
Chapter 10

MANOVA

10.1 Introduction

Definition 10.1. The response variables are the variables that you want
to predict. The predictor variables are the variables used to predict the
response variables.

Notation. The MANOVA model yi = BT xi + εi for i = 1, ..., n has
m ≥ 2 response variables Y1, ..., Ym and d predictor variables X1, X2, ..., Xd.
The ith case is (xT

i , yT
i ) = (xi1, ..., xid, Yi1, ..., Yim). If a constant xi1 = 1 is

in the model, then xi1 could be omitted from the case.

For the multivariate analysis of variance (MANOVA) model, the predic-
tors are not quantitative variables, so the predictors are indicator variables.
Sometimes the trivial predictor 1 is also in the model. The multivariate
regression model of Chapter 12 has at least one quantitative variable.

In matrix form, the MANOVA model is Z = XB + E, and the data
matrix W = [X Y ]. The n × m matrix

Z =











Y1,1 Y1,2 . . . Y1,m

Y2,1 Y2,2 . . . Y2,m

...
...

. . .
...

Yn,1 Yn,2 . . . Yn,m











=
[

Y 1 Y 2 . . . Y m

]

=







yT
1
...

yT
n







.
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The n × d matrix X is not necessarily of full rank d, and

X =











x1,1 x1,2 . . . x1,d

x2,1 x2,2 . . . x2,d

...
...

. . .
...

xn,1 xn,2 . . . xn,d











=
[

v1 v2 . . . vd

]

=







xT
1
...

xT
n







where v1 = 1.
The d × m matrix

B =











β1,1 β1,2 . . . β1,m

β2,1 β2,2 . . . β2,m

...
...

. . .
...

βd,1 βd,2 . . . βd,m











=
[

β1 β2 . . . βm

]

.

The n × m matrix

E =











ε1,1 ε1,2 . . . ε1,m

ε2,1 ε2,2 . . . ε2,m

...
...

. . .
...

εn,1 εn,2 . . . εn,m











=
[

e1 e2 . . . em

]

=







εT
1
...

εT
n






.

Warning: The ei are error vectors, not orthonormal eigenvectors.

Definition 10.2. Models in which a single response variable Y is quan-
titative, but all of the predictor variables are qualitative are called analysis
of variance (ANOVA) models, experimental design models or design of ex-
periments (DOE) models. Each combination of the levels of the predictors
gives a different distribution for Y , and there are p different distributions or
treatments. A predictor variable W is often called a factor and a factor level
ai is one of the categories W can take. In an ANOVA model,

Yi = xi,1β1 + xi,2β2 + · · · + xi,dβd + ei = xT
i β + ei (10.1)

for i = 1, . . . , n. In matrix notation, these n equations become

Y = Xβ + e, (10.2)

where Y is an n × 1 vector of response variables, X is an n × d matrix of
predictors, β is a d × 1 vector of unknown coefficients, e is an n × 1 vector
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of unknown errors, and d ≥ p. Equivalently,










Y1

Y2
...

Yn











=











x1,1 x1,2 . . . x1,d

x2,1 x2,2 . . . x2,d

...
...

. . .
...

xn,1 xn,2 . . . xn,d





















β1

β2
...

βd











+











e1

e2
...
en











. (10.3)

The ei are iid with zero mean and variance σ2, and a linear model estimator
such as least squares is used to estimate the unknown parameters β and σ2.

Each response variable in a MANOVA model follows an ANOVA model
Y j = Xβj + ej for j = 1, ..., m where it is assumed that E(ej) = 0 and
Cov(ej) = σjjIn. Hence the errors corresponding to the jth response are
uncorrelated with variance σ2

j = σjj. Notice that the same design matrix
X of predictors is used for each of the m models, but the jth response
variable vector Y j, coefficient vector βj and error vector ej change and thus
depend on j. Hence for a one way MANOVA model, each response variable
follows a one way ANOVA model, while for a two way MANOVA model,
each response variable follows a two way ANOVA model for j = 1, ..., m.

Once the ANOVA model is fixed, eg a one way ANOVA model, the design
matrix X depends on the parameterization of the ANOVA model. The
fitted values and residuals are the same for each parameterization, but the
interpretation of the parameters depend on the parameterization.

Now consider the ith case (xT
i , yT

i ) which corresponds to the ith row of
Z and the ith row of X. Then











Yi1 = β11xi1 + · · · + βd1xid + εi1 = xT
i β1 + εi1

Yi2 = β12xi1 + · · · + βd2xid + εi2 = xT
i β2 + εi2

...
Yim = β1mxi1 + · · · + βdmxid + εim = xT

i βm + εim











or yi = E(yi) + εi where

E(yi) = BT xi =











xT
i β1

xT
i β2
...

xT
i βm











.

The notation yi|xi and E(yi|xi) is more accurate, but usually the con-
ditioning is suppressed. Taking E(yi|xi) to be a constant, yi and εi have
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the same covariance matrix. In the MANOVA model, this covariance matrix
Σε does not depend on i. Observations from different cases are uncorrelated
(often independent), but the m errors for the m different response variables
for the same case are correlated.

Definition 10.3. The MANOVA model yk = BTxk + εk for k =
1, ..., n is written in matrix form as Z = XB + E. The model has E(εk) =
0 and Cov(εk) = Σε = ((σij)) for k = 1, ..., n. Also E(ei) = 0 while
Cov(ei, ej) = σijIn for i, j = 1, ..., m. Then B and Σε are unknown matrices
of parameters to be estimated, and E(Z) = XB while E(Yij) = xT

i βj.
Considering the kth row of Z, X and E shows that yT

k = xT
k B + εT

k .

10.2 One Way ANOVA

Before describing the one way MANOVA model, it is useful to give a brief
description on the one way ANOVA model.

Definition 10.4. A lurking variable is not one of the variables in the
study, but may affect the relationships among the variables in the study.
A unit is the experimental material assigned treatments, which are the
conditions the investigator wants to study. The unit is experimental if it was
randomly assigned to a treatment, and the unit is observational if it was not
randomly assigned to a treatment.

Definition 10.5. In an experiment, the investigators use randomiza-
tion to assign treatments to units. To assign p treatments to n = n1+· · ·+np

experimental units, draw a random permutation of {1, ..., n}. Assign the first
n1 units treatment 1, the next n2 units treatment 2, ..., and the final np units
treatment p.

