
Chapter 8

Discriminant Analysis

8.1 Introduction

Definition 8.1. In supervised classification, there are k known groups and m
cases. Each case is assigned to exactly one group based on its measurements
wi.

Suppose there are k populations or groups where k ≥ 2. Assume that for
each population there is a probability density function (pdf) fj(z) where z

is a p × 1 vector and j = 1, ..., k. Hence if the random vector x comes from
population j, then x has pdf fj(z). Assume that there is a random sample of
nj cases x1,j, ..., xnj ,j for each group. Let (xj, Sj) denote the sample mean
and covariance matrix for each group. Let wi be a new p× 1 random vector
from one of the k groups, but the group is unknown. Usually there are many
wi, and discriminant analysis attempts to allocate the wi to the correct
groups.

Definition 8.2. The maximum likelihood discriminant rule allocates case
w to group a if f̂a(w) maximizes f̂j(w) for j = 1, ..., k.

For the following rules, assume that costs of correct and incorrect allo-
cation are unknown or equal, and assume that the probabilities ρa(wi) that
wi is in group a are unknown or equal: ρa(wi) = 1/k for a = 1, ..., k. Often
it is assumed that the k groups have the same covariance matrix Σx. Then
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the pooled covariance matrix estimator is

Spool =
1

n − k

k
∑

j=1

(nj − 1)Sj

where n =
∑k

j=1 nj. Let (µ̂j , Σ̂j) be the estimator of multivariate location
and dispersion for the jth group, eg the sample mean and sample covariance
matrix (µ̂j, Σ̂j) = (xj, Sj).

Definition 8.3. Assume the population dispersion matrices are equal:
Σj ≡ Σ for j = 1, ..., k. Let Σ̂pool be an estimator of Σ. Then the linear
discriminant rule is allocate w to the group with the largest value of

dj(w) = µ̂T
j Σ̂

−1

poolw − 1

2
µ̂T

j Σ̂
−1

poolµ̂j = α̂j + β̂
T

j w

where j = 1, ..., k. Linear discriminant analysis (LDA) uses (µ̂j, Σ̂pool) =
(xj, Spool).

Definition 8.4. The quadratic discriminant rule is allocate w to the
group with the largest value of

Qj(w) =
−1

2
log(|Σ̂j|) −

1

2
(w − µ̂j)

T Σ̂
−1

j (w − µ̂j)

where j = 1, ..., k. Quadratic discriminant analysis (QDA) uses (µ̂j, Σ̂j) =
(xj, Sj).

Definition 8.5. The distance discriminant rule allocates w to the group

with the smallest squared distance D2
w(µ̂j , Σ̂j) = (w − µ̂j)

T Σ̂
−1

j (w − µ̂j)
where j = 1, ..., k.

Definition 8.6. Assume that k = 2 and that there is a group 0 and a
group 1. Let ρ(w) = P (w ∈ group 1). Let ρ̂(w) be the logistic regression
estimate of ρ(w). The logistic regression discriminant rule allocates w to
group 1 if ρ̂(w) ≥ 0.5 and allocates w to group 0 if ρ̂(w) < 0.5. Logistic

regression produces an estimated sufficient predictor ESP = α̂+ β̂
T
w. Then

ρ̂(w) =
eESP

1 + eESP
=

exp(α̂ + β̂
T
w)

1 + exp(α̂ + β̂
T
w)

.
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Let Yi = j if case i is in group j for j = 0, 1. Then a response plot is a
plot of ESP versus Yi (on the vertical axis) with ρ̂(xi) ≡ ρ̂(ESP ) added
as a visual aid where xi is the vector of predictors for case i. Also divide
the ESP into J slices with approximately the same number of cases in each
slice. Then compute the sample mean = sample proportion in slice s: ρ̂s =
Y s =

∑

s Yi/ms where ms is the number of cases in slice s. Then plot the
resulting step function as a visual aid. If n0 and n1 are the sample sizes of
both groups and ni > 5p, then the logistic regression model was useful if the
step function of observed slice proportions scatter fairly closely about the
logistic curve ρ̂(ESP ).

Examining some of the rules for k = 2 and one predictor w is informative.
First, assume group 2 has a uniform(−10,10) distribution and group 1 has
a uniform(a − 1, a + 1) distribution. If a = 0 is known, then the maximum
likelihood discriminant rule assigns w to group 1 if −1 < w < 1 and assigns
w to group 2, otherwise. This occurs since f2(w) = 1/20 for −10 < w < 10
and f2(w) = 0, otherwise, while f1(w) = 1/2 for −1 < w < 1 and f1(w) = 0,
otherwise. For the distance rule, the distances are basically the absolute
value of the z-score. Hence D1(w) ≈ 1.732|w − a| and D2(w) ≈ 0.1732|w|.
If w is from group 1, then w will not be classified very well unless |a| ≥ 10
or if w is very close to a. In particular, if a = 0 then expect nearly all w
to be classified to group 2 if w is used to classify the groups. On the other
hand, if a = 0, then D1(w) is small for w in group 1 but large for w in group
2. Hence using z = D1(w) in the distance rule would result in classification
with low error rates.

