
Chapter 3

Elliptically Contoured
Distributions

The multivariate location and dispersion model of Definition 2.1 is in many
ways similar to the multiple linear regression model. The data are iid vectors
from some distribution such as the multivariate normal (MVN) distribution.
The location parameter µ of interest may be the mean or the center of
symmetry of an elliptically contoured distribution. Hyperellipsoids will be
estimated instead of hyperplanes, and Mahalanobis distances will be used
instead of absolute residuals to determine if an observation is a potential
outlier. Review Section 2.1 for important notation.

Although usually random vectors in this text are denoted by x, y or
z, this chapter will usually use the notation X = (X1, ..., Xp)

T and Y for
the random vectors, and x = (x1, ..., xp)

T for the observed value of the ran-
dom vector. This notation will be useful to avoid confusion when studying
conditional distributions such as Y |X = x.

3.1 The Multivariate Normal Distribution

Definition 3.1: Rao (1965, p. 437). A p × 1 random vector X has
a p−dimensional multivariate normal distribution Np(µ,Σ) iff tT X has a
univariate normal distribution for any p× 1 vector t.

If Σ is positive definite, then X has a pdf

f(z) =
1

(2π)p/2|Σ|1/2
e−(1/2)(z−µ)TΣ−1

(z−µ) (3.1)
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where |Σ|1/2 is the square root of the determinant of Σ. Note that if p = 1,
then the quadratic form in the exponent is (z − µ)(σ2)−1(z − µ) and X has
the univariate N(µ, σ2) pdf. If Σ is positive semidefinite but not positive
definite, then x has a degenerate distribution. For example, the univariate
N(0, 02) distribution is degenerate (the point mass at 0).

Definition 3.2. The population mean of a random p × 1 vector X =
(X1, ..., Xp)

T is
E(X) = (E(X1), ..., E(Xp))

T

and the p× p population covariance matrix

Cov(X) = Σx = E(X − E(X))(X −E(X))T = ((σi,j)).

That is, the ij entry of Cov(X) is Cov(Xi, Xj) = σi,j.

The covariance matrix is also called the variance–covariance matrix and
variance matrix. Sometimes the notation Var(X) is used. Note that Cov(X)
is a symmetric positive semidefinite matrix. If X and Y are p× 1 random
vectors, a a conformable constant vector and A and B are conformable
constant matrices, then

E(a + X) = a + E(X) and E(X + Y ) = E(X) + E(Y ) (3.2)

and
E(AX) = AE(X) and E(AXB) = AE(X)B. (3.3)

Thus
Cov(a + AX) = Cov(AX) = ACov(X)AT . (3.4)

Some important properties of MVN distributions are given in the follow-
ing three propositions. These propositions can be proved using results from
Johnson and Wichern (1988, p. 127-132).

Proposition 3.1. a) If X ∼ Np(µ,Σ), then E(X) = µ and

Cov(X) = Σ.

b) If X ∼ Np(µ,Σ), then any linear combination tTX = t1X1 + · · · +
tpXp ∼ N1(t

Tµ, tT Σt). Conversely, if tTX ∼ N1(t
Tµ, tT Σt) for every p× 1

vector t, then x ∼ Np(µ,Σ).
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c) The joint distribution of independent normal random vari-
ables is MVN. If X1, ..., Xp are independent univariate normal N(µi, σ

2
i )

random vectors, then X = (X1, ..., Xp)
T is Np(µ,Σ) where µ = (µ1, ..., µp)

and Σ = diag(σ2
1, ..., σ

2
p) (so the off diagonal entries σi,j = 0 while the diag-

onal entries of Σ are σi,i = σ2
i ).

d) If X ∼ Np(µ,Σ) and if A is a q×pmatrix, then AX ∼ Nq(Aµ,AΣAT ).
If a is a p× 1 vector of constants, then a + X ∼ Np(a + µ,Σ).

It will be useful to partition X, µ, and Σ. Let X1 and µ1 be q × 1
vectors, let X2 and µ2 be (p− q)× 1 vectors, let Σ11 be a q × q matrix, let
Σ12 be a q × (p− q) matrix, let Σ21 be a (p− q)× q matrix, and let Σ22 be
a (p− q)× (p− q) matrix. Then

X =

(

X1

X2

)

, µ =

(

µ1

µ2

)

, and Σ =

(

Σ11 Σ12

Σ21 Σ22

)

.

Proposition 3.2. a) All subsets of a MVN are MVN: (Xk1
, ..., Xkq)

T

∼ Nq(µ̃, Σ̃) where µ̃i = E(Xki) and Σ̃ij = Cov(Xki , Xkj ). In particular,
X1 ∼ Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22).

b) If X1 and X2 are independent, then Cov(X1,X2) = Σ12 =
E[(X1 − E(X1))(X2 −E(X2))

T ] = 0, a q × (p− q) matrix of zeroes.

c) If X ∼ Np(µ,Σ), then X1 and X2 are independent iff Σ12 = 0.

d) If X1 ∼ Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22) are independent, then
(

X1

X2

)

∼ Np

( (

µ1

µ2

)

,

(

Σ11 0
0 Σ22

) )

.

Proposition 3.3. The conditional distribution of a MVN is
MVN. If X ∼ Np(µ,Σ), then the conditional distribution of X1 given
that X2 = x2 is multivariate normal with mean µ1 + Σ12Σ

−1
22 (x2 −µ2) and

covariance matrix Σ11 − Σ12Σ
−1
22 Σ21. That is,

X1|X2 = x2 ∼ Nq(µ1 + Σ12Σ
−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).

Example 3.1. Let p = 2 and let (Y,X)T have a bivariate normal distri-
bution. That is,

(

Y
X

)

∼ N2

( (

µY

µX

)

,

(

σ2
Y Cov(Y,X)

Cov(X, Y ) σ2
X

) )

.
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Also recall that the population correlation between X and Y is given by

ρ(X, Y ) =
Cov(X, Y )

√

VAR(X)
√

VAR(Y )
=

σX,Y

σXσY

if σX > 0 and σY > 0. Then Y |X = x ∼ N(E(Y |X = x),VAR(Y |X = x))
where the conditional mean

E(Y |X = x) = µY + Cov(Y,X)
1

σ2
X

(x− µX) = µY + ρ(X, Y )

√

σ2
Y

σ2
X

(x− µX)

and the conditional variance

VAR(Y |X = x) = σ2
Y −Cov(X, Y )

1

σ2
X

Cov(X, Y )

= σ2
Y − ρ(X, Y )

√

σ2
Y

σ2
X

ρ(X, Y )
√

σ2
X

√

σ2
Y

= σ2
Y − ρ2(X, Y )σ2

Y = σ2
Y [1 − ρ2(X, Y )].

Also aX + bY is univariate normal with mean aµX + bµY and variance

a2σ2
X + b2σ2

Y + 2ab Cov(X, Y ).

Remark 3.1. There are several common misconceptions. First, it is not
true that every linear combination tT X of normal random variables
is a normal random variable, and it is not true that all uncorre-
lated normal random variables are independent. The key condition in
Proposition 3.1b and Proposition 3.2c is that the joint distribution of X is
MVN. It is possible that X1, X2, ..., Xp each has a marginal distribution that
is univariate normal, but the joint distribution of X is not MVN. See Seber
and Lee (2003, p. 23), Kowalski (1973) and examine the following example
from Rohatgi (1976, p. 229). Suppose that the joint pdf of X and Y is a
mixture of two bivariate normal distributions both with EX = EY = 0 and
VAR(X) = VAR(Y ) = 1, but Cov(X, Y ) = ±ρ. Hence f(x, y) =

1

2

1

2π
√

1 − ρ2
exp(

−1

2(1 − ρ2)
(x2 − 2ρxy + y2)) +

1

2

1

2π
√

1 − ρ2
exp(

−1

2(1 − ρ2)
(x2 + 2ρxy + y2)) ≡ 1

2
f1(x, y) +

1

2
f2(x, y)
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where x and y are real and 0 < ρ < 1. Since both marginal distributions of
fi(x, y) are N(0,1) for i = 1 and 2 by Proposition 3.2 a), the marginal distri-
butions of X and Y are N(0,1). Since

∫ ∫

xyfi(x, y)dxdy = ρ for i = 1 and
−ρ for i = 2, X and Y are uncorrelated, but X and Y are not independent
since f(x, y) 6= fX(x)fY (y).

Remark 3.2. In Proposition 3.3, suppose that X = (Y,X2, ..., Xp)
T . Let

X1 = Y and X2 = (X2, ..., Xp)
T . Then E[Y |X2] = β1 + β2X2 + · · · + βpXp

and VAR[Y |X2] is a constant that does not depend on X2. Hence Y =
β1 + β2X2 + · · · + βpXp + e follows the multiple linear regression model.

3.2 Elliptically Contoured Distributions

Definition 3.3: Johnson (1987, p. 107-108). A p× 1 random vector X

has an elliptically contoured distribution, also called an elliptically symmetric

distribution, if X has joint pdf

f(z) = kp|Σ|−1/2g[(z − µ)TΣ−1(z − µ)], (3.5)

and we say X has an elliptically contoured ECp(µ,Σ, g) distribution.

