))2

[mZ(t)]2
.

So
ψ′′(0) = m′′

Z(0) − [m′
Z(0)]2 = E(Z2

i ) − [E(Zi)]
2 = 1.

Hence limn→∞ log[mWn(t)] = t2/2 and

lim
n→∞

mWn(t) = exp(t2/2)

which is the N(0,1) mgf. Thus by the continuity theorem,

Wn =
√
n

(
Y n − µ

σ

)
D→ N(0, 1).

3.4.4 Multivariate Limit Theorems

Many of the univariate results of the previous 3 subsections can be extended
to random vectors. For the limit theorems, the vector X is typically a k× 1
column vector and XT is a row vector. Let ‖x‖ =

√
x2

1 + · · · + x2
k be the

Euclidean norm of x.

Definition 3.14. Let Xn be a sequence of random vectors with joint
cdfs Fn(x) and let X be a random vector with joint cdf F (x).

a) Xn converges in distribution to X, written Xn
D→ X, if Fn(x) →

F (x) as n→ ∞ for all points x at which F (x) is continuous. The distribution
of X is the limiting distribution or asymptotic distribution of Xn.

b) Xn converges in probability to X, written Xn
P→ X, if for every

ε > 0, P (‖Xn − X‖ > ε) → 0 as n→ ∞.
c) Let r > 0 be a real number. Then Xn converges in rth mean to

X, written Xn
r→ X, if E(‖Xn −X‖r) → 0 as n→ ∞.

d) Xn converges almost everywhere to X, written Xn
ae→ X, if

P (limn→∞ Xn = X) = 1.
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Theorems 3.21 and 3.22 below are the multivariate extensions of the
limit theorems in subsection 3.4.1. When the limiting distribution of Zn =√
n(g(T n) − g(θ)) is multivariate normal Nk(0,Σ), approximate the joint

cdf of Zn with the joint cdf of the Nk(0,Σ) distribution. Thus to find proba-
bilities, manipulate Zn as if Zn ≈ Nk(0,Σ). To see that the CLT is a special
case of the MCLT below, let k = 1, E(X) = µ and V (X) = Σx = σ2.

Theorem 3.21: the Multivariate Central Limit Theorem (MCLT).
If X1, ...,Xn are iid k × 1 random vectors with E(X) = µ and Cov(X) =
Σx, then √

n(Xn − µ)
D→ Nk(0,Σx)

where the sample mean

Xn =
1

n

n∑

i=1

X i.

To see that the delta method is a special case of the multivariate delta
method, note that if Tn and parameter θ are real valued, then Dg(θ)

= g′(θ).

Theorem 3.22: the Multivariate Delta Method. If

√
n(T n − θ)

D→ Nk(0,Σ),

then √
n(g(T n) − g(θ))

D→ Nd(0,Dg(θ)
ΣDT

g(θ)
)

where the d× k Jacobian matrix of partial derivatives

Dg(θ)
=





∂
∂θ1
g1(θ) . . . ∂

∂θk
g1(θ)

...
...

∂
∂θ1
gd(θ) . . . ∂

∂θk
gd(θ)



 .

Here the mapping g : <k → <d needs to be differentiable in a neighborhood
of θ ∈ <k.

Definition 3.15. If the estimator g(T n)
P→ g(θ) for all θ ∈ Θ, then

g(T n) is a consistent estimator of g(θ).
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Proposition 3.23. If 0 < δ ≤ 1, X is a random vector, and

nδ(g(T n) − g(θ))
D→ X,

then g(T n)
P→ g(θ).

Theorem 3.24. If X1, ...,Xn are iid, E(‖X‖) < ∞ and E(X) = µ,
then

a) WLLN: Xn
P→ µ and

b) SLLN: Xn
ae→ µ.

Theorem 3.25: Continuity Theorem. Let Xn be a sequence of k×1
random vectors with characteristic function φn(t) and let X be a k × 1
random vector with cf φ(t). Then

Xn
D→ X iff φn(t) → φ(t)

for all t ∈ <k.

Theorem 3.26: Cramér Wold Device. Let Xn be a sequence of k×1
random vectors and let X be a k × 1 random vector. Then

Xn
D→ X iff tTXn

D→ tTX

for all t ∈ <k.

Theorem 3.27: a) If Xn
P→ X, then Xn

D→ X.
b)

Xn
P→ g(θ) iff Xn

D→ g(θ).

Let g(n) ≥ 1 be an increasing function of the sample size n: g(n) ↑
∞, eg g(n) =

√
n. See White (1984, p. 15). If a k × 1 random vector

T n − µ converges to a nondegenerate multivariate normal distribution with
convergence rate

√
n, then T n has (tightness) rate

√
n.

Definition 3.16. Let An = [ai,j(n)] be an r × c random matrix.
a) An = OP (Xn) if ai,j(n) = OP (Xn) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
b) An = op(Xn) if ai,j(n) = op(Xn) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
c) An �P (1/(g(n)) if ai,j(n) �P (1/(g(n)) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
d) Let A1,n = T n − µ and A2,n = Cn − cΣ for some constant c > 0. If
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A1,n �P (1/(g(n)) and A2,n �P (1/(g(n)), then (T n,Cn) has (tightness)
rate g(n).

Recall that the smallest integer function dxe rounds up, eg d7.7e = 8.

Theorem 3.28: Continuous Mapping Theorem. Let Xn ∈ <k. If

Xn
D→ X and if the function g : <k → <j is continuous, then

g(Xn)
D→ g(X).

The following two theorems are taken from Severini (2005, p. 345-349,
354).

Theorem 3.29: Let Xn = (X1n, ..., Xkn)
T be a sequence of k × 1

random vectors, let Y n be a sequence of k × 1 random vectors and let
X = (X1, ..., Xk)

T be a k × 1 random vector. Let W n be a sequence of
k× k nonsingular random matrices and let C be a k× k constant nonsingu-
lar matrix.

a) Xn
P→ X iff Xin

P→ Xi for i = 1, ..., k.

b) Slutsky’s Theorem: If Xn
D→ X and Y n

P→ c for some constant

k × 1 vector c, then i) Xn + Y n
D→ X + c and

ii) Y T
nXn

D→ cTX.

c) If Xn
D→ X and W n

D→ C, then W nXn
D→ CX, XT

nW n
D→ XTC,

W−1
n Xn

D→ C−1X and XT
nW−1

n
D→ XTC−1.

Theorem 3.30: LetWn, Xn, Yn and Zn be sequences of random variables
such that Yn > 0 and Zn > 0. (Often Yn and Zn are deterministic, eg
Yn = n−1/2.)

a) If Wn = OP (1) and Xn = OP (1), then Wn +Xn = OP (1) and WnXn =
OP (1), thus OP (1) +OP (1) = OP (1) and OP (1)OP (1) = OP (1).

b) If Wn = OP (1) and Xn = oP (1), then Wn +Xn = OP (1) and WnXn =
oP (1), thus OP (1) + oP (1) = OP (1) and OP (1)oP (1) = oP (1).

c) If Wn = OP (Yn) and Xn = OP (Zn), then Wn +Xn = OP (max(Yn, Zn))
and WnXn = OP (YnZn), thus OP (Yn) + OP (Zn) = OP (max(Yn, Zn)) and
OP (Yn)OP (Zn) = OP (YnZn).

Theorem 3.31. i) Suppose
√
n(Tn − µ)

D→ Np(θ,Σ). Let A be a q × p

constant matrix. Then A
√
n(Tn−µ) =

√
n(ATn−Aµ)

D→ Nq(Aθ,AΣAT ).
ii) If (T,C) is a consistent estimator of (µ, s Σ) with rate nδ where s > 0
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is some constant and 0 < δ ≤ 0.5, then D2
x(T,C) = (x− T )TC−1(x− T ) =

s−1D2
x(µ,Σ) +OP (n−δ).

iii) If (T,C) is a consistent estimator of (µ, s Σ) where s > 0 is some
constant, then D2

x(T,C) = (x − T )TC−1(x − T ) = s−1D2
x(µ,Σ) + oP (1),

so D2
x(T,C) is a consistent estimator of s−1D2

x(µ,Σ).

iv) Let Σ > 0. If
√
n(T−µ)

D→ Np(0,Σ) and if C is a consistent estimator

of Σ, then n(T − µ)T C−1(T −µ)
D→ χ2

p. In particular,

n(x − µ)TS−1(x −µ)
D→ χ2

p.

Proof: ii) D2
x(T,C) = (x − T )TC−1(x − T ) =

(x − µ + µ − T )T [C−1 − s−1Σ−1 + s−1Σ−1](x − µ + µ − T )
= (x −µ)T [s−1Σ−1](x − µ) + (x − T )T [C−1 − s−1Σ−1](x− T )
+(x − µ)T [s−1Σ−1](µ− T ) + (µ − T )T [s−1Σ−1](x− µ)
+(µ − T )T [s−1Σ−1](µ − T ) = s−1D2

x(µ,Σ) +OP (n−δ).
iii) Following the proof for ii), D2

x(T,C) = s−1D2
x(µ,Σ) + oP (1). Alter-

natively, D2
x(T,C) is a continuous function of (T,C) if C > 0 for n > 10p.

Hence D2
x(T,C)

P→ D2
x(µ, sΣ).

iv) Note that Zn =
√
n Σ−1/2(T − µ)

D→ Np(0, Ip). Thus ZT
nZn =

n(T − µ)T Σ−1(T − µ)
D→ χ2

p. Now n(T − µ)T C−1(T −µ) =

n(T − µ)T [C−1 − Σ−1 + Σ−1](T − µ) = n(T −µ)TΣ−1(T − µ) +

n(T −µ)T [C−1 −Σ−1](T −µ) = n(T −µ)T Σ−1(T −µ) + oP (1)
D→ χ2

p since√
n(T − µ)T [C−1 − Σ−1]

√
n(T − µ) = OP (1)oP (1)OP (1) = oP (1).

3.5 Summary

1) If X and Y are p × 1 random vectors, a a conformable constant vector,
and A and B are conformable constant matrices, then

E(X+Y ) = E(X)+E(Y ), E(a+Y ) = a+E(Y ), &E(AXB) = AE(X)B.

Also
Cov(a + AX) = Cov(AX) = ACov(X)AT .

Note that E(AY ) = AE(Y ) and Cov(AY ) = ACov(Y )AT .
2) If X ∼ Np(µ,Σ), then E(X) = µ and Cov(X) = Σ.
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3) If X ∼ Np(µ,Σ) and if A is a q×pmatrix, then AX ∼ Nq(Aµ,AΣAT ).
If a is a p×1 vector of constants, then X +a ∼ Np(µ+a,Σ). See Q2, HW2
E.

Let X =

(
X1

X2

)
, µ =

(
µ1

µ2

)
, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

4) All subsets of a MVN are MVN: (Xk1 , ..., Xkq)
T ∼ Nq(µ̃, Σ̃) where

µ̃i = E(Xki) and Σ̃ij = Cov(Xki , Xkj ). In particular, X1 ∼ Nq(µ1,Σ11) and
X2 ∼ Np−q(µ2,Σ22). If X ∼ Np(µ,Σ), then X1 and X2 are independent iff
Σ12 = 0.

5)

Let

(
Y
X

)
∼ N2

( (
µY

µX

)
,

(
σ2

Y Cov(Y,X)
Cov(X, Y ) σ2

X

) )
.

Also recall that the population correlation between X and Y is given by

ρ(X, Y ) =
Cov(X, Y )√

VAR(X)
√

VAR(Y )
=

σX,Y

σXσY

if σX > 0 and σY > 0.
6) The conditional distribution of a MVN is MVN. If X ∼ Np(µ,Σ), then

the conditional distribution of X1 given that X2 = x2 is multivariate normal
with mean µ1 + Σ12Σ

−1
22 (x2 −µ2) and covariance matrix Σ11 −Σ12Σ

−1
22 Σ21.

That is,

X1|X2 = x2 ∼ Nq(µ1 + Σ12Σ
−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).

7) Notation:

X1|X2 ∼ Nq(µ1 + Σ12Σ
−1
22 (X2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).

8) Be able to compute the above quantities if X1 and X2 are scalars.
9) A p× 1 random vector X has an elliptically contoured distribution, if

X has density

f(z) = kp|Σ|−1/2g[(z − µ)TΣ−1(z − µ)], (3.16)
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and we say X has an elliptically contoured ECp(µ,Σ, g) distribution. If the
second moments exist, then

E(X) = µ (3.17)

and
Cov(X) = cXΣ (3.18)

for some constant cX > 0.
10) The population squared Mahalanobis distance

U ≡ D2 = D2(µ,Σ) = (X − µ)T Σ−1(X −µ). (3.19)

For elliptically contoured distributions, U has pdf

h(u) =
πp/2

Γ(p/2)
kpu

p/2−1g(u). (3.20)

U ∼ χ2
p if x has a multivariate normal Np(µ,Σ) distribution.

11) The classical estimator (x,S) of multivariate location and dispersion
is the sample mean and sample covariance matrix where

x =
1

n

n∑

i=1

xi and S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T.

12) Let the p × 1 column vector T (W ) be a multivariate location es-
timator, and let the p × p symmetric positive definite matrix C(W ) be a
dispersion estimator. Then the ith squared sample Mahalanobis distance is
the scalar

D2
i = D2

i (T (W ),C(W )) = (xi − T (W ))TC−1(W )(xi − T (W )) (3.21)

for each observation xi. Notice that the Euclidean distance of xi from the es-
timate of center T (W ) is Di(T (W ), Ip). The classical Mahalanobis distance
uses (T,C) = (x,S).

13) If p random variables come from an elliptically contoured distribution,
then the subplots in the scatterplot matrix should be linear.

14) Let Xn be a sequence of random vectors with joint cdfs Fn(x) and
let X be a random vector with joint cdf F (x).

a) Xn converges in distribution to X, written Xn
D→ X, if Fn(x) →

F (x) as n→ ∞ for all points x at which F (x) is continuous. The distribution
of X is the limiting distribution or asymptotic distribution of Xn.
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b) Xn converges in probability to X, written Xn
P→ X, if for every

ε > 0, P (‖Xn − X‖ > ε) → 0 as n→ ∞.
15) Multivariate Central Limit Theorem (MCLT): If X1, ...,Xn are iid

k × 1 random vectors with E(X) = µ and Cov(X) = Σx, then

√
n(Xn − µ)

D→ Nk(0,Σx)

where the sample mean

Xn =
1

n

n∑

i=1

X i.

16) Suppose
√
n(Tn −µ)

D→ Np(θ,Σ). Let A be a q× p constant matrix.

Then A
√
n(Tn − µ) =

√
n(ATn − Aµ)

D→ Nq(Aθ,AΣAT ).

17) Suppose A is a conformable constant matrix and Xn
D→ X. Then

AXn
D→ AX.

3.6 Complements

Johnson and Wichern (1988) and Mardia, Kent and Bibby (1979) are good
references for multivariate statistical analysis based on the multivariate nor-
mal distribution. The elliptically contoured distributions generalize the mul-
tivariate normal distribution and are discussed (in increasing order of dif-
ficulty) in Johnson (1987), Fang, Kotz and Ng (1990), Fang and Anderson
(1990), and Gupta and Varga (1993). Fang, Kotz and Ng (1990) sketch the
history of elliptically contoured distributions while Gupta and Varga (1993)
discuss matrix valued elliptically contoured distributions. Cambanis, Huang
and Simons (1981), Chmielewski (1981) and Eaton (1986) are also important
references. Also see Muirhead (1982, p. 30–42).

There are several PhD level texts on large sample theory including, in
roughly increasing order of difficulty, Lehmann (1999), Ferguson (1996), Sen
and Singer (1993), and Serfling (1980). Cramér (1946) is also an important
reference, and White (1984) considers asymptotic theory for econometric
applications. Also see DasGupta (2008), Davidson (1994), Jiang (2010),
Polansky (2011), Sen, Singer and Pedrosa De Lima (2010) and van der Vaart
(1998). Section 3.4 followed Olive (2012b, ch. 8) closely.

In analysis, convergence in probability is a special case of convergence in
measure and convergence in distribution is a special case of weak convergence.
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See Ash (1972, p. 322) and Sen and Singer (1993, p. 39). Almost sure
convergence is also known as strong convergence. See Sen and Singer (1993,

p. 34). Since Y
P→ µ iff Y

D→ µ, the WLLN refers to weak convergence.
Technically the Xn and X need to share a common probability space for
convergence in probability and almost sure convergence.

3.7 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

3.1∗. Suppose that




X1

X2

X3

X4



 ∼ N4









49
100
17
7



 ,





3 1 −1 0
1 6 1 −1
−1 1 4 0
0 −1 0 2







 .

a) Find the distribution of X2.

b) Find the distribution of (X1, X3)
T .

c) Which pairs of random variables Xi and Xj are independent?

d) Find the correlation ρ(X1, X3).

3.2∗. Recall that if X ∼ Np(µ,Σ), then the conditional distribution of
X1 given that X2 = x2 is multivariate normal with mean µ1 +Σ12Σ

−1
22 (x2−

µ2) and covariance matrix Σ11 − Σ12Σ
−1
22 Σ21.

Let σ12 = Cov(Y,X) and suppose Y and X follow a bivariate normal
distribution

(
Y
X

)
∼ N2

( (
49
100

)
,

(
16 σ12

σ12 25

) )
.

a) If σ12 = 0, find Y |X. Explain your reasoning.

b) If σ12 = 10 find E(Y |X).

c) If σ12 = 10, find Var(Y |X).
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3.3. Let σ12 = Cov(Y,X) and suppose Y and X follow a bivariate normal
distribution

(
Y
X

)
∼ N2

( (
15
20

)
,

(
64 σ12

σ12 81

) )
.

a) If σ12 = 10 find E(Y |X).

b) If σ12 = 10, find Var(Y |X).

c) If σ12 = 10, find ρ(Y,X), the correlation between Y and X.

3.4. Suppose that

X ∼ (1 − γ)ECp(µ,Σ, g1) + γECp(µ, cΣ, g2)

where c > 0 and 0 < γ < 1. Following Example 3.2, show that X has
an elliptically contoured distribution assuming that all relevant expectations
exist.

3.5. In Proposition 3.5b, show that if the second moments exist, then Σ
can be replaced by Cov(X).

crancap hdlen hdht Data for 3.6

1485 175 132

1450 191 117

1460 186 122

1425 191 125

1430 178 120

1290 180 117

90 75 51

3.6∗. The table (W ) above represents 3 head measurements on 6 people
and one ape. Let X1 = cranial capacity, X2 = head length and X3 = head
height. Let x = (X1, X2, X3)

T . Several multivariate location estimators,
including the coordinatewise median and sample mean, are found by applying
a univariate location estimator to each random variable and then collecting
the results into a vector. a) Find the coordinatewise median MED(W ).

b) Find the sample mean x.
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3.7. Using the notation in Proposition 3.6, show that if the second mo-
ments exist, then

Σ−1
XXΣXY = [Cov(X)]−1Cov(X, Y ).

3.8. Using the notation under Lemma 3.4, show that if X is elliptically
contoured, then the conditional distribution of X1 given that X2 = x2 is
also elliptically contoured.

3.9∗. Suppose Y ∼ Nn(Xβ, σ2I). Find the distribution of
(XTX)−1XTY if X is an n × p full rank constant matrix and β is a p× 1
constant vector.

3.10. Recall that Cov(X,Y ) = E[(X − E(X))(Y − E(Y ))T ]. Using
the notation of Proposition 3.6, let (Y,XT )T be ECp+1(µ,Σ, g) where Y is
a random variable. Let the covariance matrix of (Y,XT ) be

Cov((Y,XT )T ) = c

(
ΣY Y ΣY X

ΣXY ΣXX

)
=

(
VAR(Y ) Cov(Y,X)

Cov(X, Y ) Cov(X)

)

where c is some positive constant. Show that E(Y |X) = α + βT X where

α = µY − βTµX and

β = [Cov(X)]−1Cov(X, Y ).
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3.11. (Due to R.D. Cook.) Let X be a p × 1 random vector with
E(X) = 0 and Cov(X) = Σ. Let B be any constant full rank p× r matrix
where 1 ≤ r ≤ p. Suppose that for all such conforming matrices B,

E(X|BT X) = MBBT X

where MB a p× r constant matrix that depend on B.
Using the fact that ΣB = Cov(X,BTX) = E(XXTB) =

E[E(XXTB|BTX)], compute ΣB and show that MB = ΣB(BTΣB)−1.
Hint: what acts as a constant in the inner expectation?

3.12. Let x be a p × 1 random vector with covariance matrix Cov(x).
Let A be an r × p constant matrix and let B be a q × p constant matrix.
Find Cov(Ax,Bx) in terms of A,B and Cov(x).

3.13. The table W shown below represents 4 measurements on 5 people.

age breadth cephalic size

39.00 149.5 81.9 3738

35.00 152.5 75.9 4261

35.00 145.5 75.4 3777

19.00 146.0 78.1 3904

0.06 88.5 77.6 933

a) Find the sample mean x.
b) Find the coordinatewise median MED(W ).

3.14. Suppose x1, ...,xn are iid p×1 random vectors from a multivariate
t-distribution with parameters µ and Σ with d degrees of freedom. Then

E(xi) = µ and Cov(x) =
d

d− 2
Σ for d > 2. Assuming d > 2, find the

limiting distribution of
√
n(x − c) for appropriate vector c.

3.15. Suppose that




X1

X2

X3

X4



 ∼ N4









9
16
4
1



 ,





1 0.8 −0.4 0
0.8 1 −0.56 0
−0.4 −0.56 1 0

0 0 0 1







 .

a) Find the distribution of X3.
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b) Find the distribution of (X2, X4)
T .

c) Which pairs of random variables Xi and Xj are independent?

d) Find the correlation ρ(X1, X3).

3.16. Suppose x1, ...,xn are iid p× 1 random vectors where

xi ∼ (1 − γ)Np(µ,Σ) + γNp(µ, cΣ)

with 0 < γ < 1 and c > 0. Then E(xi) = µ and Cov(xi) = [1 + γ(c− 1)]Σ.
Find the limiting distribution of

√
n(x − c) for appropriate vector c.

Let X be an n× p constant matrix and let β be a p× 1 constant vector.
Suppose Y ∼ Nn(Xβ, σ2I). Find the distribution of HY if HT = H = H2

is an n× n matrix and if HX = X. Simplify.

3.17. Recall that if X ∼ Np(µ,Σ), then the conditional distribution of
X1 given that X2 = x2 is multivariate normal with mean µ1 +Σ12Σ

−1
22 (x2−

µ2) and covariance matrix
Σ11 − Σ12Σ

−1
22 Σ21. Let Y and X follow a bivariate normal distribution
(
Y
X

)
∼ N2

( (
134
96

)
,

(
24.5 1.1
1.1 23.0

) )
.

a) Find E(Y |X).

b) Find Var(Y |X).
3.18. Suppose that





X1

X2

X3

X4



 ∼ N4









1
7
3
0



 ,





4 0 2 1
0 1 0 0
2 0 3 1
1 0 1 5







 .

a) Find the distribution of (X1, X4)
T .

b) Which pairs of random variables Xi and Xj are independent?

c) Find the correlation ρ(X1, X4).

3.19. Suppose that




X1

X2

X3

X4



 ∼ N4









3
4
2
3



 ,





3 2 1 1
2 4 1 0
1 1 2 0
1 0 0 3







 .
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a) Find the distribution of (X1, X3)
T .

b) Which pairs of random variables Xi and Xj are independent?

c) Find the correlation ρ(X1, X3).

3.20. Suppose x1, ...,xn are iid p×1 random vectors where E(xi) = e0.51
and
Cov(xi) = (e2 − e)Ip. Find the limiting distribution of

√
n(x− c) for appro-

priate vector c.

3.21. Suppose that




X1

X2

X3

X4



 ∼ N4









49
25
9
4



 ,





2 −1 3 0
−1 5 −3 0
3 −3 5 0
0 0 0 4







 .

a) Find the distribution of (X1, X3)
T .

b) Which pairs of random variables Xi and Xj are independent?

c) Find the correlation ρ(X1, X3).

3.22. Recall that if X ∼ Np(µ,Σ), then the conditional distribution of
X1 given that X2 = x2 is multivariate normal with mean µ1 +Σ12Σ

−1
22 (x2−

µ2) and covariance matrix
Σ11 − Σ12Σ

−1
22 Σ21. Let Y and X follow a bivariate normal distribution

(
Y
X

)
∼ N2

( (
49
17

)
,

(
3 −1
−1 4

) )
.

a) Find E(Y |X).

b) Find Var(Y |X).

3.23. Suppose Y ∼ Nn(Xβ, σ2I). Find the distribution of
(XTX)−1XTY if X is an n × p full rank constant matrix and β is a p× 1
constant vector. Simplify.

3.24. Suppose x1, ...,xn are iid 2×1 random vectors from a multivariate
lognormal
LN(µ, Σ) distribution. Let xi = (Xi1, Xi2)

T . Following Press (2005, p. 149-
150),
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E(Xij) = exp(µj+σ
2
j /2), V (Xij) = exp(σ2

j )[exp(σ2
j )−1] exp(2µj) for j = 1, 2,

and
Cov(Xi1, Xi2) = exp[µ1 + µ2 + 0.5(σ2

1 + σ2
2) + σ12][exp(σ12) − 1]. Find the

limiting distribution of
√
n(x − c) for appropriate vector c.



Chapter 4

MLD Estimators

Let µ be a p× 1 location vector and Σ a p× p symmetric dispersion matrix.
Because of symmetry, the first row of Σ has p distinct unknown parameters,
the second row has p−1 distinct unknown parameters, the third row has p−2
distinct unknown parameters, ..., and the pth row has one distinct unknown
parameter for a total of 1+2+· · ·+p = p(p+1)/2 unknown parameters. Since
µ has p unknown parameters, an estimator (T,C) of multivariate location
and dispersion (MLD), needs to estimate p(p + 3)/2 unknown parameters
when there are p random variables. If the p variables can be transformed
into an uncorrelated set then there are only 2p parameters, the means and
variances, while if the dimension can be reduced from p to p−1, the number
of parameters is reduced by p(p + 3)/2 − (p− 1)(p + 2)/2 = p− 1.

The sample covariance or sample correlation matrices estimate these pa-
rameters very efficiently since Σ = ((σij)) where σij is a population covariance
or correlation. These quantities can be estimated with the sample covariance
or correlation taking two variables Xi and Xj at a time. Note that there are
p(p + 1)/2 pairs that can be chosen from p random variables X1, ..., Xp.

Rule of thumb 4.1. For the classical estimators of multivariate location
and dispersion, (x,S) or (z,R), want n > 10p. Want n > 20p for the robust
MLD estimators (FCH, RFCH or RMVN) described later in this chapter.

4.1 Affine Equivariance

Before defining an important equivariance property, some notation is needed.
Again assume that the data is collected in an n × p data matrix W . Let

72
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B = 1bT where 1 is an n× 1 vector of ones and b is a p× 1 constant vector.
Hence the ith row of B is bT

i ≡ bT for i = 1, ..., n. For such a matrix B,
consider the affine transformation Z = W A+B where A is any nonsingular
p× p matrix.

Definition 4.1. Then the multivariate location and dispersion estimator
(T,C) is affine equivariant if

T (Z) = T (WA + B) = ATT (W ) + b, (4.1)

and
C(Z) = C(WA + B) = ATC(W )A. (4.2)

The following proposition shows that the Mahalanobis distances are in-
variant under affine transformations. See Rousseeuw and Leroy (1987, p.
252-262) for similar results. Thus if (T,C) is affine equivariant, so is
(T,D2

(cn)(T,C) C) where D2
(j)(T,C) is the jth order statistic of the D2

i .

Proposition 4.1. If (T,C) is affine equivariant, then

D2
i (W ) ≡ D2

i (T (W ),C(W )) =

D2
i (T (Z),C(Z)) ≡ D2

i (Z). (4.3)

Proof. Since Z = W A + B has ith row

zT
i = xT

i A + bT ,

D2
i (Z) = [zi − T (Z)]TC−1(Z)[zi − T (Z)]

= [AT (xi − T (W ))]T [AT C(W )A]−1[AT (xi − T (W ))]

= [xi − T (W )]TC−1(W )[xi − T (W )] = D2
i (W ). QED

Warning: Estimators that use randomly chosen elemental sets or pro-
jections are not affine equivariant since these estimators change every time
they are computed. Such estimators can sometimes be made affine equivari-
ant by using the same fixed random number seed each time the estimator is
used. Then the affine equivariance of the estimator depends on the random
number seed, and such estimators are not as attractive as affine equivariant
estimators that do not depend on a fixed random number seed.
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4.2 Breakdown

This section gives a standard definition of breakdown for estimators of mul-
tivariate location and dispersion. The following notation will be useful. Let
W denote the n × p data matrix with ith row xT

i corresponding to the ith
case. Let w1, ...wn be the contaminated data after dn of the xi have been
replaced by arbitrarily bad contaminated cases. Let W n

d denote the n × p
data matrix with ith row wT

i . Then the contamination fraction is γn = dn/n.
Let (T (W ),C(W )) denote an estimator of multivariate location and disper-
sion where the p× 1 vector T (W ) is an estimator of location and the p× p
symmetric positive semidefinite matrix C(W ) is an estimator of dispersion.
Recall from Theorem 1.1 that if C(W n

d) > 0, then max
‖a‖=1

aT C(W n
d )a = λ1

and min
‖a‖=1

aT C(W n
d )a = λp. A high breakdown dispersion estimator C is

positive definite if the amount of contamination is less than the breakdown
value. Since aTCa =

∑p
i=1

∑p
j=1 cijaiaj, the largest eigenvalue λ1 is bounded

as W n
d varies iff C(W n

d) is bounded as W n
d varies.

Definition 4.2. The breakdown value of the multivariate location esti-
mator T at W is

B(T,W ) = min{dn

n
: sup
W

n

d

‖T (W n
d )‖ = ∞}

where the supremum is over all possible corrupted samples W n
d and 1 ≤

dn ≤ n. Let λ1(C(W )) ≥ · · · ≥ λp(C(W )) ≥ 0 denote the eigenvalues of
the dispersion estimator applied to data W . The estimator C breaks down
if the smallest eigenvalue can be driven to zero or if the largest eigenvalue
can be driven to ∞. Hence the breakdown value of the dispersion estimator
is

B(C,W ) = min{dn

n
: sup
W

n

d

max[
1

λp(C(W n
d ))

, λ1(C(W n
d ))] = ∞}.

Definition 4.3. Let γn be the breakdown value of (T,C). High break-
down (HB) statistics have γn → 0.5 as n→ ∞ if the (uncontaminated) clean
data are in general position: no more than p points of the clean data lie on
any (p−1)-dimensional hyperplane. Estimators are zero breakdown if γn → 0
and positive breakdown if γn → γ > 0 as n→ ∞.
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Note that if the number of outliers is less than the number needed to cause
breakdown, then ‖T‖ is bounded and the eigenvalues are bounded away from
0 and ∞. Also, the bounds do not depend on the outliers but do depend on
the estimator (T,C) and on the clean data W .

The following result shows that a multivariate location estimator T basi-
cally “breaks down” if the d outliers can make the median Euclidean distance
MED(‖wi−T (W n

d)‖) arbitrarily large where wT
i is the ith row of W n

d . Thus
a multivariate location estimator T will not break down if T can not be driven
out of some ball of (possibly huge) radius r about the origin.

Proposition 4.2. If nonequivariant estimators (that may have a break-
down value of greater than 1/2) are excluded, then a multivariate loca-
tion estimator has a breakdown value of dT /n iff dT is the smallest num-
ber of arbitrarily bad cases that can make the median Euclidean distance
MED(‖wi − T (W n

d )‖) arbitrarily large.

Proof. Note that for a fixed data set W n
d with ith row wi, if the

multivariate location estimator T (W n
d ) satisfies ‖T (W n

d )‖ ≤ M for some
constant M , then the median Euclidean distance MED(‖wi − T (W n

d)‖) ≤
maxi=1,...,n ‖xi − T (W n

d)‖ ≤ maxi=1,...,n ‖xi‖ + M if dn < n/2. Similarly, if
MED(‖wi−T (W n

d)‖) ≤M for some constant M , then ‖T (W n
d)‖ is bounded

if dn < n/2. QED

Since the coordinatewise median MED(W ) is a HB estimator of multi-
variate location, it is also true that a multivariate location estimator T will
not break down if T can not be driven out of some ball of radius r about
MED(W ). Hence (MED(W ), Ip) is a HB estimator of MLD.

If a high breakdown estimator (T,C) ≡ (T (W n
d ),C(W n

d)) is evaluated
on the contaminated data W n

d , then the location estimator T is contained in
some ball about the origin of radius r, and 0 < a < λp ≤ λ1 < b where the
constants a, r and b depend on the clean data and (T,C), but not on W n

d if
the number of outliers dn satisfies 0 ≤ dn ≤ nγn < n/2 where the breakdown
value γn → 0.5 as n→ ∞.

The following lemma will be used to show that if the classical estimator
(XB,SB) is applied to cn ≈ n/2 cases contained in a ball about the origin of
radius r where r depends on the clean data but not on W n

d , then (XB,SB)
is a high breakdown estimator.

Lemma 4.3. If the classical estimator (XB ,SB) is applied to cn cases
that are contained in some bounded region where p + 1 ≤ cn ≤ n, then the
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maximum eigenvalue λ1 of SB is bounded.

Proof. The largest eigenvalue of a p × p matrix A is bounded above
by pmax |ai,j| where ai,j is the (i, j) entry of A. See Datta (1995, p. 403).
Denote the cn cases by z1, ..., zcn . Then the (i, j)th element ai,j of A = SB

is

ai,j =
1

cn − 1

cn∑

m=1

(zi,m − zi)(zj,m − zj).

Hence the maximum eigenvalue λ1 is bounded. �

The determinant det(S) = |S| of S is known as the generalized sample
variance. Consider the hyperellipsoid

{z : (z − T )TC−1(z − T ) ≤ D2
(cn)} (4.4)

where D2
(cn) is the cnth smallest squared Mahalanobis distance based on

(T,C). This ellipsoid contains the cn cases with the smallest D2
i . Sup-

pose (T,C) = (xM , b SM) is the sample mean and scaled sample covariance
matrix applied to some subset of the data where b > 0. The classical, RFCH
and RMVN estimators satisfy this assumption. For h > 0, the hyperellipsoid

{z : (z − T )TC−1(z − T ) ≤ h2} = {z : D2
z ≤ h2} = {z : Dz ≤ h}

has volume equal to

2πp/2

pΓ(p/2)
hp
√
det(C) =

2πp/2

pΓ(p/2)
hpbp/2

√
det(SM).

If h2 = D2
(cn), then the volume is proportional to the square root of the deter-

minant |SM |1/2, and this volume will be positive unless extreme degeneracy
is present among the cn cases. See Johnson and Wichern (1988, p. 103-104).

4.3 The Concentration Algorithm

Definition 4.4. Consider the subset Jo of cn ≈ n/2 observations whose sam-
ple covariance matrix has the lowest determinant among all C(n, cn) subsets
of size cn. Let TMCD and CMCD denote the sample mean and sample covari-
ance matrix of the cn cases in Jo. Then the minimum covariance determinant
MCD(cn) estimator is (TMCD(W ),CMCD(W )).
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The MCD estimator is a high breakdown (HB) estimator, and the value
cn = b(n+ p+ 1)/2c is often used as the default. The MCD estimator is the
pair

(β̂LTS, QLTS(β̂LTS)/(cn − 1))

in the location model where LTS stands for the least trimmed sum of squares
estimator. The population analog of the MCD estimator is closely related to
the ellipsoid of highest concentration that contains cn/n ≈ half of the mass.
The MCD estimator is a

√
n consistent HB estimator for

(µ, aMCDΣ)

where aMCD is some positive constant when the data xi are elliptically con-
toured ECp(µ,Σ, g), and TMCD has a Gaussian limit. See Butler, Davies,
and Jhun (1993) and Cator and Lopuhaä (2009, 2010).

Computing robust covariance estimators can be very expensive. For ex-
ample, to compute the exact MCD(cn) estimator (TMCD, CMCD), we need to
consider the C(n, cn) subsets of size cn. Woodruff and Rocke (1994, p. 893)
note that if 1 billion subsets of size 101 could be evaluated per second, it
would require 1033 millenia to search through all C(200, 101) subsets if the
sample size n = 200.

Hence algorithm estimators will be used to approximate the robust esti-
mators. Elemental sets are the key ingredient for both basic resampling and
concentration algorithms.

Definition 4.5. Suppose that x1, ...,xn are p × 1 vectors of observed
data. For the multivariate location and dispersion model, an elemental
set J is a set of p + 1 cases. An elemental start is the sample mean and
sample covariance matrix of the data corresponding to J. In a concentra-
tion algorithm, let (T−1,j,C−1,j) be the jth start (not necessarily elemental)
and compute all n Mahalanobis distances Di(T−1,j,C−1,j). At the next it-
eration, the classical estimator (T0,j,C0,j) = (x0,j,S0,j) is computed from
the cn ≈ n/2 cases corresponding to the smallest distances. This itera-
tion can be continued for k steps resulting in the sequence of estimators
(T−1,j,C−1,j), (T0,j,C0,j), ..., (Tk,j,Ck,j). The result of the iteration (Tk,j,Ck,j)
is called the jth attractor. If Kn starts are used, then j = 1, ..., Kn. The con-
centration attractor, (TA,CA), is the attractor chosen by the algorithm. The
attractor is used to obtain the final estimator. A common choice is the at-
tractor that has the smallest determinant det(Ck,j). The basic resampling
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algorithm estimator is a special case where k = −1 so that the attractor is
the start: (xk,j ,Sk,j) = (x−1,j,S−1,j).

This concentration algorithm is a simplified version of the algorithms
given by Rousseeuw and Van Driessen (1999) and Hawkins and Olive (1999).
Using k = 10 concentration steps often works well.

Proposition 4.4: Rousseeuw and Van Driessen (1999, p. 214).
Suppose that the classical estimator (xt,j,St,j) is computed from cn cases
and that the n Mahalanobis distances Di ≡ Di(xt,j,St,j) are computed. If
(xt+1,j,St+1,j) is the classical estimator computed from the cn cases with the
smallest Mahalanobis distancesDi, then det(St+1,j) ≤ det(St,j) with equality
iff (xt+1,j,St+1,j) = (xt,j,St,j).

Starts that use a consistent initial estimator could be used. Kn is the
number starts and k is the number of concentration steps used in the al-
gorithm. Suppose the algorithm estimator uses some criterion to choose an
attractor as the final estimator where there are K attractors and K is fixed,
eg K = 500, so K does not depend on n. A crucial observation is that the
theory of the algorithm estimator depends on the theory of the attractors,
not on the estimator corresponding to the criterion.

For example, let (0, Ip) and (1, diag(1, 3, ..., p)) be the high breakdown
attractors where 0 and 1 are the p × 1 vectors of zeroes and ones. If the
minimum determinant criterion is used, then the final estimator is (0, Ip).
Although the MCD criterion is used, the algorithm estimator does not have
the same properties as the MCD estimator.

Hawkins and Olive (2002) showed that if K randomly selected elemen-
tal starts are used with concentration to produce the attractors, then the
resulting estimator is inconsistent and zero breakdown if K and k are fixed
and free of n. Note that each elemental start can be made to breakdown
by changing one case. Hence the breakdown value of the final estimator is
bounded by K/n → 0 as n→ ∞. Note that the classical estimator computed
from hn randomly drawn cases is an inconsistent estimator unless hn → ∞ as
n→ ∞. Thus the classical estimator applied to a randomly drawn elemental
set of hn ≡ p + 1 cases is an inconsistent estimator, so the K starts and the
K attractors are inconsistent.

This theory shows that the Maronna, Martin and Yohai (2006, p. 198-
199) estimators that use K = 500 and one concentration step (k = 0) are
inconsistent and zero breakdown. The following theorem is useful because
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it does not depend on the criterion used to choose the attractor. If the al-
gorithm needs to use many attractors to achieve outlier resistance, then the
individual attractors have little outlier resistance. Such estimators include
elemental concentration algorithms, heuristic and genetic algorithms and pro-
jection algorithms. Algorithms where all K of the attractors are inconsistent,
such as elemental concentration algorithms that use k concentration steps,
are especially untrustworthy. As another example, Stahel Donoho algorithms
use randomly chosen projections and the attractor is a weighted mean and
covariance matrix computed for each projection. If randomly chosen projec-
tions result in inconsistent attractors, then the Stahel Donoho algorithm is
likely inconsistent.

Suppose there are K consistent estimators (Tj,Cj) of (µ, a Σ) for some
constant a > 0, each with the same rate nδ. If (TA,CA) is an estimator
obtained by choosing one of the K estimators, then (TA,CA) is a consistent
estimator of (µ, a Σ) with rate nδ by Pratt (1959). See Theorem 3.16.

Theorem 4.5. Suppose the algorithm estimator chooses an attractor as
the final estimator where there are K attractors and K is fixed.

i) If all of the attractors are consistent estimators of (µ, a Σ), then the
algorithm estimator is a consistent estimator of (µ, a Σ).

ii) If all of the attractors are consistent estimators of (µ, a Σ) with the
same rate, eg, nδ where 0 < δ ≤ 0.5, then the algorithm estimator is a
consistent estimator of (µ, a Σ) with the same rate as the attractors.

iii) If all of the attractors are high breakdown, then the algorithm esti-
mator is high breakdown.

iv) Suppose the data x1, ...,xn are iid and P (xi = µ) < 1. The elemental
basic resampling algorithm estimator (k = −1) is inconsistent.

v) The elemental concentration algorithm is zero breakdown.

Proof. i) Choosing from K consistent estimators for (µ, a Σ) results in a
consistent estimator for of (µ, a Σ), and ii) follows from Pratt (1959). iii) Let
γn,i be the breakdown value of the ith attractor if the clean data x1, ...,xn are
in general position. The breakdown value γn of the algorithm estimator can
be no lower than that of the worst attractor: γn ≥ min(γn,1, ..., γn,K) → 0.5
as n→ ∞.

iv) Let (x−1,j ,S−1,j) be the classical estimator applied to a randomly
drawn elemental set. Then x−1,j is the sample mean applied to p+1 iid cases.
Hence E[x−1,j] = E(x) = µ and Cov(x−1,j) = Cov(x)/(p+1) = Σx/(p+1)
assuming second moments. So the (x−1,j,S−1,j) are identically distributed
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and inconsistent estimators of (µ,Σx). Even without second moments, there
exists ε > 0 such that P (‖x−1,j − µ‖ > ε) = δε > 0 where the probability,
ε and δε do not depend on n since the distribution of x−1,j only depends on
the distribution of the iid xi, not on n. Then P (minj ‖x−1,j − µ‖ > ε) =
P (all ‖x−1,j − µ‖ > ε) → δK

ε > 0 as n → ∞ where equality would hold
if the x−1,j were iid. Hence the “best start” that minimizes ‖x−1,j − µ‖ is
inconsistent.

v) The classical estimator with breakdown 1/n is applied to each elemen-
tal start. Hence γn ≤ K/n → 0 as n→ ∞. �

Since the FMCD estimator is a zero breakdown elemental concentration
algorithm, the Hubert, Rousseeuw and Van Aelst (2008) claim that “MCD
can be efficiently computed with the FAST-MCD estimator” is false. Suppose
K is fixed, but at least one randomly drawn start is iterated to convergence
so that k is not fixed. Then it is not known whether the attractors are
inconsistent or consistent estimators, so it is not known whether FMCD is
consistent. It is possible to produce consistent estimators if K ≡ Kn is
allowed to increase to ∞.

Remark 4.1. Let γo be the highest percentage of large outliers that an
elemental concentration algorithm can detect reliably. For many data sets,

γo ≈ min(
n− cn
n

, 1 − [1 − (0.2)1/K ]1/h)100% (4.5)

if n is large, cn ≥ n/2 and h = p + 1.

Equation (4.5) agrees very well with the Rousseeuw and Van Driessen
(1999) simulation performed on the hybrid FMCD algorithm that uses both
concentration and partitioning. Section 4.4 will provide theory for the useful
practical algorithms and will show that there exists a useful class of data sets
where the elemental concentration algorithm can tolerate up to 25% massive
outliers.

4.4 Theory for Practical Estimators

It is convenient to let the xi be random vectors for large sample theory,
but the xi are fixed clean observed data vectors when discussing breakdown.
This section presents the FCH estimator to be used along with the classical
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and FMCD estimators. Recall from Definition 4.5 that a concentration algo-
rithm uses Kn starts (T0,j,C0,j). Each start is refined with k concentration
steps, resulting in Kn attractors (Tk,j,Ck,j), and the concentration attractor
(TA,CA) is the attractor that optimizes the criterion.

Concentration algorithms include the basic resampling algorithm as a spe-
cial case with k = −1. Using k = 10 concentration steps works well, and
iterating until convergence is usually fast. The DGK estimator (Devlin,
Gnanadesikan and Kettenring 1975, 1981) defined below is one example.
Gnanadesikan and Kettenring (1972, p. 94–95) provide a similar algorithm.
The DGK estimator is affine equivariant since the classical estimator is affine
equivariant and Mahalanobis distances are invariant under affine transfor-
mations by Proposition 4.1. This section will show that the Olive (2004)
MB estimator is high breakdown estimator and that the DGK estimator is
a
√
n consistent estimator of (µ, aMCDΣ), the same quantity estimated by

the MCD estimator. Both estimators use the classical estimator computed
from cn ≈ n/2 cases. The breakdown point of the DGK estimator has been
conjectured to be “at most 1/p.” See Rousseeuw and Leroy (1987, p. 254).
Gnanadesikan (1977, p. 134) provides an estimator somewhat similar to the
MB estimator.

Definition 4.6. The DGK estimator (Tk,D,Ck,D) = (TDGK ,CDGK) uses
the classical estimator (T−1,D,C−1,D) = (x,S) as the only start.

Definition 4.7. The median ball (MB) estimator (Tk,M ,Ck,M ) =
(TMB,CMB) uses (T−1,M ,C−1,M) = (MED(W ), Ip) as the only start where
MED(W ) is the coordinatewise median. So (T0,M ,C0,M) is the classical
estimator applied to the “half set” of data closest to MED(W ) in Euclidean
distance.

The proof of the following theorem implies that a high breakdown estima-
tor (T,C) has MED(D2

i ) ≤ V and that the hyperellipsoid {x|D2
x ≤ D2

(cn)}
that contains cn of the cases is in some ball about the origin of radius r, where
V and r do not depend on the outliers even if the number of outliers is close
to n/2. Also the attractor of a high breakdown estimator is a high breakdown
estimator if the number of concentration steps k is fixed, eg, k = 10. The
theorem implies that the MB estimator (TMB,CMB) is high breakdown.

Theorem 4.6. Suppose (T,C) is a high breakdown estimator where C

is a symmetric, positive definite p×p matrix if the contamination proportion
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dn/n is less than the breakdown value. Then the concentration attractor
(Tk,Ck) is a high breakdown estimator if the coverage cn ≈ n/2 and the
data are in general position.

Proof. Following Leon (1986, p. 280), if A is a symmetric positive
definite matrix with eigenvalues τ1 ≥ · · · ≥ τn, then for any nonzero vector
x,

0 < ‖x‖2 τn ≤ xT Ax ≤ ‖x‖2 τ1. (4.6)

Let λ1 ≥ · · · ≥ λn be the eigenvalues of C. By (4.6),

1

λ1
‖x − T‖2 ≤ (x − T )TC−1(x − T ) ≤ 1

λn
‖x − T‖2. (4.7)

By (4.7), if the D2
(i) are the order statistics of the D2

i (T,C), then D2
(i) < V

for some constant V that depends on the clean data but not on the outliers
even if i and dn are near n/2. (Note that 1/λn and MED(‖xi − T‖2) are
both bounded for high breakdown estimators even for dn near n/2.)

Following Johnson and Wichern (1988, p. 50, 103), the boundary of
the set {x|D2

x ≤ h2} = {x|(x − T )TC−1(x − T ) ≤ h2} is a hyperellipsoid
centered at T with axes of length 2h

√
λi. Hence {x|D2

x ≤ D2
(cn)} is contained

in some ball about the origin of radius r where r does not depend on the
number of outliers even for dn near n/2. This is the set containing the cases
used to compute (T0,C0). Since the set is bounded, T0 is bounded and the
largest eigenvalue λ1,0 of C0 is bounded by Lemma 4.3. The determinant
det(CMCD) of the HB minimum covariance determinant estimator satisfies
0 < det(CMCD) ≤ det(C0) = λ1,0 · · ·λp,0, and λp,0 > inf det(CMCD)/λp−1

1,0 >
0 where the infinum is over all possible data sets with n− dn clean cases and
dn outliers. Since these bounds do not depend on the outliers even for dn near
n/2, (T0,C0) is a high breakdown estimator. Now repeat the argument with
(T0,C0) in place of (T,C) and (T1,C1) in place of (T0,C0). Then (T1,C1) is
high breakdown. Repeating the argument iteratively shows (Tk,Ck) is high
breakdown. �

The following corollary shows that it is easy to find a subset J of cn ≈ n/2
cases such that the classical estimator (xJ ,SJ) applied to J is a HB estimator
of MLD.

Corollary 4.7. Let J consist of the cn cases xi such that
‖xi − MED(W )‖ ≤ MED(‖xi − MED(W )‖). Then the classical estimator
(xJ ,SJ ) applied to J is a HB estimator of MLD.
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To investigate the consistency and rate of robust estimators of multivari-
ate location and dispersion, review Definition 3.16.

The following assumption (E1) gives a class of distributions where we
can prove that the new robust estimators are

√
n consistent. Cator and

Lopuhaä (2009, 2010) show that MCD is consistent provided that the MCD
functional is unique. Distributions where the functional is unique are called
“unimodal,” and rule out, for example, a spherically symmetric uniform dis-
tribution. Theorem 4.8 is crucial for theory and Theorem 4.9 shows that
under (E1), both MCD and DGK are estimating (µ, aMCDΣ).

Assumption (E1): The x1, ...,xn are iid from a “unimodal” ECp(µ,Σ, g)
distribution with nonsingular covariance matrix Cov(xi) where g is continu-
ously differentiable with finite 4th moment:

∫
(xTx)2g(xTx)dx <∞.

Lopuhaä (1999) shows that if a start (T,C) is a consistent affine equiv-
ariant estimator of (µ, sΣ), then the classical estimator applied to the cases
with D2

i (T,C) ≤ h2 is a consistent estimator of (µ, aΣ) where a, s > 0 are
some constants. Affine equivariance is not used for Σ = Ip. Also, the attrac-
tor and the start have the same rate. If the start is inconsistent, then so is
the attractor. The constant a depends on h > 0, s, p, and on the elliptically
contoured distribution, but does not otherwise depend on the consistent start
(T,C). The weight function I(D2

i (T,C) ≤ h2) is an indicator that is 1 if
D2

i (T,C) ≤ h2 and 0 otherwise.

Theorem 4.8, Lopuhaä (1999). a) If the start (T,C) is inconsistent,
then so is the attractor.

b) Suppose (T,C) is a consistent estimator of (µ, sIp) with rate nδ where
s > 0 and 0 < δ ≤ 0.5. Assume (E1) holds and Σ = Ip. Then the classical
estimator (T0,C0) applied to the cases with D2

i (T,C) ≤ h2 is a consistent
estimator of (µ, aIp) with the same rate nδ where a > 0.

c) Suppose (T,C) is a consistent affine equivariant estimator of (µ, sΣ)
with rate nδ where s > 0 and 0 < δ ≤ 0.5. Assume (E1) holds. Then
the classical estimator (T0,C0) applied to the cases with D2

i (T,C) ≤ h2 is
a consistent affine equivariant estimator of (µ, aΣ) with the same rate nδ

where a > 0. The constant a depends on the positive constants s, h, p and
the elliptically contoured distribution, but does not otherwise depend on the
consistent start (T,C).

Let δ = 0.5. Applying Theorem 4.8c) iteratively for a fixed number k of
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steps produces a sequence of estimators (T0,C0), ..., (Tk,Ck) where (Tj,Cj)
is a

√
n consistent affine equivariant estimator of (µ, ajΣ) where the con-

stants aj > 0 depend on s, h, p and the elliptically contoured distribution,
but do not otherwise depend on the consistent start (T,C) ≡ (T−1,C−1).

The 4th moment assumption was used to simplify theory, but likely holds
under 2nd moments. Affine equivariance is needed so that the attractor is
affine equivariant, but probably is not needed to prove consistency.

Conjecture 4.1. Change the finite 4th moments assumption to a finite
2nd moments in assumption E1). Suppose (T,C) is a consistent estimator
of (µ, sΣ) with rate nδ where s > 0 and 0 < δ ≤ 0.5. Then the classical
estimator applied to the cases with D2

i (T,C) ≤ h2 is a consistent estimator
of (µ, aΣ) with the same rate nδ where a > 0.

Remark 4.2. To see that the Lopuhaä (1999) theory extends to concen-
tration where the weight function uses h2 = D2

(cn)(T,C), note that (T, C̃) ≡
(T,D2

(cn)(T,C) C) is a consistent estimator of (µ, bΣ) where b > 0 is derived

in (4.9), and weight function I(D2
i (T, C̃) ≤ 1) is equivalent to the concentra-

tion weight function I(D2
i (T,C) ≤ D2

(cn)(T,C)). As noted above Proposition

4.1, (T, C̃) is affine equivariant if (T,C) is affine equivariant. Hence Lopuhaä
(1999) theory applied to (T, C̃) with h = 1 is equivalent to theory applied
to affine equivariant (T,C) with h2 = D2

(cn)(T,C).

If (T,C) is a consistent estimator of (µ, s Σ) with rate nδ where 0 < δ ≤
0.5, then D2(T,C) = (x − T )TC−1(x − T ) =

(x −µ + µ − T )T [C−1 − s−1Σ−1 + s−1Σ−1](x− µ + µ − T )

= s−1D2(µ,Σ) +OP (n−δ). (4.8)

Thus the sample percentiles of D2
i (T,C) are consistent estimators of the

percentiles of s−1D2(µ,Σ). Suppose cn/n → ξ ∈ (0, 1) as n → ∞, and let
D2

ξ(µ,Σ) be the ξth percentile of the population squared distances. Then

D2
(cn)(T,C)

P→ s−1D2
ξ(µ,Σ) and bΣ = s−1D2

ξ(µ,Σ)sΣ = D2
ξ (µ,Σ)Σ. Thus

b = D2
ξ (µ,Σ) (4.9)

does not depend on s > 0 or δ ∈ (0, 0.5]. �
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Concentration applies the classical estimator to cases with D2
i (T,C) ≤

D2
(cn)(T,C). Let cn ≈ n/2 and

b = D2
0.5(µ,Σ)

be the population median of the population squared distances. By Remark
4.2, if (T,C) is a

√
n consistent affine equivariant estimator of (µ, sΣ) then

(T, C̃) ≡ (T,D2
(cn)(T,C) C) is a

√
n consistent affine equivariant estimator

of (µ, bΣ), and D2
i (T, C̃) ≤ 1 is equivalent to D2

i (T,C) ≤ D2
(cn)(T,C)).

Hence Lopuhaä (1999) theory applied to (T, C̃) with h = 1 is equivalent
to theory applied to the concentration estimator using the affine equivariant
estimator (T,C) ≡ (T−1,C−1) as the start. Since b does not depend on s,
concentration produces a sequence of estimators (T0,C0), ..., (Tk,Ck) where
(Tj,Cj) is a

√
n consistent affine equivariant estimator of (µ, aΣ) where the

constant a > 0 is the same for j = 0, 1, ..., k.
Theorem 4.9 shows that a = aMCD where ξ = 0.5. Hence concentration

with a consistent affine equivariant estimator of (µ, sΣ) with rate nδ as a start
results in a consistent affine equivariant estimator of (µ, aMCDΣ) with rate
nδ. This result can be applied iteratively for a finite number of concentration
steps. Hence DGK is a

√
n consistent affine equivariant estimator of the

same quantity that MCD is estimating. It is not known if the results hold
if concentration is iterated to convergence. For multivariate normal data,
D2(µ,Σ) ∼ χ2

p.

Theorem 4.9. Assume that (E1) holds and that (T,C) is a consistent
affine equivariant estimator of (µ, sΣ) with rate nδ where the constants s > 0
and 0 < δ ≤ 0.5. Then the classical estimator (xt,j,St,j) computed from the
cn ≈ n/2 of cases with the smallest distances Di(T,C) is a consistent affine
equivariant estimator of (µ, aMCDΣ) with the same rate nδ.

Proof. By Remark 4.1 the estimator is a consistent affine equivariant
estimator of (µ, aΣ) with rate nδ. By the remarks above, a will be the same
for any consistent estimator of (µ, sΣ) and a does not depend on s > 0
or δ ∈ (0, 0.5]. Hence the result follows if a = aMCD. The MCD estimator
is a

√
n consistent affine equivariant estimator of (µ, aMCDΣ) by Butler,

Davies and Jhun (1993) and Cator and Lopuhaä (2009, 2010). If the MCD
estimator is the start, then it is also the attractor by Rousseeuw and Van
Driessen (1999) who show that concentration does not increase the MCD
criterion. Hence a = aMCD. �
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Next we define the new easily computed robust
√
n consistent FCH es-

timator, so named since it is fast, consistent and uses a high breakdown
attractor. The FCH and MBA estimators use the

√
n consistent DGK es-

timator (TDGK ,CDGK) and the high breakdown MB estimator (TMB,CMB)
as attractors.

Definition 4.8. Let the “median ball” be the hypersphere containing the
“half set” of data closest to MED(X) in Euclidean distance. The FCH esti-
mator uses the MB attractor if the DGK location estimator TDGK is outside
of the median ball, and the attractor with the smallest determinant, other-
wise. Let (TA,CA) be the attractor used. Then the estimator (TFCH,CFCH)
takes TFCH = TA and

CFCH =
MED(D2

i (TA,CA))

χ2
p,0.5

CA (4.10)

where χ2
p,0.5 is the 50th percentile of a chi–square distribution with p degrees

of freedom.

Remark 4.3. The MBA estimator (TMBA,CMBA) uses the attractor
(TA,CA) with the smallest determinant. Hence the DGK estimator is used
as the attractor if det(CDGK) ≤ det(CMB), and the MB estimator is used
as the attractor, otherwise. Then TMBA = TA and CMBA is computed using
the right hand side of (4.10). The difference between the FCH and MBA
estimators is that the FCH estimator also uses a location criterion to choose
the attractor: if the DGK location estimator TDGK has a greater Euclidean
distance from MED(W ) than half the data, then FCH uses the MB attractor.
The FCH estimator only uses the attractor with the smallest determinant if
‖TDGK−MED(W )‖ ≤ MED(Di(MED(W ), Ip)). Using the location criterion
increases the outlier resistance of the FCH estimator for certain types of
outliers, as will be seen in Section 4.5.

The following theorem shows the FCH estimator has good statistical prop-
erties. We conjecture that FCH is high breakdown. Note that the location
estimator TFCH is high breakdown and that det(CFCH) is bounded away from
0 and ∞ if the data is in general position, even if nearly half of the cases are
outliers.

Theorem 4.10. TFCH is high breakdown if the clean data are in general
position. Suppose (E1) holds. If (TA,CA) is the DGK or MB attractor
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with the smallest determinant, then (TA,CA) is a
√
n consistent estimator

of (µ, aMCDΣ). Hence the MBA and FCH estimators are outlier resistant√
n consistent estimators of (µ, cΣ) where c = u0.5/χ

2
p,0.5, and c = 1 for

multivariate normal data.

Proof. TFCH is high breakdown since it is a bounded distance from
MED(W ) even if the number of outliers is close to n/2. Under (E1) the
FCH and MBA estimators are asymptotically equivalent since ‖TDGK −
MED(W )‖ → 0 in probability. The estimator satisfies 0 < det(CMCD) ≤
det(CA) ≤ det(S0,M) < ∞ by Theorem 4.6 if up to nearly 50% of the cases
are outliers. If the distribution is spherical about µ, then the result fol-
lows from Pratt (1959) and Theorem 4.9 since both starts are

√
n consistent.

Otherwise, the MB estimator CMB is a biased estimator of aMCDΣ. But the
DGK estimator CDGK is a

√
n consistent estimator of aMCDΣ by Theorem

4.9 and ‖CMCD −CDGK‖ = OP (n−1/2). Thus the probability that the DGK
attractor minimizes the determinant goes to one as n→ ∞, and (TA,CA) is
asymptotically equivalent to the DGK estimator (TDGK ,CDGK).

Let CF = CFCH or CF = CMBA. Let P (U ≤ uα) = α where U is given
by (3.9). Then the scaling in (4.10) makes CF a consistent estimator of cΣ
where c = u0.5/χ

2
p,0.5, and c = 1 for multivariate normal data. �

Many variants of the FCH and MBA estimators can be given where the
algorithm gives a

√
n consistent estimator of (µ, cΣ). One such variant uses

K starts (T−1,j,C−1,j) that are affine equivariant
√
n consistent estimators

of (µ, sjΣ) where sj > 0. The MCD criteria is used to choose the final
attractor, and scaling is done as in (4.10). A second variant is the same
as the first, but the Kth attractor is replaced by the MB estimator, and for
j < K the jth attractor (Tk,j,Ck,j) is not used if Tk,j has a greater Euclidean
distance from MED(X) than half the data. Then the location estimator of
the algorithm is high breakdown.

Suppose the attractor is (xk,j ,Sk,j) computed from a subset of cn cases.
The MCD(cn) criterion is the determinant det(Sk,j). The volume of the
hyperellipsoid {z : (z − xk,j)

T S−1
k,j(z − xk,j) ≤ h2} is equal to

2πp/2

pΓ(p/2)
hp
√
det(Sk,j), (4.11)

see Johnson and Wichern (1988, p. 103-104). The “MVE(cn)” criterion is
hp
√

det(Sk,j) where h = D(cn)(xk,j ,Sk,j) (but does not actually correspond
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to the minimum volume ellipsoid (MVE) estimator).
We also considered several estimators that use the MB and DGK esti-

mators as attractors. CMVE is a concentration algorithm like FCH, but the
“MVE” criterion is used in place of the MCD criterion. A standard method
of reweighting can be used to produce the RMBA, RFCH and RCMVE es-
timators. RMVN uses a slightly modified method of reweighting so that
RMVN gives good estimates of (µ,Σ) for multivariate normal data, even
when certain types of outliers are present.

Definition 4.9. The RFCH estimator uses two standard reweighting
steps. Let (µ̂1, Σ̃1) be the classical estimator applied to the n1 cases with
D2

i (TFCH ,CFCH ) ≤ χ2
p,0.975, and let

Σ̂1 =
MED(D2

i (µ̂1, Σ̃1))

χ2
p,0.5

Σ̃1.

Then let (TRFCH, Σ̃2) be the classical estimator applied to the cases with
D2

i (µ̂1, Σ̂1) ≤ χ2
p,0.975, and let

CRFCH =
MED(D2

i (TRFCH , Σ̃2))

χ2
p,0.5

Σ̃2.

RMBA and RFCH are
√
n consistent estimators of (µ, cΣ) by Lopuhaä

(1999) where the weight function uses h2 = χ2
p,0.975, but the two estima-

tors use nearly 97.5% of the cases if the data is multivariate normal. We
conjecture CMVE and RMVE are also

√
n consistent estimators of (µ, cΣ).

Definition 4.10. The RMVN estimator uses (µ̂1, Σ̃1) and n1 as above.
Let q1 = min{0.5(0.975)n/n1, 0.995}, and

Σ̂1 =
MED(D2

i (µ̂1, Σ̃1))

χ2
p,q1

Σ̃1.

Then let (TRMV N , Σ̃2) be the classical estimator applied to the n2 cases with
D2

i (µ̂1, Σ̂1)) ≤ χ2
p,0.975. Let q2 = min{0.5(0.975)n/n2 , 0.995}, and

CRMV N =
MED(D2

i (TRMV N , Σ̃2))

χ2
p,q2

Σ̃2.
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Table 4.1: Average Dispersion Matrices for Near Point Mass Outliers
RMVN FMCD OGK MB[

1.002 −0.014
−0.014 2.024

] [
0.055 0.685
0.685 122.5

] [
0.185 0.089
0.089 36.24

] [
2.570 −0.082
−0.082 5.241

]

Table 4.2: Average Dispersion Matrices for Mean Shift Outliers
RMVN FMCD OGK MB[

0.990 0.004
0.004 2.014

] [
2.530 0.003
0.003 5.146

] [
19.67 12.88
12.88 39.72

] [
2.552 0.003
0.003 5.118

]

The RMVN estimator is a
√
n consistent estimator of (µ, dΣ) by Lopuhaä

(1999) where the weight function uses h2 = χ2
p,0.975 and d = u0.5/χ

2
p,q where

q2 → q in probability as n→ ∞. Here 0.5 ≤ q < 1 depends on the elliptically
contoured distribution, but q = 0.5 and d = 1 for multivariate normal data.

If the bulk of the data is Np(µ,Σ), the RMVN estimator can give useful
estimates of (µ,Σ) for certain types of outliers where FCH and RFCH esti-
mate (µ, dEΣ) for dE > 1. To see this claim, let 0 ≤ γ < 0.5 be the outlier

proportion. If γ = 0, then ni/n
P→ 0.975 and qi

P→ 0.5. If γ > 0, suppose
the outlier configuration is such that the D2

i (TFCH ,CFCH) are roughly χ2
p

for the clean cases, and the outliers have larger D2
i than the clean cases.

Then MED(D2
i ) ≈ χ2

p,q where q = 0.5/(1 − γ). For example, if n = 100 and
γ = 0.4, then there are 60 clean cases, q = 5/6, and the quantile χ2

p,q is
being estimated instead of χ2

p,0.5. Now ni ≈ n(1−γ)0.975, and qi estimates q.
Thus CRMV N ≈ Σ. Of course consistency cannot generally be claimed when
outliers are present.

Simulations suggested (TRMV N ,CRMV N) gives useful estimates of (µ,Σ)
for a variety of outlier configurations. Using 20 runs and n = 1000, the aver-
ages of the dispersion matrices were computed when the bulk of the data are
iid N2(0,Σ) where Σ = diag(1, 2). For clean data, FCH, RFCH and RMVN
give

√
n consistent estimators of Σ, while FMCD and the Maronna and Za-

mar (2002) OGK estimator seem to be approximately unbiased for Σ. The
median ball estimator was scaled using (4.10) and estimated diag(1.13, 1.85).