Similarly if group 2 comes from a Np(0, 10Ip) distribution and group 1
comes from a Np(µ, Ip) distribution, the maximum likelihood rule will tend
to classify w in group 1 if w is close to µ and to classify w in group 2
otherwise. The two misclassification error rates should both be low. For the
distance rule, the distances Di have an approximate χ2

p distribution if w is
from group i. If covering ellipsoids from the two groups have little overlap,
then the distance rule does well. If µ = 0, then expect all w to be classified
to group 2 with the distance rule, but D1(w) will be small for w from group
1 and large for w from group 2, so using the single predictor z = D1(w)
in the distance rule would result in classification with low error rates. More
generally, if group 1 has a covering ellipsoid that has little overlap with the
observations from group 2, using the single predictor z = D1(w) in the
distance rule should result in classification with low error rates even if the
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observations from group 2 do not fall in an ellipsoidal region.
Now suppose the k groups come from the same family of elliptically con-

toured EC(µj,Σj , g) distributions where g is a decreasing function that does
not depend on j for j = 1, ..., k. For example, could have w ∼ Np(µj ,Σj).
Using Equation (3.5), log(fj(w)) =

log(kp) −
1

2
log(|Σj)|) + log(g[(w − µj)

T Σ−1
j (w − µj)]) =

log(kp) −
1

2
log(|Σj)|) + log(g[D2

w(µj,Σj)]).

Hence the maximum likelihood rule leads to the quadratic rule if the k groups
have Np(µj,Σj) distributions, and the maximum likelihood rule leads to
the distance rule if the groups have dispersion matrices that have the same
determinant: det(Σj) = |Σj| ≡ |Σ| for j = 1, ..., k. This is a much weaker
assumption that of equal dispersion matrices. For example, let cXΣj be the
covariance matrix of x, and let Γj be an orthogonal matrix. Then y = Γjx

corresponds to rotating x, and cXΓjΣjΓ
T
j is the covariance matrix of y with

|Cov(x)| = |Cov(y)|.
Note that if the k groups come from the same family of elliptically

contoured EC(µj,Σj , g) distributions with nonsingular covariance matrices
cXΣj, then D2

w(xj , Sj) is a consistent estimator of D2
w(µj,Σj)/cX . Hence

the distance rule using (xj, Sj) is a maximum likelihood rule if the Σj have
the same determinant.

Now D2
w(µj ,Σj) = wTΣ−1

j w − wT Σ−1
j µj − µT

j Σ−1
j w + µT

j Σ−1
j µj =

wTΣ−1
j w − 2µT

j Σ−1
j w +µT

j Σ−1
j µj = wT Σ−1

j w + µT
j Σ−1

j (−2w + µj). Hence

if Σj ≡ Σ for j = 1, ..., k, then want to minimize µT
j Σ−1

j (−2w + µj) or

maximize µT
j Σ−1(2w −µj), which is leads to the linear discriminant rule.

The maximum likelihood rule is robust to nonnormality, but it is difficult
to estimate f̂j(w) if p > 1. The linear discriminant rule and distance rule
are robust to nonnormality, as is the logistic regression discriminant rule if
k = 2. Expect the distance rule to be best when the ellipsoidal covering
regions of the k groups have little overlap.

Rule of thumb 8.1. Use the distance rule if nj > 10p for j = 1, ..., k.
Make the k DD plots using the xi,j for each group to check for outliers, which
could be cases that were incorrectly classified. If the distance rule error rates
are very poor for some groups and very good for others, compute zj = Dj , the
distances for all n cases based on the jth group, where j = 1, ..., k. Since the
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zj may be highly correlated, use no more than k − 1 of the zj as predictors.
The error rates computed using the data xi,j with known groups give a lower
bound on the error rates for the wi. That is, the error rates computed on
the training data xi,j are optimistic. When the discriminant rule is applied
to the m wi where the groups are unknown, the error rates will be higher. If
equal covariance matrices are assumed, plot Di(xj, Sj) versus Di(xj ,Σpool)
for each of the k groups, where the xi,j are used for i = 1, ..., nj. The plotted
points should cluster tightly about the identity line if nj is large in each of
the k plots if the assumption is reasonable. The linear discriminant rule has
some robustness against the assumption of equal covariance matrices.

8.2 Two New Methods

Assume the k groups come from k distributions where the prediction regions
from Section 5.2 are reasonable. For example, the jth group may have nj

cases that are iid ECp(µj ,Σj, gj) for j = 1, ..., k. That is, there may be
k different elliptically contoured distributions with different location vectors
and dispersion matrices.