If X has an elliptically contoured (EC) distribution, then the character-
istic function of X is

φX (t) = exp(itTµ)ψ(tTΣt) (3.6)

for some function ψ. If the second moments exist, then

E(X) = µ (3.7)

and
Cov(X) = cXΣ (3.8)

where
cX = −2ψ′(0).

Definition 3.4. The population squared Mahalanobis distance

U ≡ D2 = D2(µ,Σ) = (X − µ)T Σ−1(X −µ). (3.9)
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For elliptically contoured distributions, U has pdf

h(u) =
πp/2

Γ(p/2)
kpu

p/2−1g(u). (3.10)

For c > 0, an ECp(µ, cI, g) distribution is spherical about µ where I is
the p×p identity matrix. The multivariate normal distribution Np(µ,Σ) has
kp = (2π)−p/2, ψ(u) = g(u) = exp(−u/2) and h(u) is the χ2

p pdf.

The following lemma is useful for proving properties of EC distributions
without using the characteristic function (10.6). See Eaton (1986) and Cook
(1998, p. 57, 130).

Lemma 3.4. Let X be a p × 1 random vector with 1st moments; ie,
E(X) exists. Let B be any constant full rank p× r matrix where 1 ≤ r ≤ p.
Then X is elliptically contoured iff for all such conforming matrices B,

E(X|BT X) = µ + MBBT (X − µ) = aB + MBBTX (3.11)

where the p× 1 constant vector aB and the p× r constant matrix MB both
depend on B.

A useful fact is that aB and MB do not depend on g:

aB = µ −MBBTµ = (Ip − MBBT )µ,

and
MB = ΣB(BT ΣB)−1.

See Problem 3.11. Notice that in the formula for MB, Σ can be replaced by
cΣ where c > 0 is a constant. In particular, if the EC distribution has 2nd
moments, Cov(X) can be used instead of Σ.

To use Lemma 3.4 to prove interesting properties, partition X, µ, and
Σ. Let X1 and µ1 be q×1 vectors, let X2 and µ2 be (p− q)×1 vectors. Let
Σ11 be a q× q matrix, let Σ12 be a q× (p− q) matrix, let Σ21 be a (p− q)× q
matrix, and let Σ22 be a (p− q)× (p− q) matrix. Then

X =

(

X1

X2

)

, µ =

(

µ1

µ2

)

, and Σ =

(

Σ11 Σ12

Σ21 Σ22

)

.
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Also assume that the (p+1)× 1 vector (Y,XT )T is ECp+1(µ,Σ, g) where Y
is a random variable, X is a p× 1 vector, and use

(

Y
X

)

, µ =

(

µY

µX

)

, and Σ =

(

ΣY Y ΣY X

ΣXY ΣXX

)

.

Proposition 3.5. Let X ∼ ECp(µ,Σ, g) and assume that E(X) exists.

a) Any subset of X is EC, in particular X1 is EC.

b) (Cook 1998 p. 131, Kelker 1970). If Cov(X) is nonsingular,

Cov(X|BTX) = dg(B
TX)[Σ− ΣB(BTΣB)−1BT Σ]

where the real valued function dg(B
TX) is constant iff X is MVN.

Proof of a). Let A be an arbitrary full rank q×r matrix where 1 ≤ r ≤ q.
Let

B =

(

A

0

)

.

Then BTX = AT X1, and

E[X|BT X] = E[

(

X1

X2

)

|ATX1] =

(

µ1

µ2

)

+

(

M 1B

M 2B

)

(

AT 0T
)

(

X1 − µ1

X2 − µ2

)

by Lemma 3.4. Hence E[X1|ATX1] = µ1 +M1BAT (X1−µ1). Since A was
arbitrary, X1 is EC by Lemma 3.4. Notice that MB = ΣB(BTΣB)−1 =

(

Σ11 Σ12

Σ21 Σ22

) (

A

0

)

[
(

AT 0T
)

(

Σ11 Σ12

Σ21 Σ22

) (

A

0

)

]−1

=

(

M 1B

M 2B

)

.

Hence
M 1B = Σ11A(ATΣ11A)−1

and X1 is EC with location and dispersion parameters µ1 and Σ11. QED
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Proposition 3.6. Let (Y,XT )T be ECp+1(µ,Σ, g) where Y is a random
variable.

a) Assume that E[(Y,XT )T ] exists. Then E(Y |X) = α + βTX where
α = µY − βT µX and

β = Σ−1
XXΣXY .

b) Even if the first moment does not exist, the conditional median

MED(Y |X) = α + βT X

where α and β are given in a).

Proof. a) The trick is to choose B so that Lemma 3.4 applies. Let

B =

(

0T

Ip

)

.

Then BTΣB = ΣXX and

ΣB =

(

ΣY X

ΣXX

)

.

Now

E[

(

Y
X

)

| X] = E[

(

Y
X

)

| BT

(

Y
X

)

]

= µ + ΣB(BTΣB)−1BT

(

Y − µY

X − µX

)

by Lemma 3.4. The right hand side of the last equation is equal to

µ +

(

ΣY X

ΣXX

)

Σ−1
XX(X − µX) =

(

µY − ΣY XΣ−1
XXµX + ΣY XΣ−1

XXX

X

)

and the result follows since

βT = ΣY XΣ−1
XX .

b) See Croux, Dehon, Rousseeuw and Van Aelst (2001) for references.
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Example 3.2. This example illustrates another application of Lemma
3.4. Suppose that X comes from a mixture of two multivariate normals with
the same mean and proportional covariance matrices. That is, let

X ∼ (1 − γ)Np(µ,Σ) + γNp(µ, cΣ)

where c > 0 and 0 < γ < 1. Since the multivariate normal distribution is
elliptically contoured (and see Proposition 1.2c),

E(X|BT X) = (1 − γ)[µ + M1B
T (X − µ)] + γ[µ + M2B

T (X − µ)]

= µ + [(1 − γ)M 1 + γM 2]B
T (X − µ) ≡ µ + MBT (X − µ).

Since MB only depends on B and Σ, it follows that M 1 = M 2 = M = MB.
Hence X has an elliptically contoured distribution by Lemma 3.4.

Let x ∼ Np(µ,Σ) and y ∼ χ2
d be independent. Let wi = xi/(y/d)

1/2 for
i = 1, ..., p. Then w has a multivariate t-distribution with parameters µ and
Σ and degrees of freedom d, an important elliptically contoured distribution.

Cornish (1954) shows that the covariance matrix of w is Cov(w) =
d

d− 2
Σ

for d > 2. The case d = 1 is known as a multivariate Cauchy distribution.
The joint pdf of w is

f(z) =
Γ((d + p)/2)) |Σ|−1/2

(πd)p/2Γ(d/2)
[1 + d−1(z − µ)TΣ−1(z − µ)]−(d+p)/2.

See Mardia, Kent and Bibby (1979, p. 43, 57). See Johnson and Kotz (1972,
p. 134) for the special case where the xi ∼ N(0, 1).

If x ∼ Np(µ,Σ) and ui = exp(xi) for i = 1, ..., p, then u has a multivariate
lognormal distribution with parameters µ and Σ. This distribution is not an
elliptically contoured distribution.

3.3 Sample Mahalanobis Distances

In the multivariate location and dispersion model, sample Mahalanobis dis-
tances play a role similar to that of residuals in multiple linear regression.
The observed data X i = xi for i = 1, ..., n is collected in an n× p matrix W

with n rows xT
1 , ...,x

T
n . Let the p × 1 column vector T (W ) be a multivari-

ate location estimator, and let the p × p symmetric positive definite matrix
C(W ) be a dispersion estimator.
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Definition 3.5. The ith squared Mahalanobis distance is

D2
i = D2

i (T (W ),C(W )) = (X i − T (W ))TC−1(W )(X i − T (W )) (3.12)

for each point X i. Notice that D2
i is a random variable (scalar valued).

Notice that the population squared Mahalanobis distance is

D2

X (µ,Σ) = (X − µ)T Σ−1(X − µ) (3.13)

and that the term Σ−1/2(X − µ) is the p−dimensional analog to the z-
score used to transform a univariate N(µ, σ2) random variable into a N(0, 1)
random variable. Hence the sample Mahalanobis distance Di =

√

D2
i is an

analog of the absolute value |Zi| of the sample Z-score Zi = (Xi−X)/σ̂. Also
notice that the Euclidean distance of xi from the estimate of center T (W )
is Di(T (W ), Ip) where Ip is the p× p identity matrix.

Example 3.3. The contours of constant density for the Np(µ,Σ) dis-
tribution are ellipsoids defined by x such that (x − µ)TΣ−1(x − µ) = a2.
An α−density region Rα is a set such that P (X ∈ Rα) = α, and for the
Np(µ,Σ) distribution, the regions of highest density are sets of the form

{x : (x− µ)TΣ−1(x −µ) ≤ χ2
p(α)} = {x : D2

x(µ,Σ) ≤ χ2
p(α)}

where P (W ≤ χ2
p(α)) = α if W ∼ χ2

p. If the X i are n iid random vectors
each with a Np(µ,Σ) pdf, then a scatterplot of Xi,k versus Xi,j should be
ellipsoidal for k 6= j. Similar statements hold if X is ECp(µ,Σ, g), but the
α-density region will use a constant Uα obtained from Equation (3.10).