Next the data had γ = 0.4 and the outliers had x ∼ N2((0, 15)
T , 0.0001I 2),

a near point mass at the major axis. FCH, MB and RFCH estimated 2.6Σ
while RMVN estimated Σ. FMCD and OGK failed to estimate d Σ. Note
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Figure 4.1: Plots for Major Data

that χ2
2,5/6/χ

2
2,0.5 = 2.585. See Table 4.1. The following R commands were

used where mldsim is from mpack.

qchisq(5/6,2)/qchisq(.5,2) = 2.584963

mldsim(n=1000,p=2,outliers=6,pm=15)

Next the data had γ = 0.4 and the outliers had x ∼ N2((20, 20)
T ,Σ), a

mean shift with the same covariance matrix as the clean cases. Rocke and
Woodruff (1996) suggest that outliers with mean shift are hard to detect.
FCH, FMCD, MB and RFCH estimated 2.6Σ while RMVN estimated Σ,
and OGK failed. See Table 4.2. The R command is shown below.

mldsim(n=1000,p=2,outliers=3,pm=20)

Example 4.1. Tremearne (1911) recorded height = x[,1] and height
while kneeling = x[,2] of 112 people. Figure 4.1a shows a scatterplot of the
data. Case 3 has the largest Euclidean distance of 214.767 from MED(W ) =
(1680, 1240)T , but if the distances correspond to the contours of a covering
ellipsoid, then case 44 has the largest distance. For k = 0, (x0,M ,S0,M) is
the classical estimator applied to the “half set” of cases closest to MED(W )
in Euclidean distance. The hypersphere (circle) centered at MED(W ) that
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covers half the data is small because the data density is high near MED(W ).
The median Euclidean distance is 59.661 and case 44 has Euclidean distance
77.987. Hence the intersection of the sphere and the data is a highly corre-
lated clean ellipsoidal region. Figure 4.1b shows the DD plot of the classical
distances versus the MB distances. Notice that both the classical and MB
estimators give the largest distances to cases 3 and 44. Notice that case 44
could not be detected using marginal methods.

As the dimension p gets larger, outliers that can not be detected by
marginal methods (case 44 in Example 4.1) become harder to detect. When
p = 3 imagine that the clean data is a baseball bat with one end at the SW
corner of the bottom of the box (corresponding to the coordinate axes) and
one end at the NE corner of the top of the box. If the outliers are a ball,
there is much more room to hide them in the box than in a covering rectangle
when p = 2.
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Figure 4.2: DD Plots for Gladstone Data

Example 4.2. The estimators can be useful when the data is not el-
liptically contoured. The Gladstone (1905-6) data has 11 variables on 267
persons after death. Head measurements were breadth, circumference, head
height, length and size as well as cephalic index and brain weight. Age, height
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and two categorical variables ageclass (0: under 20, 1: 20-45, 2: over 45) and
sex were also given. Figure 4.2 shows the DD plots for the FCH, RMVN,
cov.mcd and MB estimators. The DD plots from the DGK, MBA, CMVE,
RCMVE and RFCH estimators were similar, and the six outliers in Figure
4.2 correspond to the six infants in the data set.

Chapter 5 shows that if a consistent robust estimator is scaled as in (4.10),
then the plotted points in the DD plot will cluster about the identity line
with unit slope and zero intercept if the data is multivariate normal, and
about some other line through the origin if the data is from some other el-
liptically contoured distribution with a nonsingular covariance matrix. Since
multivariate procedures tend to perform well for elliptically contoured data,
the DD plot is useful even if outliers are not present.

4.5 Outlier Resistance and Simulations

Simulations were used to compare (TFCH ,CFCH), (TRFCH ,CRFCH),
(TRMV N ,CRMV N ) and (TFMCD,CFMCD). Shown below are the averages,
using 20 runs and n = 1000, of the dispersion matrices when the bulk of the
data are iid N4(0,Σ) where Σ = diag(1, 2, 3, 4). The first pair of matrices
used γ = 0. Here the FCH, RFCH and RMVN estimators are

√
n consistent

estimators of Σ, while CFMCD seems to be approximately unbiased for 0.94Σ.

RMVN FMCD

0.996 0.014 0.002 -0.001 0.931 0.017 0.011 0.000

0.014 2.012 -0.001 0.029 0.017 1.885 -0.003 0.022

0.002 -0.001 2.984 0.003 0.011 -0.003 2.803 0.010

-0.001 0.029 0.003 3.994 0.000 0.022 0.010 3.752

Next the data had γ = 0.4 and the outliers had x ∼ N4((0, 0, 0, 15)
T ,

0.0001 I4), a near point mass at the major axis. FCH and RFCH estimated
1.93Σ while RMVN estimated Σ. The FMCD estimator failed to estimate
d Σ. Note that χ2

4,5/6/χ
2
4,0.5 = 1.9276.

RMVN FMCD

0.988 -0.023 -0.007 0.021 0.227 -0.016 0.002 0.049

-0.023 1.964 -0.022 -0.002 -0.016 0.435 -0.014 0.0130
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Table 4.3: Scaled Variance nS2(Tp) and nS2(Cp,p)

p n V FCH RFCH RMVN DGK OGK CLAS FMCD MB
5 50 C 216.0 72.4 75.1 209.3 55.8 47.12 153.9 145.8
5 50 T 12.14 6.50 6.88 10.56 6.70 4.83 8.38 13.23
5 5000 C 307.6 64.1 68.6 325.7 59.3 48.5 60.4 309.5
5 5000 T 18.6 5.34 5.33 19.33 6.61 4.98 5.40 20.20
10 100 C 817.3 276.4 286.0 725.4 229.5 198.9 459.6 610.4
10 100 T 21.40 11.42 11.68 20.13 12.75 9.69 14.05 24.13
10 5000 C 955.5 237.9 243.8 966.2 235.8 202.4 233.6 975.0
10 5000 T 29.12 10.08 10.09 29.35 12.81 9.48 10.06 30.20

-0.007 -0.022 3.053 0.007 0.002 -0.014 0.673 0.179

0.021 -0.002 0.007 3.870 0.049 0.013 0.179 55.648

Next the data had γ = 0.4 and the outliers had x ∼ N4(15 1,Σ), a mean
shift with the same covariance matrix as the clean cases. Again FCH and
RFCH estimated 1.93Σ while RMVN and FMCD estimated Σ.

RMVN FMCD

1.013 0.008 0.006 -0.026 1.024 0.002 0.003 -0.025

0.008 1.975 -0.022 -0.016 0.002 2.000 -0.034 -0.017

0.006 -0.022 2.870 0.004 0.003 -0.034 2.931 0.005

-0.026 -0.016 0.004 3.976 -0.025 -0.017 0.005 4.046

If Win ∼ N(0, τ 2/n) for i = 1, ..., r and if S2
W is the sample variance of the

Win, then E(nS2
W ) = τ 2 and V (nS2

W ) = 2τ 4/(r−1). So nS2
W±

√
5SE(nS2

W ) ≈
τ 2±

√
10τ 2/

√
r − 1. So for r = 1000 runs, expect nS2

W to be between τ 2−0.1τ 2

and τ 2+0.1τ 2 with high confidence. Similar results hold for many estimators
if Win is

√
n consistent and asymptotically normal and if n is large enough.

If Win has less than
√
n rate, eg n1/3 rate, then the scaled sample variance

nS2
W → ∞ as n→ ∞.
Table 4.3 considers W = Tp and W = Cp,p for eight estimators, p = 5

and 10 and n = 10p and 5000 when x ∼ Np(0, diag(1, ..., p)). For the clas-
sical estimator, denoted by CLAS, Tp = xp ∼ N(0, p/n), and nS2(Tp) ≈ p
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while Cp,p is the sample variance of n iid N(0, p) random variables. Hence
nS2(Cp,p) ≈ 2p2. RFCH, RMVN, FMCD and OGK use a “reweight for effi-
ciency” concentration step that uses a random number of cases with percent-
age close to 97.5%. These four estimators had similar behavior. DGK, FCH
and MB used about 50% of the cases and had similar behavior. By Lopuhaä
(1999), estimators with less than

√
n rate still have zero efficiency after the

reweighting. Although FMCD, MB and OGK have not been proven to be√
n consistent, their values did not blow up even for n = 5000.
Geometrical arguments suggest that the MB estimator has considerable

outlier resistance. Suppose the outliers are far from the bulk of the data.
Let the “median ball” correspond to the half set of data closest to MED(W )
in Euclidean distance. If the outliers are outside of the median ball, then
the initial half set in the iteration leading to the MB estimator will be clean.
Thus the MB estimator will tend to give the outliers the largest MB distances
unless the initial clean half set has very high correlation in a direction about
which the outliers lie. This property holds for very general outlier configura-
tions. The FCH estimator tries to use the DGK attractor if the det(CDGK)
is small and the DGK location estimator TDGK is in the median ball. Distant
outliers that make det(CDGK) small also drag TDGK outside of the median
ball. Then FCH uses the MB attractor.

Compared to OGK and FMCD, the MB estimator is vulnerable to outliers
that lie within the median ball. If the bulk of the data is highly correlated
with the major axis of an ellipsoidal region, then the distances based on the
clean data can be very large for outliers that fall within the median ball.
The outlier resistance of the MB estimator decreases as p increases since the
volume of the median ball rapidly increases with p.

A simple simulation for outlier resistance is to count the number of times
the minimum distance of the outliers is larger than the maximum distance
of the clean cases. The simulation used 100 runs. If the count was 97, then
in 97 data sets the outliers can be separated from the clean cases with a
horizontal line in the DD plot, but in 3 data sets the robust distances did
not achieve complete separation.

The clean cases had x ∼ Np(0, diag(1, 2, ..., p)). Outlier types were the
mean shift x ∼ Np(pm1, diag(1, 2, ..., p)) where 1 = (1, ..., 1)T , and x ∼
Np((0, ..., 0, pm)T , 0.0001I p), a near point mass at the major axis. Notice that
the clean data can be transformed to a Np(0, Ip) distribution by multiplying
xi by diag(1, 1/

√
2, ..., 1/

√
p), and this transformation changes the location

of the near point mass to (0, ..., 0, pm/
√
p)T .
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Table 4.4: Number of Times Mean Shift Outliers had the Largest Distances
p γ n pm MBA FCH RFCH RMVN OGK FMCD MB
10 .1 100 4 49 49 85 84 38 76 57
10 .1 100 5 91 91 99 99 93 98 91
10 .4 100 7 90 90 90 90 0 48 100
40 .1 100 5 3 3 3 3 76 3 17
40 .1 100 8 36 36 37 37 100 49 86
40 .25 100 20 62 62 62 62 100 0 100
40 .4 100 20 20 20 20 20 0 0 100
40 .4 100 35 44 98 98 98 95 0 100
60 .1 200 10 49 49 49 52 100 30 100
60 .1 200 20 97 97 97 97 100 35 100
60 .25 200 25 60 60 60 60 100 0 100
60 .4 200 30 11 21 21 21 17 0 100
60 .4 200 40 21 100 100 100 100 0 100

For near point mass outliers, an ellipsoid with very small volume can
cover half of the data if the outliers are at one end of the ellipsoid and
some of the clean data are at the other end. This half set will produce a
classical estimator with very small determinant by (4.11). In the simulations
for large γ, as the near point mass is moved very far away from the bulk of
the data, only the classical, MB and OGK estimators did not have numerical
difficulties. Since the MCD estimator has smaller determinant than DGK
while MVE has smaller volume than DGK, estimators like FMCD and MBA
that use the MVE or MCD criterion without using location information will
be vulnerable to these outliers. FMCD is also vulnerable to outliers if γ is
slightly larger than γo given by (4.5).

Tables 4.4 and 4.5 help illustrate the results for the simulation. Large
counts and small pm for fixed γ suggest greater ability to detect outliers.
Values of p were 5, 10, 15, ..., 60. First consider the mean shift outliers
and Table 4.4. For γ = 0.25 and 0.4, MB usually had the highest counts.
For 5 ≤ p ≤ 20 and the mean shift, the OGK estimator often had the
smallest counts, although FMCD could not handle 40% outliers for p = 20.
For 25 ≤ p ≤ 60, OGK usually had the highest counts for γ = 0.05 and 0.1.
For p ≥ 30, FMCD could not handle 25% outliers even for enormous values
of pm.
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Table 4.5: Number of Times Near Point Mass Outliers had the Largest Dis-
tances

p γ n pm MBA FCH RFCH RMVN OGK FMCD MB
10 .1 100 40 73 92 92 92 100 95 100
10 .25 100 25 0 99 99 90 0 0 99
10 .4 100 25 0 100 100 100 0 0 100
40 .1 100 80 0 0 0 0 79 0 80
40 .1 100 150 0 65 65 65 100 0 99
40 .25 100 90 0 88 87 87 0 0 88
40 .4 100 90 0 91 91 91 0 0 91
60 .1 200 100 0 0 0 0 13 0 91
60 .25 200 150 0 100 100 100 0 0 100
60 .4 200 150 0 100 100 100 0 0 100
60 .4 200 20000 0 100 100 100 64 0 100

In Table 4.5, FCH greatly outperformed MBA although the only differ-
ence between the two estimators is that FCH uses a location criterion as well
as the MCD criterion. OGK performed well for γ = 0.05 and 20 ≤ p ≤ 60
(not tabled). For large γ, OGK often has large bias for cΣ. Then the outliers
may need to be enormous before OGK can detect them. Also see Table 4.2,
where OGK gave the outliers the largest distances for all runs, but COGK

does not give a good estimate of cΣ = c diag(1, 2).
The DD plot of MDi versus RDi is useful for detecting outliers. The

resistant estimator will be useful if (T,C) ≈ (µ, cΣ) where c > 0 since scaling
by c affects the vertical labels of the RDi but not the shape of the DD plot.
For the outlier data, the MBA estimator is biased, but the mean shift outliers
in the MBA DD plot will have large RDi since CMBA ≈ 2CFMCD ≈ 2Σ.

When p is increased to 8, the cov.mcd estimator was usually not useful
for detecting the mean shift outliers. Figure 4.3 shows that now the FMCD
RDi are highly correlated with the MDi. The DD plot based on the MBA
estimator detects the outliers. See Figure 4.4.

For many data sets, equation (4.5) gives a rough approximation for the
number of large outliers that concentration algorithms using K starts each
consisting of h cases can handle. However, if the data set is multivariate and
the bulk of the data falls in one compact ellipsoid while the outliers fall in an-
other hugely distant compact ellipsoid, then a concentration algorithm using
a single start can sometimes tolerate nearly 25% outliers. For example, sup-
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pose that all p+1 cases in the elemental start are outliers but the covariance
matrix is nonsingular so that the Mahalanobis distances can be computed.
Then the classical estimator is applied to the cn ≈ n/2 cases with the small-
est distances. Suppose the percentage of outliers is less than 25% and that
all of the outliers are in this “half set.” Then the sample mean applied to
the cn cases should be closer to the bulk of the data than to the cluster of
outliers. Hence after a concentration step, the percentage of outliers will be
reduced if the outliers are very far away. After the next concentration step
the percentage of outliers will be further reduced and after several iterations,
all cn cases will be clean.

In a small simulation study, 20% outliers were planted for various values
of p. If the outliers were distant enough, then the minimum DGK distance for
the outliers was larger than the maximum DGK distance for the nonoutliers.
Hence the outliers would be separated from the bulk of the data in a DD plot
of classical versus robust distances. For example, when the clean data comes
from the Np(0, Ip) distribution and the outliers come from the Np(2000 1, Ip)
distribution, the DGK estimator with 10 concentration steps was able to
separate the outliers in 17 out of 20 runs when n = 9000 and p = 30. With
10% outliers, a shift of 40, n = 600 and p = 50, 18 out of 20 runs worked.
Olive (2004a) showed similar results for the Rousseeuw and Van Driessen
(1999) FMCD algorithm and that the MBA estimator could often correctly
classify up to 49% distant outliers. The following proposition shows that it
is very difficult to drive the determinant of the dispersion estimator from a
concentration algorithm to zero.

Proposition 4.11. Consider the concentration and MCD estimators
that both cover cn cases. For multivariate data, if at least one of the starts is
nonsingular, then the concentration attractor CA is less likely to be singular
than the high breakdown MCD estimator CMCD.

Proof. If all of the starts are singular, then the Mahalanobis distances
cannot be computed and the classical estimator can not be applied to cn
cases. Suppose that at least one start was nonsingular. Then CA and CMCD

are both sample covariance matrices applied to cn cases, but by definition
CMCD minimizes the determinant of such matrices. Hence 0 ≤ det(CMCD) ≤
det(CA). QED

Software
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Figure 4.5: highlighted cases = half set with smallest RD = (T0,C0)
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Figure 4.6: highlighted cases = half set with smallest RD = (T1,C1)
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Figure 4.7: highlighted cases = half set with smallest RD = (T2,C2)
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Figure 4.8: highlighted cases = outliers, RD = (T0,D,C0,D)
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The robustbase library was downloaded from (www.r-project.org/#doc).∮
15.2 explains how to use the source command to get the mpack func-

tions in R and how to download a library from R. Type the commands
library(MASS) and library(robustbase) to compute the FMCD and OGK
estimators with the cov.mcd and covOGK functions.

The mpack function
mldsim(n=200,p=5,gam=.2,runs=100,outliers=1,pm=15)
can be used to produce Tables 4.1–4.5. Change outliers to 0 to examine the
average of µ̂ and Σ̂. The function mldsim6 is similar but does not need the
library command since it compares the FCH, RFCH, CMVE, RCMVE and
MB estimators. The command
sctplt(n=200,p=10,gam=.2,outliers=3, pm=5)
will make an outlier data set. Then the FCH and MB DD plots are made
(click on the right mouse button and highlight stop to go to the next plot) and
then the scatterplot matrix. The scatterplot matrix can be used to determine
whether the outliers are hard to detect with bivariate or univariate methods.
If p > 10 the bivariate plots may be too small. See Zhang (2011) for more
simulations.

The function covsim2 can be modified to show that the R implementation
of FCH is usually much faster than OGK which is much faster than FMCD.
The function corrsim can be used to simulate the correlations of robust dis-
tances with classical distances. RCMVE, RMBA and RFCH are reweighted
versions of CMVE, MBA and FCH that may perform better for small n. For
MVN data, the command
corrsim(n=200,p=20,nruns=100,type=5)
suggests that the correlation of the RFCH distances with the classical dis-
tances is about 0.97. Changing type to 4 suggests that FCH needs n = 800
before the correlation is about 0.97. The function corrsim2 uses a wider
variety of EC distributions. See Zhang (2011) for simulations.

The function cmve computes CMVE and RCMVE, function covfch com-
putes FCH and RFCH while covrmvn computes the RMVN and MB esti-
mators. The function covrmb computes MB and RMB where RMB is like
RMVN except the MB estimator is reweighted instead of FCH. Functions
covdgk, covmba and rmba compute the scaled DGK, MBA and RMBA esti-
mators.

The concmv function described in Problem 4.5 illustrates concentration
where the start is (MED(W ), diag([MAD(Xi)]

2)). In Figures 4.5, 4.6, and
4.7, the highlighted cases are the half set with the smallest distances, and
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Figure 4.9: highlighted cases = outliers, RD = (T1,D,C1,D)
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Figure 4.10: highlighted cases = outliers, RD = (T2,D,C2,D)
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Figure 4.11: highlighted cases = outliers, RD = (T3,D,C3,D)

the initial half set shown in Figure 4.5 is not clean, where n = 100 and there
are 40 outliers. The attractor shown in Figure 4.7 is clean. This type of data
set has too many outliers for DGK while the MB starts and attractors are
almost always clean.

The ddmv function in Problem 4.6 illustrates concentration for the DGK
estimator where the start is the classical estimator. Now n = 100, p = 4
and there are 25 outliers. A DD plot of classical distances MD versus robust
distances RD is shown. See Figures 4.8, 4.9, 4.10 and 4.11. The half set of
cases with the smallest RDs is used, and the initial half set shown in Figure
4.8 is not clean. The attractor in Figure 4.11 is the DGK estimator which
uses a clean half set. The clean cases xi ∼ N4(0, diag(1, 2, 3, 4)) while the
outliers xi ∼ N4((10, 10

√
2, 10

√
3, 20)T , diag(1, 2, 3, 4)).

4.6 Summary

1) Given a table of data W for variables X1, ..., Xp, be able to find the
coordinatewise median MED(W ) and the sample mean x. If x =
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(X1, X2, ..., Xp)
T whereXj corresponds to the jth column of W , then MED(W ) =

(MEDX1(n), ....,MEDXp(n))T where MEDXj(n) = MED(Xj,1, ..., Xj,n) is the

sample median of the data in the jth column. Similarly, x = (X1, ..., Xp)
T

where Xj is the sample mean of the data in the jth column. See Q3.
2) A DD plot is a plot of classical vs robust Mahalanobis distances. The

DD plot is used to check i) if the data is MVN (plotted points follow the
identity line), ii) if the data is EC but not MVN (plotted points follow a line
through the origin with slope > 1), iii) if the data is not EC (plotted points
do not follow a line through the origin) iv) if multivariate outliers are present
(eg some plotted points are far from the bulk of the data or the plotted points
follow two lines). See Q3.

3) Many practical “robust estimators” generate a sequence of K trial fits
called attractors: (T1,C1), ..., (TK,CK). Then the attractor (TA,CA) that
minimizes some criterion is used to obtain the final estimator. One way
to obtain attractors is to generate trial fits called starts, and then use the
concentration technique. Let (T−1,j,C−1,j) be the jth start and compute all
n Mahalanobis distances Di(T−1,j,C−1,j). At the next iteration, the classical
estimator (T0,j,C0,j) is computed from the cn ≈ n/2 cases corresponding to
the smallest distances. This iteration can be continued for k steps resulting
in the sequence of estimators (T−1,j,C−1,j), (T0,j,C0,j), ..., (Tk,j,Ck,j). Then
(Tk,j,Ck,j) is the jth attractor for j = 1, ..., K. Using k = 10 often works
well, and the basic resampling algorithm is a special case k = −1 where the
attractors are the starts.

4) The DGK estimator (TDGK ,CDGK) uses the classical estimator (T−1,D,C−1,D) =
(x,S) as the only start.

5) The median ball (MB) estimator (TMB,CMB) uses (T−1,M ,C−1,M ) =
(MED(W ), Ip) as the only start where MED(W ) is the coordinatewise me-
dian. Hence (T0,M ,C0,M) is the classical estimator applied to the “half set”
of data closest to MED(W ) in Euclidean distance.

6) Elemental concentration algorithms use elemental starts: (T−1,j,C−1,j) =
(xj,Sj) is the classical estimator applied to a randomly selected “elemental
set” of p + 1 cases. If the xi are iid with covariance matrix Σx, then the
starts (xj,Sj) are identically distributed with E(xj) = E(xi) and Cov(xj) =
Σx/(p + 1).

7) Let the “median ball” be the hypersphere containing the half set of
data closest to MED(W ) in Euclidean distance. The FCH estimator uses
the MB attractor if the DGK location estimator TDGK = Tk,D is outside of
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the median ball, and the attractor with the smallest determinant, otherwise.
Let (TA,CA) be the attractor used. Then the estimator (TFCH ,CFCH) takes
TFCH = TA and

CFCH =
MED(D2

i (TA,CA))

χ2
p,0.5

CA (4.12)

where χ2
p,0.5 is the 50th percentile of a chi–square distribution with p degrees

of freedom. The RFCH estimator uses two standard “reweight for efficiency
steps” while the RMVN estimator uses a modified method for reweighting.

8) For a large class of elliptically contoured distributions, FCH, RFCH
and RMVN are

√
n consistent estimators of (µ, ciΣ) for c1, c2, c3 > 0 where

ci = 1 for Np(µ,Σ) data.
9) An estimator (T,C) of multivariate location and dispersion (MLD),

needs to estimate p(p + 3)/2 unknown parameters when there are p random
variables. For (x,S) or (z,R), want n > 10p. Want n > 20p for FCH,
RFCH or RMVN.

10) Brand name robust MLD estimators from the Rousseeuw and Yohai
paradigm take too long to compute: F-brand name estimators that are not
backed by breakdown or large sample theory are actually used. FMCD, F-
MVE, F-S, F-MM, F-τ , F-constrained-M and F-Stahel-Donoho are especially
common.

4.7 Complements

For concentration algorithms, note that (Tt,j,Ct,j) = (xt,j,St,j) is the classi-
cal estimator applied to the “half set” of cases satisfying {xi : D2

i (xt−1,j,St−1,j)
≤ D2

(cn)(xt−1,j,St−1,j)} for t ≥ 0. Hence (Tt,j,Ct,j) is estimating (µt,Σt), the
population mean and covariance matrix of the truncated distribution cover-
ing half of the mass corresponding to {x : (x − µt−1)

TΣ−1
t−1(x − µt−1) ≤

D2
0.5(µt−1,Σt−1)} where D2

0.5(µt−1,Σt−1) is the population median of the
population squared distances D2(µt−1,Σt−1). Here (µ−1,Σ−1) is the popu-
lation analog of (T−1,j,C−1,j).

The DGK estimator (Tk,D,Ck,D) uses the classical estimator (T−1,D,C−1,D)
= (x,S) as the only start. Thus (µ−1,D,Σ−1,D) is the population mean and
covariance matrix. For an elliptically contoured distribution with a nonsingu-
lar covariance matrix and for t ≥ 0, (µt,D,Σt,D) is the population mean and
covariance matrix of the truncated distribution corresponding to the high-
est density region covering half the mass. Hence µt,D = µ and Σt,D = cΣ
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for some c > 0. Riani, Atkinson and Cerioli (2009) find the population mean
and covariance matrices for such truncated multivariate normal distributions,
using results from Tallis (1963).

Conjecture 4.2. The DGK estimator is a
√
n consistent estimator of

(µk,D,Σk,D) under mild conditions.

The median ball (MB) estimator (Tk,M ,Ck,M ) uses (T−1,M ,C−1,M) =
(MED(X), Ip) as the only start where MED(X) is the coordinatewise me-
dian. Hence (T0,M ,C0,M) is the classical estimator applied to the “half set”
of data closest to MED(X) in Euclidean distance while (µ0,M ,Σ0,M) is the
population mean and covariance matrix of the truncated distribution corre-
sponding to the hypersphere centered at the population median that contains
half the mass. For a distribution that is spherical about µ and for t ≥ 0,
(µt,M ,Σt,M ) = (µ, cIp) for some c > 0. For nonspherical elliptically con-
toured distributions, Σt,M 6= cΣ. However, the bias seems to be small even
for t = 0, and to get smaller as k increases. If the median ball estimator is
iterated to convergence, we do not know whether Σ∞,M = cΣ.

Conjecture 4.3. The MB estimator is a high breakdown
√
n consistent

estimator of (µk,M ,Σk,M) under mild conditions. For elliptically contoured
distributions, µk,M = µ.

Arcones (1995) and Kim (2000) showed that x0,M is a HB
√
n consistent

estimator of µ. Olive (2004a) showed that (x0,M ,S0,M) is a high breakdown
estimator. If the data distribution is EC but not spherical about µ, then
for k ≥ 0, Sk,M = CMB under estimates the major axis and over estimates
the minor axis of the highest density region. Concentration reduces but fails
to eliminate this bias. Hence the estimated highest density region based on
the attractor is “shorter” in the direction of the major axis and “fatter” in
the direction of the minor axis than estimated regions based on consistent
estimators.

Recall that the sample median MED(Yi) = Y ((n + 1)/2) is the middle
order statistic if n is odd. Thus if n = m + d where m is the number of
clean cases and d = m − 1 is the number of outliers so γ ≈ 0.5, then the
sample median can be driven to the max or min of the clean cases. The
jth element of MED(W ) is the sample median of the jth predictor. Hence
with m−1 outliers, MED(W ) can be driven to the “coordinatewise covering
box” of the m clean cases. The boundaries of this box are at the min and
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max of the clean cases from each predictor, and the lengths of the box edges
equal the ranges Ri of the clean cases for the ith variable. If d ≈ m/2 so
that γ ≈ 1/3, then the MED(W ) can be moved to the boundary of the
much smaller “coordinatewise IQR box” corresponding the 25th and 75th
percentiles of the clean date. Then the edge lengths are approximately equal
to the interquartile ranges of the clean cases.

Note thatDi(MED(W ), Ip) = ‖xi−MED(W )‖ is the Euclidean distance
of xi from MED(W ). Let C denote the set of m clean cases. If d ≤ m−1, then
the minimum distance of the outliers is larger than the maximum distance
of the clean cases if the distances for the outliers satisfy Di > B where

B2 = max
i∈C

‖xi − MED(X)‖2 ≤
p∑

i=1

R2
i ≤ p(maxR2

i ).

One of the most effective methods for detecting outliers for large data sets or
if p > n is to use Di(MED(W ), Ip).

The MB estimator has outlier resistance similar to (MED(W ), Ip) for
distant outliers but, as shown in Example 4.1, can be much more effective
for detecting certain types of outliers that can not be found by marginal
methods. For EC data, the MB estimator is best if the data is spherical
about µ or if the data is highly correlated with the major axis of the highest
density region {xi : D2

i (µ,Σ) ≤ d2}.
If the DGK estimator is used by itself, we recommend k = 10 in the

concentration algorithm. We use k = 5 when the DGK and MB estimators
are used as attractors for the FCH, CMVE and MBA estimators. The scaling
(4.10) makes CFCH a better estimate of Σ if the data is multivariate normal
MVN.

Concentration for the MB estimator begins with the “half set” of data
closest to the coordinatewise median in Euclidean distance, resulting in the
estimator (T0,M ,C0,M) that uses 50% trimming. (T0,M ,C0,M) is a high
breakdown estimator by Corollary 4.7. Since only cases xi such that ‖xi −
MED(W )‖ ≤ MED(‖xi − MED(W )‖) are used, the largest eigenvalue of
C0,50 is bounded if fewer than half of the cases are outliers by Lemma 4.3.

The geometric behavior of (T0,M ,C0,M) is simple. If the data xi are MVN
(or EC) then the highest density regions of the data are hyperellipsoids. The
set of x closest to the coordinatewise median in Euclidean distance is a
hypersphere. For EC data the highest density ellipsoid and hypersphere will
have approximately the same center as the hypersphere, and the hypersphere
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will be drawn towards the longest axis of the hyperellipsoid. Hence too much
data will be trimmed in that direction. For example, if the data are MVN
with Σ = diag(1, 2, ..., p) then C0,M will underestimate the largest variance
and overestimate the smallest variance. Taking k concentration steps can
greatly reduce but not eliminate the bias of the MB estimator Ck,M if the
data is EC, and the determinant |Ck,M | < |C0,M | unless the attractor is
equal (T0,M ,C0,M) by Proposition 4.4. The MB estimator (Tk,M ,Ck,M) is not
affine equivariant but is resistant to gross outliers in that they will initially
be given weight zero if they are further than the median Euclidean distance
from the coordinatewise median. Gnanadesikan and Kettenring (1972, p.
94) suggest an estimator similar to the MB estimator, also see Croux and
Van Aelst (2002). Another estimator similar to MB was suggested by Wilk,
Gnanadesikan, Huyett and Lauh (1962). See Gnanadesikan (1977, p. 134).

Recall that the population squared Mahalanobis distance

U ≡ D2(µ,Σ) = (x − µ)TΣ−1(x − µ). (4.13)

For elliptically contoured distributions, U has pdf given by (3.10), and the
50% highest density region has the form of the hyperellipsoid

{z : (z − µ)TΣ−1(z − µ) ≤ U0.5}
where U0.5 is the median of the distribution of U . For example, if the x are
MVN, then U has the χ2

p distribution. Concentration estimators attempt to
estimate the population mean and covariance matrix of the mass in this 50%
highest density region. So it should not be surprising that good concentration
attractors estimate the same quantity (µ, aMCDΣ). See Theorem 4.9.

In regression, if the start is a consistent estimator for β, then so is the at-
tractor. Hence all attractors are estimating the same parameter β. Theorem
4.9 showed that MLD concentration attractors with k ≥ 0 are estimating the
same parameter (µ, aMCDΣ) even if the affine equivariant starts are estimat-
ing (µ, siΣ) where the si > 0 can differ for i = 1, ..., K.

Olive (2002) showed the following result. Assume (Ti,Ci) are consistent
estimators for (µ, aiΣ) where ai > 0 for i = 1, 2. Let Di,1 and Di,2 be
the corresponding distances and let R be the set of cases with distances
Di(T1,C1) ≤ MED(Di(T1,C1)). Let rn be the correlation between Di,1 and
Di,2 for the cases in R. Then rn → 1 in probability as n→ ∞.

The theory for concentration algorithms is due to Hawkins and Olive
(2002) and Olive and Hawkins (2010). The MBA estimator is due to Olive
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(2004a). The computational and theoretical simplicity of the FCH estima-
tor makes it one of the most useful robust estimators ever proposed. An
important application of the robust algorithm estimators and of case diag-
nostics is to detect outliers. Sometimes it can be assumed that the analysis
for influential cases and outliers was completely successful in classifying the
cases into outliers and good or “clean” cases. Then classical procedures can
be performed on the good cases. This assumption of perfect classification is
often unreasonable, and it is useful to have robust procedures, such as the
FCH estimator, that have rigorous asymptotic theory and are practical to
compute. Since the FCH estimator is about an order of magnitude faster
than alternative robust estimators, the FCH estimator may be useful for
computationally intensive applications.

The RFCH and RMVN estimators takes slightly longer to compute than
the FCH estimator, and may have slightly less resistance to outliers.

In addition to concentration and randomly selecting elemental sets, three
other algorithm techniques are important. He and Wang (1996) suggest
computing the classical estimator and a consistent robust estimator. The
final cross checking estimator is the classical estimator if both estimators are
“close,” otherwise the final estimator is the robust estimator. The second
technique was proposed by Gnanadesikan and Kettenring (1972, p. 90).
They suggest using the dispersion matrix C = ((ci,j)) where ci,j is a robust
estimator of the covariance of Xi and Xj . Computing the classical estimator
on a subset of the data results in an estimator of this form. The identity

ci,j = Cov(Xi,Xj) = [VAR(Xi + Xj) − VAR(Xi − Xj)]/4

where VAR(X) = σ2(X) suggests that a robust estimator of dispersion can be
created by replacing the sample standard deviation σ̂ by a robust estimator
of scale. Maronna and Zamar (2002) modify this idea to create a fairly
fast (possibly high breakdown consistent) OGK estimator of multivariate
location and dispersion. This estimator may be the leading competitor of
the FCH estimator. Also see Alqallaf, Konis, Martin and Zamar (2002) and
Mehrotra (1995). Woodruff and Rocke (1994) introduced the third technique,
partitioning, which evaluates a start on a subset of the cases. Poor starts are
discarded, and L of the best starts are evaluated on the entire data set. This
idea is also used by Rocke and Woodruff (1996) and by Rousseeuw and Van
Driessen (1999).
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Billor, Hadi and Velleman (2000) have a BACON algorithm that uses
m0 = 4p or m0 = 5p cases, computes the sample mean and covariance matrix
of these cases, finds the m1 cases with Mahalanobis distances less than some
cutoff, then iterates until the subset of cases no longer changes. Version V1
uses the m0 cases with the smallest classical Mahalanobis distances while
version V2 uses the m0 cases closest to the coordinatewise median.

Croux, Dehon and Yadine (2010) claim that the practical Sign Covariance
Matrix is high breakdown and that their practical k-step Spatial Sign Covari-
ance Matrix is high breakdown and consistently estimates the orientation of

the scatter matrix. The Sign Covariance Matix Σ̂S =
1

n

n∑

i=1

(xi − µ̂n)(xi − µ̂n)T

‖xi − µ̂n‖2

which is similar to the classical covariance estimator computed from zi =
xi − µ̂n

‖xi − µ̂n‖
. Here µ̂n is the L1-median or spatial median, defined as

µ̂n = argminµ
1

n

n∑

i=1

‖xi − µ‖,

is a fairly practical high breakdown estimator of multivariate location.
There certainly exist types of outlier configurations where the FMCD

estimator outperforms the robust FCH estimator. The FCH estimators is
vulnerable to outliers that lie inside the hypersphere based on the median
Euclidean distance from the coordinatewise median. Although the FCH es-
timator should not be viewed as a replacement for the FMCD estimator, the
FMCD estimator should be modified so that it is backed by theory. Until this
modification appears in the software, both estimators can be used for outlier
detection by making a scatterplot matrix of the Mahalanobis distances from
the FMCD, FCH and classical estimators.

The simplest version of the MBA estimator only has two starts. A simple
modification would be to add additional starts as in Problem 4.7. The Det-
MCD estimator of Hubert, Rousseeuw, and Verdonck (2012) is very similar,
uses 6 starts, but is not yet backed by theory.

Rousseeuw (1984) introduced the MCD and the minimum volume ellip-
soid MVE(cn) estimator. For the MVE estimator, T (W ) is the center of
the minimum volume ellipsoid covering cn of the observations and C(W )
is determined from the same ellipsoid. TMV E has a cube root rate and the
limiting distribution is not Gaussian. See Davies (1992). Bernholdt and
Fisher (2004) show that the MCD estimator can be computed with O(nv)
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complexity where v = 1 + p(p + 3)/2 if x is a p× 1 vector.
Rocke and Woodruff (1996, p. 1050) claim that any affine equivariant lo-

cation and shape estimation method gives an unbiased location estimator and
a shape estimator that has an expectation that is a multiple of the true shape
for elliptically contoured distributions. Hence there are many candidate ro-
bust estimators of multivariate location and dispersion. See Cook, Hawkins
and Weisberg (1993) for an exact algorithm for the MVE. Other papers on ro-
bust algorithms include Hawkins (1993, 1994), Hawkins and Olive (1999a),
Hawkins and Simonoff (1993), He and Wang (1996), Olive (2004a), Olive
and Hawkins (2007, 2008), Rousseeuw and Van Driessen (1999), Rousseeuw
and van Zomeren (1990), Ruppert (1992), and Woodruff and Rocke (1993).
Rousseeuw and Leroy (1987,

∮
7.1) also describes many methods.

The discussion by Rocke and Woodruff (2001) and by Hubert (2001) of
Peña and Prieto (2001) stresses the fact that no one estimator can domi-
nate all others for every outlier configuration. These papers and Wisnowski,
Simpson, and Montgomery (2002) give outlier configurations that can cause
problems for the FMCD estimator.

Papers on robust distances include Olive (2002) and Garćıa-Escudero and
Gordaliza (2005).

Huber and Ronchetti (2009, p. 214, 233) note that theory forM-estimators
of multivariate location and dispersion is “not entirely satisfactory with re-
gard to joint estimation of” (µ, aΣ) and that “so far we have neither a really
fast, nor a demonstrably convergent, procedure for calculating simultaneous
M-estimates of location and scatter.”

If an exact algorithm exists but an approximate algorithm is also used,
the two estimators should be distinguished in some manner. For example
(TMCD,CMCD) could denote the estimator from the exact algorithm while
(TAMCD,CAMCD) could denote the estimator from the approximate algo-
rithm. In the literature this distinction is too seldomly made, but there are
a few outliers. Cook and Hawkins (1990, p. 640) point out that the AMVE
is not the minimum volume ellipsoid (MVE) estimator.

Where the Rousseeuw-Yohai Paradigm Goes Wrong
i) Estimators from this paradigm that have been shown to be both high

breakdown and consistent take too long to compute.
Let the ith case xi be a p×1 random vector, and suppose the n cases are

collected in an n× p matrix W with rows xT
1 , ...,x

T
n . The fastest estimators

of multivariate location and dispersion that have been shown to be both con-
sistent and high breakdown are the minimum covariance determinant (MCD)
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estimator with O(nv) complexity where v = 1+p(p+3)/2 and possibly an all
elemental subset estimator of He and Wang (1997). See Bernholt and Fischer
(2004). The minimum volume ellipsoid complexity is far higher, and for p > 2
there may be no known method for computing S, τ , projection based, con-
strained M, MM, and Stahel-Donoho estimators. These estimators have
computational complexity is higher than O(np). See Maronna, Martin
and Yohai (2006, ch. 6) for descriptions and references.

Estimators with complexity higher than O[(n3 + n2p + np2 + p3) log(n)]
take too long to compute and will rarely be used. Reyen, Miller, and Weg-
man (2009) simulate the OGK and the Olive (2004a) median ball algorithm
(MBA) estimators for p = 100 and n up to 50000, and note that the OGK
complexity is O[p3 +np2 log(n)] while that of MBA is O[p3 +np2 +np log(n)].
FCH, RMBA, RMVN, CMVE and RCMVE have the same complexity as
MBA. FMCD has the same complexity as FCH, but FCH roughly 100 to 200
times faster.

ii) No practical useful “high breakdown” estimator of multivariate loca-
tion and dispersion from this paradigm has been shown to be consistent or
high breakdown: to my knowledge, if the complexity of the estimator is
less than O(n4) for general p, and if the estimator has been claimed
in the published literature to be both high breakdown and con-
sistent, then the estimator has not been shown to be either high
breakdown or consistent. Also Hawkins and Olive (2002) showed that
elemental concentration estimators using K starts are zero breakdown esti-
mators. They are inconsistent if they use k concentration steps where k is
fixed.

Papers with titles like Rousseeuw and Van Driessen (1999) “A Fast Al-
gorithm for the Minimum Covariance Determinant Estimator” and Hubert,
Rousseeuw and Van Aelst (2008) “High Breakdown Multivariate Methods”
where the zero breakdown estimators have not been shown to be consistent
are common, and very misleading to researchers who are not experts in robust
statistics. Also see Olive (2012a).

iii) Many papers give theory for an impractical estimator such as MCD,
then replace the estimator by a zero breakdown practical estimator such as
FAST-MCD.

If an estimator can not be computed in a reasonable amount of time, then
most of its theoretical properties are only of academic interest (consistency
of MCD is needed for the practical FCH estimator). What is of interest are
the theoretical properties of the estimator actually used.
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The central thesis of Hawkins and Olive (2002) was that, given the dis-
connect between the theoretically defined estimator and what can actually
be computed, the theoretical properties of the former do not necessarily give
useful guidance on the properties of the latter. Nearly all of the literature
appears to overlook this disconnect, including Hubert, Rousseeuw and Van
Aelst (2008) and Maronna, Martin and Yohai (2006).

iv) Papers on breakdown and maximal bias are not useful.
Both these properties are weaker than asymptotic unbiasedness. Also the

properties are derived for estimators that take far too long to compute.
Breakdown is a very weak property: having ‖T‖ bounded and eigenvalues

of C bounded away from 0 and ∞ does not mean that the estimator is good.
All too often claims are made that “high breakdown estimators make outliers
have large distances.”

Sometimes the literature gives a claim similar to “the fact that FMCD
is not the MCD estimator is unimportant since the algorithm that uses all
elemental sets has the same high breakdown value as MCD.” FMCD is not
the MCD estimator and FMCD is not the estimator that uses all elemental
sets. FMCD only uses a fixed number of elemental sets, hence FMCD is zero
breakdown.

v) Too much emphasis is given on the property of affine equivariance since
typically this is the only property that can be shown for a practical estimator
of MLD.

Huber and Ronchetti (2009, p. 200, 283) note that “one ought to be
aware that affine equivariance is a requirement deriving from mathematical
aesthetics; it is hardly ever dictated by the scientific content of the underly-
ing problem,” and the lack of affine equivariance “may be less of a disadvan-
tage than it first seems, since in statistics problems possessing genuine affine
equivariance are quite rare.” Also see the end of Section 4.1.

Being a
√
n consistent estimator of (µ, cΣ) is an important property, and

the FCH estimator is asymptotically equivalent to the scaled DGK estimator,
which is affine equivariant.

vi) The literature implies that the breakdown value is a measure of the
global reliability of the estimator and is a lower bound on the amount of
contamination needed to destroy an estimator.

These interpretations are not correct since the complement of complete
and total failure is not global reliability. The breakdown value dn/n is ac-
tually an upper bound on the amount of contamination that the estimator
can tolerate since the estimator can be made arbitrarily bad with dn mali-
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ciously placed cases. In particular, the breakdown value of an estimator tells
nothing about more important properties such as consistency or asymptotic
normality.

4.8 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

R/Splus Problems
Use the command source(“G:/mpack.txt”) to download the functions
and the command source(“G:/mrobdata.txt”) to download the data. See
Preface or Section 15.2. Typing the name of the mpack function, eg
covmba, will display the code for the function. Use the args command, eg
args(covmba), to display the needed arguments for the function.

4.1. a) Download the maha function that creates the classical Maha-
lanobis distances.

b) Enter the following commands and check whether observations 1–40
look like outliers.

> simx2 <- matrix(rnorm(200),nrow=100,ncol=2)

> outx2 <- matrix(10 + rnorm(80),nrow=40,ncol=2)

> outx2 <- rbind(outx2,simx2)

> maha(outx2)

4.2. Download the rmaha function that creates the robust Mahalanobis
distances. Obtain outx2 as in Problem 4.1 b). R users need to enter the com-
mand library(MASS). Enter the command rmaha(outx2) and check whether
observations 1–40 look like outliers.

4.3. a) Download the covmba function.

b) Download the program rcovsim.

c) Enter the command rcovsim(100) three times and include the output
in Word.

d) Explain what the output is showing.

4.4∗. a) Assuming that you have done the two source commands above
Problem 4.1 (and in R the library(MASS) command), type the command
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ddcomp(buxx). This will make 4 DD plots based on the DGK, FCH, FMCD
and median ball estimators. The DGK and median ball estimators are the
two attractors used by the FCH estimator. With the leftmost mouse button,
move the cursor to an outlier and click. This data is the Buxton (1920) data
and cases with numbers 61, 62, 63, 64, and 65 were the outliers with head
lengths near 5 feet. After identifying at least three outliers in each plot, hold
the rightmost mouse button down (and in R click on Stop) to advance to the
next plot. When done, hold down the Ctrl and c keys to make a copy of the
plot. Then paste the plot in Word.

b) Repeat a) but use the command ddcomp(cbrainx). This data is the
Gladstone (1905-6) data and some infants are multivariate outliers.

c) Repeat a) but use the command ddcomp(museum[,-1]). This data
is the Schaaffhausen (1878) skull measurements and cases 48–60 were apes
while the first 47 cases were humans.

4.5∗. (Perform the source(“G:/mpack.txt”) command if you have not
already done so.) The concmv function illustrates concentration with p = 2
and a scatterplot of X1 versus X2. The outliers are such that the MBA and
FCH estimators can not always detect them. Type the command concmv().
Hold the rightmost mouse button down (and in R click on Stop) to see the DD
plot after one concentration step. The start uses the coordinatewise median
and diag([MAD(Xi)]

2). Repeat 4 more times to see the DD plot based on
the attractor. The outliers have large values of X2 and the highlighted cases
have the smallest distances. Repeat the command concmv() several times.
Sometimes the start will contain outliers but the attractor will be clean (none
of the highlighted cases will be outliers), but sometimes concentration causes
more and more of the highlighted cases to be outliers, so that the attractor
is worse than the start. Copy one of the DD plots where none of the outliers
are highlighted into Word.

4.6∗. (Perform the source(“G:/mpack.txt”) command if you have not
already done so.) The ddmv function illustrates concentration with the DD
plot. The outliers are highlighted. The first graph is the DD plot after one
concentration step. Hold the rightmost mouse button down (and in R click
on Stop) to see the DD plot after two concentration steps. Repeat 4 more
times to see the DD plot based on the attractor. In this problem, try to
determine the proportion of outliers gam that the DGK estimator can detect
for p = 2, 4, 10 and 20. Make a table of p and gam. For example the command
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ddmv(p=2,gam=.4) suggests that the DGK estimator can tolerate nearly 40%
outliers with p = 2, but the command ddmv(p=4,gam=.4) suggest that gam
needs to be lowered (perhaps by 0.1 or 0.05). Try to make 0 < gam < 0.5 as
large as possible.

4.7. (Perform the source(“G:/mpack.txt”) command if you have not al-
ready done so.) A simple modification of the MBA estimator adds starts
trimming M% of cases furthest from the coordinatewise median MED(x).
For example use M ∈ {98, 95, 90, 80, 70, 60, 50}. Obtain the program cmba2
from mpack.txt and try the MBA estimator on the data sets in Problem 4.4.

4.8. The mpack function covesim compares various ways to robustly
estimate the covariance matrix. The estimators used are ccov: the classical
estimator applied to the clean cases, RFCH and RMVN. The average dis-
persion matrix is reported over nruns = 20. Let diag(A) be the diagonal of
the average dispersion matrix. Then diagdiff = diag(ccov) - diag(rmvne) and
abssumd = sum(abs(diagdiff)). The clean data Np(0, diag(1, ..., p)).

a) The R command covesim(n=100,p=4) gives output when there are no
outliers. Copy and paste the output into Word.

b) The command covesim(n=100,p=4,outliers=1,pm=15) uses 40% out-
liers that are a tight cluster at major axis with mean (0, ..., 0, pm)T . Hence
pm determines how far the outliers are from the bulk of the data. Copy and
paste the output into Word. The average dispersion matrices should be ≈ c
diag(1, 2, 3, 4) for this type of outlier configuration. What is c for RFCH and
RMVN?

4.9. The R function cov.mcd is a FMCD estimator. If cov.mcd computed
the minimum covariance determinant estimator, then the log determinant of
the dispersion matrix would be a minimum and would not change when the
rows of the data matrix are permuted. The R commands for this problem
permute the rows of the Gladstone (1905-6) data matrix seven times. The
log determinant is given for each of the resulting cov.mcd estimators.

a) Paste the output into Word.
b) How many distinct values of the log determinant were produced? (Only

one if the MCD estimator is being computed.)
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DD Plots and Prediction
Regions

5.1 DD Plots

A basic way of designing a graphical display is to arrange for reference
situations to correspond to straight lines in the plot.

Chambers, Cleveland, Kleiner, and Tukey (1983, p. 322)

Definition 5.1: Rousseeuw and Van Driessen (1999). The DD
plot is a plot of the classical Mahalanobis distances MDi versus robust Ma-
halanobis distances RDi.

The DD plot is used as a diagnostic for multivariate normality, elliptical
symmetry and for outliers. Assume that the data set consists of iid vectors
from an ECp(µ,Σ, g) distribution with second moments. Then the classi-
cal sample mean and covariance matrix (TM ,CM ) = (x,S) is a consistent
estimator for (µ, cxΣ) = (E(X),Cov(X)). Assume that an alternative al-
gorithm estimator (TA,CA) is a consistent estimator for (µ, aAΣ) for some
constant aA > 0. By scaling the algorithm estimator, the DD plot can be con-
structed to follow the identity line with unit slope and zero intercept. Let
(TR,CR) = (TA,CA/τ

2) denote the scaled algorithm estimator where τ > 0
is a constant to be determined. Notice that (TR,CR) is a valid estimator of
location and dispersion. Hence the robust distances used in the DD plot are
given by

RDi = RDi(TR,CR) =
√

(xi − TR(W ))T [CR(W )]−1(xi − TR(W ))

117
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= τ Di(TA,CA) for i = 1, ..., n.
The following proposition shows that if consistent estimators are used to

construct the distances, then the DD plot will tend to cluster tightly about
the line segment through (0, 0) and (MDn,α,RDn,α) where 0 < α < 1 and
MDn,α is the α sample percentile of the MDi. Nevertheless, the variability in
the DD plot may increase with the distances. Let K > 0 be a constant, eg
the 99th percentile of the χ2

p distribution.

Proposition 5.1. Assume that x1, ...,xn are iid observations from a
distribution with parameters (µ,Σ) where Σ is a symmetric positive definite
matrix. Let aj > 0 and assume that (µ̂j,n, Σ̂j,n) are consistent estimators of
(µ, ajΣ) for j = 1, 2.

a) D2
x(µ̂j , Σ̂j) − 1

aj
D2

x(µ,Σ) = oP (1).

b) Let 0 < δ ≤ 0.5. If (µ̂j, Σ̂j)− (µ, ajΣ) = Op(n
−δ) and ajΣ̂

−1

j −Σ−1 =
OP (n−δ), then

D2
x(µ̂j, Σ̂j) −

1

aj
D2

x(µ,Σ) = OP (n−δ).

c) Let Di,j ≡ Di(µ̂j,n, Σ̂j,n) be the ith Mahalanobis distance computed

from (µ̂j,n, Σ̂j,n). Consider the cases in the region R = {i|0 ≤ Di,j ≤ K, j =
1, 2}. Let rn denote the correlation between Di,1 and Di,2 for the cases in R
(thus rn is the correlation of the distances in the “lower left corner” of the
DD plot). Then rn → 1 in probability as n→ ∞.

Proof. Let Bn denote the subset of the sample space on which both Σ̂1,n

and Σ̂2,n have inverses. Then P (Bn) → 1 as n→ ∞.

a) and b): D2
x(µ̂j , Σ̂j) = (x − µ̂j)

T Σ̂
−1

j (x − µ̂j) =

(x − µ̂j)
T

(
Σ−1

aj
− Σ−1

aj
+ Σ̂

−1

j

)
(x − µ̂j)

= (x− µ̂j)
T

(−Σ−1

aj

+ Σ̂
−1

j

)
(x − µ̂j) + (x− µ̂j)

T

(
Σ−1

aj

)
(x − µ̂j)

=
1

aj
(x − µ̂j)

T (−Σ−1 + aj Σ̂
−1

j )(x − µ̂j) +

(x − µ + µ − µ̂j)
T

(
Σ−1

aj

)
(x − µ + µ − µ̂j)
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=
1

aj
(x −µ)TΣ−1(x −µ)

+
2

aj
(x − µ)T Σ−1(µ − µ̂j) +

1

aj
(µ − µ̂j)

T Σ−1(µ − µ̂j)

+
1

aj
(x − µ̂j)

T [ajΣ̂
−1

j −Σ−1](x− µ̂j) (5.1)

on Bn, and the last three terms are oP (1) under a) and OP (n−δ) under b).

c) Following the proof of a), D2
j ≡ D2

x(µ̂j, Σ̂j)
P→ (x−µ)T Σ−1(x−µ)/aj

for fixed x, and the result follows.
QED

The above result implies that a plot of the MDi versus the Di(TA,CA) ≡
Di(A) will follow a line through the origin with some positive slope since if
x = µ, then both the classical and the algorithm distances should be close to
zero. We want to find τ such that RDi = τ Di(TA,CA) and the DD plot of
MDi versus RDi follows the identity line. By Proposition 5.1, the plot of MDi

versus Di(A) will follow the line segment defined by the origin (0, 0) and the
point of observed median Mahalanobis distances, (med(MDi),med(Di(A))).
This line segment has slope

med(Di(A))/med(MDi)

which is generally not one. By taking τ = med(MDi)/med(Di(A)), the plot
will follow the identity line if (x,S) is a consistent estimator of (µ, cxΣ) and
if (TA,CA) is a consistent estimator of (µ, aAΣ). (Using the notation from
Proposition 5.1, let (a1, a2) = (cx, aA).) The classical estimator is consis-
tent if the population has a nonsingular covariance matrix. The algorithm
estimators (TA,CA) from Theorem 4.10 are consistent on a large class of
EC distributions that have a nonsingular covariance matrix, but tend to be
biased for non–EC distributions.

By replacing the observed median med(MDi) of the classical Mahalanobis
distances with the target population analog, say MED, τ can be chosen so
that the DD plot is simultaneously a diagnostic for elliptical symmetry and a
diagnostic for the target EC distribution. That is, the plotted points follow
the identity line if the data arise from a target EC distribution such as the
multivariate normal distribution, but the points follow a line with non-unit
slope if the data arise from an alternative EC distribution. In addition the
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DD plot can often detect departures from elliptical symmetry such as outliers,
the presence of two groups, or the presence of a mixture distribution. These
facts make the DD plot a useful alternative to other graphical diagnostics for
target distributions. See Easton and McCulloch (1990), Li, Fang, and Zhu
(1997), and Liu, Parelius, and Singh (1999) for references.

Example 5.1. Rousseeuw and Van Driessen (1999) choose the multi-
variate normal Np(µ,Σ) distribution as the target. If the data are indeed iid
MVN vectors, then the (MDi)

2 are asymptotically χ2
p random variables, and

MED =
√
χ2

p,0.5 where χ2
p,0.5 is the median of the χ2

p distribution. Since the

target distribution is Gaussian, let

RDi =

√
χ2

p,0.5

med(Di(A))
Di(A) so that τ =

√
χ2

p,0.5

med(Di(A))
. (5.2)

Note that the DD plot can be tailored to follow the identity line if the
data are iid observations from any target elliptically contoured distribution
that has nonsingular covariance matrix. If it is known that med(MDi) ≈
MED where MED is the target population analog (obtained, for example,
via simulation, or from the actual target distribution as in Equations (3.8),
(3.9) and (3.10)), then use

RDi = τ Di(A) =
MED

med(Di(A))
Di(A). (5.3)

The choice of the algorithm estimator (TA,CA) is important, and the√
n consistent RFCH estimator is a good choice. In this chapter we used

the R/Splus function cov.mcd which is basically an implementation of the
elemental FMCD concentration algorithm described in the previous chapter.
The number of starts used was K = max(500, n/10) (the default is K = 500,
so the default can be used if n ≤ 5000).

Conjecture 5.1. If x1, ...,xn are iid ECp(µ,Σ, g) and an elemental
FMCD concentration algorithm is used to produce the estimator (TA,n,CA,n),
then this algorithm estimator is consistent for (µ, aΣ) for some constant
a > 0 (that depends on g) if the number of starts K = K(n) → ∞ as the
sample size n→ ∞.
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Table 5.1: Corr(RDi,MDi) for Np(0, Ip) Data, 100 Runs.

p n mean min % < 0.95 % < 0.8
3 44 0.866 0.541 81 20
3 100 0.967 0.908 24 0
7 76 0.843 0.622 97 26
10 100 0.866 0.481 98 12
15 140 0.874 0.675 100 6
15 200 0.945 0.870 41 0
20 180 0.889 0.777 100 2
20 1000 0.998 0.996 0 0
50 420 0.894 0.846 100 0

Notice that if this conjecture is true, and if the data is EC with 2nd
moments, then [

med(Di(A))

med(MDi)

]2

CA (5.4)

estimates Cov(x). For the DD plot, consistency is desirable but not necessary.
It is necessary that the correlation of the smallest 99% of the MDi and RDi

be very high. This correlation goes to 1 by Proposition 5.1 if consistent
estimators are used.

The choice of using a concentration algorithm to produce (TA,CA) is cer-
tainly not perfect, and the cov.mcd estimator should be modified by adding
the FCH starts to the 500 elemental starts. There exist data sets with out-
liers or two groups such that both the classical and robust estimators produce
ellipsoids that are nearly concentric. We suspect that the situation worsens
as p increases.

In a simulation study, Np(0, Ip) data were generated and cov.mcd was
used to compute first the Di(A), and then the RDi using Equation (5.2). The
results are shown in Table 5.1. Each choice of n and p used 100 runs, and the
100 correlations between the RDi and the MDi were computed. The mean
and minimum of these correlations are reported along with the percentage
of correlations that were less than 0.95 and 0.80. The simulation shows that
small data sets (of roughly size n < 8p + 20) yield plotted points that may
not cluster tightly about the identity line even if the data distribution is
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Gaussian.

Since every estimator of location and dispersion defines a hyperellipsoid,
the DD plot can be used to examine which points are in the robust hyperel-
lipsoid

{x : (x − TR)TC−1
R (x − TR) ≤ RD2

(h)} (5.5)

where RD2
(h) is the hth smallest squared robust Mahalanobis distance, and

which points are in a classical hyperellipsoid

{x : (x− x)T S−1(x − x) ≤ MD2
(h)}. (5.6)

In the DD plot, points below RD(h) correspond to cases that are in the
hyperellipsoid given by Equation (5.5) while points to the left of MD(h) are
in a hyperellipsoid determined by Equation (5.6).

The DD plot will follow a line through the origin closely if the two hyper-
ellipsoids are nearly concentric, eg if the data is EC. The DD plot will follow
the identity line closely if med(MDi) ≈ MED, and RD2

i =

(xi − TA)T [(
MED

med(Di(A))
)2C−1

A ](xi − TA) ≈ (xi − x)TS−1(xi − x) = MD2
i

for i = 1, ..., n. When the distribution is not EC,

(TA,CA) = (TRFCH ,CRFCH) or (TA,CA) = (TFMCD,CFMCD)

and (x,S) will often produce hyperellipsoids that are far from concentric.

Application 5.1. The DD plot can be used simultaneously as a diagnos-
tic for whether the data arise from a multivariate normal (MVN or Gaussian)
distribution or from another EC distribution with nonsingular covariance
matrix. EC data will cluster about a straight line through the origin; MVN
data in particular will cluster about the identity line. Thus the DD plot can
be used to assess the success of numerical transformations towards ellipti-
cal symmetry. This application is important since many statistical methods
assume that the underlying data distribution is MVN or EC.

For this application, the RFCH estimator may be best. For MVN data,
the RDi from the RFCH estimator tend to have a higher correlation with
the MDi from the classical estimator than the RDi from the FCH estimator,
and the cov.mcd estimator may be inconsistent.
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Figure 5.1: 4 DD Plots

Figure 5.1 shows the DD plots for 3 artificial data sets using cov.mcd.
The DD plot for 200 N3(0, I3) points shown in Figure 5.1a resembles the
identity line. The DD plot for 200 points from the elliptically contoured
distribution 0.6N3(0, I3) + 0.4N3(0, 25 I3) in Figure 5.1b clusters about a
line through the origin with a slope close to 2.0.

A weighted DD plot magnifies the lower left corner of the DD plot by

omitting the cases with RDi ≥
√
χ2

p,.975. This technique can magnify features

that are obscured when large RDi’s are present. If the distribution of x is
EC with nonsingular Σ, Proposition 5.1 implies that the correlation of the
points in the weighted DD plot will tend to one and that the points will
cluster about a line passing through the origin. For example, the plotted
points in the weighted DD plot (not shown) for the non-MVN EC data of
Figure 5.1b are highly correlated and still follow a line through the origin
with a slope close to 2.0.
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Figure 5.2: DD Plots for the Buxton Data

Figures 5.1c and 5.1d illustrate how to use the weighted DD plot. The ith
case in Figure 5.1c is (exp(xi,1), exp(xi,2), exp(xi,3))

T where xi is the ith case
in Figure 5.1a; ie, the marginals follow a lognormal distribution. The plot
does not resemble the identity line, correctly suggesting that the distribution
of the data is not MVN; however, the correlation of the plotted points is
rather high. Figure 5.1d is the weighted DD plot where cases with RDi ≥√
χ2

3,.975 ≈ 3.06 have been removed. Notice that the correlation of the plotted

points is not close to one and that the best fitting line in Figure 5.1d may
not pass through the origin. These results suggest that the distribution of x

is not EC.

It is easier to use the DD plot as a diagnostic for a target distribution
such as the MVN distribution than as a diagnostic for elliptical symmetry.
If the data arise from the target distribution, then the DD plot will tend
to be a useful diagnostic when the sample size n is such that the sample
correlation coefficient in the DD plot is at least 0.80 with high probability.
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As a diagnostic for elliptical symmetry, it may be useful to add the OLS line
to the DD plot and weighted DD plot as a visual aid, along with numerical
quantities such as the OLS slope and the correlation of the plotted points.

Numerical methods for transforming data towards a target EC distribu-
tion have been developed. Generalizations of the Box–Cox transformation
towards a multivariate normal distribution are described in Velilla (1993).
Alternatively, Cook and Nachtsheim (1994) offer a two-step numerical pro-
cedure for transforming data towards a target EC distribution. The first step
simply gives zero weight to a fixed percentage of cases that have the largest
robust Mahalanobis distances, and the second step uses Monte Carlo case
reweighting with Voronoi weights.

Example 5.2. Buxton (1920, p. 232-5) gives 20 measurements of 88 men.
We will examine whether the multivariate normal distribution is a plausible
model for the measurements head length, nasal height, bigonal breadth, and
cephalic index where one case has been deleted due to missing values. Figure
5.2a shows the DD plot. Five head lengths were recorded to be around 5
feet and are massive outliers. Figure 5.2b is the DD plot computed after
deleting these points and suggests that the normal distribution is plausible.
(The recomputation of the DD plot means that the plot is not a weighted
DD plot which would simply omit the outliers and then rescale the vertical
axis.)

The DD plot complements rather than replaces the numerical procedures.
For example, if the goal of the transformation is to achieve a multivariate
normal distribution and if the data points cluster tightly about the identity
line, as in Figure 5.1a, then perhaps no transformation is needed. For the
data in Figure 5.1c, a good numerical procedure should suggest coordinate-
wise log transforms. Following this transformation, the resulting plot shown
in Figure 5.1a indicates that the transformation to normality was successful.

Application 5.2. The DD plot can be used to detect multivariate out-
liers. See Figures 4.2, 4.4, 5.2a and 5.7.
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5.2 Robust Prediction Regions

Suppose that (TA,CA) is a good estimator of (µ, aΣ). Section 5.1 showed
that if x is multivariate normal Np(µ,Σ), TA estimates µ and CA/τ

2 esti-
mates Σ where τ is given in Equation (5.2). Then (TR,CR) ≡ (TA,CA/τ

2)
is an estimator of multivariate location and dispersion.

Suppose (T,C) = (xM , b SM ) is the sample mean and scaled sample
covariance matrix applied to some subset of the data. The classical and
RMVN estimators satisfy this assumption. For h > 0, the hyperellipsoid

{z : (z − T )TC−1(z − T ) ≤ h2} = {z : D2
z ≤ h2} = {z : Dz ≤ h} (5.7)

has volume equal to

2πp/2

pΓ(p/2)
hp
√
det(C) =

2πp/2

pΓ(p/2)
hpbp/2

√
det(SM). (5.8)

A future observation (random vector) xf is in the region (5.7) if Dxf
≤ h.

A large sample (1−α)100% prediction region is a set An such that P (xf ∈
An)

P→ 1 − α. Let qn = min(1 − α+ 0.05, 1 − α + p/n) for α > 0.1 and

qn = min(1 − α/2, 1 − α+ 10αp/n), otherwise.

If qn < 1 − α + 0.001, use qn = 1 − α. (5.9)

If (T,C) is a consistent estimator of (µ, dΣ), then (5.7) is a large sample
(1 − α)100% prediction regions if h = D(up) where D(up) is the qnth sample
quantile of the Di where the D2

i are given by (3.12). If x1, ...,xn and xf are
iid from an EC distribution (with continuous decreasing g), then region (5.7)
is asymptotically optimal in that its volume converges in probability to the
volume of the minimum volume covering region {z : (z −µ)T Σ−1(z −µ) ≤
u1−α} where P (U ≤ u1−α) = 1 − α and U has pdf given by (3.10). The

classical parametric MVN prediction region uses MDxf
≤
√
χ2

p,1−α.