Randomization allows one to do valid inference such as F tests of hypothe-
ses and confidence intervals. Randomization also washes out the effects of
lurking variables and makes the p treatment groups similar except for the
treatment. The effects of lurking variables are present in observational stud-
ies defined in Definition 10.6.

Definition 10.6. In an observational study, investigators simply ob-
serve the response, and the treatment groups need to be p random samples
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from p populations (the levels) for valid inference.

Example 10.1. Consider using randomization to assign the following
nine people (units) to three treatment groups.

Carroll, Collin, Crawford, Halverson, Lawes,
Stach, Wayman, Wenslow, Xumong

Balanced designs have the group sizes the same: ni ≡ h = n/p. Label the
units alphabetically so Carroll gets 1, ..., Xumong gets 9. The R/Splus
function sample can be used to draw a random permutation. Then the first
3 numbers in the permutation correspond to group 1, the next 3 to group 2
and the final 3 to group 3. Using the output shown below, gives the following
3 groups.

group 1: Stach, Wayman, Xumong
group 2: Lawes, Carroll, Halverson
group 3: Collin, Wenslow, Crawford

> sample(9)

[1] 6 7 9 5 1 4 2 8 3

Often there is a table or computer file of units and related measurements,
and it is desired to add the unit’s group to the end of the table. The mpack
function rand reports a random permutation and the quantity groups[i] =
treatment group for the ith person on the list. Since persons 6, 7 and 9 are in
group 1, groups[7] = 1. Since Carroll is person 1 and is in group 2, groups[1]
= 2, et cetera.

> rand(9,3)

$perm

[1] 6 7 9 5 1 4 2 8 3

$groups

[1] 2 3 3 2 2 1 1 3 1

Definition 10.7. Replication means that for each treatment, the ni

response variables Yi,1, ..., Yi,ni
are approximately iid random variables.

Example 10.2. a) If ten students work two types of paper mazes three
times each, then there are 60 measurements that are not replicates. Each
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student should work the six mazes in random order since speed increases
with practice. For the ith student, let Zi1 be the average time to complete
the three mazes of type 1, let Zi2 be the average time for mazes of type 2
and let Di = Zi1 − Zi2. Then D1, ..., D10 are replicates.

b) Cobb (1998, p. 126) states that a student wanted to know if the shapes
of sponge cells depends on the color (green or white). He measured hundreds
of cells from one white sponge and hundreds of cells from one green sponge.
There were only two units so n1 = 1 and n2 = 1. The student should have
used a sample of n1 green sponges and a sample of n2 white sponges to get
more replicates.

c) Replication depends on the goals of the study. Box, Hunter and Hunter
(2005, p. 215-219) describes an experiment where the investigator times how
long it takes him to bike up a hill. Since the investigator is only interested in
his performance, each run up a hill is a replicate (the time for the ith run is a
sample from all possible runs up the hill by the investigator). If the interest
had been on the effect of eight treatment levels on student bicyclists, then
replication would need n = n1 + · · · + n8 student volunteers where ni ride
their bike up the hill under the conditions of treatment i.

Definition 10.8. Let fZ(z) be the pdf of Z. Then the family of pdfs
fY (y) = fZ(y−µ) indexed by the location parameter µ, −∞ < µ < ∞, is the
location family for the random variable Y = µ +Z with standard pdf fZ(z).

Definition 10.9. A one way fixed effects ANOVA model has a single
qualitative predictor variable W with p categories a1, ..., ap. There are p
different distributions for Y , one for each category ai. The distribution of

Y |(W = ai) ∼ fZ(y − µi)

where the location family has second moments. Hence all p distributions
come from the same location family with different location parameter µi and
the same variance σ2.

Definition 10.10. The one way fixed effects normal ANOVA model is
the special case where

Y |(W = ai) ∼ N(µi, σ
2).

Example 10.3. The pooled 2 sample t–test is a special case of a one
way ANOVA model with p = 2. For example, one population could be ACT
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scores for men and the second population ACT scores for women. Then W =
gender and Y = score.

Notation. It is convenient to relabel the response variable Y1, ..., Yn as
the vector Y = (Y11, ..., Y1,n1

, Y21, ..., Y2,n2
, ..., Yp1, ..., Yp,np)

T where the Yij are
independent and Yi1, ..., Yi,ni

are iid. Here j = 1, ..., ni where ni is the number
of cases from the ith level where i = 1, ..., p. Thus n1+· · ·+np = n. Similarly
use double subscripts on the errors. Then there will be many equivalent
parameterizations of the one way fixed effects ANOVA model.

Definition 10.11. The cell means model is the parameterization of the
one way fixed effects ANOVA model such that

Yij = µi + eij

where Yij is the value of the response variable for the jth trial of the ith
factor level. The µi are the unknown means and E(Yij) = µi. The eij are
iid from the location family with pdf fZ(z) and unknown variance σ2 =
VAR(Yij) = VAR(eij). For the normal cell means model, the eij are iid
N(0, σ2) for i = 1, ..., p and j = 1, ..., ni.

The cell means model is a linear model (without intercept) of the form
Y = Xcβc + e =







































Y11
...

Y1,n1

Y21
...

Y2,n2

...
Yp,1
...

Yp,np







































=







































1 0 0 . . . 0
...

...
...

...
1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

...
0 1 0 . . . 0
...

...
...

...
0 0 0 . . . 1
...

...
...

...
0 0 0 . . . 1

















































µ1

µ2
...

µp











+







































e11
...

e1,n1

e21
...

e2,n2

...
ep,1
...

ep,np







































. (10.4)

Notation. Let Yi0 =
∑ni

j=1 Yij and let

µ̂i = Y i0 = Yi0/ni =
1

ni

ni
∑

j=1

Yij. (10.5)
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Hence the “dot notation” means sum over the subscript corresponding to the
0, eg j. Similarly, Y00 =

∑p

i=1

∑ni

j=1 Yij is the sum of all of the Yij.