The classical Mahalanobis distance corresponds to the sample mean and
sample covariance matrix

T (W ) = X =
1

n

n
∑

i=1

X i,

and

C(W ) = S =
1

n− 1

n
∑

i=1

(X i −X)(X i −X)T

and will be denoted by MDi. When T (W ) and C(W ) are estimators other
than the sample mean and covariance, Di =

√

D2
i will sometimes be denoted

by RDi.
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3.4 Large Sample Theory

The first three subsections will review large sample theory for the univariate
case, then multivariate theory will be given.

3.4.1 The CLT and the Delta Method

Large sample theory, also called asymptotic theory, is used to approximate
the distribution of an estimator when the sample size n is large. This theory
is extremely useful if the exact sampling distribution of the estimator is
complicated or unknown. To use this theory, one must determine what the
estimator is estimating, the rate of convergence, the asymptotic distribution,
and how large n must be for the approximation to be useful. Moreover, the
(asymptotic) standard error (SE), an estimator of the asymptotic standard
deviation, must be computable if the estimator is to be useful for inference.

Theorem 3.7: the Central Limit Theorem (CLT). Let Y1, ..., Yn be
iid with E(Y ) = µ and VAR(Y ) = σ2. Let the sample mean Y n = 1

n

∑n
i=1 Yi.

Then √
n(Y n − µ)

D→ N(0, σ2).

Hence
√
n

(

Y n − µ

σ

)

=
√
n

(∑n
i=1 Yi − nµ

nσ

)

D→ N(0, 1).

Note that the sample mean is estimating the population mean µ with
a
√
n convergence rate, the asymptotic distribution is normal, and the SE

= S/
√
n where S is the sample standard deviation. For many distributions

the central limit theorem provides a good approximation if the sample size
n > 30. A special case of the CLT is proven after Theorem 3.20.

Notation. The notation X ∼ Y and X
D
= Y both mean that the random

variables X and Y have the same distribution. Hence FX(x) = FY (y) for all

real y. The notation Yn
D→ X means that for large n we can approximate the

cdf of Yn by the cdf of X. The distribution of X is the limiting distribution
or asymptotic distribution of Yn. For the CLT, notice that

Zn =
√
n

(

Y n − µ

σ

)

=

(

Y n − µ

σ/
√
n

)
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is the z–score of Y . If Zn
D→ N(0, 1), then the notation Zn ≈ N(0, 1), also

written as Zn ∼ AN(0, 1), means approximate the cdf of Zn by the standard
normal cdf. Similarly, the notation

Y n ≈ N(µ, σ2/n),

also written as Y n ∼ AN(µ, σ2/n), means approximate the cdf of Y n as if
Y n ∼ N(µ, σ2/n).

The two main applications of the CLT are to give the limiting distribution
of

√
n(Y n −µ) and the limiting distribution of

√
n(Yn/n−µX) for a random

variable Yn such that Yn =
∑n

i=1 Xi where the Xi are iid with E(X) = µX

and VAR(X) = σ2
X .

Example 3.4. a) Let Y1, ..., Yn be iid Ber(ρ). Then E(Y ) = ρ and
VAR(Y ) = ρ(1 − ρ). Hence

√
n(Y n − ρ)

D→ N(0, ρ(1 − ρ))

by the CLT.

b) Now suppose that Yn ∼ BIN(n, ρ). Then Yn
D
=

∑n
i=1Xi where

X1, ..., Xn are iid Ber(ρ). Hence

√
n(
Yn

n
− ρ)

D→ N(0, ρ(1 − ρ))

since √
n(
Yn

n
− ρ)

D
=

√
n(Xn − ρ)

D→ N(0, ρ(1 − ρ))

by a).
c) Now suppose that Yn ∼ BIN(kn, ρ) where kn → ∞ as n→ ∞. Then

√

kn(
Yn

kn
− ρ) ≈ N(0, ρ(1 − ρ))

or
Yn

kn
≈ N

(

ρ,
ρ(1 − ρ)

kn

)

or Yn ≈ N (knρ, knρ(1 − ρ)) .

Theorem 3.8: the Delta Method. If g′(θ) 6= 0 and

√
n(Tn − θ)

D→ N(0, σ2),
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then √
n(g(Tn) − g(θ))

D→ N(0, σ2[g′(θ)]2).

Example 3.5. Let Y1, ..., Yn be iid with E(Y ) = µ and VAR(Y ) = σ2.
Then by the CLT, √

n(Y n − µ)
D→ N(0, σ2).

Let g(µ) = µ2. Then g′(µ) = 2µ 6= 0 for µ 6= 0. Hence

√
n((Y n)2 − µ2)

D→ N(0, 4σ2µ2)

for µ 6= 0 by the delta method.

Example 3.6. Let X ∼ Binomial(n, p) where the positive integer n is

large and 0 < p < 1. Find the limiting distribution of
√
n

[

(

X

n

)2

− p2

]

.

Solution. Example 3.4b gives the limiting distribution of
√
n(X

n
− p). Let

g(p) = p2. Then g′(p) = 2p and by the delta method,

√
n

[

(

X

n

)2

− p2

]

=
√
n

(

g(
X

n
) − g(p)

)

D→

N(0, p(1 − p)(g′(p))2) = N(0, p(1 − p)4p2) = N(0, 4p3(1 − p)).

Example 3.7. Let Xn ∼ Poisson(nλ) where the positive integer n is
large and 0 < λ.

a) Find the limiting distribution of
√
n

(

Xn

n
− λ

)

.

b) Find the limiting distribution of
√
n

[
√

Xn

n
−

√
λ

]

.

Solution. a)Xn
D
=

∑n
i=1 Yi where the Yi are iid Poisson(λ). HenceE(Y ) =

λ = V ar(Y ). Thus by the CLT,

√
n

(

Xn

n
− λ

)

D
=

√
n

( ∑n
i=1 Yi

n
− λ

)

D→ N(0, λ).
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b) Let g(λ) =
√
λ. Then g′(λ) = 1

2
√

λ
and by the delta method,

√
n

[
√

Xn

n
−

√
λ

]

=
√
n

(

g(
Xn

n
) − g(λ)

)

D→

N(0, λ (g′(λ))2) = N(0, λ
1

4λ
) = N(0,

1

4
).

Example 3.8. Let Y1, ..., Yn be independent and identically distributed
(iid) from a Gamma(α, β) distribution.

a) Find the limiting distribution of
√
n

(

Y − αβ
)

.

b) Find the limiting distribution of
√
n

(

(Y )2 − c
)

for appropriate con-
stant c.

Solution: a) Since E(Y ) = αβ and V (Y ) = αβ2, by the CLT√
n

(

Y − αβ
) D→ N(0, αβ2).

b) Let µ = αβ and σ2 = αβ2. Let g(µ) = µ2 so g′(µ) = 2µ and

[g′(µ)]2 = 4µ2 = 4α2β2. Then by the delta method,
√
n

(

(Y )2 − c
) D→

N(0, σ2[g′(µ)]2) = N(0, 4α3β4) where c = µ2 = α2β2.

3.4.2 Modes of Convergence and Consistency

Definition 3.6. Let {Zn, n = 1, 2, ...} be a sequence of random variables
with cdfs Fn, and letX be a random variable with cdf F. Then Zn converges
in distribution to X, written

Zn
D→ X,

or Zn converges in law to X, written Zn
L→ X, if

lim
n→∞

Fn(t) = F (t)

at each continuity point t of F. The distribution of X is called the limiting
distribution or the asymptotic distribution of Zn.

An important fact is that the limiting distribution does not depend
on the sample size n. Notice that the CLT and delta method give the
limiting distributions of Zn =

√
n(Y n − µ) and Zn =

√
n(g(Tn) − g(θ)),

respectively.
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Convergence in distribution is useful because if the distribution of Xn is
unknown or complicated and the distribution of X is easy to use, then for
large n we can approximate the probability that Xn is in an interval by the

probability that X is in the interval. To see this, notice that if Xn
D→ X,

then P (a < Xn ≤ b) = Fn(b) − Fn(a) → F (b)− F (a) = P (a < X ≤ b) if F
is continuous at a and b.

Warning: convergence in distribution says that the cdf Fn(t) of Xn gets
close to the cdf of F(t) of X as n → ∞ provided that t is a continuity
point of F . Hence for any ε > 0 there exists Nt such that if n > Nt, then
|Fn(t)−F (t)|< ε. Notice that Nt depends on the value of t. Convergence in
distribution does not imply that the random variables Xn ≡ Xn(ω) converge
to the random variable X ≡ X(ω) for all ω.

Example 3.8. Suppose that Xn ∼ U(−1/n, 1/n). Then the cdf Fn(x) of
Xn is

Fn(x) =







0, x ≤ −1
n

nx
2

+ 1
2
, −1

n
≤ x ≤ 1

n

1, x ≥ 1
n
.

Sketching Fn(x) shows that it has a line segment rising from 0 at x = −1/n
to 1 at x = 1/n and that Fn(0) = 0.5 for all n ≥ 1. Examining the cases
x < 0, x = 0 and x > 0 shows that as n→ ∞,

Fn(x) →







0, x < 0
1
2

x = 0
1, x > 0.

Notice that if X is a random variable such that P (X = 0) = 1, then X has
cdf

FX(x) =

{

0, x < 0
1, x ≥ 0.