Notice that for the data x1, ...,xn, if C−1 exists, then 100qn% of the n
cases are in the prediction region, and qn → 1 − α even if (T,C) is not
a good estimator. Hence the coverage qn of the data is robust to model
assumptions. Of course the volume of the prediction region could be large if
a poor estimator (T,C) is used or if the xi do not come from an elliptically
contoured distribution. Also notice that qn = 1 − α/2 or qn = 1 − α + 0.05
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for n ≤ 20p and qn → 1 − α as n → ∞. If qn ≡ 1 − α, then (5.7) is a large
sample prediction region, but taking qn given by (5.9) improves the finite
sample performance of the region. Taking qn ≡ 1 − α does not take into
account variability of (T,C), and for small n the resulting prediction region
tended to have undercoverage as high as min(0.05, α/2). Using (5.9) helped
reduce undercoverage for small n due to the unknown variability of (T,C).

Three new prediction regions will be considered. The nonparametric re-
gion uses the classical estimator (T,C) = (x,S) and h = D(up). The semi-
parametric region uses (T,C) = (TRMV N ,CRMV N) and h = D(up). The
parametric MVN region uses (T,C) = (TRMV N ,CRMV N ) and h2 = χ2

p,qn

where P (W ≤ χ2
p,α) = α if W ∼ χ2

p. All three regions are asymptotically
optimal for MVN distributions with nonsingular Σ. The first two regions
are asymptotically optimal under the large class of EC distribution given
by Assumption (E1) used in Theorem 4.8. For distributions with nonsin-
gular covariance matrix cXΣ, the nonparametric region is a large sample
(1 − α)100% prediction region, but regions with smaller volume may exist.
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Figure 5.3: Artificial Bivariate Data
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Figure 5.4: Artificial Data

Example 5.3. An artificial data set consisting of 100 iid cases from a

N2

( (
0
0

)
,

(
1.49 1.4
1.4 1.49

) )

distribution and 40 iid cases from a bivariate normal distribution with mean
(0,−3)T and covariance I2. Figure 5.3 shows the classical ellipsoid (with

MD ≤
√
χ2

2,0.95) that uses (T,C) = (x,S). The symbol “1” denotes the

data while the symbol “2” is on the border of the covering ellipse. Notice
that the classical parametric ellipsoid covers almost all of the data. Figure

5.4 displays the robust ellipsoid (using RD ≤
√
χ2

2,0.95) which contains most

of the 100 “clean” cases and excludes the 40 outliers. Problem 5.5 recreates
similar figures with the classical and RMVN estimators using qn = 0.95.

Example 5.4. Buxton (1920) gives various measurements on 87 men
including height, head length, nasal height, bigonal breadth and cephalic index.
Five heights were recorded to be about 19mm and are massive outliers. First
height and nasal height were used with qn = 0.95. Figure 5.5 shows that the
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Figure 5.5: Ellipsoid is Inflated by Outliers

classical parametric prediction region (using MD ≤
√
χ2

2,.95) is quite large

but does not include any of the outliers. Figure 5.6 shows that the parametric

MVN prediction region (using RD ≤
√
χ2

2,.95) is not inflated by the outliers.

Next all 87 cases and 5 predictors were used. Figure 5.7 shows the RMVN
DD plot with the identity line added as a visual aid. Points to the left
of the vertical line are in the nonparametric large sample 90% prediction
region. Points below the horizontal line are in the semiparametric region.
The horizontal line at RD = 3.33 corresponding to the parametric MVN
90% region is obscured by the identity line. This region contains 78 of the
cases. Since n = 87, the nonparametric and semiparametric regions used
the 95th quantile. Since there were 5 outliers, this quantile was a linear
combination of the largest clean distance and the smallest outlier distance.
The semiparametric 90% region blows up unless the outlier proportion is
small.

Figure 5.8 shows the DD plot and 3 prediction regions after the 5 outliers
were removed. The classical and robust distances cluster about the identity
line and the three regions are similar, with the parametric MVN region cutoff
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Figure 5.6: Ellipsoid Ignores Outliers

again at 3.33, slightly below the semiparametric region cutoff of 3.44.
Simulations for the prediction regions used x = Aw where A =

diag(
√

1, ...,
√
p), w ∼ Np(0, Ip) (MVN), w ∼ LN(0, Ip) where the marginals

are iid lognormal(0,1), or w ∼ MV Tp(1), a multivariate t distribution with
1 degree of freedom so the marginals are iid Cauchy(0,1). All simulations
used 5000 runs and α = 0.1.

For large n, the semiparametric and nonparametric regions are likely to
have coverage near 0.90 because the coverage on the training sample is slightly
larger than 0.9 and xf comes from the same distribution as the xi. For
n = 10p and 2 ≤ p ≤ 40, the semiparametric region had coverage near 0.9.
The ratio of the volumes

hp
i

√
det(Ci)

hp
2

√
det(C2)

was recorded where i = 1 was the nonparametric region, i = 2 was the
semiparametric region, and i = 3 was the parametric MVN region. The
volume ratio converges in probability to 1 for Np(µ,Σ) data, and the ratio
converges to 1 for i = 1 if Assumption (E1) holds. The parametric MVN
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region often had coverage much lower than 0.9 with a volume ratio near
0, recorded as 0+. The volume ratio tends to be tiny when the coverage is
much less than the nominal value 0.9. For 10p ≤ n ≤ 20p, the nonparametric
region often had good coverage and volume ratio near 0.5.

Table 5.2: Coverages for 90% Prediction Regions

w dist n p ncov scov mcov voln volm
MVN 600 30 0.906 0.919 0.902 0.503 0.512
MVN 1500 30 0.899 0.899 0.900 1.014 1.027
LN 1000 10 0.903 0.906 0.567 0.659 0+

MVT(1) 1000 10 0.914 0.914 0.541 22634.3 0+

Simulations and Table 5.2 suggest that for MVN data, the coverages
(ncov, scov and mcov) for the 3 regions are near 90% for n = 20p and that
the volume ratios voln and volm are near 1 for n = 50p. With fewer than
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Figure 5.8: Prediction Regions for Buxton Data without Outliers

5000 runs, this result held for 2 ≤ p ≤ 80. For the non–elliptically contoured
LN data, the nonparametric region had voln well under 1, but the volume
ratio blew up for w ∼MV Tp(1).

5.3 Summary

1) For h > 0, the hyperellipsoid {z : (z − T )TC−1(z − T ) ≤ h2} = {z :
D2

z ≤ h2} = {z : Dz ≤ h}. A future observation (random vector) xf is in
this region if Dxf

≤ h. A large sample (1 − α)100% prediction region is a

set An such that P (xf ∈ An)
P→ 1 − α where 0 < α < 1.

2) The classical (1−α)100% large sample prediction region is {z : D2
z(x,S) ≤

χ2
p,1−α} and works well if n is large and the data are iid MVN.

3) Let qn = min(1−α+ 0.05, 1 −α+ p/n) for α > 0.1 and qn = min(1−
α/2, 1−α+10αp/n), otherwise. If qn < 1−α+0.001, set qn = 1−α. If (T,C)
is a consistent estimator of (µ, dΣ), then {z : Dz ≤ h} is a large sample
(1 − α)100% prediction regions if h = D(up) where D(up) is the qnth sample
quantile of the Di. The nonparametric prediction region uses (T,C) = (x,S)
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and the semiparametric prediction region uses (T,C) = (TRMV N ,CRMV N).
The parametric MVN prediction region
{z : D2

z(T,C) ≤ χ2
p,qn

} also uses (T,C) = (TRMV N ,CRMV N ).
4) These 3 regions can be displayed in an RMVN DD plot with cases in the

nonparametric region corresponding to points to the left of the vertical line
corresponding to D(up)(x,S). Cases in the semiparametric region correspond
to points below the horizontal line corresponding to D(up)(TRMV N ,CRMV N )
while cases in the parametric MVN region correspond to points below the
horizontal line corresponding to

√
χ2

p,qn
. Suppose x1, ...,xn,xf are iid with

nonsingular covariance matrix Σx. The three prediction regions are asymp-
totically optimal if the data is MVN. The semiparametric and nonparametric
prediction regions are asymptotically optimal on a large class of EC distribu-
tions and the nonparametric prediction region is a large sample 100(1−α)%
prediction region, although large sample prediction regions with smaller vol-
ume may exist.

5) Suppose m independent large sample 100(1 − α)% prediction regions
are made where x1, ...,xn,xf are iid from the same distribution for each
of the m runs. Let Y count the number of times xf is in the prediction
region. Then Y ∼ binomial (m, 1 − αn) where 1 − αn is the true coverage
and 1 − αn → 1 − α as n→ ∞. Simulation can be used to see if the true or
actual coverage 1 − αn is close to the nominal coverage 1 − α. A prediction
region with 1 − αn < 1 − α is liberal and a region with 1 − αn > 1 − α
is conservative. It is better to be conservative by 5% than liberal by 5%.
Parametric prediction regions tend to have large undercoverage and so are
too liberal.

6) For prediction regions, want n > 10p for the nonparametric prediction
region and n > 20p for the semiparametric prediction region.

5.4 Complements

The first section of this chapter followed Olive (2002) closely. The DD plot
can be used to diagnose elliptical symmetry, to detect outliers, and to assess
the success of numerical methods for transforming data towards an ellipti-
cally contoured distribution. Since many statistical methods assume that
the underlying data distribution is Gaussian or EC, there is an enormous
literature on numerical tests for elliptical symmetry. Bogdan (1999), Czörgö
(1986) and Thode (2002) provide references for tests for multivariate normal-
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ity while Koltchinskii and Li (1998) and Manzotti, Pérez and Quiroz (2002)
have references for tests for elliptically contoured distributions.

There are few practical competitors for the Olive (2013b) prediction re-
gions in Section 5.2. Parametric regions such as the classical region for mul-
tivariate normal data tend to have severe undercoverage because the data
rarely follows the parametric distribution. Procedures that use brand name
high breakdown multivariate location and dispersion estimators take too long
to compute for p > 2.

5.5 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

5.1∗. If X and Y are random variables, show that

Cov(X,Y) = [Var(X + Y) − Var(X − Y)]/4.

R/Splus Problems

Warning: Use the command source(“G:/mpack.txt”) to download
the programs. See Preface or Section 15.2. Typing the name of the
mpack function, eg ddplot, will display the code for the function. Use the
args command, eg args(ddplot), to display the needed arguments for the
function.

5.2. a) Download the program ddsim. (In R, type the command li-
brary(MASS).)

b) Using the function ddsim for p = 2, 3, 4, determine how large the
sample size n should be in order for the RFCH DD plot of n Np(0, Ip) cases
to cluster tightly about the identity line with high probability. Table your
results. (Hint: type the command ddsim(n=20,p=2) and increase n by 10
until most of the 20 plots look linear. Then repeat for p = 3 with the n that
worked for p = 2. Then repeat for p = 4 with the n that worked for p = 3.)

5.3. a) Download the program corrsim. (In R, type the command
library(MASS).)

b) A numerical quantity of interest is the correlation between the MDi

and RDi in a RFCH DD plot that uses n Np(0, Ip) cases. Using the function
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corrsim for p = 2, 3, 4, determine how large the sample size n should be in or-
der for 9 out of 10 correlations to be greater than 0.9. (Try to make n small.)
Table your results. (Hint: type the command corrsim(n=20,p=2,nruns=10)
and increase n by 10 until 9 or 10 of the correlations are greater than 0.9.
Then repeat for p = 3 with the n that worked for p = 2. Then repeat for
p = 4 with the n that worked for p = 3.)

5.4∗. a) Download the ddplot function. (In R, type the command li-
brary(MASS).)

b) Using the following commands to make generate data from the EC
distribution (1 − ε)Np(0, Ip) + εNp(0, 25 Ip) where p = 3 and ε = 0.4.

n <- 400

p <- 3

eps <- 0.4

x <- matrix(rnorm(n * p), ncol = p, nrow = n)

zu <- runif(n)

x[zu < eps,] <- x[zu < eps,]*5

c) Use the command ddplot(x) to make a DD plot and include the plot
in Word. What is the slope of the line followed by the plotted points?

5.5. a) Download the ellipse function.

b) Use the following commands to create a bivariate data set with outliers
and to obtain a classical and robust RMVN covering ellipsoid. Include the
two plots in Word.

> simx2 <- matrix(rnorm(200),nrow=100,ncol=2)

> outx2 <- matrix(10 + rnorm(80),nrow=40,ncol=2)

> outx2 <- rbind(outx2,simx2)

> ellipse(outx2)

> zout <- covrmvn(outx2)

> ellipse(outx2,center=zout$center,cov=zout$cov)

5.6. a) Download the function mplot.

b) Enter the commands in Problem 5.4b to obtain a data set x. The
function mplot makes a plot without the RDi and the slope of the resulting
line is of interest.
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c) Use the command mplot(x) and place the resulting plot in Word.

d) Do you prefer the DD plot or the mplot? Explain.

5.7 a) Download the function wddplot.

b) Enter the commands in Problem 5.4b to obtain a data set x.

c) Use the command wddplot(x) and place the resulting plot in Word.

5.8. Use the R command source(”G:/mrobdata.txt”) then ddplot4(buxx,alpha=0.2)
and put the plot in Word. The Buxton data has 5 outliers, p = 4, and n = 87,
so the 80% prediction regions use 1− α+ p/n = 0.846 percentiles. The out-
put shows that the cutoffs are 2.527, 2.734 and 2.583 for the nonparametric,
semiparametric and robust parametric prediction regions. The two horizon-
tal lines that correspond to the robust distances are obscured by the identity
line.

5.9. a) Type the R command predsim() and paste the output into Word.

This computes xi ∼ N4(0, diag(1, 2, 3, 4)) for i = 1, ..., 100 and xf = x101.
One hundred such data sets are made, and ncvr, scvr, mcvr counts the num-
ber of times xf was in the nonparametric, semiparametric and parametric
MVN 90% prediction regions. The volumes of the prediction regions are
computed and voln, vols and volm are the average ratio of the volume of the
ith prediction region over that of the semiparametric region. Hence vols is
always equal to 1. For multivariate normal data, these ratios should converge
to 1 as n→ ∞. Were the three coverages near 90%?

5.10. Tests for covariance matrices are very nonrobust to nonnormality.
Let a plot of x versus y have x on the horizontal axis and y on the vertical axis.
A good diagnostic is to use the DD plot. So a diagnostic for H0 : Σx = Σ0

is to plot Di(x,S) versus Di(x,Σ0) for i = 1, ..., n. If n > 10p and H0 is
true, then the plotted points in the DD plot should cluster tightly about the
identity line.

a) A test for sphericity is a test of H0 : Σx = dIp for some unknown
constant d > 0. Make a “DD plot” of D2

i (x,S) versus D2
i (x, Ip). If n > 10p

and H0 is true, then the plotted points in the “DD plot” should cluster
tightly about the line through the origin with slope d. Use the R commands
for this part and paste the plot into Word. The simulated data set has
xi ∼ N10(0, 100I10) where n = 100 and p = 10. Do the plotted points follow
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a line through the origin with slope 100?
b) Now suppose there are k samples, and want to test H0 : Σx1 =

· · · = Σxk
, that is, all k populations have the same covariance matrix. As a

diagnostic, make a DD plot of Di(xj,Sj) versus Di(xj,Spool) for j = 1, ..., k
and i = 1, ..., ni. If each ni > 10p and H0 is true, what line will the plotted
points cluster about in each of the k DD plots?



Chapter 6

Principal Component Analysis

6.1 Introduction

Principal component analysis (PCA) is used to explain the dispersion struc-
ture with a few linear combinations of the original variables, called principal
components. These linear combinations are uncorrelated if S or R is used as
the dispersion matrix. The analysis is used for data reduction and interpre-
tation. The notation ej will be used for orthonormal eigenvectors: eT

j ej = 1
and eT

j ek = 0 for j 6= k. The eigenvalue eigenvector pairs of a matrix Σ will
be (λ1, e1), ..., (λp, ep) where λ1 ≥ λ2 ≥ · · · ≥ λp. The eigenvalue eigenvector

pairs of a matrix Σ̂ will be (λ̂1, ê1), ..., (λ̂p, êp) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p.
The generalized correlation matrix defined below is the correlation matrix
when second moments exist if Σ = c Cov(x) for some constant c > 0.

Definition 6.1. Let Σ = ((σij)) be a positive definite symmetric p × p

dispersion matrix. A generalized correlation matrix ρ = ((ρij)) where

ρij =
σij√
σiiσjj

.

The following theorem holds since the eigenvalues and generalized corre-
lation matrix are continuous functions of Σ. Also see Theorem 3.29. When
the distribution of the xi is unknown, then a good dispersion estimator es-
timates cΣ on a large class of distributions where c > 0 depends on the
unknown distribution of xi. For example, if the xi ∼ ECp(µ,Σ, g), then the
sample covariance matrix S estimates Cov(x) = cXΣ.

138
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Theorem 6.1. Suppose the dispersion matrix Σ has eigenvalue eigen-

vector pairs (λ1, e1), ..., (λp, ep) where λ1 ≥ λ2 ≥ · · · ≥ λp. Suppose Σ̂
P→ cΣ

for some constant c > 0. Let the eigenvalue eigenvector pairs of Σ̂ be

(λ̂1, ê1), ..., (λ̂p, êp) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p. Then λ̂j(Σ̂)
P→ cλj(Σ) = cλj,

ρ̂ P→ ρ and λ̂j (ρ̂) P→ λj (ρ) where λj(A) is the jth eigenvalue of A for
j = 1, ..., p.

Eigenvectors ej are not continuous functions of Σ, and if ej is an eigen-
vector of Σ then so is −ej. The software produces êj which sometimes
approximates ej and sometimes approximates −ej if the eigenvalue λj is
unique, since then the set of eigenvectors corresponding to λj has the form
aej for any nonzero constant a. The situation becomes worse if some of
the eigenvalues are equal, since the possible eigenvectors then span a space
of dimension equal to the multiplicity of the eigenvalue. Hence if the mul-
tiplicity is two and both ej and ek are eigenvectors corresponding to the
eigenvalue λi, then ei = xi/‖xi‖ is also an eigenvector corresponding to λi

where xi = ajej + akek for constants aj and ak which are not both equal
to 0. The software produces êj and êk that are approximately in the span
of ej and ek for large n by the following theorem, which also shows that êi

is asymptotically an eigenvector of Σ in that (Σ − λi)êi
P→ 0. It is possible

that êi,n is arbitrarily close to ei for some values of n and arbitrarily close to
−ei for other values of n so that êi ≡ êi,n oscillates and does not converge
in probability to either ei or −ei.

Theorem 6.2. Assume the p × p symmetric dispersion matrix Σ is
positive definite.

a) If Σ̂
P→ Σ, then Σ̂ei − λ̂iei

P→ 0.

b) If Σ̂
P→ Σ, then Σêi − λiêi

P→ 0.
If Σ̂− Σ = OP (n−δ) where 0 < δ ≤ 0.5, then
c) λiei − Σ̂ei = OP (n−δ), and
d) λ̂iêi −Σêi = OP (n−δ).

e) If Σ̂
P→ cΣ for some constant c > 0, and if the eigenvalues λ1 > · · · >

λp > 0 of Σ are unique, then the absolute value of the correlation of êj with

ej converges to 1 in probability: |corr(êj, ej)| P→ 1.

Proof. a) Σ̂ei − λ̂iei
P→ Σei − λiei = 0.

b) Note that (Σ−λiI)êi = [(Σ−λiI)− (Σ̂− λ̂iI)]êi = oP (1)OP (1)
P→ 0.
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c) λiei − Σ̂ei = Σei − Σ̂ei = OP (n−δ).
d) λ̂iêi −Σêi = Σ̂êi − Σêi = OP (n−δ).

e) Note that a) and b) hold if Σ̂
P→ Σ is replaced by Σ̂

P→ cΣ. Hence
for large n, êi ≡ êi,n is arbitrarily close to either ei or −ei, and the result
follows.

Rule of thumb 6.1. To use PCA, assume the DD plot and subplots
of the scatterplot matrix are linear. Want n > 10p for classical PCA and
n > 20p for robust PCA that uses FCH, RFCH or RMVN. For classical
PCA, use the correlation matrix R instead of the covariance matrix S if
maxi=1,...,p S

2
i /mini=1,...,p S

2
i > 2. If S is used, also do a PCA using R.

The trace of a matrix A is the sum of the diagonal elements of A and the
sum of the eigenvalues of A. If A is a p×p matrix, then trace(A) = tr(A) =∑p

i=1 Aii =
∑p

i=1 λi. Note that tr(Cov(x)) = σ2
1 + · · ·+σ2

p and tr(ρ̂) = p.

Definition 6.2. Let dispersion estimator Σ̂ have eigenvalue eigenvector
pairs (λ̂1, ê1), ..., (λ̂p, êp) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p. Then the p principal
components corresponding to the jth case xj are Zj1 = ê

T
1 xj , ..., Zjp = ê

T
p xj.

Let the vector zj = (Zj1, ..., Zjp)
T . The proportion of the trace explained

by the first kth principal components is
∑k

i=1 λ̂i/
∑p

j=1 λ̂j =
∑k

i=1 λ̂i/tr(Σ̂).
When a correlation or covariance matrix is being estimated, “trace” is re-
placed by “variance.” The population analogs use the dispersion matrix Σ
with eigenvalue eigenvector pairs (λi, ei) for i = 1, ..., p. The population prin-
cipal components corresponding to the j case are Yji = eT

i xj, and Zji = Ŷji

for i = 1, ..., p.

Note that the principal components can be collected into an n × p data
matrix

Z =





Z1,1 Z1,2 . . . Z1,p

Z2,1 Z2,2 . . . Z2,p
...

...
. . .

...
Zn,1 Zn,2 . . . Zn,p




=
[

u1 u2 . . . up

]
=




zT

1
...

zT
n



 .

Then ui corresponds to the ith principal component. A plot of the second
principal component versus the first principal component can be useful.

The data matrix W corresponds to the usual axes where ei is a vector of
zeroes except for a one in the ith position. Hence the ith axis corresponds to
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the ith variable Xi. The data matrix Z corresponds to axes that are parallel
to the axes of the hyperellipsoid corresponding to the dispersion matrix Σ̂.
These axes are a rotation of the usual axes about the origin.

If Σ̂ = S, then the definition of the estimated proportion of the to-
tal population variance may make little sense if the variables are measured
on different scales. Assume the population covariance matrix is I2. Then
λj/(λ1 + λ2) = 0.5, but if xj is multiplied by 3 then V (xj) = 9 = λj, and
λj/(λ1 + λ2) = 0.9. Then xj seems much more important than the other
variable just by scaling. This is why rule of thumb 6.1 says R should be used
instead of S if maxi=1,...,p S

2
i /mini=1,...,p S

2
i > 2.

Examine Theorems 2.4, 2.5 and Figure 2.1. The hyperellipsoid {x|D2
x ≤

h2} = {x : (x − µ)TΣ−1(x − µ) ≤ h2}, where h2 = u1−α and P (U ≤
u1−α) = 1 − α, is the highest density region covering 1 − α of the mass for
an elliptically contoured distribution. The hyperellipsoid is centered at µ.
If µ = 0, then points at squared distance wTS−1w = h2 from the origin
lie on the hyperellipsoid centered at the origin whose axes are given by the
eigenvectors ei where the half length in the direction of ei is h

√
λi.

The projection vector of a vector x onto a vector e is

eeT x

eTe
.

Hence if eTe = 1, the projection vector is v = [eT x]e and ‖v‖ = |eT x|. So
eT x is the signed length of the projection vector of x onto e, and eT x is
called the (scalar) projection of x onto e.

The ei are the directions of the axes through the origin that are parallel
to the axes of the hyperellipsoid. Suppose µ = 0. Then the ith principle
component is the linear combination of the predictors that is the projection
on the ith axis of the hyperellipsoid. That is, get the projection vectors of
the xi onto ei and find their signed lengths eT

i xi from the origin. Then these
scalars form the ith principal components corresponding to the n data cases
x1, ...,xn. So the first principal component is the projection on the major
axis, the second principal component is the projection on the next longest
axis, ..., the pth principal component is the projection on the minor axis.
The axes are orthogonal, so the directions ei are orthogonal.

When µ 6= 0 the projections on ei are projections on the axes through
the origin that are parallel to the axes of the hyperellipsoid. Figure 2.1 shows
two ellipsoids where p = 2.
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The first k principal components can be regarded as a good k dimen-
sional approximation to the p dimensional data. Suppose the data cloud
approximates the hyperellipsoid {x|D2

x ≤ h2} where h2 = D2
(n), the largest

squared distance, so the hyperellipsoid contains all of the data. Then a good
one dimensional approximation is the projection on the major axis since this
captures the dimension with the greatest variability or dispersion as mea-
sured by Σ. A good two dimensional approximation uses the projection on
the major axis and the projection on the next largest axis since these are the
two orthogonal directions where the two projections have the greatest vari-
ability. Following Mardia, Kent and Bibby (1979, p. 220), if S (with centered
data) or R is used as the dispersion matrix, then the vector space spanned
by the first k principal components has smaller mean square deviation from
the p variables than any other k−dimensional subspace.

Since Z represents a new coordinate system, the ith case
xi = (xT

i êi)ê1+ · · ·+(xT
i êp)êp = Zi,1ê1+ · · ·+Zi,pêp. Also xi = x̃i(k)+ri(k)

where x̃i(k) =
∑k

j=1 Zi,j êj and the residual vector ri(k) =
∑p

j=k+1 Zi,jêj.

The squared length of the residual vector is ‖ri(k)‖2 = ri(k)
Tri(k) = Z2

i,k+1+
· · · + Z2

i,p.
Suppose S or R is used as the as the dispersion matrix and that T = 0 so

the hyperellisoid is centered at the origin. Following Kendall (1980, p. 17),
the eigenvector corresponding to the largest eigenvalue determines the major
axis of the hyperellipsoid. This axis forms the line through the origin such
that the sum of squared distances from the n data points xi to this line is a
minimum. If the data points are projected onto a hyperplane perpendicular
to the major axis line, then the eigenvector corresponding to the next largest
eigenvalue determines the second longest axis of the hyperellipsoid, and this
axis is the line through the origin in the hyperplane that minimizes the sum
of squared distances, and so on.

When the covariance matrix is used, that the first principal component
eT

1 x is the linear combination gT
1 x that maximizes Var(gT

1 x) subject to
gT

1 g1 = 1, while the jth principal component is the linear combination gT
j x

that maximizes Var(gT
j x) subject to gT

j gj = 1 and Cov(gT
j x, gT

k x) = 0 for
k < j. This result can be proved using Theorem 1.1.

Definition 6.3. A scree plot is a plot of component number versus
eigenvalue.

Dimension reduction involves using the first k principal components to
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approximate the data matrix without losing much important information.
Want the proportion of the trace explained by the first k principal compo-
nents to be higher than 0.8 or 0.9.

Rule of thumb 6.2. The value of k should be such that
∑k

i=1 λ̂i∑p
i=1 λ̂i

≥ 0.9.

The scree plot is also useful for choosing k since often there is a sharp bend
in the scree plot when the components are no longer important. See Cattell
(1966).

Following Johnson and Wichern (1988, p. 343, 347), let x = (X1, ..., Xp)
be a random vector such that the xi and x have the same distribution. Let
Yi = eT

i x be the population principal components based on the covariance
matrix Cov(x) = Σx. Let ei = (e1i, ..., epi)

T . Then eki is proportional to the
correlation between Yi and Xk, in fact,

corr(Yi, Xk) =
eki

√
λi√

σkk

for i, k = 1, ..., p. If the correlation matrix ρ is used instead of Σx, then
corr(Yi, Xk) = eki

√
λi.

Following Johnson and Wichern (1988, p. 252-253), some software that
uses S or R centers the data by using xi−x. Centering does not change S or
R but makes the ith principal component equal to êT

i (x−x) for observation
x.

Warning: If λ̂p ≈ 0, then Σ̂ is nearly singular, and there could be an
unnoticed linear dependency in the data set, eg Xp ≈ ∑p−1

i=1 ciXi. Then
one or more of the variables is redundant and should be deleted. Following
Johnson and Wichern (1988, p. 360), suppose p = 4 and X1, X2 and X3

are midterm exam scores while X4 is the total of the midterm scores so that
X4 = X1 + X2 + X3. Due to rounding, λ̂4 could be nonzero, but very close
to zero.

6.2 Robust Principal Component Analysis

A robust “plug in” method uses an analysis based on the (λ̂i, êi) computed
from a robust dispersion estimator C. The RPCA method performs the
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classical principal component analysis on the RMVN subset, using either the
sample covariance matrix CU = SU or the sample correlation matrix RU .
Under assumption (E1) from Chapter 4, CU and RU are

√
n consistent highly

outlier resistant estimators of cΣ = dCov(x) and the population correlation
matrix DCov(x)D = ρ, respectively, where D = diag(1/

√
σ11, ..., 1/

√
σpp)

and the σii are the diagonal entries of Cov(x) = Σx = cXΣ. Let λi(A) be
the eigenvalues of A where λ1(A) ≥ λ2(A) ≥ · · · ≥ λp(A). Let λ̂i(Â) be the

eigenvalues of Â where λ̂1(Â) ≥ λ̂2(Â) ≥ · · · ≥ λ̂(Â).

Theorem 6.3. Under (E1), the correlation of the eigenvalues computed
from the classical PCA and RPCA converges to 1 in probability.

Proof: The eigenvalues are continuous functions of the dispersion es-
timator, hence consistent estimators of dispersion give consistent estima-
tors of the population eigenvalues. See Eaton and Tyler (1991) and Bha-
tia, Elsner and Krause (1990). Let λi(Σ) = λi be the eigenvalues of Σ so

cXλi are the eigenvalues of Cov(x) = Σx. Under (E1), λi(S)
P→ cXλi and

λi(CU)
P→ cλi =

c

cX
cXλi = d cX λi. Hence the population eigenvalues of Σx

and d Σx differ by the positive multiple d, and the population correlation of
the two sets of eigenvalues is equal to one.

Now let λi(ρ) = λi. Under (E1), both R and RU converge to ρ in

probability, so λ̂i(R)
P→ λi and λ̂i(RU)

P→ λi for i = 1, ..., p. Hence the
two population sets of eigenvalues are the same and thus have population
correlation equal to one. �

Note that if Σx e = λe, then

d Σx e = dλe.

Thus λ̂i(S)
P→ λi(Σx) and λ̂i(CU )

P→ dλi(Σx) for i = 1, ..., p. Since plotting
software fills space, two scree plots of two sets of eigenvalues that differ by a
constant positive multiple will look nearly the same, except for the labels of
the vertical axis, and the “trace explained” by the largest k eigenvalues will
be the same for the two sets of eigenvalues. Theorem 6.2 implies that for a
large class of elliptically contoured distributions and for large n, the classical
and robust scree plots should be similar visually, and the “trace explained”
by the classical PCA and the robust PCA should also be similar.

The eigenvectors are not continuous functions of the dispersion estimator,
and the sample size may need to be massive before the robust and classical
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eigenvectors or principal components have high absolute correlation. In the
software, sign changes in the eigenvectors are common, since Σx e = λe
implies that Σx (−e) = λ(−e).

Table 6.1: Estimation of Σ with γ = 0.4, n = 35p

p type n pm Q
5 1 135 16 0.153
5 2 135 6 0.213
10 1 350 21 0.326
10 2 350 6 0.326
15 1 525 26 0.856
15 2 525 7 0.675
20 1 700 33 0.798
20 2 700 8 0.792
25 1 875 39 1.014
25 2 875 10 1.867

A simulation was done to check that RMVN estimates Σ if the clean data
is MVN and γ is the percentage of outliers. The clean cases were MVN: x ∼
Np(0, diag(1, 2, ..., p)). Outlier types were x ∼ Np((0, ..., 0, pm)T , 0.0001Ip),
a near point mass at the major axis, and the mean shift x ∼ Np(pm1, diag
(1, 2, ..., p)) where 1 = (1, ..., 1)T . On clean MVN data, n ≥ 20p gave good
results for 2 ≤ p ≤ 100. For the contaminated MVN data, the first nγ cases
were outliers, and the classical estimator Sc was computed on the clean
cases. The diagonal elements of Sc and Σ̂RMV N should both be estimating
(1, 2, ..., p)T . The average diagonal elements of both matrices were computed
for 20 runs, and the criterion Q was the sum of the absolute differences of the
p diagonal elements from the two averaged matrices. Since γ = 0.4 and the
initial subsets for the RMVN estimator are half sets, the simulations used
n = 35p. The values of Q shown in Table 6.1 correspond to good estimation
of the diagonal elements. Values of pm slightly smaller than the tabled values
led to poor estimation of the diagonal elements.

Example 6.1. Buxton (1920) gives various measurements on 87 men
including height, head length, nasal height, bigonal breadth and cephalic in-
dex. Five heights were recorded to be about 19mm with the true heights
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Figure 6.1: First Two Principal Components for Buxton data
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Figure 6.2: First Two Robust Principal Components with Outliers Omitted
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recorded under head length. Performing a classical principal components
analysis on these five variables using the covariance matrix resulted in a
first principal component corresponding to a major axis that passed through
the outliers. See Figure 6.1 where the second principal component is plot-
ted versus the first. The robust PCA, or the classical PCA performed after
the outliers are removed, resulted in a first principal component that was
approximately − height with ê1 ≈ (−1.000, 0.002,−0.023,−0.002,−0.009)T

while the second robust principal component was based on the eigenvector
ê2 ≈ (−0.005, 0.848,−0.054,−0.048, 0.525)T . The plot of the first two ro-
bust principal components, with the outliers deleted, is shown in Figure 6.2.
These two components explain about 86% of the variance.

The R function prcomp can be used to compute output. Suppose the
data matrix is z. The commands

zz <- prcomp(z)

zz

will create and display output. The term zz$sd gives the square roots of the
eigenvalues while the term zz$rot displays the eigenvectors using the covari-
ance matrix. Hence Figure 6.1 can be made with the following commands.

z <- cbind(buxy,buxx)

zz <- prcomp(z)

PC1 <- z%*%zz$rot[,1]

PC2 <- z%*%zz$rot[,2]

plot(PC2,PC1)

It usually makes more sense to use the correlation matrix. the mpack
function rprcomp does robust principal components. The two functions use
“scale=T” or “cor=T” to use a correlation matrix.

zzcor <- prcomp(z,scale=T)

zrcor <- rprcomp(z,cor=T)

Then

zrcor$out$sd^2

gives the eigenvalues and zrcor$out$rot gives the eigenvectors. Scree plots
can be made with the following commands, and Figure 6.3 shows the robust
scree plot which suggests that the last principal component can be deleted.
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Figure 6.3: Robust Scree Plot

EIG <- zzcor$sd^2

plot(EIG)

#robust scree plot

REIG <- zrcor$out$sd^2

plot(REIG)

The outliers are known from the DD plot so the robust principal compo-
nent analysis can be done with and without the outliers. The data matrix
zw is the clean data without the outliers.

zw <-z[-c(61,62,63,64,65),]

zzcorc <- prcomp(zw,scale=T)

# clean data with corr matrix

> zzcorc

Standard deviations:

[1] 1.3184358 1.1723991 1.0155266 0.7867349 0.4867867

Rotation:

PC1 PC2 PC3 PC4 PC5

buxy 0.01551 0.71466 0.02247 -0.68890 -0.11806

len 0.70308 -0.06778 0.07744 -0.16901 0.68302

nasal 0.15038 0.68868 0.02042 0.70385 0.08539

bigonal 0.11646 -0.04882 0.96504 0.02261 -0.22855

cephalic -0.68502 0.08950 0.24854 -0.03071 0.67825
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zrcor <- rprcomp(z,cor=T)

> zrcor

$out

Standard deviations:

[1] 1.3323400 1.1548879 0.9988643 0.8182741 0.4730769

Rotation:

PC1 PC2 PC3 PC4 PC5

buxy -0.10724 -0.69431 -0.11325 0.69184 -0.12238

len 0.69909 -0.06324 0.02560 0.17129 0.69085

nasal 0.04094 -0.70310 -0.08718 -0.70093 0.07123

bigonal 0.02638 -0.13994 0.98660 0.01120 -0.07884

cephalic -0.70527 -0.00317 0.07443 0.02432 0.70460

> zrcorc <- rprcomp(zw,cor=T)

> zrcorc

$out

Standard deviations:

[1] 1.3369152 1.1466891 1.0016463 0.8123854 0.4842482

Rotation:

PC1 PC2 PC3 PC4 PC5

buxy -0.21306 0.67557 -0.01727 -0.68852 -0.15446

len 0.67272 0.21639 0.05560 -0.15178 0.68884

nasal -0.22213 0.66958 0.05174 0.68978 0.15441

bigonal -0.01374 -0.02995 0.99668 -0.03546 -0.06543

cephalic -0.67270 -0.21807 0.02363 -0.16076 0.68813

Note that the square roots of the eigenvalues, given by “Standard devia-
tions,” do not change much for the following three estimators: the classical
estimator applied to the clean data, and the robust estimator applied to the
full data or the clean data. The first eigenvector is roughly proportional to
length − cephalic while the second eigenvector is roughly proportional to buxy
+ nasal. The third principal component is highly correlated with bigonal,
the fourth principal component is proportional to buxy − nasal, and the fifth
principal component to length + cephalic.

In simulations for principal component analysis, FCH, RMVN, OGK and
Fake-MCD seem to estimate cΣx if x = Az + µ where z = (z1, ..., zp)

T

and the zi are iid from a continuous distribution with variance σ2. Here



CHAPTER 6. PRINCIPAL COMPONENT ANALYSIS 150

Σx = Cov(x) = σ2AAT . The bias for the MB estimator seemed to be small.
It is known that affine equivariant estimators give unbiased estimators of
cΣx if the distribution of zi is also symmetric. DGK and Fake-MCD (with
fixed random number seed) are affine equivariant. FCH and RMVN are
asymptotically equivalent to a scaled DGK estimator. But in the simulations
the results also held for skewed distributions.

The simulations used 1000 runs where x = Az and z ∼ Np(0, Ip), z ∼
LN(0, Ip) where the marginals are iid lognormal(0,1), or z ∼ MV Tp(1), a
multivariate t distribution with 1 degree of freedom so the marginals are iid
Cauchy(0,1). The choice A = diag(

√
1, ...,

√
p) results in Σ = diag(1, ..., p).

Note that the population eigenvalues will be proportional to (p, p− 1, ..., 1)T

and the population “variance explained” by the ith principal component is
λi/
∑p

j=1 λj = 2(p + 1 − i)/[p(p + 1)]. For p = 4, these numbers are 0.4, 0.3
and 0.2 for the first three principal components. If the “correlation” option is
used, then the population “correlation matrix” is the identity matrix Ip, the
ith population eigenvalue is proportional to 1/p and the population “variance
explained” by the ith principal component is 1/p.

Table 6.2 shows the mean “variance explained” along with the standard
deviations for the first three principal components. Also ai and pi are the
average absolute value of the correlation between the ith eigenvectors or the
ith principal components of the classical and robust methods. Two rows were
used for each “n–data type” combination. The ai are shown in the top row
while the pi are in the lower row. The values of ai and pi were similar. The
standard deviations were slightly smaller for the classical PCA for normal
data. The classical method failed to estimate (0.4,0.3,0.2) for the Cauchy
data. For the lognormal data, RPCA gave better estimates, and the pi were
not high except for n = 10000.

To compare affine equivariant and non-equivariant estimators, Maronna
and Zamar (2002) suggest using Ai,i = 1 and Ai,j = ρ for i 6= j and ρ =
0, 0.5, 0.7, 0.9, and 0.99. Then Σ = A2. If ρ is high, or if p is high and ρ ≥ 0.5,
then the data are concentrated about the line with direction 1 = (1, ..., 1)T .
For p = 50 and ρ = 0.99, the population variance explained by the first
principal component is 0.999998. If the “correlation” option is used, then
there is still one extremely dominant principal component unless both p and
ρ are small.

Table 6.3 shows the mean “variance explained” along with the standard
deviations multiplied by 107 for the first principal component. The a1 value is
given but p1 was always 1.0 to many decimal places even with Cauchy data.
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Table 6.2: Variance Explained by PCA and RPCA, p = 4

n type M/S vexpl rvexpl a1/p1 a2/p2 a3/p3

40 N M 0.445,0.289,0.178 0.472,0.286,0.166 0.895 0.821 0.825
S 0.050,0.037,0.032 0.062,0.043,0.037 0.912 0.813 0.804

100 N M 0.419,0.295,0.191 0.425,0.293,0.189 0.952 0.926 0.963
S 0.033,0.030,0.024 0.040,0.032,0.027 0.956 0.923 0.953

400 N M 0.404,0.298,0.198 0.406,0.298,0.198 0.994 0.991 0.996
S 0.019,0.017,0.014 0.021,0.019,0.015 0.995 0.990 0.994

40 C M 0.765,0.159,0.056 0.514,0.275,0.147 0.563 0.519 0.511
S 0.165,0.112,0.051 0.078,0.055,0.040 0.776 0.383 0.239

100 C M 0.762,0.156,0.060 0.455,0.286,0.173 0.585 0.527 0.528
S 0.173,0.112,0.055 0.054,0.041,0.034 0.797 0.377 0.269

400 C M 0.756,0.162,0.060 0.413,0.296,0.194 0.608 0.562 0.575
S 0.172,0.113,0.054 0.030,0.025,0.022 0.796 0.397 0.308

40 L M 0.539,0.256,0.139 0.521,0.268,0.146 0.610 0.509 0.530
S 0.127,0.075,0.054 0.099,0.061,0.047 0.643 0.439 0.398

100 L M 0.482,0.270,0.165 0.459,0.279,0.172 0.647 0.555 0.566
S 0.180,0.063,0.052 0.077,0.047,0.041 0.654 0.492 0.474

400 L M 0.437,0.282,0.185 0.416,0.290,0.194 0.748 0.639 0.739
S 0.080,0.048,0.044 0.049,0.035,0.033 0.727 0.594 0.690

10000 L M 0.400,0.301,0.200 0.402,0.300,0.199 0.982 0.967 0.991
S 0.027,0.023,0.018 0.013,0.011,0.009 0.976 0.967 0.989

Table 6.3: Variance Explained by PCA and RPCA, SSD = 107 SD, p = 50

n type vexpl SSD rvexpl SSD a1

200 N 0.999998 1.958 0.999998 2.867 0.687
1000 N 0.999998 0.917 0.999998 0.971 0.944
1000 C 0.999996 161.3 0.999998 1.482 0.112
1000 L 0.999998 0.919 0.999998 1.508 0.175
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Hence the eigenvectors from the robust and classical methods could have
low absolute correlation, but the data was so tightly clustered that the first
principal components from the robust and classical methods had absolute
correlation near 1.

6.3 Summary

1) Let Σ = ((σij)) be a positive definite symmetric p× p dispersion matrix.

A generalized correlation matrix ρ = ((ρij)) where

ρij =
σij√
σiiσjj

.

The generalized correlation matrix is the correlation matrix when second
moments exist if Σ = c Cov(x) for some constant c > 0.

2) Classical principal component analysis (PCA) gets the eigenvalues and
eigenvectors (λ̂i, êi) of the sample covariance matrix S or of the sample cor-
relation matrix R.

3) Let U be the subset of at least half of the cases from which the ro-
bust estimator is computed. Let SU and RU denote the sample covariance
matrix and sample correlation matrix computed from the cases in U . Then
the robust estimator C = dSU for some constant d > 0 and RU is the gen-
eralized correlation matrix corresponding to C. The robust PCA uses U
corresponding to the RMVN estimator.

4) Want n > 10p for the classical PCA and n > 20p for the robust PCA.
5) Both R and SAS output give the eigenvectors as shown in symbols for

the following table.
PC1 PC2 · · · PCp
ê1 ê2 · · · êp

R output shows the square roots of the eigenvalues

√
λ̂1,

√
λ̂2, ...,

√
λ̂p

while SAS output gives the eigenvalues λ̂i.
6) Given the eigenvalues or square roots of the eigenvalues, be able to

sketch a
scree plot of i versus λ̂i.



CHAPTER 6. PRINCIPAL COMPONENT ANALYSIS 153

7) The trace explained or variance explained by the first k principal com-

ponents is

∑k
i=1 λ̂i∑p
i=1 λ̂i

where the denominator is equal to p if the correlation

option R or RU is used, as recommended in point 10).
8) Use k principal components if the trace explained is bigger than some

percentage like 90%, 80% or 70%. There is often a sharp bend in the scree
plot when the components are no longer useful.

9) When R or RU is used, the correlation of the ith variable with the jth
principal component is proportional to the ith entry of the jth eigenvector
êj . To try to explain the jth principal component, look at entries in êj

that are large in magnitude and ignore entries close to zero. Sometimes only
one entry is large. Sometimes all of the large entries have approximately
the same size and sign, then the principal component is interpreted as an
average of these entrees. If exactly two entries are of similar large magnitude
but of different sign, the principal component is interpreted as a difference
of the two entrees. If there are j ≥ 2 large entrees that differ in magnitude,
then the principal component is interpreted as a linear combination of the
corresponding variables.

10) PCA based on R or RU is easier to interpret than PCA based on S

or SU .
i) If S is used, the variance explained by the first principal component

could be large because one variable has much larger variance than the other
variables.

ii) If S is used, the correlation of the ith variable with the jth principal
component is proportional to the ith entry of the jth eigenvector êj divided
by the standard deviation of ith variable: eij/

√
Sii.

Hence PCA based on S is harder to interpret if p random variables do not
have similar sample variances. The variances could differ if different units
are used or if some variables are transformed while others are not. Hence
PCA based on R or RU is recommended.

11) Typical Routput is shown. Standard deviations:

[1] 1.3369152 1.1466891 1.0016463 0.8123854 0.4842482

Rotation: PC1 PC2 PC3 PC4 PC5

len 0.67271620 -0.21639022 0.05559575 0.15178244 -0.68883916

nasal -0.22213361 -0.66957907 0.05173705 -0.68978370 -0.15440936

bigonal -0.01373814 0.02995162 0.99668240 0.03545927 0.06542933
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cephalic -0.67269993 0.21806615 0.02362841 0.16076405 -0.68812686

buxy -0.21306252 -0.67556583 -0.01727087 0.68851877 0.15446292

12) Let Σ̂ be a consistent estimator of Σ. The following theorems show
that asymptotically, the eigenvalues and eigenvectors of Σ̂ act as those of Σ
and vice verca. This result is useful since eigenvectors are not continuous
functions of the dispersion matrix. The following theorem holds because
eigenvalues and the generalized correlation matrix are continuous functions
of the dispersion matrix.

i) Theorem 6.1. Suppose the dispersion matrix Σ has eigenvalue eigen-

vector pairs (λ1, e1), ..., (λp, ep) where λ1 ≥ λ2 ≥ · · · ≥ λp. Suppose Σ̂
P→ cΣ

for some constant c > 0. Let the eigenvalue eigenvector pairs of Σ̂ be

(λ̂1, ê1), ..., (λ̂p, êp) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p. Then λ̂j(Σ̂)
P→ cλj(Σ) = cλj,

ρ̂ P→ ρ and λ̂j (ρ̂) P→ λj (ρ) where λj(A) is the jth eigenvalue of A for
j = 1, ..., p.

ii) Theorem 6.2. Assume the p × p symmetric dispersion matrix Σ is

positive definite. a) If Σ̂
P→ Σ, then Σ̂ei − λ̂iei

P→ 0.

b) If Σ̂
P→ Σ, then Σêi − λiêi

P→ 0.
If Σ̂− Σ = OP (n−δ) where 0 < δ ≤ 0.5, then
c) λiei − Σ̂ei = OP (n−δ), and
d) λ̂iêi −Σêi = OP (n−δ).

e) If Σ̂
P→ cΣ for some constant c > 0, and if the eigenvalues λ1 > · · · >

λp > 0 of Σ are unique, then the absolute value of the correlation of êj with

ej converges to 1 in probability: |corr(êj, ej)| P→ 1.
iii) Theorem 6.3. Under (E1), the correlation of the eigenvalues com-

puted from the classical PCA and robust PCA converges to 1 in probability.
13) Centering uses wi = xi−T where T is the sample mean or the sample

mean of the standardized data for the full data set or for the set U used to
compute the robust estimator. Centering does not change S,SU ,R or RU ,
but the jth principal component is êT

j wi = êT
j (xi − T ).

14) For PCA, the summary(out) statement shows
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Importance of components: PC1 PC2 · · · PCk · · · PCp

Standard deviation
√
λ̂1

√
λ̂2 · · ·

√
λ̂k · · ·

√
λ̂p

Proportion of variance λ̂1
Pp

i=1 λ̂i

λ̂2
Pp

i=1 λ̂i
· · · λ̂k

Pp
i=1 λ̂i

· · · λ̂p
Pp

i=1 λ̂i

Cumulative Proportion λ̂1
Pp

i=1 λ̂i

P2
j=1 λ̂j

Pp
i=1 λ̂i

· · ·
Pk

j=1 λ̂j
Pp

i=1 λ̂i
· · · 1

Recall that if R or RU is used, then
∑p

i=1 λ̂i = p. Typically want to keep

the first m principal components where

∑m
j=1 λ̂j

∑p
i=1 λ̂i

> a where the threshold a

is a number like 0.9, 0.8 or 0.7.
15) For PCA, a biplot is a plot of the first principal component versus

the second principal component. The plotted points are êT
j xi for j = 1, 2

where the classical biplot uses i = 1, ..., n and the robust plot uses cases in
the RMVN set U . Let êj = (ê1j, ê2j, ..., êpj)

T . Then êkj is called the loading
of the kth variable on the jth principal component. An arrow with the kth
variable name is the vector from the origin (0, 0)T to the loadings (êk1, êk2)

T .
So if the arrow is in the first quadrant, both loadings are positive, etc. If
the arrow is long to the right but short down, then the loading with the first
principal component is large and positive while the loading with the second
principal component is small and negative. Be able to interpret the classical
and robust biplots.

6.4 Complements

Suppose Z is the standardized n × p data matrix and Y = Z/
√
n − 1. If

n < p, then the correlation matrix R = Y T Y = ZT Z/(n − 1) does not
have full rank. By singular value decomposition (SVD) theory, the SVD of
Y is Y = UΛV T where the positive singular values are square roots of the
positive eigenvalues of both Y TY and of Y Y T . Also V = (ê1 ê2 · · · êp),
and Y T Y êi = σ2

i êi. Hence classical principal component analysis on the
standardized data can be done using êi and λ̂i = σ2

i . The SVD of Y T is
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V ΛTUT , and

Y Y T =
1

n− 1




zT

1 z1 zT
1 z2 . . . zT

1 zn
...

...
. . .

...
zT

nz1 zT
nz2 . . . zT

nzn





which is the matrix of scalar products divided by (n− 1). For more informa-
tion about the SVD, see Datta (1995, p. 552-556).

It may be possible to do robust PCA when n < p by standardizing the
data with the MED(Xi) and MAD(Xi). Then plot the Euclidean distaces of
the standardized data from the coordinatewise median MED(Z) and delete
outliers, leaving m cases in an m× p matrix Y . Then use the SVD of Y to
perform a “robust” PCA.

Jolliffe (2010) is an authoritative text on PCA. Cattell (1966) and Bentler
and Yuan (1998) are good references for scree plots. Mφller, von Frese and
Bro (2005) discuss PCA, principal component regression and drawbacks of
M estimators. Waternaux (1976) and Tyler (1983) give some large sample
theory for PCA. In particular, if the xi are iid from a multivariate distribution
with fourth moments and a covariance matrix Σx such that the eigenvalues

are distinct and positive, then
√
n(λ̂i − λi)

D→ N(0, κi + 2λ2
i ) where κi is the

kurtosis of the marginal distribution of xi, for i = 1, ..., p.
The literature for robust PCA is large, but the “high breakdown” meth-

ods are impractical or not backed by theory. Some of these methods may be
useful as outlier diagnostics. The theory of Boente (1987) for mildly outlier
resistant principal components is not based on DGK estimators since the
weighting function on the Di is continuous. Spherical principal components
is a mildly outlier resistant bounded influence approach suggested by Lo-
cantore, Marron, Simpson, Tripoli, Zhang and Cohen (1999). Boente and
Fraiman (1999) claim that basis of the eigenvectors is consistently estimated
by spherical principal components for elliptically contoured distributions.
Also see Maronna, Martin and Yohai (2006, p. 212-213) and Taskinen, Koch
and Oja (2012).

Bali, Boente, Tyler and Wang (2011) gave possibly impressive theory for
infinite complexity impractical robust projection estimators, but should have
given theory for the practical Fake-projection estimator actually used. This
“bait and switch hoax” occurs far too often in multivariate “robust statistics”
papers.
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To estimate the first principal direction for principal component analysis,
the Fake-projection (CR) estimator uses n projections zi = wi/‖wi‖ where
wi = yi − µ̂n. Note that for p = 2 one can select 360 projections through
the origin and a point on the unit circle that are one degree apart. Then
there is a projection that is highly correlated with any projection on the unit
circle. If p = 3, then 360 projections are not nearly enough to adequately
approximate all projections through the unit sphere. Since the surface area
of a unit hypersphere is proportional to np−1, approximations rapidly get
worse as p increases.

Theory for the Fake-projection (CR) estimator may be simple. Suppose
the data is multivariate normalNp(0, diag(p, 1, ..., 1)). Then β = (1, 0, ..., 0)T

(or −β) is the population first direction. Heuristically, assume µ̂n = 0,
although in general µ̂n should be a good

√
n consistent estimator of µ such

as the coordinatewise median. Let bo be the “best” estimated projection zj

that minimizes ‖zi − β‖ for i = 1, ..., n. “Good” projections will have a yi

that lies in one of two “hypercones” with a vertex at the origin and centered
about a line through the origin and ±β with radius r at ±β. So for p = 2 the
two “cones” are determined by the two lines through the origin with slopes
± r. The probability that a randomly selected yi falls in one of the two
“hypercones” is proportional to rp−1, and for bo to be consistent for β need
r → 0, P(at least one yi falls in “hypercone”) → 1 and n → ∞. If these

heuristics are correct, need r ∝ n
−1
p−1 for ‖bo−β‖ = OP (n

1
p−1 ). Note that bo is

not an estimator since β is not known, but the rate of the “best” projection
bo gives an upper bound on the rate of the Fake-projection estimator v1

since ‖v1 − β‖ ≥ ‖bo − β‖. If the scale estimator is
√
n consistent, then

for a large class of elliptically contoured distributions, a conjecture is that

‖v1 − β‖ = OP (n
1

2(p−1) ) for p > 1.
Simulations were done in R. The MASS library was used to compute FMCD

and the robustbase library was used to compute OGK. The mpack function
covrmvn computes the FCH, RMVN and MB estimators while covfch com-
putes the FCH, RFCH and MB estimators. The following functions were
used in the three simulations and have more outlier configurations than the
two described in the text. Function covesim was used to produce Table 6.1
and pcasim for Tables 6.2 and 6.3. See Zhang (2011) for more extensive
simulations.

For a nonsingular matrix, the inverse of the matrix, the determinant of
the matrix and the eigenvalues of the matrix are continuous functions of
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the matrix. Hence if Σ̂ is a consistent estimator of Σ, then the inverse,
determinant and eigenvalues of Σ̂ are consistent estimators of the inverse,
determinant and eigenvalues of Σ. See, for example, Bhatia, Elsner and
Krause (1990), Stewart (1969) and Severini (2005, p. 348-349).

6.5 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

6.1∗. Assume the p×p dispersion matrix Σ is positive definite. If Σ̂
P→ cΣ

for some constant c > 0, prove that Σêi − λiêi
P→ 0.

6.2. Shown below is PCA output using the correlation matrix for the
Buxton data where 5 outliers were deleted. The variables were length, nasal
height, bigonal breadth, cephalic and buxy = height/20. The “standard devi-
ations” line corresponds to the square roots of the eigenvalues. The Rotation
matrix gives the 5 principal components.

a) For the robust rprcomp output make a scree plot. What proportion of
the trace is explained by the first 4 principal components?

b) Which principal component corresponds to i) bigonal, ii) nasal + buxy,
iii) length + cephalic, iv) length − cephalic and v) nasal − buxy?

rprcomp(z)

$out

Standard deviations:

[1] 1.3369152 1.1466891 1.0016463 0.8123854 0.4842482

Rotation:

PC1 PC2 PC3 PC4 PC5

len 0.67271620 -0.21639022 0.05559575 0.15178244 -0.68883916

nasal -0.22213361 -0.66957907 0.05173705 -0.68978370 -0.15440936

bigonal -0.01373814 0.02995162 0.99668240 0.03545927 0.06542933

cephalic -0.67269993 0.21806615 0.02362841 0.16076405 -0.68812686

buxy -0.21306252 -0.67556583 -0.01727087 0.68851877 0.15446292

prcomp(z,scale=T)

Standard deviations:
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[1] 1.3184358 1.1723991 1.0155266 0.7867349 0.4867867

Rotation:

PC1 PC2 PC3 PC4 PC5

len -0.70308364 -0.06777853 0.07743938 0.16900791 0.6830219

nasal -0.15038248 0.68867720 0.02042098 -0.70384733 0.0853859

bigonal -0.11646120 -0.04882199 0.96504341 -0.02261327 -0.2285455

cephalic 0.68502160 0.08950469 0.24854103 0.03070660 0.6782468

buxy -0.01551443 0.71465734 0.02246533 0.68889840 -0.1180614

6.3. Let Yj = eT
j x be the first population principal component where

Cov(x) = Σx.

a) Using Cov(Ax,Bx) = AΣxBT , show Cov(x, Yj) = Σxej = λjej.

b) Now V (Yj) = Cov(eT
j x, eT

j x). Show that V (Yj) = λj .

c) Let x = (X1, ..., Xp)
T where Xi is the ith random variable with

V (Xi) = σii and by a) Cov(Xi, Yj) = λjeij where ej = (e1j, ..., eij, ..., epj)
T .

Find corr(Xi, Yj).

6.4. The classical PCA output below is for the Buxton data described
in Problem 6.2 where 5 cases have massive outliers in the height and length
variables. Interpret PC1 and PC2.

prcomp(z,scale=T)

[1] 1.431 1.074 0.964 0.926 0.106

PC1 PC2 PC3 PC4 PC5

len 0.685 0.037 0.004 -0.189 -0.702

nas -0.199 0.568 0.153 -0.783 0.047

big -0.049 -0.569 0.783 -0.247 -0.007

ceph -0.100 -0.594 -0.603 -0.523 0.008

ht -0.692 -0.000 -0.008 0.131 -0.710

6.5. SAS output for PCA using the correlation matrix is shown below.
The Khattree and Naik (1999, p. 11) cork data gives the weights of cork
borings in four directions for 28 trees in a block of plantations.

a) What is the variance explained by the first two principal components?

b) Interpret the first principal component.
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Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 3.5967 3.3431 0.8992 0.8992

2 0.2536 0.1735 0.0634 0.9626

3 0.0801 0.0107 0.0200 0.9826

4 0.0694 0.0174 1.0000

Eigenvectors

Prin1 Prin2 Prin3 Prin4

north -0.5108992 0.1267234 0.803287920 0.2786606

east -0.4829921 0.7604818 -0.328918253 -0.2831940

south -0.5082783 -0.3006659 -0.496526386 0.6361719

west -0.4973468 -0.5614345 0.001687729 -0.6613884

Rotation: PC1 PC2 PC3

length 0.5771831 -0.5884323 -0.5662218

width 0.5811769 -0.1910978 0.7910215

height 0.5736663 0.7856393 -0.2316848

> summary(out$out)

Importance of components:PC1 PC2 PC3

Standard deviation 1.7065 0.25601 0.14961

Proportion of Variance 0.9707 0.02185 0.00746

Cumulative Proportion 0.9707 0.99254 1.00000

6.6. The Johnson and Wichern (1988, p. 262) turtle data has X1 =
length, X2 = width and X3 = height for painted turtle shells with 48 cases.
Principal component analysis output is shown above based on the (robust)
correlation matrix.

a) How many principal components are needed?

b) Interpret the first principal component.

6.7. The output below describes lawyers’ ratings of state judges in the
US Superior Court with 43 observations on 12 numeric variables: CONT
Number of contacts of lawyer with judge, INTG Judicial integrity, DMNR
Demeanor, DILG Diligence, CFMG Case flow managing, DECI Prompt deci-
sions, PREP Preparation for trial, FAMI Familiarity with law, ORAL Sound
oral rulings, WRIT Sound written rulings, PHYS Physical ability, RTEN
Worthy of retention.
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> rprcomp(USJudgeRatings)

Standard deviations:

[1] 3.22195231 1.03832823 0.51049711 0.41049221 0.22797980 0.16242562

[7] 0.11155709 0.09407153 0.07441343 0.05595849 0.04492358 0.03805913

Rotation:

PC1 PC2

CONT 0.09651014 0.90089601

INTG -0.29727192 -0.19029004

DMNR -0.28269055 -0.21697647

DILG -0.30634676 0.01963176

CFMG -0.29804314 0.19297945

DECI -0.30227359 0.18417871

PREP -0.30428044 0.10879296

FAMI -0.30144067 0.11286037

ORAL -0.30874784 0.05751148

WRIT -0.30769444 0.06085970

PHYS -0.28368257 -0.03718180

RTEN -0.30728474 -0.02411832

a) Interpret the first principal component.

b) Interpret the second principal component.

6.8. From the SAS output shown below, what is the variance explained
by the second principal component?

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 154.310607 145.147647 0.9439 0.9439

2 9.162960 0.0561 1.0000

Eigenvectors

Prin1 Prin2

July 0.343532 0.939141

January 0.939141 -.343532

R/Splus Problems

Warning: Use the command source(“G:/mpack.txt”) to download
the programs. See Preface or Section 15.2. Typing the name of the
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mpack function, eg ddplot, will display the code for the function. Use the
args command, eg args(pcasim), to display the needed arguments for the
function.

6.9. a) Type the R command pcasim() and paste the output into Word.

This command computes the first 3 eigenvalues and eigenvectors for the
classical and robust PCA using the R and RU . The multivariate normal
data is such that the cases cluster tightly about the eigenvector c(1, 1, ..., 1)T

corresponding to the largest eigenvalue. The term mncor gives the mean
correlation between the classical and robust eigenvalues while the terms vexpl
and rvexpl give the average variance explained by the largest 3 eigenvalues.
The terms abscoreigvi give the absolute correlation between the i classical
and robust eigenvector for i = 1, ..., 3 while the term abscorpc gives the
absolute correlations of the first 3 principal components.

b) Are the robust and classical eigenvalues highly correlated? Is the
absolute correlation for first classical principal component and the robust
principal component high?

6.10. The Venables and Ripley (2003) CPU data has variables syct =
cycle time,
mmin = minimum main memory,
chmin = minimum number of channels,
chmax = maximum number of channels,
perf = published performance, and
estperf = estimated performance.

a) There are nonlinear relationships among the variables and 1 is added
to each variable to make them positive. Read more about the data set and
make a scatterplot matrix with the R commands for this part. You can make
the help window small by clicking the box with the − in the upper right
corner. Include the scatterplot matrix in Word.

b) The log rule suggests using the log transformation on all of the vari-
ables. Make the log transformations, scatterplot matrix and DD plot with
the R commands for this part. Right click “Stop” to go from the DD plot to
the R prompt. Wait until part d) until you put plots in Word.

c) You might be able to get a better scatterplot matrix and DD plot by
doing alternative transformations on the last two variables. The commands
for this part give the log transformation for the first 4 variables and possible
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transformations for the last variables. Clearly state which transformations
you use for the 5th and 6th variable. For example if you decide logs are ok,
write down the following transformations.

zz[,5] <- log(z[,5])

zz[,6] <- log(z[,6])

d) For your data set zz of transformed variables, make the scatterplot
matrix and DD plot and put the two plots in Word.

e) Put the classical PCA output using the correlation matrix into Word
with the command for this problem.

f) Put the robust PCA output using the correlation matrix into Word
with the command for this problem.

g) Comment on the similarities or differences of the classical and robust
PCA.

6.11. The R data set USArrests contains statistics, in arrests per 100,000
residents, for assault, murder, and rape in each of the 50 US states in 1973.
The fourth variable, UrbanPop, is the percent urban population in each state.
For PCA, the R summary command can be used to get proportion of variance
explained and cumulative proportion of variance explained, similar to SAS
output.

a) Use the R commands for this part to get the classical and robust PCA
summaries where S or SU is used. Paste the summaries into Word.

i) Are the summaries similar?
ii) Using the 0.9 threshold, how many principal components are needed?
a) Use the R commands for this part to get the classical and robust PCA

summaries where R or RU is used. Paste the summaries into Word.
i) Are the summaries similar?
ii) using the 0.9 threshold, how many principal components are needed?

6.12. For PCA, a biplot is a plot of the first principal component versus
the second principal component. The plotted points are êT

j xi for j = 1, 2
where the classical biplot uses i = 1, ..., n and the robust plot uses cases in
the RMVN set U . Let êj = (ê1j, ê2j, ..., êpj)

T . Then êkj is called the loading
of the kth variable on the jth principal component. An arrow with the kth
variable name is the vector from the origin (0, 0)T to the loadings (êk1, êk2)

T .
So if the arrow is in the first quadrant, both loadings are positive, etc. If
the arrow is long to the right but short down, then the loading with the first
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principal component is large and positive while the loading with the second
principal component is small and negative.

The Buxton (1920) data has a cluster of 5 massive outliers. The first
classical principal component tends to go right through a cluster of large
outliers.

a) These R commands make the classical scree plot and biplot. Paste the
plots into Word.

b) These R commands make the robust scree plot and biplot. Paste the
plots into Word.

c) From the classical scree plot, how many principal components are
needed? From the robust scree plot, how many principal components are
needed?

d) The four variables used were len, nasal, bigonal, and cephalic . From
the classical biplot, which variable had the 5 massive outliers.

e) From the robust biplot, which two variables loaded highest with the
first principal component?



Chapter 7

Canonical Correlation Analysis

7.1 Introduction

Let x be the p × 1 vector of predictors, and partition x = (wT ,yT )T

where w is m × 1 and y is q × 1 where m = p − q ≤ q and m, q ≥ 2.
Canonical correlation analysis (CCA) seeks m pairs of linear combinations
(aT

1 w, bT
1 y), ..., (aT

mw, bT
my) such that corr(aT

i w, bT
i y) is large under some

constraints on the ai and bi where i = 1, ..., m. The first pair (aT
1 w, bT

1 y) has
the largest correlation. The next pair (aT

2 w, bT
2 y) has the largest correlation

among all pairs uncorrelated with the first pair and the process continues so
that (aT

mw, bT
my) is the pair with the largest correlation that is uncorrelated

with the first m− 1 pairs. The correlations are called canonical correlations
while the pairs of linear combinations are called canonical variables.