Notice that the indicator variables used in the cell means model (10.4) are
vh,k = 1 if the hth case has W = ak, and vhk

= 0, otherwise, for k = 1, ..., p
and h = 1, ..., n. So Yij has vh,k = 1 only if i = k and j = 1, ..., ni. Here vk is
the kth column of Xc. The model can use p indicator variables for the factor
instead of p − 1 indicator variables because the model does not contain an
intercept. Also notice that

E(Y ) = Xcβc = (µ1, ..., µ1, µ2, ..., µ2, ..., µp, ..., µp)
T ,

(XT
c Xc) = diag(n1, ..., np) and XT

c Y = (Y10, ..., Y10, Y20, ..., Y20, ..., Yp0, ..., Yp0)
T .

Hence (XT
c Xc)

−1 = diag(1/n1, ..., 1/np) and the OLS estimator

β̂c = (XT
c Xc)

−1XT
c Y = (Y 10, ..., Y p0)

T = (µ̂1, ..., µ̂p)
T .

Thus Ŷ = Xcβ̂c = (Y 10, ..., Y 10, ..., Y p0, ..., Y p0)
T . Hence the ijth fitted value

is
Ŷij = Y i0 = µ̂i (10.6)

and the ijth residual is

rij = Yij − Ŷij = Yij − µ̂i. (10.7)

Since the cell means model is a linear model, there is an associated re-
sponse plot and residual plot. However, many of the interpretations of the
OLS quantities for ANOVA models differ from the interpretations for multi-
ple linear regression (MLR) models. First, for MLR models, the conditional
distribution Y |x makes sense even if x is not one of the observed xi provided
that x is not far from the xi. This fact makes MLR very powerful. For MLR,
at least one of the variables in x is a continuous predictor. For the one way
fixed effects ANOVA model, the p distributions Y |xi make sense where xT

i

is a row of Xc.
Also, the OLS MLR ANOVA F test for the cell means model tests H0 :

β = 0 ≡ H0 : µ1 = · · · = µp = 0, while the one way fixed effects ANOVA F
test given after Definition 10.15 tests H0 : µ1 = · · · = µp.

Definition 10.12. Consider the one way fixed effects ANOVA model.
The response plot is a plot of Ŷij ≡ µ̂i versus Yij and the residual plot is a
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plot of Ŷij ≡ µ̂i versus rij . Add the identity line to the response plot and
r = 0 line to the residual plot as visual aids.

The points in the response plot scatter about the identity line and the
points in the residual plot scatter about the r = 0 line, but the scatter need
not be in an evenly populated band. A dot plot of Z1, ..., Zm consists of an
axis and m points each corresponding to the value of Zi. The response plot
consists of p dot plots, one for each value of µ̂i. The dot plot corresponding
to µ̂i is the dot plot of Yi1, ..., Yi,ni

. The p dot plots should have roughly the
same amount of spread, and each µ̂i corresponds to level ai. If a new level
af corresponding to xf was of interest, hopefully the points in the response
plot corresponding to af would form a dot plot at µ̂f similar in spread to
the other dot plots, but it may not be possible to predict the value of µ̂f .
Similarly, the residual plot consists of p dot plots, and the plot corresponding
to µ̂i is the dot plot of ri1, ..., ri,ni

.
Assume that each ni ≥ 10. Under the assumption that the Yij are from

the same location scale family with different parameters µi, each of the p
dot plots should have roughly the same shape and spread. This assumption
is easier to judge with the residual plot. If the response plot looks like the
residual plot, then a horizontal line fits the p dot plots about as well as the
identity line, and there is not much difference in the µi. If the identity line is
clearly superior to any horizontal line, then at least some of the means differ.

Definition 10.13. An outlier corresponds to a case that is far from the
bulk of the data. Look for a large vertical distance of the plotted point from
the identity line or the r = 0 line.

Rule of thumb 10.1. Mentally add 2 lines parallel to the identity line
and 2 lines parallel to the r = 0 line that cover most of the cases. Then a
case is an outlier if it is well beyond these 2 lines.

This rule often fails for large outliers since often the identity line goes
through or near a large outlier so its residual is near zero. A response that is
far from the bulk of the data in the response plot is a “large outlier” (large
in magnitude). Look for a large gap between the bulk of the data and the
large outlier.

Suppose there is a dot plot of nj cases corresponding to level aj that is
far from the bulk of the data. This dot plot is probably not a cluster of “bad
outliers” if nj ≥ 4 and n ≤ 50. If nj = 1, such a case may be a large outlier.
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Rule of thumb 10.2. Often an outlier is very good, but more often an
outlier is due to a measurement error and is very bad.

The assumption of the Yij coming from the same location scale family
with different location parameters µi and the same constant variance σ2

is a big assumption and often does not hold. Another way to check this
assumption is to make a box plot of the Yij for each i. The box in the box
plot corresponds to the lower, middle and upper quartiles of the Yij . The
middle quartile is just the sample median of the data mij: at least half of the
Yij ≥ mij and at least half of the Yij ≤ mij. The p boxes should be roughly
the same length and the median should occur in roughly the same position
(eg in the center) of each box. The “whiskers” in each plot should also be
roughly similar. Histograms for each of the p samples could also be made.
All of the histograms should look similar in shape.

Example 10.4. Kuehl (1994, p. 128) gives data for counts of hermit
crabs on 25 different transects in each of six different coastline habitats. Let
Z be the count. Then the response variable Y = log10(Z+1/6). Although the
counts Z varied greatly, each habitat had several counts of 0 and often there
were several counts of 1, 2 or 3. Hence Y is not a continuous variable. The
cell means model was fit with ni = 25 for i = 1, ..., 6. Each of the six habitats
was a level. Figure 10.1a and b shows the response plot and residual plot.
There are 6 dot plots in each plot. Because several of the smallest values in
each plot are identical, it does not always look like the identity line is passing
through the six sample means Y i0 for i = 1, ..., 6. In particular, examine the
dot plot for the smallest mean (look at the 25 dots furthest to the left that
fall on the vertical line FIT ≈ 0.36). Random noise (jitter) has been added to
the response and residuals in Figure 10.1c and d. Now it is easier to compare
the six dot plots. They seem to have roughly the same spread.

