
Chapter 9

Hotelling’s T
2 Test

9.1 One Sample

The one sample Hotelling’s T 2 test is used to test H0 : µ = µ0 versus
HA : µ 6= µ0. The test rejects H0 if

T 2

H = n(x − µ0)
T S−1(x − µ0) >

(n − 1)p

n − p
Fp,n−p,1−α

where P (Y ≤ Fp,d,α) = α if Y ∼ Fp,d.
If a multivariate location estimator T satisfies

√
n(T − µ)

D→ Np(0, D),

then a competing test rejects H0 if

T 2

C = n(T −µ0)
T D̂

−1

(T − µ0) >
(n − 1)p

n − p
Fp,n−p,1−α

if H0 holds and D̂ is a consistent estimator of D. The scaled F cutoff can

be used since T 2
C

D→ χ2
p if H0 holds, and

(n − 1)p

n − p
Fp,n−p,1−α → χ2

p,1−α

as n → ∞. This idea is used for small p by Srivastava and Mudholkar (2001)
where T is the coordinatewise trimmed mean. The one sample Hotelling’s
T 2 test uses T = x, D = Σx and D̂ = S.
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The Hotelling’s T 2 test is a large sample level α test in that if x1, ..., xn

are iid from a distribution with mean µ0 and nonsingular covariance matrix
Σx, then the type I error = P(reject H0 when H0 is true) → α as n → ∞.
Want n > 10p if the DD plot is linear through the origin and subplots in the
scatterplot matrix all look ellipsoidal. For any n, there are distributions with
nonsingular covariance matrix where the χ2

p approximation to T 2
H is poor.

Let pval be an estimate of the pvalue. Typically use T 2
C = T 2

H in the
following 4 step test. i) State the hypotheses H0 : µ = µ0 H1 : µ 6= µ0.

ii) Find the test statistic T 2
C = n(T − µ0)

T D̂
−1

(T − µ0).
iii) Find pval =

P

(

T 2

C <
(n − 1)p

n − p
Fp,n−p

)

= P

(

n − p

(n − 1)p
T 2

C < Fp,n−p

)

.

iv) State whether you fail to reject H0 or reject H0. If you reject H0 then con-
clude that µ 6= µ0 while if you fail to reject H0 conclude that the population
mean µ = µ0 or that there is not enough evidence to conclude that µ 6= µ0.
Reject H0 if pval < α and fail to reject H0 if pval ≥ α. As a benchmark for
this text, use α = 0.05 if α is not given.

If W is the data matrix, then R(W ) is a large sample 100(1 − α)%
confidence region for µ if P [µ ∈ R(W )] → 1−α as n → ∞. If x1, ..., xn are
iid from a distribution with mean µ and nonsingular covariance matrix Σx,
then

R(W ) = {µ|n(x − µ)T S−1(x − µ) ≤ (n − 1)p

n − p
Fp,n−p,1−α}

is a large sample 100(1 − α)% confidence region for µ. This region is a
hyperellipsoid centered at x. Note that the estimated covariance matrix for
x is S/n and n(x − µ)T S−1(x − µ) = D2

µ(x, S/n). Hence µ that are close
to x with respect to the Mahalanobis distance based on dispersion matrix
S/n are in the confidence region.

Recall from Theorem 1.1e that max
a 6=0

aT (x − µ)(x − µ)T a

aTSa
=

n(x − µ)T S−1(x − µ) = T 2. This fact can be used to derive large sample
simultaneous confidence intervals for aT µ in that separate confidence state-
ments using different choices of a all hold simultaneously with probability
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tending to 1 − α. Let x1, ...xn be iid with mean µ and covariance matrix
Σx > 0. Then simultaneously for all a 6= 0, P (La < aT µ < Ua) → 1 − α
as n → ∞ where

(La, Ua) = aTx ±
√

p(n − 1)

n(n − p)
Fp,n−p,1−αaT Sa.