Some notation is needed to explain CCA. Let the p× p positive definite
symmetric dispersion matrix

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Let J = Σ
−1/2
11 Σ12Σ

−1/2
22 . Let Σa = Σ−1

11 Σ12Σ
−1
22 Σ21, ΣA = JJT =

Σ
−1/2
11 Σ12Σ

−1
22 Σ21Σ

−1/2
11 , Σb = Σ−1

22 Σ21Σ
−1
11 Σ12 and ΣB = JT J =

Σ
−1/2
22 Σ21Σ

−1
11 Σ12Σ

−1/2
22 . Let ei and gi be sets of orthonormal eigenvectors,

so eT
i ei = 1, eT

i ej = 0 for i 6= j, gT
i gi = 1 and gT

i gj = 0 for i 6= j. Let the
ei be m× 1 while the gi are q × 1.

Let Σa have eigenvalue eigenvector pairs (λ1,a1), ..., (λm,am) where λ1 ≥
λ2 ≥ · · · ≥ λm. Let ΣA have eigenvalue eigenvector pairs (λi, ei) for i =

165
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1, ..., m. Let Σb have eigenvalue eigenvector pairs (λ1, b1), ..., (λq, bq). Let
ΣB have eigenvalue eigenvector pairs (λi, gi) for i = 1, ..., q. It can be shown
that the m largest eigenvalues of the four matrices are the same. Hence
λi(Σa) = λi(ΣA) = λi(Σb) = λi(ΣB) ≡ λi for i = 1, ..., m. It can be shown

that ai = Σ
−1/2
11 ei and bi = Σ

−1/2
22 gi. The eigenvectors ai are not necessarily

orthonormal and the eigenvectors bi are not necessarily orthonormal.

Theorem 7.1. Assume the p×p dispersion matrix Σ is positive definite.

Assume Σ11,Σ22,ΣA,Σa,ΣB and Σb are positive definite and that Σ̂
P→ cΣ

for some constant c > 0. Let di be an eigenvector of the corresponding ma-
trix. Hence di = ai, bi, ei or gi. Let (λ̂i, d̂i) be the ith eigenvalue eigenvector
pair of Σ̂γ.

a) Σ̂γ
P→ Σγ and λ̂i(Σ̂γ)

P→ λi(Σγ) = λi where γ = A, a,B or b.

b) Σγd̂i − λid̂i
P→ 0 and Σ̂γdi − λ̂idi

P→ 0.
c) If the jth eigenvalue λj is unique where j ≤ m, then the absolute value

of the correlation of d̂j with dj converges to 1 in probability: |corr(d̂j,dj)| P→
1.

Proof. a) Σ̂γ
P→ Σγ since matrix multiplication is a continuous func-

tion of the relevant matrices and matrix inversion is a continuous function
of a positive definite matrix. Then λ̂i(Σ̂γ)

P→ λi since an eigenvalue is a
continuous function of its associated matrix.

b) Note that (Σγ−λiI)d̂i = [(Σγ−λiI)−(Σ̂γ − λ̂iI)]d̂i = oP (1)OP (1)
P→

0, and Σ̂γdi − λ̂idi
P→ Σγdi − λidi = 0.

c) If n is large, then d̂i ≡ d̂i,n is arbitrarily close to either di or −di, and
the result follows.

Rule of thumb 7.1. To use CCA, assume the DD plot and subplots
of the scatterplot matrix are linear. Want n > 10p for classical CCA and
n > 20p for robust CCA that uses FCH, RFCH or RMVN. Also make the
DD plot for the y variables and the DD plot for the z variables.

Definition 7.1. Let the dispersion matrix be Cov(x) = Σx. Let (λi, ei)
and (λi, gi) be the eigenvalue eigenvector pairs of ΣA and ΣB . The kth pair
of population canonical variables is

Uk = aT
k w = eT

k Σ
−1/2
11 w and Vk = bT

k y = gT
k Σ

−1/2
22 y

for k = 1, ..., m. Then the population canonical correlations ρk = corr(Uk, Vk)
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=
√
λk for k = 1, ..., m. The vectors ak = Σ

−1/2
11 ek and bk = Σ

−1/2
22 gk are the

kth canonical correlation coefficient vectors for w and y.

Theorem 7.2. Johnson and Wichern (1988, p. 440-441): Let the dis-
persion matrix be Cov(x) = Σx. Then V (Uk) = V (Vk) = 1, Cov(Ck, Dj) =
corr(Ck, Dj) = 0 for k 6= j where Ck = Uk or Ck = Vk, and Dj = Uj or
Dj = Vj and j, k = 1, ..., m. That is, Uk is uncorrelated with Vj and Uj

for j 6= k, and Vk is uncorrelated with Vj and Uj for j 6= k. The first pair
of canonical variables is the pair of linear combinations (U, V ) having unit
variances that maximizes corr(U, V ) and this maximum is corr(U1, V1) = ρ1.
The ith pair of canonical variables are the linear combinations (U, V ) with
unit variances that maximize corr(U, V ) among all choices uncorrelated with
the previous k − 1 canonical variable pairs.

Definition 7.2. Suppose standardized data z = (wT ,yT )T is used and
the dispersion matrix is the correlation matrix Σ = ρ. Hence Σii = ρii
for i = 1, 2. Let (λi, ei) and (λi, gi) be the eigenvalue eigenvector pairs of ΣA

and ΣB . The kth pair of population canonical variables is

Uk = aT
k w = eT

k Σ
−1/2
11 w and Vk = bT

k y = gT
k Σ

−1/2
22 y

for k = 1, ..., m for k = 1, ..., m. Then the population canonical correlations
ρk = corr(Uk , Vk) =

√
λk for k = 1, ..., m.

Then Theorem 7.2 holds for the standardized data and the canonical
correlations are unchanged by the standardization.

Let

Σ̂ =

(
Σ̂11 Σ̂12

Σ̂21 Σ̂22

)
.

Define estimators Σ̂a, Σ̂A, Σ̂b and Σ̂B in the same manner as their population

analogs but using Σ̂ instead of Σ. For example, Σ̂a = Σ̂
−1

11 Σ̂12Σ̂
−1

22 Σ̂21.
Let Σ̂a have eigenvalue eigenvector pairs (λ̂i, âi), and let Σ̂A have eigen-

value eigenvector pairs (λ̂i, êi) for i = 1, ..., m. Let Σ̂b have eigenvalue eigen-
vector pairs (λ̂1, b̂1), and let Σ̂B have eigenvalue eigenvector pairs (λ̂i, ĝi) for
i = 1, ..., q. For these four matrices λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂m.

Definition 7.3. Let Σ̂ = S if data x = (wT ,yT )T is used, and let
Σ̂ = R if standardized data z = (wT ,yT )T is used. The kth pair of sample
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canonical variables is

Ûk = âT
k w = êT

k Σ̂
−1/2

11 w and V̂k = b̂
T

k y = ĝT
k Σ̂

−1/2

22 y

for k = 1, ..., m. Then the sample canonical correlations ρ̂k = corr(Ûk , V̂k)

=
√
λ̂k for k = 1, ..., m. The vectors âk = Σ̂

−1/2

11 êk and b̂k = Σ̂
−1/2

22 ĝk are
the kth sample canonical correlation vectors for w and y.

Theorem 7.3. Under the conditions of Definition 7.3, the first pair of
canonical variables (Û1, V̂1) is the pair of linear combinations (Û , V̂ ) having
unit sample variances that maximizes the sample correlation corr(Û , V̂ ) and
this maximum is corr(Û1, V̂1) = ρ̂1. The ith pair of canonical variables are
the linear combinations (Û , V̂ ) with unit sample variances that maximize
the sample corr(Û , V̂ ) among all choices uncorrelated with the previous k−1
canonical variable pairs.

7.2 Robust CCA

The R function cancor does classical CCA and the mpack function rcancor

does robust CCA by applying cancor on the RMVN set: the subset of the
data used to compute RMVN.

Some theory is simple: the FCH, RFCH and RMVN methods of RCCA
produce consistent estimators of the kth canonical correlation ρk on a large
class of elliptically contoured distributions.

To see this, suppose Cov(x) = cxΣ and C ≡ C(X)
P→ cΣ where

cx > 0 and c > 0 are some constants. Then C−1
XXCXY C−1

Y Y CY X
P→ ΣA =

Σ−1
XXΣXY Σ−1

Y Y ΣY X , and C−1
Y Y CY XC−1

XXCXY
P→ ΣB = Σ−1

Y Y ΣY XΣ−1
XXΣXY .

Note that ΣA and ΣB only depend on Σ and do not depend on the constants
c or cx.

(If C is also the classical covariance matrix applied to some subset of
the data, then the correlation matrix G ≡ RC applied to the same subset

satisfies G−1
XXGXY G−1

Y Y GY X
P→ RA = R−1

XXRXY R−1
Y Y RY X , and

G−1
Y Y GY XG−1

XXGXY
P→ RB = R−1

Y Y RY XR−1
XXRXY .)

Since eigenvalues are continuous functions of the associated matrix, and
the FCH, RFCH and RMVN estimators are consistent estimators of c1Σ, c2Σ
and c3Σ on a large class of elliptically contoured distributions, Theorem
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7.1 holds, so these three RCCA methods and rcancor produce consistent
estimators the kth canonical correlation ρk on that class of distributions.

Example 7.1. Example 2.2 describes the mussel data. Log transforma-
tion were taken on muscle mass M , shell width W and on the shell mass
S. Then x contained the two log mass measurements while y contains L, H
and log(W ). The robust and classical CCAs were similar, but the canonical
coefficients were difficult to interpret since log(W ) has different units than
L and H. Hence the log transformation were taken on all five variables and
output is shown below.

The data set zm contains x and y, and the DD plot showed case 48 was
separated from the bulk of the data, but near the identity line. The DD plot
for x showed two cases, 8 and 48, were separated from the bulk of the data.
Also the plotted points did not cluster tightly about the identity line. The
DD plot for y looked fine. The classical CCA produces output $cor, $xcoef
and $ycoef. These are the canonical correlations, the ai and the bi. The
labels for the RCCA are $out$cor, $out$xcoef and $out$ycoef.

Note that the first correlation was about 0.98 while the second correlation
was small. The RCCA is the CCA on the RMVN data set, which is contained
in a compact ellipsoidal region. The variability of the truncated data set is
less than that of the entire data set, hence expect the robust ai and bi to
be larger in magnitude, ignoring sign, than that of the classical ai and bi,
since the variance of each canonical variate is equal to one, and RCCA uses
the truncated data. Note that a1 was roughly proportional to log(S) while
b1 gave slightly higher weight for log(H) then log(W ) and then log(L). Note
that the five variables have high pairwise correlations, so log(M) was not
important given that log(S) was in x. The second pair (a2, b2) might be
ignored since the second canonical correlation was very low.

> cancor(x,y)

$cor

[1] 0.9818605 0.1555381

$xcoef

[,1] [,2]

S 0.12650486 0.4077765

M 0.01897332 -0.4872522
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$ycoef

[,1] [,2] [,3]

L 0.1567463 0.7277888 2.1935890

W 0.1605139 0.8650480 -1.0676419

H 0.2143781 -2.0634587 -0.8303862

$xcenter

S M

4.563856 2.850187

$ycenter

L W H

5.472944 3.697654 4.723295

> rcancor(x,y)

$out

$out$cor

[1] 0.98596703 0.06797587

$out$xcoef

[,1] [,2]

S 0.14966183 0.6460117

M 0.03236328 -0.8543387

$out$ycoef

[,1] [,2] [,3]

L 0.1625452 0.4237524 -2.8492678

W 0.2369692 1.5379681 0.9356495

H 0.2530324 -2.6806462 1.7785931

$out$xcenter

S M

4.651941 2.948571

$out$ycenter

L W H

5.496255 3.728292 4.745839
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7.3 Summary

1) Let x be the p × 1 vector of predictors, and partition x = (wT ,yT )T

where w is m × 1 and y is q × 1 where m = p − q ≤ q and m, q ≥ 2.
Canonical correlation analysis (CCA) seeks m pairs of linear combinations
(aT

1 w, bT
1 y), ..., (aT

mw, bT
my) such that corr(aT

i w, bT
i y) is large under some

constraints on the ai and bi where i = 1, ..., m. The first pair (aT
1 w, bT

1 y) has
the largest correlation. The next pair (aT

2 w, bT
2 y) has the largest correlation

among all pairs uncorrelated with the first pair and the process continues so
that (aT

mw, bT
my) is the pair with the largest correlation that is uncorrelated

with the first m− 1 pairs. The correlations are called canonical correlations
while the pairs of linear combinations are called canonical variables.

2) R output is shown in symbols for the following table.

corr
ρ̂1 · · · ρ̂1

wcoef
w â1 · · · âm

ycoef

y b̂1 · · · b̂m · · · b̂q

64) $out$cor

[1] 0.98596703 0.06797587 $out$ycoef

$out$xcoef [,1] [,2] [,3]

[,1] [,2] L 0.1625452 0.4237524 -2.8492678

S 0.14966183 0.6460117 W 0.2369692 1.5379681 0.9356495

M 0.03236328 -0.8543387 H 0.2530324 -2.6806462 1.7785931

3) Some notation is needed to explain CCA. Let the p×p positive definite
symmetric dispersion matrix

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Let J = Σ
−1/2
11 Σ12Σ

−1/2
22 . Let Σa = Σ−1

11 Σ12Σ
−1
22 Σ21, ΣA = JJT =

Σ
−1/2
11 Σ12Σ

−1
22 Σ21Σ

−1/2
11 , Σb = Σ−1

22 Σ21Σ
−1
11 Σ12 and ΣB = JT J =

Σ
−1/2
22 Σ21Σ

−1
11 Σ12Σ

−1/2
22 . Let ei and gi be sets of orthonormal eigenvectors,

so eT
i ei = 1, eT

i ej = 0 for i 6= j, gT
i gi = 1 and gT

i gj = 0 for i 6= j. Let the
ei be m× 1 while the gi are q × 1.

Let Σa have eigenvalue eigenvector pairs (λ1,a1), ..., (λm,am) where λ1 ≥
λ2 ≥ · · · ≥ λm. Let ΣA have eigenvalue eigenvector pairs (λi, ei) for i =
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1, ..., m. Let Σb have eigenvalue eigenvector pairs (λ1, b1), ..., (λq, bq). Let
ΣB have eigenvalue eigenvector pairs (λi, gi) for i = 1, ..., q. It can be shown
that the m largest eigenvalues of the four matrices are the same. Hence
λi(Σa) = λi(ΣA) = λi(Σb) = λi(ΣB) ≡ λi for i = 1, ..., m. It can be shown

that ai = Σ
−1/2
11 ei and bi = Σ

−1/2
22 gi. The eigenvectors ai are not necessarily

orthonormal and the eigenvectors bi are not necessarily orthonormal.
Theorem 7.1. Assume the p×p dispersion matrix Σ is positive definite.

Assume Σ11,Σ22,ΣA,Σa,ΣB and Σb are positive definite and that Σ̂
P→ cΣ

for some constant c > 0. Let di be an eigenvector of the corresponding ma-
trix. Hence di = ai, bi, ei or gi. Let (λ̂i, d̂i) be the ith eigenvalue eigenvector
pair of Σ̂γ.

a) Σ̂γ
P→ Σγ and λ̂i(Σ̂γ)

P→ λi(Σγ) = λi where γ = A, a,B or b.

b) Σγd̂i − λid̂i
P→ 0 and Σ̂γdi − λ̂idi

P→ 0.
c) If the jth eigenvalue λj is unique where j ≤ m, then the absolute value

of the correlation of d̂j with dj converges to 1 in probability: |corr(d̂j,dj)| P→
1.

7.4 Complements

Muirhead and Waternaux (1980) shows that if the population canonical cor-
relations ρk are distinct and if the underlying population distribution has a
finite fourth moments, then the limiting joint distribution of

√
n(ρ̂2

k − ρ2
k)

is multivariate normal where the ρ̂k are the classical sample canonical cor-
relations and k = 1, ..., p. If the data are iid from an elliptically contoured
distribution with kurtosis 3κ, then the limiting joint distribution of

√
n

ρ̂2
k − ρ2

k

2ρk(1 − ρ2
k)

for k = 1, ..., p is Np(0, (κ + 1)Ip). Note that κ = 0 for multivariate normal
data.

Alkenani and Yu (2012), Zhang (2011) and Zhang, Olive and Ye (2012)
develop robust CCA based on FCH, RFCH and RMVN.

7.5 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
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FUL.

7.1∗. Examine the R output in Example 7.1. a) What is the first canon-
ical correlation ρ̂1?

b) What is â1?
c) What is b̂1?

7.2. The R output below is for a canonical correlation analysis on Ven-
ables and Ripley (2003) CPU data. The variables were syct = log(cycle time
+ 1),
mmin = log(minimum main memory + 1),
chmin = log(minimum number of channels + 1),
chmax = log(maximum number of channels + 1),
perf = log(published performance + 1) and
estperf = 20/

√
(estimated performance+1). These six variables had a linear

scatterplot matrix and DD plot and similar variances. Want to compare the
two performance variables with the four remaining variables.

a) What is the first canonical correlation ρ̂1?

b) What is â1?

c) What is b̂1?

d) Interpret the second canonical variable U2 = âT
2 w.

> cancor(w,y)

$cor

[1] 0.8769433 0.2278554

$xcoef
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[,1] [,2]

perf 0.02536432 0.1558717

estperf -0.04121870 0.1431100

$ycoef

[,1] [,2] [,3] [,4]

syct -0.013613254 0.05700360 0.089757416 -0.011423664

mmin 0.037485282 -0.01874858 0.084442460 0.005859654

chmin 0.006932264 0.09843612 -0.021782624 0.090756713

chmax 0.019998948 0.01159728 0.007855559 -0.094198608

7.3. Edited SAS output for SAS Institute (1985, p. 146) Fitness Club
Data is given below for CCA. Three physiological and three exercise variables
measured on 20 middle aged men at a fitness club.

a) What is the first canonical correlation ρ̂1?

b) What is â1?

c) What is b̂1?

Canonical

Correlation

0.7956

0.2006

0.0726
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Raw Canonical Coefficients for the Physiological Variables

PHYS1 PHYS2 PHYS3

weight -0.0314 -0.0763 -0.0077

waist 0.0493 0.3687 0.1580

pulse -0.0082 -0.0321 0.1457

Raw Canonical Coefficients for the Exercise Variables

Exer1 Exer2 Exer3

chinups -0.0661 -0.0714 -0.2428

situps -0.0168 0.0020 0.0198

jumps 0.0140 0.0207 -0.0082

7.4. The output below is for a canonical correlations analysis on the R
Seatbelts data set where y1 = drivers = number of drivers killed or seriously
injured, y2 = front = number of front seat passengers killed or seriously
injured, and y3 = rear = number of back seat passengers killed or seriously
injured, x1 = kms = distance driven, x2 = PetrolPrice = petrol price and
x3 = V anKilled = number of van drivers killed. The data consists of 192
monthly totals in Great Britain from January 1969 to December 1984.

a) What is the first canonical correlation ρ̂1?

b) What is â1?

c) What is b̂1?

d) Let z = (xT ,yT )T . The from the DD plot, the zi appeared to follow
a multivariate normal distribution. Sketch the DD plot.

> rcancor(x,y)

$out

$out$cor
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[1] 0.8116953 0.5064619 0.1376399

$out$xcoef

[,1] [,2] [,3]

x.kms -2.080206e-05 -0.0000233873 -2.259723e-06

x.PetrolPrice -1.847967e+00 3.7173715818 5.292041e+00

x.VanKilled 1.597620e-03 -0.0168450843 1.673662e-02

$out$ycoef

[,1] [,2] [,3]

y.drivers 1.678751e-06 -2.487259e-05 0.0004717902

y.front 5.594715e-04 -7.797027e-05 -0.0008157585

y.rear -9.964980e-04 -7.521578e-04 0.0005045756

7.5. The R output below is for a canonical correlation analysis on some
iris data. An iris is a flower, and there were 50 observations with 4 variables
sepal length, sepal width, petal length and petal width.

a) What is the first canonical correlation ρ̂1?

b) What is â1?

c) What is b̂1?

w<-iris3[,,3]

x <- w[,1:2]

y <- w[,3:4]

cancor(x,y)

$cor

[1] 0.8642869 0.4836991

$xcoef

[,1] [,2]

Sepal L. -0.223034210 -0.1186117
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Sepal W. -0.006920448 0.4980378

$ycoef

[,1] [,2]

Petal L. -0.257853414 -0.09094352

Petal W. -0.006108292 0.54939125



Chapter 8

Discriminant Analysis

8.1 Introduction

Definition 8.1. In supervised classification, there are k known groups and m
cases. Each case is assigned to exactly one group based on its measurements
wi.

Suppose there are k populations or groups where k ≥ 2. Assume that for
each population there is a probability density function (pdf) fj(z) where z

is a p× 1 vector and j = 1, ..., k. Hence if the random vector x comes from
population j, then x has pdf fj(z). Assume that there is a random sample of
nj cases x1,j, ...,xnj ,j for each group. Let (xj,Sj) denote the sample mean
and covariance matrix for each group. Let wi be a new p× 1 random vector
from one of the k groups, but the group is unknown. Usually there are many
wi, and discriminant analysis attempts to allocate the wi to the correct
groups.

Definition 8.2. The maximum likelihood discriminant rule allocates case
w to group a if f̂a(w) maximizes f̂j(w) for j = 1, ..., k.

For the following rules, assume that costs of correct and incorrect allo-
cation are unknown or equal, and assume that the probabilities ρa(wi) that
wi is in group a are unknown or equal: ρa(wi) = 1/k for a = 1, ..., k. Often
it is assumed that the k groups have the same covariance matrix Σx. Then

178
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the pooled covariance matrix estimator is

Spool =
1

n− k

k∑

j=1

(nj − 1)Sj

where n =
∑k

j=1 nj. Let (µ̂j , Σ̂j) be the estimator of multivariate location
and dispersion for the jth group, eg the sample mean and sample covariance
matrix (µ̂j, Σ̂j) = (xj,Sj).

Definition 8.3. Assume the population dispersion matrices are equal:
Σj ≡ Σ for j = 1, ..., k. Let Σ̂pool be an estimator of Σ. Then the linear
discriminant rule is allocate w to the group with the largest value of

dj(w) = µ̂T
j Σ̂

−1

poolw − 1

2
µ̂T

j Σ̂
−1

poolµ̂j = α̂j + β̂
T

j w

where j = 1, ..., k. Linear discriminant analysis (LDA) uses (µ̂j, Σ̂pool) =
(xj,Spool).

Definition 8.4. The quadratic discriminant rule is allocate w to the
group with the largest value of

Qj(w) =
−1

2
log(|Σ̂j|) −

1

2
(w − µ̂j)

T Σ̂
−1

j (w − µ̂j)

where j = 1, ..., k. Quadratic discriminant analysis (QDA) uses (µ̂j, Σ̂j) =
(xj,Sj).

Definition 8.5. The distance discriminant rule allocates w to the group

with the smallest squared distance D2
w(µ̂j , Σ̂j) = (w − µ̂j)

T Σ̂
−1

j (w − µ̂j)
where j = 1, ..., k.

Definition 8.6. Assume that k = 2 and that there is a group 0 and a
group 1. Let ρ(w) = P (w ∈ group 1). Let ρ̂(w) be the logistic regression
estimate of ρ(w). The logistic regression discriminant rule allocates w to
group 1 if ρ̂(w) ≥ 0.5 and allocates w to group 0 if ρ̂(w) < 0.5. Logistic

regression produces an estimated sufficient predictor ESP = α̂+ β̂
T
w. Then

ρ̂(w) =
eESP

1 + eESP
=

exp(α̂+ β̂
T
w)

1 + exp(α̂ + β̂
T
w)

.
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Let Yi = j if case i is in group j for j = 0, 1. Then a response plot is a
plot of ESP versus Yi (on the vertical axis) with ρ̂(xi) ≡ ρ̂(ESP ) added
as a visual aid where xi is the vector of predictors for case i. Also divide
the ESP into J slices with approximately the same number of cases in each
slice. Then compute the sample mean = sample proportion in slice s: ρ̂s =
Y s =

∑
s Yi/ms where ms is the number of cases in slice s. Then plot the

resulting step function as a visual aid. If n0 and n1 are the sample sizes of
both groups and ni > 5p, then the logistic regression model was useful if the
step function of observed slice proportions scatter fairly closely about the
logistic curve ρ̂(ESP ).

Examining some of the rules for k = 2 and one predictor w is informative.
First, assume group 2 has a uniform(−10,10) distribution and group 1 has
a uniform(a− 1, a + 1) distribution. If a = 0 is known, then the maximum
likelihood discriminant rule assigns w to group 1 if −1 < w < 1 and assigns
w to group 2, otherwise. This occurs since f2(w) = 1/20 for −10 < w < 10
and f2(w) = 0, otherwise, while f1(w) = 1/2 for −1 < w < 1 and f1(w) = 0,
otherwise. For the distance rule, the distances are basically the absolute
value of the z-score. Hence D1(w) ≈ 1.732|w − a| and D2(w) ≈ 0.1732|w|.
If w is from group 1, then w will not be classified very well unless |a| ≥ 10
or if w is very close to a. In particular, if a = 0 then expect nearly all w
to be classified to group 2 if w is used to classify the groups. On the other
hand, if a = 0, then D1(w) is small for w in group 1 but large for w in group
2. Hence using z = D1(w) in the distance rule would result in classification
with low error rates.

Similarly if group 2 comes from a Np(0, 10Ip) distribution and group 1
comes from a Np(µ, Ip) distribution, the maximum likelihood rule will tend
to classify w in group 1 if w is close to µ and to classify w in group 2
otherwise. The two misclassification error rates should both be low. For the
distance rule, the distances Di have an approximate χ2

p distribution if w is
from group i. If covering ellipsoids from the two groups have little overlap,
then the distance rule does well. If µ = 0, then expect all w to be classified
to group 2 with the distance rule, but D1(w) will be small for w from group
1 and large for w from group 2, so using the single predictor z = D1(w)
in the distance rule would result in classification with low error rates. More
generally, if group 1 has a covering ellipsoid that has little overlap with the
observations from group 2, using the single predictor z = D1(w) in the
distance rule should result in classification with low error rates even if the
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observations from group 2 do not fall in an ellipsoidal region.
Now suppose the k groups come from the same family of elliptically con-

toured EC(µj,Σj , g) distributions where g is a decreasing function that does
not depend on j for j = 1, ..., k. For example, could have w ∼ Np(µj ,Σj).
Using Equation (3.5), log(fj(w)) =

log(kp) −
1

2
log(|Σj)|) + log(g[(w − µj)

T Σ−1
j (w − µj)]) =

log(kp) −
1

2
log(|Σj)|) + log(g[D2

w(µj,Σj)]).

Hence the maximum likelihood rule leads to the quadratic rule if the k groups
have Np(µj,Σj) distributions, and the maximum likelihood rule leads to
the distance rule if the groups have dispersion matrices that have the same
determinant: det(Σj) = |Σj| ≡ |Σ| for j = 1, ..., k. This is a much weaker
assumption that of equal dispersion matrices. For example, let cXΣj be the
covariance matrix of x, and let Γj be an orthogonal matrix. Then y = Γjx

corresponds to rotating x, and cXΓjΣjΓ
T
j is the covariance matrix of y with

|Cov(x)| = |Cov(y)|.
Note that if the k groups come from the same family of elliptically

contoured EC(µj,Σj , g) distributions with nonsingular covariance matrices
cXΣj, then D2

w(xj ,Sj) is a consistent estimator of D2
w(µj,Σj)/cX . Hence

the distance rule using (xj,Sj) is a maximum likelihood rule if the Σj have
the same determinant.

Now D2
w(µj ,Σj) = wTΣ−1

j w − wT Σ−1
j µj − µT

j Σ−1
j w + µT

j Σ−1
j µj =

wTΣ−1
j w − 2µT

j Σ−1
j w +µT

j Σ−1
j µj = wT Σ−1

j w + µT
j Σ−1

j (−2w + µj). Hence

if Σj ≡ Σ for j = 1, ..., k, then want to minimize µT
j Σ−1

j (−2w + µj) or

maximize µT
j Σ−1(2w −µj), which is leads to the linear discriminant rule.

The maximum likelihood rule is robust to nonnormality, but it is difficult
to estimate f̂j(w) if p > 1. The linear discriminant rule and distance rule
are robust to nonnormality, as is the logistic regression discriminant rule if
k = 2. Expect the distance rule to be best when the ellipsoidal covering
regions of the k groups have little overlap.

Rule of thumb 8.1. Use the distance rule if nj > 10p for j = 1, ..., k.
Make the k DD plots using the xi,j for each group to check for outliers, which
could be cases that were incorrectly classified. If the distance rule error rates
are very poor for some groups and very good for others, compute zj = Dj , the
distances for all n cases based on the jth group, where j = 1, ..., k. Since the
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zj may be highly correlated, use no more than k − 1 of the zj as predictors.
The error rates computed using the data xi,j with known groups give a lower
bound on the error rates for the wi. That is, the error rates computed on
the training data xi,j are optimistic. When the discriminant rule is applied
to the m wi where the groups are unknown, the error rates will be higher. If
equal covariance matrices are assumed, plot Di(xj,Sj) versus Di(xj ,Σpool)
for each of the k groups, where the xi,j are used for i = 1, ..., nj. The plotted
points should cluster tightly about the identity line if nj is large in each of
the k plots if the assumption is reasonable. The linear discriminant rule has
some robustness against the assumption of equal covariance matrices.

8.2 Two New Methods

Assume the k groups come from k distributions where the prediction regions
from Section 5.2 are reasonable. For example, the jth group may have nj

cases that are iid ECp(µj ,Σj, gj) for j = 1, ..., k. That is, there may be
k different elliptically contoured distributions with different location vectors
and dispersion matrices.

Two new methods of discriminant analysis will be considered. For each
group, compute Di(j) ≡ Di(xj,Sj) and the maximum distance D(nj )(j)
where i = 1, ..., nj and j = 1, ..., k. Then {z : Dz(j) ≤ D(nj )(j)} is a
covering region for the jth group since the hyperellipsoid contains all nj

cases xi,j from the jth group.
Let w be a new case to be classified. If Dw(j) > D(nj )(j) for all j =

1, ..., k, then both Methods 1 and 2 allocate w to the group a with the
smallest value of

Dw(j)

D(nj )(j)
. (8.1)

Now consider the groups where Dw(j) ≤ D(nj )(j) for at least one j.
Hence w is in at least one of the k covering regions.

For Method 1, allocate w to group a with the smallest Dw(a) for the
groups with Dw(j) ≤ D(nj )(j). Method 1 is very similar to the distance rule,
but when w is in at least one of the k covering regions, distances are only
computed for the groups that have covering regions that contain w. Also,
Equation (8.1) is used instead of the smallest distance if w is not in any of
the k covering regions.
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Method 2 combines Method 1 with a maximum likelihood rule based on
a kernel density estimator of f̂j . For Method 2, if there is only one group a

where Dw(a) ≤ D(na)(a), allocate w to group a. Otherwise compute f̂j(w)
for the groups where Dw(j) ≤ D(nj )(j) and allocate w to the group a with

the largest f̂a(w).

Note: To find the zj of Rule of thumb 8.1, find Dh(j) using all n of the
xi,j, eg stack the xi,j into an n × 1 vector x and compute the Dh(j) for
h = 1, ..., n. These k new predictor variables still have known groups. Find
Dwi(j) for i = 1, ..., m and j = 1, ..., k to create k new predictor variables
for the ith case to be classified. Then input up to k − 1 of these variables,
with or without some of the p original predictor variables, into Method 1 or
2. Section 8.3 will give an example.

8.2.1 The Kernel Density Estimator

Definition 8.7. Let K(z) be a multivariate probability density function.
Then a kernel density estimator is

f̂(z) =
1

n

1

hp

n∑

i=1

K

(
1

h
(z − xi)

)

where there are n iid cases xi that come from a population with unknown
pdf f(z).

For example, the uniform distribution on the unit hypersphere has

K(z) =
pΓ(p/2)

2πp/2
I(zT z ≤ 1)

so

f̂ (z) =
pΓ(p/2)

2πp/2

1

n

1

hp

n∑

i=1

I(‖z − xi‖2 ≤ h2).

Following Silverman (1986, p. 84), want the bias and variance of f̂ to
go to 0 as n → ∞, and this will happen if h → 0 and nhp → ∞. The

asymptotically optimal value of h satisfies hopt ∝
1

n
1

p+4

.

Now suppose x1, ...,xn are iid from a multivariate distribution with pdf
f , and consider a hypersphere of radius r centered at w where r is small
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enough so that if z is in the hypersphere, then f(z) ≈ f(w). Then the
probability that an observation xi falls in the hypersphere ≈ f(w) (volume

of the hypersphere) = f(w)
2πp/2

pΓ(p/2)
rp ∝ rp. Hence the number of xi in the

hypersphere ∝ nrp. If r = hopt then this number is ∝ n
4

4+p . If r = h ∝ n
1
2p ,

then the number of cases that fall in the hypersphere is proportional to
√
n.

To define the kernel density estimator used in Method 2, let vj = d2√nje
and let r2

j = ‖xi,j − xj‖2
(vj)

= D2
(vj )(xj , Ip) where the nh xi,j are in group j.

Hence the hypersphere centered at xj with radius rj contains ≈ 2
√
n of the

xi,j in group j. Then the kernel density estimator used in Method 2 is

f̂j(w) =
pΓ(p/2)

2πp/2

1

nj

1

(rj)p

nj∑

i=1

I(‖w − xi,j‖2 ≤ r2
j )

which is equal to the number of the xi,j in the hypersphere of radius rj

centered at w divided by njVrj where Vrj is the volume of the hypersphere.
The main reasons for using this kernel density estimator are that it is

simple to explain, fast to compute and does not use too few observations
when p > 4. Since kernel density estimators do not work well for p >
1, speed is more important than asymptotic optimality. Also only need a
crude estimator since if fa(w) is the pdf that maximizes fj(w), only need

f̂a(w) to maximize the f̂j(w): hence extremely accurate estimators of the
fj(w) are not needed. Using good predictors with p small is important since
the performance of kernel density estimators decreases very rapidly as the
number of predictors increases. See Silverman (1986, p. 94).

8.3 Some Examples

The mpack functions ddiscr and ddiscr2 do discriminant analysis using
Methods 1 and 2. The functions need x: the training data that has been
classified into k groups, w: the data to be classified, group: a vector of
integers where the ith element is j if the ith element of x is in group j, and
xwflag which is set equal to T if w = x and to F if w 6= x. Each row of w
and x corresponds to a case. The functions return the distances of the x and
w computed for the k groups, the classifications for the x and w, the error
rates for the x classifications for each group, and the total error rate.
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Example 8.1. Generated n random Np(0, Ip) random variables xi. Then
x was put in group 1 if D2

xi
≤ χ2

p,0.5 and in group 2 otherwise. Expect group
2 to have smaller distances than group 1 so error rate will be near 1 for group
1 and near 0 for group 2. Output is shown below with p = 2 and shows that
this was the case. Then the predictor Di(1) was used in out2, reducing the
dimension from p = 2 to 1. The error rates were low since group 1 falls in
an ellipsoidal region so the distances are a good predictor. Method 2 worked
much better on the raw data and about the same as Method 1 when the
predictor Di(1) was used.

n <- 100

p <- 2

x <- matrix(rnorm(n*p),nrow=n,ncol=p)

group <- 1 + 0*1:n

covv <- diag(p)

mns<- apply(x, 2, mean)

md2 <- mahalanobis(x, center = mns, covv)

group[md2>qchisq(0.5,p)] <- 2

out1 <- ddiscr(x,w=x,group,xwflag=T)

out2<-ddiscr(x=out1$mdx[,1],w=out1$mdw[,1],group,xwflag=T)

out3 <- ddiscr2(x,w=x,group,xwflag=T)

out4<-ddiscr2(x=out1$mdx[,1],w=out1$mdw[,1],group,xwflag=T)

out1$err

[1] 0.9787234 0.0000000

out2$err

[1] 0.08510638 0.01886792

out3$err

[1] 0.0000000 0.1320755

out4$err

[1] 0.04255319 0.05660377

out1$toterr

[1] 0.46

out2$toterr

[1] 0.05

out3$toterr
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[1] 0.07

out4$toterr

[1] 0.05

Example 8.2. Now groups 1 and 2 had ni = 50, and group 1 used
x ∼ Np(0, Ip) while group 2 used x ∼ Np(2 1, Ip). Output is shown
below for p = 2. Now the single predictor D2

i (1) was slightly worse than
using the raw data, and Method 1 was about as good as Method 2, which
is not surprising since both methods approximate the maximum likelihood
discriminant rule when the groups are multivariate normal with the same
covariance matrix.

n <- 100

p <- 2

x <- matrix(rnorm(n*p),nrow=n,ncol=p)

group <- 1 + 0*1:n

group[1:50] <- 1

group[51:100] <- 2

x[51:100,] <- x[51:100,] + c(2,2)

out1 <- ddiscr(x,w=x,group,xwflag=T)

out2<-ddiscr(x=out1$mdx[,1],w=out1$mdw[,1],group,xwflag=T)

out3 <- ddiscr2(x,w=x,group,xwflag=T)

out4<-ddiscr2(x=out1$mdx[,1],w=out1$mdw[,1],group,xwflag=T)

out1$err

[1] 0.12 0.08

out2$err

[1] 0.14 0.10

out3$err

[1] 0.08 0.12

out4$err

[1] 0.14 0.10

library(MASS)

group <- pottery[pottery[,1]!=5,1]

group <- (as.integer(group!=1)) + 1

x <- pottery[pottery[,1]!=5,-1]
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out<-lda(x,group)

1-mean(predict(out,x)$class==group)

[1] 0.03571429

out<-lda(x[,-c(1)],group)

1-mean(predict(out,x[,-c(1)])$class==group)

out<-lda(x[,-c(1,2)],group)

1-mean(predict(out,x[,-c(1,2)])$class==group)

out<-lda(x[,-c(1,2,3)],group)

1-mean(predict(out,x[,-c(1,2,3)])$class==group)

out<-lda(x[,-c(1,2,3,4)],group)

1-mean(predict(out,x[,-c(1,2,3,4)])$class==group)

out<-lda(x[,-c(1,2,3,4,5)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5)])$class==group)

[1] 0.03571429

out<-lda(x[,-c(1,2,3,4,5,6)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,6)])$class==group)

[1] 0.07142857

out<-lda(x[,-c(1,2,3,4,5,7)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7)])$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8)])$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9)])$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10)])$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,11)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,11)])$class==group)

[1] 0.07142857

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12)])$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13)])$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,14)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,14)])$class==

group)

[1] 0.07142857

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,15)])$class==
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group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16)])$

class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17)])$

class==group)

[1] 0.03571429

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17,18)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17,18)])

$class==group)

[1] 0.07142857

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17,19)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17,19)])

$class==group)

[1] 0.03571429

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17,19,20)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17,19,

20)])$class==group)

[1] 0

#x6,x11,x14,x18 seem good for LDA

8.4 Summary

1) In supervised classification, there are k known groups or populations andm
cases. Each case is assigned to exactly one group based on its measurements
wi. Assume that for each population there is a probability density function
(pdf) fj(z) where z is a p × 1 vector and j = 1, ..., k. Hence if the random
vector x comes from population j, then x has pdf fj(z). Assume that there
is a random sample of nj cases x1,j, ...,xnj ,j for each group. Let (xj ,Sj)
denote the sample mean and covariance matrix for each group. Let wi be a
new p×1 random vector from one of the k groups, but the group is unknown.
Usually there are many wi, and discriminant analysis attempts to allocate
the wi to the correct groups.

2) The maximum likelihood discriminant rule allocates case w to group a
if f̂a(w) maximizes f̂j(w) for j = 1, ..., k. This rule is robust to nonnormality
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and the assumption of equal population dispersion matrices, but f̂j is hard
to compute for p > 1.

3) Given the f̂j(w) or a plot of the f̂j(w), determine the maximum like-
lihood discriminant rule.

For the following rules, assume that costs of correct and incorrect allo-
cation are unknown or equal, and assume that the probabilities ρa(wi) that
wi is in group a are unknown or equal: ρa(wi) = 1/k for a = 1, ..., k. Often
it is assumed that the k groups have the same covariance matrix Σx. Then
the pooled covariance matrix estimator is

Spool =
1

n− k

k∑

j=1

(nj − 1)Sj

where n =
∑k

j=1 nj. Let (µ̂j , Σ̂j) be the estimator of multivariate location
and dispersion for the jth group, eg the sample mean and sample covariance
matrix (µ̂j, Σ̂j) = (xj,Sj).

4) Assume the population dispersion matrices are equal: Σj ≡ Σ for

j = 1, ..., k. Let Σ̂pool be an estimator of Σ. Then the linear discriminant
rule is allocate w to the group with the largest value of

dj(w) = µ̂T
j Σ̂

−1

poolw − 1

2
µ̂T

j Σ̂
−1

poolµ̂j = α̂j + β̂
T

j w

where j = 1, ..., k. Linear discriminant analysis (LDA) uses (µ̂j, Σ̂pool) =
(xj,Spool). LDA is robust to nonnormality and somewhat robust to the as-
sumption of equal population covariance matrices.

5) The quadratic discriminant rule is allocate w to the group with the
largest value of

Qj(w) =
−1

2
log(|Σ̂j|) −

1

2
(w − µ̂j)

T Σ̂
−1

j (w − µ̂j)

where j = 1, ..., k. Quadratic discriminant analysis (QDA) uses (µ̂j, Σ̂j) =
(xj,Sj). QDA has some robustness to nonnormality.

6) The distance discriminant rule allocates w to the group with the small-

est squared distance D2
w(µ̂j , Σ̂j) = (w−µ̂j)

T Σ̂
−1

j (w−µ̂j) where j = 1, ..., k.
This rule is robust to nonnormality and the assumption of equal Σj, but needs
nj > 10p for j = 1, ..., k.
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7) Assume that k = 2 and that there is a group 0 and a group 1. Let
ρ(w) = P (w ∈ group 1). Let ρ̂(w) be the logistic regression (LR) estimate of
ρ(w). Logistic regression produces an estimated sufficient predictor ESP =

α̂+ β̂
T
w. Then

ρ̂(w) =
eESP

1 + eESP
=

exp(α̂+ β̂
T
w)

1 + exp(α̂ + β̂
T
w)

.

The logistic regression discriminant rule allocates w to group 1 if ρ̂(w) ≥ 0.5
and allocates w to group 0 if ρ̂(w) < 0.5. Equivalently, the LR rule allocates
w to group 1 if ESP > 0 and allocates w to group 0 if ESP < 0.

8) Let Yi = j if case i is in group j for j = 0, 1. Then a response
plot is a plot of ESP versus Yi (on the vertical axis) with ρ̂(xi) ≡ ρ̂(ESP )
added as a visual aid where xi is the vector of predictors for case i. Also
divide the ESP into J slices with approximately the same number of cases in
each slice. Then compute the sample mean = sample proportion in slice s:
ρ̂s = Y s =

∑
s Yi/ms where ms is the number of cases in slice s. Then plot

the resulting step function as a visual aid. If n0 and n1 are the sample sizes
of both groups and ni > 5p, then the logistic regression model was useful
if the step function of observed slice proportions scatter fairly closely about
the logistic curve ρ̂(ESP ). If the LR response plot is good, n0 > 5p and
n1 > 5p, then the LR rule is robust to nonnormality and the assumption of
equal population dispersion matrices. Know how to tell a good LR response
plot from a bad one.

9) Given LR output, as shown below in symbols and for a real data set,
and given x to classify, be able to a) compute ESP, b) classify x in group 0
or group 1, c) compute ρ̂(x).

Label Estimate Std. Error Est/SE p-value
Constant α̂ se(α̂) zo,0 for Ho: α = 0

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) for Ho: β1 = 0
...

...
...

...
...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) for Ho: βp = 0

Binomial Regression Kernel mean function = Logistic

Response = Status Terms = (Bottom Left) Trials = Ones

Coefficient Estimates
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Label Estimate Std. Error Est/SE p-value

Constant -389.806 104.224 -3.740 0.0002

Bottom 2.26423 0.333233 6.795 0.0000

Left 2.83356 0.795601 3.562 0.0004

10) Suppose there is training data xij for i = 1, ..., nj for group j. Hence
it is known that xij came from group j where there are k ≥ 2 groups. Use
the discriminant analysis method to classify the training data. If mj of the nj

group j cases are correctly classified, then the apparent error rate for group
j is 1 − mj/nj . If mA =

∑k
j=1mj of the n =

∑k
j=1 nj cases were correctly

classified. Then the apparent error rate AER = 1 −mA/n.
11) For the ddiscr method, get the apparent error rate for each of the

k groups with the following commands. Replace ddiscr by ddiscr2 for the
ddiscr2 method.

out1 <- ddiscr(x,w=x,group,xwflag=T)

out1$err

Get apparent error rates for ddiscr, LDA and QDA with the following com-
mands.

out1 <- ddiscr(x,w=x,group,xwflag=T)

out1$toterr

out2 <- lda(x,group)

1-mean(predict(out2,x)$class==group)

out3 <- qda(x,group)

1-mean(predict(out3,x)$class==group)

Get the AERs for the methods that use variables x1, x3 and x7 with the
following commands.

out <- ddiscr(x[,c(1,3,7)],w=x[,c(1,3,7)],group,xwflag=T)

out$toterr

out <- lda(x[,c(1,3,7)],group)

1-mean(predict(out,x[,c(1,3,7)])$class==group)
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out <- qda(x[,c(1,3,7)],group)

1-mean(predict(out,x[,c(1,3,7)])$class==group)

Get the AERs for the methods that leave out variables x1, x4 and x5 with
the following commands.

out <- ddiscr(x[,-c(1,4,5)],w=x[,-c(1,4,5)],group,xwflag=T)

out$toterr

out <- lda(x[,-c(1,4,5)],group)

1-mean(predict(out,x[,-c(1,4,5)])$class==group)

out <- qda(x[,-c(1,4,5)],group)

1-mean(predict(out,x[,-c(1,4,5)])$class==group)

12) Expect the apparent error rate to be too low: the method works
better on the training data than on the new data to be classified.

13) Cross validation (CV): for i = 1, ..., n where the training data has n
cases, compute the discriminant rule with case i left out and see if the rule
correctly classifies case i. Let mC be the number of cases correctly classified.
Then the CV error rate is 1 −mC/n.

14) Suppose the training data has n cases. Randomly select a subset L of
m cases to be left out when computing the discriminant rule. Hence n −m
cases are used to compute the discriminant rule. Let mL be the number of
cases from subset L that are correctly classified. Then the “leave a subset
out” error rate is 1 −mL/m. Here m should be large enough to get a good
rate. Often m uses between 0.1n and 0.5n.

15) Variable selection is the search for a subset of variables that does a
good job of classification.

16) Forward selection: suppose X1, ..., Xp are variables.
Step 1) Choose variable W1 = X1 that minimizes the AER.
Step 2) Keep W1 in the model, and add variable W2 that minimizes the

AER. So W1 and W2 are in the model at the end of Step 2).
Step k) Have W1, ...,Wk−1 in the model. Add variable Wk that minimizes

the AER. So W1, ...,Wk are in the model at the end of Step k).
Step p) W1, ...,Wp = X1, ..., Xp, so all p variables are in the model.
17) Backward elimination: suppose X1, ..., Xp are variables.
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Step 1) W1, ...,Wp = X1, ..., Xp, so all p variables are in the model.
Step 2) Delete variable Wp = Xj such that the model with p−1 variables

W1, ...,Wp−1 minimizes the AER.
Step 3) Delete variableWp−1 = Xj such that the model with p−2 variables

W1, ...,Wp−2 minimizes the AER.
Step k) W1, ...,Wp−k+2 are in the model. Delete variable Wp−k+2 = Xj

such that the model with p − k + 1 variables W1, ...,Wp−k+1 minimizes the
AER.

Step p) Have W1 and W2 in the model. Delete variable W2 such that the
model with 1 variable W1 minimizes the AER.

18) Other criterion can be used and proc stepdisc in SAS does variable
selection.

19) In R, using LDA, leave one variable out at a time as long as the AER
does not increase much, to find a good subset quickly.

8.5 Complements

For k = 2, an alternative to the logistic regression model is the discriminant
function model. See Hosmer and Lemeshow (2000, p. 43–44). Assume that
ρj = P (Y = j) and that x|Y = j ∼ Nk(µj ,Σ) for j = 0, 1. That is,
the conditional distribution of x given Y = j follows a multivariate normal
distribution with mean vector µj and covariance matrix Σ which does not
depend on j. Notice that Σ = Cov(x|Y ) 6= Cov(x). Then as for the logistic
regression model,

P (Y = 1|x) = ρ(x) =
exp(α + βT x)

1 + exp(α + βT x)
.

Definition 8.8. Under the conditions above, the discriminant func-
tion parameters are given by

β = Σ−1(µ1 − µ0) (8.2)

and

α = log

(
ρ1

ρ0

)
− 0.5(µ1 − µ0)

T Σ−1(µ1 + µ0).



CHAPTER 8. DISCRIMINANT ANALYSIS 194

To use Definition 8.8 to simulate logistic regression data, set ρ0 = ρ1 =
0.5, Σ = I, and µ0 = 0. Then α = −0.5µT

1 µ1 and β = µ1. The discrimi-
nant function estimators α̂D and β̂D are found by replacing the population
quantities ρ1, ρ0, µ1, µ0 and Σ by sample quantities. Alternatively, generate
n values of the SPi = α+βT xi, then generate a binomial(1, ρ(SPi)) case for
i = 1, ..., n. This alternative method is useful since the xi need not be from
a multivariate normal distribution.

See Olive (2010: ch. 10, 2013) for more information about logistic regres-
sion and response plots for logistic regression.

Huberty and Olejnik (2006) and McLachlan (2004) are useful references
for discriminant analysis. Silverman (1986,

∮
6.1) and Raveh (1989) are good

references for nonparametric discriminant analysis. Discrimination when p >
n is interesting. See Cai and Liu (2011) and Mai, Zou and Yuan (2012).

Logistic regression is a useful alternative to discriminant analysis when
there are two groups. The distance rule and Methods 1 and 2 can use RFCH
or RMVN to compute (µ̂j, Σ̂j).

Hand (2006) notes that supervised classification is a research area in
statistics, machine learning, pattern recognition, computational learning the-
ory and data mining. Hand (2006) argues that simple classification methods,
such as linear discriminant analysis, are almost as good as more sophisticated
methods such as neural networks and support vector machines.

8.6 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

8.1∗. Assume the cases in each of the k groups are iid from a population
with covariance matrix Σx(j) Find E(Spool) assuming that the k groups
have the same covariance matrix Σx(j) ≡ Σx for j = 1, ..., k.

Logistic Regression Output,

Response = nodal involvement, Terms = (acid size xray)

Label Estimate Std. Error Est/SE p-value

Constant -3.57564 1.18002 -3.030 0.0024

acid 2.06294 1.26441 1.632 0.1028

size 1.75556 0.738348 2.378 0.0174
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xray 2.06178 0.777103 2.653 0.0080

Number of cases: 53, Degrees of freedom: 49, Deviance: 50.660

8.2. Following Collett (1999, p. 11), treatment for prostate cancer
depends on whether the cancer has spread to the surrounding lymph nodes.
Let the response variable = group y = nodal involvement (0 for absence, 1 for
presence). Let x1 = acid (serum acid phosphatase level), x2 = size (= tumor
size: 0 for small, 1 for large) and x3 = xray (xray result: 0 for negative, 1
for positive). Assume the case to be classified has x with x1 = acid = 0.65,
x2 = 0 and x3 = 0.

a) Find ESP for x.
b) Is x classified in group 0 or group 1?
c) Find ρ̂(x).

8.3. Recall that X comes from a uniform(a,b) distribution, written

x ∼ U(a, b), if the pdf of x is f(x) =
1

b− a
for a < x < b and f(x) = 0,

otherwise. Suppose group 1 has X ∼ U(−3, 3), group 2 has X ∼ U(−5, 5),
and group 3 has X ∼ U(−1, 1). Find the maximum likelihood discriminant
rule for classifying a new observation x.

out<-prcomp(state[,1:4],scale=T)

summary(out)

Importance of components: PC1 PC2 PC3 PC4

Standard deviation 1.6040 0.8803 0.6879 0.42318

Proportion of Variance 0.6432 0.1937 0.1183 0.04477

Cumulative Proportion 0.6432 0.8369 0.9552 1.00000

> out<-rprcomp(state[,1:4])

summary(out$out)

Importance of components:

PC1 PC2 PC3 PC4

Standard deviation 1.6705 0.8216 0.59362 0.42645

Proportion of Variance 0.6977 0.1688 0.08809 0.04546

Cumulative Proportion 0.6977 0.8664 0.95454 1.00000

Rotation:PC1 PC2 PC3 PC4

gdp 0.4525021 0.688328888 -0.5429877 -0.1631243
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povrt -0.5563898 -0.016929402 -0.2468286 -0.7932335

unins -0.4442238 0.725197372 0.5076082 0.1381588

lifexp 0.5369706 0.002347129 0.6217506 -0.5701607

out <- lda(state[,1:4],state[,5])

1-mean(predict(out,state[,1:4])$class==state[,5])

[1] 0.3

8.4. The PCA and LDA output above is for the Minor (2012) state data
where gdp = GDP per capita, povrt = poverty rate, unins = 3 year average
uninsured rate 2007-9, and lifexp = life expectancy for the 50 states.

a) How many principal components are needed? Use a 0.9 threshold.

b) Which principal component corresponds to 9 gdp −9 unins −11 povrt
+11 lifeexp?

c) The fifth variable was a 1 if the state was not worker friendly and a 2 if
the state was worker friendly. With these two groups, what was the apparent
error rate (AER) for LDA?

> out <- lda(x,group)

> 1-mean(predict(out,x)$class==group)

[1] 0.02

>

> out<-lda(x[,-c(1)],group)

> 1-mean(predict(out,x[,-c(1)])$class==group)

[1] 0.02

> out<-lda(x[,-c(1,2)],group)

> 1-mean(predict(out,x[,-c(1,2)])$class==group)

[1] 0.04

> out<-lda(x[,-c(1,3)],group)

> 1-mean(predict(out,x[,-c(1,3)])$class==group)

[1] 0.03333333

> out<-lda(x[,-c(1,4)],group)

> 1-mean(predict(out,x[,-c(1,4)])$class==group)

[1] 0.04666667

>

> out<-lda(x[,c(2,3,4)],group)

> 1-mean(predict(out,x[,c(2,3,4)])$class==group)

[1] 0.02
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8.5. The above output is for LDA on the famous iris data set. the
variables are x1 = sepal length, x2 = sepal width, x3 = petal length and
x4 = petal width. These four predictors are in the x data matrix. There are
three groups corresponding to types of iris: setosa versicolor virginica.

a) What is the AER using all 4 predictors?

b) Which variables, if any, can be deleted without increasing the AER in
a)?

R/Splus Problems

Warning: Use the command source(“G:/mpack.txt”) to download
the programs. See Preface or Section 15.2. Typing the name of the
mpack function, eg ddplot, will display the code for the function. Use the
args command, eg args(ddplot), to display the needed arguments for the
function.

8.5. Wisseman, Hopke and Schindler-Kaudelka (1987) pottery data has
36 pottery shards of Roman earthware produced between second century B.C.
and fourth century A.D. Often the pottery was stamped by the manufacturer.
A chemical analysis was done for 20 chemicals (variables), and 28 cases were
classified as Arrentine (group 1) or nonArrentine (group 2), while 8 cases
were of questionable origin. So the training data has n = 28 and p = 20.

a) Copy and paste the R commands for this part into R to make the data
set.

b) Because of the small sample size, LDA should be used instead of QDA,
as in the handout. Nonetheless, variable selection using QDA will be done.
Copy and paste the R commands for this part into R. The first 9 variables
result in no misclassification errors.

c) Now use commands like those shown in this section to delete variables
whose deletion does not result in a classification error. Should get four vari-
ables are needed for perfect classification. What are they (eg X1, X2, X3
and X4)?

8.6. The distance discriminant rule is attractive theoretically as a max-
imum likelihood discriminant rule, but the distance rule does not work well
for groups that have similar means. The ddiscr rule is a modification of the
distance rule, and the ddiscr2 rule tries to use the maximum likelihood rule
where the f̂j are estimated with a kernel density estimator.

The R code for this problem generates N2(0, I) data where group 1 con-
sists of the half set of cases closes to 0 in Mahalanobis distance (an ellipse
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about the origin), and group 2 consists of the remaining cases (the covering
ellipse with inner ellipse removed).

a) Copy and paste the commands to make the data.
b) The commands for this part give the error rate for the ddiscr method

that uses x as the two predictors. Put this output in Word.
c) The commands for this part give the error rate for the ddiscr method

that uses the distances based on group 1 applied to all of the cases as the
predictor. Put this output in Word.

d) The commands for this part give the error rate for the ddiscr2 method
that uses x as the two predictors. Put this output in Word.

e) The commands for this part give the error rate for the ddiscr2 method
that uses the distances based on group 1 applied to all of the cases as the
predictor. Put this output in Word.

f) The commands for this part get the error rate for LDA using x as the
two predictors.

g) The commands for this part get the error rate for QDA using x as the
two predictors.

h) Which method worked the best?



Chapter 9

Hotelling’s T
2 Test

9.1 One Sample

The one sample Hotelling’s T 2 test is used to test H0 : µ = µ0 versus
HA : µ 6= µ0. The test rejects H0 if

T 2
H = n(x − µ0)

T S−1(x − µ0) >
(n− 1)p

n− p
Fp,n−p,1−α

where P (Y ≤ Fp,d,α) = α if Y ∼ Fp,d.
If a multivariate location estimator T satisfies

√
n(T − µ)

D→ Np(0,D),

then a competing test rejects H0 if

T 2
C = n(T −µ0)

T D̂
−1

(T − µ0) >
(n− 1)p

n − p
Fp,n−p,1−α

if H0 holds and D̂ is a consistent estimator of D. The scaled F cutoff can

be used since T 2
C

D→ χ2
p if H0 holds, and

(n− 1)p

n− p
Fp,n−p,1−α → χ2

p,1−α

as n→ ∞. This idea is used for small p by Srivastava and Mudholkar (2001)
where T is the coordinatewise trimmed mean. The one sample Hotelling’s
T 2 test uses T = x, D = Σx and D̂ = S.

199
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The Hotelling’s T 2 test is a large sample level α test in that if x1, ...,xn

are iid from a distribution with mean µ0 and nonsingular covariance matrix
Σx, then the type I error = P(reject H0 when H0 is true) → α as n → ∞.
Want n > 10p if the DD plot is linear through the origin and subplots in the
scatterplot matrix all look ellipsoidal. For any n, there are distributions with
nonsingular covariance matrix where the χ2

p approximation to T 2
H is poor.

Let pval be an estimate of the pvalue. Typically use T 2
C = T 2

H in the
following 4 step test. i) State the hypotheses H0 : µ = µ0 H1 : µ 6= µ0.

ii) Find the test statistic T 2
C = n(T − µ0)

T D̂
−1

(T − µ0).
iii) Find pval =

P

(
T 2

C <
(n− 1)p

n− p
Fp,n−p

)
= P

(
n− p

(n− 1)p
T 2

C < Fp,n−p

)
.

iv) State whether you fail to rejectH0 or reject H0. If you rejectH0 then con-
clude that µ 6= µ0 while if you fail to reject H0 conclude that the population
mean µ = µ0 or that there is not enough evidence to conclude that µ 6= µ0.
Reject H0 if pval < α and fail to reject H0 if pval ≥ α. As a benchmark for
this text, use α = 0.05 if α is not given.

If W is the data matrix, then R(W ) is a large sample 100(1 − α)%
confidence region for µ if P [µ ∈ R(W )] → 1−α as n→ ∞. If x1, ...,xn are
iid from a distribution with mean µ and nonsingular covariance matrix Σx,
then

R(W ) = {µ|n(x − µ)T S−1(x − µ) ≤ (n− 1)p

n − p
Fp,n−p,1−α}

is a large sample 100(1 − α)% confidence region for µ. This region is a
hyperellipsoid centered at x. Note that the estimated covariance matrix for
x is S/n and n(x − µ)T S−1(x − µ) = D2

µ(x,S/n). Hence µ that are close
to x with respect to the Mahalanobis distance based on dispersion matrix
S/n are in the confidence region.

Recall from Theorem 1.1e that max
a 6=0

aT (x − µ)(x − µ)T a

aTSa
=

n(x − µ)T S−1(x − µ) = T 2. This fact can be used to derive large sample
simultaneous confidence intervals for aT µ in that separate confidence state-
ments using different choices of a all hold simultaneously with probability
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tending to 1 − α. Let x1, ...xn be iid with mean µ and covariance matrix
Σx > 0. Then simultaneously for all a 6= 0, P (La < aT µ < Ua) → 1 − α
as n→ ∞ where

(La, Ua) = aTx ±
√
p(n − 1)

n(n− p)
Fp,n−p,1−αaT Sa.

Simultaneous confidence intervals (CIs) can be made after collecting data
and hence are useful for “data snooping.” Following Johnson and Wichern
(1988, p. 184-5), the p confidence intervals (CIs) for µi and p(p−1)/2 CIs for
µi − µk can be made such that they all hold simultaneously with confidence
→ 1 − α. Hence if α = 0.05, then in 100 samples, expect all p + p(p− 1)/2
CIs to contain µi and µi − µk about 95 times while about 5 times at least
one of the CIs will fail to contain its parameter. The CIs for µi are

(L,U) = xi ±
√
p(n − 1)

(n− p)
Fp,n−p,1−α

√
Sii

n

while the CIs for µi − µk are

(L,U) = xi − xk ±
√
p(n− 1)

(n− p)
Fp,n−p,1−α

√
Sii − 2Sik + Skk

n
.

9.1.1 A diagnostic for the Hotelling’s T 2 test

Now the RMVN estimator is asymptotically equivalent to a scaled DGK es-
timator that uses k = 5 concentration steps and two “reweight for efficiency”
steps. Lopuhaä (1999, p. 1651-1652) shows that if (E1) holds, then the clas-
sical estimator applied to cases with Di(x, S) ≤ h is asymptotically normal
with √

n(T0,D −µ)
D→ Np(0, κpΣ).

Here h is some fixed positive number, such as h = χ2
p,0.975, so this estimator

is not quite the DGK estimator after one concentration step.
We conjecture that a similar result holds after concentration:

√
n(TRMV N − µ)

D→ Np(0, τpΣ)

for a wide variety of elliptically contoured distributions where τp depends
on both p and the underlying distribution. Since the “test” is based on a
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conjecture, it is ad hoc, and should be used as an outlier diagnostic rather
than for inference.

For MVN data, simulations suggest that τp is close to 1. The ad hoc test
that rejects H0 if

T 2
R/fn,p = n(TRMV N −µ0)

T Ĉ
−1

RMV N (TRMV N −µ0)/fn,p >
(n− 1)p

n− p
Fp,n−p,1−α

where fn,p = 1.04 + 0.12/p + (40 + p)/n gave fair results in the simulations
described later in this subsection for n ≥ 15p and 2 ≤ p ≤ 100.

The correction factor fn,p was found by simulating the “robust” and clas-
sical test statistics for 100 runs, plotting the test statistics, then finding a
correction factor so that the identity line passed through the data. The fol-
lowing R commands were used to make Figure 9.1, which shows that the
plotted points of the scaled “robust” test statistic versus the classical test
statistic scatter about the identity line.

zout <- rhotsim(n=4000,p=30)

SRHOT <- zout$rhot/(1.04 + 0.12/p + (40+p)/n)

HOT <- zout$hot

plot(SRHOT,HOT)

abline(0,1)
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Figure 9.1: Scaled “Robust” Statistic Versus T 2
H Statistic
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For the Hotelling’s T 2
H simulation, the data is Np(δ1, diag(1, 2, ..., p))

where H0 : µ = 0 is being tested with 5000 runs at a nominal level of
0.05. In Table 9.1, δ = 0 so H0 is true, while hcv and rhcv are the proportion
of rejections by the T 2

H test and by the ad hoc robust test. Sample sizes are
n = 15p, 20p and 30p. The robust test is not recommended for n < 15p and
appears to be conservative (number of rejections is less than the nominal
0.05) except when n = 15p and 75 ≤ p ≤ 100. See Zhang (2011).

If δ > 0, then H0 is false and the proportion of rejections estimates the
power of the test. Table 9.2 shows that T 2

H has more power than the robust
test, but suggests that the power of both tests rapidly increases to one as δ
increases.

Table 9.1: Hotelling simulation

p n=15p hcv rhcv n=20p hcv rhcv n=30p hcv rhcv
10 150 0.0476 0.0300 200 0.0516 0.0304 300 0.0498 0.0286
15 225 0.0474 0.0318 300 0.0506 0.0308 450 0.0492 0.0320
20 300 0.0540 0.0368 400 0.0548 0.0314 600 0.0520 0.0354
25 375 0.0444 0.0334 500 0.0462 0.0296 750 0.0456 0.0288
30 450 0.0472 0.0324 600 0.0516 0.0358 900 0.0484 0.0342
35 525 0.0490 0.0384 700 0.0522 0.0358 1050 0.0502 0.0374
40 600 0.0534 0.0440 800 0.0486 0.0354 1200 0.0526 0.0336
45 675 0.0406 0.0390 900 0.0544 0.0390 1350 0.0512 0.0366
50 750 0.0498 0.0430 1000 0.0522 0.0394 1500 0.0512 0.0364
55 825 0.0504 0.0502 1100 0.0496 0.0392 1650 0.0510 0.0374
60 900 0.0482 0.0514 1200 0.0488 0.0404 1800 0.0474 0.0376
65 975 0.0568 0.0602 1300 0.0524 0.0414 1950 0.0548 0.0410
70 1050 0.0462 0.0530 1400 0.0558 0.0432 2100 0.0522 0.0424
75 1125 0.0474 0.0632 1500 0.0502 0.0486 2250 0.0490 0.0370
80 1200 0.0524 0.0620 1600 0.0524 0.0432 2400 0.0468 0.0356
85 1275 0.0482 0.0758 1700 0.0496 0.0456 2550 0.0520 0.0404
90 1350 0.0504 0.0746 1800 0.0484 0.0454 2700 0.0484 0.0398
95 1425 0.0524 0.0892 1900 0.0472 0.0506 2850 0.0538 0.0424
100 1500 0.0554 0.0808 2000 0.0452 0.0506 3000 0.0488 0.0392

9.2 Matched Pairs

Assume that there are k = 2 treatments, and both treatments are given to
the same n cases or units. For example, systolic and diastolic blood pressure
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Table 9.2: Hotelling power simulation

p n hcv rhcv δ n hcv rhcv δ n hcv rhcv δ

5 75 0.459 0.245 0.20 100 0.366 0.184 0.15 150 0.333 0.208 0.12
5 75 0.682 0.416 0.25 100 0.599 0.368 0.20 150 0.577 0.394 0.16
5 75 0.840 0.588 0.30 100 0.816 0.587 0.30 150 0.860 0.708 0.40
10 150 0.221 0.113 0.10 200 0.312 0.182 0.10 300 0.469 0.340 0.10
10 150 0.621 0.400 0.17 200 0.655 0.467 0.15 300 0.647 0.504 0.12
10 150 0.888 0.729 0.22 200 0.848 0.692 0.18 300 0.872 0.767 0.15
15 225 0.314 0.188 0.10 300 0.442 0.294 0.10 450 0.317 0.228 0.07
15 225 0.714 0.543 0.15 300 0.623 0.449 0.12 450 0.648 0.522 0.10
15 225 0.881 0.738 0.18 300 0.858 0.755 0.15 450 0.853 0.762 0.12
20 300 0.408 0.276 0.10 400 0.341 0.230 0.08 600 0.291 0.216 0.06
20 300 0.691 0.525 0.13 400 0.674 0.534 0.11 600 0.554 0.433 0.08
20 300 0.935 0.852 0.17 400 0.858 0.742 0.13 600 0.790 0.701 0.10
25 375 0.304 0.214 0.08 500 0.434 0.319 0.08 750 0.354 0.266 0.06
25 375 0.728 0.580 0.12 500 0.676 0.531 0.10 750 0.660 0.556 0.08
25 375 0.926 0.837 0.15 500 0.868 0.771 0.12 750 0.887 0.815 0.10
30 450 0.374 0.264 0.08 600 0.395 0.290 0.07 900 0.290 0.217 0.05
30 450 0.602 0.467 0.10 600 0.639 0.517 0.09 900 0.743 0.642 0.08
30 450 0.883 0.763 0.13 600 0.867 0.770 0.11 900 0.876 0.808 0.09
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could be compared before and after the patient (case) receives blood pressure
medication. Then p = 2. Alternatively use m correlated pairs, for example,
pairs of animals from the same litter or neighboring farm fields. Then use
randomization to decide whether the first member of the pair gets treatment
1 or treatment 2. Let n1 = n2 = n and assume n− p is large.