The plots contain a great deal of information. The response plot can
be used to explain the model, check that the sample from each population
(treatment) has roughly the same shape and spread, and to see which pop-
ulations have similar means. Since the response plot closely resembles the
residual plot in Figure 10.1, there may not be much difference in the six
populations. Linearity seems reasonable since the samples scatter about the
identity line. The residual plot makes the comparison of “similar shape” and
“spread” easier.
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d) Jittered Residual Plot

Figure 10.1: Plots for One Way ANOVA Model for Crab Data

Definition 10.14. a) The total sum of squares

SSTO =

p
∑

i=1

ni
∑

j=1

(Yij − Y 00)
2.

b) The treatment sum of squares

SSTR =

p
∑

i=1

ni(Y i0 − Y 00)
2.

c) The residual sum of squares or error sum of squares

SSE =

p
∑

i=1

ni
∑

j=1

(Yij − Y io)
2.

Definition 10.15. Associated with each SS in Definition 10.14 is a
degrees of freedom (df) and a mean square = SS/df. For SSTO, df = n−1 and
MSTO = SSTO/(n−1). For SSTR, df = p−1 and MSTR = SSTR/(p−1).
For SSE, df = n − p and MSE = SSE/(n − p).

Let S2
i =

∑ni

j=1(Yij − Y i0)
2/(ni − 1) be the sample variance of the ith

group. Then the MSE is a weighted sum of the S2
i :

σ̂2 = MSE =
1

n − p

p
∑

i=1

ni
∑

j=1

r2
ij =

1

n − p

p
∑

i=1

ni
∑

j=1

(Yij − Y i0)
2 =
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1

n − p

p
∑

i=1

(ni − 1)S2
i = S2

pool

where S2
pool is known as the pooled variance estimator.

The ANOVA table is the same as that for MLR, except that SSTR re-
places the regression sum of squares. The MSE is again an estimator of σ2.
The ANOVA F test tests whether all p means µi are equal. Shown below is
an ANOVA table given in symbols. Sometimes “Treatment” is replaced by
“Between treatments,” “Between Groups,” “Model,” “Factor” or “Groups.”
Sometimes “Error” is replaced by “Residual,” or “Within Groups.” Some-
times “p-value” is replaced by “P”, “Pr(> F )” or “PR > F.”

Summary Analysis of Variance Table

Source df SS MS F p-value
Treatment p-1 SSTR MSTR Fo=MSTR/MSE for Ho:

Error n-p SSE MSE µ1 = · · · = µp

Note that the software output uses pvalue for pval, an estimate of the
pvalue.

Be able to perform the 4 step fixed effects one way ANOVA F
test of hypotheses:
i) State the hypotheses Ho: µ1 = µ2 = · · · = µp and Ha: not Ho.
ii) Find the test statistic Fo = MSTR/MSE or obtain it from output.
iii) Find the pval from output or use the F–table: pval =

P (Fp−1,n−p > Fo).

iv) State whether you reject Ho or fail to reject Ho. If the pval < δ, reject
Ho and conclude that the mean response depends on the level of the factor.
Otherwise fail to reject Ho and conclude that the mean response does not
depend on the level of the factor. Give a nontechnical sentence.

Rule of thumb 10.3. If

max(S1, ..., Sp) ≤ 2min(S1, ..., Sp),

then the one way ANOVA F test results will be approximately correct if
the response and residual plots suggest that the remaining one way ANOVA
model assumptions are reasonable. See Moore (2000, p. 512). If all of the
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ni ≥ 5, replace the standard deviations by the ranges of the dot plots when
examining the response and residual plots.

Remark 10.1. If the units are a representative sample of some popula-
tion of interest, then randomization of units into groups makes the assump-
tion that Yi1, ..., Yi,ni

are iid hold to a useful approximation for large sample
theory. Random sampling from populations also induces the iid assump-
tion. Linearity can be checked with the response plot, and similar shape and
spread of the location families can be checked with both the response and
residual plots. Also check that outliers are not present. If the p dot plots in
the response plot are approximately symmetric, then the sample sizes ni can
be smaller than if the dot plots are skewed.

Remark 10.2. When the assumption that the p groups come from the
same location family with finite variance σ2 is violated, the one way ANOVA
F test may not make much sense because unequal means may not imply the
superiority of one category over another. Suppose Y is the time in minutes
until relief from a headache and that Y1j ∼ N(60, 1) while Y2j ∼ N(65, σ2).
If σ2 = 1, then the type 1 medicine gives headache relief 5 minutes faster, on
average, and is superior, all other things being equal. But if σ2 = 100, then
many patients taking medicine 2 experience much faster pain relief than those
taking medicine 1, and many experience much longer time until pain relief.
In this situation, predictor variables that would identify which medicine is
faster for a given patient would be very useful.

fat1 fat2 fat3 fat4 One way Anova for Fat1 Fat2 Fat3 Fat4

64 78 75 55 Source DF SS MS F P

72 91 93 66 treatment 3 1636.5 545.5 5.41 0.0069

68 97 78 49 error 20 2018.0 100.9

77 82 71 64

56 85 63 70

95 77 76 68

Example 10.5. The output above represents grams of fat (minus 100
grams) absorbed by doughnuts using 4 types of fat. See Snedecor and
Cochran (1967, p. 259). Let µi denote the mean amount of fati absorbed by
doughnuts, i = 1, 2, 3 and 4. a) Find µ̂1. b) Perform a 4 step ANOVA F test.

Solution: a) β̂1c = µ̂1 = Y 10 = Y10/n1 =
∑n1

j=1 Y1j/n1 =
(64 + 72 + 68 + 77 + 56 + 95)/6 = 432/6 = 72.
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b) i) H0 : µ1 = µ2 = µ3 = µ4 Ha: not H0

ii) F = 5.41
iii) pval = 0.0069
iv) Reject H0, the mean amount of fat absorbed by doughnuts depends

on the type of fat.

Definition 10.16. A contrast C =
∑p

i=1 kiµi where
∑p

i=1 ki = 0. The

estimated contrast is Ĉ =
∑p

i=1 kiY i0.

If the null hypothesis of the fixed effects one way ANOVA test is not
true, then not all of the means µi are equal. Researchers will often have
hypotheses, before examining the data, that they desire to test. Often such
a hypothesis can be put in the form of a contrast. For example, the contrast
C = µi−µj is used to compare the means of the ith and jth groups while the
contrast µ1 − (µ2 + · · ·+µp)/(p− 1) is used to compare the last p− 1 groups
with the 1st group. This contrast is useful when the 1st group corresponds
to a standard or control treatment while the remaining groups correspond to
new treatments.