Since x = 0 is the only discontinuity point of FX(x) and since Fn(x) → FX(x)
for all continuity points of FX(x) (ie for x 6= 0),

Xn
D→ X.

Example 3.9. Suppose Yn ∼ U(0, n). Then Fn(t) = t/n for 0 < t ≤ n
and Fn(t) = 0 for t ≤ 0. Hence limn→∞ Fn(t) = 0 for t ≤ 0. If t > 0 and
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n > t, then Fn(t) = t/n → 0 as n → ∞. Thus limn→∞ Fn(t) = 0 for all
t and Yn does not converge in distribution to any random variable Y since
H(t) ≡ 0 is not a cdf.

Definition 3.7. A sequence of random variables Xn converges in distri-
bution to a constant τ (θ), written

Xn
D→ τ (θ), if Xn

D→ X

where P (X = τ (θ)) = 1. The distribution of the random variable X is said
to be degenerate at τ (θ).

Definition 3.8. A sequence of random variables Xn converges in prob-
ability to a constant τ (θ), written

Xn
P→ τ (θ),

if for every ε > 0,

lim
n→∞

P (|Xn − τ (θ)| < ε) = 1 or, equivalently, lim
n→∞

P(|Xn − τ (θ)| ≥ ε) = 0.

The sequence Xn converges in probability to X, written

Xn
P→ X,

if Xn −X
P→ 0.

Notice that Xn
P→ X if for every ε > 0,

lim
n→∞

P (|Xn −X| < ε) = 1, or, equivalently, lim
n→∞

P(|Xn − X| ≥ ε) = 0.

Definition 3.9. A sequence of estimators Tn of τ (θ) is consistent for
τ (θ) if

Tn
P→ τ (θ)

for every θ ∈ Θ. If Tn is consistent for τ (θ), then Tn is a consistent esti-
mator of τ (θ).

Consistency is a weak property that is usually satisfied by good estima-
tors. Tn is a consistent estimator for τ (θ) if the probability that Tn falls in
any neighborhood of τ (θ) goes to one, regardless of the value of θ ∈ Θ.
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Definition 3.10. For a real number r > 0, Yn converges in rth mean to
a random variable Y , written

Yn
r→ Y,

if
E(|Yn − Y |r) → 0

as n→ ∞. In particular, if r = 2, Yn converges in quadratic mean to Y ,
written

Yn
2→ Y or Yn

qm→ Y,

if
E[(Yn − Y )2] → 0

as n→ ∞.

Lemma 3.9: Generalized Chebyshev’s Inequality. Let u : < →
[0,∞) be a nonnegative function. If E[u(Y )] exists then for any c > 0,

P [u(Y ) ≥ c] ≤ E[u(Y )]

c
.

If µ = E(Y ) exists, then taking u(y) = |y − µ|r and c̃ = cr gives
Markov’s Inequality: for r > 0 and any c > 0,

P (|Y − µ| ≥ c] = P (|Y − µ|r ≥ cr] ≤ E[|Y − µ|r]
cr

.

If r = 2 and σ2 = VAR(Y ) exists, then we obtain
Chebyshev’s Inequality:

P (|Y − µ| ≥ c] ≤ VAR(Y )

c2
.

Proof. The proof is given for pdfs. For pmfs, replace the integrals by
sums. Now

E[u(Y )] =

∫

<
u(y)f(y)dy =

∫

{y:u(y)≥c}
u(y)f(y)dy +

∫

{y:u(y)<c}
u(y)f(y)dy

≥
∫

{y:u(y)≥c}
u(y)f(y)dy
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since the integrand u(y)f(y) ≥ 0. Hence

E[u(Y )] ≥ c

∫

{y:u(y)≥c}
f(y)dy = cP [u(Y ) ≥ c]. QED

The following proposition gives sufficient conditions for Tn to be a con-
sistent estimator of τ (θ). Notice that MSEτ (θ)(Tn) → 0 for all θ ∈ Θ is

equivalent to Tn
qm→ τ (θ) for all θ ∈ Θ.

Proposition 3.10. a) If

lim
n→∞

MSEτ (θ)(Tn) = 0

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

b) If
lim

n→∞
VARθ(Tn) = 0 and lim

n→∞
Eθ(Tn) = τ (θ)

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

Proof. a) Using Lemma 3.9 with Y = Tn, u(Tn) = (Tn − τ (θ))2 and
c = ε2 shows that for any ε > 0,

Pθ(|Tn − τ (θ)| ≥ ε) = Pθ[(Tn − τ (θ))2 ≥ ε2] ≤ Eθ[(Tn − τ (θ))2]

ε2
.

Hence
lim

n→∞
Eθ[(Tn − τ (θ))2] = lim

n→∞
MSEτ (θ)(Tn) → 0

is a sufficient condition for Tn to be a consistent estimator of τ (θ).
b) Recall that

MSEτ (θ)(Tn) = VARθ(Tn) + [Biasτ (θ)(Tn)]
2

where Biasτ (θ)(Tn) = Eθ(Tn)−τ (θ). SinceMSEτ (θ)(Tn) → 0 if both VARθ(Tn)
→ 0 and Biasτ (θ)(Tn) = Eθ(Tn)−τ (θ) → 0, the result follows from a). QED

The following result shows estimators that converge at a
√
n rate are

consistent. Use this result and the delta method to show that g(Tn) is a con-
sistent estimator of g(θ). Note that b) follows from a) with Xθ ∼ N(0, v(θ)).
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The WLLN shows that Y is a consistent estimator of E(Y ) = µ if E(Y )
exists.

Proposition 3.11. a) Let X be a random variable and 0 < δ ≤ 1. If

nδ(Tn − τ (θ))
D→ X

then Tn
P→ τ (θ).

b) If √
n(Tn − τ (θ))

D→ N(0, v(θ))

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

Definition 3.11. A sequence of random variables Xn converges almost

everywhere (or almost surely, or with probability 1) to X if

P ( lim
n→∞

Xn = X) = 1.

This type of convergence will be denoted by

Xn
ae→ X.

Notation such as “Xn converges to X ae” will also be used. Sometimes
“ae” will be replaced with “as” or “wp1.” We say that Xn converges almost

everywhere to τ (θ), written
Xn

ae→ τ (θ),

if P (limn→∞Xn = τ (θ)) = 1.

Theorem 3.12. Let Yn be a sequence of iid random variables with
E(Yi) = µ. Then

a) Strong Law of Large Numbers (SLLN): Y n
ae→ µ, and

b) Weak Law of Large Numbers (WLLN): Y n
P→ µ.

Proof of WLLN when V (Yi) = σ2: By Chebyshev’s inequality, for
every ε > 0,

P (|Y n − µ| ≥ ε) ≤ V (Y n)

ε2
=

σ2

nε2
→ 0

as n→ ∞. QED

In proving consistency results, there is an infinite sequence of estimators
that depend on the sample size n. Hence the subscript n will be added to
the estimators.
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Definition 3.12. Lehmann (1999, p. 53-54): a) A sequence of random
variables Wn is tight or bounded in probability, written Wn = OP (1), if for
every ε > 0 there exist positive constants Dε and Nε such that

P (|Wn| ≤ Dε) ≥ 1 − ε

for all n ≥ Nε. Also Wn = OP (Xn) if |Wn/Xn| = OP (1).
b) The sequence Wn = oP (n−δ) if nδWn = oP (1) which means that

nδWn
P→ 0.

c) Wn has the same order as Xn in probability, written Wn �P Xn, if for
every ε > 0 there exist positive constants Nε and 0 < dε < Dε such that

P (dε ≤
∣

∣

∣

∣

Wn

Xn

∣

∣

∣

∣

≤ Dε) = P (
1

Dε
≤

∣

∣

∣

∣

Xn

Wn

∣

∣

∣

∣

≤ 1

d ε
) ≥ 1 − ε

for all n ≥ Nε.
d) Similar notation is used for a k × r matrix A = [ai,j] if each element

ai,j has the desired property. For example, A = OP (n−1/2) if each ai,j =
OP (n−1/2).

Definition 3.13. Let Wn = ‖µ̂n − µ‖.
a) If Wn �P n−δ for some δ > 0, then both Wn and µ̂n have (tightness)

rate nδ.
b) If there exists a constant κ such that

nδ(Wn − κ)
D→ X

for some nondegenerate random variable X, then both Wn and µ̂n have
convergence rate nδ.

IfWn has convergence rate nδ, thenWn has tightness rate nδ, and the term
“tightness” will often be omitted. Notice that ifWn �P Xn, thenXn �P Wn,
Wn = OP (Xn) and Xn = OP (Wn). Notice that if Wn = OP (n−δ), then nδ is
a lower bound on the rate of Wn.

Proposition 3.13. Suppose there exists a constant κ such that

nδ(Wn − κ)
D→ X.
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a) Then Wn = OP (n−δ).
b) If X is not degenerate, then Wn �P n−δ .

The above result implies that if Wn has convergence rate nδ , then Wn has
tightness rate nδ, and the term “tightness” will often be omitted. Part a) is
proved, for example, in Lehmann (1999, p. 67).

The following result shows that if Wn �P Xn, then Xn �P Wn, Wn =
OP (Xn) and Xn = OP (Wn). Notice that if Wn = OP (n−δ), then nδ is a
lower bound on the rate of Wn. As an example, if the CLT holds then
Y n = OP (n−1/3), but Y n �P n−1/2.