Simultaneous confidence intervals (CIs) can be made after collecting data
and hence are useful for “data snooping.” Following Johnson and Wichern
(1988, p. 184-5), the p confidence intervals (CIs) for µi and p(p−1)/2 CIs for
µi − µk can be made such that they all hold simultaneously with confidence
→ 1 − α. Hence if α = 0.05, then in 100 samples, expect all p + p(p − 1)/2
CIs to contain µi and µi − µk about 95 times while about 5 times at least
one of the CIs will fail to contain its parameter. The CIs for µi are

(L, U) = xi ±
√

p(n − 1)

(n − p)
Fp,n−p,1−α

√

Sii

n

while the CIs for µi − µk are

(L, U) = xi − xk ±
√

p(n − 1)

(n − p)
Fp,n−p,1−α

√

Sii − 2Sik + Skk

n
.

9.1.1 A diagnostic for the Hotelling’s T
2 test

Now the RMVN estimator is asymptotically equivalent to a scaled DGK es-
timator that uses k = 5 concentration steps and two “reweight for efficiency”
steps. Lopuhaä (1999, p. 1651-1652) shows that if (E1) holds, then the clas-
sical estimator applied to cases with Di(x, S) ≤ h is asymptotically normal
with √

n(T0,D −µ)
D→ Np(0, κpΣ).

Here h is some fixed positive number, such as h = χ2
p,0.975, so this estimator

is not quite the DGK estimator after one concentration step.
We conjecture that a similar result holds after concentration:

√
n(TRMV N − µ)

D→ Np(0, τpΣ)

for a wide variety of elliptically contoured distributions where τp depends
on both p and the underlying distribution. Since the “test” is based on a
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conjecture, it is ad hoc, and should be used as an outlier diagnostic rather
than for inference.

For MVN data, simulations suggest that τp is close to 1. The ad hoc test
that rejects H0 if

T 2

R/fn,p = n(TRMV N −µ0)
T Ĉ

−1

RMV N (TRMV N −µ0)/fn,p >
(n − 1)p

n − p
Fp,n−p,1−α

where fn,p = 1.04 + 0.12/p + (40 + p)/n gave fair results in the simulations
described later in this subsection for n ≥ 15p and 2 ≤ p ≤ 100.

The correction factor fn,p was found by simulating the “robust” and clas-
sical test statistics for 100 runs, plotting the test statistics, then finding a
correction factor so that the identity line passed through the data. The fol-
lowing R commands were used to make Figure 9.1, which shows that the
plotted points of the scaled “robust” test statistic versus the classical test
statistic scatter about the identity line.

zout <- rhotsim(n=4000,p=30)

SRHOT <- zout$rhot/(1.04 + 0.12/p + (40+p)/n)

HOT <- zout$hot

plot(SRHOT,HOT)

abline(0,1)
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Figure 9.1: Scaled “Robust” Statistic Versus T 2
H Statistic
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For the Hotelling’s T 2
H simulation, the data is Np(δ1, diag(1, 2, ..., p))

where H0 : µ = 0 is being tested with 5000 runs at a nominal level of
0.05. In Table 9.1, δ = 0 so H0 is true, while hcv and rhcv are the proportion
of rejections by the T 2

H test and by the ad hoc robust test. Sample sizes are
n = 15p, 20p and 30p. The robust test is not recommended for n < 15p and
appears to be conservative (number of rejections is less than the nominal
0.05) except when n = 15p and 75 ≤ p ≤ 100. See Zhang (2011).

If δ > 0, then H0 is false and the proportion of rejections estimates the
power of the test. Table 9.2 shows that T 2

H has more power than the robust
test, but suggests that the power of both tests rapidly increases to one as δ
increases.