Two new methods of discriminant analysis will be considered. For each
group, compute Di(j) ≡ Di(xj, Sj) and the maximum distance D(nj )(j)
where i = 1, ..., nj and j = 1, ..., k. Then {z : Dz(j) ≤ D(nj )(j)} is a
covering region for the jth group since the hyperellipsoid contains all nj

cases xi,j from the jth group.
Let w be a new case to be classified. If Dw(j) > D(nj )(j) for all j =

1, ..., k, then both Methods 1 and 2 allocate w to the group a with the
smallest value of

Dw(j)

D(nj )(j)
. (8.1)

Now consider the groups where Dw(j) ≤ D(nj )(j) for at least one j.
Hence w is in at least one of the k covering regions.

For Method 1, allocate w to group a with the smallest Dw(a) for the
groups with Dw(j) ≤ D(nj )(j). Method 1 is very similar to the distance rule,
but when w is in at least one of the k covering regions, distances are only
computed for the groups that have covering regions that contain w. Also,
Equation (8.1) is used instead of the smallest distance if w is not in any of
the k covering regions.
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Method 2 combines Method 1 with a maximum likelihood rule based on
a kernel density estimator of f̂j . For Method 2, if there is only one group a

where Dw(a) ≤ D(na)(a), allocate w to group a. Otherwise compute f̂j(w)
for the groups where Dw(j) ≤ D(nj )(j) and allocate w to the group a with

the largest f̂a(w).

Note: To find the zj of Rule of thumb 8.1, find Dh(j) using all n of the
xi,j, eg stack the xi,j into an n × 1 vector x and compute the Dh(j) for
h = 1, ..., n. These k new predictor variables still have known groups. Find
Dwi

(j) for i = 1, ..., m and j = 1, ..., k to create k new predictor variables
for the ith case to be classified. Then input up to k − 1 of these variables,
with or without some of the p original predictor variables, into Method 1 or
2. Section 8.3 will give an example.

8.2.1 The Kernel Density Estimator

Definition 8.7. Let K(z) be a multivariate probability density function.
Then a kernel density estimator is

f̂(z) =
1

n

1

hp

n
∑

i=1

K

(

1

h
(z − xi)

)

where there are n iid cases xi that come from a population with unknown
pdf f(z).

For example, the uniform distribution on the unit hypersphere has

K(z) =
pΓ(p/2)

2πp/2
I(zT z ≤ 1)

so

f̂ (z) =
pΓ(p/2)

2πp/2

1

n

1

hp

n
∑

i=1

I(‖z − xi‖2 ≤ h2).

Following Silverman (1986, p. 84), want the bias and variance of f̂ to
go to 0 as n → ∞, and this will happen if h → 0 and nhp → ∞. The

asymptotically optimal value of h satisfies hopt ∝
1

n
1

p+4

.

Now suppose x1, ..., xn are iid from a multivariate distribution with pdf
f , and consider a hypersphere of radius r centered at w where r is small
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enough so that if z is in the hypersphere, then f(z) ≈ f(w). Then the
probability that an observation xi falls in the hypersphere ≈ f(w) (volume

of the hypersphere) = f(w)
2πp/2

pΓ(p/2)
rp ∝ rp. Hence the number of xi in the

hypersphere ∝ nrp. If r = hopt then this number is ∝ n
4

4+p . If r = h ∝ n
1

2p ,
then the number of cases that fall in the hypersphere is proportional to

√
n.

To define the kernel density estimator used in Method 2, let vj = d2√nje
and let r2

j = ‖xi,j − xj‖2
(vj)

= D2
(vj )(xj , Ip) where the nh xi,j are in group j.

Hence the hypersphere centered at xj with radius rj contains ≈ 2
√

n of the
xi,j in group j. Then the kernel density estimator used in Method 2 is

f̂j(w) =
pΓ(p/2)

2πp/2

1

nj

1

(rj)p

nj
∑

i=1

I(‖w − xi,j‖2 ≤ r2
j )

which is equal to the number of the xi,j in the hypersphere of radius rj

centered at w divided by njVrj
where Vrj

is the volume of the hypersphere.
The main reasons for using this kernel density estimator are that it is

simple to explain, fast to compute and does not use too few observations
when p > 4. Since kernel density estimators do not work well for p >
1, speed is more important than asymptotic optimality. Also only need a
crude estimator since if fa(w) is the pdf that maximizes fj(w), only need

f̂a(w) to maximize the f̂j(w): hence extremely accurate estimators of the
fj(w) are not needed. Using good predictors with p small is important since
the performance of kernel density estimators decreases very rapidly as the
number of predictors increases. See Silverman (1986, p. 94).