Proposition 3.14. a) If Wn �P Xn then Xn �P Wn.
b) If Wn �P Xn then Wn = OP (Xn).
c) If Wn �P Xn then Xn = OP (Wn).
d) Wn �P Xn iff Wn = OP (Xn) and Xn = OP (Wn).

Proof. a) Since Wn �P Xn,

P (dε ≤
∣

∣

∣

∣

Wn

Xn

∣

∣

∣

∣

≤ Dε) = P (
1

Dε
≤

∣

∣

∣

∣

Xn

Wn

∣

∣

∣

∣

≤ 1

d ε
) ≥ 1 − ε

for all n ≥ Nε. Hence Xn �P Wn.
b) Since Wn �P Xn,

P (|Wn| ≤ |XnDε|) ≥ P (dε ≤
∣

∣

∣

∣

Wn

Xn

∣

∣

∣

∣

≤ Dε) ≥ 1 − ε

for all n ≥ Nε. Hence Wn = OP (Xn).
c) Follows by a) and b).
d) If Wn �P Xn, then Wn = OP (Xn) and Xn = OP (Wn) by b) and c).

Now suppose Wn = OP (Xn) and Xn = OP (Wn). Then

P (|Wn| ≤ |Xn|Dε/2) ≥ 1 − ε/2

for all n ≥ N1, and

P (|Xn| ≤ |Wn|1/dε/2) ≥ 1 − ε/2

for all n ≥ N2. Hence

P (A) ≡ P (

∣

∣

∣

∣

Wn

Xn

∣

∣

∣

∣

≤ Dε/2) ≥ 1 − ε/2

52



and

P (B) ≡ P (dε/2 ≤
∣

∣

∣

∣

Wn

Xn

∣

∣

∣

∣

) ≥ 1 − ε/2

for all n ≥ N = max(N1, N2). Since P (A∩B) = P (A)+P (B)−P (A∪B) ≥
P (A) + P (B)− 1,

P (A ∩ B) = P (dε/2 ≤
∣

∣

∣

∣

Wn

Xn

∣

∣

∣

∣

≤ Dε/2) ≥ 1 − ε/2 + 1 − ε/2 − 1 = 1 − ε

for all n ≥ N. Hence Wn �P Xn. QED

The following result is used to prove the following Theorem 3.16 which
says that if there are K estimators Tj,n of a parameter β, such that ‖Tj,n −
β‖ = OP (n−δ) where 0 < δ ≤ 1, and if T ∗

n picks one of these estimators, then
‖T ∗

n − β‖ = OP (n−δ).

Proposition 3.15: Pratt (1959). Let X1,n, ..., XK,n each be OP (1)
where K is fixed. Suppose Wn = Xin,n for some in ∈ {1, ..., K}. Then

Wn = OP (1). (3.14)

Proof.

P (max{X1,n, ..., XK,n} ≤ x) = P (X1,n ≤ x, ..., XK,n ≤ x) ≤

FWn(x) ≤ P (min{X1,n, ..., XK,n} ≤ x) = 1 − P (X1,n > x, ..., XK,n > x).

SinceK is finite, there exists B > 0 and N such that P (Xi,n ≤ B) > 1−ε/2K
and P (Xi,n > −B) > 1 − ε/2K for all n > N and i = 1, ..., K. Bonferroni’s

inequality states that P (∩K
i=1Ai) ≥

∑K
i=1 P (Ai) − (K − 1). Thus

FWn(B) ≥ P (X1,n ≤ B, ..., XK,n ≤ B) ≥

K(1 − ε/2K) − (K − 1) = K − ε/2 −K + 1 = 1 − ε/2

and
−FWn(−B) ≥ −1 + P (X1,n > −B, ..., XK,n > −B) ≥

−1 +K(1 − ε/2K) − (K − 1) = −1 +K − ε/2 −K + 1 = −ε/2.
Hence

FWn(B)− FWn(−B) ≥ 1 − ε for n > N. QED
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Theorem 3.16. Suppose ‖Tj,n − β‖ = OP (n−δ) for j = 1, ..., K where
0 < δ ≤ 1. Let T ∗

n = Tin,n for some in ∈ {1, ..., K} where, for example, Tin,n

is the Tj,n that minimized some criterion function. Then

‖T ∗
n − β‖ = OP (n−δ). (3.15)

Proof. Let Xj,n = nδ‖Tj,n − β‖. Then Xj,n = OP (1) so by Proposition
3.15, nδ‖T ∗

n − β‖ = OP (1). Hence ‖T ∗
n − β‖ = OP (n−δ). QED

3.4.3 Slutsky’s Theorem and Related Results

Theorem 3.17: Slutsky’s Theorem. Suppose Yn
D→ Y and Wn

P→ w for
some constant w. Then

a) Yn +Wn
D→ Y + w,

b) YnWn
D→ wY, and

c) Yn/Wn
D→ Y/w if w 6= 0.

Theorem 3.18. a) If Xn
P→ X then Xn

D→ X.

b) If Xn
ae→ X then Xn

P→ X and Xn
D→ X.

c) If Xn
r→ X then Xn

P→ X and Xn
D→ X.

d) Xn
P→ τ (θ) iff Xn

D→ τ (θ).

e) If Xn
P→ θ and τ is continuous at θ, then τ (Xn)

P→ τ (θ).

f) If Xn
D→ θ and τ is continuous at θ, then τ (Xn)

D→ τ (θ).

Suppose that for all θ ∈ Θ, Tn
D→ τ (θ), Tn

r→ τ (θ) or Tn
ae→ τ (θ). Then

Tn is a consistent estimator of τ (θ) by Theorem 3.18.

Example 3.10. Let Y1, ..., Yn be iid with mean E(Yi) = µ and variance
V (Yi) = σ2. Then the sample mean Y n is a consistent estimator of µ since
i) the SLLN holds (use Theorem 3.12 and 3.18), ii) the WLLN holds and iii)
the CLT holds (use Proposition 3.11). Since

lim
n→∞

VARµ(Y n) = lim
n→∞

σ2/n = 0 and lim
n→∞

Eµ(Y n) = µ,

Y n is also a consistent estimator of µ by Proposition 3.10b. By the delta
method and Proposition 3.11b, Tn = g(Y n) is a consistent estimator of g(µ)
if g′(µ) 6= 0 for all µ ∈ Θ. By Theorem 3.18e, g(Y n) is a consistent estimator
of g(µ) if g is continuous at µ for all µ ∈ Θ.
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Theorem 3.19. a) Generalized Continuous Mapping Theorem: If

Xn
D→ X and the function g is such that P [X ∈ C(g)] = 1 where C(g) is the

set of points where g is continuous, then g(Xn)
D→ g(X).

b) Continuous Mapping Theorem: If Xn
D→ X and the function g is

continuous, then g(Xn)
D→ g(X).

Remark 3.3. For Theorem 3.18, a) follows from Slutsky’s Theorem

by taking Yn ≡ X = Y and Wn = Xn − X. Then Yn
D→ Y = X and

Wn
P→ 0. HenceXn = Yn+Wn

D→ Y +0 = X. The convergence in distribution
parts of b) and c) follow from a). Part f) follows from d) and e). Part
e) implies that if Tn is a consistent estimator of θ and τ is a continuous
function, then τ (Tn) is a consistent estimator of τ (θ). Theorem 3.19 says
that convergence in distribution is preserved by continuous functions, and
even some discontinuities are allowed as long as the set of continuity points
is assigned probability 1 by the asymptotic distribution. Equivalently, the
set of discontinuity points is assigned probability 0.

Example 3.11. (Ferguson 1996, p. 40): If Xn
D→ X then 1/Xn

D→ 1/X
if X is a continuous random variable since P (X = 0) = 0 and x = 0 is the
only discontinuity point of g(x) = 1/x.

Example 3.12. Show that if Yn ∼ tn, a t distribution with n degrees of

freedom, then Yn
D→ Z where Z ∼ N(0, 1).

Solution: Yn
D
= Z/

√

Vn/n where Z Vn ∼ χ2
n. If Wn =

√

Vn/n
P→ 1,

then the result follows by Slutsky’s Theorem. But Vn
D
=

∑n
i=1Xi where the

iid Xi ∼ χ2
1. Hence Vn/n

P→ 1 by the WLLN and
√

Vn/n
P→ 1 by Theorem

3.14e.

Theorem 3.20: Continuity Theorem. Let Yn be sequence of random
variables with characteristic functions φn(t). Let Y be a random variable
with cf φ(t).

a)

Yn
D→ Y iff φn(t) → φ(t) ∀t ∈ <.

b) Also assume that Yn has mgf mn and Y has mgf m. Assume that
all of the mgfs mn and m are defined on |t| ≤ d for some d > 0. Then if

mn(t) → m(t) as n→ ∞ for all |t| < c where 0 < c < d, then Yn
D→ Y .
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Application: Proof of a Special Case of the CLT. Following
Rohatgi (1984, p. 569-9), let Y1, ..., Yn be iid with mean µ, variance σ2 and
mgf mY (t) for |t| < to. Then

Zi =
Yi − µ

σ

has mean 0, variance 1 and mgf mZ(t) = exp(−tµ/σ)mY (t/σ) for |t| < σto.
Want to show that

Wn =
√
n

(

Y n − µ

σ

)

D→ N(0, 1).