Let yi = (Yi1, Yi2, ..., Yip)
T denote the p measurements from the 1st treat-

ment, and zi = (Zi1, Zi2, ..., Zip)
T denote the p measurements from the 2nd

treatment. Let di ≡ xi = yi − zi for i = 1, ..., n. Assume that the xi are iid
with mean µ and covariance matrix Σx. Let T 2 = n(x − µ)TS−1(x − µ).

Then T 2 P→ χ2
p and pFp,n−p

P→ χ2
p. Let P (Fp,n ≤ Fp,n,δ) = δ. Then the one

sample Hotelling’s T 2 inference is done on the differences xi using m instead
of n and using µ0 = 0. If the p random variables are continuous, make 3 DD
plots: one for the xi, one for the yi and one for the zi to detect outliers.

Let pval be an estimate of the pvalue. The large sample multivariate
matched pairs test has 4 steps.
i) State the hypotheses H0 : µ = 0 H1 : µ 6= 0.
ii) Find the test statistic T 2 = nxTS−1x.
iii) Find pval =

P

(
T 2 <

(n− 1)p

n − p
Fp,n−p

)
= P

(
n − p

(n− 1)p
T 2 < Fp,n−p

)
.

iv) State whether you fail to reject H0 or reject H0. If you reject H0 then
conclude that µ 6= 0 while if you fail to rejectH0 conclude that the population
mean µ = 0 or that there is not enough evidence to conclude that µ 6= 0.
Reject H0 if pval < α and fail to reject H0 if pval ≥ α. As a benchmark for
this text, use α = 0.05 if α is not given.

A large sample 100(1 − α)% confidence region for µ is

{µ| m(x− µ)T S−1(x − µ) ≤ (n− 1)p

n− p
Fp,n−p,1−α},

and the p large sample simultaneous confidence intervals (CIs) for µi are

(L,U) = xi ±
√
p(n − 1)

(n− p)
Fp,n−p,1−α

√
Sii

n

where Sii = S2
i is the ith diagonal element of S.
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9.3 Repeated Measurements

Repeated measurements = longitudinal data analysis. Take p measurements
on the same unit, often the same measurement, eg blood pressure, at several
time periods. The variables areX1, ...,Xp where oftenXk is the measurement
at the kth time period. The E(x) = (µ1, ..., µp)

T = (µ+ τ1, ..., µ+ τp)
T . Let

yij = xij − xi,j+1 for i = 1, ..., n and j = 1, ..., p − 1. Then y = (x1 −
x2,x2 − x3, ...,xp−1 − xp)

T . If µY = E(yi), then µY = 0 is equivalent to
µ1 = · · · = µp where E(Xk) = µk. Let Sy be the sample covariance matrix
of the yi.

The large sample repeated measurements test has 4 steps.
i) State the hypotheses H0 : µy = 0 H1 : µy 6= 0.

ii) Find the test statistic T 2
R = nyT S−1

y y.
iii) Find pval =

P

(
n− p+ 1

(n− 1)(p− 1)
T 2

R < Fp−1,n−p+1

)
.

iv) State whether you fail to reject H0 or reject H0. If you reject H0 then
conclude that µy 6= 0 while if you fail to reject H0 conclude that the pop-
ulation mean µy = 0 or that there is not enough evidence to conclude that
µy 6= 0. Reject H0 if pval < α and fail to reject H0 if pval ≥ α. Give a
nontechnical sentence, if possible.

9.4 Two Samples

Suppose there are two independent random samplesX1,1, ..., Xn1,1 andX1,2, ...,
Xn2,2 from populations with mean and covariance matrices (µi,Σxi) for
i = 1, 2. Assume the Σxi

are positive definite and that it is desired to
test H0 : µ1 = µ2 versus H1 : µ1 6= µ2 where the µi are p × 1 vectors. To
simplify large sample theory, assume n1 = kn2 for some positive real number
k.

By the multivariate central limit theorem,

( √
n1 (X1 − µ1)√
n2 (X2 − µ2)

)
D→ N2p

[(
0
0

)
,

(
Σx1 0
0 Σx2

)]
,
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or ( √
n2 (X1 −µ1)√
n2 (X2 −µ2)

)
D→ N2p

[(
0
0

)
,

(
Σx1

k
0

0 Σx2

)]
.

Hence
√
n2 [(x1 − x2) − (µ1 − µ2)]

D→ Np(0,
Σx1

k
+ Σx2).

Using nB−1 =

(
B

n

)−1

and n2k = n1, if µ1 = µ2, then

n2(x1 − x2)
T

(
Σx1

k
+ Σx2

)−1

(x1 − x2) =

(x1 − x2)
T

(
Σx1

n1
+

Σx2

n2

)−1

(x1 − x2)
D→ χ2

p.

Hence

T 2
0 = (x1 − x2)

T

(
S1

n1
+

S2

n2

)−1

(x1 − x2)
D→ χ2

p.

If the sequence of positive integer dn → ∞ and Yn ∼ Fp,dn, then Yn
D→

χ2
p/p. Using an Fp,dn distribution instead of a χ2

p distribution is similar to
using a tdn distribution instead of a standard normal N(0, 1) distribution for
inference. Instead of rejecting H0 when T 2

0 > χ2
p,1−α, reject H0 when

T 2
0 > pFp,dn,1−α =

pFp,dn,1−α

χ2
p,1−α

χ2
p,1−α.

The term
pFp,dn,1−α

χ2
p,1−α

can be regarded as a small sample correction factor

that improves the test’s performance for small samples. We will use dn =
min(n1 − p, n2 − p). Here P (Yn ≤ χ2

p,α) = α if Yn has a χ2
p distribution, and

P (Yn ≤ Fp,dn,α) = α if Yn has an Fp,dn distribution.

Let pval denote the estimated pvalue. The 4 step test is
i) State the hypotheses H0 : µ1 = µ2 H1 : µ1 6= µ2.
ii) Find the test statistic t0 = T 2

0 /p.
iii) Find pval = P (t0 < Fp,dn).
iv) State whether you fail to reject H0 or reject H0. If you reject H0 then
conclude that the population means are not equal while if you fail to reject
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H0 conclude that the population means are equal or that there is not enough
evidence to conclude that the population means differ. Reject H0 if pval < α
and fail to reject H0 if pval ≥ α. Give a nontechnical sentence if possible.
As a benchmark for this text, use α = 0.05 if α is not given.

9.5 Summary

1) The one sample Hotelling’s T 2 test is used to test H0 : µ = µ0 versus
HA : µ 6= µ0. The test rejects H0 if T 2

H = n(x − µ0)
TS−1(x − µ0) >

(n− 1)p

n− p
Fp,n−p,1−α where P (Y ≤ Fp,d,α) = α if Y ∼ Fp,d.

If a multivariate location estimator T satisfies
√
n(T − µ)

D→ Np(0,D),

then a competing test rejectsH0 if T 2
C = n(T−µ0)

T D̂
−1

(T−µ0) >
(n− 1)p

n− p
Fp,n−p,1−α

if H0 holds and D̂ is a consistent estimator of D. The scaled F cutoff can be

used since T 2
C

D→ χ2
p if H0 holds, and

(n− 1)p

n− p
Fp,n−p,1−α → χ2

p,1−α as n→ ∞.

2) Let pval be an estimate of the pvalue. As a benchmark for hypothesis
testing, use α = 0.05 if α is not given.

3) Typically use T 2
C = T 2

H in the following 4 step one sample Hotelling’s
T 2

C test. i) State the hypotheses H0 : µ = µ0 H1 : µ 6= µ0.

ii) Find the test statistic T 2
C = n(T − µ0)

T D̂
−1

(T − µ0).
iii) Find pval =

P

(
n − p

(n− 1)p
T 2

C < Fp,n−p

)
.

iv) State whether you fail to reject H0 or reject H0. If you reject H0 then
conclude that µ 6= µ0 while if you fail to reject H0 conclude that the pop-
ulation mean µ = µ0 or that there is not enough evidence to conclude that
µ 6= µ0. Reject H0 if pval < α and fail to reject H0 if pval ≥ α.

4) The multivariate matched pairs test is used when there are k = 2
treatments applied to the same n cases with the same p variables used for
each treatment. Let yi be the p variables measured for treatment 1 and
zi be the p variables measured for treatment 2. Let xi = yi − zi. Let
µ = E(x) = E(y) − E(z). Want to test if µ = 0, so E(y) = E(z). The
test can also be used if (xi,yi) are matched (highly dependent) in some
way. For example if identical twins are in the study, xi and yi could be the
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measurements on each twin. Let (x,Sx) be the sample mean and covariance
matrix of the xi.

5) The large sample multivariate matched pairs test has 4 steps.
i) State the hypotheses H0 : µ = 0 H1 : µ 6= 0.
ii) Find the test statistic T 2

M = nxTS−1
x x.

iii) Find pval =

P

(
n− p

(n − 1)p
T 2

M < Fp,n−p

)
.

iv) State whether you fail to reject H0 or reject H0. If you reject H0 then
conclude that µ 6= 0 while if you fail to rejectH0 conclude that the population
mean µ = 0 or that there is not enough evidence to conclude that µ 6= 0.
Reject H0 if pval < α and fail to reject H0 if pval ≥ α. Give a nontechnical
sentence if possible.

6) Repeated measurements = longitudinal data analysis. Take p mea-
surements on the same unit, often the same measurement, eg blood pres-
sure, at several time periods. The variables are X1, ..., Xp where often Xk

is the measurement at the kth time period. The E(x) = (µ1, ..., µp)
T =

(µ+ τ1, ..., µ+ τp)
T . Let yij = xij − xi,j+1 for i = 1, ..., n and j = 1, ..., p− 1.

Then y = (x1 − x2, x2 − x3, ..., xp−1 − xp)
T . If µY = E(yi), then µY = 0

is equivalent to µ1 = · · · = µp where E(Xk) = µk. Let Sy be the sample
covariance matrix of the yi.

7) The large sample repeated measurements test has 4 steps.
i) State the hypotheses H0 : µy = 0 H1 : µy 6= 0.

ii) Find the test statistic T 2
R = nyT S−1

y y.
iii) Find pval =

P

(
n− p+ 1

(n− 1)(p− 1)
T 2

R < Fp−1,n−p+1

)
.

iv) State whether you fail to reject H0 or reject H0. If you reject H0 then
conclude that µy 6= 0 while if you fail to reject H0 conclude that the pop-
ulation mean µy = 0 or that there is not enough evidence to conclude that
µy 6= 0. Reject H0 if pval < α and fail to reject H0 if pval ≥ α. Give a
nontechnical sentence, if possible.

8) The F tables give left tail area and the pval is a right tail area. Table

15.5 gives Fk,d,0.95. If α = 0.05 and
n− p

(n− 1)p
T 2

C < Fk,d,0.95, then fail to reject
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H0. If
n− p

(n− 1)p
T 2

C ≥ Fk,d,0.95 then reject H0.

a) For the one sample Hotelling’s T 2
C test, and the matched pairs T 2

M test,
k = p and d = n− p.

b) For the repeated measures T 2
R test, k = p− 1 and d = n− p+ 1.

9) If n > 10p, the tests in 89), 91) and 93) are robust to nonnormality.
For the one sample Hotelling’s T 2

C test and the repeated measurements test,
make a DD plot. For the multivariate matched pairs test, make a DD plot
of the xi, of the yi and of the zi.

10) Suppose there are two independent random samplesX1,1, ..., Xn1,1 and
X1,2, ..., Xn2,2 from populations with mean and covariance matrices (µi,Σxi)
for i = 1, 2 where the µi are p× 1 vectors. Let dn = min(n1 − p, n2 − p). The
large sample two sample Hotelling’s T 2

0 test is a 4 step test:
i) State the hypotheses H0 : µ1 = µ2 H1 : µ1 6= µ2.
ii) Find the test statistic t0 = T 2

0 /p.
iii) Find pval = P (t0 < Fp,dn).
iv) State whether you fail to reject H0 or reject H0. If you reject H0 then
conclude that the population means are not equal while if you fail to reject
H0 conclude that the population means are equal or that there is not enough
evidence to conclude that the population means differ. Reject H0 if pval < α
and fail to reject H0 if pval ≥ α. Give a nontechnical sentence if possible.

11) Tests for covariance matrices are very nonrobust to nonnormality. Let
a plot of x versus y have x on the horizontal axis and y on the vertical axis.
A good diagnostic is to use the DD plot. So a diagnostic for H0 : Σx = Σ0

is to plot Di(x,S) versus Di(x,Σ0) for i = 1, ..., n. If n > 10p and H0 is
true, then the plotted points in the DD plot should cluster tightly about the
identity line.

12) A test for sphericity is a test of H0 : Σx = dIp for some unknown
constant d > 0. As a diagnostic, make a “DD plot” of D2

i (x,S) versus
D2

i (x, Ip). If n > 10p and H0 is true, then the plotted points in the “DD
plot” should cluster tightly about the line through the origin with slope d.

13) Now suppose there are k samples, and want to test H0 : Σx1 =
· · · = Σxk

, that is, all k populations have the same covariance matrix. As a
diagnostic, make a DD plot of Di(xj,Sj) versus Di(xj,Spool) for j = 1, ..., k
and i = 1, ..., ni.
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9.6 Complements

The mpack function rhotsim is useful for simulating the robust diagnostic for
the one sample Hotelling’s T 2 test. See Zhang (2011) for more simulations.

Willems, Pison, Rousseeuw, and Van Aelst (2002) use similar reasoning
to present a diagnostic based on the FMCD estimator.

Yao (1965) suggests a more complicated denominator degrees of freedom
than dn = min(n1 − p, n2 − p) for the two sample Hotelling’s T 2 test. Good
(2012, p. 55-57) provides randomization tests as competitors for the two
sample Hotelling’s T 2 test.

9.7 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

R/Splus Problems

Warning: Use the command source(“G:/mpack.txt”) to download
the programs. See Preface or Section 15.2. Typing the name of the
mpack function, eg ddplot, will display the code for the function. Use the
args command, eg args(ddplot), to display the needed arguments for the
function.

9.1∗. Use the R commands in Subsection 1.1.1 to make a plot similar to
Figure 9.1.

9.2. Conjecture:

√
n(TRMV N − µ)

D→ Np(0, τpΣ)

for a wide variety of elliptically contoured distributions where τp depends
on both p and the underlying distribution. The following “test” is based
on a conjecture, and should be used as an outlier diagnostic rather than for
inference. The ad hoc “test” that rejects H0 if

T 2
R/fn,p = n(TRMV N −µ0)

T Ĉ
−1

RMV N (TRMV N −µ0)/fn,p >
(n− 1)p

n− p
Fp,n−p,1−α

where fn,p = 1.04 + 0.12/p + (40 + p)/n. The simulations use n = 150 and
p = 10.
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a) The R commands for this part use simulated data is xi ∼ Np(0, diag(1, 2, ..., p))
where H0 : µ = 0 is being tested with 5000 runs at a nominal level of 0.05.
So H0 is true, and hcv and rhcv are the proportion of rejections by the T 2

H

test and by the ad hoc robust test. Want hcv and rhcv near 0.05. THIS
SIMULATION WILL TAKE ABOUT 5 MINUTES. Record hcv and rhcv.
Were hcv and rhcv near 0.05?

b) The R commands for this part use simulated data is xi ∼ Np(δ1, diag(1, 2, ..., p))
where H0 : µ = 0 is being tested with 5000 runs at a nominal level of 0.05. In
the simulation, δ = 0.2, so H0 is false, and hcv and rhcv are the proportion
of rejections by the T 2

H test and by the ad hoc robust test. Want hcv and
rhcv near 1 so that the power is high. Paste the output into Word. THIS
SIMULATION WILL TAKE ABOUT 5 MINUTES. Record hcv and rhcv.
Were hcv and rhcv near 1?



Chapter 10

MANOVA

10.1 Introduction

Definition 10.1. The response variables are the variables that you want
to predict. The predictor variables are the variables used to predict the
response variables.

Notation. The MANOVA model yi = BT xi + εi for i = 1, ..., n has
m ≥ 2 response variables Y1, ..., Ym and d predictor variables X1, X2, ..., Xd.
The ith case is (xT

i ,y
T
i ) = (xi1, ..., xid, Yi1, ..., Yim). If a constant xi1 = 1 is

in the model, then xi1 could be omitted from the case.

For the multivariate analysis of variance (MANOVA) model, the predic-
tors are not quantitative variables, so the predictors are indicator variables.
Sometimes the trivial predictor 1 is also in the model. The multivariate
regression model of Chapter 12 has at least one quantitative variable.

In matrix form, the MANOVA model is Z = XB + E, and the data
matrix W = [X Y ]. The n×m matrix

Z =





Y1,1 Y1,2 . . . Y1,m

Y2,1 Y2,2 . . . Y2,m
...

...
. . .

...
Yn,1 Yn,2 . . . Yn,m



 =
[

Y 1 Y 2 . . . Y m

]
=




yT

1
...

yT
n



 .

213
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The n× d matrix X is not necessarily of full rank d, and

X =





x1,1 x1,2 . . . x1,d

x2,1 x2,2 . . . x2,d
...

...
. . .

...
xn,1 xn,2 . . . xn,d




=
[

v1 v2 . . . vd

]
=




xT

1
...

xT
n





where v1 = 1.
The d ×m matrix

B =





β1,1 β1,2 . . . β1,m

β2,1 β2,2 . . . β2,m
...

...
. . .

...
βd,1 βd,2 . . . βd,m



 =
[

β1 β2 . . . βm

]
.

The n×m matrix

E =





ε1,1 ε1,2 . . . ε1,m

ε2,1 ε2,2 . . . ε2,m
...

...
. . .

...
εn,1 εn,2 . . . εn,m



 =
[

e1 e2 . . . em

]
=




εT

1
...

εT
n



 .

Warning: The ei are error vectors, not orthonormal eigenvectors.

Definition 10.2. Models in which a single response variable Y is quan-
titative, but all of the predictor variables are qualitative are called analysis
of variance (ANOVA) models, experimental design models or design of ex-
periments (DOE) models. Each combination of the levels of the predictors
gives a different distribution for Y , and there are p different distributions or
treatments. A predictor variable W is often called a factor and a factor level
ai is one of the categories W can take. In an ANOVA model,

Yi = xi,1β1 + xi,2β2 + · · · + xi,dβd + ei = xT
i β + ei (10.1)

for i = 1, . . . , n. In matrix notation, these n equations become

Y = Xβ + e, (10.2)

where Y is an n × 1 vector of response variables, X is an n × d matrix of
predictors, β is a d × 1 vector of unknown coefficients, e is an n× 1 vector
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of unknown errors, and d ≥ p. Equivalently,




Y1

Y2
...
Yn



 =





x1,1 x1,2 . . . x1,d

x2,1 x2,2 . . . x2,d
...

...
. . .

...
xn,1 xn,2 . . . xn,d









β1

β2
...
βd



+





e1

e2
...
en



 . (10.3)

The ei are iid with zero mean and variance σ2, and a linear model estimator
such as least squares is used to estimate the unknown parameters β and σ2.

Each response variable in a MANOVA model follows an ANOVA model
Y j = Xβj + ej for j = 1, ..., m where it is assumed that E(ej) = 0 and
Cov(ej) = σjjIn. Hence the errors corresponding to the jth response are
uncorrelated with variance σ2

j = σjj. Notice that the same design matrix
X of predictors is used for each of the m models, but the jth response
variable vector Y j, coefficient vector βj and error vector ej change and thus
depend on j. Hence for a one way MANOVA model, each response variable
follows a one way ANOVA model, while for a two way MANOVA model,
each response variable follows a two way ANOVA model for j = 1, ..., m.

Once the ANOVA model is fixed, eg a one way ANOVA model, the design
matrix X depends on the parameterization of the ANOVA model. The
fitted values and residuals are the same for each parameterization, but the
interpretation of the parameters depend on the parameterization.

Now consider the ith case (xT
i ,y

T
i ) which corresponds to the ith row of

Z and the ith row of X. Then




Yi1 = β11xi1 + · · · + βd1xid + εi1 = xT
i β1 + εi1

Yi2 = β12xi1 + · · · + βd2xid + εi2 = xT
i β2 + εi2

...
Yim = β1mxi1 + · · · + βdmxid + εim = xT

i βm + εim





or yi = E(yi) + εi where

E(yi) = BT xi =





xT
i β1

xT
i β2
...

xT
i βm



 .

The notation yi|xi and E(yi|xi) is more accurate, but usually the con-
ditioning is suppressed. Taking E(yi|xi) to be a constant, yi and εi have
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the same covariance matrix. In the MANOVA model, this covariance matrix
Σε does not depend on i. Observations from different cases are uncorrelated
(often independent), but the m errors for the m different response variables
for the same case are correlated.

Definition 10.3. The MANOVA model yk = BTxk + εk for k =
1, ..., n is written in matrix form as Z = XB + E. The model has E(εk) =
0 and Cov(εk) = Σε = ((σij)) for k = 1, ..., n. Also E(ei) = 0 while
Cov(ei, ej) = σijIn for i, j = 1, ..., m. Then B and Σε are unknown matrices
of parameters to be estimated, and E(Z) = XB while E(Yij) = xT

i βj.
Considering the kth row of Z,X and E shows that yT

k = xT
k B + εT

k .

10.2 One Way ANOVA

Before describing the one way MANOVA model, it is useful to give a brief
description on the one way ANOVA model.

Definition 10.4. A lurking variable is not one of the variables in the
study, but may affect the relationships among the variables in the study.
A unit is the experimental material assigned treatments, which are the
conditions the investigator wants to study. The unit is experimental if it was
randomly assigned to a treatment, and the unit is observational if it was not
randomly assigned to a treatment.

Definition 10.5. In an experiment, the investigators use randomiza-
tion to assign treatments to units. To assign p treatments to n = n1+· · ·+np

experimental units, draw a random permutation of {1, ..., n}. Assign the first
n1 units treatment 1, the next n2 units treatment 2, ..., and the final np units
treatment p.

Randomization allows one to do valid inference such as F tests of hypothe-
ses and confidence intervals. Randomization also washes out the effects of
lurking variables and makes the p treatment groups similar except for the
treatment. The effects of lurking variables are present in observational stud-
ies defined in Definition 10.6.

Definition 10.6. In an observational study, investigators simply ob-
serve the response, and the treatment groups need to be p random samples
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from p populations (the levels) for valid inference.

Example 10.1. Consider using randomization to assign the following
nine people (units) to three treatment groups.

Carroll, Collin, Crawford, Halverson, Lawes,
Stach, Wayman, Wenslow, Xumong

Balanced designs have the group sizes the same: ni ≡ h = n/p. Label the
units alphabetically so Carroll gets 1, ..., Xumong gets 9. The R/Splus
function sample can be used to draw a random permutation. Then the first
3 numbers in the permutation correspond to group 1, the next 3 to group 2
and the final 3 to group 3. Using the output shown below, gives the following
3 groups.

group 1: Stach, Wayman, Xumong
group 2: Lawes, Carroll, Halverson
group 3: Collin, Wenslow, Crawford

> sample(9)

[1] 6 7 9 5 1 4 2 8 3

Often there is a table or computer file of units and related measurements,
and it is desired to add the unit’s group to the end of the table. The mpack
function rand reports a random permutation and the quantity groups[i] =
treatment group for the ith person on the list. Since persons 6, 7 and 9 are in
group 1, groups[7] = 1. Since Carroll is person 1 and is in group 2, groups[1]
= 2, et cetera.

> rand(9,3)

$perm

[1] 6 7 9 5 1 4 2 8 3

$groups

[1] 2 3 3 2 2 1 1 3 1

Definition 10.7. Replication means that for each treatment, the ni

response variables Yi,1, ..., Yi,ni are approximately iid random variables.

Example 10.2. a) If ten students work two types of paper mazes three
times each, then there are 60 measurements that are not replicates. Each
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student should work the six mazes in random order since speed increases
with practice. For the ith student, let Zi1 be the average time to complete
the three mazes of type 1, let Zi2 be the average time for mazes of type 2
and let Di = Zi1 − Zi2. Then D1, ..., D10 are replicates.

b) Cobb (1998, p. 126) states that a student wanted to know if the shapes
of sponge cells depends on the color (green or white). He measured hundreds
of cells from one white sponge and hundreds of cells from one green sponge.
There were only two units so n1 = 1 and n2 = 1. The student should have
used a sample of n1 green sponges and a sample of n2 white sponges to get
more replicates.

c) Replication depends on the goals of the study. Box, Hunter and Hunter
(2005, p. 215-219) describes an experiment where the investigator times how
long it takes him to bike up a hill. Since the investigator is only interested in
his performance, each run up a hill is a replicate (the time for the ith run is a
sample from all possible runs up the hill by the investigator). If the interest
had been on the effect of eight treatment levels on student bicyclists, then
replication would need n = n1 + · · · + n8 student volunteers where ni ride
their bike up the hill under the conditions of treatment i.

Definition 10.8. Let fZ(z) be the pdf of Z. Then the family of pdfs
fY (y) = fZ(y−µ) indexed by the location parameter µ, −∞ < µ <∞, is the
location family for the random variable Y = µ+Z with standard pdf fZ(z).

Definition 10.9. A one way fixed effects ANOVA model has a single
qualitative predictor variable W with p categories a1, ..., ap. There are p
different distributions for Y , one for each category ai. The distribution of

Y |(W = ai) ∼ fZ(y − µi)

where the location family has second moments. Hence all p distributions
come from the same location family with different location parameter µi and
the same variance σ2.

Definition 10.10. The one way fixed effects normal ANOVA model is
the special case where

Y |(W = ai) ∼ N(µi, σ
2).

Example 10.3. The pooled 2 sample t–test is a special case of a one
way ANOVA model with p = 2. For example, one population could be ACT
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scores for men and the second population ACT scores for women. Then W =
gender and Y = score.

Notation. It is convenient to relabel the response variable Y1, ..., Yn as
the vector Y = (Y11, ..., Y1,n1, Y21, ..., Y2,n2, ..., Yp1, ..., Yp,np)

T where the Yij are
independent and Yi1, ..., Yi,ni are iid. Here j = 1, ..., ni where ni is the number
of cases from the ith level where i = 1, ..., p. Thus n1+· · ·+np = n. Similarly
use double subscripts on the errors. Then there will be many equivalent
parameterizations of the one way fixed effects ANOVA model.

Definition 10.11. The cell means model is the parameterization of the
one way fixed effects ANOVA model such that

Yij = µi + eij

where Yij is the value of the response variable for the jth trial of the ith
factor level. The µi are the unknown means and E(Yij) = µi. The eij are
iid from the location family with pdf fZ(z) and unknown variance σ2 =
VAR(Yij) = VAR(eij). For the normal cell means model, the eij are iid
N(0, σ2) for i = 1, ..., p and j = 1, ..., ni.

The cell means model is a linear model (without intercept) of the form
Y = Xcβc + e =





Y11
...

Y1,n1

Y21
...

Y2,n2

...
Yp,1
...

Yp,np





=





1 0 0 . . . 0
...

...
...

...
1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

...
0 1 0 . . . 0
...

...
...

...
0 0 0 . . . 1
...

...
...

...
0 0 0 . . . 1









µ1

µ2
...
µp



+





e11
...

e1,n1

e21
...

e2,n2

...
ep,1
...

ep,np





. (10.4)

Notation. Let Yi0 =
∑ni

j=1 Yij and let

µ̂i = Y i0 = Yi0/ni =
1

ni

ni∑

j=1

Yij. (10.5)
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Hence the “dot notation” means sum over the subscript corresponding to the
0, eg j. Similarly, Y00 =

∑p
i=1

∑ni

j=1 Yij is the sum of all of the Yij.

Notice that the indicator variables used in the cell means model (10.4) are
vh,k = 1 if the hth case has W = ak, and vhk

= 0, otherwise, for k = 1, ..., p
and h = 1, ..., n. So Yij has vh,k = 1 only if i = k and j = 1, ..., ni. Here vk is
the kth column of Xc. The model can use p indicator variables for the factor
instead of p − 1 indicator variables because the model does not contain an
intercept. Also notice that

E(Y ) = Xcβc = (µ1, ..., µ1, µ2, ..., µ2, ..., µp, ..., µp)
T ,

(XT
c Xc) = diag(n1, ..., np) and XT

c Y = (Y10, ..., Y10, Y20, ..., Y20, ..., Yp0, ..., Yp0)
T .

Hence (XT
c Xc)

−1 = diag(1/n1, ..., 1/np) and the OLS estimator

β̂c = (XT
c Xc)

−1XT
c Y = (Y 10, ..., Y p0)

T = (µ̂1, ..., µ̂p)
T .

Thus Ŷ = Xcβ̂c = (Y 10, ..., Y 10, ..., Y p0, ..., Y p0)
T . Hence the ijth fitted value

is
Ŷij = Y i0 = µ̂i (10.6)

and the ijth residual is

rij = Yij − Ŷij = Yij − µ̂i. (10.7)

Since the cell means model is a linear model, there is an associated re-
sponse plot and residual plot. However, many of the interpretations of the
OLS quantities for ANOVA models differ from the interpretations for multi-
ple linear regression (MLR) models. First, for MLR models, the conditional
distribution Y |x makes sense even if x is not one of the observed xi provided
that x is not far from the xi. This fact makes MLR very powerful. For MLR,
at least one of the variables in x is a continuous predictor. For the one way
fixed effects ANOVA model, the p distributions Y |xi make sense where xT

i

is a row of Xc.
Also, the OLS MLR ANOVA F test for the cell means model tests H0 :

β = 0 ≡ H0 : µ1 = · · · = µp = 0, while the one way fixed effects ANOVA F
test given after Definition 10.15 tests H0 : µ1 = · · · = µp.

Definition 10.12. Consider the one way fixed effects ANOVA model.
The response plot is a plot of Ŷij ≡ µ̂i versus Yij and the residual plot is a
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plot of Ŷij ≡ µ̂i versus rij . Add the identity line to the response plot and
r = 0 line to the residual plot as visual aids.

The points in the response plot scatter about the identity line and the
points in the residual plot scatter about the r = 0 line, but the scatter need
not be in an evenly populated band. A dot plot of Z1, ..., Zm consists of an
axis and m points each corresponding to the value of Zi. The response plot
consists of p dot plots, one for each value of µ̂i. The dot plot corresponding
to µ̂i is the dot plot of Yi1, ..., Yi,ni. The p dot plots should have roughly the
same amount of spread, and each µ̂i corresponds to level ai. If a new level
af corresponding to xf was of interest, hopefully the points in the response
plot corresponding to af would form a dot plot at µ̂f similar in spread to
the other dot plots, but it may not be possible to predict the value of µ̂f .
Similarly, the residual plot consists of p dot plots, and the plot corresponding
to µ̂i is the dot plot of ri1, ..., ri,ni.

Assume that each ni ≥ 10. Under the assumption that the Yij are from
the same location scale family with different parameters µi, each of the p
dot plots should have roughly the same shape and spread. This assumption
is easier to judge with the residual plot. If the response plot looks like the
residual plot, then a horizontal line fits the p dot plots about as well as the
identity line, and there is not much difference in the µi. If the identity line is
clearly superior to any horizontal line, then at least some of the means differ.

Definition 10.13. An outlier corresponds to a case that is far from the
bulk of the data. Look for a large vertical distance of the plotted point from
the identity line or the r = 0 line.

Rule of thumb 10.1. Mentally add 2 lines parallel to the identity line
and 2 lines parallel to the r = 0 line that cover most of the cases. Then a
case is an outlier if it is well beyond these 2 lines.

This rule often fails for large outliers since often the identity line goes
through or near a large outlier so its residual is near zero. A response that is
far from the bulk of the data in the response plot is a “large outlier” (large
in magnitude). Look for a large gap between the bulk of the data and the
large outlier.

Suppose there is a dot plot of nj cases corresponding to level aj that is
far from the bulk of the data. This dot plot is probably not a cluster of “bad
outliers” if nj ≥ 4 and n ≤ 50. If nj = 1, such a case may be a large outlier.
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Rule of thumb 10.2. Often an outlier is very good, but more often an
outlier is due to a measurement error and is very bad.

The assumption of the Yij coming from the same location scale family
with different location parameters µi and the same constant variance σ2

is a big assumption and often does not hold. Another way to check this
assumption is to make a box plot of the Yij for each i. The box in the box
plot corresponds to the lower, middle and upper quartiles of the Yij . The
middle quartile is just the sample median of the data mij: at least half of the
Yij ≥ mij and at least half of the Yij ≤ mij. The p boxes should be roughly
the same length and the median should occur in roughly the same position
(eg in the center) of each box. The “whiskers” in each plot should also be
roughly similar. Histograms for each of the p samples could also be made.
All of the histograms should look similar in shape.

Example 10.4. Kuehl (1994, p. 128) gives data for counts of hermit
crabs on 25 different transects in each of six different coastline habitats. Let
Z be the count. Then the response variable Y = log10(Z+1/6). Although the
counts Z varied greatly, each habitat had several counts of 0 and often there
were several counts of 1, 2 or 3. Hence Y is not a continuous variable. The
cell means model was fit with ni = 25 for i = 1, ..., 6. Each of the six habitats
was a level. Figure 10.1a and b shows the response plot and residual plot.
There are 6 dot plots in each plot. Because several of the smallest values in
each plot are identical, it does not always look like the identity line is passing
through the six sample means Y i0 for i = 1, ..., 6. In particular, examine the
dot plot for the smallest mean (look at the 25 dots furthest to the left that
fall on the vertical line FIT ≈ 0.36). Random noise (jitter) has been added to
the response and residuals in Figure 10.1c and d. Now it is easier to compare
the six dot plots. They seem to have roughly the same spread.

The plots contain a great deal of information. The response plot can
be used to explain the model, check that the sample from each population
(treatment) has roughly the same shape and spread, and to see which pop-
ulations have similar means. Since the response plot closely resembles the
residual plot in Figure 10.1, there may not be much difference in the six
populations. Linearity seems reasonable since the samples scatter about the
identity line. The residual plot makes the comparison of “similar shape” and
“spread” easier.
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Figure 10.1: Plots for One Way ANOVA Model for Crab Data

Definition 10.14. a) The total sum of squares

SSTO =

p∑

i=1

ni∑

j=1

(Yij − Y 00)
2.

b) The treatment sum of squares

SSTR =

p∑

i=1

ni(Y i0 − Y 00)
2.

c) The residual sum of squares or error sum of squares

SSE =

p∑

i=1

ni∑

j=1

(Yij − Y io)
2.

Definition 10.15. Associated with each SS in Definition 10.14 is a
degrees of freedom (df) and a mean square = SS/df. For SSTO, df = n−1 and
MSTO = SSTO/(n−1). For SSTR, df = p−1 and MSTR = SSTR/(p−1).
For SSE, df = n− p and MSE = SSE/(n − p).

Let S2
i =

∑ni

j=1(Yij − Y i0)
2/(ni − 1) be the sample variance of the ith

group. Then the MSE is a weighted sum of the S2
i :

σ̂2 = MSE =
1

n− p

p∑

i=1

ni∑

j=1

r2
ij =

1

n− p

p∑

i=1

ni∑

j=1

(Yij − Y i0)
2 =
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1

n− p

p∑

i=1

(ni − 1)S2
i = S2

pool

where S2
pool is known as the pooled variance estimator.

The ANOVA table is the same as that for MLR, except that SSTR re-
places the regression sum of squares. The MSE is again an estimator of σ2.
The ANOVA F test tests whether all p means µi are equal. Shown below is
an ANOVA table given in symbols. Sometimes “Treatment” is replaced by
“Between treatments,” “Between Groups,” “Model,” “Factor” or “Groups.”
Sometimes “Error” is replaced by “Residual,” or “Within Groups.” Some-
times “p-value” is replaced by “P”, “Pr(> F )” or “PR > F.”

Summary Analysis of Variance Table

Source df SS MS F p-value
Treatment p-1 SSTR MSTR Fo=MSTR/MSE for Ho:

Error n-p SSE MSE µ1 = · · · = µp

Note that the software output uses pvalue for pval, an estimate of the
pvalue.

Be able to perform the 4 step fixed effects one way ANOVA F
test of hypotheses:
i) State the hypotheses Ho: µ1 = µ2 = · · · = µp and Ha: not Ho.
ii) Find the test statistic Fo = MSTR/MSE or obtain it from output.
iii) Find the pval from output or use the F–table: pval =

P (Fp−1,n−p > Fo).

iv) State whether you reject Ho or fail to reject Ho. If the pval < δ, reject
Ho and conclude that the mean response depends on the level of the factor.
Otherwise fail to reject Ho and conclude that the mean response does not
depend on the level of the factor. Give a nontechnical sentence.

Rule of thumb 10.3. If

max(S1, ..., Sp) ≤ 2min(S1, ..., Sp),

then the one way ANOVA F test results will be approximately correct if
the response and residual plots suggest that the remaining one way ANOVA
model assumptions are reasonable. See Moore (2000, p. 512). If all of the
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ni ≥ 5, replace the standard deviations by the ranges of the dot plots when
examining the response and residual plots.

Remark 10.1. If the units are a representative sample of some popula-
tion of interest, then randomization of units into groups makes the assump-
tion that Yi1, ..., Yi,ni are iid hold to a useful approximation for large sample
theory. Random sampling from populations also induces the iid assump-
tion. Linearity can be checked with the response plot, and similar shape and
spread of the location families can be checked with both the response and
residual plots. Also check that outliers are not present. If the p dot plots in
the response plot are approximately symmetric, then the sample sizes ni can
be smaller than if the dot plots are skewed.

Remark 10.2. When the assumption that the p groups come from the
same location family with finite variance σ2 is violated, the one way ANOVA
F test may not make much sense because unequal means may not imply the
superiority of one category over another. Suppose Y is the time in minutes
until relief from a headache and that Y1j ∼ N(60, 1) while Y2j ∼ N(65, σ2).
If σ2 = 1, then the type 1 medicine gives headache relief 5 minutes faster, on
average, and is superior, all other things being equal. But if σ2 = 100, then
many patients taking medicine 2 experience much faster pain relief than those
taking medicine 1, and many experience much longer time until pain relief.
In this situation, predictor variables that would identify which medicine is
faster for a given patient would be very useful.

fat1 fat2 fat3 fat4 One way Anova for Fat1 Fat2 Fat3 Fat4

64 78 75 55 Source DF SS MS F P

72 91 93 66 treatment 3 1636.5 545.5 5.41 0.0069

68 97 78 49 error 20 2018.0 100.9

77 82 71 64

56 85 63 70

95 77 76 68

Example 10.5. The output above represents grams of fat (minus 100
grams) absorbed by doughnuts using 4 types of fat. See Snedecor and
Cochran (1967, p. 259). Let µi denote the mean amount of fati absorbed by
doughnuts, i = 1, 2, 3 and 4. a) Find µ̂1. b) Perform a 4 step ANOVA F test.

Solution: a) β̂1c = µ̂1 = Y 10 = Y10/n1 =
∑n1

j=1 Y1j/n1 =
(64 + 72 + 68 + 77 + 56 + 95)/6 = 432/6 = 72.
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b) i) H0 : µ1 = µ2 = µ3 = µ4 Ha: not H0

ii) F = 5.41
iii) pval = 0.0069
iv) Reject H0, the mean amount of fat absorbed by doughnuts depends

on the type of fat.

Definition 10.16. A contrast C =
∑p

i=1 kiµi where
∑p

i=1 ki = 0. The

estimated contrast is Ĉ =
∑p

i=1 kiY i0.

If the null hypothesis of the fixed effects one way ANOVA test is not
true, then not all of the means µi are equal. Researchers will often have
hypotheses, before examining the data, that they desire to test. Often such
a hypothesis can be put in the form of a contrast. For example, the contrast
C = µi−µj is used to compare the means of the ith and jth groups while the
contrast µ1 − (µ2 + · · ·+µp)/(p− 1) is used to compare the last p− 1 groups
with the 1st group. This contrast is useful when the 1st group corresponds
to a standard or control treatment while the remaining groups correspond to
new treatments.

Assume that the normal cell means model is a useful approximation to
the data. Then the Y i0 ∼ N(µi, σ

2/ni) are independent, and

Ĉ =

p∑

i=1

kiY i0 ∼ N

(
C, σ2

p∑

i=1

k2
i

ni

)
.

Hence the standard error

SE(Ĉ) =

√√√√MSE

p∑

i=1

k2
i

ni
.

The degrees of freedom is equal to the MSE degrees of freedom = n− p.
Consider a family of null hypotheses for contrasts {Ho :

∑p
i=1 kiµi = 0

where
∑p

i=1 ki = 0 and the ki may satisfy other constraints}. Let δS denote
the probability of a type I error for a single test from the family where a type
I error is a false rejection. The family level δF is an upper bound on the
(usually unknown) size δT . Know how to interpret δF ≈ δT =
P(of making at least one type I error among the family of contrasts).

Two important families of contrasts are the family of all possible con-
trasts and the family of pairwise differences Cij = µi − µj where i 6= j. The
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Scheffé multiple comparisons procedure has a δF for the family of all possible
contrasts while the Tukey multiple comparisons procedure has a δF for the
family of all

(
p
2

)
pairwise contrasts.

To interpret output for multiple comparisons procedures, the underlined
means or blocks of letters besides groups of means indicate that the group
of means are not significantly different.

Example 10.6. The output below uses data from SAS Institute (1985,
p. 126-129). The mean nitrogen content of clover depends on the strain of
clover (3dok1, 3dok5, 3dok7, compos, 3dok4, 3dok13). Recall that means
µ1 and µ2 are significantly different if you can conclude that µ1 6= µ2 while
µ1 and µ2 are not significantly different if there is not enough evidence to
conclude that µ1 6= µ2 (perhaps because the means are approximately equal
or perhaps because the sample sizes are not large enough).

Notice that the strain of clover 3dok1 appears to have the highest mean
nitrogen content. There are 4 pairs of means that are not significantly differ-
ent. The letter B suggests 3dok5 and 3dok7, the letter C suggests 3dok7 and
compos, the letter D suggests compos and 3dok4, while the letter E suggests
3dok4 and 3dok13 are not significantly different.

Means with the same letter are not significantly different.

Waller Grouping Mean N strain

A 28.820 5 3dok1

B 23.980 5 3dok5

B

C B 19.920 5 3dok7

C

C D 18.700 5 compos

D

E D 14.640 5 3dok4

E

E 13.260 5 3dok13

Definition 10.17. Graphical Anova for the one way model uses the
residuals as a reference set instead of a t, F or normal distribution. The
scaled treatment deviations or scaled effect c(Y i0 − Y 00) = c(µ̂i − Y 00)
are scaled to have the same variability as the residuals. A dot plot of the
scaled deviations is placed above the dot plot of the residuals. Assume that
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Figure 10.2: Graphical Anova

ni ≡ h = n/p for i = 1, ..., p. For small n ≤ 40, suppose the distance be-
tween two scaled deviations (A and B, say) is greater than the range of the
residuals = max(rij)−min(rij). Then declare µA and µB to be significantly
different. If the distance is less than the range, do not declare µA and µB to
be significantly different. Scaled deviations that lie outside the range of the
residuals are significant (so significantly different from the overall mean).

For n ≥ 100, let r(1) ≤ r(2) ≤ · · · ≤ r(n) be the order statistics of the resid-
uals. Then instead of the range, use r(d0.975ne)−r(d0.025ne) as the distance where
dxe is the smallest integer ≥ x, eg d7.7e = 8. So effects outside of the interval
(r(d0.025ne), r(d0.975ne)) are significant. See Box, Hunter and Hunter (2005, p.

136, 166). A derivation of the scaling constant c =
√

(n− p)/(p− 1) is given
in Section 10.5.

ganova(x,y)

sdev 0.02955502 0.06611268 -0.05080048 -0.04486722

Treatments "A" "B" "C" "D"

Example 10.7. Cobb (1998, p. 160) describes a one way ANOVA design
used to study the amount of calcium in the blood. For many animals, the
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body’s ability to use calcium depends on the level of certain hormones in
the blood. The response was 1/(level of plasma calcium). The four groups
were A: Female controls, B: Male controls, C: Females given hormone and D:
Males given hormone. There were 10 birds of each gender, and five from each
gender were given the hormone. The output above uses the mpack function
ganova to produce Figure 10.2.

In Figure 10.2, the top dot plot has the scaled treatment deviations. From
left to right, these correspond to C, D, A and B since the output shows that
the deviation corresponding to C is the smallest with value −0.050. Since the
deviations corresponding to C and D are much closer than the range of the
residuals, the C and D effects yielded similar mean response values. A and
B appear to be significantly different from C and D. The distance between
the scaled A and B treatment deviations is about the same as the distance
between the smallest and largest residuals, so there is only marginal evidence
that the A and B effects are significantly different.

Since all 4 scaled deviations lie outside of the range of the residuals, all
effects A, B, C and D appear to be significant.

10.2.1 Response Transformations for ANOVA Models

A model for an experimental design is Yi = E(Yi) + ei for i = 1, ..., n where
the error ei = Yi − E(Yi) and E(Yi) ≡ E(Yi|xi) is the expected value of the
response Yi for a given vector of predictors xi. Many models can be fit with
least squares (OLS or LS) and are linear models of the form

Yi = xi,1β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei

for i = 1, . . . , n. Often xi,1 ≡ 1 for all i. In matrix notation, these n equations
become

Y = Xβ + e,

where Y is an n × 1 vector of dependent variables, X is an n × p design
matrix of predictors, β is a p × 1 vector of unknown coefficients, and e is
an n × 1 vector of unknown errors. If the fitted values are Ŷi = xT

i β̂, then
Yi = Ŷi + ri where the residuals ri = Yi − Ŷi.

The applicability of an experimental design model can be expanded by
allowing response transformations. An important class of response transfor-
mation models adds an additional unknown transformation parameter λo,
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such that
Yi = tλo(Zi) ≡ Z

(λo)
i = E(Yi) + ei = xT

i β + ei.

If λo was known, then Yi = tλo(Zi) would follow the linear model for the
experimental design.

TZHAT

1
/Z

1.2 1.4 1.6 1.8 2.0 2.2

0
1

2
3

4
5

6

TZHAT

1
/s

q
rt

(Z
)

0.7 0.8 0.9 1.0 1.1

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

TZHAT

L
O

G
(Z

)

1.0 1.5 2.0

-2
0

2
4

6

TZHAT

s
q
rt

(Z
)

3 4 5

0
5

1
0

1
5

2
0

TZHAT

Z

10 20 30 40 50 60 70

0
1
0
0

2
0
0

3
0
0

4
0
0

Figure 10.3: Transformation Plots for Crab Data

Definition 10.20. Assume that all of the values of the “response” Zi are
positive. A power transformation has the form Y = tλ(Z) = Zλ for λ 6= 0
and Y = t0(Z) = log(Z) for λ = 0 where λ ∈ ΛL = {−1,−1/2, 0, 1/2, 1}.

A graphical method for response transformations computes the fitted val-
ues Ŵi from the experimental design model using Wi = tλ(Zi) as the “re-
sponse.” Then a plot of the Ŵ versus W is made for each of the five values
of λ ∈ ΛL. For many experimental design models, the plotted points follow
the identity line in a (roughly) evenly populated band if the experimental
design model is reasonable for (Ŵ ,W ). An exception is the one way ANOVA
model where there will be p dot plots of roughly the same shape and spread
that scatter about the identity line. If more than one value of λ ∈ ΛL gives
a linear plot, consult subject matter experts and use the simplest or most
reasonable transformation. Note that ΛL has 5 models, and the graphical
method selects the model with the best response plot. After selecting the
transformation, the usual checks should be made. In particular, the trans-
formation plot is also the response plot, and a residual plot should be made.
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Definition 10.21. A transformation plot is a plot of (Ŵ ,W ) with the
identity line added as a visual aid.

In the following example, the plots show tλ(Z) on the vertical axis. The
label “TZHAT” of the horizontal axis are the fitted values that result from
using tλ(Z) as the “response” in the software.

For one way ANOVA models with ni ≡ m ≥ 5, look for a transformation
plot that satisfies the following conditions. i) The p dot plots scatter about
the identity line with similar shape and spread. ii) Dot plots with more skew
are worse than dot plots with less skew or dot plots that are approximately
symmetric. iii) Spread that increases or decreases with TZHAT is bad.

Example 10.4, continued. Following Kuehl (1994, p. 128), let C be
the count of crabs and let the “response” Z = C + 1/6. Figure 10.3 shows
the five transformation plots. The transformation log(Z) results in dot plots
that have roughly the same shape and spread. The transformations 1/Z and
1/
√
Z do not handle the 0 counts well, and the dot plots fail to cover the

identity line. The transformations
√
Z and Z have variance that increases

with the mean.

Remark 10.4. The graphical method for response transformations can
be used for design models that are linear models, not just one way ANOVA
models. The method is nearly identical to that of Chapter 12, but ΛL only has

5 values. The log rule states that if all of the Zi > 0 and if
max(Zi)

min(Zi)
≥ 10,

then the response transformation Y = log(Z) will often work.

10.3 One Way MANOVA

Using double subscripts will be useful for describing the one way MANOVA
model. Suppose there independent random samples from p different pop-
ulations (treatments), or n =

∑p
i=1 ni and ni cases are randomly assigned

to p treatment groups. Then the group sample sizes are ni for i = 1, ..., p.
Assume that m response variables yij = (Yij1, ..., Yijm)T are measured for
the ith treatment. Hence i = 1, ..., p and j = 1, ..., ni. The Yijk follow dif-
ferent one way ANOVA models for k = 1, ..., m. Assume E(yij) = µi and
Cov(yij) = Σε. Hence the p treatments have different mean vectors µi, but
common covariance matrix Σε. (This assumption can be relaxed for p = 2
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with the appropriate 2 sample Hotelling’s T 2 test.)
The one way MANOVA is used to test H0 : µ1 = µ2 = · · · = µp. Often

µi = µ + τ i, so H0 becomes H0 : τ 1 = · · · = τ p. If m = 1, the one
way MANOVA model is the one way ANOVA model. MANOVA is useful
since it takes into account the correlations between the m response variables.
Performingm ANOVA tests fails to account for these correlations, but can be
a useful diagnostic. The Hotelling’s T 2 test that uses a common covariance
matrix is a special case of the one way MANOVA model with m = 2.

Let µi = µ + τ i where
∑p

i=1 niτ i = 0. The jth case from the ith pop-
ulation or treatment group is yij = µ + τ j + eij where eij is an error
vector, i = 1, ..., p and j = 1, ..., ni. Let y = µ̂ =

∑p
i=1

∑ni

j=1 yij/n be
the overall mean. Let yi =

∑ni

j=1 yij/ni so τ̂ i = yi − y. Let the residual
ε̂ij = yij−yi = yij−µ̂−τ̂ i. Then yij = y+(yi−y)+(yij−yi) = µ̂+τ̂ i+ε̂ij.

Let Si be the sample covariance matrix corresponding to the ith treat-
ment group. Then the within sum of squares and cross products matrix
is W = (n1 − 1)S1 + · · · + (np − 1)Sp =

∑p
i=1

∑ni

j=1(yij − yi)(yij − yi)
T .

Then Σ̂ε = W /(n− p). The treatment or between sum of squares and cross
products matrix is B =

∑p
i=1 ni(yi − y)(yi − y)T . The total corrected (for

the mean) sum of squares and cross products matrix is T = B + W =∑p
i=1

∑ni

j=1(yij − y)(yij − y)T . Note that T /(n− 1) is the usual sample co-
variance matrix if it is assumed that all n of the yij are iid so that the µi ≡ µ

for i = 1, ..., p.
The one way MANOVA model is yij = µ + τ i + εij where the εij are iid

with E(εij) = 0 and Cov(εij) = Σε. The MANOVA table is shown below.

Summary One Way MANOVA Table

Source matrix df
Treatment or Between B p− 1

Residual or Error or Within W n− p
Total (corrected) T n− 1

If all n of the yij are iid with E(yij) = µ and Cov(yij) = Σε, it can be

shown that A/df
P→ Σε where A = W ,B or T and df is the corresponding

degrees of freedom. Let t0 be the test statistic. Although Pillai’s trace is
robust to nonnormality, often Wilk’s lambda is used. Wilk’s lambda

Λ =
|W |

|B + W | =
|W |
|T |
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is good if the iid εij ∼ Np(0,Σx). Then to = −[n−1− (m+p)/2] log(Λ) and
pval = P (χ2

m(p−1) > t0). Hence reject H0 if t0 > χ2
m(p−1)(1− α). See Johnson

and Wichern (1988, p. 238).

The four steps of the one way MANOVA test follow.
i) State the hypotheses H0 : µ1 = · · · = µp and H1 : not H0.
ii) Get t0 from output.
iii) Get pval from output.
iv) State whether you reject H0 or fail to reject H0. If pval ≤ α, reject H0

and conclude that not all of the p treatment means are equal. If pval > α, fail
to reject H0 and conclude that all p treatment means are equal or that there
is not enough evidence to conclude that not all of the p treatment means are
equal. As a textbook convention, use α = 0.05 if α is not given.

Rule of thumb 10.4. In the one way MANOVA model, Y j = Xβj +ej

is a one way ANOVA model for j = 1, ..., m. To check the one way MANOVA
model, make the m response and residual plots corresponding to the m one
way ANOVA models. Make a DD plot of the n residual vectors. Response
transformations can be done as in Section 10.2.1. If the ni are large, make p
DD plots of the yij for i = 1, ..., p. Also if the ni are large, make p plots of

Dij(yi,Si) versus Dij(yi, Σ̂ε) to check that the common covariance matrix
Σε is an adequate assumption. The plotted points in these p plots should
cluster tightly about the identity line if ni is large and the covariance matrix
of the ith treatment group is approximately Σε.

10.4 Summary

1) The fixed effects one way ANOVA model has one qualitative explana-
tory variable called a factor and a quantitative response variable Yij . The
factor variable has p levels, E(Yij) = µi and V (Yij) = σ2 for i = 1, ..., p and
j = 1, ..., ni. Experimental units are randomly assigned to the treatment
levels.

2) Let n = n1+· · ·+np. In an experiment, the investigators use random-
ization to randomly assign n units to treatments. Draw a random permuta-
tion of {1, ..., n}. Assign the first n1 units to treatment 1, the next n2 units
to treatment 2, ..., and the final np units to treatment p. Use ni ≡ h = n/p
if possible. Randomization washes out the effect of lurking variables.
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3) The 4 step fixed effects one way ANOVA F test has steps
i) Ho: µ1 = µ2 = · · · = µp and Ha: not Ho.
ii) Fo = MSTR/MSE is usually given by output.
iii) The pval = P(Fp−1,n−p > Fo) is usually given by output.
iv) If the pval < δ, reject Ho and conclude that the mean response depends
on the level of the factor. Otherwise fail to reject Ho and conclude that the
mean response does not depend on the level of the factor. Give a nontechnical
sentence.

Summary Analysis of Variance Table

Source df SS MS F p-value
Treatment p-1 SSTR MSTR Fo=MSTR/MSE for Ho:

Error n-p SSE MSE µ1 = · · · = µp

4) Shown is an ANOVA table given in symbols. Sometimes “Treatment”
is replaced by “Between treatments,” “Between Groups,” “Model,” “Fac-
tor” or “Groups.” Sometimes “Error” is replaced by “Residual,” or “Within
Groups.” Sometimes “p-value” is replaced by “P”, “Pr(> F )” or “PR > F.”

5) A dot plot of Z1, ..., Zh consists of an axis and h points each corre-
sponding to the value of Zi. The response plot is a plot of Ŷ versus Y . For
the one way ANOVA model, the response plot is a plot of Ŷij = µ̂i ver-
sus Yij . Often the identity line with unit slope and zero intercept is added
as a visual aid. Vertical deviations from the identity line are the residuals
rij = Yij − Ŷij = Yij − µ̂i. The plot will consist of p dot plots that scat-
ter about the identity line with similar shape and spread if the fixed effects
one way ANOVA model is appropriate. The ith dot plot is a dot plot of
Yi,1, ..., Yi,ni. Assume that each ni ≥ 10. If the response plot looks like the
residual plot, then a horizontal line fits the p dot plots about as well as the
identity line, and there is not much difference in the µi. If the identity line is
clearly superior to any horizontal line, then at least some of the means differ.

6) The residual plot is a plot of Ŷ versus residual r = Y − Ŷ . The plot
will consist of p dot plots that scatter about the r = 0 line with similar shape
and spread if the fixed effects one way ANOVA model is appropriate. The
ith dot plot is a dot plot of ri,1, ..., ri,ni. Assume that each ni ≥ 10. Under
the assumption that the Yij are from the same location scale family with
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different parameters µi, each of the p dot plots should have roughly the same
shape and spread. This assumption is easier to judge with the residual plot
than with the response plot.

7) Rule of thumb: If max(S1, ..., Sp) ≤ 2min(S1, ..., Sp), then the one way
ANOVA F test results will be approximately correct if the response and resid-
ual plots suggest that the remaining one way ANOVA model assumptions are
reasonable.

8) The cell means model for the fixed effects one way ANOVA is Yij =
µi + eij where Yij is the value of the response variable for the jth trial of the
ith factor level for i = 1, ..., p and j = 1, ..., ni. The µi are the unknown means
and E(Yij) = µi. The eij are iid from the location family with pdf fZ(z), zero
mean and unknown variance σ2 = V (Yij) = V (eij). For the normal cell means

model, the eij are iid N(0, σ2). The estimator µ̂i = Y i0 =
∑ni

j=1 Yij/ni = Ŷij.

The ith residual is rij = Yij−Y i0, and Y 00 is the sample mean of all of the Yij

and n =
∑p

i=1 ni. The total sum of squares SSTO =
∑p

i=1

∑ni

j=1(Yij − Y 00)
2,

the treatment sum of squares SSTR =
∑p

i=1 ni(Y i0 − Y 00)
2, and the error

sum of squares SSE =
∑p

i=1

∑ni

j=1(Yij − Y i0)
2. The MSE is an estimator of

σ2. In the ANOVA table, SSTO, SSTR and SSE have n− 1, p− 1 and n− p
degrees of freedom.

9) Let Yi0 =
∑ni

j=1 Yij and let

µ̂i = Y i0 = Yi0/ni =
1

ni

ni∑

j=1

Yij.

Hence the “dot notation” means sum over the subscript corresponding to the
0, eg j. Similarly, Y00 =

∑p
i=1

∑ni

j=1 Yij is the sum of all of the Yij . Be able
to find µ̂i from data.

10) The applicability of a DOE (design of experiments) model can be ex-
panded by allowing response transformations. An important class of response
transformation models is

Y = tλo(Z) = E(Y ) + e = xT β + e

where the subscripts (eg Yij) have been suppressed. If λo was known, then
Y = tλo(Z) would follow the DOE model. Assume that all of the values
of the “response” Z are positive. A power transformation has the form
Y = tλ(Z) = Zλ for λ 6= 0 and Y = t0(Z) = log(Z) for λ = 0 where
λ ∈ ΛL = {−1,−1/2, 0, 1/2, 1}.
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11) A graphical method for response transformations computes the fitted
values Ŵ from the DOE model using W = tλ(Z) as the “response” for each
of the five values of λ ∈ ΛL. Let T̂ = Ŵ = TZHAT and plot TZHAT vs
tλ(Z) for λ ∈ {−1,−1/2, 0, 1/2, 1}. These plots are called transformation
plots. The residual or error degrees of freedom used to compute the MSE
should not be too small. Choose the transformation Y = tλ∗(Z) that has the
best plot. Consider the one way ANOVA model with ni > 4 for i = 1, ..., p.
i) The dot plots should spread about the identity line with similar shape
and spread. ii) Dot plots that are approximately symmetric are better than
skewed dot plots. iii) Spread that increases or decreases with TZHAT (the
shape of the plotted points is similar to a right or left opening megaphone)
is bad.

12) The transformation plot for the selected transformation is also the
response plot for that model (eg for the model that uses Y = log(Z) as the
response). Make all of the usual checks on the DOE model (residual and
response plots) after selecting the response transformation.

13) The log rule says try Y = log(Z) if max(Z)/min(Z) > 10 where
Z > 0 and the subscripts have been suppressed (so Z ≡ Zij for the one way
ANOVA model).

14) Graphical Anova for the one way ANOVA model makes a dot
plot of scaled treatment deviations (effects) above a dot plot of the residuals.
For small n ≤ 40, suppose the distance between two scaled deviations (A and
B, say) is greater than the range of the residuals = max(rij)−min(rij). Then
declare µA and µB to be significantly different. If the distance is less than
the range, do not declare µA and µB to be significantly different. Assume
the ni ≡ m for i = 1, ..., p. Then the ith scaled deviation is c(Y i0 − Y 00) =

cα̂i = α̃i where c =
√
dfe/dftreat =

√
n− p

p− 1
.

15) Assume that the residual degrees of freedom are large enough for
testing. Then the response and residual plots contain much information.
Linearity and constant variance may be reasonable if the p dot plots have
roughly the same shape and spread, and the dot plots scatter about the
identity line. The p dot plots of the residuals should have similar shape and
spread, and the dot plots scatter about the r = 0 line. It is easier to check
linearity with the response plot and constant variance with the residual plot.
Curvature is often easier to see in a residual plot, but the response plot can
be used to check whether the curvature is monotone or not. The response
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plot is more effective for determining whether the signal to noise ratio is
strong or weak, and for detecting outliers or influential cases.

16) In a MANOVA model, yk = BT xk + εk for k = 1, ..., n is written in
matrix form as Z = XB + E. The model has E(εk) = 0 and Cov(εk) =
Σε = ((σij)) for k = 1, ..., n. Each response variable in a MANOVA model
follows an ANOVA model Y j = Xβj +ej for j = 1, ..., m where it is assumed
that E(ej) = 0 and Cov(ej) = σjjIn.

17) The one way MANOVA model is as above where Y j = Xβj + ej

is a one way ANOVA model for j = 1, ..., m. Check the model by making m
response and residual plots and a DD plot of the residuals ε̂i.

18) The four steps of the one way MANOVA test follow.
i) State the hypotheses H0 : µ1 = · · · = µp and H1 : not H0.
ii) Get t0 from output.
iii) Get pval from output.
iv) State whether you rejectH0 or fail to rejectH0. If pval ≤ α, reject H0 and
conclude that not all of the p means are equal. If pval > α, fail to reject H0

and conclude that all p means are equal or that there is not enough evidence
to conclude that not all of the p means are equal. As a textbook convention,
use α = 0.05 if α is not given.

10.5 Summary

1) The multivariate linear model yi = BT xi+εi for i = 1, ..., n has m ≥ 2
response variables Y1, ..., Ym and p predictor variables X1, X2, ..., Xp. The ith
case is (xT

i ,y
T
i ) = (xi1, xi2, ..., xip, Yi1, ..., Yim). If a constant xi1 = 1 is in the

model, then xi1 could be omitted from the case. The model is written in
matrix form as Z = XB + E. The model has E(εk) = 0 and Cov(εk) =
Σε = ((σij)) for k = 1, ..., n. Also E(ei) = 0 while Cov(ei, ej) = σijIn for
i, j = 1, ..., m. Then B and Σε are unknown matrices of parameters to be
estimated, and E(Z) = XB while E(Yij) = xT

i βj.
The data matrix W = [X Y ] except usually the first column 1 of X is

omitted if X1 = 1. The n×m matrix

Z =





Y1,1 Y1,2 . . . Y1,m

Y2,1 Y2,2 . . . Y2,m
...

...
. . .

...
Yn,1 Yn,2 . . . Yn,m



 =
[

Y 1 Y 2 . . . Y m

]
=




yT

1
...

yT
n



 .
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The n× p matrix

X =





x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p
...

...
. . .

...
xn,1 xn,2 . . . xn,p



 =
[

v1 v2 . . . vp

]
=




xT

1
...

xT
n





where often v1 = 1.
The p×m matrix

B =





β1,1 β1,2 . . . β1,m

β2,1 β2,2 . . . β2,m
...

...
. . .

...
βp,1 βp,2 . . . βp,m



 =
[

β1 β2 . . . βm

]
.

The n×m matrix

E =





ε1,1 ε1,2 . . . ε1,m

ε2,1 ε2,2 . . . ε2,m
...

...
. . .

...
εn,1 εn,2 . . . εn,m




=
[

e1 e2 . . . em

]
=




εT

1
...

εT
n



 .

Warning: The ei are error vectors, not orthonormal eigenvectors.
2) The univariate linear model is Yi = xi,1β1 + xi,2β2 + · · ·+ xi,pβp + ei =

xT
i β + ei = βT xi + ei for i = 1, . . . , n. In matrix notation, these n equations

become Y = Xβ + e, where Y is an n× 1 vector of response variables, X

is an n× p matrix of predictors, β is a p× 1 vector of unknown coefficients,
and e is an n × 1 vector of unknown errors.