8.3 Some Examples

The mpack functions ddiscr and ddiscr2 do discriminant analysis using
Methods 1 and 2. The functions need x: the training data that has been
classified into k groups, w: the data to be classified, group: a vector of
integers where the ith element is j if the ith element of x is in group j, and
xwflag which is set equal to T if w = x and to F if w 6= x. Each row of w
and x corresponds to a case. The functions return the distances of the x and
w computed for the k groups, the classifications for the x and w, the error
rates for the x classifications for each group, and the total error rate.
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Example 8.1. Generated n random Np(0, Ip) random variables xi. Then
x was put in group 1 if D2

xi
≤ χ2

p,0.5 and in group 2 otherwise. Expect group
2 to have smaller distances than group 1 so error rate will be near 1 for group
1 and near 0 for group 2. Output is shown below with p = 2 and shows that
this was the case. Then the predictor Di(1) was used in out2, reducing the
dimension from p = 2 to 1. The error rates were low since group 1 falls in
an ellipsoidal region so the distances are a good predictor. Method 2 worked
much better on the raw data and about the same as Method 1 when the
predictor Di(1) was used.

n <- 100

p <- 2

x <- matrix(rnorm(n*p),nrow=n,ncol=p)

group <- 1 + 0*1:n

covv <- diag(p)

mns<- apply(x, 2, mean)

md2 <- mahalanobis(x, center = mns, covv)

group[md2>qchisq(0.5,p)] <- 2

out1 <- ddiscr(x,w=x,group,xwflag=T)

out2<-ddiscr(x=out1$mdx[,1],w=out1$mdw[,1],group,xwflag=T)

out3 <- ddiscr2(x,w=x,group,xwflag=T)

out4<-ddiscr2(x=out1$mdx[,1],w=out1$mdw[,1],group,xwflag=T)

out1$err

[1] 0.9787234 0.0000000

out2$err

[1] 0.08510638 0.01886792

out3$err

[1] 0.0000000 0.1320755

out4$err

[1] 0.04255319 0.05660377

out1$toterr

[1] 0.46

out2$toterr

[1] 0.05

out3$toterr
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[1] 0.07

out4$toterr

[1] 0.05

Example 8.2. Now groups 1 and 2 had ni = 50, and group 1 used
x ∼ Np(0, Ip) while group 2 used x ∼ Np(2 1, Ip). Output is shown
below for p = 2. Now the single predictor D2

i (1) was slightly worse than
using the raw data, and Method 1 was about as good as Method 2, which
is not surprising since both methods approximate the maximum likelihood
discriminant rule when the groups are multivariate normal with the same
covariance matrix.

n <- 100

p <- 2

x <- matrix(rnorm(n*p),nrow=n,ncol=p)

group <- 1 + 0*1:n

group[1:50] <- 1

group[51:100] <- 2

x[51:100,] <- x[51:100,] + c(2,2)

out1 <- ddiscr(x,w=x,group,xwflag=T)

out2<-ddiscr(x=out1$mdx[,1],w=out1$mdw[,1],group,xwflag=T)

out3 <- ddiscr2(x,w=x,group,xwflag=T)

out4<-ddiscr2(x=out1$mdx[,1],w=out1$mdw[,1],group,xwflag=T)

out1$err

[1] 0.12 0.08

out2$err

[1] 0.14 0.10

out3$err

[1] 0.08 0.12

out4$err

[1] 0.14 0.10

library(MASS)

group <- pottery[pottery[,1]!=5,1]

group <- (as.integer(group!=1)) + 1

x <- pottery[pottery[,1]!=5,-1]
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out<-lda(x,group)

1-mean(predict(out,x)$class==group)

[1] 0.03571429

out<-lda(x[,-c(1)],group)

1-mean(predict(out,x[,-c(1)])$class==group)

out<-lda(x[,-c(1,2)],group)

1-mean(predict(out,x[,-c(1,2)])$class==group)

out<-lda(x[,-c(1,2,3)],group)

1-mean(predict(out,x[,-c(1,2,3)])$class==group)

out<-lda(x[,-c(1,2,3,4)],group)

1-mean(predict(out,x[,-c(1,2,3,4)])$class==group)

out<-lda(x[,-c(1,2,3,4,5)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5)])$class==group)

[1] 0.03571429

out<-lda(x[,-c(1,2,3,4,5,6)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,6)])$class==group)

[1] 0.07142857

out<-lda(x[,-c(1,2,3,4,5,7)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7)])$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8)])$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9)])$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10)])$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,11)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,11)])$class==group)

[1] 0.07142857

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12)])$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13)])$class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,14)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,14)])$class==

group)

[1] 0.07142857

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,15)])$class==
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group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16)])$

class==group)

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17)])$

class==group)

[1] 0.03571429

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17,18)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17,18)])

$class==group)

[1] 0.07142857

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17,19)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17,19)])

$class==group)