Table 9.1: Hotelling simulation

p n=15p hcv rhcv n=20p hcv rhcv n=30p hcv rhcv

10 150 0.0476 0.0300 200 0.0516 0.0304 300 0.0498 0.0286

15 225 0.0474 0.0318 300 0.0506 0.0308 450 0.0492 0.0320

20 300 0.0540 0.0368 400 0.0548 0.0314 600 0.0520 0.0354

25 375 0.0444 0.0334 500 0.0462 0.0296 750 0.0456 0.0288

30 450 0.0472 0.0324 600 0.0516 0.0358 900 0.0484 0.0342

35 525 0.0490 0.0384 700 0.0522 0.0358 1050 0.0502 0.0374

40 600 0.0534 0.0440 800 0.0486 0.0354 1200 0.0526 0.0336

45 675 0.0406 0.0390 900 0.0544 0.0390 1350 0.0512 0.0366

50 750 0.0498 0.0430 1000 0.0522 0.0394 1500 0.0512 0.0364

55 825 0.0504 0.0502 1100 0.0496 0.0392 1650 0.0510 0.0374

60 900 0.0482 0.0514 1200 0.0488 0.0404 1800 0.0474 0.0376

65 975 0.0568 0.0602 1300 0.0524 0.0414 1950 0.0548 0.0410

70 1050 0.0462 0.0530 1400 0.0558 0.0432 2100 0.0522 0.0424

75 1125 0.0474 0.0632 1500 0.0502 0.0486 2250 0.0490 0.0370

80 1200 0.0524 0.0620 1600 0.0524 0.0432 2400 0.0468 0.0356

85 1275 0.0482 0.0758 1700 0.0496 0.0456 2550 0.0520 0.0404

90 1350 0.0504 0.0746 1800 0.0484 0.0454 2700 0.0484 0.0398

95 1425 0.0524 0.0892 1900 0.0472 0.0506 2850 0.0538 0.0424

100 1500 0.0554 0.0808 2000 0.0452 0.0506 3000 0.0488 0.0392

9.2 Matched Pairs

Assume that there are k = 2 treatments, and both treatments are given to
the same n cases or units. For example, systolic and diastolic blood pressure
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Table 9.2: Hotelling power simulation

p n hcv rhcv δ n hcv rhcv δ n hcv rhcv δ

5 75 0.459 0.245 0.20 100 0.366 0.184 0.15 150 0.333 0.208 0.12

5 75 0.682 0.416 0.25 100 0.599 0.368 0.20 150 0.577 0.394 0.16

5 75 0.840 0.588 0.30 100 0.816 0.587 0.30 150 0.860 0.708 0.40

10 150 0.221 0.113 0.10 200 0.312 0.182 0.10 300 0.469 0.340 0.10

10 150 0.621 0.400 0.17 200 0.655 0.467 0.15 300 0.647 0.504 0.12

10 150 0.888 0.729 0.22 200 0.848 0.692 0.18 300 0.872 0.767 0.15

15 225 0.314 0.188 0.10 300 0.442 0.294 0.10 450 0.317 0.228 0.07

15 225 0.714 0.543 0.15 300 0.623 0.449 0.12 450 0.648 0.522 0.10

15 225 0.881 0.738 0.18 300 0.858 0.755 0.15 450 0.853 0.762 0.12

20 300 0.408 0.276 0.10 400 0.341 0.230 0.08 600 0.291 0.216 0.06

20 300 0.691 0.525 0.13 400 0.674 0.534 0.11 600 0.554 0.433 0.08

20 300 0.935 0.852 0.17 400 0.858 0.742 0.13 600 0.790 0.701 0.10

25 375 0.304 0.214 0.08 500 0.434 0.319 0.08 750 0.354 0.266 0.06

25 375 0.728 0.580 0.12 500 0.676 0.531 0.10 750 0.660 0.556 0.08

25 375 0.926 0.837 0.15 500 0.868 0.771 0.12 750 0.887 0.815 0.10

30 450 0.374 0.264 0.08 600 0.395 0.290 0.07 900 0.290 0.217 0.05

30 450 0.602 0.467 0.10 600 0.639 0.517 0.09 900 0.743 0.642 0.08

30 450 0.883 0.763 0.13 600 0.867 0.770 0.11 900 0.876 0.808 0.09
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could be compared before and after the patient (case) receives blood pressure
medication. Then p = 2. Alternatively use m correlated pairs, for example,
pairs of animals from the same litter or neighboring farm fields. Then use
randomization to decide whether the first member of the pair gets treatment
1 or treatment 2. Let n1 = n2 = n and assume n − p is large.