3) Each response variable in a multivariate linear model follows a univari-
ate linear model Y j = Xβj + ej for j = 1, ..., m where it is assumed that
E(ej) = 0 and Cov(ej) = σjjIn.

4) The one way MANOVA model is a generalization of the Hotelling’s
T 2 test from 2 groups to p ≥ 2 groups, assumed to have different means
but a common covariance matrix Σε. Want to test H0 : µ1 = · · · = µp.
This model is a multivariate linear model so there are m response variables
Y1, ..., Ym measured for each group. Each Yi follows a one way ANOVA model
for i = 1, ..., m.

5) For the one way MANOVA model, make a DD plot of the residuals ε̂i

where i = 1, ..., n. Use the plot to check whether the εi follow a multivariate
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normal distribution or some other elliptically contoured distribution. Want
n > 10p.

6) For the one way MANOVA model, write the data as Yijk where i =
1, ..., p and j = 1, ..., ni. So k corresponds to the kth variable Yk for k =
1, ..., m. Then Ŷijk = µ̂ik = Y i0k for i = 1, ..., p. So for the kth variable,

mean µ1k, ..., µpk are of interest. The residuals are rijk = Yijk− Ŷijk. For each
variable Yk make a response plot of Y i0k versus Yijk and a residual plot of
Y i0k versus rijk. Both plots will consist of p dot plots of nk cases located at
the Y i0k. The dot plots should follow the identity line in the response plot
and the horizontal r = 0 line in the residual plot for each of the m response
variables Y1, ..., Ym. For each variable Yk, let Rik be the range of the ith dot
plot. If each ni ≥ 5, want max(R1k, ..., Rpk) ≤ 2min(R1k, ..., Rpk). The one
way MANOVA model may be reasonable if the m response and residual plots
satisfy the above graphical checks.

7) The four steps of the one way MANOVA test follow.
i) State the hypotheses H0 : µ1 = · · · = µp and H1 : not H0.
ii) Get t0 from output.
iii) Get pval from output.
iv) State whether you reject H0 or fail to reject H0. If pval ≤ α, reject H0

and conclude that not all of the p treatment means are equal. If pval > α, fail
to reject H0 and conclude that all p treatment means are equal or that there
is not enough evidence to conclude that not all of the p treatment means are
equal. Give a nontechnical sentence as the conclusion, if possible.

8) The one way MANOVA test assumes that Σx1
= · · · = Σxp, but has

some resistance to this assumption. See point 6).
9) Know how to use randomization to assign units to treatment groups

with the R/Splus function sample that is used to draw a random permutation
of {1, 2, ..., n}. If the units are a1, ..., a9 and the sample(9) command gives
6 7 9 5 1 4 2 8 3, then a6, a7 and a9 are assigned treatment 1, a5, a1

and a4 are assigned treatment 2, and a2, a8 and a3 are assigned treatment 3.

10.6 Complements

Four good tests on the design and analysis of experiments (ANOVA) are
Box, Hunter and Hunter (2005), Cobb (1998), Kuehl (1994) and Ledolter
and Swersey (2007). Also see Olive (2010, ch. 5-9). Section 10.2 followed
Olive (2010, ch. 5) closely.



CHAPTER 10. MANOVA 240

All of the parameterizations of the one way fixed effects ANOVA model
yield the same predicted values, residuals and ANOVA F test, but the inter-
pretations of the parameters differ. The cell means model is a linear model
(without intercept) of the form Y = Xcβc + e = that can be fit using OLS.
The OLS MLR output gives the correct fitted values and residuals but an
incorrect ANOVA table. An equivalent linear model (with intercept) with
correct OLS MLR ANOVA table as well as residuals and fitted values can
be formed by replacing any column of the cell means model by a column of
ones 1. Removing the last column of the cell means model and making the
first column 1 gives the model Y = β0 + β1x1 + · · · + βp−1xp−1 + e given in
matrix form by (10.8).

It can be shown that the OLS estimators corresponding to (10.8) are
β̂0 = Y p0 = µ̂p, and β̂i = Y i0 − Y p0 = µ̂i − µ̂p for i = 1, ..., p− 1. The cell

means model has β̂i = µ̂i = Y i0.





Y11
...

Y1,n1

Y21
...

Y2,n2

...
Yp,1
...

Yp,np





=





1 1 0 . . . 0
...

...
...

...
1 1 0 . . . 0
1 0 1 . . . 0
...

...
...

...
1 0 1 . . . 0
...

...
...

...
1 0 0 . . . 1
...

...
...

...
1 0 0 . . . 1
1 0 0 . . . 0
...

...
...

...
1 0 0 . . . 0









β0

β1
...

βp−1



 +





e11
...

e1,n1

e21
...

e2,n2

...
ep,1
...

ep,np





. (10.8)

Graphical Anova uses scaled treatment effects = scaled treatment de-
viations d̃i = cdi = c(Y i0 − Y 00) for i = 1, ..., p. Following Box, Hunter
and Hunter (2005, p. 166), suppose ni ≡ m = n/p for i = 1, ..., n. If Ho
µ1 = · · · = µp is true, want the sample variance of the scaled deviations
to be approximately equal to the sample variance of the residuals. So want

1 ≈
1
p

∑p
i=1 c

2d2
i

1
n

∑n
i=1 r

2
i

= F0 =
MSTR

MSE
=

SSTR/(p− 1)

SSE/(n − p)
=

∑p
i=1md

2
i /(p− 1)∑n

i=1 r
2
i /(n − p)
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since SSTR =
∑p

i=1 m(Y i0 − Y 00)
2 =

∑p
i=1md

2
i . So

F0 =

∑p
i=1 c

2 n
p
d2

i∑n
i=1 r

2
i

=

∑p
i=1

m(n−p)
p−1

d2
i∑n

i=1 r
2
i

.

Equating numerators gives

c2 =
mp

n

(n− p)

(p− 1)
=

(n− p)

(p− 1)

since mp/n = 1. Thus c =
√

(n− p)/(p− 1).
For Graphical Anova, see Box, Hunter and Hunter (2005, p. 136, 150,

164, 166) and Hoaglin, Mosteller, and Tukey (1991). The R package granova,
available from (http://streaming.stat.iastate.edu/CRAN/) and authored by
R.M. Pruzek and J.E. Helmreich, may be useful.

The modified power transformation family

Yi = tλ(Zi) ≡ Z
(λ)
i =

Zλ
i − 1

λ

for λ 6= 0 and t0(Zi) = log(Zi) for λ = 0 where λ ∈ ΛL.
Box and Cox (1964) give a numerical method for selecting the response

transformation for the modified power transformations. Although the method
gives a point estimator λ̂o, often an interval of “reasonable values” is gen-
erated (either graphically or using a profile likelihood to make a confidence
interval), and λ̂ ∈ ΛL is used if it is also in the interval.

There are several reasons to use a coarse grid ΛL of powers. First, several
of the powers correspond to simple transformations such as the log, square
root, and reciprocal. These powers are easier to interpret than λ = .28,
for example. Secondly, if the estimator λ̂n can only take values in ΛL, then
sometimes λ̂n will converge in probability to λ∗ ∈ ΛL. Thirdly, Tukey (1957)
showed that neighboring modified power transformations are often very sim-
ilar, so restricting the possible powers to a coarse grid is reasonable.

The graphical method for response transformations is due to Olive (2004,
2010: ch. 5). A variant of the method would plot the residual plot or
both the response and the residual plot for each of the five values of λ.
Residual plots are also useful, but they do not distinguish between nonlinear
monotone relationships and nonmonotone relationships. See Fox (1991, p.
55). Alternative methods are given by Cook and Olive (2001) and Box,
Hunter and Hunter (2005, p. 321).
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A randomization test for the one way ANOVA model has H0: the
different treatments have no effect. This null hypothesis is also true if all p
pdfs Y |(W = ai) ∼ fZ(y − µ) are the same. An impractical randomization
test uses all M = n!

n1!···np!
ways of assigning ni of the Yij to treatment i for

i = 1, ..., p. Let F0 be the usual F statistic. The F statistic is computed
for each of the M permutations and H0 is rejected if the proportion of the
M F statistics that are larger than F0 is less than δ. The distribution of
the M F statistics is approximately Fp−1,n−p for large n when H0 is true.
The power of the randomization test is also similar to that of the usual F
test. See Hoeffding (1952). These results suggest that the usual F test is
semiparametric: the pvalue is approximately correct if n is large and if all p
pdfs Y |(W = ai) ∼ fZ(y − µ) are the same.

Let [x] be the integer part of x, eg [7.7] = 7. Olive (2011b) shows that
practical randomization tests that use a random sample of max(1000, [n log(n)])
permutations have level and power similar to the tests that use all M possi-
ble permutations. See Ernst (2009) and the mpack function rand1way for R
code.

Another alternative to one way ANOVA is to use feasible weighted least
squares (FWLS) on the cell means model with σ2V = diag(σ2

1, ..., σ
2
p) where

σ2
i is the variance of the ith group for i = 1, ..., p. Then V̂ = diag(S2

1 , ..., S
2
p)

where S2
i = 1

ni−1

∑ni

j=1(Yij − Y i0)
2 is the sample variance of the Yij . Hence

the estimated weights for FWLS are ŵij ≡ ŵi = 1/S2
i . Then the FWLS cell

means model has Y = Xcβc+e as in (10.4) except Cov(e) = diag(σ2
1, ..., σ

2
p).

Hence Z = U cβc + ε. Then UT
c U c = diag(n1ŵ1, ..., npŵp), (UT

c U c)
−1 =

diag(S2
1/n1, ..., S

2
p/np) = (XV̂

−1
XT )−1, and UT

c Z = (ŵ1Y10, ..., ŵpYp0)
T .

Thus
β̂FWLS = (Y 10, ..., Y p0)

T = β̂c.

That is, the FWLS estimator equals the one way ANOVA estimator of β

based on OLS applied to the cell means model. The ANOVA F test gener-
alizes the pooled t test in that the two tests are equivalent for p = 2. The
FWLS procedure is also known as the Welch one way ANOVA and general-
izes the Welch t test. The Welch t test is thought to be much better than
the pooled t test. See Brown and Forsythe (1974ab), Kirk (1982, p. 100,
101, 121, 122) and Welch (1947, 1951).
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In matrix form Z = U cβc + ε becomes





√
ŵ1Y1,1

...√
ŵ1Y1,n1√
ŵ2Y21

...√
ŵ2Y2,n2

...√
ŵpYp,1

...√
ŵpYp,np





=





√
ŵ1 0 0 . . . 0
...

...
...

...√
ŵ1 0 0 . . . 0
0

√
ŵ2 0 . . . 0

...
...

...
...

0
√
ŵ2 0 . . . 0

...
...

...
...

0 0 0 . . .
√
ŵp

...
...

...
...

0 0 0 . . .
√
ŵp









µ1

µ2
...
µp



 +





ε11
...

ε1,n1

ε21
...

ε2,n2

...
εp,1
...

εp,np





.

(10.9)
Four tests for Ho : µ1 = · · · = µp can be used if Rule of Thumb 10.3:

max(S1, ..., Sp) ≤ 2min(S1, ..., Sp) fails. Let Y = (Y1, ..., Yn)
T , and let Y(1) ≤

Y(2) · · · ≤ Y(n) be the order statistics. Then the rank transformation of the
response is Z = rank(Y ) where Zi = j if Yi = Y(j) is the jth order statistic.
For example, if Y = (7.7, 4.9, 33.3, 6.6)T , then Z = (3, 1, 4, 2)T . The first test
performs the one way ANOVA F test with Z replacing Y . See Montgomery
(1984, p. 117-118). Two of the next three tests are described in Brown and
Forsythe (1974b). Let dxe be the smallest integer ≥ x, eg d7.7e = 8. Then
the Welch (1951) ANOVA F test uses test statistic

FW =

∑p
i=1wi(Y i0 − Ỹ00)

2/(p− 1)

1 + 2(p−2)
p2−1

∑p
i=1(1 − wi

u
)2/(ni − 1)

where wi = ni/S
2
i , u =

∑p
i=1wi and Ỹ00 =

∑p
i=1wiY i0/u. Then the test

statistic is compared to an Fp−1,dW
distribution where dW = dfe and

1/f =
3

p2 − 1

p∑

i=1

(1 − wi

u
)2/(ni − 1).

For the modified Welch (1947) test, the test statistic is compared to an
Fp−1,dMW

distribution where dMW = dfe and

f =

∑p
i=1(S

2
i /ni)

2

∑p
i=1

1
ni−1

(S2
i /ni)2

=

∑p
i=1(1/wi)

2

∑p
i=1

1
ni−1

(1/wi)2
.
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Some software uses f instead of dW or dMW , and variants on the denominator
degrees of freedom dW or dMW are common.

The modified ANOVA F test uses test statistic

FM =

∑p
i=1 ni(Y i0 − Y 00)

2

∑p
i=1(1 − ni

n
)S2

i

The test statistic is compared to an Fp−1,dM
distribution where dM = dfe

and

1/f =

p∑

i=1

c2i/(ni − 1)

where

ci = (1 − ni

n
)S2

i /[

p∑

i=1

(1 − ni

n
)S2

i ].

The mpack function anovasim can be used to compare the five tests.

Huberty and Olejnik (2006) and Khattree and Naik (1999, ch. 4) are use-
ful reference for MANOVA. Mardia (1971) notes that the one way MANOVA
test based on Pillai’s trace V is robust to nonnormality, especially when all
of the treatment sample sizes are the same: ni ≡ h. Permutation tests offer
an alternative. See, for example, Anderson (2001).

10.7 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

10.1∗. In the MANOVA model, β̂i = (XT X)−1XT Y i, and Y i = Xβi +
ei. Treating Xβi as a constant, Cov(Y i,Y j) = Cov(ei, ej) = σijIn. Using

this information, show Cov(β̂i, β̂j) = σij(X
T X)−1.

10.2. SAS Institute (1985, p. 498 - 501) describes a one way MANOVA
model. There are two groups for gender: female and male. There were p = 4
(skull measurements) variables X1 = length X2 = basilar, X3 = zygomat
and X4 = postorb. There were n1 = 18 females and n2 = 22 males measured.
Suppose t0 = 0.9567 and pvalue = 0.6566. Here to was Wilk’s lambda, but
the other three test statistics gave the same pvalue. Do a 4 step one way
MANOVA test.
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10.3. Suppose the 15 units are 1 Adatorwovor, 2 Adhikari, 3 Alanzi, 4
Alsibiani, 5 AlTalib, 6 Fan, 7 Kuo, 8 Lamsal, 9 Liu, 10 Meyer, 11 Peiris,
12 Rathnayake, 13 Rupasinghe, 14 Schroeppel and 15 Watagoda. Use the
following output to allocate the 15 units to three groups of 5. Show the three
groups.

> sample(15)

[1] 6 3 4 2 1 10 7 5 12 15 13 8 14 11 9

R/Splus Problems

Warning: Use the command source(“G:/mpack.txt”) to download
the programs. See Preface or Section 15.2. Typing the name of the
mpack function, eg ddplot, will display the code for the function. Use the
args command, eg args(ddplot), to display the needed arguments for the
function.

10.4. The Johnson and Wichern (1988, p. 262) turtle data gives the
length, width and height of painted turtle shells. There is a sample of 24
female and a sample of 24 male turtles.

a) The R command for this part make the response and residual plots for
each of the three variables. Click the rightmost mouse button and highlight
Stop to advance the plot. When you have the response and residual plots for
one variable on the screen, copy and paste the two plots into Word. Do this
three times, once for each variable. The male turtles are smaller than the
female turtles.

b) The R command for this plot makes a DD plot of the residuals and
adds the lines corresponding to the three prediction regions of Section 5.2.
The robust cutoff is larger than the semiparametric cutoff. Place the plot in
Word. Do the residuals appear to follow a multivariate normal distribution?
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Factor Analysis

11.1 Introduction

Factor analysis gives an approximation of the dispersion matrix in terms
of m < p unobservable random quantities called factors. Typically factor
analysis is useful if the p random variables can be placed into a few groups
of variables with fairly high correlation such that the variables within the
group are not highly correlated with variables outside of the group. Let
m be the number of groups. Then the hope is that the kth group can be
explained by the kth factor. For example, if the p = 6 random variables
consist of three head measurements and height, arm length and leg length,
then perhaps the three head measurements are highly correlated and the
three other measurements are highly correlated. Then there would be m = 2
groups corresponding to a “head measurement” factor and a “length” factor.

Some notation is needed before presenting the model. When the eigen-
value λi of Σ is unique, there are two standardized eigenvectors: ei and
−ei. The literature sometimes states that the standardized eigenvectors

are “unique up to sign.” Assume λ1 > λ2 > · · · > λp > 0. If Σ̂
P→ cΣ

for some positive constant c, then by the spectral decomposition theorem,

Σ̂ =
∑p

i=1 λ̂iêiê
T
i

P→ c
∑p

i=1 λieie
T
i = cΣ, and êiê

T
i

P→ eie
T
i for i = 1, ..., p by

Theorem 6.2 since eie
T
i = (−ei)(−ei)

T .
The factor analysis approximation of the dispersion matrix Σ ≈ ΣP

uses the first m terms of the spectral decomposition of Σ and a diagonal
matrix Ψ so that the approximation is exact for the diagonal elements:
Σii = ΣP,ii. Let the ith column of the p×m matrix L be

√
λiei where m < p.

246
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Then L =
[ √

λ1e1

√
λ2e2 . . .

√
λmem

]
. Then Σ =

∑m
i=1 λieie

T
i +∑p

i=m+1 λieie
T
i = LLT +

∑p
i=m+1 λieie

T
i ≈ LLT + Ψ ≡ ΣP where Ψ =

diag(ψ1, ..., ψp) and Σii = ΣP,ii. Hence (LLT )ii + ψi = Σii.

Definition 11.1. The orthogonal factor analysis model is x−µ = LF +ε

where the p× 1 random vector x = (X1, ..., Xp), the p×m matrix of factor
loadings L = ((lij)), the m × 1 random vector of common factors is F =
(F1, ..., Fm)T and the p× 1 error vector is ε = (ε1, ..., εp)

T . The εi are called
errors or specific factors. The dispersion structure is Σ ≈ LLT + Ψ = ΣP

with equality for the diagonal elements. Hence Σii = l2i1+l
2
i2+· · ·+l2im+ψi =

h2
i + ψi where h2

i = l2i1 + l2i2 + · · · + l2im is called the ith communality. The
model has Xi − µi = li1F1 + li2F2 + · · · + limFm + εm for i = 1, ..., p. The
loading of the ith variable on the jth factor = lij.

Data often does not have this structure, so an important question in
whether the factor analysis structure is reasonable. Note that if Σ is the
covariance matrix, then V (Xi) = σii = Σii = h2

i + ψi. L,F , ε and µ are
unobservable. When Σ is the covariance matrix, assume that E(F ) = 0,
Cov(F ) = Im, E(ε = 0, Cov(ε) = Ψ and that F and ε are independent.
Then Cov(x,F ) = L or Cov(Xi, Fj) = lij, and Σ = LLT + Ψ = ΣP .

Let the ith column of the p × m matrix L̂ be
√
λ̂iêi where m < p.

Then L̂ =
[ √

λ̂1ê1

√
λ̂2ê2 . . .

√
λ̂mêm

]
. Then Σ̂ =

∑m
i=1 λ̂iêiê

T
i +

∑p
i=m+1 λ̂iêiê

T
i = L̂L̂

T
+
∑p

i=m+1 λ̂iêiê
T
i ≈ L̂L̂

T
+ Ψ̂ ≡ Σ̂P where Ψ̂ =

diag(ψ̂1, ..., ψ̂p) and Σ̂ii = Σ̂P,ii. Hence (L̂L̂
T
)ii + ψ̂i = Σ̂ii.

Definition 11.2. The principal component factor analysis uses the ap-

proximation Σ̂ ≈ L̂L̂
T

+ Ψ̂. L̂ is called the matrix of estimated factor load-
ings. The ith estimated communality ĥ2

i = l̂2i1 + l̂2i2 + · · · + l̂2im for i = 1, .., p.

The kth column
√
λ̂kêk of L̂ gives the estimated factor loadings for factor

Fk. These estimated factor loadings do not change as m is increased. If Γ
is an orthogonal matrix, then L̂

∗
= L̂Γ is also a matrix of estimated factor

loadings, and L̂L̂
T

= L̂
∗
(L̂

∗
)T . The communalities are unaffected by the

choice of Γ.

Rule of thumb 11.1. To use factor analysis, assume the DD plot and
subplots of the scatterplot matrix are linear. Want n > 10p for classical
factor analysis and n > 20p for robust factor analysis that uses FCH, RFCH
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or RMVN. For classical factor analysis, use the correlation matrix R instead
of the covariance matrix S if maxi=1,...,p S

2
i /mini=1,...,p S

2
i > 2. If S is used,

also do a factor analysis using R. Want the proportion of the trace explained
by the first m factors =

∑m
i=1 λ̂i/

∑p
j=1 λ̂j =

∑m
i=1 λ̂i/tr(Σ̂) > 0.7. Want

m < min(10, p). Suppose (T, Σ̂) is the estimator of multivariate location
and dispersion. Make a plot of Di(T, Σ̂P ) versus Di(T, Σ̂) with the identity
line that has unit slope and zero intercept added as a visual aid. If Σ̂P is an
adequate approximation of Σ̂, then the plotted points should cluster tightly
about the identity line.

11.2 Robust Factor Analysis

Robust factor analysis can be done using the FCH, RFCH or RMVN dis-

persion estimator as Σ̂. Under (E1) the robust factor analysis has Σ̂
P→ cΣ

while S
P→ cXΣ. If the generalized correlation matrix is used as Σ̂, then the

classical and robust methods both satisfy Σ̂
P→ ρ. The RMVN method is

easy to program since it is the classical factor analysis applied to the RMVN
subset.

11.3 Summary

1) Factor analysis is use to write Σ̂ ≈ L̂L̂
T

+ Ψ̂ = Σ̂F . Factor analysis
clusters variables into groups called factors and suggests that the m < p
factors explain the dispersion more simply than X1, ..., Xp. L̂ = [L1, ...,Lm]
is the matrix of factor loadings.

2) Factor analysis output is a lot like PCA output, but replace PC1, ...,

PCp by Factor 1, ..., Factor m:
Factor 1 Factor 2 · · · Factor m

L̂1 L̂2 · · · L̂m

3) To try to explain Factor j, look at entries in L̂j that are large in
magnitude and ignore entries close to zero. Sometimes only one entry is
large. Sometimes all of the large entries have approximately the same size
and sign, then the Factor is interpreted as an average of these entrees. If all
of the large entries have approximately the same size but different signs then
the Factor is interpreted as the sum of the variables with the positive sign −
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the sum of the variables with a minus sign. Thus if exactly two entries are
of similar large magnitude but of different sign, the Factor is interpreted as
a difference of the two entrees. If there are k ≥ 2 large entrees that differ
in magnitude, then the Factor is interpreted as a linear combination of the
corresponding variables.

4) The proportion of variance explained and cumulative proportion of
variance explained are interpreted as for PCA. Use the k factor model if the
proportion of the variance explained by the first k Factors is larger than some
percentage such as 50%, 60%, 70%, 80% or 90%.

5) For a k factor model, want the degrees of freedom d ≥ 0 where
d = 0.5(p− k)2 − 0.5(p + k).

6) If the 1 factor model is not adequate, R will give a test for whether a k
factor model is sufficient. A k factor model with pval < 0.05 is not sufficient:
more factors are needed. A k factor model with pval > 0.05 is sufficient.

7) Let Γ̂ be an orthogonal matrix. The L̂ΓL̂
T

Γ = L̂Γ̂Γ̂
T
L̂

T
= L̂L̂

T
. The

varimax and promax rotations seek Γ̂ such that L̂Γ = L̂Γ̂ has loadings that
are easier to interpret than the loadings of L̂. The promax rotation attempts
to produce loading with a lot of zeroes.

11.4 Complements

Kosfeld (1996) does factor analysis with the DGK estimator.

11.5 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

Loadings:

Factor1 Factor2

height 0.872

arm.span 0.973

forearm 0.938

lower.leg 0.876

weight 0.961

bitro.diameter 0.803



CHAPTER 11. FACTOR ANALYSIS 250

chest.girth 0.796

chest.width 0.125 0.611

Factor1 Factor2

SS loadings 3.375 2.589

Proportion Var 0.422 0.324

Cumulative Var 0.422 0.745

11.1∗. The above output is for the factor analysis using a correlation
matrix of eight physical measurements on 305 girls between ages seven and
seventeen.

a) What is the cumulative variance explained by the 2 factors?

b) Which factor has a nonzero loading for weight?

c) Explain Factor 2.

factanal(marry,factors=2,rotation="promax")

Uniquenesses: pop mmen mwmn mmilmen milwmn

0.010 0.005 0.005 0.005 0.005

Loadings:Factor1 Factor2

pop 0.986

mmen 1.003

mwmn 1.003

mmilmen 0.965

milwmn 0.958

Factor1 Factor2

SS loadings 2.995 1.850

Proportion Var 0.599 0.370

Cumulative Var 0.599 0.969

11.2. The above output is for a factor analysis of the Hebbler (1847)
data from the the 1843 Prussia census. Sometimes if the wife or husband
was not at the household, then s/he would not be counted. X1 = pop =
population of the district in 1843, X2 = mmen = number of married civilian
men in the district, X3 = mwmn = number of women married to civilians
in the district, X4 = mmilmen = number of married military men in the
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district, and x5 = milwmn = number of women married to military men in
the district.

a) What is the cumulative variance explained by the 2 factors?

b) Explain Factor 1.

c) Explain Factor 2.

Uniquenesses:

age breadth cephalic circum headht height len size cbrainy

0.005 0.005 0.005 0.142 0.005 0.303 0.005 0.005 0.366

Loadings:

Factor1 Factor2 Factor3 Factor4

log(age) 1.026

breadth 0.874 0.461 -0.142

cephalic -0.115 1.020

circum 0.849 0.113

headht 0.965

height 0.202 0.597 0.204

len 1.109 -0.363 -0.156

size 0.805 0.231

brainwt 0.642 -0.262 0.296

Factor1 Factor2 Factor3 Factor4

SS loadings 3.833 1.491 1.389 1.161

Proportion Var 0.426 0.166 0.154 0.129

Cumulative Var 0.426 0.592 0.746 0.875

11.3. The above output is for the factor analysis of the Gladstone (1905-
6) data. The variables included log(age) and height and 7 head measure-
ments breadth, cephalic, circum, headht, len, size, and brain weight.

a) What is the cumulative variance explained by the 4 factors?

b) Which factor has a nonzero loading for log(age)?

c) Explain Factor 3.

R/Splus Problems

Warning: Use the command source(“G:/mpack.txt”) to download
the programs. See Preface or Section 15.2. Typing the name of the
mpack function, eg ddplot, will display the code for the function. Use the
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args command, eg args(ddplot), to display the needed arguments for the
function.

11.4. The Buxton data has 5 massive outliers in variables len and buxy
= height.

a) The R commands for this part do a factor analysis on the Buxton data
using the sample covariance matrix. Copy and paste the output into Word.

i) Which variables have nonzero loadings for factor 1?
ii) Which variables have nonzero loadings for factor 2?
iii) What is the cumulative variance explained by the two factors?
b) The R commands for this part do a factor analysis on the Buxton data

using the RMVN dispersion matrix. Copy and paste the output into Word.
i) Which variables have nonzero loadings for factor 1?
ii) Which variables have nonzero loadings for factor 2?
iii) What is the cumulative variance explained by the two factors?
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Multivariate Linear Regression

12.1 Introduction

Definition 12.1. The response variables are the variables that you want
to predict. The predictor variables are the variables used to predict the
response variables.

Notation. The multivariate linear regression model yi = BTxi +
εi for i = 1, ..., n has m ≥ 2 response variables Y1, ..., Ym and p predictor
variables X1, X2, ..., Xp where X1 = 1 is the trivial predictor. The ith case is
(xT

i ,y
T
i ) = (1, xi2, ..., xip, Yi1, ..., Yim) where the 1 could be omitted.

In matrix form, the model is Z = XB + E, and the data matrix W =
[X Y ] except usually the first column 1 of X is omitted. The n×m matrix

Z =





Y1,1 Y1,2 . . . Y1,m

Y2,1 Y2,2 . . . Y2,m
...

...
. . .

...
Yn,1 Yn,2 . . . Yn,m




=
[

Y 1 Y 2 . . . Y m

]
=




yT

1
...

yT
n



 .

The n× p matrix

X =





x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p
...

...
. . .

...
xn,1 xn,2 . . . xn,p




=
[

v1 v2 . . . vp

]
=




xT

1
...

xT
n





253
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where v1 = 1.
The p×m matrix

B =





β1,1 β1,2 . . . β1,m

β2,1 β2,2 . . . β2,m
...

...
. . .

...
βp,1 βp,2 . . . βp,m



 =
[

β1 β2 . . . βm

]
.

The n×m matrix

E =





ε1,1 ε1,2 . . . ε1,m

ε2,1 ε2,2 . . . ε2,m
...

...
. . .

...
εn,1 εn,2 . . . εn,m




=
[

e1 e2 . . . em

]
=




εT

1
...

εT
n



 .

Warning: The ei are error vectors, not orthonormal eigenvectors.

Definition 12.2. In the multiple linear regression model,

Yi = xi,1β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei (12.1)

for i = 1, . . . , n. In matrix notation, these n equations become

Y = Xβ + e, (12.2)

where Y is an n × 1 vector of response variables, X is an n × p matrix of
predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1
vector of unknown errors. Equivalently,





Y1

Y2
...
Yn



 =





x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p
...

...
. . .

...
xn,1 xn,2 . . . xn,p









β1

β2
...
βp



+





e1

e2
...
en



 . (12.3)

The ei are iid with zero mean and variance σ2, and multiple linear regression
is used to estimate the unknown parameters β and σ2.

Each response variable in a multivariate linear regression model follows a
multiple linear regression model Y j = Xβj + ej for j = 1, ..., m where it is
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assumed that E(ej) = 0 and Cov(ej) = σjjIn. Hence the errors correspond-
ing to the jth response are uncorrelated with variance σ2

j = σjj. Notice that
the same design matrix X of predictors is used for each of the m models,
but the jth response variable vector Y j, coefficient vector βj and error vector
ej change and thus depend on j.

Now consider the ith case (xT
i ,y

T
i ) which corresponds to the ith row of

Z and the ith row of X. Then




Yi1 = β11xi1 + · · · + βp1xip + εi1 = xT
i β1 + εi1

Yi2 = β12xi1 + · · · + βp2xip + εi2 = xT
i β2 + εi2

...
Yim = β1mxi1 + · · · + βpmxip + εim = xT

i βm + εim





or yi = µxi
+ εi = E(yi) + εi where

E(yi) = µxi
= BTxi =





xT
i β1

xT
i β2
...

xT
i βm



 .

The notation yi|xi and E(yi|xi) is more accurate, but usually the condi-
tioning is suppressed. Taking µxi

to be a constant (or condition on xi if the
predictor variables are random variables), yi and εi have the same covariance
matrix. In the multivariate regression model, this covariance matrix Σε does
not depend on i. Observations from different cases are uncorrelated (often
independent), but the m errors for the m different response variables for the
same case are correlated. If X is a random matrix, then assume X and E

are independent and that expectations are conditional on X.

Definition 12.3. The multivariate linear regression model yk =
BT xk + εk for k = 1, ..., n is written in matrix form as Z = XB + E.
The model has E(εk) = 0 and Cov(εk) = Σε = ((σij)) for k = 1, ..., n.
Also E(ei) = 0 while Cov(ei, ej) = σijIn for i, j = 1, ..., m. Then B and
Σε are unknown matrices of parameters to be estimated, and E(Z) = XB

while E(Yij) = xT
i βj. Considering the kth row of Z,X and E shows that

yT
k = xT

k B + εT
k .

Example 12.1. Suppose it is desired to predict the response variables
Y1 = height and Y2 = height at shoulder of a person from partial skeletal
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remains. A model for prediction can be built from nearly complete skeletons
or from living humans, depending on the population of interest (eg ancient
Egyptians or modern US citizens). The predictor variables might be x1 ≡ 1,
x2 = femur length and x3 = ulna length. The two heights of individuals with
x2 = 200mm and x3 = 140mm should be shorter on average than the two
heights of individuals with x2 = 500mm and x3 = 350mm. In this example
Y1, Y2, x2 and x3 are quantitative variables. If x4 = gender is a predictor
variable, then gender (coded as male = 1 and female = 0) is qualitative.

Definition 12.4. Least squares is the classical method for fitting multi-
variate linear regression. The least squares estimators are B̂ = (XTX)−1XT Z =[

β̂1 β̂2 . . . β̂m

]
. The predicted values or fitted values

Ẑ = XB̂ =
[

Ŷ 1 Ŷ 2 . . . Ŷ m

]
=





Ŷ1,1 Ŷ1,2 . . . Ŷ1,m

Ŷ2,1 Ŷ2,2 . . . Ŷ2,m
...

...
. . .

...

Ŷn,1 Ŷn,2 . . . Ŷn,m



 .

The residuals Ê = Z − Ẑ = Z − XB̂ =




ε̂T
1

ε̂T
2
...

ε̂
T
n




=
[

r̂1 r̂2 . . . r̂m

]
=





ε̂1,1 ε̂1,2 . . . ε̂1,m

ε̂2,1 ε̂2,2 . . . ε̂2,m
...

...
. . .

...
ε̂n,1 ε̂n,2 . . . ε̂n,m




.

These quantities can be found from the m multiple linear regressions of Yj

on the predictors: β̂j = (XTX)−1XT Y j , Ŷ j = Xβ̂j and r̂j = Y j − Ŷ j

for j = 1, ..., m. Hence ε̂i,j = Yi,j − Ŷi,j where Ŷ j = (Ŷ1,j, ..., Ŷn,j)
T . Finally,

Σ̂ε,d =

(Z − Ẑ)T (Z − Ẑ)

n− d
=

(Z −XB̂)T (Z −XB̂)

n− d
=

Ê
T
Ê

n− d
=

1

n − d

n∑

i=1

ε̂iε̂
T
i .

The choices d = 0 and d = p are common. If d = 1, then Σ̂ε,d=1 = Sr, the
sample covariance matrix of the residual vectors ε̂i since the sample mean of
the ε̂i is 0. Let Σ̂ε = Σ̂ε,p be the unbiased estimator of Σε. Also,

Σ̂ε,d = (n− d)−1ZT [I −X(XT X)−1X]Z,
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and
Ê = [I − X(XTX)−1X]Z.

Theorem 12.1, (Johnson and Wichern (1988, p. 304): Suppose
X has full rank p < n and the covariance structure of Definition 12.3 holds.
Then E(B̂) = B so E(β̂j) = βj, Cov(β̂j, β̂k) = σjk(X

T X)−1 for j, k =

1, ..., p. Also Ê and B̂ are uncorrelated, E(Ê) = 0 and

E(Σ̂ε) = E

(
Ê

T
Ê

n − p

)

= Σε.

Theorem 12.2. Sr = Σε+OP (n−1/2) if B−B̂ = OP (n−1/2), 1
n

∑n
i=1 εix

T
i =

OP (1), 1
n

∑n
i=1 xix

T
i = OP (n1/2) and 1

n

∑n
i=1 εiε

T
i = Σε +OP (n−1/2).

Proof. Note that yi = BT xi +εi = B̂
T
xi + ε̂i. Hence ε̂i = (B−B̂)Txi +

εi. Thus

n∑

i=1

ε̂iε̂
T
i =

n∑

i=1

(εi−εi+ε̂i)(εi−εi+ε̂i)
T =

n∑

i=1

[εiε
T
i +εi(ε̂i−εi)

T +(ε̂i−εi)ε̂
T
i ] =

n∑

i=1

εiε
T
i +(

n∑

i=1

εix
T
i )(B−B̂)+(B−B̂)T (

n∑

i=1

xiε
T
i )+(B−B̂)T (

n∑

i=1

xix
T
i )(B−B̂).

Thus 1
n

∑n
i=1 ε̂iε̂

T
i = 1

n

∑n
i=1 εiε

T
i +

OP (1)OP (n−1/2) +OP (n−1/2)OP (1) +OP (n−1/2)OP (n1/2)OP (n−1/2),

and the result follows since 1
n

∑n
i=1 εiε

T
i = Σε +OP (n−1/2) and

Sr =
n

n− 1

1

n

n∑

i=1

ε̂iε̂
T
i .

12.2 Checking the Model

12.2.1 Plots

Notation. Plots will be used to simplify regression analysis, and in this text
a plot of W versus Z uses W on the horizontal axis and Z on the vertical
axis.
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Definition 12.5. A response plot for the jth response variable is a
plot of the fitted values Ŷij versus the response Yij . The identity line with
slope one and zero intercept is added to the plot as a visual aid. A residual
plot corresponding to the jth response variable is a plot of Ŷij versus rij.

Remark 12.1. Make the m response and residual plots for any multi-
variate linear regression. In a response plot, the vertical deviations from the
identity line are the residuals rij = Yij − Ŷij. If the model is appropriate,
then the plotted points should cluster about the identity line in each of the
m response plots. If outliers are present or if the plot is not linear, then the
current model or data need to be changed or corrected. If the model is good,
then the each of the m residual plots should be ellipsoidal with no trend and
should be centered about the r = 0 line. There should not be any pattern in
the residual plot: as a narrow vertical strip is moved from left to right, the
behavior of the residuals within the strip should show little change. Outliers
and patterns such as curvature or a fan shaped plot are bad.

Notation. A rule of thumb is a rule that often but not always works well
in practice.

Rule of thumb 12.1. Use multivariate linear regression if n > 10max(p,m).
The m response and residual plots should all look good. Make the DD plot
of the ε̂i. If a residual plot would look good after several points have been
deleted, and if these deleted points were not gross outliers (points far from
the point cloud formed by the bulk of the data), then the residual plot is
probably good. Beginners often find too many things wrong with a good
model. For practice, use the computer to generate several multivariate linear
regression data sets, and make the m response and residual plots for these
data sets. This exercise will help show that the plots can have considerable
variability even when the multivariate linear regression model is good.

Rule of thumb 12.2. If the plotted points in the residual plot look like
a left or right opening megaphone, the first model violation to check is the
assumption of nonconstant variance. (This is a rule of thumb because it is
possible that such a residual plot results from another model violation such
as nonlinearity, but nonconstant variance is much more common.)

Remark 12.2. Residual plots magnify departures from the model while
the response plots emphasizes how well the multivariate linear regression
model fits the data.
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Definition 12.6. An RR plot is a scatterplot matrix of the m sets of
residuals r1, ..., rm.

Definition 12.7. An FF plot is a scatterplot matrix of the m sets
of fitted values of response variables Ŷ 1, ..., Ŷ m. The m response variables
Y 1, ...,Y m can be added to the plot.

Remark 12.3. Multivariate linear regression makes the most sense if the
m errors are linearly related, eg from an elliptically contoured distribution.
Make the RR plot and a DD plot of the residuals ε̂i to check that the errors
are linearly related. Make a DD plot of the continuous predictor variables
to check for x-outliers. Make a DD plot of Y1, ...., Ym to check for outliers,
especially if it is assumed that the response variables come from an elliptically
contoured distribution.

Example 12.2. Tremearne (1911) presents a data set of about 17 mea-
surements on 115 people of Hausa nationality. We deleted 3 cases (107, 108
and 109) because of missing values and used height as the response variable
Y1. Suppose Y2 is the other response variable and that the response and
residual plots for Y2 are well behaved. Along with a constant xi,1 ≡ 1, the
five additional predictor variables used were height when sitting, height when
kneeling, head length, nasal breadth, and span (perhaps from left hand to right
hand). Figure 12.1 presents the response and residual plots corresponding
the response variable Y1 = height for this data set. These plots show that
the model should be useful for the data since the plotted points in the re-
sponse plot are linear and follow the identity line while the plotted points in
the residual plot follow the r = 0 line with no other pattern (except for a
possible outlier marked 44).

To use the response plot to visualize the conditional distribution of Y1|xT β1,
use the fact that the fitted values Ŷ1 = xT β̂1. For example, suppose the height
given fit = 1700 is of interest. Mentally examine the plot about a narrow
vertical strip about fit = 1700, perhaps from 1675 to 1725. The cases in the
narrow strip have a mean close to 1700 since they fall close to the identity
line. Similarly, when the fit = w for w between 1500 and 1850, the cases
have heights near w, on average.

Cases 3, 44 and 63 are highlighted. The 3rd person was very tall while
the 44th person was rather short. Beginners often label too many points
as outliers. Mentally draw a box about the bulk of the data ignoring any
outliers. Double the width of the box (about the identity line for the response
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Figure 12.1: Residual and Response Plots for the Response Variable Height
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plot and about the horizontal r = 0 line for the residual plot). Cases outside
of this imaginary doubled box are potential outliers. Alternatively, visually
estimate the standard deviation of the residuals in both plots. In the residual
plot look for residuals that are more than 5 standard deviations from the
r = 0 line. In Figure 12.1, the standard deviation of the residuals appears to
be around 10. Hence cases 3 and 44 are certainly worth examining.

The plots corresponding to Y1 can be made with the following commands.
In general store Y 1, Y 2, ..., Y m and make the MLRplot(X,Y) command m
times for Y = Y 1, ..., Y m.

source("G:/mpack.txt")

#assume the data is stored in R matrix major

X<-major[,-6]; Y1 <- major[,6]; MLRplot(X,Y1)

12.2.2 Predictor and Response Transformations

Predictor transformations for the continuous predictors can be made exactly
as in Section 2.4.

Warning: The Rule of thumb 2.1 does not always work. For example,
the log rule may fail. If the relationships in the scatterplot matrix are already
linear or if taking the transformation does not increase the linearity, then no
transformation may be better than taking a transformation. For the Arc data
set evaporat.lsp, the log rule suggests transforming the response variable
Evap, but no transformation works better.

Response transformations can also be made as in Section 2.4, but there is
an alternative graphical method for response transformations once the pre-
dictors are fixed. Discussion will first be given for multiple linear regression
with response variable Y . Then for multivariate regression, simply use the
transformation plots for each of the m response variables Y1, ..., Ym.

An important class of response transformation models adds an additional
unknown transformation parameter λo, such that

Yi = tλo(Zi) ≡ Z
(λo)
i = E(Yi|xi) + ei = xT

i β + ei. (12.4)

If λo was known, then Yi = tλo(Zi) would follow a multiple linear regression
model with p predictors including the constant. Here, β is a p × 1 vector
of unknown coefficients depending on λo, x is a p × 1 vector of predictors
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that are assumed to be measured with negligible error, and the errors ei are
assumed to be iid with zero mean.

Definition 12.8. Assume that all of the values of the “response” Zi are
positive. A power transformation has the form Y = tλ(Z) = Zλ for λ 6= 0
and Y = t0(Z) = log(Z) for λ = 0 where

λ ∈ ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1}.

Definition 12.9. Assume that all of the values of the “response” Zi are
positive. Then the modified power transformation family

tλ(Zi) ≡ Z
(λ)
i =

Zλ
i − 1

λ
(12.5)

for λ 6= 0 and Z
(0)
i = log(Zi). Often Z

(1)
i is replaced by Zi for λ = 1.

Generally λ ∈ Λ where Λ is some interval such as [−1, 1] or a coarse subset
such as ΛL. This family is a special case of the response transformations
considered by Tukey (1957).

A graphical method for response transformations refits the model using
the same fitting method: changing only the “response” from Z to tλ(Z).
Compute the “fitted values” Ŵi using Wi = tλ(Zi) as the “response.” Then
a transformation plot of Ŵi versus Wi is made for each of the seven values of
λ ∈ ΛL with the identity line added as a visual aid. Vertical deviations from
the identity line are the “residuals” ri = Wi−Ŵi. Then a candidate response
transformation Y = tλ∗(Z) is reasonable if the plotted points follow the
identity line in a roughly evenly populated band. Curvature from the identity
line suggests that the candidate response transformation is inappropriate.

Definition 12.10. A transformation plot is a plot of Ŵ versus W with
the identity line added as a visual aid.

There are several reasons to use a coarse grid of powers. First, several
of the powers correspond to simple transformations such as the log, square
root, and cube root. These powers are easier to interpret than λ = .28,
for example. According to Mosteller and Tukey (1977, p. 91), the most
commonly used power transformations are the λ = 0 (log), λ = 1/2,
λ = −1 and λ = 1/3 transformations in decreasing frequency of use. Sec-
ondly, if the estimator λ̂n can only take values in ΛL, then sometimes λ̂n will
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converge (eg in probability) to λ∗ ∈ ΛL. Thirdly, Tukey (1957) showed that
neighboring power transformations are often very similar, so restricting the
possible powers to a coarse grid is reasonable. Note that powers can always
be added to the grid ΛL. Useful powers are ±1/4,±2/3,±2, and ±3. Powers
from numerical methods can also be added.

Application 12.1. This graphical method for selecting a response trans-
formation is very simple. Let Wi = tλ(Zi). Then for each of the seven values
of λ ∈ ΛL, perform least squares (OLS) on (Wi,xi) and make the transfor-
mation plot of Ŵi versus Wi. If the plotted points follow the identity line for
λ∗, then take λ̂o = λ∗, that is, Y = tλ∗(Z) is the response transformation.
(Note that this procedure can be modified to create a graphical diagnostic for
a numerical estimator λ̂ of λo by adding λ̂ to ΛL.) Note that for multivariate
regression, use W = Yj for j = 1, ..., m. Hence 7m plots will be made.

If more than one value of λ ∈ ΛL gives a linear plot, take the simplest or
most reasonable transformation or the transformation that makes the most
sense to subject matter experts. Also check that the corresponding “residual
plots” of Ŵ versus W − Ŵ look reasonable. The values of λ in decreasing
order of importance are 1, 0, 1/2,−1 and 1/3. So the log transformation
would be chosen over the cube root transformation if both transformation
plots look equally good.

After selecting the transformations, the usual checks on the multivari-
ate regression model should be made. In particular, make the m response
and residual plots. In particular, the transformation plot for the selected
transformation is the response plot, and a residual plot should also be made.

The following two examples illustrates the procedure for a single response
variable Y = Y1, and the plots show tλ(Z) on the vertical axis. The label
“TZHAT” of the horizontal axis are the “fitted values” that result from us-
ing tλ(Z) as the “response” in the OLS software. In general for multivariate
regression, the plots would be made for Z1, ..., Zm resulting in response vari-
ables Y1 = t1(Z1), ..., Ym = tm(Zm).

Example 12.3: Textile Data. In their pioneering paper on response
transformations, Box and Cox (1964) analyze data from a 33 experiment
on the behavior of worsted yarn under cycles of repeated loadings. The “re-
sponse” Z is the number of cycles to failure and a constant is used along with
the three predictors length, amplitude and load. Using the normal profile log
likelihood for λo, Box and Cox determine λ̂o = −0.06 with approximate 95
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percent confidence interval −0.18 to 0.06. These results give a strong indi-
cation that the log transformation may result in a relatively simple model,
as argued by Box and Cox. Nevertheless, the numerical Box–Cox transfor-
mation method provides no direct way of judging the transformation against
the data.

Shown in Figure 12.2 are transformation plots of Ẑ versus Zλ for four
values of λ except log(Z) is used if λ = 0. The plots show how the trans-
formations bend the data to achieve a homoscedastic linear trend. Perhaps
more importantly, they indicate that the information on the transformation
is spread throughout the data in the plot since changing λ causes all points
along the curvilinear scatter in Figure 12.2a to form along a linear scatter in
Figure 12.2c. Dynamic plotting using λ as a control seems quite effective for
judging transformations against the data and the log response transformation
does indeed seem reasonable.

Note the simplicity of the method: Figure 12.2a shows that a response
transformation is needed since the plotted points follow a nonlinear curve
while Figure 12.2c suggests that Y = log(Z) is the appropriate response
transformation since the plotted points follow the identity line. If all 7
plots were made for λ ∈ ΛL, then λ = 0 would be selected since this plot
is linear. Also, Figure 12.2a suggests that the log rule is reasonable since
max(Z)/min(Z) > 10.

The essential point of the next example is that observations that influence
the choice of the usual Box–Cox numerical power transformation are often
easily identified in the transformation plots. The transformation plots are
especially useful if the bivariate relationships of the predictors, as seen in the
scatterplot matrix of the predictors, are linear.

Example 12.4: Mussel Data. Cook and Weisberg (1999a, p. 351, 433,
447) gave a data set on 82 mussels sampled off the coast of New Zealand.
Suppose the response Z is muscle mass M in grams, and the predictors are
the length L and height H of the shell in mm, the logarithm logW of the
shell width W, the logarithm logS of the shell mass S and a constant. With
this starting point, we might expect a log transformation of M to be needed
because M and S are both mass measurements and logS is being used as
a predictor. Using logM would essentially reduce all measurements to the
scale of length. The Box–Cox likelihood method gave λ̂0 = 0.28 with ap-
proximate 95 percent confidence interval 0.15 to 0.4. The log transformation
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is excluded under this inference leading to the possibility of using different
transformations of the two mass measurements.

Shown in Figure 12.3 are transformation plots for four values of λ. A
striking feature of these plots is the two points that stand out in three of
the four plots (cases 8 and 48). The Box–Cox estimate λ̂ = 0.28 is evi-
dently influenced by the two outlying points and, judging deviations from
the identity line in Figure 12.3c, the mean function for the remaining points
is curved. In other words, the Box–Cox estimate is allowing some visually
evident curvature in the bulk of the data so it can accommodate the two
outlying points. Recomputing the estimate of λo without the highlighted
points gives λ̂o = −0.02, which is in good agreement with the log trans-
formation anticipated at the outset. Reconstruction of the transformation
plots indicated that now the information for the transformation is consistent
throughout the data on the horizontal axis of the plot.

Note that in addition to helping visualize λ̂ against the data, the transfor-
mation plots can also be used to show the curvature and heteroscedasticity in
the competing models indexed by λ ∈ ΛL. Example 12.3 shows that the plot
can also be used as a diagnostic to assess the success of numerical methods
such as the Box–Cox procedure for estimating λo.

12.3 Variable Selection

Variable selection, also called subset or model selection, is the search for
a subset of predictor variables that can be deleted without important loss
of information. First we review variable selection for the multiple linear
regression (MLR) model, and then adapt the techniques for multivariate
linear regression.

12.3.1 Variable Selection for the MLR Model

This subsection follows Olive and Hawkins (2005) closely. A model for vari-
able selection in multiple linear regression can be described by

Y = xTβ + e = βTx + e = βT
SxS + βT

ExE + e = βT
SxS + e (12.6)

where e is an error, Y is the response variable, x = (xT
S ,x

T
E)T is a p × 1

vector of predictors, xS is a kS × 1 vector and xE is a (p − kS) × 1 vector.
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Given that xS is in the model, βE = 0 and E denotes the subset of terms
that can be eliminated given that the subset S is in the model.

Since S is unknown, candidate subsets will be examined. Let xI be the
vector of k terms from a candidate subset indexed by I , and let xO be the
vector of the remaining predictors (out of the candidate submodel). Then

Y = βT
I xI + βT

OxO + e. (12.7)

Definition 12.11. The model Y = βTx+e that uses all of the predictors
is called the full model. A model Y = βT

I xI + e that only uses a subset xI

of the predictors is called a submodel. The sufficient predictor (SP) is the
linear combination of the predictor variables used in the model. Hence the
full model has SP = βT x and the submodel has SP = βT

I xI .

Notice that the full model is a submodel. The estimated sufficient
predictor (ESP) is β̂

T
x and the following remarks suggest that a submodel I

is worth considering if the correlation corr(ESP,ESP (I)) ≥ 0.95. Suppose
that S is a subset of I and that model (12.6) holds. Then

SP = βTx = βT
SxS = βT

SxS + βT
(I/S)xI/S + 0TxO = βT

I xI (12.8)

where xI/S denotes the predictors in I that are not in S. Since this is true
regardless of the values of the predictors, βO = 0 and the sample correlation
corr(βT xi,β

T
I xI,i) = 1.0 for the population model if S ⊆ I .

This subsection proposes a graphical method for evaluating candidate
submodels. Let β̂ be the estimate of β obtained from the regression of Y
on all of the terms x. Denote the residuals and fitted values from the full

model by ri = Yi − β̂
T
xi = Yi − Ŷi and Ŷi = β̂

T
xi respectively. Similarly,

let β̂I be the estimate of βI obtained from the regression of Y on xI and

denote the corresponding residuals and fitted values by rI,i = Yi − β̂
T

I xI,i

and ŶI,i = β̂
T

I xI,i where i = 1, ..., n. Two important summary statistics for a
multiple linear regression model are R2, the proportion of the variability of
Y explained by the nontrivial predictors in the model, and the estimate σ̂ of
the error standard deviation σ.

Definition 12.12. The “fit–fit” or FF plot is a plot of ŶI,i versus Ŷi while
a “residual–residual” or RR plot is a plot rI,i versus ri. A response plot is a

plot of ŶI,i versus Yi. A residual plot is a plot of ŶI,i versus rI,i.
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Many numerical methods such as forward selection, backward elimina-
tion, stepwise and all subset methods using the Cp(I) criterion (Jones 1946,
Mallows 1973), have been suggested for variable selection. We will use the
FF plot, RR plot, the response plots from the full and submodel, and the
residual plots (of the fitted values versus the residuals) from the full and
submodel. These six plots will contain a great deal of information about
the candidate subset provided that Equation (12.6) holds and that a good
estimator for β̂ and β̂I is used.

For these plots to be useful, it is crucial to verify that a multiple lin-
ear regression (MLR) model is appropriate for the full model. Both the
response plot and the residual plot for the full model need to be
used to check this assumption. The plotted points in the response plot
should cluster about the identity line (that passes through the origin with
unit slope) while the plotted points in the residual plot should cluster about
the line r = 0. Any nonlinear patterns or outliers in either plot suggests that
an MLR relationship does not hold. Similarly, before accepting the candi-
date model, use the response plot and the residual plot from the candidate
model to verify that an MLR relationship holds for the response Y and the
predictors xI . If the submodel is good, then the residual and response plots
of the submodel should be nearly identical to the corresponding plots of the
full model. Assume that all submodels contain a constant.

Remark 12.4. To visualize whether a candidate submodel using predic-
tors xI is good, use the fitted values and residuals from the submodel and
full model to make an RR plot of the rI,i versus the ri and an FF plot of ŶI,i

versus Ŷi. Add the OLS line to the RR plot and identity line to both plots as
visual aids. The subset I is good if the plotted points cluster tightly about
the identity line in both plots. In particular, the OLS line and the identity
line should “nearly coincide” so that it is difficult to tell that the two lines
intersect at the origin in the RR plot.

The following notation will be useful. Suppose that all submodels in-
clude a constant and that X is the full rank n × p design matrix for the
full model. Let the corresponding vectors of OLS fitted values and resid-
uals be Ŷ = X(XTX)−1XT Y = HY and r = (I − H)Y , respectively.
Suppose that XI is the n × k design matrix for the candidate submodel
and that the corresponding vectors of OLS fitted values and residuals are
Ŷ I = XI(X

T
I XI)

−1XT
I Y = HIY and rI = (I − HI)Y , respectively. For
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multiple linear regression, recall that if the candidate model of xI has k terms
(including the constant), then the FI statistic for testing whether the p− k
predictor variables in xO can be deleted is

FI =
SSE(I) − SSE

(n− k) − (n− p)
/
SSE

n − p
=
n− p

p− k
[
SSE(I)

SSE
− 1]

where SSE is the error sum of squares from the full model and SSE(I) is the
error sum of squares from the candidate submodel. Then

Cp(I) =
SSE(I)

MSE
+ 2k − n = (p− k)(FI − 1) + k

where MSE is the error mean square for the full model. Notice that Cp(I) ≤
2k if and only if FI ≤ p/(p−k). Remark 12.7 below suggests that for subsets
I with k terms, submodels with Cp(I) ≤ min(2k, p) are especially interesting.

Olive (2013, proposition 5.1) shows that

corr(r, rI) =

√
n− p

Cp(I) + n− 2k
=

√
n − p

(p− k)FI + n − p
, (12.9)

and that the plotted points in the FF, RR and response plots will cluster
about the identity line. This proposition is a property of OLS and holds even
if the data does not follow an MLR model.

Remark 12.5. Note that for large n, Cp(I) < k or FI < 1 will force
corr(ESP,ESP(I)) to be high (≥ 0.95). Let d be a lower bound on corr(r, rI).
If

Cp(I) ≤ 2k + n

[
1

d2
− 1

]
− p

d2
,

then corr(r, rI) ≥ d. The simple screen Cp(I) ≤ 2k corresponds to

dn ≡
√

1 − p

n
.

To reduce the chance of overfitting, use the screen Cp(I) ≤ min(2k, p).

A standard model selection procedure will often be needed to suggest
models. For example, forward selection or backward elimination could be
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used. If p < 30, Furnival and Wilson (1974) provide a technique for selecting
a few candidate subsets after examining all possible subsets.

Rule of thumb 12.3 (assuming that the cost of each predictor is the
same): a) After using a numerical method such as forward selection or back-
ward elimination, let Imin correspond to the submodel with the smallest
Cp. Find the submodel II with the fewest number of predictors such that
Cp(II) ≤ Cp(Imin) + 1. Then II is the initial submodel that should be exam-
ined. It is possible that II = Imin or that II is the full model. Do not use
more predictors than model II to avoid overfitting.

b) Models I with fewer predictors than II such that Cp(I) ≤ Cp(Imin)+4
are interesting and should also be examined.

c) Models I with k predictors, including a constant and with fewer predic-
tors than II such that Cp(Imin) + 4 < Cp(I) ≤ min(2k, p) should be checked
but often underfit: important predictors are deleted from the model. Un-
derfit is especially likely to occur if a predictor with one degree of freedom
is deleted and the jump in Cp is large, greater than 4, say. (A factor has
c− 1 degrees of freedom corresponding to the c− 1 indicator variables used
to define the factor, and usually either all of the indicator variables are kept
or deleted by variable selection software.)

d) If there are no models I with fewer predictors than II such that Cp(I) ≤
min(2k, p), then model II is a good candidate for the best subset found by
the numerical procedure.

Variable selection seeks a subset I of the variables to keep in the model.
The submodel I will always contain a constant and will have k−1 nontrivial
predictors where 1 ≤ k ≤ p.

Forward selection starts with a constant = W1 = X1. Step 1) k = 2:
compute Cp for all models containing the constant and a single predictor Xi.
Keep the predictor W2 = Xj , say, that corresponds to the model with the
smallest value of Cp.
Step 2) k = 3: Fit all models with k = 3 that contain W1 and W2. Keep the
predictor W3 that minimizes Cp. ...
Step j) k = j+1: Fit all models with k = j+1 that contains W1,W2, ...,Wj.
Keep the predictor Wj+1 that minimizes Cp. ...
Step p− 1): Fit the full model.

Backward elimination: All models contain a constant = U1 = X1.
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Step 1) k = p: Start with the full model that contains X1, ..., Xp. We will
also say that the full model contains U1, ..., Up where U1 = X1 but Ui need
not equal Xi for i > 1.
Step 2) k = p− 1: fit each model with p− 1 predictors including a constant.
Delete the predictor Up, say, that corresponds to the model with the smallest
Cp. Keep U1, ..., Up−1.
Step 3) k = p−2: fit each model with p−2 predictors and a constant. Delete
the predictor Up−1 that corresponds to the smallest Cp. Keep U1, ..., Up−2. ...
Step j) k = p − j + 1: fit each model with p − j + 1 predictors and a
constant. Delete the predictor Up−j+2 that corresponds to the smallest Cp.
Keep U1, ..., Up−j+1. ...
Step p− 1) k = 2. The current model contains U1, U2 and U3. Fit the model
U1, U2 and the model U1, U3. Assume that model U1, U2 minimizes Cp. Then
delete U3 and keep U1 and U2.

Assume that the full model has p predictors including a constant and
that the submodel I has k predictors including a constant. Assume that
the full model has good response and residual plots and that n > 5p. Then
we would like following properties i) – xi) (roughly in order of decreasing
importance) to hold. Often we can not find a submodel where i) – xi) all
hold simultaneously. Do not use more predictors than model II to avoid
overfitting.

Then the submodel I is good if
i) the response and residual plots for the submodel looks like the response
and residual plots for the full model.
ii) corr(ESP,ESP(I)) = corr(Ŷ, ŶI) ≥ 0.95.
iii) The plotted points in the FF plot cluster tightly about the identity line.
iv) Want the p-value ≥ 0.01 for the partial F test that uses I as the reduced
model.
v) Want k ≤ n/10.
vi) The plotted points in the RR plot cluster tightly about the identity line.
vii) Want R2(I) > 0.9R2 and R2(I) > R2 − 0.07 (R2(I) ≤ R2(full) since
adding predictors to I does not decrease R2(I)).
viii) Want Cp(Imin) ≤ Cp(I) ≤ min(2k, p) with no big jumps in Cp (the
increase should be less than four) as variables are deleted.
ix) Want hardly any predictors with p-values > 0.05.
x) Want few predictors with p-values between 0.01 and 0.05.
xi) Want MSE(I) to be smaller than or not much larger than the MSE from
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the full model.

Example 12.5. The FF and RR plots can be used as a diagnostic for
whether a given numerical method is including too many variables. Glad-
stone (1905-1906) attempts to estimate the weight of the human brain (mea-
sured in grams after the death of the subject) using simple linear regression
with a variety of predictors including age in years, height in inches, head
height in mm, head length in mm, head breadth in mm, head circumference
in mm, and cephalic index. The sex (coded as 0 for females and 1 for males)
of each subject was also included. The variable cause was coded as 1 if the
cause of death was acute, 3 if the cause of death was chronic, and coded as 2
otherwise. A variable ageclass was coded as 0 if the age was under 20, 1 if the
age was between 20 and 45, and as 3 if the age was over 45. Head size, the
product of the head length, head breadth, and head height, is a volume mea-
surement, hence (size)1/3 was also used as a predictor with the same physical
dimensions as the other lengths. Thus there are 11 nontrivial predictors and
one response, and all models will also contain a constant. Nine cases were
deleted because of missing values, leaving 267 cases.
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Figure 12.4: Gladstone data: comparison of the full model and the submodel.
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Figure 12.5: Gladstone data: submodels added (size)1/3, sex, age and finally
breadth.

SRES3

F
R

E
S

-200 -100 0 100 200

-2
0

0
-1

0
0

0
1

0
0

2
0

0

a) RR Plot

SFIT3

F
F

IT

400 600 800 1000 1200 1400

4
0

0
6

0
0

8
0

0
1

0
0

0
1

2
0

0
1

4
0

0

b) FF Plot

Figure 12.6: Gladstone data with Predictors (size)1/3, sex, and age
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Figure 12.4 shows the response plots and residual plots for the full model
and the final submodel that used a constant, size1/3, age and sex. The five
cases separated from the bulk of the data in each of the four plots correspond
to five infants. These may be outliers, but the visual separation reflects the
small number of infants and toddlers in the data. A purely numerical variable
selection procedure would miss this interesting feature of the data. We will
first perform variable selection with the entire data set, and then examine the
effect of deleting the five cases. Using forward selection and the Cp statistic
on the Gladstone data suggests the subset I5 containing a constant, (size)1/3,
age, sex, breadth, and cause with Cp(I5) = 3.199. The p–values for breadth
and cause were 0.03 and 0.04, respectively. The subset I4 that deletes cause
has Cp(I4) = 5.374 and the p–value for breadth was 0.05. Figure 12.5d shows
the RR plot for the subset I4. Note that the correlation of the plotted points
is very high and that the OLS and identity lines nearly coincide.

A scatterplot matrix of the predictors and response suggests that (size)1/3

might be the best single predictor. First we regressed Y = brain weight on
the eleven predictors described above (plus a constant) and obtained the
residuals ri and fitted values Ŷi. Next, we regressed Y on the subset I
containing (size)1/3 and a constant and obtained the residuals rI,i and the

fitted values ŶI,i. Then the RR plot of rI,i versus ri, and the FF plot of ŶI,i

versus Ŷi were constructed.
For this model, the correlation in the FF plot (Figure 12.5b) was very

high, but in the RR plot the OLS line did not coincide with the identity line
(Figure 12.5a). Next sex was added to I , but again the OLS and identity
lines did not coincide in the RR plot (Figure 12.5c). Hence age was added
to I. Figure 12.6a shows the RR plot with the OLS and identity lines added.
These two lines now nearly coincide, suggesting that a constant plus (size)1/3,
sex, and age contains the relevant predictor information. This subset has
Cp(I) = 7.372, R2

I = 0.80, and σ̂I = 74.05. The full model which used
11 predictors and a constant has R2 = 0.81 and σ̂ = 73.58. Since the Cp

criterion suggests adding breadth and cause, the Cp criterion may be leading
to an overfit.

Figure 12.6b shows the FF plot. The five cases in the southwest corner
correspond to five infants. Deleting them leads to almost the same conclu-
sions, although the full model now has R2 = 0.66 and σ̂ = 73.48 while the
submodel has R2

I = 0.64 and σ̂I = 73.89.
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12.3.2 Variable Selection for Multivariate Linear Re-

gression

We still have the full model x = (xT
I ,xO)T where xI is a candidate submodel.

It is crucial to verify that a multivariate regression model is appropriate
for the full model. For each of the m response variables, use the
response plot and the residual plot for the full model to check this
assumption.

To obtain the candidate subset for multivariate regression, do numeri-
cal variable selection such as forward selection or backward elimination for
multiple linear regression for each response variable Yj. Very often predictor
variables are highly correlated and often similar sets of predictor variables
will be used by each of the m multiple linear regressions. See if there is a
pattern to the most important and least important predictors. Try to get rid
of predictors that are not needed in any of the m multiple linear regressions.
It is better to keep too many predictors than to possible delete a predictor
that is needed in at least one of the m multiple linear regression, but want
n > 10p.

Check the submodel xI for multivariate linear regression with the FF,
RR plots and the response and residual plots for the full model and for
the candidate model for each of the m response variables Y1, ..., Ym. The
submodels use YIj for j = 1, ..., m.

12.4 Prediction

12.4.1 Prediction Intervals for Multiple Linear Regres-

sion

This subsection gives estimators for predicting a future or new value Yf of the
vector of response variables given the predictors xf . The following subsection
will extend the results to multivariate regression.

Warning: All too often the MLR model seems to fit the data

(x1, Y1), ..., (xn, Yn)

well, but when new data is collected, a very different MLR model is needed
to fit the new data well. In particular, the MLR model seems to fit the data
(xi, Yi) well for i = 1, ..., n, but when the researcher tries to predict Yf for a
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new vector of predictors xf , the prediction is very poor in that Ŷf is not close
to the Yf actually observed. Wait until after the MLR model has been
shown to make good predictions before claiming that the model
gives good predictions!