Assume that the normal cell means model is a useful approximation to
the data. Then the Y i0 ∼ N(µi, σ

2/ni) are independent, and

Ĉ =

p
∑

i=1

kiY i0 ∼ N

(

C, σ2

p
∑

i=1

k2
i

ni

)

.

Hence the standard error

SE(Ĉ) =

√

√

√

√MSE

p
∑

i=1

k2
i

ni

.

The degrees of freedom is equal to the MSE degrees of freedom = n − p.
Consider a family of null hypotheses for contrasts {Ho :

∑p

i=1 kiµi = 0
where

∑p
i=1 ki = 0 and the ki may satisfy other constraints}. Let δS denote

the probability of a type I error for a single test from the family where a type
I error is a false rejection. The family level δF is an upper bound on the
(usually unknown) size δT . Know how to interpret δF ≈ δT =
P(of making at least one type I error among the family of contrasts).

Two important families of contrasts are the family of all possible con-
trasts and the family of pairwise differences Cij = µi − µj where i 6= j. The

226



Scheffé multiple comparisons procedure has a δF for the family of all possible
contrasts while the Tukey multiple comparisons procedure has a δF for the
family of all

(

p

2

)

pairwise contrasts.
To interpret output for multiple comparisons procedures, the underlined

means or blocks of letters besides groups of means indicate that the group
of means are not significantly different.

Example 10.6. The output below uses data from SAS Institute (1985,
p. 126-129). The mean nitrogen content of clover depends on the strain of
clover (3dok1, 3dok5, 3dok7, compos, 3dok4, 3dok13). Recall that means
µ1 and µ2 are significantly different if you can conclude that µ1 6= µ2 while
µ1 and µ2 are not significantly different if there is not enough evidence to
conclude that µ1 6= µ2 (perhaps because the means are approximately equal
or perhaps because the sample sizes are not large enough).

Notice that the strain of clover 3dok1 appears to have the highest mean
nitrogen content. There are 4 pairs of means that are not significantly differ-
ent. The letter B suggests 3dok5 and 3dok7, the letter C suggests 3dok7 and
compos, the letter D suggests compos and 3dok4, while the letter E suggests
3dok4 and 3dok13 are not significantly different.

Means with the same letter are not significantly different.

Waller Grouping Mean N strain

A 28.820 5 3dok1

B 23.980 5 3dok5

B

C B 19.920 5 3dok7

C

C D 18.700 5 compos

D

E D 14.640 5 3dok4

E

E 13.260 5 3dok13

Definition 10.17. Graphical Anova for the one way model uses the
residuals as a reference set instead of a t, F or normal distribution. The
scaled treatment deviations or scaled effect c(Y i0 − Y 00) = c(µ̂i − Y 00)
are scaled to have the same variability as the residuals. A dot plot of the
scaled deviations is placed above the dot plot of the residuals. Assume that
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Figure 10.2: Graphical Anova

ni ≡ h = n/p for i = 1, ..., p. For small n ≤ 40, suppose the distance be-
tween two scaled deviations (A and B, say) is greater than the range of the
residuals = max(rij)−min(rij). Then declare µA and µB to be significantly
different. If the distance is less than the range, do not declare µA and µB to
be significantly different. Scaled deviations that lie outside the range of the
residuals are significant (so significantly different from the overall mean).

For n ≥ 100, let r(1) ≤ r(2) ≤ · · · ≤ r(n) be the order statistics of the resid-
uals. Then instead of the range, use r(d0.975ne)−r(d0.025ne) as the distance where
dxe is the smallest integer ≥ x, eg d7.7e = 8. So effects outside of the interval
(r(d0.025ne), r(d0.975ne)) are significant. See Box, Hunter and Hunter (2005, p.

136, 166). A derivation of the scaling constant c =
√

(n − p)/(p − 1) is given
in Section 10.5.

ganova(x,y)

sdev 0.02955502 0.06611268 -0.05080048 -0.04486722

Treatments "A" "B" "C" "D"

Example 10.7. Cobb (1998, p. 160) describes a one way ANOVA design
used to study the amount of calcium in the blood. For many animals, the
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body’s ability to use calcium depends on the level of certain hormones in
the blood. The response was 1/(level of plasma calcium). The four groups
were A: Female controls, B: Male controls, C: Females given hormone and D:
Males given hormone. There were 10 birds of each gender, and five from each
gender were given the hormone. The output above uses the mpack function
ganova to produce Figure 10.2.

In Figure 10.2, the top dot plot has the scaled treatment deviations. From
left to right, these correspond to C, D, A and B since the output shows that
the deviation corresponding to C is the smallest with value −0.050. Since the
deviations corresponding to C and D are much closer than the range of the
residuals, the C and D effects yielded similar mean response values. A and
B appear to be significantly different from C and D. The distance between
the scaled A and B treatment deviations is about the same as the distance
between the smallest and largest residuals, so there is only marginal evidence
that the A and B effects are significantly different.

Since all 4 scaled deviations lie outside of the range of the residuals, all
effects A, B, C and D appear to be significant.

10.2.1 Response Transformations for ANOVA Models

A model for an experimental design is Yi = E(Yi) + ei for i = 1, ..., n where
the error ei = Yi − E(Yi) and E(Yi) ≡ E(Yi|xi) is the expected value of the
response Yi for a given vector of predictors xi. Many models can be fit with
least squares (OLS or LS) and are linear models of the form

Yi = xi,1β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei

for i = 1, . . . , n. Often xi,1 ≡ 1 for all i. In matrix notation, these n equations
become

Y = Xβ + e,

where Y is an n × 1 vector of dependent variables, X is an n × p design
matrix of predictors, β is a p × 1 vector of unknown coefficients, and e is
an n × 1 vector of unknown errors. If the fitted values are Ŷi = xT

i β̂, then
Yi = Ŷi + ri where the residuals ri = Yi − Ŷi.

The applicability of an experimental design model can be expanded by
allowing response transformations. An important class of response transfor-
mation models adds an additional unknown transformation parameter λo,
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such that
Yi = tλo(Zi) ≡ Z

(λo)
i = E(Yi) + ei = xT

i β + ei.

If λo was known, then Yi = tλo(Zi) would follow the linear model for the
experimental design.
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Figure 10.3: Transformation Plots for Crab Data

Definition 10.20. Assume that all of the values of the “response” Zi are
positive. A power transformation has the form Y = tλ(Z) = Zλ for λ 6= 0
and Y = t0(Z) = log(Z) for λ = 0 where λ ∈ ΛL = {−1,−1/2, 0, 1/2, 1}.