Let yi = (Yi1, Yi2, ..., Yip)
T denote the p measurements from the 1st treat-

ment, and zi = (Zi1, Zi2, ..., Zip)
T denote the p measurements from the 2nd

treatment. Let di ≡ xi = yi − zi for i = 1, ..., n. Assume that the xi are iid
with mean µ and covariance matrix Σx. Let T 2 = n(x − µ)TS−1(x − µ).

Then T 2 P→ χ2
p and pFp,n−p

P→ χ2
p. Let P (Fp,n ≤ Fp,n,δ) = δ. Then the one

sample Hotelling’s T 2 inference is done on the differences xi using m instead
of n and using µ0 = 0. If the p random variables are continuous, make 3 DD
plots: one for the xi, one for the yi and one for the zi to detect outliers.

Let pval be an estimate of the pvalue. The large sample multivariate
matched pairs test has 4 steps.
i) State the hypotheses H0 : µ = 0 H1 : µ 6= 0.
ii) Find the test statistic T 2 = nxTS−1x.
iii) Find pval =

P

(

T 2 <
(n − 1)p

n − p
Fp,n−p

)

= P

(

n − p

(n − 1)p
T 2 < Fp,n−p

)

.

iv) State whether you fail to reject H0 or reject H0. If you reject H0 then
conclude that µ 6= 0 while if you fail to reject H0 conclude that the population
mean µ = 0 or that there is not enough evidence to conclude that µ 6= 0.
Reject H0 if pval < α and fail to reject H0 if pval ≥ α. As a benchmark for
this text, use α = 0.05 if α is not given.

A large sample 100(1 − α)% confidence region for µ is

{µ| m(x− µ)T S−1(x − µ) ≤ (n − 1)p

n − p
Fp,n−p,1−α},

and the p large sample simultaneous confidence intervals (CIs) for µi are

(L, U) = xi ±
√

p(n − 1)

(n − p)
Fp,n−p,1−α

√

Sii

n

where Sii = S2
i is the ith diagonal element of S.
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9.3 Repeated Measurements

Repeated measurements = longitudinal data analysis. Take p measurements
on the same unit, often the same measurement, eg blood pressure, at several
time periods. The variables are X1, ..., Xp where often Xk is the measurement
at the kth time period. The E(x) = (µ1, ..., µp)

T = (µ + τ1, ..., µ + τp)
T . Let

yij = xij − xi,j+1 for i = 1, ..., n and j = 1, ..., p − 1. Then y = (x1 −
x2, x2 − x3, ..., xp−1 − xp)

T . If µY = E(yi), then µY = 0 is equivalent to
µ1 = · · · = µp where E(Xk) = µk. Let Sy be the sample covariance matrix
of the yi.

The large sample repeated measurements test has 4 steps.
i) State the hypotheses H0 : µy = 0 H1 : µy 6= 0.

ii) Find the test statistic T 2
R = nyT S−1

y y.
iii) Find pval =

P

(

n − p + 1

(n − 1)(p − 1)
T 2

R < Fp−1,n−p+1

)

.

iv) State whether you fail to reject H0 or reject H0. If you reject H0 then
conclude that µy 6= 0 while if you fail to reject H0 conclude that the pop-
ulation mean µy = 0 or that there is not enough evidence to conclude that
µy 6= 0. Reject H0 if pval < α and fail to reject H0 if pval ≥ α. Give a
nontechnical sentence, if possible.

9.4 Two Samples

Suppose there are two independent random samples X1,1, ..., Xn1,1 and X1,2, ...,
Xn2,2 from populations with mean and covariance matrices (µi,Σxi

) for
i = 1, 2. Assume the Σxi

are positive definite and that it is desired to
test H0 : µ1 = µ2 versus H1 : µ1 6= µ2 where the µi are p × 1 vectors. To
simplify large sample theory, assume n1 = kn2 for some positive real number
k.