There are several reasons why the MLR model may not fit new data
well. i) The model building process is usually iterative. Data Z, w1, ..., wk

is collected. If the model is not linear, then functions of Z are used as a
potential response and functions of the wi as potential predictors. After trial
and error, the functions are chosen, resulting in a final MLR model using Y
and x1, ..., xp. Since the same data set was used during the model building
process, biases are introduced and the MLR model fits the “training data”
better than it fits new data. Suppose that Y , x1, ..., xp are specified before
collecting data and that the residual and response plots from the resulting
MLR model look good. Then predictions from the prespecified model will
often be better for predicting new data than a model built from an iterative
process.

ii) If (xf , Yf , ) come from a different population than the population of
(x1, Y1), ..., (xn, Yn), then prediction for Yf can be arbitrarily bad.

iii) Even a good MLR model may not provide good predictions for an xf

that is far from the xi (extrapolation).
iv) The MLR model may be missing important predictors (underfitting).
v) The MLR model may contain unnecessary predictors (overfitting).

Two remedies for i) are a) use previously published studies to select an
MLR model before gathering data. b) Do a trial study. Collect some data,
build an MLR model using the iterative process. Then use this model as the
prespecified model and collect data for the main part of the study. Better
yet, do a trial study, specify a model, collect more trial data, improve the
specified model and repeat until the latest specified model works well. Un-
fortunately, trial studies are often too expensive or not possible because the
data is difficult to collect. Also, often the population from a published study
is quite different from the population of the data collected by the researcher.
Then the MLR model from the published study is not adequate.

Definition 12.13. Consider the MLR model Y = Xβ + e and the hat
matrix H = X(XT X)−1XT . Let hi = hii be the ith diagonal element of H

for i = 1, ..., n. Then hi is called the ith leverage and hi = xT
i (XTX)−1xi.

Suppose new data is to be collected with predictor vector xf . Then the
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leverage of xf is hf = xT
f (XT X)−1xf . Extrapolation occurs if xf is far

from the x1, ...,xn.

Rule of thumb 12.4. Predictions based on extrapolation are not reli-
able. A rule of thumb is that extrapolation occurs if hf > max(h1, ..., hn).
This rule works best if the predictors are linearly related in that a plot of
xi versus xj should not have any strong nonlinearities. If there are strong
nonlinearities among the predictors, then xf could be far from the xi but
still have hf < max(h1, ..., hn).

Example 12.6. Consider predicting Y = weight from x = height and a
constant from data collected on men between 18 and 24 where the minimum
height was 57 and the maximum height was 79 inches. The OLS equation
was Ŷ = −167 + 4.7x. If x = 70 then Ŷ = −167 + 4.7(70) = 162 pounds.
If x = 1 inch, then Ŷ = −167 + 4.7(1) = −162.3 pounds. It is impossible
to have negative weight, but it is also impossible to find a 1 inch man. This
MLR model should not be used for x far from the interval (57, 79).

The following theorem is analogous to the central limit theorem and the
theory for the t–interval for µ based on Y and the sample standard deviation
(SD) SY . If the data Y1, ..., Yn are iid with mean 0 and variance σ2, then Y is
asymptotically normal and the t–interval will perform well if the sample size
is large enough. The result below suggests that the OLS estimators Ŷi and
β̂ are good if the sample size is large enough. The condition max hi → 0 in
probability usually holds if the researcher picked the design matrix X or if
the xi are iid random vectors from a well behaved population. Outliers can
cause the condition to fail.

Theorem 12.3: Huber (1981, p. 157-160). Consider the MLR
model Yi = xT

i β + ei and assume that the errors are independent with zero
mean and the same variance: E(ei) = 0 and VAR(ei) = σ2. Also assume that
maxi(h1, ..., hn) → 0 in probability as n→ ∞. Then

a) Ŷi = xT
i β̂ → E(Yi|xi) = xiβ in probability for i = 1, ..., n as n→ ∞.

b) All of the least squares estimators aT β̂ are asymptotically normal
where a is any fixed constant p× 1 vector.

Theorem 12.4. The least squares estimator satisfies β̂ − β = oP (1) if

(
XT X

n

)−1 (
XT e

n

)
= oP (1).
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Proof:

β̂ − β =

(
XT X

n

)−1 (
XT e

n

)
.

Definition 12.14. A large sample 100(1 − δ)% prediction interval (PI)

has the form (L̂n, Ûn) where P (L̂n < Yf < Ûn)
P→ 1 − δ as the sample size

n→ ∞.

The interpretation of a 100 (1 − δ)% PI for a random variable Yf is
similar to that of a confidence interval (CI). Collect data, then form the PI,
and repeat for a total of k times where k trials are independent from the same
population. If Yfi is the ith random variable and PIi is the ith PI, then the
probability that Yfi ∈ PIi for m of the PIs follows a binomial(k, ρ = 1 − δ)
distribution. Hence if 100 95% PIs are made, ρ = 0.95 and Yfi ∈ PIi happens
about 95 times.

The length of the CI goes to 0 as the sample size n goes to ∞ while
the length of the PI converges to some nonzero number L, say. To see this,
consider xf such that the heights Y of women between 18 and 24 is normal
with a mean of 66 inches and an SD of 3 inches. A 95% CI for E(Y |xf )
should be centered at about 66 and the length should go to zero as n gets
large. But a 95% PI needs to contain about 95% of the heights so the PI
should converge to the interval 66 ± 1.96(3). This result follows because if
Y ∼ N(66, 9) then P (Y < 66 − 1.96(3)) = P (Y > 66 + 1.96(3)) = 0.025. In
other words, the endpoints of the PI estimate the 97.5 and 2.5 percentiles of
the normal distribution. However, the percentiles of a parametric error dis-
tribution depend heavily on the parametric distribution and the parametric
formulas are violated if the assumed error distribution is incorrect.

Let ξδ be the δ percentile of the error e, ie, P (e ≤ ξδ) = δ. Let ξ̂δ be
the sample δ percentile of the residuals. The percentiles of the residuals are

consistent estimators, ξ̂δ
P→ ξδ, under “mild” regularity conditions, and this

consistency is the basis for using QQ plots. For multiple linear regression

with iid errors with constant variance σ2, sufficient conditions are β̂
P→ β

and the xi are bounded in probability. See Olive (2011), Olive and Hawkins
(2003), Welsh (1986) and Rousseeuw and Leroy (1987, p. 128).
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For many error distributions,

E(MSE) = E

(
n∑

i=1

r2
i

n− p

)
= σ2 = E

(
n∑

i=1

e2
i

n

)
.

This result suggests that √
n

n− p
ri ≈ ei.

Let

an =

(
1 +

15

n

)√
n

n− p

√
(1 + hf ). (12.10)

Following Olive (2007), a PI is asymptotically optimal if it has the shortest
asymptotic length that gives the desired asymptotic coverage. If the error
distribution is unimodal, an asymptotically optimal PI can be created by
applying the shorth(c) estimator to the residuals where c = dn(1−δ)e and dxe
is the smallest integer≥ x, e.g., d7.7e = 8. That is, let r(1), ..., r(n) be the order
statistics of the residuals. Compute r(c) − r(1), r(c+1) − r(2), ..., r(n) − r(n−c+1).

Let (r(d), r(d+c−1)) = (ξ̃δ1, ξ̃1−δ2) correspond to the interval with the smallest
distance. Then the large sample 100 (1 − δ)% PI for Yf is

(Ŷf + anξ̃δ1, Ŷf + anξ̃1−δ2). (12.11)

12.4.2 Prediction Intervals for Multivariate linear Re-

gression

For multivariate linear regression, want to predict a future or new value
Y f = (Y1f , ..., Ymf)

T of the vector of m response variables given the vector
of predictors xf .

The collection of m prediction intervals (L1n, U1n), ..., (Lmn, Umn) are large
sample simultaneous conservative 100(1 − δ)% prediction intervals for Yjf if
the m prediction intervals all hold simultaneously, that is all m PIs (Ljn, Ujn)
contain Yjf , with probability 1−γn where 1−γn → 1−γ ≥ 1− δ as n→ ∞.

The Bonferroni simultaneous PIs are made by increasing the coverage of
a single PI from 1 − δ to (1 − δ/m). Hence 90% large sample simultaneous
PIs will use coverage 0.95 if m = 2 and coverage 0.99 if m = 10. Let Ej be an
event with P (Ej) = 1 − δj. Let Ej be the compliment of Ej so P (Ej) = δj.
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Then Bonferroni’s inequality is

P (∩m
j=1Ej) = 1 − P (∩m

j=1Ej) = 1 − P (∪m
j=1Ej) ≥ 1 −

m∑

j=1

P (Ej) =

= 1 −
∑m

j=1 δj = 1 − δ if δj = δ/m. To use this inequality for simultaneous
intervals, let Ej be the event that the jth PI contains Yjf . Then P (∩m

j=1Ej)
is the probability that all m PIs contain Yjf for j = 1, ..., m.

Let τ = δ/m. Then the m large sample simultaneous conservative
100(1 − δ)% PIs are

(Ŷjf + anξ̃τ1, Ŷjf + anξ̃1−τ2) (12.12)

for j = 1, ..., m using Equation (12.11) and residuals r1,j, ..., rn,j. That is,
make the 100(1−τ )% PI (12.11) for Yjf for j = 1, ..., m corresponding to the
multiple linear regression of the jth response variable Yj on X.

These PIs make no use of the fact that Cov(εi) = Σε, but no paramet-
ric distribution for the εi is needed. The classical simultaneous prediction
region for yf assumes that the εi are iid Nm(0,Σε) and tend to have large
undercoverage (are too liberal) when the normality assumption is violated,
which is usually the case.

12.4.3 Prediction Regions

Suppose a prediction region for yf given a vector of predictors xf is desired.

If we had many cases zi = BT xf + εi, then we could make a prediction

region for zi using Section 5.2. Instead, use ẑi = B̂
T
xf + ε̂i = ŷf + ε̂i

for i = 1, ..., n. This takes the data cloud of the n residual vectors ε̂i and
centers the cloud at ŷf . Note that ẑi = (B −B + B̂)Txf + (εi − εi + ε̂i) =

zi + (B̂ − B)Txf + ε̂i − εi = zi + OP (n−1/2). Hence the distances based
on the zi and the distances based on the ẑi should have the same quantiles,
asymptotically.

Theorem 12.5. Suppose yi = E(yi) + εi = ŷi + ε̂i where Cov(εi) =
Σε > 0, and where εf and the εi are iid for i = 1, ..., n. Suppose the fitted

model produces ŷf and nonsingular Σ̂ε. Let ẑi = ŷf + ε̂i and

D2
i (ŷf , Σ̂ε) = (ẑi − ŷf )

T Σ̂
−1

ε (ẑi − ŷf)
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for i = 1, ..., n. Let qn = min(1 − α + 0.05, 1 − α+m/n) for α > 0.1 and

qn = min(1 − α/2, 1 − α + 10αm/n), otherwise.

If qn < 1 − α + 0.001, set qn = 1 − α. Let 0 < α < 1 and h = D(Un)

where D(Un) is the qnth sample quantile of the Di. Consider the nominal
100(1 − α)% prediction region for yf

{z : (z − ŷf )
T Σ̂

−1

ε (z − ŷf) ≤ D2
(Un)} =

{z : D2
z(ŷf , Σ̂ε) ≤ D2

(Un)} = {z : Dz(ŷf , Σ̂ε) ≤ D(Un)}. (12.13)

a) Consider the n prediction regions for the data where (yf,i,xf,i) =
(yi,xi) for i = 1, ..., n. If the order statistic D(Un) is unique, then Un of the
n prediction regions contain yi where Un/n → 1 − α as n→ ∞.

b) If (ŷf , Σ̂ε) is a consistent estimator of (E(yf ),Σε) then (12.13) is a
large sample 100(1 − α)% prediction region for yf .

c) If (ŷf , Σ̂ε) is a consistent estimator of (E(yf ),Σε), and the εi come
from an elliptically contoured distribution such that the highest density re-
gion is {z : Dz(0,Σε) ≤ D1−α}, then the prediction region (12.13) is asymp-
totically optimal.

Proof. a) Suppose (xf ,yf) = (xi,yi). Then

D2
yi

(ŷi, Σ̂ε) = (yi − ŷi)
T Σ̂

−1

ε (yi − ŷi) = ε̂T
i Σ̂

−1

ε ε̂i = D2
ε̂i

(0, Σ̂ε).

Hence yi is in the ith prediction region {z : Dz(ŷi, Σ̂ε) ≤ D(Un)(ŷi, Σ̂ε)} iff

ε̂i is in prediction region {z : Dz(0, Σ̂ε) ≤ D(Un)(0, Σ̂ε)}, but exactly Un of
the ε̂i are in the latter region by construction, if D(Un) is unique. Since D(Un)

is the (1 − α) percentile of the Di asymptotically, Un/n→ 1 − α.
b) Let P [Dz(E(yf ),Σε) ≤ D1−α(E(yf ),Σε)] = 1 − α. Since Σε > 0,

Proposition 5.1 shows that if (ŷf , Σ̂ε)
P→ (E(yf ),Σε) then D(ŷf , Σ̂ε)

P→
Dz(E(yf ),Σε). Hence the percentiles of the distances also converge in prob-

ability, and the probability that yf is in {z : Dz(ŷf , Σ̂ε) ≤ D1−α(ŷf , Σ̂ε)}
converges to 1 − α = the probability that yf is in {z : Dz(E(yf ),Σε) ≤
D1−α(E(yf ),Σε)}.

c) The asymptotically optimal prediction region is the region with the
smallest volume (hence highest density) such that the coverage is 1 − α, as
n → ∞. This region is {z : Dz(E(yf ),Σε) ≤ D1−α(E(yf ),Σε)} if the
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asymptotically optimal region for the εi is {z : Dz(0,Σε) ≤ D1−α(0,Σε)}.
Hence the result follows by b). �

Multivariate linear regression satisfies Theorem 12.5, and applying a pre-
diction region from Section 5.2 on the ẑi results in a large sample 100(1−α)%
prediction region for yf given the vector of predictors xf . The prediction
region is asymptotically optimal if the εi are iid from an ECp(0,Σ, g) distri-
bution for a large class of elliptically contoured distributions.

To see the above claim, note that if the εi are iid from an elliptically
contoured distribution with nonsingular covariance matrix Σε, then the pop-
ulation asymptotically optimal prediction region is {y : Dy(BT xf ,Σε) <

D1−α} where P (Dy(BT xf ,Σε) < D1−α) = 1 − α. For example, if the iid

εi ∼ Nm(0,Σε), then D1−α =
√
χ2

m,1−α. If the error distribution is not ellip-

tically contoured, then the above region still has 100(1 − α)% coverage, but
prediction regions with smaller volume may exist. In general these quan-
tities need to be estimated. If many errors εi were available and B was
known, could estimate Σε with

∑n
i=1 εiε

T
i /n, compute zi = BTxF + εi and

estimate D1−α with D(dn(1−α)e), the sample (1 − α) percentile of the Dzi.

These quantities are unavailable, but the plug in estimators are ŷf = B̂
T
xf ,

Sr = Σ̂ε = (n− 1)−1
∑n

i=1 ε̂iε̂
T
i , ẑi = ŷf + ε̂i and D̂1−α, the sample (1 − α)

percentile of the Dẑi
.

Following Section 5.2, suppose (T,C) is the sample mean and scaled
sample covariance matrix applied to the ẑi where the multivariate linear
regression used least squares. For h > 0, the hyperellipsoid

{y : (y −T )TC−1(y−T ) ≤ h2} = {y : D2
y ≤ h2} = {y : Dy ≤ h}. (12.14)

A future observation (random vector) yf is in the region (12.14) if Dyf
≤ h.

Set up the prediction region (12.14) using h = D(Un) as described in Theorem
2.5. Following Section 5.2, this prediction region (12.14) will be called the
nonparametric prediction region.

The nonparametic prediction region has some interesting properties. Let
Sr be the sample covariance matrix of the residual vectors ε̂i. The sample
mean of the residual vectors is 0 since least squares was used. Hence the
ẑi = ŷf + ε̂i have sample covariance matrix Sr, and sample mean ŷf . Hence
(T,C) = (ŷf ,Sr), and the Di(ŷf ,Sr) are used to compute D(Un). So if there
are 100 different values (xjf ,yjf ) to be predicted, only need to update ŷjf
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for j = 1, ..., 100, do not need to update the covariance matrix Sr.
The geometry of the nonparametric region is simple. Let Rr be the non-

parametric prediction region applied to the residuals ε̂i, and let (12.14) be the
nonparametric prediction region using (T,C) = (ŷf ,Sr) when the multivari-
ate regression is fit by least squares. Then Rr is a hyperellipsoid with center
0, and the nonparametric prediction region (12.14) is the hyperellipsoid Rr

translated to have center ŷf .
It is common practice to examine how well the prediction regions work

on the data. That is, for i = 1, ..., n, set xf = xi and see if yi is in the region
with probability near to 1 − α with a simulation study. Note that ŷf = ŷi

if xf = xi. Simulation is not needed for the nonparametric prediction region
(12.14) for the data since the prediction region (12.14) centered at ŷi contains
yi iff Rr, the prediction region centered at 0, contains ε̂i since yi − ŷi = ε̂i.
Thus 100qn% of prediction regions corresponding to the data (yi,xi) contain
yi, and 100qn% → 100(1 − α)%. Hence the prediction regions work well on
the data and should work well on (xf ,yf ) similar to the data. Of course
simulation should be done for (xf ,yf ) that are not equal to data cases.

This result holds provided that the multivariate linear regression using
least squares is such that the sample covariance matrix Sr of the residual
vectors is nonsingular, the multivariate regression model need not be
correct. Hence the coverage at the n data cases (xi,yi) is very robust to
model misspecification. Of course, the prediction regions may be very large
if the model is severely misspecified, but severity of misspecification can be
checked with the response and residual plots. Coverage can also be arbitrarily
bad if there is extrapolation or if (xf ,yf ) comes from a different population
than that of the data.

Example 12.5. Consider the Mussel data described in Example 2.2
with response variables Y1 = log(S) and Y2 = log(M) with predictors X2 =
L,X3 = log(W ), and X4 = height. Figure 12.7 shows a scatterplot matrix of
the data and Figure 12.8 shows a DD plot of the data with multivariate pre-
diction regions added. These plots suggest that the data may come from an
elliptically contoured distribution that is not multivariate normal. The semi-
parametric and nonparametric 90% prediction regions of Section 5.2 consist
of the cases below the RD = 5.86 line and to the left of the MD = 4.41 line.
These two lines intersect on a line through the origin that is followed by the
plotted points. The parametric MVN prediction region is given by the points
below the RD = 3.33 line and does not contain enough cases.

Figures 12.9 and 12.10 give the response and residual plots for Y1 and Y2.
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Figure 12.7: Scatterplot Matrix of the Mussels Data.
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Figure 12.8: DD Plot of the Mussels Data.
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For Y2, cases 8, 25 and 48 are not fit well. A residual vector r = (r−e)+e is
a combination of e and a discrepancy r−e that tends to have an approximate
multivariate normal distribution. The r − e term can dominate for small to
moderate n when e is not multivariate normal, incorrectly suggesting that
the distribution of the error e is closer to a multivariate normal distribution
than is actually the case. Figure 12.11 shows the DD plot of the residual
vectors. The nonparametric prediction region for the residuals consists of
the points to the left of the vertical line MD = 2.27. Comparing Figure
12.8 and 12.11, the residual distribution is closer to a multivariate normal
distribution. Cases 8, 48 and 79 have especially large distances. R code for
producing the five figures is shown below.

y <- log(mussels)[,4:5]

x <- mussels[,1:3]

x[,2] <- log(x[,2])

z<-cbind(x,y)

pairs(z, labels=c("L","log(W)","H","log(S)","log(M)"))

ddplot4(z)

out <- mltreg(x,y)

ddplot4(out$res)

12.5 Testing Hypotheses

This section follows Khattree and Naik (1999, p. 66-67) closely.

Definition 12.15. Assume rank(X) = p. The total corrected (for the
mean) sum of squares and cross products matrix is

T = R + W = ZT (In − 1

n
11T )Z.

Note that T/(n− 1) is the usual sample covariance matrix Σ̂y if all n of the
yi are iid so that B = 0. The regression sum of squares and cross products
matrix is

R = ZT [X(XT X)−1XT − 1

n
11T ]Z = ZT XB̂ − 1

n
ZT 11tZ.

The error or residual sum of squares and cross products matrix is

W e = (Z − Ẑ)T (Z − Ẑ) = ZTZ − ZT XB̂ = ZT [In −X(XT X)−1XT ]Z.



CHAPTER 12. MULTIVARIATE LINEAR REGRESSION 287

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
2

.5
4

.0
5

.5

FIT

Y

Response Plot

48

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

−
0

.4
0

.0
0

.4

FIT

R
E

S

Residual Plot

48

Figure 12.9: Plots for Y1 = log(W ).
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Figure 12.10: Plots for Y2 = log(M).
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Figure 12.11: DD Plot of the Residual Vectors.

Note that W e = Ê
T
Ê and W e/(n − p) = Σ̂ε.

Warning: SAS output uses E instead of W e.

The MANOVA table is shown below.

Summary MANOVA Table

Source matrix df
Regression or Treatment R p− 1

Error or Residual W e n− p
Total (corrected) T n− 1

Consider testing a linear hypothesis H0 : LB = 0 versus H1 : LB 6= 0
where L is a full rank r × p matrix. Let H = B̂LT [L(XT X)−1LT ]−1LB̂.
Let λ1 ≥ λ2 ≥ · · · ≥ λm be the ordered eigenvalues of W −1

e H . Then there
are four commonly used test statistics.

The Wilk’s Λ statistic is Λ(L) = |(H + W e)
−1W e| = |W−1

e H + I |−1 =
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m∏

i=1

(1 + λi)
−1.

The Pillai’s trace statistic is V (L) = tr[(H + W e)
−1H ] =

m∑

i=1

λi

1 + λi
.

The Hotelling-Lawley trace statistic is U(L) = tr[W−1
e H ] =

m∑

i=1

λi.

The Roy’s maximum root statistic is λmax(L) = λ1.

Typically some function of one of the four above statistics is used to get
pval, the estimated pvalue. Output often gives the pvals for all four test
statistics. Be cautious about inference if the four test statistics do not lead
to the same conclusions. Pillai’s trace statistic is thought to be the most
robust against nonnormality of the εi.

The four steps of the MANOVA test of linear hypotheses follow.
i) State the hypotheses H0 : LB = 0 and H1 : LB 6= 0.
ii) Get test statistic from output.
iii) Get pval from output.
iv) State whether you reject H0 or fail to reject H0. If pval ≤ α, reject H0

and conclude that LB 6= 0. If pval > α, fail to reject H0 and conclude that
LB = 0 or that there is not enough evidence to conclude that LB 6= 0. As
a textbook convention, use α = 0.05 if α is not given.

The MANOVA test of H0 : B = 0 versus H1 : B 6= 0 is the special case

corresponding to L = I and H = B̂
T
XT XB̂ = Ẑ

T
Ẑ.

12.6 Justification of the Hotelling Lawley Test

Some notation is needed. Following Henderson and Searle (1979), let matrix
A =

[
a1 a2 . . . ap

]
. Then the vec operator stacks the columns of A on

top of one another so

vec(A) =





a1

a2
...

ap



 .



CHAPTER 12. MULTIVARIATE LINEAR REGRESSION 290

Let A = ((aij)) be anm×nmatrix and B a p×q matrix. Then the Kronecker
product of A and B is the mp× nq matrix

A ⊗B =





a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

... · · · ...
am1B am2B · · · amnB




.

An important fact is that if A and B are nonsingular square matrices,
then [A ⊗ B]−1 = A−1 ⊗ B−1.

Consider testing a linear hypothesis H0 : LB = 0 versus H1 : LB 6= 0
where L is a full rank r × p matrix. For now assume the error distribution
is multivariate normal Np(0,Σε). Then

vec(B̂ − B) =





β̂1 − β1

β̂2 − β2
...

β̂m − βm




∼ Npm(0,Σε ⊗ (XTX)−1)

where

C = Σε⊗(XT X)−1 =





σ11(X
TX)−1 σ12(X

TX)−1 · · · σ1p(X
T X)−1

σ21(X
TX)−1 σ22(X

TX)−1 · · · σ2p(X
T X)−1

...
... · · · ...

σp1(X
TX)−1 σp2(X

T X)−1 · · · σpp(X
TX)−1




.

Now let A be a rm × pm block diagonal matrix: A = diag(L, ...,L).
Then A vec(B̂ −B) = vec(L(B̂ − B)) =





L(β̂1 − β1)

L(β̂2 − β2)
...

L(β̂m − βm)



 ∼ Nrm(0,Σε ⊗ L(XT X)−1LT )

where D = Σε ⊗ L(XTX)−1LT = ACAT =




σ11L(XTX)−1LT σ12L(XTX)−1LT · · · σ1pL(XT X)−1LT

σ21L(XTX)−1LT σ22L(XTX)−1LT · · · σ2pL(XT X)−1LT

...
... · · · ...

σp1L(XTX)−1LT σp2L(XTX)−1LT · · · σppL(XT X)−1LT



 .
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Under H0, vec(LB) = A vec(B) = 0, and

vec(LB̂) =





Lβ̂1

Lβ̂2
...

Lβ̂m



 ∼ Nrm(0,Σε ⊗ L(XTX)−1LT ).

Hence under H0,

[vec(LB̂)]T [Σ−1
ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)] ∼ χ2

rm,

and

T = [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XTX)−1LT )−1][vec(LB̂)]
D→ χ2

rm. (12.15)

A large sample level δ test will reject H0 if pval < δ where

pval = P (
T

rm
< Frm,n−mp). (12.16)

Since least squares estimators are asymptotically normal, for a large class
of distributions,

√
n vec(B̂ − B) =

√
n





β̂1 − β1

β̂2 − β2
...

β̂m − βm




D→ Npm(0,Σε ⊗ W )

where
XT X

n
→ W −1.

Then under H0,

√
n vec(LB̂) =

√
n





Lβ̂1

Lβ̂2
...

Lβ̂m




D→ Nrm(0,Σε ⊗ LWLT ),

and
n [vec(LB̂)]T [Σ−1

ε ⊗ (LWLT )−1][vec(LB̂)]
D→ χ2

rm.
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Hence (12.15) holds, and (12.16) gives a large sample level δ test if the least
squares estimators are asymptotically normal.

Multivariate analogs of tests for multiple linear regression can be derived
with appropriate choice of L. Using L = [0 Ip−1] tests whether the nontrivial
predictors are needed in the multivariate linear regression model, an analog
of the Anova F test. Using L = [0 Ik] tests whether the last k predictors are
needed in the multivariate linear regression model given that the remaining
prredictors are in the model, an analog of the partial F test. Using L =
(0, ..., 0, 1, 0, ..., 0), a row vector with a 1 in the jth position, tests whether
the jth variable is needed in the multivariate linear regression model given
that the other p− 1 predictors are in the model, an analog to the t tests for
multiple linear regression. This statistic has the form

Tj =
1

dj

(β̂j1, β̂j2, ..., β̂jm)Σ̂
−1

ε





β̂j1

β̂j2
...

β̂jm





where dj = (XTX)−1
jj , the jth diagonal entry of (XTX)−1. The statistic

Tj could be used for forward selection and backward elimination in variable
selection.

12.7 Seemingly Unrelated Regressions

Each response variable in a multivariate linear regression model follows a
multiple linear regression model Y j = Xβj + ej for j = 1, ..., m where it is
assumed that E(ej) = 0 and Cov(ej) = σjjIn. Hence the errors correspond-
ing to the jth response are uncorrelated with variance σ2

j = σjj. Notice that
the same design matrix X of predictors is used for each of the m models,
but the response variable vector Y j, coefficient vector βj and error vector ej

change and thus depend on j.
The seemingly related regressions (SUR) model differs from the multivari-

ate linear regression model in that each response model follows a multiple lin-
ear regression model Y j = Xjβj +ej with a different design matrix Xj and
the βj are kj × 1 vectors. Let xi,j = (1, x2,j, ..., xkj,j)

T . Then the ith case in
the SUR model is (Yi,1, ..., Yi,m, x2,1, ..., xk1,1, x2,2, ..., xk2,2, ..., x2,m, ..., xkm,m).
That is, string yi and the xi,j into a vector, omitting the m ones.
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The multivariate linear regression model can be regarded as the special
case of the SUR model where all of the design matrices are equal Xj ≡ X

for j = 1, ..., m, and the SUR model can be regarded as a special case of the
multivariate linear regression model where the design matrix X has columns
corresponding to the constant 1, x2,1, ..., xkm,m. Hence if k =

∑m
i=1 ki, then

X is an n × (k − m + 1) matrix. Then the (k − m + 1) × 1 vector β∗
j =

(β1,j, 0, ..., 0, β2,j, ..., βkj,j, 0, ..., 0)
T . Here β∗

j is the jth column of B, and only
kj of the entries of β∗

j are nonzero. Hence most of the entries in B are zeroes.

A competitor of the SUR model would be the multivariate linear regres-
sion model where there are no restrictions on B, so the columns βj of B

are estimated using least squares and X. The SUR model says that the
Yi,1, ..., Yi,m are correlated, but only xi,j is needed in the model for predict-
ing the Yi,j when xi,1, ...,xi,m are possible vectors of predictors. If this as-
sumption is wrong, then the SUR model could be throwing away a lot of
information from relevant predictors.

Definition 12.15. In the seemingly unrelated regressions model,

yi = E(yi) + εi =





xT
i,1β1

xT
i,2β2
...

xT
i,mβm



 +





εi,1
εi,2
...
εi,m



 =





xT
i,1β̂1

xT
i,2β̂2
...

xT
i,mβ̂m



+





ε̂i,1
ε̂i,2
...
ε̂i,m





= ŷi + ε̂i for i = 1, ..., n, where Cov(εi) ≡ Σε is m×m and E(εi) ≡ 0. Here
xi,j, βj and β̂j are kj ×1 vectors where

∑m
j=1 kj = k, and yi = (yi1, ..., yim)T .

There are several ways to estimate the β̂j. First, estimate β̂j using least
squares on the m multiple linear regression models Y j = Xjβj + ej . This
method should be equivalent to using the multivariate regression model where
the β∗

j are the columns of B and the nonzero entries of β̂
∗
j are collected

into the kj × 1 vectors β̂j. Another method uses the seemingly unrelated
regressions estimator (SURE) which uses the multivariate linear regression
estimator as an initial estimator, and then uses generalized least squares.
See Press (2005,

∮
8.5). In the discussion that follows, β̂ will be the SUR

estimator which is thought to be more efficient than the alternatives. See
White (1984, p. 166-171) for large sample theory of the SUR estimator.
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Model checking and prediction for the SUR model is very similar to that
for the multivariate regression model, but use the fitted values and residuals
from the SUR model.

1) Make the m response and residual plots, and make the DD plot of the
ε̂i.

2) Transformation plots and variable selection can be done using least
squares on each of the m multiple linear regression models Y j = Xj = ej

for j = 1, ..., m.
3) Simultaneous prediction intervals using (12.11) and (12.12) can be

made using either least squares fits for each of the m models or using the
fitted values and residuals from the SUR model.

4) A prediction region for yf is made as in Section 12.4.3 using Σ̂ε and

ẑi = ŷf + ε̂i for i = 1, ..., n where ŷf = (xT
f,1β̂1, ...,x

T
f,mβ̂m)T and Σ̂ε and

the β̂j are the SUR estimators.

mltreg(x,y,indices=c(3,4))

$partial

partialF Pval

[1,] 0.2001622 0.9349877

$Ftable

Fj pvals

[1,] 4.35326807 0.02870083

[2,] 600.57002201 0.00000000

[3,] 0.08819810 0.91597268

[4,] 0.06531531 0.93699302

$MANOVA

MANOVAF pval

[1,] 295.071 1.110223e-16

Example 12.2. The above output is for the Hebbler (1847) data from
the the 1843 Prussia census. Sometimes if the wife or husband was not at
the household, then s/he would not be counted. Y1 = number of married
civilian men in the district, Y2 = number of women married to civilians in
the district, x2 = population of the district in 1843, x3 = number of married
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military men in the district, x4 = number of women married to military men
in the district. The reduced model deletes x3 and x4.

a) Do the MANOVA F test.

b) Do the F2 test.

c) Do the F4 test.

d) Do an appropriate 4 step test for the reduced model that deletes x3

and x4.

e) The output for the reduced model that deletes x1 and x2 is shown
below. Do an appropriate 4 step test.

$partial

partialF Pval

[1,] 569.6429 0

12.8 Summary

1) The multivariate linear regression model is a special case of the multivari-
ate linear model where at least one predictor variable Xj is continuous. The
MANOVA model is a multivariate linear model where all of the predictors are
categorical variables so the Xj are coded and are often indicator variables.

2) The multivariate linear regression model yi = BT xi + εi for
i = 1, ..., n has m ≥ 2 response variables Y1, ..., Ym and p predictor variables
X1, X2, ..., Xp. The ith case is (xT

i ,y
T
i ) = (xi1, xi2, ..., xip, Yi1, ..., Yim). The

constant xi1 = 1 is in the model, and is often omitted from the case and the
data matrix. The model is written in matrix form as Z = XB + E. The
model has E(εk) = 0 and Cov(εk) = Σε = ((σij)) for k = 1, ..., n. Also
E(ei) = 0 while Cov(ei, ej) = σijIn for i, j = 1, ..., m. Then B and Σε are
unknown matrices of parameters to be estimated, and E(Z) = XB while
E(Yij) = xT

i βj.
3) Each response variable in a multivariate linear regression model follows

a univariate linear regression model Y j = Xβj + ej for j = 1, ..., m where it
is assumed that E(ej) = 0 and Cov(ej) = σjjIn.

4) For each variable Yk make a response plot of Ŷik versus Yik and a resid-
ual plot of Ŷik versus rik = Yik − Ŷik. If the multivariate linear regression
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model is appropriate, then the plotted points should cluster about the iden-
tity line in each of the m response plots. If outliers are present or if the plot is
not linear, then the current model or data need to be changed or corrected. If
the model is good, then the each of the m residual plots should be ellipsoidal
with no trend and should be centered about the r = 0 line. There should
not be any pattern in the residual plot: as a narrow vertical strip is moved
from left to right, the behavior of the residuals within the strip should show
little change. Outliers and patterns such as curvature or a fan shaped plot
are bad.

5) Make a scatterplot matrix of Y1, ..., Ym and of the continuous predictors.
Use power transformations to remove strong nonlinearities.

6) Consider testing LB = 0 where L is a r × p full rank matrix. Let

W e = Ê
T
Ê and W e/(n− p) = Σ̂ε. Let H = B̂

T
LT [L(XT X)−1LT ]−1LB̂.

Let λ1 ≥ λ2 ≥ · · · ≥ λm be the ordered eigenvalues of W −1
e H . Then there

are four commonly used test statistics.
The Wilk’s Λ statistic is Λ(L) = |(H + W e)

−1W e| = |W−1
e H + I |−1 =

m∏

i=1

(1 + λi)
−1.

The Pillai’s trace statistic is V (L) = tr[(H + W e)
−1H ] =

m∑

i=1

λi

1 + λi
.

The Hotelling-Lawley trace statistic is U(L) = tr[W−1
e H ] =

m∑

i=1

λi =

1

n− p
[vec(LB̂)]T [Σ̂

−1

ε ⊗ (L(XTX)−1LT )−1][vec(LB̂)].

The Roy’s maximum root statistic is λmax(L) = λ1.

7) Under regularity conditions, −[n−p+1−0.5(m− r+3)] log(Λ(L))
D→

χ2
rm,

(n− p)V (L)
D→ χ2

rm, (n− p)U(L)
D→ χ2

rm, and if h = max(r,m),

n − p− h+ r

h
λmax(L) ≈ F (h, n− p− h+ r).

The Hotelling Lawley statistic is robust against nonnormality.
8) For the Wilk’s Lambda test,

pval = P

(−[n− p + 1 − 0.5(m− r + 3)]

rm
log(Λ(L)) < Frm,n−rm

)
.
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For the Pillai’s trace test, pval = P

(
n− p

rm
V (L) < Frm,n−rm

)
.

For the Hotelling Lawley trace test, pval = P

(
n − p

rm
U(L) < Frm,n−rm

)
.

The above three tests are large sample tests, P(reject H0|H0 is true) → α
as n→ ∞, under regularity conditions.

For the Roy’s largest root test, use

pval = P

(
n− p− h+ r

h
λmax(L) < Fh,n−p−h+r

)
.

The F statistic is an upper bound on the F statistic that provides a lower
bound on the nominal level of significance, α, under regularity conditions.

9) The 4 step MANOVA F test of hypotheses uses L = [0 Ip−1]:
i) State the hypotheses H0: the nontrivial predictors are not needed in the
mreg model H1: at least one of the nontrivial predictors is needed
ii) Find the test statistic Fo from output.
iii) Find the pval from output.
iv) If pval < α, reject H0. If pval ≥ α, fail to reject H0. If H0 is rejected,
conclude that there is a mreg relationship between the response variables
Y1, ..., Ym and the predictors X2, ..., Xp. If you fail to reject H0, conclude
that there is a not a mreg relationship between Y1, ..., Ym and the predictors
X2, ..., Xp. (Get the variable names from the story problem.)

10) The 4 step Fj test of hypotheses uses Lj = [0, ..., 0, 1, 0, ..., 0] where
the 1 is in the jth position. Let bT

j be the jth row of B. i) State the
hypotheses H0 :
bbTj = 0 H1 : bT

j 6= 0
ii) Find the test statistic Fj from output.
iii) Find pval from output.
iv) If pval < α, reject H0. If pval ≥ α, fail to reject H0. Give a nontechnical
sentence restating your conclusion in terms of the story problem. If H0 is
rejected, then conclude that Xj is needed in the mreg model for Y1, ..., Ym

given that the other predictors are in the model. If you fail to reject H0,
then conclude that Xj is not needed in the mreg model for Y1, ..., Ym given
that the other predictors are in the model. (Get the variable names from the
story problem.)

11) The 4 step MANOVA partial F test of hypotheses has a full model
using all of the variables and a reduced model where r of the variables are
deleted. The ith row of L has a 1 in the position corresponding to the ith
variable to be deleted. Omitting the jth variable corresponds to the Fj test
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while omitting variables X2, ..., Xp corresponds to the MANOVA F test.
i) State the hypotheses H0: the reduced model is good H1: use the full
model.
ii) Find the test statistic FR from output.
iii) Find the pval from output.
iv) If pval < α, reject H0 and conclude that the full model should be used.
If pval ≥ α, fail to reject H0 and conclude that the reduced model is good.

12) The 4 step MANOVA F test should reject H0 if the response and
residual plots look good, n is large enough and at least one response plot
does not look like the corresponding residual plot. A response plot for Yj

will look like a residual plot if the identity line appears almost horizontal,
hence the range of Ŷj is small.

13) The mpack function mltreg produces the m response and residual
plots, gives B̂, Σ̂ε, the MANOVA partial F test statistic and pval corre-
sponding to the reduced model that leaves out the variables given by indices
(so X2 and X4 in the output below with F = 0.77 and pval = 0.614), Fj

and the pval for the Fj test for variables 1, 2, ..., p (where p = 4 in the
output below so F2 = 1.51 with pval = 0.284) and F0 and pval for the
MANOVA F test (in the output below F0 = 3.15 and pval= 0.06). The
command out <- mltreg(x,y,indices=c(2)) would produce a MANOVA
partial F test corresponding to the F2 test while the command out <-

mltreg(x,y,indices=c(2,3,4)) would produce a MANOVA partial F test
corresponding to the MANOVA F test for a data set with p = 4 predictor
variables. The Hotelling Lawley trace statistic is used in the tests.

out <- mltreg(x,y,indices=c(2,4))

$Bhat

[,1] [,2] [,3]

[1,] 47.96841291 623.2817463 179.8867890

[2,] 0.07884384 0.7276600 -0.5378649

[3,] -1.45584256 -17.3872206 0.2337900

[4,] -0.01895002 0.1393189 -0.3885967

$Covhat

[,1] [,2] [,3]

[1,] 21.91591 123.2557 132.339

[2,] 123.25566 2619.4996 2145.780
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[3,] 132.33902 2145.7797 2954.082

$partial

partialF Pval

[1,] 0.7703294 0.6141573

$Ftable

Fj pvals

[1,] 6.30355375 0.01677169

[2,] 1.51013090 0.28449166

[3,] 5.61329324 0.02279833

[4,] 0.06482555 0.97701447

$MANOVA

MANOVAF pval

[1,] 3.150118 0.06038742

14) Given B̂ = [β̂1 β̂2 · · · β̂m] and xf , find ŷf = (ŷ1, ..., ŷm)T where

ŷi = β̂
T

i xf .

15) Σ̂ε =
Ê

T
Ê

n − p
=

1

n− p

n∑

i=1

ε̂iε̂
T
i while the sample covariance matrix of

the residuals is Sr =
n− p

n− 1
Σ̂ε =

Ê
T
Ê

n− 1
. Both Σ̂ε and Sr are

√
n consistent

estimators of Σε for a large class of error distributions for εi.
16) The 100(1 − α)% nonparametric prediction region for yf given xf is

the nonparametric prediction region from
∮

5.2 applied to ẑi = ŷf + ε̂i =

B̂
T
xf + ε̂i for i = 1, ..., n. This takes the data cloud of the n residual vectors

ε̂i and centers the cloud at ŷf . Let

D2
i (ŷf ,Sr) = (ẑi − ŷf )

TS−1
r (ẑi − ŷf)

for i = 1, ..., n. Let qn = min(1 − α + 0.05, 1 − α+m/n) for α > 0.1 and

qn = min(1 − α/2, 1 − α + 10αm/n), otherwise.

If qn < 1 − α + 0.001, set qn = 1 − α. Let 0 < α < 1 and h = D(Un) where
D(Un) is the qnth sample quantile of the Di. The 100(1−α)% nonparametric
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prediction region for yf is

{z : (z − ŷf)
T S−1

r (z − ŷf ) ≤ D2
(Un)} = {z : Dz(ŷf ,Sr) ≤ D(Un)}.

a) Consider the n prediction regions for the data where (yf,i,xf,i) =
(yi,xi) for i = 1, ..., n. If the order statistic D(Un) is unique, then Un of the
n prediction regions contain yi where Un/n → 1 − α as n→ ∞.

b) If (ŷf ,Sr) is a consistent estimator of (E(yf ),Σε) then the non-
paramtric prediction region is a large sample 100(1 − α)% prediction region
for yf .

c) If (ŷf ,Sr) is a consistent estimator of (E(yf),Σε), and the εi come
from an elliptically contoured distribution such that the highest density re-
gion is {z : Dz(0,Σε) ≤ D1−α}, then the nonparametric prediction region
is asymptotically optimal.

17) On the DD plot for the residuals, the cases to the left of the vertical
line correspond to cases that would have yf = yi in the nonparametric
prediction region if xf = xi while the cases to the right of the line would not
have yf = yi in the nonparametric prediction region.

18) The DD plot for the residuals is interpreted almost exactly as a DD
plot for iid multivariate data is interpreted. Plotted points clustering about
the identity line suggests that the εi may be iid from a multivariate normal
distribution while plotted points that lie above the identity line but cluster
about a line through the origin with slope greater than 1 suggests that the
εi may be iid from an elliptically contoured distribution that is not MVN.
The semiparametric and parametric MVN prediction regions correspond to
horizontal lines on the DD plot. Robust distances have not been shown to
be consistent estimators of the population distances, but are useful for a
graphical diagnostic.

19) A robust multivariate linear regression method replaces least squares
with the hbreg estimator. The probability that the robust estimator equals
the least squares estimator goes to 1 as n→ ∞ for a large class of error dis-
tributions. Hence the hypothesis tests and nonparametric prediction regions
for the classical method can be applied to the robust method. The entries of
B̂ are hard to drive to ±∞ for the robust estimator, and the residuals corre-
sponding to outliers are often large. Since the residuals are used to compute
Σ̂ε, the tests of hypothesis based on the robust estimator are not robust to
the presence of outliers. But the robust estimator and classical estimator
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tend to give different response and residual plots and test statistics when
outliers are present.

12.9 Complements

The least squares estimator β̂ is a good estimator of β under very mild con-
ditions by Theorem 12.3; however, Theorem 12.3 assumes that the model
is known before gathering data. If variable selection and response transfor-
mation are performed to build a model, then the estimators are biased and
results for inference fail to hold in that pvalues and coverage of confidence
and prediction intervals will be wrong. See, for example, Berk (1978), Co-
pas (1983), Miller (1984) and Rencher and Pun (1980). Hence it is a good
idea to do a pilot study to suggest which transformations and variables to
use. Then do a larger study without using variable selection and response
transformations.

Cook and Olive (2001) and Olive (2004b, 2013) discuss response plots
and transformation plots. Cook and Setodji (2003) use the FF plot while
Wilcox (2009) has a robust method for multivariate regression. Su and Cook
(2012) give an interesting alternative to least squares. Prediction regions for
this method could be made following Section 12.4.3.

Khattree and Naik (1999, p. 91-98) discuss testing H0 : LBM = 0
versus H1 : LBM 6= 0 where M = I gives a linear test of hypotheses.

12.10 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

12.1∗. Refer to the alternative form of the Hotelling Lawley test statistic.
Let

T (W ) = n [vec(LB̂)]T [Σ̂
−1

ε ⊗ (LWLT )−1][vec(LB̂)].

Let
XT X

n
= Ŵ

−1
.

Show T (Ŵ ) = [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)].
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12.2. Refer to the alternative form of the Hotelling Lawley test statistic.

Let T = [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XTX)−1LT )−1][vec(LB̂)]. Let L = Lj =

[0, ..., 0, 1, 0, ..., 0] have a 1 in the jth position. Let b̂
T

j = LB̂ be the jth

row of B̂. Let dj = Lj(X
T X)−1LT

j = (XTX)−1
jj , the jth diagonal entry

of (XTX)−1. Then Tj = 1
dj

b̂
T

j Σ̂
−1

ε b̂j. The Hotelling Lawley statistic U =

tr([(n− p)Σ̂ε]−1B̂
T
LT [L(XT X)−1LT ]−1LB̂]). Hence if L = Lj, then Uj =

1
dj(n−p)

tr(Σ̂
−1

ε b̂jb̂
T

j ).

Using tr(ABC) = tr(CAB) and tr(a) = a for scalar a, show the (n −
p)Uj = Tj.

12.3. Refer to the alternative form of the Hotelling Lawley test statistic.
Using the Searle (1982, p. 333) identity
tr(AGT DGC) = [vec(G)]T [CA ⊗ DT ][vec(G)], show

(n− p)U(L) = tr[Σ̂
−1

ε B̂
T
LT [L(XT X)−1LT ]−1LB̂]

= [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XTX)−1LT )−1][vec(LB̂)] by identifying A,G,D,
and C.

$Ftable

Fj pvals

[1,] 82.147221 0.000000e+00

[2,] 58.448961 0.000000e+00

[3,] 15.700326 4.258563e-09

[4,] 9.072358 1.281220e-05

[5,] 45.364862 0.000000e+00

$MANOVA

MANOVAF pval

[1,] 67.80145 0

12.4. The above output is for the R Seatbelts data set where Y1 =
drivers = number of drivers killed or seriously injured, Y2 = front = number
of front seat passengers killed or seriously injured, and Y3 = back = number
of back seat passengers killed or seriously injured. The predictors were x2 =
kms = distance driven, x3 = price = petrol price, x4 = van = number of
van drivers killed, and x5 = law = 0 if the law was in effect that month and
1 otherwise. The data consists of 192 monthly totals in Great Britain from
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January 1969 to December 1984, and the compulsory wearing of seat belts
law was introduced in February 1983.

a) Do the MANOVA F test.

b) Do the F4 test.

12.5. a) Sketch a DD plot of the residual vectors ε̂i for the multivariate
linear regression model if the error vectors εi are iid from a multivariate
normal distribution. b) Does the DD plot change if the one way MANOVA
model is used instead of the multivariate linear regression model?

y<-USJudgeRatings[,c(9,10,12)]

x<-USJudgeRatings[,-c(9,10,12)]

mltreg(x,y,indices=c(2,5,6,7,8))

$partial

partialF Pval

[1,] 1.649415 0.1855314

$MANOVA

MANOVAF pval

[1,] 340.1018 1.121325e-14

12.6. The above output is for the R judge ratings data set consisting of
lawyer ratings for n = 43 judges. Y1 = oral = sound oral rulings, Y2 = writ =
sound written rulings, and Y3 = rten = worthy of retention. The predictors
were x2 = cont = number of contacts of lawyer with judge, x3 = intg =
judicial integrity, x4 = dmnr = demeanor, x5 = dilg = diligence, x6 =
cfmg = case flow managing, x7 = deci = prompt decisions, x8 = prep =
preparation for trial, x9 = fami = familiarity with law, and x10 = phys =
physical ability.

a) Do the MANOVA F test.

b) Do the MANOVA partial F test for the reduced model that deletes
x2, x5, x6, x7 and x8.

12.7. Let βi be p× 1 and suppose

(
β̂1 − β1

β̂2 − β2

)
∼ N2p

((
0
0

)
,

[
σ11(X

T X)−1 σ12(X
TX)−1

σ21(X
T X)−1 σ22(X

TX)−1

])
.
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Find the distribution of

[L 0]

(
β̂1 − β1

β̂2 − β2

)
= Lβ̂1

where Lβ1 = 0 and L is r × p with r ≤ p. Simplify.
R/Splus Problems

Warning: Use the command source(“G:/mpack.txt”) to download
the programs. See Preface or Section 15.2. Typing the name of the
mpack function, eg ddplot, will display the code for the function. Use the
args command, eg args(ddplot), to display the needed arguments for the
function.

12.8. This problem examines multivariate linear regression on the Cook
and Weisberg (1999a) mussels data with Y1 = log(S) and Y2 = log(M) where
S is the shell mass and M is the muscle mass. The predictors are X2 = L,
X3 = log(W ) and X4 = H: the shell length, log(width) and height.

a) The R command for this part make the response and residual plots for
each of the three variables. Click the rightmost mouse button and highlight
Stop to advance the plot. When you have the response and residual plots for
one variable on the screen, copy and paste the two plots into Word. Do this
two times, once for each response variable. The plotted points fall in roughly
evenly populated bands about the identity or r = 0 line.

b) Copy and paste the output produced from the R command for this
part from $partial on. This gives the output needed to do the MANOVA F
test, MANOVA partial F test and the Fj tests.

c) The R command for this plot makes a DD plot of the residuals and
adds the lines corresponding to the three prediction regions of Section 5.2.
The robust cutoff is larger than the semiparametric cutoff. Place the plot in
Word. Do the residuals appear to follow a multivariate normal distribution?

d) Do the MANOVA partial F test where the reduced model deletes X3

and X4.
e) Do the F2 test.
f) Do the MANOVA F test.

12.9. This problem examines multivariate linear regression on SAS Insti-
tute (1985, p. 146) Fitness Club Data data with Y1 = chinups, Y2 = situps
and Y3 = jumps. The predictors are X2 = weight, X3 = waist and
X4 = pulse.
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a) The R command for this part make the response and residual plots for
each of the three variables. Click the rightmost mouse button and highlight
Stop to advance the plot. When you have the response and residual plots
for one variable on the screen, copy and paste the three plots into Word. Do
this three times, once for each response variable. Are there any outliers?

b) The R command for this plot makes a DD plot of the residuals and
adds the lines corresponding to the three prediction regions of Section 5.2.
The robust cutoff is larger than the semiparametric cutoff. Place the plot in
Word. Are there any outliers?

12.6. This problem uses the mpack function mregsim to simulate the
Wilk’s Lambda test, Pillai’s trace test, Hotelling Lawley trace test, and Roy’s
largest root test for the Fj tests and the MANOVA F test for multivariate
linear regression. When mnull = T the first row of B is 1T while the re-
maining rows are equal to 0. Hence the null hypothesis for the MANOVA F
test is true. When mnull = F the null hypothesis is true for p = 2, but false
for p > 2. Now the first row of B is 1T and the last row of B is 0. If p > 2,
then the second to last row of B is (1, 0, ..., 0), the third to last row is (1,
1, 0, ..., 0) etcetera as long as the first row is not changed from 1T . First m
iid errors zi are generated such that the m errors are iid with variance σ2.
Then εi = Azi so that Σ̂ε = σ2AAT = ((σij)) where the diagonal entries
σii = σ2[1 + (m− 1)ρ2] and the off diagonal entries σij = σ2[2ρ+ (m− 2)ρ2]
where ρ = 0.10. Terms like Wilkcov give the percentage of times the Wilk’s
test rejected the F1, F2, ..., Fp tests. The $mancv wcv pcv hlcv rcv fcv output
gives the percentage of times the 4 test statistics reject the MANOVA F test.
Here hlcov and fcov both correspond to the Hotelling Lawley test using the
formulas in problem A).

5000 runs will be used so the simulation will take several minutes. Sample
sizes n = 10min(m, p), n = 10max(m, p) and n = 10mp were interesting.
Want coverage near 0.05 when H0 is true and coverage close to 1 for good
power when H0 is false. Multivariate normal errors were used in a) and b)
below.

a) Copy the coverage parts of the output produced by the R commands
for this part. Used n = 20, m = 2, p = 4. Here H0 is true except for the F1

test. Wilk’s and Pillai’s tests had low coverage < 0.05 when H0 was false.
Roy’s test was good for the Fj tests but why was Roy’s test bad for the
MANOVA F test?

b) Copy the coverage parts of the output produced by the R commands
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for this part. Used n = 20, m = 2, p = 4. Here H0 is false except for the F4

test. Which two tests seem to be the best for this part?

12.11 This problem uses the mpack function mpredsim to simulate the
prediction regions for yf given xf for multivariate regression. With 5000
runs this simulation takes several minutes. The R command for this problem
generate iid lognormal errors then subtract the mean producing zi. Then the
εi = Azi are generated as in problem D). Used n=100, m=2, and p=4. The
nominal coverage of the prediction region is 90%, and 92% of the training
data is covered. The ncvr output gives the coverage of the nonparametric
region. What was ncvr?



Chapter 13

Clustering

13.1 Introduction

Clustering is used to classify the n cases into k groups. Discriminant analysis
is a type of supervised classification while clustering is a type of unsupervised
classification.

For k-means clustering, there are 4 steps.
1) Partition the n cases into k initial groups and find the means of each

group. Alternatively, choose k initial seed points. These are groups of size 1
so the mean is equal to the seed point.

2) Compute distances between each case and each mean. Assign case to
the cluster whose mean is the nearest.

3) Recalculate the mean of each cluster.
4) Go to 2) and repeat until no more reassignments occur.

Two problems with k-means clustering are i) there could be more or less
than k clusters, and ii) two initial means could belong to the same cluster.
Then the resulting clusters may be poorly differentiated.

Hierarchical clustering also has several steps. A distance is needed. Sin-
gle linkage (or nearest neighbor) is the minimum distance between cases in
cluster i and cases in cluster j. Complete linkage is the maximum distance
between cases in cluster i and cases in cluster j. The average distance be-
tween clusters is also sometimes used.

1) Start with m = n clusters. Each case forms a cluster. Compute the
distance matrix for the n clusters. Let dU,V be the smallest distance. Combine
clusters U and V into a single cluster and set m = n− 1.

307
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2) Repeat step 1) with the new m. Continue until there is a single cluster.
3) Plot the resulting clusters as a dendogram. Use the dendogram to

select k reasonable clusters of cases.

13.2 Complements

Atkinson, Riani and Cerioli (2004, ch. 7) has some interesting ideas.

13.3 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

13.1∗.
R/Splus Problems

Warning: Use the command source(“G:/mpack.txt”) to download
the programs. See Preface or Section 15.2. Typing the name of the
mpack function, eg ddplot, will display the code for the function. Use the
args command, eg args(ddplot), to display the needed arguments for the
function.



Chapter 14

Other Techniques

14.1 Resistant Regression

Ellipsoidal trimming can be used to create resistant multiple linear regression
(MLR) estimators. To perform ellipsoidal trimming, an estimator (T,C) is
computed and used to create the squared Mahalanobis distances D2

i for each
vector of observed predictors xi. If the ordered distance D(j) is unique, then
j of the xi’s are in the ellipsoid

{x : (x − T )TC−1(x − T ) ≤ D2
(j)}. (14.1)

The ith case (Yi,x
T
i )T is trimmed if Di > D(j). Then an estimator of β is

computed from the remaining cases. For example, if j ≈ 0.9n, then about
10% of the cases are trimmed, and OLS or L1 could be used on the cases
that remain.

Recall that a response plot is a plot of the fitted values Ŷi versus the
response Yi and is very useful for detecting outliers. If the MLR model holds
and the MLR estimator is good, then the plotted points will scatter about
the identity line that has unit slope and zero intercept. The identity line is
added to the plot as a visual aid, and the vertical deviations from the identity
line are equal to the residuals since Yi − Ŷi = ri.

The resistant trimmed views estimator combines ellipsoidal trimming and
the response plot. First compute (T,C), perhaps using the RFCH estimator
or the R/Splus function cov.mcd. Trim the M% of the cases with the largest
Mahalanobis distances, and then compute the MLR estimator β̂M from the

309
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remaining cases. Use M = 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90 to generate

ten response plots of the fitted values β̂
T

Mxi versus yi using all n cases. (Fewer
plots are used for small data sets if β̂M can not be computed for large M .)
These plots are called “trimmed views.”

Definition 14.1. The trimmed views (TV) estimator β̂T,n corresponds
to the trimmed view where the bulk of the plotted points follow the identity
line with smallest variance function, ignoring any outliers.

Example 14.1. For the Buxton (1920) data, height was the response
variable while an intercept, head length, nasal height, bigonal breadth, and
cephalic index were used as predictors in the multiple linear regression model.
Observation 9 was deleted since it had missing values. Five individuals,
cases 61–65, were reported to be about 0.75 inches tall with head lengths
well over five feet! OLS was used on the cases remaining after trimming,
and Figure 14.1 shows four trimmed views corresponding to 90%, 70%, 40%
and 0% trimming. The OLS TV estimator used 70% trimming since this
trimmed view was best. Since the vertical distance from a plotted point
to the identity line is equal to the case’s residual, the outliers had massive
residuals for 90%, 70% and 40% trimming. Notice that the OLS trimmed
view with 0% trimming “passed through the outliers” since the cluster of
outliers is scattered about the identity line.

The TV estimator β̂T,n has good statistical properties if an estimator
with good statistical properties is applied to the cases (XM,n,Y M,n) that
remain after trimming. Candidates include OLS, L1, Huber’s M–estimator,
Mallows’ GM–estimator or the Wilcoxon rank estimator. See Rousseeuw
and Leroy (1987, p. 12-13, 150). The basic idea is that if an estimator with
OP (n−1/2) convergence rate is applied to a set of nM ∝ n cases, then the
resulting estimator β̂M,n also has OP (n−1/2) rate provided that the response

Y was not used to select the nM cases in the set. If ‖β̂M,n−β‖ = OP (n−1/2)

for M = 0, ..., 90 then ‖β̂T,n − β‖ = OP (n−1/2) by Pratt (1959).
Let Xn = X0,n denote the full design matrix. Often when proving asymp-

totic normality of an MLR estimator β̂0,n, it is assumed that

XT
nXn

n
→ W−1.

If β̂0,n has OP (n−1/2) rate and if for big enough n all of the diagonal elements
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Figure 14.1: 4 Trimmed Views for the Buxton Data

of (
XT

M,nXM,n

n

)−1

are all contained in an interval [0, B) for some B > 0, then ‖β̂M,n − β‖ =

OP (n−1/2).
The distribution of the estimator β̂M,n is especially simple when OLS is

used and the errors are iid N(0, σ2). Then

β̂M,n = (XT
M,nXM,n)

−1XT
M,nY M,n ∼ Np(β, σ

2(XT
M,nXM,n)

−1)

and
√
n(β̂M,n−β) ∼ Np(0, σ

2(XT
M,nXM,n/n)−1). Notice that this result does

not imply that the distribution of β̂T,n is normal.

Table 14.1 compares the TV, MBA (for MLR), lmsreg, ltsreg, L1 and
OLS estimators on 7 data sets available from the text’s website. The column
headers give the file name while the remaining rows of the table give the
sample size n, the number of predictors p, the amount of trimmingM used by
the TV estimator, the correlation of the residuals from the TV estimator with
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Table 14.1: Summaries for Seven Data Sets, the Correlations of the Residuals
from TV(M) and the Alternative Method are Given in the 1st 5 Rows

Method Buxton Gladstone glado hbk major nasty wood
MBA 0.997 1.0 0.455 0.960 1.0 -0.004 0.9997

LMSREG -0.114 0.671 0.938 0.977 0.981 0.9999 0.9995
LTSREG -0.048 0.973 0.468 0.272 0.941 0.028 0.214

L1 -0.016 0.983 0.459 0.316 0.979 0.007 0.178
OLS 0.011 1.0 0.459 0.780 1.0 0.009 0.227

outliers 61-65 none 119 1-10 3,44 2,6,...,30 4,6,8,19
n 87 274 274 75 112 32 20
p 5 7 7 4 6 5 6
M 70 0 30 90 0 90 20

the corresponding alternative estimator, and the cases that were outliers.
If the correlation was greater than 0.9, then the method was effective in
detecting the outliers, and the method failed, otherwise. Sometimes the
trimming percentage M for the TV estimator was picked after fitting the
bulk of the data in order to find the good leverage points and outliers.

Notice that the TV, MBA and OLS estimators were the same for the
Gladstone data and for the major data (Tremearne 1911) which had two
small Y –outliers. For the Gladstone data, there is a cluster of infants that are
good leverage points, and we attempt to predict brain weight with the head
measurements height, length, breadth, size and cephalic index. Originally, the
variable length was incorrectly entered as 109 instead of 199 for case 119, and
the glado data contains this outlier. In 1997, lmsreg was not able to detect
the outlier while ltsreg did. Due to changes in the Splus 2000 code, lmsreg
now detects the outlier but ltsreg does not.

The TV estimator can be modified to create a resistant weighted MLR
estimator. To see this, recall that the weighted least squares (WLS) estima-
tor using weights Wi can be found using the ordinary least squares (OLS)
regression (without intercept) of

√
WiYi on

√
Wixi. This idea can be used

for categorical data analysis since the minimum chi-square estimator is often
computed using WLS. Let xi = (1, xi,2, ..., xi,p)

T , let Yi = xT
i β + ei and let
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β̃ be an estimator of β.

Definition 14.2. For a multiple linear regression model with weights
Wi, a weighted response plot is a plot of

√
Wix

T
i β̃ versus

√
WiYi. The

weighted residual plot is a plot of
√
Wix

T
i β̃ versus the WMLR residuals

rWi =
√
WiYi −

√
Wix

T
i β̃.

Application 14.1. For resistant weighted MLR, use the WTV estimator
which is selected from ten weighted response plots.

14.2 1D Regression

Regression is the study of the conditional distribution Y |x of the response Y
given the k × 1 vector of nontrivial predictors x. The scalar Y is a random
variable and x is a random vector. A special case of regression was the
multiple linear regression model Y = α+x1β1 + · · ·+xkβk + e = α+βTx+ e
where k = p−1 and the nontrivial predictors are collected in the k×1 vector
x.

Definition 14.3: Cook and Weisberg (1999a, p. 414). In a 1D
regression model, the response Y is conditionally independent of x given a
single linear combination βT x of the predictors, written

Y x|βT x or Y x|(α+ βTx). (14.2)

An important 1D regression model, introduced by Li and Duan (1989),
has the form

Y = g(α+ βTx, e) (14.3)

where g is a bivariate (inverse link) function and e is a zero mean error that
is independent of x. The constant term α may be absorbed by g if desired.

Special cases of the 1D regression model (14.2) include many important
generalized linear models (GLMs) and the additive error single index model

Y = m(α+ βTx) + e. (14.4)

Typically m is the conditional mean or median function. For example if all
of the expectations exist, then

E[Y |x] = E[m(α+ βTx)|x] + E[e|x] = m(α+ βTx).



CHAPTER 14. OTHER TECHNIQUES 314

The multiple linear regression model is an important special case where m is
the identity function: m(α + βTx) = α + βT x. Another important special
case of 1D regression is the response transformation model where

g(α+ βTx, e) = t−1(α+ βTx + e) (14.5)

and t−1 is a one to one (typically monotone) function. Hence

t(Y ) = α + βT x + e.

Definition 14.4. Regression is the study of the conditional distribution
of Y |x. Focus is often on the mean function E(Y |x) and/or the variance
function VAR(Y |x). There is a distribution for each value of x = xo such
that Y |x = xo is defined. For a 1D regression,

E(Y |x = xo) = E(Y |βT x = βTxo) ≡ M(βTxo)

and
VAR(Y |x = xo) = VAR(Y |βT x = βTxo) ≡ V (βTxo)

where M is the kernel mean function and V is the kernel variance function.

Notice that the mean and variance functions depend on the same linear
combination if the 1D regression model is valid. This dependence is typical
of GLMs where M and V are known kernel mean and variance functions
that depend on the family of GLMs. See Cook and Weisberg (1999a, section
23.1). A heteroscedastic regression model

Y = M(βT
1 x) +

√
V (βT

2 x) e (14.6)

is a 1D regression model if β2 = cβ1 for some scalar c.

Dimension reduction can greatly simplify our understanding of the con-
ditional distribution Y |x. If a 1D regression model is appropriate, then the
k–dimensional vector x can be replaced by the 1–dimensional scalar βT x

with “no loss of information about the conditional distribution.” Cook and
Weisberg (1999a, p. 411) define a sufficient summary plot (SSP) to be a
plot that contains all the sample regression information about the conditional
distribution Y |x of the response given the predictors.
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Definition 14.5: If the 1D regression model holds, then Y x|(a+cβTx)
for any constants a and c 6= 0. The quantity a + cβTx is called a sufficient
predictor (SP), and a sufficient summary plot is a plot of any SP versus Y .

An estimated sufficient predictor (ESP) is α̃+ β̃
T
x where β̃ is an estimator

of cβ for some nonzero constant c. A response plot or estimated sufficient
summary plot (ESSP) is a plot of any ESP versus Y .

If there is only one predictor x, then the plot of x versus Y is both a
sufficient summary plot and a response plot, but generally only a response
plot can be made. Since a can be any constant, a = 0 is often used. The
following section shows how to use the OLS regression of Y on x to obtain
an ESP. If we plot the fitted values and the ESP versus Y , the plots are
called fit–response and ESP-response plots. For multiple linear regression,
these two plots are the same.