A graphical method for response transformations computes the fitted val-
ues Ŵi from the experimental design model using Wi = tλ(Zi) as the “re-
sponse.” Then a plot of the Ŵ versus W is made for each of the five values
of λ ∈ ΛL. For many experimental design models, the plotted points follow
the identity line in a (roughly) evenly populated band if the experimental
design model is reasonable for (Ŵ , W ). An exception is the one way ANOVA
model where there will be p dot plots of roughly the same shape and spread
that scatter about the identity line. If more than one value of λ ∈ ΛL gives
a linear plot, consult subject matter experts and use the simplest or most
reasonable transformation. Note that ΛL has 5 models, and the graphical
method selects the model with the best response plot. After selecting the
transformation, the usual checks should be made. In particular, the trans-
formation plot is also the response plot, and a residual plot should be made.
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Definition 10.21. A transformation plot is a plot of (Ŵ , W ) with the
identity line added as a visual aid.

In the following example, the plots show tλ(Z) on the vertical axis. The
label “TZHAT” of the horizontal axis are the fitted values that result from
using tλ(Z) as the “response” in the software.

For one way ANOVA models with ni ≡ m ≥ 5, look for a transformation
plot that satisfies the following conditions. i) The p dot plots scatter about
the identity line with similar shape and spread. ii) Dot plots with more skew
are worse than dot plots with less skew or dot plots that are approximately
symmetric. iii) Spread that increases or decreases with TZHAT is bad.

Example 10.4, continued. Following Kuehl (1994, p. 128), let C be
the count of crabs and let the “response” Z = C + 1/6. Figure 10.3 shows
the five transformation plots. The transformation log(Z) results in dot plots
that have roughly the same shape and spread. The transformations 1/Z and
1/
√

Z do not handle the 0 counts well, and the dot plots fail to cover the
identity line. The transformations

√
Z and Z have variance that increases

with the mean.

Remark 10.4. The graphical method for response transformations can
be used for design models that are linear models, not just one way ANOVA
models. The method is nearly identical to that of Chapter 12, but ΛL only has

5 values. The log rule states that if all of the Zi > 0 and if
max(Zi)

min(Zi)
≥ 10,

then the response transformation Y = log(Z) will often work.

10.3 One Way MANOVA

Using double subscripts will be useful for describing the one way MANOVA
model. Suppose there independent random samples from p different pop-
ulations (treatments), or n =

∑p

i=1 ni and ni cases are randomly assigned
to p treatment groups. Then the group sample sizes are ni for i = 1, ..., p.
Assume that m response variables yij = (Yij1, ..., Yijm)T are measured for
the ith treatment. Hence i = 1, ..., p and j = 1, ..., ni. The Yijk follow dif-
ferent one way ANOVA models for k = 1, ..., m. Assume E(yij) = µi and
Cov(yij) = Σε. Hence the p treatments have different mean vectors µi, but
common covariance matrix Σε. (This assumption can be relaxed for p = 2
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with the appropriate 2 sample Hotelling’s T 2 test.)
The one way MANOVA is used to test H0 : µ1 = µ2 = · · · = µp. Often

µi = µ + τ i, so H0 becomes H0 : τ 1 = · · · = τ p. If m = 1, the one
way MANOVA model is the one way ANOVA model. MANOVA is useful
since it takes into account the correlations between the m response variables.
Performing m ANOVA tests fails to account for these correlations, but can be
a useful diagnostic. The Hotelling’s T 2 test that uses a common covariance
matrix is a special case of the one way MANOVA model with m = 2.

Let µi = µ + τ i where
∑p

i=1 niτ i = 0. The jth case from the ith pop-
ulation or treatment group is yij = µ + τ j + eij where eij is an error
vector, i = 1, ..., p and j = 1, ..., ni. Let y = µ̂ =

∑p
i=1

∑ni

j=1 yij/n be
the overall mean. Let yi =

∑ni

j=1 yij/ni so τ̂ i = yi − y. Let the residual
ε̂ij = yij−yi = yij−µ̂−τ̂ i. Then yij = y+(yi−y)+(yij−yi) = µ̂+τ̂ i+ε̂ij.

Let Si be the sample covariance matrix corresponding to the ith treat-
ment group. Then the within sum of squares and cross products matrix
is W = (n1 − 1)S1 + · · · + (np − 1)Sp =

∑p
i=1

∑ni

j=1(yij − yi)(yij − yi)
T .

Then Σ̂ε = W /(n− p). The treatment or between sum of squares and cross
products matrix is B =

∑p

i=1 ni(yi − y)(yi − y)T . The total corrected (for
the mean) sum of squares and cross products matrix is T = B + W =
∑p

i=1

∑ni

j=1(yij − y)(yij − y)T . Note that T /(n − 1) is the usual sample co-
variance matrix if it is assumed that all n of the yij are iid so that the µi ≡ µ

for i = 1, ..., p.
The one way MANOVA model is yij = µ + τ i + εij where the εij are iid

with E(εij) = 0 and Cov(εij) = Σε. The MANOVA table is shown below.

Summary One Way MANOVA Table

Source matrix df
Treatment or Between B p − 1

Residual or Error or Within W n − p
Total (corrected) T n − 1

If all n of the yij are iid with E(yij) = µ and Cov(yij) = Σε, it can be

shown that A/df
P→ Σε where A = W , B or T and df is the corresponding

degrees of freedom. Let t0 be the test statistic. Although Pillai’s trace is
robust to nonnormality, often Wilk’s lambda is used. Wilk’s lambda

Λ =
|W |

|B + W | =
|W |
|T |
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is good if the iid εij ∼ Np(0,Σx). Then to = −[n−1− (m+p)/2] log(Λ) and
pval = P (χ2

m(p−1) > t0). Hence reject H0 if t0 > χ2
m(p−1)(1− α). See Johnson

and Wichern (1988, p. 238).

The four steps of the one way MANOVA test follow.
i) State the hypotheses H0 : µ1 = · · · = µp and H1 : not H0.
ii) Get t0 from output.
iii) Get pval from output.
iv) State whether you reject H0 or fail to reject H0. If pval ≤ α, reject H0

and conclude that not all of the p treatment means are equal. If pval > α, fail
to reject H0 and conclude that all p treatment means are equal or that there
is not enough evidence to conclude that not all of the p treatment means are
equal. As a textbook convention, use α = 0.05 if α is not given.