By the multivariate central limit theorem,

( √
n1 (X1 − µ1)√
n2 (X2 − µ2)

)

D→ N2p

[(

0
0

)

,

(

Σx1
0

0 Σx2

)]

,
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or
( √

n2 (X1 −µ1)√
n2 (X2 −µ2)

)

D→ N2p

[

(

0
0

)

,

(

Σx1

k
0

0 Σx2

)]

.

Hence
√

n2 [(x1 − x2) − (µ1 − µ2)]
D→ Np(0,

Σx1

k
+ Σx2

).

Using nB−1 =

(

B

n

)−1

and n2k = n1, if µ1 = µ2, then

n2(x1 − x2)
T

(

Σx1

k
+ Σx2

)−1

(x1 − x2) =

(x1 − x2)
T

(

Σx1

n1

+
Σx2

n2

)−1

(x1 − x2)
D→ χ2

p.

Hence

T 2

0
= (x1 − x2)

T

(

S1

n1

+
S2

n2

)−1

(x1 − x2)
D→ χ2

p.

If the sequence of positive integer dn → ∞ and Yn ∼ Fp,dn
, then Yn

D→
χ2

p/p. Using an Fp,dn
distribution instead of a χ2

p distribution is similar to
using a tdn

distribution instead of a standard normal N(0, 1) distribution for
inference. Instead of rejecting H0 when T 2

0 > χ2
p,1−α, reject H0 when

T 2

0
> pFp,dn,1−α =

pFp,dn,1−α

χ2
p,1−α

χ2

p,1−α.

The term
pFp,dn,1−α

χ2
p,1−α

can be regarded as a small sample correction factor

that improves the test’s performance for small samples. We will use dn =
min(n1 − p, n2 − p). Here P (Yn ≤ χ2

p,α) = α if Yn has a χ2
p distribution, and

P (Yn ≤ Fp,dn,α) = α if Yn has an Fp,dn
distribution.

Let pval denote the estimated pvalue. The 4 step test is
i) State the hypotheses H0 : µ1 = µ2 H1 : µ1 6= µ2.
ii) Find the test statistic t0 = T 2

0
/p.

iii) Find pval = P (t0 < Fp,dn
).

iv) State whether you fail to reject H0 or reject H0. If you reject H0 then
conclude that the population means are not equal while if you fail to reject
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H0 conclude that the population means are equal or that there is not enough
evidence to conclude that the population means differ. Reject H0 if pval < α
and fail to reject H0 if pval ≥ α. Give a nontechnical sentence if possible.
As a benchmark for this text, use α = 0.05 if α is not given.

9.5 Summary

1) The one sample Hotelling’s T 2 test is used to test H0 : µ = µ0 versus
HA : µ 6= µ0. The test rejects H0 if T 2

H = n(x − µ0)
TS−1(x − µ0) >

(n − 1)p

n − p
Fp,n−p,1−α where P (Y ≤ Fp,d,α) = α if Y ∼ Fp,d.

If a multivariate location estimator T satisfies
√

n(T − µ)
D→ Np(0, D),

then a competing test rejects H0 if T 2

C = n(T−µ0)
T D̂

−1

(T−µ0) >
(n − 1)p

n − p
Fp,n−p,1−α

if H0 holds and D̂ is a consistent estimator of D. The scaled F cutoff can be

used since T 2
C

D→ χ2
p if H0 holds, and

(n − 1)p

n − p
Fp,n−p,1−α → χ2

p,1−α as n → ∞.

2) Let pval be an estimate of the pvalue. As a benchmark for hypothesis
testing, use α = 0.05 if α is not given.

3) Typically use T 2
C = T 2

H in the following 4 step one sample Hotelling’s
T 2

C test. i) State the hypotheses H0 : µ = µ0 H1 : µ 6= µ0.

ii) Find the test statistic T 2
C = n(T − µ0)

T D̂
−1

(T − µ0).
iii) Find pval =

P

(

n − p

(n − 1)p
T 2

C < Fp,n−p

)

.

iv) State whether you fail to reject H0 or reject H0. If you reject H0 then
conclude that µ 6= µ0 while if you fail to reject H0 conclude that the pop-
ulation mean µ = µ0 or that there is not enough evidence to conclude that
µ 6= µ0. Reject H0 if pval < α and fail to reject H0 if pval ≥ α.