Notice that Wn =

n−1/2

n
∑

i=1

Zi = n−1/2

n
∑

i=1

(

Yi − µ

σ

)

= n−1/2

∑n
i=1 Yi − nµ

σ
=
n−1/2

1
n

Y n − µ

σ
.

Thus

mWn(t) = E(etWn) = E[exp(tn−1/2

n
∑

i=1

Zi)] = E[exp(
n

∑

i=1

tZi/
√
n)]

=

n
∏

i=1

E[etZi/
√

n] =

n
∏

i=1

mZ(t/
√
n) = [mZ(t/

√
n)]n.

Set ψ(x) = log(mZ(x)). Then

log[mWn(t)] = n log[mZ(t/
√
n)] = nψ(t/

√
n) =

ψ(t/
√
n)

1
n

.

Now ψ(0) = log[mZ(0)] = log(1) = 0. Thus by L’Hôpital’s rule (where the
derivative is with respect to n), limn→∞ log[mWn(t)] =

lim
n→∞

ψ(t/
√
n )

1
n

= lim
n→∞

ψ′(t/
√
n )[−t/2

n3/2
]

(−1
n2 )

=
t

2
lim

n→∞

ψ′(t/
√
n )

1√
n

.

Now

ψ′(0) =
m′

Z(0)

mZ(0)
= E(Zi)/1 = 0,
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so L’Hôpital’s rule can be applied again, giving limn→∞ log[mWn(t)] =

t

2
lim

n→∞

ψ′′(t/
√
n )[ −t

2n3/2
]

( −1
2n3/2

)
=
t2

2
lim

n→∞
ψ′′(t/

√
n ) =

t2

2
ψ′′(0).

Now

ψ′′(t) =
d

dt

m′
Z(t)

mZ(t)
=
m′′

Z(t)mZ(t) − (m′
Z(t))2

[mZ(t)]2
.

So
ψ′′(0) = m′′

Z(0) − [m′
Z(0)]2 = E(Z2

i ) − [E(Zi)]
2 = 1.

Hence limn→∞ log[mWn(t)] = t2/2 and

lim
n→∞

mWn(t) = exp(t2/2)

which is the N(0,1) mgf. Thus by the continuity theorem,

Wn =
√
n

(

Y n − µ

σ

)

D→ N(0, 1).

3.4.4 Multivariate Limit Theorems

Many of the univariate results of the previous 3 subsections can be extended
to random vectors. For the limit theorems, the vector X is typically a k× 1
column vector and XT is a row vector. Let ‖x‖ =

√

x2
1 + · · · + x2

k be the
Euclidean norm of x.

Definition 3.14. Let Xn be a sequence of random vectors with joint
cdfs Fn(x) and let X be a random vector with joint cdf F (x).

a) Xn converges in distribution to X, written Xn
D→ X, if Fn(x) →

F (x) as n→ ∞ for all points x at which F (x) is continuous. The distribution
of X is the limiting distribution or asymptotic distribution of Xn.

b) Xn converges in probability to X, written Xn
P→ X, if for every

ε > 0, P (‖Xn − X‖ > ε) → 0 as n→ ∞.
c) Let r > 0 be a real number. Then Xn converges in rth mean to

X, written Xn
r→ X, if E(‖Xn −X‖r) → 0 as n→ ∞.

d) Xn converges almost everywhere to X, written Xn
ae→ X, if

P (limn→∞ Xn = X) = 1.
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Theorems 3.21 and 3.22 below are the multivariate extensions of the
limit theorems in subsection 3.4.1. When the limiting distribution of Zn =√
n(g(T n) − g(θ)) is multivariate normal Nk(0,Σ), approximate the joint

cdf of Zn with the joint cdf of the Nk(0,Σ) distribution. Thus to find proba-
bilities, manipulate Zn as if Zn ≈ Nk(0,Σ). To see that the CLT is a special
case of the MCLT below, let k = 1, E(X) = µ and V (X) = Σx = σ2.

Theorem 3.21: the Multivariate Central Limit Theorem (MCLT).
If X1, ...,Xn are iid k × 1 random vectors with E(X) = µ and Cov(X) =
Σx, then √

n(Xn − µ)
D→ Nk(0,Σx)

where the sample mean

Xn =
1

n

n
∑

i=1

X i.

To see that the delta method is a special case of the multivariate delta
method, note that if Tn and parameter θ are real valued, then Dg(θ)

= g′(θ).

Theorem 3.22: the Multivariate Delta Method. If

√
n(T n − θ)

D→ Nk(0,Σ),

then √
n(g(T n) − g(θ))

D→ Nd(0,Dg(θ)
ΣDT

g(θ)
)

where the d× k Jacobian matrix of partial derivatives

Dg(θ)
=







∂
∂θ1

g1(θ) . . . ∂
∂θk
g1(θ)

...
...

∂
∂θ1

gd(θ) . . . ∂
∂θk
gd(θ)






.

Here the mapping g : <k → <d needs to be differentiable in a neighborhood
of θ ∈ <k.

Definition 3.15. If the estimator g(T n)
P→ g(θ) for all θ ∈ Θ, then

g(T n) is a consistent estimator of g(θ).
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Proposition 3.23. If 0 < δ ≤ 1, X is a random vector, and

nδ(g(T n) − g(θ))
D→ X,

then g(T n)
P→ g(θ).

Theorem 3.24. If X1, ...,Xn are iid, E(‖X‖) < ∞ and E(X) = µ,
then

a) WLLN: Xn
P→ µ and

b) SLLN: Xn
ae→ µ.

Theorem 3.25: Continuity Theorem. Let Xn be a sequence of k×1
random vectors with characteristic function φn(t) and let X be a k × 1
random vector with cf φ(t). Then

Xn
D→ X iff φn(t) → φ(t)

for all t ∈ <k.

Theorem 3.26: Cramér Wold Device. Let Xn be a sequence of k×1
random vectors and let X be a k × 1 random vector. Then

Xn
D→ X iff tTXn

D→ tTX

for all t ∈ <k.

Theorem 3.27: a) If Xn
P→ X, then Xn

D→ X.
b)

Xn
P→ g(θ) iff Xn

D→ g(θ).

Let g(n) ≥ 1 be an increasing function of the sample size n: g(n) ↑
∞, eg g(n) =

√
n. See White (1984, p. 15). If a k × 1 random vector

T n − µ converges to a nondegenerate multivariate normal distribution with
convergence rate

√
n, then T n has (tightness) rate

√
n.

Definition 3.16. Let An = [ai,j(n)] be an r × c random matrix.
a) An = OP (Xn) if ai,j(n) = OP (Xn) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
b) An = op(Xn) if ai,j(n) = op(Xn) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
c) An �P (1/(g(n)) if ai,j(n) �P (1/(g(n)) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
d) Let A1,n = T n − µ and A2,n = Cn − cΣ for some constant c > 0. If

59



A1,n �P (1/(g(n)) and A2,n �P (1/(g(n)), then (T n,Cn) has (tightness)
rate g(n).

Recall that the smallest integer function dxe rounds up, eg d7.7e = 8.

Theorem 3.28: Continuous Mapping Theorem. Let Xn ∈ <k. If

Xn
D→ X and if the function g : <k → <j is continuous, then

g(Xn)
D→ g(X).

The following two theorems are taken from Severini (2005, p. 345-349,
354).

Theorem 3.29: Let Xn = (X1n, ..., Xkn)
T be a sequence of k × 1

random vectors, let Y n be a sequence of k × 1 random vectors and let
X = (X1, ..., Xk)

T be a k × 1 random vector. Let W n be a sequence of
k× k nonsingular random matrices and let C be a k× k constant nonsingu-
lar matrix.

a) Xn
P→ X iff Xin

P→ Xi for i = 1, ..., k.

b) Slutsky’s Theorem: If Xn
D→ X and Y n

P→ c for some constant

k × 1 vector c, then i) Xn + Y n
D→ X + c and

ii) Y T
nXn

D→ cTX.

c) If Xn
D→ X and W n

D→ C, then W nXn
D→ CX, XT

nW n
D→ XTC,

W−1
n Xn

D→ C−1X and XT
nW−1

n
D→ XTC−1.

Theorem 3.30: LetWn, Xn, Yn and Zn be sequences of random variables
such that Yn > 0 and Zn > 0. (Often Yn and Zn are deterministic, eg
Yn = n−1/2.)

a) If Wn = OP (1) and Xn = OP (1), then Wn +Xn = OP (1) and WnXn =
OP (1), thus OP (1) +OP (1) = OP (1) and OP (1)OP (1) = OP (1).

b) If Wn = OP (1) and Xn = oP (1), then Wn +Xn = OP (1) and WnXn =
oP (1), thus OP (1) + oP (1) = OP (1) and OP (1)oP (1) = oP (1).

c) If Wn = OP (Yn) and Xn = OP (Zn), then Wn +Xn = OP (max(Yn, Zn))
and WnXn = OP (YnZn), thus OP (Yn) + OP (Zn) = OP (max(Yn, Zn)) and
OP (Yn)OP (Zn) = OP (YnZn).