Rule of thumb 10.4. In the one way MANOVA model, Y j = Xβj +ej

is a one way ANOVA model for j = 1, ..., m. To check the one way MANOVA
model, make the m response and residual plots corresponding to the m one
way ANOVA models. Make a DD plot of the n residual vectors. Response
transformations can be done as in Section 10.2.1. If the ni are large, make p
DD plots of the yij for i = 1, ..., p. Also if the ni are large, make p plots of

Dij(yi, Si) versus Dij(yi, Σ̂ε) to check that the common covariance matrix
Σε is an adequate assumption. The plotted points in these p plots should
cluster tightly about the identity line if ni is large and the covariance matrix
of the ith treatment group is approximately Σε.

10.4 Summary

1) The fixed effects one way ANOVA model has one qualitative explana-
tory variable called a factor and a quantitative response variable Yij . The
factor variable has p levels, E(Yij) = µi and V (Yij) = σ2 for i = 1, ..., p and
j = 1, ..., ni. Experimental units are randomly assigned to the treatment
levels.

2) Let n = n1+· · ·+np. In an experiment, the investigators use random-
ization to randomly assign n units to treatments. Draw a random permuta-
tion of {1, ..., n}. Assign the first n1 units to treatment 1, the next n2 units
to treatment 2, ..., and the final np units to treatment p. Use ni ≡ h = n/p
if possible. Randomization washes out the effect of lurking variables.
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3) The 4 step fixed effects one way ANOVA F test has steps
i) Ho: µ1 = µ2 = · · · = µp and Ha: not Ho.
ii) Fo = MSTR/MSE is usually given by output.
iii) The pval = P(Fp−1,n−p > Fo) is usually given by output.
iv) If the pval < δ, reject Ho and conclude that the mean response depends
on the level of the factor. Otherwise fail to reject Ho and conclude that the
mean response does not depend on the level of the factor. Give a nontechnical
sentence.

Summary Analysis of Variance Table

Source df SS MS F p-value
Treatment p-1 SSTR MSTR Fo=MSTR/MSE for Ho:

Error n-p SSE MSE µ1 = · · · = µp

4) Shown is an ANOVA table given in symbols. Sometimes “Treatment”
is replaced by “Between treatments,” “Between Groups,” “Model,” “Fac-
tor” or “Groups.” Sometimes “Error” is replaced by “Residual,” or “Within
Groups.” Sometimes “p-value” is replaced by “P”, “Pr(> F )” or “PR > F.”

5) A dot plot of Z1, ..., Zh consists of an axis and h points each corre-
sponding to the value of Zi. The response plot is a plot of Ŷ versus Y . For
the one way ANOVA model, the response plot is a plot of Ŷij = µ̂i ver-
sus Yij . Often the identity line with unit slope and zero intercept is added
as a visual aid. Vertical deviations from the identity line are the residuals
rij = Yij − Ŷij = Yij − µ̂i. The plot will consist of p dot plots that scat-
ter about the identity line with similar shape and spread if the fixed effects
one way ANOVA model is appropriate. The ith dot plot is a dot plot of
Yi,1, ..., Yi,ni

. Assume that each ni ≥ 10. If the response plot looks like the
residual plot, then a horizontal line fits the p dot plots about as well as the
identity line, and there is not much difference in the µi. If the identity line is
clearly superior to any horizontal line, then at least some of the means differ.

6) The residual plot is a plot of Ŷ versus residual r = Y − Ŷ . The plot
will consist of p dot plots that scatter about the r = 0 line with similar shape
and spread if the fixed effects one way ANOVA model is appropriate. The
ith dot plot is a dot plot of ri,1, ..., ri,ni

. Assume that each ni ≥ 10. Under
the assumption that the Yij are from the same location scale family with
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different parameters µi, each of the p dot plots should have roughly the same
shape and spread. This assumption is easier to judge with the residual plot
than with the response plot.

7) Rule of thumb: If max(S1, ..., Sp) ≤ 2min(S1, ..., Sp), then the one way
ANOVA F test results will be approximately correct if the response and resid-
ual plots suggest that the remaining one way ANOVA model assumptions are
reasonable.

8) The cell means model for the fixed effects one way ANOVA is Yij =
µi + eij where Yij is the value of the response variable for the jth trial of the
ith factor level for i = 1, ..., p and j = 1, ..., ni. The µi are the unknown means
and E(Yij) = µi. The eij are iid from the location family with pdf fZ(z), zero
mean and unknown variance σ2 = V (Yij) = V (eij). For the normal cell means

model, the eij are iid N(0, σ2). The estimator µ̂i = Y i0 =
∑ni

j=1 Yij/ni = Ŷij.

The ith residual is rij = Yij−Y i0, and Y 00 is the sample mean of all of the Yij

and n =
∑p

i=1 ni. The total sum of squares SSTO =
∑p

i=1

∑ni

j=1(Yij − Y 00)
2,

the treatment sum of squares SSTR =
∑p

i=1 ni(Y i0 − Y 00)
2, and the error

sum of squares SSE =
∑p

i=1

∑ni

j=1(Yij − Y i0)
2. The MSE is an estimator of

σ2. In the ANOVA table, SSTO, SSTR and SSE have n− 1, p− 1 and n− p
degrees of freedom.

9) Let Yi0 =
∑ni

j=1 Yij and let

µ̂i = Y i0 = Yi0/ni =
1

ni

ni
∑

j=1

Yij.

Hence the “dot notation” means sum over the subscript corresponding to the
0, eg j. Similarly, Y00 =

∑p

i=1

∑ni

j=1 Yij is the sum of all of the Yij . Be able
to find µ̂i from data.