4) The multivariate matched pairs test is used when there are k = 2
treatments applied to the same n cases with the same p variables used for
each treatment. Let yi be the p variables measured for treatment 1 and
zi be the p variables measured for treatment 2. Let xi = yi − zi. Let
µ = E(x) = E(y) − E(z). Want to test if µ = 0, so E(y) = E(z). The
test can also be used if (xi, yi) are matched (highly dependent) in some
way. For example if identical twins are in the study, xi and yi could be the
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measurements on each twin. Let (x, Sx) be the sample mean and covariance
matrix of the xi.

5) The large sample multivariate matched pairs test has 4 steps.
i) State the hypotheses H0 : µ = 0 H1 : µ 6= 0.
ii) Find the test statistic T 2

M = nxTS−1

x x.
iii) Find pval =

P

(

n − p

(n − 1)p
T 2

M < Fp,n−p

)

.

iv) State whether you fail to reject H0 or reject H0. If you reject H0 then
conclude that µ 6= 0 while if you fail to reject H0 conclude that the population
mean µ = 0 or that there is not enough evidence to conclude that µ 6= 0.
Reject H0 if pval < α and fail to reject H0 if pval ≥ α. Give a nontechnical
sentence if possible.

6) Repeated measurements = longitudinal data analysis. Take p mea-
surements on the same unit, often the same measurement, eg blood pres-
sure, at several time periods. The variables are X1, ..., Xp where often Xk

is the measurement at the kth time period. The E(x) = (µ1, ..., µp)
T =

(µ + τ1, ..., µ + τp)
T . Let yij = xij − xi,j+1 for i = 1, ..., n and j = 1, ..., p− 1.

Then y = (x1 − x2, x2 − x3, ..., xp−1 − xp)
T . If µY = E(yi), then µY = 0

is equivalent to µ1 = · · · = µp where E(Xk) = µk. Let Sy be the sample
covariance matrix of the yi.

7) The large sample repeated measurements test has 4 steps.
i) State the hypotheses H0 : µy = 0 H1 : µy 6= 0.

ii) Find the test statistic T 2
R = nyT S−1

y y.
iii) Find pval =

P

(

n − p + 1

(n − 1)(p − 1)
T 2

R < Fp−1,n−p+1

)

.

iv) State whether you fail to reject H0 or reject H0. If you reject H0 then
conclude that µy 6= 0 while if you fail to reject H0 conclude that the pop-
ulation mean µy = 0 or that there is not enough evidence to conclude that
µy 6= 0. Reject H0 if pval < α and fail to reject H0 if pval ≥ α. Give a
nontechnical sentence, if possible.

8) The F tables give left tail area and the pval is a right tail area. Table

15.5 gives Fk,d,0.95. If α = 0.05 and
n − p

(n − 1)p
T 2

C < Fk,d,0.95, then fail to reject
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H0. If
n − p

(n − 1)p
T 2

C ≥ Fk,d,0.95 then reject H0.

a) For the one sample Hotelling’s T 2
C test, and the matched pairs T 2

M test,
k = p and d = n − p.

b) For the repeated measures T 2
R test, k = p − 1 and d = n − p + 1.

9) If n > 10p, the tests in 89), 91) and 93) are robust to nonnormality.
For the one sample Hotelling’s T 2

C test and the repeated measurements test,
make a DD plot. For the multivariate matched pairs test, make a DD plot
of the xi, of the yi and of the zi.

10) Suppose there are two independent random samples X1,1, ..., Xn1,1 and
X1,2, ..., Xn2,2 from populations with mean and covariance matrices (µi,Σxi

)
for i = 1, 2 where the µi are p× 1 vectors. Let dn = min(n1 − p, n2 − p). The
large sample two sample Hotelling’s T 2

0 test is a 4 step test:
i) State the hypotheses H0 : µ1 = µ2 H1 : µ1 6= µ2.
ii) Find the test statistic t0 = T 2

0
/p.

iii) Find pval = P (t0 < Fp,dn
).

iv) State whether you fail to reject H0 or reject H0. If you reject H0 then
conclude that the population means are not equal while if you fail to reject
H0 conclude that the population means are equal or that there is not enough
evidence to conclude that the population means differ. Reject H0 if pval < α
and fail to reject H0 if pval ≥ α. Give a nontechnical sentence if possible.