[1] 0.03571429

out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17,19,20)],group)

1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17,19,

20)])$class==group)

[1] 0

#x6,x11,x14,x18 seem good for LDA

8.4 Summary

1) In supervised classification, there are k known groups or populations and m
cases. Each case is assigned to exactly one group based on its measurements
wi. Assume that for each population there is a probability density function
(pdf) fj(z) where z is a p × 1 vector and j = 1, ..., k. Hence if the random
vector x comes from population j, then x has pdf fj(z). Assume that there
is a random sample of nj cases x1,j, ..., xnj ,j for each group. Let (xj , Sj)
denote the sample mean and covariance matrix for each group. Let wi be a
new p×1 random vector from one of the k groups, but the group is unknown.
Usually there are many wi, and discriminant analysis attempts to allocate
the wi to the correct groups.

2) The maximum likelihood discriminant rule allocates case w to group a
if f̂a(w) maximizes f̂j(w) for j = 1, ..., k. This rule is robust to nonnormality
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and the assumption of equal population dispersion matrices, but f̂j is hard
to compute for p > 1.

3) Given the f̂j(w) or a plot of the f̂j(w), determine the maximum like-
lihood discriminant rule.

For the following rules, assume that costs of correct and incorrect allo-
cation are unknown or equal, and assume that the probabilities ρa(wi) that
wi is in group a are unknown or equal: ρa(wi) = 1/k for a = 1, ..., k. Often
it is assumed that the k groups have the same covariance matrix Σx. Then
the pooled covariance matrix estimator is

Spool =
1

n − k

k
∑

j=1

(nj − 1)Sj

where n =
∑k

j=1 nj. Let (µ̂j , Σ̂j) be the estimator of multivariate location
and dispersion for the jth group, eg the sample mean and sample covariance
matrix (µ̂j, Σ̂j) = (xj, Sj).

4) Assume the population dispersion matrices are equal: Σj ≡ Σ for

j = 1, ..., k. Let Σ̂pool be an estimator of Σ. Then the linear discriminant
rule is allocate w to the group with the largest value of

dj(w) = µ̂T
j Σ̂

−1

poolw − 1

2
µ̂T

j Σ̂
−1

poolµ̂j = α̂j + β̂
T

j w

where j = 1, ..., k. Linear discriminant analysis (LDA) uses (µ̂j, Σ̂pool) =
(xj, Spool). LDA is robust to nonnormality and somewhat robust to the as-
sumption of equal population covariance matrices.

5) The quadratic discriminant rule is allocate w to the group with the
largest value of

Qj(w) =
−1

2
log(|Σ̂j|) −

1

2
(w − µ̂j)

T Σ̂
−1

j (w − µ̂j)

where j = 1, ..., k. Quadratic discriminant analysis (QDA) uses (µ̂j, Σ̂j) =
(xj, Sj). QDA has some robustness to nonnormality.

6) The distance discriminant rule allocates w to the group with the small-

est squared distance D2
w(µ̂j , Σ̂j) = (w−µ̂j)

T Σ̂
−1

j (w−µ̂j) where j = 1, ..., k.
This rule is robust to nonnormality and the assumption of equal Σj, but needs
nj > 10p for j = 1, ..., k.

189



7) Assume that k = 2 and that there is a group 0 and a group 1. Let
ρ(w) = P (w ∈ group 1). Let ρ̂(w) be the logistic regression (LR) estimate of
ρ(w). Logistic regression produces an estimated sufficient predictor ESP =

α̂ + β̂
T
w. Then

ρ̂(w) =
eESP

1 + eESP
=

exp(α̂ + β̂
T
w)

1 + exp(α̂ + β̂
T
w)

.

The logistic regression discriminant rule allocates w to group 1 if ρ̂(w) ≥ 0.5
and allocates w to group 0 if ρ̂(w) < 0.5. Equivalently, the LR rule allocates
w to group 1 if ESP > 0 and allocates w to group 0 if ESP < 0.

8) Let Yi = j if case i is in group j for j = 0, 1. Then a response
plot is a plot of ESP versus Yi (on the vertical axis) with ρ̂(xi) ≡ ρ̂(ESP )
added as a visual aid where xi is the vector of predictors for case i. Also
divide the ESP into J slices with approximately the same number of cases in
each slice. Then compute the sample mean = sample proportion in slice s:
ρ̂s = Y s =

∑

s Yi/ms where ms is the number of cases in slice s. Then plot
the resulting step function as a visual aid. If n0 and n1 are the sample sizes
of both groups and ni > 5p, then the logistic regression model was useful
if the step function of observed slice proportions scatter fairly closely about
the logistic curve ρ̂(ESP ). If the LR response plot is good, n0 > 5p and
n1 > 5p, then the LR rule is robust to nonnormality and the assumption of
equal population dispersion matrices. Know how to tell a good LR response
plot from a bad one.