Theorem 3.31. i) Suppose
√
n(Tn − µ)

D→ Np(θ,Σ). Let A be a q × p

constant matrix. Then A
√
n(Tn−µ) =

√
n(ATn−Aµ)

D→ Nq(Aθ,AΣAT ).
ii) If (T,C) is a consistent estimator of (µ, s Σ) with rate nδ where s > 0
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is some constant and 0 < δ ≤ 0.5, then D2
x(T,C) = (x− T )TC−1(x− T ) =

s−1D2
x(µ,Σ) +OP (n−δ).

iii) If (T,C) is a consistent estimator of (µ, s Σ) where s > 0 is some
constant, then D2

x(T,C) = (x − T )TC−1(x − T ) = s−1D2
x(µ,Σ) + oP (1),

so D2
x(T,C) is a consistent estimator of s−1D2

x(µ,Σ).

iv) Let Σ > 0. If
√
n(T−µ)

D→ Np(0,Σ) and if C is a consistent estimator

of Σ, then n(T − µ)T C−1(T −µ)
D→ χ2

p. In particular,

n(x − µ)TS−1(x −µ)
D→ χ2

p.

Proof: ii) D2
x(T,C) = (x − T )TC−1(x − T ) =

(x − µ + µ − T )T [C−1 − s−1Σ−1 + s−1Σ−1](x − µ + µ − T )
= (x −µ)T [s−1Σ−1](x − µ) + (x − T )T [C−1 − s−1Σ−1](x− T )
+(x − µ)T [s−1Σ−1](µ− T ) + (µ − T )T [s−1Σ−1](x− µ)
+(µ − T )T [s−1Σ−1](µ − T ) = s−1D2

x(µ,Σ) +OP (n−δ).
iii) Following the proof for ii), D2

x(T,C) = s−1D2
x(µ,Σ) + oP (1). Alter-

natively, D2
x(T,C) is a continuous function of (T,C) if C > 0 for n > 10p.

Hence D2
x(T,C)

P→ D2
x(µ, sΣ).

iv) Note that Zn =
√
n Σ−1/2(T − µ)

D→ Np(0, Ip). Thus ZT
nZn =

n(T − µ)T Σ−1(T − µ)
D→ χ2

p. Now n(T − µ)T C−1(T −µ) =

n(T − µ)T [C−1 − Σ−1 + Σ−1](T − µ) = n(T −µ)TΣ−1(T − µ) +

n(T −µ)T [C−1 −Σ−1](T −µ) = n(T −µ)T Σ−1(T −µ) + oP (1)
D→ χ2

p since√
n(T − µ)T [C−1 − Σ−1]

√
n(T − µ) = OP (1)oP (1)OP (1) = oP (1).

3.5 Summary

1) If X and Y are p × 1 random vectors, a a conformable constant vector,
and A and B are conformable constant matrices, then

E(X+Y ) = E(X)+E(Y ), E(a+Y ) = a+E(Y ), &E(AXB) = AE(X)B.

Also
Cov(a + AX) = Cov(AX) = ACov(X)AT .

Note that E(AY ) = AE(Y ) and Cov(AY ) = ACov(Y )AT .
2) If X ∼ Np(µ,Σ), then E(X) = µ and Cov(X) = Σ.
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3) If X ∼ Np(µ,Σ) and if A is a q×pmatrix, then AX ∼ Nq(Aµ,AΣAT ).
If a is a p×1 vector of constants, then X +a ∼ Np(µ+a,Σ). See Q2, HW2
E.

Let X =

(

X1

X2

)

, µ =

(

µ1

µ2

)

, and Σ =

(

Σ11 Σ12

Σ21 Σ22

)

.

4) All subsets of a MVN are MVN: (Xk1
, ..., Xkq)

T ∼ Nq(µ̃, Σ̃) where

µ̃i = E(Xki) and Σ̃ij = Cov(Xki , Xkj ). In particular, X1 ∼ Nq(µ1,Σ11) and
X2 ∼ Np−q(µ2,Σ22). If X ∼ Np(µ,Σ), then X1 and X2 are independent iff
Σ12 = 0.

5)

Let

(

Y
X

)

∼ N2

( (

µY

µX

)

,

(

σ2
Y Cov(Y,X)

Cov(X, Y ) σ2
X

) )

.

Also recall that the population correlation between X and Y is given by

ρ(X, Y ) =
Cov(X, Y )

√

VAR(X)
√

VAR(Y )
=

σX,Y

σXσY

if σX > 0 and σY > 0.
6) The conditional distribution of a MVN is MVN. If X ∼ Np(µ,Σ), then

the conditional distribution of X1 given that X2 = x2 is multivariate normal
with mean µ1 + Σ12Σ

−1
22 (x2 −µ2) and covariance matrix Σ11 −Σ12Σ

−1
22 Σ21.

That is,

X1|X2 = x2 ∼ Nq(µ1 + Σ12Σ
−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).

7) Notation:

X1|X2 ∼ Nq(µ1 + Σ12Σ
−1
22 (X2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).

8) Be able to compute the above quantities if X1 and X2 are scalars.
9) A p× 1 random vector X has an elliptically contoured distribution, if

X has density

f(z) = kp|Σ|−1/2g[(z − µ)TΣ−1(z − µ)], (3.16)
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and we say X has an elliptically contoured ECp(µ,Σ, g) distribution. If the
second moments exist, then

E(X) = µ (3.17)

and
Cov(X) = cXΣ (3.18)

for some constant cX > 0.
10) The population squared Mahalanobis distance

U ≡ D2 = D2(µ,Σ) = (X − µ)T Σ−1(X −µ). (3.19)

For elliptically contoured distributions, U has pdf

h(u) =
πp/2

Γ(p/2)
kpu

p/2−1g(u). (3.20)

U ∼ χ2
p if x has a multivariate normal Np(µ,Σ) distribution.

11) The classical estimator (x,S) of multivariate location and dispersion
is the sample mean and sample covariance matrix where

x =
1

n

n
∑

i=1

xi and S =
1

n − 1

n
∑

i=1

(xi − x)(xi − x)T.

12) Let the p × 1 column vector T (W ) be a multivariate location es-
timator, and let the p × p symmetric positive definite matrix C(W ) be a
dispersion estimator. Then the ith squared sample Mahalanobis distance is
the scalar

D2
i = D2

i (T (W ),C(W )) = (xi − T (W ))TC−1(W )(xi − T (W )) (3.21)

for each observation xi. Notice that the Euclidean distance of xi from the es-
timate of center T (W ) is Di(T (W ), Ip). The classical Mahalanobis distance
uses (T,C) = (x,S).

13) If p random variables come from an elliptically contoured distribution,
then the subplots in the scatterplot matrix should be linear.

14) Let Xn be a sequence of random vectors with joint cdfs Fn(x) and
let X be a random vector with joint cdf F (x).

a) Xn converges in distribution to X, written Xn
D→ X, if Fn(x) →

F (x) as n→ ∞ for all points x at which F (x) is continuous. The distribution
of X is the limiting distribution or asymptotic distribution of Xn.
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b) Xn converges in probability to X, written Xn
P→ X, if for every

ε > 0, P (‖Xn − X‖ > ε) → 0 as n→ ∞.
15) Multivariate Central Limit Theorem (MCLT): If X1, ...,Xn are iid

k × 1 random vectors with E(X) = µ and Cov(X) = Σx, then

√
n(Xn − µ)

D→ Nk(0,Σx)

where the sample mean

Xn =
1

n

n
∑

i=1

X i.

16) Suppose
√
n(Tn −µ)

D→ Np(θ,Σ). Let A be a q× p constant matrix.

Then A
√
n(Tn − µ) =

√
n(ATn − Aµ)

D→ Nq(Aθ,AΣAT ).

17) Suppose A is a conformable constant matrix and Xn
D→ X. Then

AXn
D→ AX.

3.6 Complements

Johnson and Wichern (1988) and Mardia, Kent and Bibby (1979) are good
references for multivariate statistical analysis based on the multivariate nor-
mal distribution. The elliptically contoured distributions generalize the mul-
tivariate normal distribution and are discussed (in increasing order of dif-
ficulty) in Johnson (1987), Fang, Kotz and Ng (1990), Fang and Anderson
(1990), and Gupta and Varga (1993). Fang, Kotz and Ng (1990) sketch the
history of elliptically contoured distributions while Gupta and Varga (1993)
discuss matrix valued elliptically contoured distributions. Cambanis, Huang
and Simons (1981), Chmielewski (1981) and Eaton (1986) are also important
references. Also see Muirhead (1982, p. 30–42).

There are several PhD level texts on large sample theory including, in
roughly increasing order of difficulty, Lehmann (1999), Ferguson (1996), Sen
and Singer (1993), and Serfling (1980). Cramér (1946) is also an important
reference, and White (1984) considers asymptotic theory for econometric
applications. Also see DasGupta (2008), Davidson (1994), Jiang (2010),
Polansky (2011), Sen, Singer and Pedrosa De Lima (2010) and van der Vaart
(1998). Section 3.4 followed Olive (2012b, ch. 8) closely.

In analysis, convergence in probability is a special case of convergence in
measure and convergence in distribution is a special case of weak convergence.
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See Ash (1972, p. 322) and Sen and Singer (1993, p. 39). Almost sure
convergence is also known as strong convergence. See Sen and Singer (1993,

p. 34). Since Y
P→ µ iff Y

D→ µ, the WLLN refers to weak convergence.
Technically the Xn and X need to share a common probability space for
convergence in probability and almost sure convergence.