14.3 Visualizing 1D Regression

Consider the OLS estimator (α̂, β̂). Li and Duan (1989, p. 1031) show that
under regularity conditions, β̂ is a

√
n consistent estimator of cβ for some

constant c. If β̂ ≈ cβ when model (14.2) holds, then the response plot of

α̂ + β̂
T
x versus Y

can be used to visualize the conditional distribution Y |(α + βT x) provided
that c 6= 0. Often if no strong nonlinearities are present among the

predictors, the bias vector is small enough so that β̂
T
x is a useful ESP.

Suppose Y = m(α+ βT x) + e and the errors e are small. Suppose β̂
T
x

is a good estimator of cβT x. Then m can be visualized with both a plot of

ESP = a+ β̂
T
x versus Y if c 6= 0. If c > 0 then the plot of ESP versus Y is

similar to the plot of α + βT x versus Y : except the labels of the horizontal
axis change. (The two plots are usually not exactly identical since plotting
controls to “fill space” depend on several factors and will change slightly.) If
c < 0, then the plot appears to be flipped about the vertical axis. OLS often
provides a useful estimator of cβ where c 6= 0, but OLS can result in c = 0
if g is symmetric about the population median of α + βT x.

Definition 14.6. If the 1D regression model (14.2) holds, and OLS is
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used, then the ESP may be called the OLS ESP and the response plot may
be called the OLS response plot. Other estimators, such as SIR, may have
similar labels.

SP

Y
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0
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0

0

Sufficient Summary Plot for Gaussian Predictors

Figure 14.2: SSP for m(u) = u3

Example 14.2. Suppose that xi ∼ N3(0, I3) and that

Y = m(βT x) + e = (x1 + 2x2 + 3x3)
3 + e.

Then a 1D regression model holds with β = (1, 2, 3)T . Figure 14.2 shows the
sufficient summary plot of βTx versus Y , and Figure 14.3 shows the sufficient
summary plot of −βTx versus Y . Notice that the functional form m appears
to be cubic in both plots and that both plots can be smoothed by eye or with
a scatterplot smoother such as lowess. The two figures were generated with
the following R/Splus commands.

X <- matrix(rnorm(300),nrow=100,ncol=3)

SP <- X%*%1:3

Y <- (SP)^3 + rnorm(100)

plot(SP,Y)

plot(-SP,Y)
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Figure 14.3: Another SSP for m(u) = u3

We particularly want to use the OLS estimator (α̂, β̂) to produce an
estimated sufficient summary plot. This estimator is obtained from the usual
multiple linear regression of Yi on xi, but we are not assuming that the
multiple linear regression model holds; however, we are hoping that the 1D
regression model Y x|βT x is a useful approximation to the data and that
β̂ ≈ cβ for some nonzero constant c. Nice results exist if the single index
model is appropriate. Recall that

Cov(x,Y ) = E[(x− E(x))((Y − E(Y ))T ].

Definition 14.7. Suppose that (Yi,x
T
i )T are iid observations and that

the positive definite k × k matrix Cov(x) = ΣX and the k × 1 vector
Cov(x, Y ) = ΣX,Y . Let the OLS estimator (α̂, β̂) be computed from the

multiple linear regression of Y on x plus a constant. Then (α̂, β̂) estimates
the population quantity (αOLS,βOLS) where

βOLS = Σ−1
X ΣX,Y . (14.7)
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The following notation will be useful for studying the OLS estimator.
Let the sufficient predictor z = βTx and let w = x − E(x). Let r =
w − (ΣXβ)βTw.

Theorem 14.1. In addition to the conditions of Definition 14.7, also
assume that Yi = m(βTxi) + ei where the zero mean constant variance iid
errors ei are independent of the predictors xi. Then

βOLS = Σ−1
X ΣX,Y = cm,Xβ + um,X (14.8)

where the scalar
cm,X = E[βT (x − E(x)) m(βTx)] (14.9)

and the bias vector
um,X = Σ−1

X E[m(βTx)r]. (14.10)

Moreover, um,X = 0 if x is from an EC distribution with nonsingular ΣX,
and cm,X 6= 0 unless Cov(x, Y ) = 0. If the multiple linear regression model
holds, then cm,X = 1, and um,X = 0.

The proof of the above result is outlined in Problem 14.1 using an ar-
gument due to Aldrin, Bφlviken, and Schweder (1993). See related results
in Cook, Hawkins, and Weisberg (1992). If the 1D regression model is ap-
propriate, then typically Cov(x, Y ) 6= 0 unless βT x follows a symmetric
distribution and m is symmetric about the median of βT x.

Definition 14.8. Let (α̂, β̂) denote the OLS estimate obtained from the
OLS multiple linear regression of Y on x. The OLS view is a response plot

of a + β̂
T
x versus Y . Typically a = 0 or a = α̂.

Remark 14.1. All of this awkward notation and theory leads to a re-
markable result, perhaps first noted by Brillinger (1977, 1983) and called the
1D Estimation Result by Cook and Weisberg (1999a, p. 432). The result
is that if the 1D regression model is appropriate, then the OLS view will
frequently be a useful estimated sufficient summary plot (ESSP). Hence the

OLS predictor β̂
T
x is a useful estimated sufficient predictor (ESP).

Although the OLS view is frequently a good ESSP if no strong nonlinear-
ities are present in the predictors and if cm,X 6= 0 (eg the sufficient summary
plot of βTx versus Y is not approximately symmetric), even better estimated
sufficient summary plots can be obtained by using ellipsoidal trimming. This
topic is discussed in the following section and follows Olive (2002) closely.
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To perform ellipsoidal trimming, an estimator (T,C) is computed where
T is a k × 1 multivariate location estimator and C is a k × k symmetric
positive definite dispersion estimator. Then the ith squared Mahalanobis
distance is the random variable

D2
i = (xi − T )TC−1(xi − T ) (14.11)

for each vector of observed predictors xi. If the ordered distances D(j) are
unique, then j of the xi are in the hyperellipsoid

{x : (x − T )TC−1(x − T ) ≤ D2
(j)}. (14.12)

The ith case (Yi,x
T
i )T is trimmed if Di > D(j). Thus if j ≈ 0.9n, then about

10% of the cases are trimmed.

We suggest that the estimator (T,C) should be the classical sample mean
and covariance matrix (x,S) or a robust multivariate location and dispersion
estimator such as RFCH. See Section 4.4. When j ≈ n/2, the RFCH esti-
mator attempts to make the volume of the hyperellipsoid given by Equation
(14.12) small.

Ellipsoidal trimming seems to work for at least three reasons. The trim-
ming divides the data into two groups: the trimmed cases and the remaining
cases (xM , YM ) where M% is the amount of trimming, eg M = 10 for 10%
trimming. If the distribution of the predictors x is EC then the distribution
of xM still retains enough symmetry so that the bias vector is approximately
zero. If the distribution of x is not EC, then the distribution of xM will
often have enough symmetry so that the bias vector is small. In particular,
trimming often removes strong nonlinearities from the predictors and the
weighted predictor distribution is more nearly elliptically symmetric than
the predictor distribution of the entire data set (recall Winsor’s principle:
“all data are roughly Gaussian in the middle”). Secondly, under heavy trim-
ming, the mean function of the remaining cases may be more linear than the
mean function of the entire data set. Thirdly, if |c| is very large, then the bias
vector may be small relative to cβ. Trimming sometimes inflates |c|. From
Theorem 14.1, any of these three reasons should produce a better estimated
sufficient predictor.

For example, examine Figure 5.4. The data are not EC, but the data
within the resistant covering ellipsoid are approximately EC.

Example 14.3. Cook and Weisberg (1999a, p. 351, 433, 447) gave a
data set on 82 mussels sampled off the coast of New Zealand. The variables
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Figure 14.4: Scatterplot for Mussel Data, o Corresponds to Trimmed Cases
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are the muscle mass M in grams, the length L and height H of the shell
in mm, the shell width W and the shell mass S. The robust and classical
Mahalanobis distances were calculated, and Figure 14.4 shows a scatterplot
matrix of the mussel data, the RDi’s, and the MDi’s. Notice that many
of the subplots are nonlinear. The cases marked by open circles were given
weight zero by the FMCD algorithm, and the linearity of the retained cases
has increased. Note that only one trimming proportion is shown and that
a heavier trimming proportion would increase the linearity of the cases that
were not trimmed.

The two ideas of using ellipsoidal trimming to reduce the bias and choos-
ing a view with a smooth mean function and smallest variance function can
be combined into a graphical method for finding the estimated sufficient sum-
mary plot and the estimated sufficient predictor. Trim the M% of the cases
with the largest Mahalanobis distances, and then compute the OLS estima-
tor (α̂M , β̂M ) from the cases that remain. Use M = 0, 10, 20, 30, 40, 50, 60,

70, 80, and 90 to generate ten plots of β̂
T

Mx versus Y using all n cases. In
analogy with the Cook and Weisberg procedure for visualizing 1D structure
with two predictors, the plots will be called “trimmed views.” Notice that
M = 0 corresponds to the OLS view.

Definition 14.9. The best trimmed view is the trimmed view with a
smooth mean function and the smallest variance function and is the estimated
sufficient summary plot. If M∗ = E is the percentage of cases trimmed that

corresponds to the best trimmed view, then β̂
T

Ex is the estimated sufficient
predictor.

The following examples illustrate the R/Splus function trviews that is
used to produce the ESSP. If R is used instead of Splus, the command

library(MASS)

needs to be entered to access the function cov.mcd called by trviews. The
function trviews is used in Problem 14.2. Also notice the trviews estimator
is basically the same as the tvreg estimator described in Section 14.1. The
tvreg estimator can be used to simultaneously detect whether the data is
following a multiple linear regression model or some other single index model.

Plot α̂E +β̂
T

Ex versus Y and add the identity line. If the plotted points follow
the identity line then the MLR model is reasonable, but if the plotted points
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follow a nonlinear mean function, then a nonlinear single index model may
be reasonable.

Example 14.2 continued. The command

trviews(X, Y)

produced the following output.

Intercept X1 X2 X3

0.6701255 3.133926 4.031048 7.593501

Intercept X1 X2 X3

1.101398 8.873677 12.99655 18.29054

Intercept X1 X2 X3

0.9702788 10.71646 15.40126 23.35055

Intercept X1 X2 X3

0.5937255 13.44889 23.47785 32.74164

Intercept X1 X2 X3

1.086138 12.60514 25.06613 37.25504

Intercept X1 X2 X3

4.621724 19.54774 34.87627 48.79709

Intercept X1 X2 X3

3.165427 22.85721 36.09381 53.15153

Intercept X1 X2 X3

5.829141 31.63738 56.56191 82.94031

Intercept X1 X2 X3

4.241797 36.24316 70.94507 105.3816

Intercept X1 X2 X3

6.485165 41.67623 87.39663 120.8251

The function generates 10 trimmed views. The first plot trims 90% of the
cases while the last plot does not trim any of the cases and is the OLS view.
To advance a plot, press the right button on the mouse (in R, highlight
stop rather than continue). After all of the trimmed views have been
generated, the output is presented. For example, the 5th line of numbers in

the output corresponds to α̂50 = 1.086138 and β̂
T

50 where 50% trimming was
used. The second line of numbers corresponds to 80% trimming while the

last line corresponds to 0% trimming and gives the OLS estimate (α̂0, β̂
T

0 ) =
(â, b̂). The trimmed views with 50% and 90% trimming were very good.
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Figure 14.5: Best View for Estimating m(u) = u3
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Figure 14.6: The angle between the SP and the ESP is nearly zero.
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We decided that the view with 50% trimming was the best. Hence β̂E =
(12.60514, 25.06613, 37.25504)T ≈ 12.5β. The best view is shown in Figure
14.5 and is nearly identical to the sufficient summary plot shown in Figure
14.2. Notice that the OLS estimate = (41.68, 87.40, 120.83)T ≈ 42β.

The plot of the estimated sufficient predictor versus the sufficient predic-
tor is also informative. Of course this plot can usually only be generated for
simulated data since β is generally unknown. If the plotted points are highly
correlated (with |corr(ESP,SP)| > 0.95) and follow a line through the origin,
then the estimated sufficient summary plot is nearly as good as the sufficient
summary plot. The simulated data used β = (1, 2, 3)T , and the commands

SP <- X %*% 1:3

ESP <- X %*% c(12.60514, 25.06613, 37.25504)

plot(ESP,SP)

generated the plot shown in Figure 14.6.

Example 14.5. An artificial data set with 200 trivariate vectors xi was
generated. The marginal distributions of xi,j are iid lognormal for j = 1, 2,
and 3. Since the response Yi = sin(βTxi)/β

T xi where β = (1, 2, 3)T , the
random vector xi is not elliptically contoured and the function m is strongly
nonlinear. Figure 14.7d shows the OLS view and Figure 14.8d shows the best
trimmed view. Notice that it is difficult to visualize the mean function with
the OLS view, and notice that the correlation between Y and the ESP is very
low. By focusing on a part of the data where the correlation is high, it may be
possible to improve the estimated sufficient summary plot. For example, in
Figure 14.8d, temporarily omit cases that have ESP less than 0.3 and greater
than 0.75. From the untrimmed cases, obtained the ten trimmed estimates
β̂90, ..., β̂0. Then using all of the data, obtain the ten views. The best view
could be used as the ESSP.

Application 14.2. Suppose that a 1D regression analysis is desired on
a data set, use the trimmed views as an exploratory data analysis technique
to visualize the conditional distribution Y |βT x. The best trimmed view is
an estimated sufficient summary plot. If the single index model (14.4) holds,
the function m can be estimated from this plot using parametric models
or scatterplot smoothers such as lowess. Notice that Y can be predicted
visually using up and over lines.
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Figure 14.7: Estimated Sufficient Summary Plots Without Trimming
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Figure 14.8: 1D Regression with Trimmed Views
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Table 14.2: Estimated Sufficient Predictors Coefficients Estimating c(1, 2, 3)T

method b1 b2 b3
OLS View 0.0032 0.0011 0.0047

90% Trimmed OLS View 0.086 0.182 0.338
SIR View −0.394 −0.361 −0.845

10% Trimmed SIR VIEW −0.284 −0.473 −0.834
SAVE View −1.09 0.870 -0.480

40% Trimmed SAVE VIEW 0.256 0.591 0.765
PHD View −0.072 −0.029 −0.0097

90% Trimmed PHD VIEW −0.558 −0.499 −0.664
LMSREG VIEW −0.003 −0.005 −0.059

70% Trimmed LMSREG VIEW 0.143 0.287 0.428

Application 14.4. The best trimmed view can also be used as a diag-
nostic for linearity and monotonicity.

For example in Figure 14.5, if ESP = 0, then Ŷ = 0 and if ESP = 100,
then Ŷ = 500. Figure 14.5 suggests that the mean function is monotone but
not linear, and Figure 14.8 suggests that the mean function is neither linear
nor monotone.

Application 14.4. Assume that a known 1D regression model is as-
sumed for the data. Then the best trimmed view is a model checking plot
and can be used as a diagnostic for whether the assumed model is appropri-
ate.

The trimmed views are sometimes useful even when the assumption of
linearly related predictors fails. Cook and Li (2002) summarize when compet-
ing methods such as the OLS view, sliced inverse regression (SIR), principal
Hessian directions (PHD), and sliced average variance estimation (SAVE)
can fail. All four methods frequently perform well if there are no strong
nonlinearities present in the predictors.

Example 14.5 (continued). Figure 14.7 shows that the response plots
for SIR, PHD, SAVE, and OLS are not very good while Figure 14.8 shows
that trimming improved the SIR, SAVE and OLS methods.
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Figure 14.9: 1D Regression with lmsreg

One goal for future research is to develop better methods for visualizing
1D regression. Trimmed views seem to become less effective as the number
of predictors k = p − 1 increases. Consider the sufficient predictor SP =
x1 + · · ·+ xk. With the sin(SP)/SP data, several trimming proportions gave
good views with k = 3, but only one of the ten trimming proportions gave
a good view with k = 10. In addition to problems with dimension, it is not
clear which covariance estimator and which regression estimator should be
used. We suggest using the RFCH estimator with OLS, and preliminary
investigations suggest that the classical covariance estimator gives better
estimates than cov.mcd. But among the many Splus regression estimators,
lmsreg often worked well. There is OLS theory, but there is no theory for
the robust regression estimators.

Example 14.5 continued. Replacing the OLS trimmed views by alter-
native MLR estimators often produced good response plots, and for single
index models, the lmsreg estimator often worked the best. Figure 14.9 shows
a scatterplot matrix of Y , ESP and SP where the sufficient predictor SP =
βT x. The ESP used ellipsoidal trimming with cov.mcd and with lmsreg
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Figure 14.10: The Weighted lmsreg Fitted Values Versus Y

instead of OLS. The top row of Figure 14.9 shows that the estimated suf-
ficient summary plot and the sufficient summary plot are nearly identical.
Also the correlation of the ESP and the SP is nearly one. Table 14.2 shows
the estimated sufficient predictor coefficients b when the sufficient predictor
coefficients are c(1, 2, 3)T . Only the SIR, SAVE, OLS and lmsreg trimmed
views produce estimated sufficient predictors that are highly correlated with
the sufficient predictor.

Figure 14.10 helps illustrate why ellipsoidal trimming works. This view
used 70% trimming and the open circles denote cases that were trimmed. The
highlighted squares correspond to the cases (x70, Y70) that were not trimmed.
Note that the highlighted cases are far more linear than the data set as a
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whole. Also lmsreg will give half of the highlighted cases zero weight, further
linearizing the function. In Figure 14.10, the lmsreg constant α̂70 is included,
and the plot is simply the response plot of the weighted lmsreg fitted values
versus Y . The vertical deviations from the line through the origin are the

“residuals” Yi − α̂70 − β̂
T

70x and at least half of the highlighted cases have
small residuals.

Example 14.6. This insulation data was contributed by Ms. Spector.
A box with insulation was heated for 20 minutes then allowed to cool down.
The response variable Y = temperature in middle of box was taken at time
0, 5, ..., 40. The type of insulation was a factor with type 1 = no insulation,
2 = corn pith, 3 = fiberglass, 4 = styrofoam and 5 = bubbles. There were
45 temperature measurements, one for each time type combination. The
measurements were averages of ten trials and starting temperatures were
close but not exactly equal.

The model using time, (time)2, type, and the interactions type:time and
type:(time)2 had E(Y |x) ≈ (xT β)2. A second model used time, (time)2

and type, and rather awkward R code for producing the response plot in
Figure 14.11 is shown below. The solid curve corresponds to (xT β̂, (xT β̂)2) =
(FIT, (FIT )3) where β̂ is the OLS estimator from regressing Y on xT = (1,
time, (time)2, type). The thin curve corresponds to lowess. Since the two
lines correspond, E(Y |x) ≈ (xT β)3 or Y = m(xTβ) + e where m(w) = w3.
See Problem 14.7 for producing the response plot in Arc.

#assume the insulation data is loaded

ftype <- as.factor(insulation[,2])

zi <- as.data.frame(insulation)

iout <- lm(ytemp~time+I(time^2)+ftype,data=zi)

FIT <- iout$fit

Y <- insulation[,1]

plot(FIT,Y)

lines(lowess(FIT,Y)) #get (FIT,(FIT)^3) curve

zx <- FIT

z <- lsfit(cbind(zx,zx^2,zx^3),Y)

zfit <- Y-z$resid

lines(FIT,zfit)
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Figure 14.11: Response Plot for Insulation Data

14.4 Complements

The TV estimator was proposed by Olive (2002, 2005) and is similar to an
estimator proposed by Rousseeuw and van Zomeren (1992). Although both
the TV and MBA estimators have the good OP (n−1/2) convergence rate, their
efficiency under normality may be very low. Chang and Olive (2007, 2010)
suggest a method of adaptive trimming such that the resulting estimator is
asymptotically equivalent to the OLS estimator.

Introduction to 1D regression and regression graphics are Cook and Weis-
berg (1999a, ch. 18, 19, and 20) and Cook and Weisberg (1999b), while Olive
(2010) considers 1D regression. Also see Olive (2013, ch. 12).

14.5 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.
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14.1∗. (Aldrin, Bφlviken, and Schweder 1993). Suppose

Y = m(βTx) + e (14.13)

where m is a possibly unknown function and the zero mean errors e are inde-
pendent of the predictors. Let z = βTx and let w = x −E(x). Let Σx,Y =
Cov(x, Y ), and let Σx =Cov(x) = Cov(w). Let r = w − (Σxβ)βT w.

a) Recall that Cov(x,Y ) = E[(x − E(x))(Y − E(Y ))T ] and show that
Σx,Y = E(wY ).

b) Show that E(wY ) = Σx,Y = E[(r + (Σxβ)βT w) m(z)] =

E[m(z)r] + E[βT w m(z)]Σxβ.

c) Using βOLS = Σ−1
x Σx,Y , show that βOLS = c(x)β + u(x) where the

constant
c(x) = E[βT (x − E(x))m(βTx)]

and the bias vector u(x) = Σ−1
x E[m(βT x)r].

d) Show that E(wz) = Σxβ. (Hint: Use E(wz) = E[(x−E(x))xTβ] =
E[(x− E(x))(xT − E(xT ) + E(xT ))β].)

e) Assume m(z) = z. Using d), show that c(x) = 1 if βT Σxβ = 1.

f) Assume that βTΣxβ = 1. Show that E(zr) = E(rz) = 0. (Hint: Find
E(rz) and use d).)

g) Suppose that βT Σxβ = 1 and that the distribution of x is multivariate
normal. Then the joint distribution of z and r is multivariate normal. Using
the fact that E(zr) = 0, show Cov(r, z) = 0 so that z and r are independent.
Then show that u(x) = 0.

(Note: the assumption βT Σxβ = 1 can be made without loss of gen-
erality since if βTΣxβ = d2 > 0 (assuming Σx is positive definite), then
y = m(d(β/d)T x) + e ≡ md(η

T x) + e where md(u) = m(du), η = β/d and
ηTΣxη = 1.)

R/Splus Problems

Warning: Use the command source(“G:/mpack.txt”) to download
the programs. See Preface or Section 15.2. Typing the name of the
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mpack function, eg trviews, will display the code for the function. Use the
args command, eg args(trviews), to display the needed arguments for the
function.

14.2. Use the following R/Splus commands to make 100 N3(0, I3) cases
and 100 trivariate non-EC cases.

n3x <- matrix(rnorm(300),nrow=100,ncol=3)

ln3x <- exp(n3x)

In R, type the command library(MASS).

a) Using the commands pairs(n3x) and pairs(ln3x) and include both scat-
terplot matrices in Word. (Click on the plot and hit Ctrl and c at the same
time. Then go to file in the Word menu and select paste.) Are strong
nonlinearities present among the MVN predictors? How about the non-EC
predictors? (Hint: a box or ball shaped plot is linear.)

b) Make a single index model and the sufficient summary plot with the
following commands

ncy <- (n3x%*%1:3)^3 + 0.1*rnorm(100)

plot(n3x%*%(1:3),ncy)

and include the plot in Word.
c) The command trviews(n3x, ncy) will produce ten plots. To advance the

plots, click on the rightmost mouse button (and in R select stop) to advance
to the next plot. The last plot is the OLS view. Include this plot in Word.

d) After all 10 plots have been looked at the output will show 10 estimated
predictors. The last estimate is the OLS (least squares) view and might look
like

Intercept X1 X2 X3

4.417988 22.468779 61.242178 75.284664

If the OLS view is a good estimated sufficient summary plot, then the
plot created from the command (leave out the intercept)

plot(n3x%*%c(22.469,61.242,75.285),n3x%*%1:3)
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should cluster tightly about some line. Your linear combination will be dif-
ferent than the one used above. Using your OLS view, include the plot using
the command above (but with your linear combination) in Word. Was this
plot linear? Did some of the other trimmed views seem to be better than
the OLS view, that is, did one of the trimmed views seem to have a smooth
mean function with a smaller variance function than the OLS view?

e) Now type the R/Splus command

lncy <- (ln3x%*%1:3)^3 + 0.1*rnorm(100).

Use the command trviews(ln3x,lncy) to find the best view with a smooth
mean function and the smallest variance function. This view should not be
the OLS view. Include your best view in Word.

f) Get the linear combination from your view, say (94.848, 216.719, 328.444)T ,
and obtain a plot with the command

plot(ln3x%*%c(94.848,216.719,328.444),ln3x%*%1:3).

Include the plot in Word. If the plot is linear with high correlation, then
your response plot in e) should be good.

14.3. (At the beginning of your R/Splus session, use source(“G:/rpack.txt”)
command (and library(MASS) in R.))

a) Perform the commands

> nx <- matrix(rnorm(300),nrow=100,ncol=3)

> lnx <- exp(nx)

> SP <- lnx%*%1:3

> lnsincy <- sin(SP)/SP + 0.01*rnorm(100)

For parts b), c) and d) below, to make the best trimmed view with
trviews, ctrviews or lmsviews, you may need to use the function twice.
The first view trims 90% of the data, the next view trims 80%, etc. The last
view trims 0% and is the OLS view (or lmsreg view). Remember to advance
the view with the rightmost mouse button (and in R, highlight “stop”). Then
click on the plot and next simultaneously hit Ctrl and c. This makes a copy
of the plot. Then in Word, use the menu commands “Copy>paste.”

b) Find the best trimmed view with OLS and covfch with the following
commands and include the view in Word.

> trviews(lnx,lnsincy)
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(With trviews, suppose that 40% trimming gave the best view. Then
instead of using the procedure above b), you can use the command

> essp(lnx,lnsincy,M=40)

to make the best trimmed view. Then click on the plot and next simultane-
ously hit Ctrl and c. This makes a copy of the plot. Then in Word, use the
menu commands “Copy>paste”. Click the rightmost mouse button (and in
R, highlight “stop”) to return the command prompt.)

c) Find the best trimmed view with OLS and (x,S) using the following
commands and include the view in Word. See the paragraph above b).

> ctrviews(lnx,lnsincy)

d) Find the best trimmed view with lmsreg and cov.mcd using the fol-
lowing commands and include the view in Word. See the paragraph above
b).

> lmsviews(lnx,lnsincy)

e) Which method or methods gave the best response plot? Explain briefly.

14.4. Warning: this problem may take too much time. This
problem is like Problem 14.3 but uses many more single index models.
a) Make some prototype functions with the following commands.

> nx <- matrix(rnorm(300),nrow=100,ncol=3)

> SP <- nx%*%1:3

> ncuby <- SP^3 + rnorm(100)

> nexpy <- exp(SP) + rnorm(100)

> nlinsy <- SP + 4*sin(SP) + 0.1*rnorm(100)

> nsincy <- sin(SP)/SP + 0.01*rnorm(100)

> nsiny <- sin(SP) + 0.1*rnorm(100)

> nsqrty <- sqrt(abs(SP)) + 0.1*rnorm(100)

> nsqy <- SP^2 + rnorm(100)

b) Make sufficient summary plots similar to Figures 14.2 and 14.3 with
the following commands and include both plots in Word.

> plot(SP,ncuby)

> plot(-SP,ncuby)
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c) Find the best trimmed view with the following commands (first type
library(MASS) if you are using R). Include the view in Word.

> trviews(nx,ncuby)

You may need to use the function twice. The first view trims 90% of the
data, the next view trims 80%, etc. The last view trims 0% and is the OLS
view. Remember to advance the view with the rightmost mouse button (and
in R, highlight “stop”). Suppose that 40% trimming gave the best view.
Then use the command

> essp(nx,ncuby, M=40)

to make the best trimmed view. Then click on the plot and next simultane-
ously hit Ctrl and c. This makes a copy of the plot. Then in Word, use the
menu commands “Copy>paste”.

d) To make a plot like Figure 14.6, use the following commands. Let tem
= β̂ obtained from the trviews output. In Example 14.2 (continued), tem
can be obtained with the following command.

> tem <- c(12.60514, 25.06613, 37.25504)

Include the plot in Word.

> ESP <- nx%*%tem

> plot(ESP,SP)

e) Repeat b), c) and d) with the following data sets.
i) nx and nexpy
ii) nx and nlinsy
iii) nx and nsincy
iv) nx and nsiny
v) nx and nsqrty
vi) nx and nsqy
Enter the following commands to do parts vii) to x).

> lnx <- exp(nx)

> SP <- lnx%*%1:3

> lncuby <- (SP/3)^3 + rnorm(100)

> lnlinsy <- SP + 10*sin(SP) + 0.1*rnorm(100)

> lnsincy <- sin(SP)/SP + 0.01*rnorm(100)

> lnsiny <- sin(SP/3) + 0.1*rnorm(100)

> ESP <- lnx%*%tem
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vii) lnx and lncuby
viii) lnx and lnlinsy
ix) lnx and lnsincy
x) lnx and lnsiny

14.5. Warning: this problem may take too much time. Repeat
Problem 14.4 but replace trviews with a) lmsviews, b) symviews (that cre-
ates views that sometimes work even when symmetry is present), c) ctrviews
and d) sirviews.

Except for part a), the essp command will not work. Instead, for the
best trimmed view, click on the plot and next simultaneously hit Ctrl and
c. This makes a copy of the plot. Then in Word, use the menu commands
“Copy>paste”.

14.6. a) In addition to the source(“G:/mpack.txt”) command, also use
the source(“G:/mrobdata.txt”) command (and in R, type the library(MASS)
command).

b) Type the command tvreg(buxx,buxy,ii=1). Click the rightmost mouse
button (and in R, highlight Stop). The response plot should appear. Repeat
10 times and remember which plot percentage M (say M = 0) had the best
response plot. Then type the command tvreg2(buxx,buxy, M = 0) (except
use your value of M, not 0). Again, click the rightmost mouse button (and
in R, highlight Stop). The response plot should appear. Hold down the Ctrl
and c keys to make a copy of the plot. Then paste the plot in Word.

c) The estimated coefficients β̂TV from the best plot should have appeared
on the screen. Copy and paste these coefficients into Word.

Problem using ARC

14.7. a) Activate the insulation.lsp dataset of Example 14.6 with the
menu commands “File > Load > Removable Disk (G:) > insulation.lsp.”
Scroll up the screen to read the data description.

b) From the insulation menu select Transform, click on time, change the
number in the p box to 2 and click on OK to add time2 to the variable
list. From the insulation menu select Make factors, click on type and click
on OK to make the factor {F}type. From the insulation menu select Make
interactions, click on {F}type and time, then click on OK. Again from the
insulation menu select Make interactions, click on {F}type and time2, then
click on OK.

c) From the Graph&Fit menu select Fit linear LS, place y in the response
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box and time, time2 and {F}type in the Terms/Predictors box. Click on OK
and copy and paste the output into Word.

d) To make a response plot use the menu commands “Graph&Fit >Plot
of”. Select y for the V-box and L1:Fit-Values for the H-box. Click on OK.
When the graph appears, move the OLS slider bar to 3 and the lowess slider
bar to 0.5. Since the lowess curve and the OLS cubic fit to xT β̂ nearly
coincide, the approximation E(Y |x) ≈ (xTβ)3 seems to be good. Copy the
plot into Word.

e) From the Graph&Fit menu select Fit linear LS, place y in the response
box and time, time2, {F}type and From the Graph&Fit menu select Fit linear
LS, place y in the response box and time, time2, {F}type, {F}type∗time and
{F}type∗time2 in the Terms/Predictors box. Click on OK and copy and paste
the output into Word.

f) To make a response plot for a second 1D regression model use the menu
commands “Graph&Fit >Plot of”. Select y for the V-box and L2:Fit-Values
for the H-box. Click on OK. When the graph appears, move the OLS slider
bar to 2 and the lowess slider bar to 0.5. Since the lowess curve and the OLS
quadratic fit to xT β̂ nearly coincide, the approximation E(Y |x) ≈ (xT β)2

seems to be good. Copy the plot into Word.



Chapter 15

Stuff for Students

15.1 Tips for Doing Research

As a student or new researcher, you will probably encounter researchers who
think that their method of doing research is the only correct way of doing
research, but there are dozens of methods that have proven effective.

Familiarity with the literature is important since your research should
be original. The field of high breakdown (HB) robust statistics has perhaps
produced more literature in the past 40 years than any other field in statistics.

This text presents the author’s applied research in multivariate analysis
from 1997–2012, and a summary of the ideas that most influenced the devel-
opment of this text follows. Gnanadesikan and Kettenring (1972) suggested
an algorithm similar to concentration and suggested that robust covariance
estimators could be formed by estimating the elements of the covariance
matrix with robust scale estimators. Devlin, Gnanadesikan and Kettenring
(1975, 1981) introduced the concentration technique. Rousseeuw (1984) ex-
tended the MCD location estimator to the MCD estimator of multivariate
location and dispersion. Cook and Nachtsheim (1994) showed that robust
Mahalanobis distances could be used to reduce the bias of 1D regression
estimators. Rousseeuw and Van Driessen (1999) introduced the DD plot.

Much of the HB literature is not applied or consists of ad hoc methods.
In far too many papers, the estimator actually used is an ad hoc inconsistent
zero breakdown approximation of an estimator for which there is theory.
The MCD, depth and MVE estimators are impractical to compute. The S
estimators and projection estimators are currently impossible to compute for

338
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p > 2. Unless there is a computational breakthrough, these estimators can
rarely be used in practical problems. Similarly, two stage estimators need a
good initial HB estimator, but no good initial HB estimator was available
until Olive (2004a) and Olive and Hawkins (2007, 2008, 2010).

There are hundreds of papers on outlier detection. Most of these compare
their method with an existing method on one or two outlier configurations
where their method does better. However, the new method rarely outper-
forms the existing method (such as lmsreg or cov.mcd) if a broad class of
outlier configurations is examined. In such a paper, check whether the new
estimator is consistent and if the author has shown types of outlier configura-
tions where the method fails. Try to figure out how the method would
perform for the cases of one and two predictors.

Dozens of papers suggest that a classical method can be made robust by
replacing a classical estimator with a robust estimator. Again inconsistent
robust estimators are usually used. These methods can be very useful, but
rely on perfect classification of the data into outliers and clean cases. Check
whether these methods can find outliers that can not be found by the response
plot, FCH DD plot and FMCD DD plot.

For example consider making a robust Hotelling’s t–test. If the paper uses
the FMCD cov.mcd algorithm, then the procedure is relying on the perfect
classification paradigm. On the other hand, Srivastava and Mudholkar (2001)
present an estimator that has large sample theory.

Beginners can have a hard time determining whether a robust algorithm
estimator is consistent or not. As a rule of thumb, assume that the approx-
imations (including those for depth, MCD, MVE, S, projection estimators
and two stage estimators) are inconsistent unless the authors show that they
understand Hawkins and Olive (2002) and Olive and Hawkins (2007, 2008,
2010). In particular, the elemental or basic resampling algorithms, concen-
tration algorithms and algorithms based on random projections should be
considered inconsistent until you can prove otherwise.

After finding a research topic, paper trailing is an important technique
for finding related literature. To use this technique, find a paper on the topic,
go to the bibliography of the paper, find one or more related papers and
repeat. Often your university’s library will have useful internet resources for
finding literature. Usually a research university will subscribe to either The
Web of Knowledge with a link to ISI Web of Science or to the Current Index to
Statistics. Both of these resources allow you to search for literature by author,
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eg Olive, or by topic, eg robust statistics. Both of these methods search for
recent papers. With Web of Knowledge, find an article with General Search,
click on the article and then click on the Find Related Articles icon to get a
list of related articles. For papers before 1997, use the free Current Index to
Statistics website (http://query.statindex.org/CIS/OldRecords/queryOld).

The search engines (www.google.com), (www.ask.com), (www.msn.com),
(www.yahoo.com), (www.info.com) and (www.scirus.com) are also useful.
The google search engine also has a useful link to “Google Scholar.” When
searching, enter a topic and the word robust or outliers. For example, enter
the keywords robust factor analysis or factor analysis and outliers.

The STATLIB site (http://lib.stat.cmu.edu/) is useful for finding statis-
tics departments, data sets and software. Statistical journals often have
websites that make abstracts and preprints available. Two useful websites
are given below.

(www.stat.ucla.edu/journals/ProbStatJournals/)

(www.statsci.org/jourlist.html)

Websites for researchers or research groups can be very useful. Below are
websites for Dr. Rousseeuw’s group, Dr. Rocke, Dr. Croux, Dr. Hubert’s
group and for the University of Minnesota.

(www.agoras.ua.ac.be/)

(http://handel.cipic.ucdavis.edu/~dmrocke/preprints.html)

(www.econ.kuleuven.ac.be/public/NDBAE06/)

(http://wis.kuleuven.be/stat/robust.html)

(www.stat.umn.edu)

The latter website has useful links to software. Arc and R can be down-
loaded from these links. Familiarity with a high level programming
language such as FORTRAN or R/Splus is essential. A very useful R link
is (www.r-project.org/#doc). See R Development Core Team (2011).

Finally, a Ph.D. student needs an advisor or mentor and most researchers
will find collaboration valuable. Attending conferences and making your
research available over the internet can lead to contacts.

Some references on research, including technical writing and presenta-
tions, include American Society of Civil Engineers (1950), Becker and Keller-
McNulty (1996), Ehrenberg (1982), Freeman, Gonzalez, Hoaglin and Kilss
(1983), Hamada and Sitter (2004), Rubin (2004) and Smith (1997).
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15.2 R/Splus and Arc

R is the free version of Splus. The website (www.stat.umn.edu) has useful
links for Arc which is the software developed by Cook and Weisberg (1999a).
The website (www.stat.umn.edu) also has a link to Cran which gives R
support. As of April 2012, the author’s personal computer has Version 2.13.1
(July 8, 2011) of R, Splus–2000 (see Mathsoft 1999ab) and Version 1.06 (July
2004) of Arc. Many of the text R/Splus functions and figures were made in
the 1990’s using Splus on a workstation.

Downloading the book’s data.lsp files into Arc
Many homework problems use data files for Arc contained in the book’s

website (www.math.siu.edu/olive/mbook.htm). As an example, open the
cbrain.lsp file with Notepad. Then use the menu commands “File>Save As”.
A window appears. On the top “Save in” box change what is in the box
to “Removable Disk (G:)” in order to save the file on flash drive G. Then
in Arc activate the cbrain.lsp file with the menu commands “File > Load >
Removable Disk (G:) > cbrain.lsp.”

Alternatively, open cbrain.lsp file with Notepad. Then use the menu com-
mands “File>Save As”. A window appears. On the top “Save in” box
change what is in the box to “My Documents”. Then go to Arc and use the
menu commands “File>Load”. A window appears. Change “Arc” to “My
Documents” and open cbrain.lsp.

Downloading the book’s R/Splus functions mpack.txt into R or
Splus:

Many of the homework problems use R/Splus functions contained in the
book’s website (www.math.siu.edu/olive/mbook.htm) under the file name
mpack.txt. Suppose that you download mpack.txt onto flashdrive G. Enter R
and wait for the cursor to appear. Then go to the File menu and drag down
Source R Code. A window should appear. Navigate the Look in box until
it says Removable Disk (G:). In the Files of type box choose All files(*.*)
and then select mpack.txt. The following line should appear in the main R
window.

> source("G:/mpack.txt")

Type ls(). About 70 R/Splus functions from mpack.txt should appear.
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When you finish your R/Splus session, enter the command q(). A window
asking “Save workspace image?” will appear. Click on No if you do not want
to save the programs in R. (If you do want to save the programs then click
on Yes.)

If you use Splus, the command

> source("G:/mpack.txt")

will enter the functions into Splus. Creating a special workspace for the
functions may be useful.

This section gives tips on using R/Splus, but is no replacement for books
such as Becker, Chambers, and Wilks (1988), Braun and Murdoch (2007),
Crawley (2005, 2007), or Venables and Ripley (2003). Also see Mathsoft
(1999ab) and use the website (www.google.com) to search for useful websites.
For example enter the search words R documentation.

The command q() gets you out of R or Splus.
Least squares regression is done with the function lsfit.
The commands help(fn) and args(fn) give information about the function

fn, eg if fn = lsfit.
Type the following commands.

x <- matrix(rnorm(300),nrow=100,ncol=3)

y <- x%*%1:3 + rnorm(100)

out<- lsfit(x,y)

out$coef

ls.print(out)

The first line makes a 100 by 3 matrix x with N(0,1) entries. The second
line makes y[i] = 0+1∗x[i, 1]+2∗x[i, 2]+3∗x[i, 2]+ewhere e is N(0,1). The
term 1:3 creates the vector (1, 2, 3)T and the matrix multiplication operator is
%∗%. The function lsfit will automatically add the constant to the model.
Typing “out” will give you a lot of irrelevant information, but out$coef and
out$resid give the OLS coefficients and residuals respectively.

To make a residual plot, type the following commands.

fit <- y - out$resid

plot(fit,out$resid)

title("residual plot")
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The first term in the plot command is always the horizontal axis while the
second is on the vertical axis.

To put a graph in Word, hold down the Ctrl and c buttons simultane-
ously. Then select “paste” from the Word Edit menu.

To enter data, open a data set in Notepad or Word. You need to know
the number of rows and the number of columns. Assume that each case is
entered in a row. For example, assuming that the file cyp.lsp has been saved
on your disk from the webpage for this book, open cyp.lsp in Word. It has
76 rows and 8 columns. In R or Splus, write the following command.

cyp <- matrix(scan(),nrow=76,ncol=8,byrow=T)

Then copy the data lines from Word and paste them in R/Splus. If a cursor
does not appear, hit enter. The command dim(cyp) will show if you have
entered the data correctly.

Enter the following commands

cypy <- cyp[,2]

cypx<- cyp[,-c(1,2)]

lsfit(cypx,cypy)$coef

to produce the output below.

Intercept X1 X2 X3 X4

205.40825985 0.94653718 0.17514405 0.23415181 0.75927197

X5 X6

-0.05318671 -0.30944144

To check that the data is entered correctly, fit LS in Arc with the re-
sponse variable height and the predictors sternal height, finger to ground,
head length, nasal length, bigonal breadth, and cephalic index (entered in
that order). You should get the same coefficients given by R or Splus.

Making functions in R and Splus is easy.

For example, type the following commands.

mysquare <- function(x){

# this function squares x

r <- x^2

r }
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The second line in the function shows how to put comments into functions.

Modifying your function is easy.

Use the fix command.
fix(mysquare)

This will open an editor such as Notepad and allow you to make changes.
In Splus, the command Edit(mysquare) may also be used to modify the

function mysquare.

To save data or a function in R, when you exit, click on Yes when the
“Save worksheet image?” window appears. When you reenter R, type ls().
This will show you what is saved. You should rarely need to save anything
for the material in the first thirteen chapters of this book. In Splus, data
and functions are automatically saved. To remove unwanted items from the
worksheet, eg x, type rm(x),
pairs(x) makes a scatterplot matrix of the columns of x,
hist(y) makes a histogram of y,
boxplot(y) makes a boxplot of y,
stem(y) makes a stem and leaf plot of y,
scan(), source(), and sink() are useful on a Unix workstation.
To type a simple list, use y <− c(1,2,3.5).
The commands mean(y), median(y), var(y) are self explanatory.

The following commands are useful for a scatterplot created by the com-
mand plot(x,y).
lines(x,y), lines(lowess(x,y,f=.2))
identify(x,y)
abline(out$coef), abline(0,1)

The usual arithmetic operators are 2 + 4, 3 − 7, 8 ∗ 4, 8/4, and

2^{10}.

The ith element of vector y is y[i] while the ij element of matrix x is
x[i, j]. The second row of x is x[2, ] while the 4th column of x is x[, 4]. The
transpose of x is t(x).

The command apply(x,1,fn) will compute the row means if fn = mean.
The command apply(x,2,fn) will compute the column variances if fn = var.
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The commands cbind and rbind combine column vectors or row vectors with
an existing matrix or vector of the appropriate dimension.

Downloading the book’s R/Splus data sets robdata.txt into R or
Splus is done in the same way for downloading rpack.txt. Use the following
command.

> source("G:/mrobdata.txt")

For example the command

> lsfit(belx,bely)

will perform the least squares regression for the Belgian telephone data.

Transferring Data to and from Arc and R or Splus.
For example, suppose that the Belgium telephone data (Rousseeuw and Leroy
1987, p. 26) has the predictor year stored in x and the response number of
calls stored in y in R or Splus. Combine the data into a matrix z and then
use the write.table command to display the data set as shown below. The

sep=’ ’

separates the columns by two spaces.

> z <- cbind(x,y)

> write.table(data.frame(z),sep=’ ’)

row.names z.1 y

1 50 0.44

2 51 0.47

3 52 0.47

4 53 0.59

5 54 0.66

6 55 0.73

7 56 0.81

8 57 0.88

9 58 1.06

10 59 1.2

11 60 1.35

12 61 1.49

13 62 1.61
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14 63 2.12

15 64 11.9

16 65 12.4

17 66 14.2

18 67 15.9

19 68 18.2

20 69 21.2

21 70 4.3

22 71 2.4

23 72 2.7073

24 73 2.9

To enter a data set into Arc, use the following template new.lsp.

dataset=new

begin description

Artificial data.

Contributed by David Olive.

end description

begin variables

col 0 = x1

col 1 = x2

col 2 = x3

col 3 = y

end variables

begin data

Next open new.lsp in Notepad. (Or use the vi editor in Unix. Sophisti-
cated editors like Word will often work, but they sometimes add things like
page breaks that do not allow the statistics software to use the file.) Then
copy the data lines from R/Splus and paste them below new.lsp. Then mod-
ify the file new.lsp and save it on a disk as the file belg.lsp. (Or save it in
mdata where mdata is a data folder added within the Arc data folder.) The
header of the new file belg.lsp is shown on the next page.

dataset=belgium

begin description

Belgium telephone data from
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Rousseeuw and Leroy (1987, p. 26)

end description

begin variables

col 0 = case

col 1 = x = year

col 2 = y = number of calls in tens of millions

end variables

begin data

1 50 0.44

. . .

. . .

. . .

24 73 2.9

The file above also shows the first and last lines of data. The header file
needs a data set name, description, variable list and a begin data command.
Often the description can be copied and pasted from source of the data, eg
from the STATLIB website. Note that the first variable starts with Col 0.

To transfer a data set from Arc to R or Splus, select the item
“Display data” from the dataset’s menu. Select the variables you want to
save, and then push the button for “Save in R/Splus format.” You will be
prompted to give a file name. If you select bodfat, then two files bodfat.txt and
bodfat.Rd will be created. The file bodfat.txt can be read into either R or Splus
using the read.table command. The file bodfat.Rd saves the documentation
about the data set in a standard format for R.

As an example, the following command was used to enter the body fat
data into Splus. (The mdata folder does not come with Arc. The folder
needs to be created and filled with files from the book’s website. Then the
file bodfat.txt can be stored in the mdata folder.)

bodfat <- read.table("C:\\ARC\\DATA\\MDATA\\BODFAT.TXT",header=T)

bodfat[,16] <- bodfat[,16]+1

The last column of the body fat data consists of the case numbers which
start with 0 in Arc. The second line adds one to each case number.

As another example, use the menu commands
“File>Load>Data>Arcg>forbes.lsp” to activate the forbes data set. From
the Forbes menu, select Display Data. A window will appear. Double click
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on Temp and Pressure. Click on Save Data in R/Splus Format and save as
forbes.txt in the folder mdata.

Enter Splus and type the following command.

forbes<-read.table("C:\\ARC\\DATA\\ARCG\\FORBES.TXT",header=T)

The command forbes will display the data set.

Getting information about a library in R
In R, a library is an add–on package of R code. The command library()

lists all available libraries, and information about a specific library, such as
MASS for robust estimators like cov.mcd or ts for time series estimation, can
be found, eg, with the command library(help=MASS).

Downloading a library into R
Many researchers have contributed a library of R code that can be down-

loaded for use. To see what is available, go to the website
(http://cran.us.r-project.org/) and click on the Packages icon. Suppose you
are interested the Weisberg (2002) dimension reduction library dr. Scroll
down the screen and click on dr. Then click on the file corresponding to your
type of computer, eg dr 2.0.0.zip for Windows. My unzipped files are stored
in my directory

C:\unzipped.

The file

C:\unzipped\dr

contains a folder dr which is the R library. Cut this folder and paste it into
the R library folder. (On my computer, I store the folder rw1011 in the file

C:\R-Gui.

The folder

C:\R-Gui\rw1011\library

contains the library packages that came with R.) Open R and type the fol-
lowing command.

library(dr)
Next type help(dr) to make sure that the library is available for use.
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Warning: R is free but not fool proof. If you have an old version of
R and want to download a library, you may need to update your version of
R. The libraries for robust statistics may be useful for outlier detection, but
the methods have not been shown to be consistent or high breakdown. All
software has some bugs. For example, Version 1.1.1 (August 15, 2000) of R
had a random generator for the Poisson distribution that produced variates
with too small of a mean θ for θ ≥ 10. Hence simulated 95% confidence
intervals might contain θ 0% of the time. This bug seems to have been fixed
in Version 2.4.1.

15.3 Projects

Straightforward Projects

• Read Bentler and Yuan (1998) and Cattell (1966). These papers use
scree plots to determine how many eigenvalues of the covariance ma-
trix are nonzero. This topic is very important for dimension reduction
methods such as principal components.

• Remark 4.1 estimates the percentage of outliers that the FMCD al-
gorithm can tolerate. In Section 4.5, data is generated such that the
FMCD estimator works well for p = 4 but fails for p = 8. Generate
similar data sets for p = 8, 9, 10, 12, 15, 20, 25, 30, 35, 40, 45, and 50. For
each value of p find the smallest integer valued percentage of outliers
needed to cause the FMCD and FCH estimators to fail. Use the mpack
function concsim. If concsim is too slow for large p, use covsim2which
will only give counts for the fast FCH estimator. As a criterion, a count
≥ 16 is good. Compare these observed FMCD percentages with Re-
mark 4.1 (use the gamper2 function). Do not forget the library(MASS)
command if you use R.

• DD plots: compare classical–FCH vs classical–cov.mcd DD plots on
real and simulated data. Do problems 4.4, 5.2 and 5.3 but with a wider
variety of data sets, n, p and gamma.

• Many papers substitute the latest MCD algorithm for the classical es-
timator and have titles like “Fast and Robust Factor Analysis.” Find
such a paper that analyzes a data set on
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i) factor analysis,

ii) discriminant analysis,

iii) principal components,

iv) canonical correlation analysis,

v) Hotelling’s t test, or

vi) principal component regression.

For the data, make a scatterplot matrix of the classical, RFCH and
FMCD Mahalanobis distances. Delete any outliers and run the classical
procedure on the undeleted data. Did the paper’s procedure perform
as well as this procedure?

• Examine the DD plot as a diagnostic for multivariate normality and
elliptically contoured distributions. Use real and simulated data.

• Resistant regression: modify tvreg by using OLS–covfch instead of
OLS–cov.mcd. (L1–cov.mcd and L1–covfch are also interesting.) Com-
pare your function with tvreg. The tvreg and covfch functions are
in rpack.txt.

• Using ESP to Search for the Missing Link: Compare trimmed views

which uses OLS and cov.mcd with another regression–MLD combo.
There are 8 possible projects: i) OLS–FCH, ii) OLS–Classical (use
ctrviews), iii) SIR–cov.mcd (sirviews), iv) SIR–FCH, v) SIR–class-
ical, vi) lmsreg–cov.mcd (lmsviews), vii) lmsreg–FCH, and viii) lmsreg
–classical. Do Problem 14.3ac (but just copy and paste the best view
instead of using the essp(nx,ncuby,M=40) command) with both your
estimator and trimmed views. Try to see what types of functions
work for both estimators, when trimmed views is better and when the
procedure i)–viii) in better. If you can invent interesting 1D functions,
do so. See Problem 14.4.

• Investigate using trimmed views to make various procedures such as
sliced inverse regression resistant against the presence of nonlinearities.
The functions sirviews, drsim5, drsim6 and drsim7 in rpack.txt may be
useful.
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• The DGK estimator with 66% coverage should be able to tolerate a
cluster of about 30% extremely distant outliers. Compare the DGK es-
timators with 50% and 66% coverage for various outlier configurations.

Harder Projects

• Which estimator is better FCH, RFCH, CMBA or RCMBA?

• For large data sets, make the DD plot of the DGK estimator vs MB
estimator and the DD plot of the classical estimator versus the MB
estimator. Which DD plot is more useful? Does your answer depend
on n and p? These two plots are among the fastest outlier diagnostics
for multivariate data.

• The Super Duper Outlier Scooper for Multivariate Location and Disper-
sion: Consider the modified MBA estimator for multivariate location
and dispersion given in Problem 4.7. This MBA estimator uses 8 starts
using 0%, 50%, 60%, 70%, 80%, 90%, 95% and 98% trimming of the
cases closest to the coordinatewise median in Euclidean distance. The
estimator is

√
n consistent on elliptically contoured distributions with

nonsingular covariance matrix. For small data sets the cmba2 function
can fail because the covariance estimator applied to the closest 2% cases
to the coordinatewise median is singular. Modify the function so that
it works well on small data sets. Then consider the following proposal
that may make the estimator asymptotically equivalent to the classi-
cal estimator when the data are from a multivariate normal (MVN)
distribution. The attractor corresponding to 0% trimming is the DGK
estimator (µ̂0, Σ̂0). Let (µ̂T , Σ̂T ) = (µ̂0, Σ̂0) if det(Σ̂0) ≤ det(Σ̂M) and
(µ̂T , Σ̂T ) = (µ̂M , Σ̂M ) otherwise where (µ̂M , Σ̂M ) is the attractor cor-
responding to M% trimming. Then make the DD plot of the classical
Mahalanobis distances versus the distances corresponding to (µ̂T , Σ̂T )
for M = 50, 60, 70, 80, 90, 95 and 98. If all seven DD plots “look good”
then use the classical estimator. The resulting estimator will be asymp-
totically equivalent to the classical estimator if P(all seven DD plots
“look good”) goes to one as n→ ∞. We conjecture that all seven plots
will look good because if n is large and the trimmed attractor “beats”
the DGK estimator, then the plot will look good. Also if the data is
MVN but not spherical, then the DGK estimator will almost always
“beat” the trimmed estimator, so all 7 plots will be identical.
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• The TV estimator for MLR has a good combination of resistance and
theory. Consider the following modification to make the method asymp-
totically equivalent to OLS when the Gaussian model holds: if each
trimmed view “looks good,” use OLS. The method is asymptotically
equivalent to OLS if the probability P(all 10 trimmed views look good)
goes to one as n → ∞. Rousseeuw and Leroy (1987, p. 128) shows
that if the predictors are bounded, then the ith residual ri converges
in probability to the ith error ei for i = 1, ..., n. Hence all 10 trimmed
views will look like the OLS view with high probability if n is large.

• Compare outliers and missing values, especially missing and outlying
at random. See Little and Rubin (2002).

• Suppose that the data set contains missing values. Code the missing
value as ±99999+ rnorm(1). Run a robust procedure on the data. The
idea is that the case with the missing value will be given weight zero if
the variable is important, and the variable will be given weight zero if
the case is important. See Hawkins and Olive (1999b).

• Download the dr function for R, (contributed by Sanford Weisberg),
and make PHD and SAVE trimmed views.

• Implement the Carroll and Pederson (1993) robust logistic regression
estimator using the robust MLD estimator RFCH or RMVN and see
how well the estimator works.

Research Ideas that have Confounded the Author

• If the attractor of a randomly selected elemental start is (in)consistent,
then FMCD is (in)consistent. Hawkins and Olive (2002) showed that
the attractor is inconsistent if k concentration steps are used. Suppose
K elemental starts are used for an MCD concentration estimator and
that the starts are iterated until convergence instead of for k steps.
Prove or disprove the conjecture that the resulting estimator is incon-
sistent. (Intuitively, the elemental starts are inconsistent and hence are
tilted away from the parameter of interest. Concentration may reduce
but probably does not eliminate the tilt.)

• Prove or disprove Conjectures 4.1, 4.2, and 4.3.
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• Prove or disprove Conjecture 5.1. Do elemental set and concentra-
tion algorithms for multivariate location and dispersion (MLD) give
consistent estimators if the number of starts increases to ∞ with the
sample size n? (Algorithms that use a fixed number of elemental sets
along with the classical estimator and a biased but easily computed
high breakdown estimator will be easier to compute and have better
statistical properties. See Theorem 4.9 and Olive and Hawkins, 2007,
2008.)

It is easy to create consistent algorithm estimators that use O(n) ran-
domly chosen elemental sets. He and Wang (1997) show that the all
elemental subset approximation to S estimators for MLD is consistent
for (µ, cΣ). Hence an algorithm that randomly draws g(n) elemental
sets and searches all C(g(n), p + 1) elemental sets is also consistent if
g(n) → ∞ as n → ∞. For example, O(n) elemental sets are used if
g(n) ∝ n1/(p+1).

When a fixed number of K elemental starts are used, the best attractor
is inconsistent but gets close to (µ, cMCDΣ) if the data distribution is
EC. (The estimator may be unbiased but the variability of the com-
ponent estimators does not go to 0 as n → ∞.) If K → ∞, then the
best attractor should approximate the highest density region arbitrar-
ily closely and the algorithm should be consistent. However, the time
for the algorithm greatly increases, the convergence rate is very poor
(possibly between K1/2p and K1/p), and the elemental concentration
algorithm can not guarantee that the determinant is bounded when
outliers are present.

• A promising two stage estimator is the “cross checking estimator” that
uses a standard consistent estimator and an alternative consistent es-
timator with desirable properties such as a high breakdown value. The
final estimator uses the standard estimator if it is “close” to the alterna-
tive estimator, and hence is asymptotically equivalent to the standard
estimator for clean data. One important area of research for robust
statistics is finding good computable consistent robust estimators to
be used in plots and in the cross checking algorithm. The estimators
given in Theorems 4.8 and 4.9 (see Olive 2004a and Olive and Hawkins
2007, 2008) finally make the cross checking estimator practical, but
better estimators are surely possible. He and Wang (1996) suggested
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the cross checking idea for multivariate location and dispersion.

15.4 Hints for Selected Problems

Chapter 1

1.1 a) 8.25 ± 0.7007 = (6.020, 10.480)

b) 8.75 ± 1.1645 = (7.586, 9.914).

1.2 a) Y = 24/5 = 4.8.

b)

S2 =
138 − 5(4.8)2

4
= 5.7

so S =
√

5.7 = 2.3875.

c) The ordered data are 2,3,5,6,8 and MED(n) = 5.

d) The ordered |Yi − MED(n)| are 0,1,2,2,3 and MAD(n) = 2.

1.2 a) Y = 15.8/10 = 1.58.

b)

S2 =
38.58 − 10(1.58)2

9
= 1.5129

so S =
√

1.5129 = 1.230.

c) The ordered data set is 0.0,0.8,1.0,1.2,1.3,1.3,1.4,1.8,2.4,4.6 and
MED(n) = 1.3.

d) The ordered |Yi − MED(n)| are 0,0,0.1,0.1,0.3,0.5,0.5,1.1,1.3,3.3 and
MAD(n) = 0.4.

e) 4.6 is unusually large.

Chapter 2

Chapter 3

3.1 a) X2 ∼ N(100, 6).

b) (
X1

X3

)
∼ N2

( (
49
17

)
,

(
3 −1
−1 4

) )
.

c) X1 X4 and X3 X4.
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d)

ρ(X1, X2) =
Cov(X1, X3)√

VAR(X1)VAR(X3)
=

−1√
3
√

4
= −0.2887.

3.2 a) Y |X ∼ N(49, 16) since Y X. (Or use E(Y |X) = µY +
Σ12Σ

−1
22 (X − µx) = 49 + 0(1/25)(X − 100) = 49 and VAR(Y |X) = Σ11 −

Σ12Σ
−1
22 Σ21 = 16 − 0(1/25)0 = 16.)

b) E(Y |X) = µY +Σ12Σ
−1
22 (X−µx) = 49+10(1/25)(X−100) = 9+0.4X.

c) VAR(Y |X) = Σ11 − Σ12Σ
−1
22 Σ21 = 16 − 10(1/25)10 = 16 − 4 = 12.

3.4 The proof is identical to that given in Example 3.2. (In addition, it
is fairly simple to show that M1 = M2 ≡ M . That is, M depends on Σ but
not on c or g.)

3.6 a) Sort each column, then find the median of each column. Then
MED(W ) = (1430, 180, 120)T .

b) The sample mean of (X1, X2, X3)
T is found by finding the sample mean

of each column. Hence x = (1232.8571, 168.00, 112.00)T .

3.11 ΣB = E[E(X|BT X)XTB)] = E(MBBT XXT B) = MBBT ΣB.
Hence MB = ΣB(BTΣB)−1.

Chapter 4

4.4 The 4 plots should look nearly identical with the five cases 61–65
appearing as outliers.

4.5 Not only should none of the outliers be highlighted, but the high-
lighted cases should be ellipsoidal.

4.6 Answers will vary since this is simulated data, but should get gam
near 0.4, 0.3, 0.2 and 0.1 as p increases from 2 to 20.

Chapter 5

5.2 b Ideally the answer to this problem and Problem 5.3b would be
nearly the same, but students seem to want correlations to be very high and
use n too high. Values of n around 20, 40 and 50 for p = 2, 3 and 4 should
be enough.
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5.3 b Values of n should be near 20, 40 and 50 for p = 2, 3 and 4.

5.4 This is simulated data, but for most plots the slope is near 2.

Chapter 6

6.1 Note that oP (1)OP (1) = [(Σ̂− λ̂i)− c(Σ−λi)]êi = c(Σ−λi)êi
P→ 0.

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

14.6 The identity line should NOT PASS through the cluster of out-
liers with Y near 0. The amount of trimming seems to vary some with the
computer (which should not happen unless there is a bug in the tvreg2 func-
tion or if the computers are using different versions of cov.mcd), but most
students liked 70% or 80% trimming.
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15.5 F Table

Tabled values are F(0.95,k,d) where P (F < F (0.95, k, d)) = 0.95.
00 stands for ∞. Entries produced with the qf(.95,k,d) command in R.
The numerator degrees of freedom are k while the denominator degrees of
freedom are d.

k 1 2 3 4 5 6 7 8 9 00

d

1 161 200 216 225 230 234 237 239 241 254

2 18.5 19.0 19.2 19.3 19.3 19.3 19.4 19.4 19.4 19.5

3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.53

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.37

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 3.67

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.23

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 2.93

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.41

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.30

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.21

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.13

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.07

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.01

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 1.96

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 1.92

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 1.88

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 1.84

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 1.71

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 1.62

00 3.84 3.00 2.61 2.37 2.21 2.10 2.01 1.94 1.88 1.00
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Agulló, J. (1996), “Exact Iterative Computation of the Multivariate Min-
imum Volume Ellipsoid Estimator with a Branch and Bound Algorithm,”
In Proceedings in Computational Statistics, Prat, A., Physica-Verlag, Heidel-
berg, 175-180.
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Lopuhaä, H.P. (1999), “Asymptotics of Reweighted Estimators of Multi-

variate Location and Scatter,” The Annals of Statistics, 27, 1638-1665.
Mai, Q., Zou, H., and Yuan, M. (2012), “A Direct Approach to Sparse

Discriminant Analysis in Ultra-High Dimensions,” Biometrika, 99, 29-42.
Mallows, C. (1973), “Some Comments on Cp,” Technometrics, 15, 661-

676.
Manzotti, A., Pérez, F.J., and Quiroz, A.J. (2002), “A Statistic for Test-

ing the Null Hypothesis of Elliptical Symmetry,” Journal of Multivariate
Analysis, 81, 274-285.

Mardia, K.V. (1971), “The Effect of Nonnormality on Some Multivariate
Tests of Robustness to Nonnormality in the Linear Model,” Biometrika, 58,
105-121.

Mardia, K.V., Kent, J.T., and Bibby, J.M. (1979), Multivariate Analysis,
Academic Press, London.

Maronna, R.A., Martin, R.D., and Yohai, V.J. (2006), Robust Statistics:
Theory and Methods, Wiley, Hoboken, NJ.

Maronna, R.A., and Yohai, V.J. (2002), “Comment on ‘Inconsistency
of Resampling Algorithms for High Breakdown Regression and a New Algo-
rithm’ by D.M. Hawkins and D.J. Olive,” Journal of the American Statistical
Association, 97, 154-155.

Maronna, R.A., and Zamar, R.H. (2002), “Robust Estimates of Location
and Dispersion for High-Dimensional Datasets,” Technometrics, 44, 307-317.

MathSoft (1999a), S-Plus 2000 User’s Guide, Data Analysis Products
Division, MathSoft, Seattle, WA. (Mathsoft is now Insightful.)

MathSoft (1999b), S-Plus 2000 Guide to Statistics, Volume 2, Data Anal-
ysis Products Division, MathSoft, Seattle, WA. (Mathsoft is now Insightful.)

McDonald, G.C., and Schwing, R.C. (1973), “Instabilities of Regression
Estimates Relating Air Pollution to Mortality,” Technometrics, 15, 463-482.

McLachlan, G.J. (2004), Discriminant Analysis and Statistical Pattern
Recognition, Wiley, Hoboken, NJ.

Mehrotra, D.V. (1995), “Robust Elementwise Estimation of a Dispersion
Matrix,” Biometrics, 51, 1344-1351.

Miller, D.M. (1984), “Reducing Transformation Bias in Curve Fitting,”
The American Statistician, 38, 124-126.

Mφller, S.F., von Frese, J., and Bro, R. (2005), “Robust Methods for
Multivariate Data Analysis,” Journal of Chemometrics, 19, 549-563.



BIBLIOGRAPHY 368

Montgomery, D.C. (1984), Design and Analysis of Experiments, 2nd ed.,
Wiley, New York, NY.

Moore, D.S. (2000), The Basic Practice of Statistics, 2nd ed., W.H. Free-
man, New York, NY.

Mosteller, F., and Tukey, J.W. (1977), Data Analysis and Regression,
Addison-Wesley, Reading, MA.

Muirhead, R.J. (1982), Aspects of Multivariate Statistical Theory, Wiley,
New York, NY.

Muirhead, R.J., and Waternaux, C.M. (1980), “Asymptotic Distribution
in Canonical Correlation Analysis and Other Multivariate Procedures for
Nonnormal Populations,” Biometrika, 67, 31-43.

Olive, D.J. (2002), “Applications of Robust Distances for Regression,”
Technometrics, 44, 64-71.

Olive, D.J. (2004a), “A Resistant Estimator of Multivariate Location and
Dispersion,” Computational Statistics and Data Analysis, 46, 99-102.

Olive, D.J. (2004b), “Visualizing 1D Regression,” in Theory and Appli-
cations of Recent Robust Methods, eds. Hubert, M., Pison, G., Struyf, A.,
and Van Aelst, S., Series: Statistics for Industry and Technology, Birkhäuser,
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