9) Given LR output, as shown below in symbols and for a real data set,
and given x to classify, be able to a) compute ESP, b) classify x in group 0
or group 1, c) compute ρ̂(x).

Label Estimate Std. Error Est/SE p-value
Constant α̂ se(α̂) zo,0 for Ho: α = 0

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) for Ho: β1 = 0
...

...
...

...
...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) for Ho: βp = 0

Binomial Regression Kernel mean function = Logistic

Response = Status Terms = (Bottom Left) Trials = Ones

Coefficient Estimates
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Label Estimate Std. Error Est/SE p-value

Constant -389.806 104.224 -3.740 0.0002

Bottom 2.26423 0.333233 6.795 0.0000

Left 2.83356 0.795601 3.562 0.0004

10) Suppose there is training data xij for i = 1, ..., nj for group j. Hence
it is known that xij came from group j where there are k ≥ 2 groups. Use
the discriminant analysis method to classify the training data. If mj of the nj

group j cases are correctly classified, then the apparent error rate for group
j is 1 − mj/nj . If mA =

∑k
j=1 mj of the n =

∑k
j=1 nj cases were correctly

classified. Then the apparent error rate AER = 1 − mA/n.
11) For the ddiscr method, get the apparent error rate for each of the

k groups with the following commands. Replace ddiscr by ddiscr2 for the
ddiscr2 method.

out1 <- ddiscr(x,w=x,group,xwflag=T)

out1$err

Get apparent error rates for ddiscr, LDA and QDA with the following com-
mands.

out1 <- ddiscr(x,w=x,group,xwflag=T)

out1$toterr

out2 <- lda(x,group)

1-mean(predict(out2,x)$class==group)

out3 <- qda(x,group)

1-mean(predict(out3,x)$class==group)

Get the AERs for the methods that use variables x1, x3 and x7 with the
following commands.

out <- ddiscr(x[,c(1,3,7)],w=x[,c(1,3,7)],group,xwflag=T)

out$toterr

out <- lda(x[,c(1,3,7)],group)

1-mean(predict(out,x[,c(1,3,7)])$class==group)
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out <- qda(x[,c(1,3,7)],group)

1-mean(predict(out,x[,c(1,3,7)])$class==group)

Get the AERs for the methods that leave out variables x1, x4 and x5 with
the following commands.

out <- ddiscr(x[,-c(1,4,5)],w=x[,-c(1,4,5)],group,xwflag=T)

out$toterr

out <- lda(x[,-c(1,4,5)],group)

1-mean(predict(out,x[,-c(1,4,5)])$class==group)

out <- qda(x[,-c(1,4,5)],group)

1-mean(predict(out,x[,-c(1,4,5)])$class==group)

12) Expect the apparent error rate to be too low: the method works
better on the training data than on the new data to be classified.

13) Cross validation (CV): for i = 1, ..., n where the training data has n
cases, compute the discriminant rule with case i left out and see if the rule
correctly classifies case i. Let mC be the number of cases correctly classified.
Then the CV error rate is 1 − mC/n.

14) Suppose the training data has n cases. Randomly select a subset L of
m cases to be left out when computing the discriminant rule. Hence n − m
cases are used to compute the discriminant rule. Let mL be the number of
cases from subset L that are correctly classified. Then the “leave a subset
out” error rate is 1 − mL/m. Here m should be large enough to get a good
rate. Often m uses between 0.1n and 0.5n.

15) Variable selection is the search for a subset of variables that does a
good job of classification.

16) Forward selection: suppose X1, ..., Xp are variables.
Step 1) Choose variable W1 = X1 that minimizes the AER.
Step 2) Keep W1 in the model, and add variable W2 that minimizes the

AER. So W1 and W2 are in the model at the end of Step 2).
Step k) Have W1, ..., Wk−1 in the model. Add variable Wk that minimizes

the AER. So W1, ..., Wk are in the model at the end of Step k).
Step p) W1, ..., Wp = X1, ..., Xp, so all p variables are in the model.
17) Backward elimination: suppose X1, ..., Xp are variables.
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Step 1) W1, ..., Wp = X1, ..., Xp, so all p variables are in the model.
Step 2) Delete variable Wp = Xj such that the model with p−1 variables

W1, ..., Wp−1 minimizes the AER.
Step 3) Delete variable Wp−1 = Xj such that the model with p−2 variables

W1, ..., Wp−2 minimizes the AER.
Step k) W1, ..., Wp−k+2 are in the model. Delete variable Wp−k+2 = Xj

such that the model with p − k + 1 variables W1, ..., Wp−k+1 minimizes the
AER.

Step p) Have W1 and W2 in the model. Delete variable W2 such that the
model with 1 variable W1 minimizes the AER.