3.7 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

3.1∗. Suppose that








X1

X2

X3

X4









∼ N4

















49
100
17
7









,









3 1 −1 0
1 6 1 −1
−1 1 4 0
0 −1 0 2

















.

a) Find the distribution of X2.

b) Find the distribution of (X1, X3)
T .

c) Which pairs of random variables Xi and Xj are independent?

d) Find the correlation ρ(X1, X3).

3.2∗. Recall that if X ∼ Np(µ,Σ), then the conditional distribution of
X1 given that X2 = x2 is multivariate normal with mean µ1 +Σ12Σ

−1
22 (x2−

µ2) and covariance matrix Σ11 − Σ12Σ
−1
22 Σ21.

Let σ12 = Cov(Y,X) and suppose Y and X follow a bivariate normal
distribution

(

Y
X

)

∼ N2

( (

49
100

)

,

(

16 σ12

σ12 25

) )

.

a) If σ12 = 0, find Y |X. Explain your reasoning.

b) If σ12 = 10 find E(Y |X).

c) If σ12 = 10, find Var(Y |X).
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3.3. Let σ12 = Cov(Y,X) and suppose Y and X follow a bivariate normal
distribution

(

Y
X

)

∼ N2

( (

15
20

)

,

(

64 σ12

σ12 81

) )

.

a) If σ12 = 10 find E(Y |X).

b) If σ12 = 10, find Var(Y |X).

c) If σ12 = 10, find ρ(Y,X), the correlation between Y and X.

3.4. Suppose that

X ∼ (1 − γ)ECp(µ,Σ, g1) + γECp(µ, cΣ, g2)

where c > 0 and 0 < γ < 1. Following Example 3.2, show that X has
an elliptically contoured distribution assuming that all relevant expectations
exist.

3.5. In Proposition 3.5b, show that if the second moments exist, then Σ
can be replaced by Cov(X).

crancap hdlen hdht Data for 3.6

1485 175 132

1450 191 117

1460 186 122

1425 191 125

1430 178 120

1290 180 117

90 75 51

3.6∗. The table (W ) above represents 3 head measurements on 6 people
and one ape. Let X1 = cranial capacity, X2 = head length and X3 = head

height. Let x = (X1, X2, X3)
T . Several multivariate location estimators,

including the coordinatewise median and sample mean, are found by applying
a univariate location estimator to each random variable and then collecting
the results into a vector. a) Find the coordinatewise median MED(W ).

b) Find the sample mean x.
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3.7. Using the notation in Proposition 3.6, show that if the second mo-
ments exist, then

Σ−1
XXΣXY = [Cov(X)]−1Cov(X, Y ).

3.8. Using the notation under Lemma 3.4, show that if X is elliptically
contoured, then the conditional distribution of X1 given that X2 = x2 is
also elliptically contoured.

3.9∗. Suppose Y ∼ Nn(Xβ, σ2I). Find the distribution of
(XTX)−1XTY if X is an n × p full rank constant matrix and β is a p× 1
constant vector.

3.10. Recall that Cov(X,Y ) = E[(X − E(X))(Y − E(Y ))T ]. Using
the notation of Proposition 3.6, let (Y,XT )T be ECp+1(µ,Σ, g) where Y is
a random variable. Let the covariance matrix of (Y,XT ) be

Cov((Y,XT )T ) = c

(

ΣY Y ΣY X

ΣXY ΣXX

)

=

(

VAR(Y ) Cov(Y,X)
Cov(X, Y ) Cov(X)

)

where c is some positive constant. Show that E(Y |X) = α + βT X where

α = µY − βTµX and

β = [Cov(X)]−1Cov(X, Y ).
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3.11. (Due to R.D. Cook.) Let X be a p × 1 random vector with
E(X) = 0 and Cov(X) = Σ. Let B be any constant full rank p× r matrix
where 1 ≤ r ≤ p. Suppose that for all such conforming matrices B,

E(X|BT X) = MBBT X

where MB a p× r constant matrix that depend on B.
Using the fact that ΣB = Cov(X,BTX) = E(XXTB) =

E[E(XXTB|BTX)], compute ΣB and show that MB = ΣB(BTΣB)−1.
Hint: what acts as a constant in the inner expectation?

3.12. Let x be a p × 1 random vector with covariance matrix Cov(x).
Let A be an r × p constant matrix and let B be a q × p constant matrix.
Find Cov(Ax,Bx) in terms of A,B and Cov(x).

3.13. The table W shown below represents 4 measurements on 5 people.

age breadth cephalic size

39.00 149.5 81.9 3738

35.00 152.5 75.9 4261

35.00 145.5 75.4 3777

19.00 146.0 78.1 3904

0.06 88.5 77.6 933

a) Find the sample mean x.
b) Find the coordinatewise median MED(W ).

3.14. Suppose x1, ...,xn are iid p×1 random vectors from a multivariate
t-distribution with parameters µ and Σ with d degrees of freedom. Then

E(xi) = µ and Cov(x) =
d

d− 2
Σ for d > 2. Assuming d > 2, find the

limiting distribution of
√
n(x − c) for appropriate vector c.

3.15. Suppose that








X1

X2

X3

X4









∼ N4

















9
16
4
1









,









1 0.8 −0.4 0
0.8 1 −0.56 0
−0.4 −0.56 1 0

0 0 0 1

















.

a) Find the distribution of X3.

68



b) Find the distribution of (X2, X4)
T .

c) Which pairs of random variables Xi and Xj are independent?

d) Find the correlation ρ(X1, X3).

3.16. Suppose x1, ...,xn are iid p× 1 random vectors where

xi ∼ (1 − γ)Np(µ,Σ) + γNp(µ, cΣ)

with 0 < γ < 1 and c > 0. Then E(xi) = µ and Cov(xi) = [1 + γ(c− 1)]Σ.
Find the limiting distribution of

√
n(x − c) for appropriate vector c.

Let X be an n× p constant matrix and let β be a p× 1 constant vector.
Suppose Y ∼ Nn(Xβ, σ2I). Find the distribution of HY if HT = H = H2

is an n× n matrix and if HX = X. Simplify.

3.17. Recall that if X ∼ Np(µ,Σ), then the conditional distribution of
X1 given that X2 = x2 is multivariate normal with mean µ1 +Σ12Σ

−1
22 (x2−

µ2) and covariance matrix
Σ11 − Σ12Σ

−1
22 Σ21. Let Y and X follow a bivariate normal distribution

(

Y
X

)

∼ N2

( (

134
96

)

,

(

24.5 1.1
1.1 23.0

) )

.

a) Find E(Y |X).

b) Find Var(Y |X).
3.18. Suppose that









X1

X2

X3

X4









∼ N4

















1
7
3
0









,









4 0 2 1
0 1 0 0
2 0 3 1
1 0 1 5

















.

a) Find the distribution of (X1, X4)
T .

b) Which pairs of random variables Xi and Xj are independent?

c) Find the correlation ρ(X1, X4).

3.19. Suppose that








X1

X2

X3

X4









∼ N4

















3
4
2
3









,









3 2 1 1
2 4 1 0
1 1 2 0
1 0 0 3

















.
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a) Find the distribution of (X1, X3)
T .

b) Which pairs of random variables Xi and Xj are independent?

c) Find the correlation ρ(X1, X3).

3.20. Suppose x1, ...,xn are iid p×1 random vectors where E(xi) = e0.51
and
Cov(xi) = (e2 − e)Ip. Find the limiting distribution of

√
n(x− c) for appro-

priate vector c.

3.21. Suppose that








X1

X2

X3

X4









∼ N4

















49
25
9
4









,









2 −1 3 0
−1 5 −3 0
3 −3 5 0
0 0 0 4

















.

a) Find the distribution of (X1, X3)
T .

b) Which pairs of random variables Xi and Xj are independent?

c) Find the correlation ρ(X1, X3).

3.22. Recall that if X ∼ Np(µ,Σ), then the conditional distribution of
X1 given that X2 = x2 is multivariate normal with mean µ1 +Σ12Σ

−1
22 (x2−

µ2) and covariance matrix
Σ11 − Σ12Σ

−1
22 Σ21. Let Y and X follow a bivariate normal distribution

(

Y
X

)

∼ N2

( (

49
17

)

,

(

3 −1
−1 4

) )

.

a) Find E(Y |X).

b) Find Var(Y |X).

3.23. Suppose Y ∼ Nn(Xβ, σ2I). Find the distribution of
(XTX)−1XTY if X is an n × p full rank constant matrix and β is a p× 1
constant vector. Simplify.

3.24. Suppose x1, ...,xn are iid 2×1 random vectors from a multivariate
lognormal
LN(µ, Σ) distribution. Let xi = (Xi1, Xi2)

T . Following Press (2005, p. 149-
150),
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E(Xij) = exp(µj+σ
2
j /2), V (Xij) = exp(σ2

j )[exp(σ2
j )−1] exp(2µj) for j = 1, 2,

and
Cov(Xi1, Xi2) = exp[µ1 + µ2 + 0.5(σ2

1 + σ2
2) + σ12][exp(σ12) − 1]. Find the

limiting distribution of
√
n(x − c) for appropriate vector c.
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