11) Tests for covariance matrices are very nonrobust to nonnormality. Let
a plot of x versus y have x on the horizontal axis and y on the vertical axis.
A good diagnostic is to use the DD plot. So a diagnostic for H0 : Σx = Σ0

is to plot Di(x, S) versus Di(x,Σ0) for i = 1, ..., n. If n > 10p and H0 is
true, then the plotted points in the DD plot should cluster tightly about the
identity line.

12) A test for sphericity is a test of H0 : Σx = dIp for some unknown
constant d > 0. As a diagnostic, make a “DD plot” of D2

i (x, S) versus
D2

i (x, Ip). If n > 10p and H0 is true, then the plotted points in the “DD
plot” should cluster tightly about the line through the origin with slope d.

13) Now suppose there are k samples, and want to test H0 : Σx1
=

· · · = Σxk
, that is, all k populations have the same covariance matrix. As a

diagnostic, make a DD plot of Di(xj, Sj) versus Di(xj, Spool) for j = 1, ..., k
and i = 1, ..., ni.
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9.6 Complements

The mpack function rhotsim is useful for simulating the robust diagnostic for
the one sample Hotelling’s T 2 test. See Zhang (2011) for more simulations.

Willems, Pison, Rousseeuw, and Van Aelst (2002) use similar reasoning
to present a diagnostic based on the FMCD estimator.

Yao (1965) suggests a more complicated denominator degrees of freedom
than dn = min(n1 − p, n2 − p) for the two sample Hotelling’s T 2 test. Good
(2012, p. 55-57) provides randomization tests as competitors for the two
sample Hotelling’s T 2 test.

9.7 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

R/Splus Problems

Warning: Use the command source(“G:/mpack.txt”) to download
the programs. See Preface or Section 15.2. Typing the name of the
mpack function, eg ddplot, will display the code for the function. Use the
args command, eg args(ddplot), to display the needed arguments for the
function.

9.1∗. Use the R commands in Subsection 1.1.1 to make a plot similar to
Figure 9.1.

9.2. Conjecture:

√
n(TRMV N − µ)

D→ Np(0, τpΣ)

for a wide variety of elliptically contoured distributions where τp depends
on both p and the underlying distribution. The following “test” is based
on a conjecture, and should be used as an outlier diagnostic rather than for
inference. The ad hoc “test” that rejects H0 if

T 2

R/fn,p = n(TRMV N −µ0)
T Ĉ

−1

RMV N (TRMV N −µ0)/fn,p >
(n − 1)p

n − p
Fp,n−p,1−α

where fn,p = 1.04 + 0.12/p + (40 + p)/n. The simulations use n = 150 and
p = 10.
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a) The R commands for this part use simulated data is xi ∼ Np(0, diag(1, 2, ..., p))
where H0 : µ = 0 is being tested with 5000 runs at a nominal level of 0.05.
So H0 is true, and hcv and rhcv are the proportion of rejections by the T 2

H

test and by the ad hoc robust test. Want hcv and rhcv near 0.05. THIS
SIMULATION WILL TAKE ABOUT 5 MINUTES. Record hcv and rhcv.
Were hcv and rhcv near 0.05?

b) The R commands for this part use simulated data is xi ∼ Np(δ1, diag(1, 2, ..., p))
where H0 : µ = 0 is being tested with 5000 runs at a nominal level of 0.05. In
the simulation, δ = 0.2, so H0 is false, and hcv and rhcv are the proportion
of rejections by the T 2

H test and by the ad hoc robust test. Want hcv and
rhcv near 1 so that the power is high. Paste the output into Word. THIS
SIMULATION WILL TAKE ABOUT 5 MINUTES. Record hcv and rhcv.
Were hcv and rhcv near 1?
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