18) Other criterion can be used and proc stepdisc in SAS does variable
selection.

19) In R, using LDA, leave one variable out at a time as long as the AER
does not increase much, to find a good subset quickly.

8.5 Complements

For k = 2, an alternative to the logistic regression model is the discriminant
function model. See Hosmer and Lemeshow (2000, p. 43–44). Assume that
ρj = P (Y = j) and that x|Y = j ∼ Nk(µj ,Σ) for j = 0, 1. That is,
the conditional distribution of x given Y = j follows a multivariate normal
distribution with mean vector µj and covariance matrix Σ which does not
depend on j. Notice that Σ = Cov(x|Y ) 6= Cov(x). Then as for the logistic
regression model,

P (Y = 1|x) = ρ(x) =
exp(α + βT x)

1 + exp(α + βT x)
.

Definition 8.8. Under the conditions above, the discriminant func-
tion parameters are given by

β = Σ−1(µ1 − µ0) (8.2)

and

α = log

(

ρ1

ρ0

)

− 0.5(µ1 − µ0)
T Σ−1(µ1 + µ0).
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To use Definition 8.8 to simulate logistic regression data, set ρ0 = ρ1 =
0.5, Σ = I, and µ0 = 0. Then α = −0.5µT

1 µ1 and β = µ1. The discrimi-
nant function estimators α̂D and β̂D are found by replacing the population
quantities ρ1, ρ0, µ1, µ0 and Σ by sample quantities. Alternatively, generate
n values of the SPi = α +βT xi, then generate a binomial(1, ρ(SPi)) case for
i = 1, ..., n. This alternative method is useful since the xi need not be from
a multivariate normal distribution.

See Olive (2010: ch. 10, 2013) for more information about logistic regres-
sion and response plots for logistic regression.

Huberty and Olejnik (2006) and McLachlan (2004) are useful references
for discriminant analysis. Silverman (1986,

∮

6.1) and Raveh (1989) are good
references for nonparametric discriminant analysis. Discrimination when p >
n is interesting. See Cai and Liu (2011) and Mai, Zou and Yuan (2012).

Logistic regression is a useful alternative to discriminant analysis when
there are two groups. The distance rule and Methods 1 and 2 can use RFCH
or RMVN to compute (µ̂j, Σ̂j).

Hand (2006) notes that supervised classification is a research area in
statistics, machine learning, pattern recognition, computational learning the-
ory and data mining. Hand (2006) argues that simple classification methods,
such as linear discriminant analysis, are almost as good as more sophisticated
methods such as neural networks and support vector machines.

8.6 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

8.1∗. Assume the cases in each of the k groups are iid from a population
with covariance matrix Σx(j) Find E(Spool) assuming that the k groups
have the same covariance matrix Σx(j) ≡ Σx for j = 1, ..., k.

Logistic Regression Output,

Response = nodal involvement, Terms = (acid size xray)

Label Estimate Std. Error Est/SE p-value

Constant -3.57564 1.18002 -3.030 0.0024

acid 2.06294 1.26441 1.632 0.1028

size 1.75556 0.738348 2.378 0.0174
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xray 2.06178 0.777103 2.653 0.0080

Number of cases: 53, Degrees of freedom: 49, Deviance: 50.660

8.2. Following Collett (1999, p. 11), treatment for prostate cancer
depends on whether the cancer has spread to the surrounding lymph nodes.
Let the response variable = group y = nodal involvement (0 for absence, 1 for
presence). Let x1 = acid (serum acid phosphatase level), x2 = size (= tumor
size: 0 for small, 1 for large) and x3 = xray (xray result: 0 for negative, 1
for positive). Assume the case to be classified has x with x1 = acid = 0.65,
x2 = 0 and x3 = 0.

a) Find ESP for x.
b) Is x classified in group 0 or group 1?
c) Find ρ̂(x).

8.3. Recall that X comes from a uniform(a,b) distribution, written

x ∼ U(a, b), if the pdf of x is f(x) =
1

b− a
for a < x < b and f(x) = 0,

otherwise. Suppose group 1 has X ∼ U(−3, 3), group 2 has X ∼ U(−5, 5),
and group 3 has X ∼ U(−1, 1). Find the maximum likelihood discriminant
rule for classifying a new observation x.

out<-prcomp(state[,1:4],scale=T)

summary(out)

Importance of components: PC1 PC2 PC3 PC4

Standard deviation 1.6040 0.8803 0.6879 0.42318

Proportion of Variance 0.6432 0.1937 0.1183 0.04477

Cumulative Proportion 0.6432 0.8369 0.9552 1.00000

> out<-rprcomp(state[,1:4])

summary(out$out)

Importance of components:

PC1 PC2 PC3 PC4

Standard deviation 1.6705 0.8216 0.59362 0.42645

Proportion of Variance 0.6977 0.1688 0.08809 0.04546

Cumulative Proportion 0.6977 0.8664 0.95454 1.00000

Rotation:PC1 PC2 PC3 PC4

gdp 0.4525021 0.688328888 -0.5429877 -0.1631243
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povrt -0.5563898 -0.016929402 -0.2468286 -0.7932335

unins -0.4442238 0.725197372 0.5076082 0.1381588

lifexp 0.5369706 0.002347129 0.6217506 -0.5701607

out <- lda(state[,1:4],state[,5])

1-mean(predict(out,state[,1:4])$class==state[,5])

[1] 0.3

8.4. The PCA and LDA output above is for the Minor (2012) state data
where gdp = GDP per capita, povrt = poverty rate, unins = 3 year average
uninsured rate 2007-9, and lifexp = life expectancy for the 50 states.

a) How many principal components are needed? Use a 0.9 threshold.

b) Which principal component corresponds to 9 gdp −9 unins −11 povrt
+11 lifeexp?

c) The fifth variable was a 1 if the state was not worker friendly and a 2 if
the state was worker friendly. With these two groups, what was the apparent
error rate (AER) for LDA?

> out <- lda(x,group)

> 1-mean(predict(out,x)$class==group)

[1] 0.02

>

> out<-lda(x[,-c(1)],group)

> 1-mean(predict(out,x[,-c(1)])$class==group)

[1] 0.02

> out<-lda(x[,-c(1,2)],group)

> 1-mean(predict(out,x[,-c(1,2)])$class==group)

[1] 0.04

> out<-lda(x[,-c(1,3)],group)

> 1-mean(predict(out,x[,-c(1,3)])$class==group)

[1] 0.03333333

> out<-lda(x[,-c(1,4)],group)

> 1-mean(predict(out,x[,-c(1,4)])$class==group)

[1] 0.04666667

>

> out<-lda(x[,c(2,3,4)],group)

> 1-mean(predict(out,x[,c(2,3,4)])$class==group)

[1] 0.02
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8.5. The above output is for LDA on the famous iris data set. the
variables are x1 = sepal length, x2 = sepal width, x3 = petal length and
x4 = petal width. These four predictors are in the x data matrix. There are
three groups corresponding to types of iris: setosa versicolor virginica.

a) What is the AER using all 4 predictors?

b) Which variables, if any, can be deleted without increasing the AER in
a)?

R/Splus Problems

Warning: Use the command source(“G:/mpack.txt”) to download
the programs. See Preface or Section 15.2. Typing the name of the
mpack function, eg ddplot, will display the code for the function. Use the
args command, eg args(ddplot), to display the needed arguments for the
function.

8.5. Wisseman, Hopke and Schindler-Kaudelka (1987) pottery data has
36 pottery shards of Roman earthware produced between second century B.C.
and fourth century A.D. Often the pottery was stamped by the manufacturer.
A chemical analysis was done for 20 chemicals (variables), and 28 cases were
classified as Arrentine (group 1) or nonArrentine (group 2), while 8 cases
were of questionable origin. So the training data has n = 28 and p = 20.

a) Copy and paste the R commands for this part into R to make the data
set.

b) Because of the small sample size, LDA should be used instead of QDA,
as in the handout. Nonetheless, variable selection using QDA will be done.
Copy and paste the R commands for this part into R. The first 9 variables
result in no misclassification errors.

c) Now use commands like those shown in this section to delete variables
whose deletion does not result in a classification error. Should get four vari-
ables are needed for perfect classification. What are they (eg X1, X2, X3
and X4)?

8.6. The distance discriminant rule is attractive theoretically as a max-
imum likelihood discriminant rule, but the distance rule does not work well
for groups that have similar means. The ddiscr rule is a modification of the
distance rule, and the ddiscr2 rule tries to use the maximum likelihood rule
where the f̂j are estimated with a kernel density estimator.

The R code for this problem generates N2(0, I) data where group 1 con-
sists of the half set of cases closes to 0 in Mahalanobis distance (an ellipse
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about the origin), and group 2 consists of the remaining cases (the covering
ellipse with inner ellipse removed).

a) Copy and paste the commands to make the data.
b) The commands for this part give the error rate for the ddiscr method

that uses x as the two predictors. Put this output in Word.
c) The commands for this part give the error rate for the ddiscr method

that uses the distances based on group 1 applied to all of the cases as the
predictor. Put this output in Word.

d) The commands for this part give the error rate for the ddiscr2 method
that uses x as the two predictors. Put this output in Word.

e) The commands for this part give the error rate for the ddiscr2 method
that uses the distances based on group 1 applied to all of the cases as the
predictor. Put this output in Word.

f) The commands for this part get the error rate for LDA using x as the
two predictors.

g) The commands for this part get the error rate for QDA using x as the
two predictors.

h) Which method worked the best?
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