10) The applicability of a DOE (design of experiments) model can be ex-
panded by allowing response transformations. An important class of response
transformation models is

Y = tλo(Z) = E(Y ) + e = xT β + e

where the subscripts (eg Yij) have been suppressed. If λo was known, then
Y = tλo(Z) would follow the DOE model. Assume that all of the values
of the “response” Z are positive. A power transformation has the form
Y = tλ(Z) = Zλ for λ 6= 0 and Y = t0(Z) = log(Z) for λ = 0 where
λ ∈ ΛL = {−1,−1/2, 0, 1/2, 1}.
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11) A graphical method for response transformations computes the fitted
values Ŵ from the DOE model using W = tλ(Z) as the “response” for each
of the five values of λ ∈ ΛL. Let T̂ = Ŵ = TZHAT and plot TZHAT vs
tλ(Z) for λ ∈ {−1,−1/2, 0, 1/2, 1}. These plots are called transformation
plots. The residual or error degrees of freedom used to compute the MSE
should not be too small. Choose the transformation Y = tλ∗(Z) that has the
best plot. Consider the one way ANOVA model with ni > 4 for i = 1, ..., p.
i) The dot plots should spread about the identity line with similar shape
and spread. ii) Dot plots that are approximately symmetric are better than
skewed dot plots. iii) Spread that increases or decreases with TZHAT (the
shape of the plotted points is similar to a right or left opening megaphone)
is bad.

12) The transformation plot for the selected transformation is also the
response plot for that model (eg for the model that uses Y = log(Z) as the
response). Make all of the usual checks on the DOE model (residual and
response plots) after selecting the response transformation.

13) The log rule says try Y = log(Z) if max(Z)/min(Z) > 10 where
Z > 0 and the subscripts have been suppressed (so Z ≡ Zij for the one way
ANOVA model).

14) Graphical Anova for the one way ANOVA model makes a dot
plot of scaled treatment deviations (effects) above a dot plot of the residuals.
For small n ≤ 40, suppose the distance between two scaled deviations (A and
B, say) is greater than the range of the residuals = max(rij)−min(rij). Then
declare µA and µB to be significantly different. If the distance is less than
the range, do not declare µA and µB to be significantly different. Assume
the ni ≡ m for i = 1, ..., p. Then the ith scaled deviation is c(Y i0 − Y 00) =

cα̂i = α̃i where c =
√

dfe/dftreat =

√

n − p

p − 1
.

15) Assume that the residual degrees of freedom are large enough for
testing. Then the response and residual plots contain much information.
Linearity and constant variance may be reasonable if the p dot plots have
roughly the same shape and spread, and the dot plots scatter about the
identity line. The p dot plots of the residuals should have similar shape and
spread, and the dot plots scatter about the r = 0 line. It is easier to check
linearity with the response plot and constant variance with the residual plot.
Curvature is often easier to see in a residual plot, but the response plot can
be used to check whether the curvature is monotone or not. The response
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plot is more effective for determining whether the signal to noise ratio is
strong or weak, and for detecting outliers or influential cases.

16) In a MANOVA model, yk = BT xk + εk for k = 1, ..., n is written in
matrix form as Z = XB + E. The model has E(εk) = 0 and Cov(εk) =
Σε = ((σij)) for k = 1, ..., n. Each response variable in a MANOVA model
follows an ANOVA model Y j = Xβj +ej for j = 1, ..., m where it is assumed
that E(ej) = 0 and Cov(ej) = σjjIn.

17) The one way MANOVA model is as above where Y j = Xβj + ej

is a one way ANOVA model for j = 1, ..., m. Check the model by making m
response and residual plots and a DD plot of the residuals ε̂i.

18) The four steps of the one way MANOVA test follow.
i) State the hypotheses H0 : µ1 = · · · = µp and H1 : not H0.
ii) Get t0 from output.
iii) Get pval from output.
iv) State whether you reject H0 or fail to reject H0. If pval ≤ α, reject H0 and
conclude that not all of the p means are equal. If pval > α, fail to reject H0

and conclude that all p means are equal or that there is not enough evidence
to conclude that not all of the p means are equal. As a textbook convention,
use α = 0.05 if α is not given.

10.5 Summary

1) The multivariate linear model yi = BT xi+εi for i = 1, ..., n has m ≥ 2
response variables Y1, ..., Ym and p predictor variables X1, X2, ..., Xp. The ith
case is (xT

i , yT
i ) = (xi1, xi2, ..., xip, Yi1, ..., Yim). If a constant xi1 = 1 is in the

model, then xi1 could be omitted from the case. The model is written in
matrix form as Z = XB + E. The model has E(εk) = 0 and Cov(εk) =
Σε = ((σij)) for k = 1, ..., n. Also E(ei) = 0 while Cov(ei, ej) = σijIn for
i, j = 1, ..., m. Then B and Σε are unknown matrices of parameters to be
estimated, and E(Z) = XB while E(Yij) = xT

i βj.
The data matrix W = [X Y ] except usually the first column 1 of X is

omitted if X1 = 1. The n × m matrix

Z =











Y1,1 Y1,2 . . . Y1,m

Y2,1 Y2,2 . . . Y2,m

...
...

. . .
...

Yn,1 Yn,2 . . . Yn,m











=
[

Y 1 Y 2 . . . Y m

]

=







yT
1
...

yT
n






.
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The n × p matrix

X =











x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p











=
[

v1 v2 . . . vp

]

=







xT
1
...

xT
n







where often v1 = 1.
The p × m matrix

B =











β1,1 β1,2 . . . β1,m

β2,1 β2,2 . . . β2,m

...
...

. . .
...

βp,1 βp,2 . . . βp,m











=
[

β1 β2 . . . βm

]

.

The n × m matrix

E =











ε1,1 ε1,2 . . . ε1,m

ε2,1 ε2,2 . . . ε2,m

...
...

. . .
...

εn,1 εn,2 . . . εn,m











=
[

e1 e2 . . . em

]

=







εT
1
...

εT
n







.

Warning: The ei are error vectors, not orthonormal eigenvectors.
2) The univariate linear model is Yi = xi,1β1 + xi,2β2 + · · ·+ xi,pβp + ei =

xT
i β + ei = βT xi + ei for i = 1, . . . , n. In matrix notation, these n equations

become Y = Xβ + e, where Y is an n × 1 vector of response variables, X

is an n × p matrix of predictors, β is a p × 1 vector of unknown coefficients,
and e is an n × 1 vector of unknown errors.

3) Each response variable in a multivariate linear model follows a univari-
ate linear model Y j = Xβj + ej for j = 1, ..., m where it is assumed that
E(ej) = 0 and Cov(ej) = σjjIn.

4) The one way MANOVA model is a generalization of the Hotelling’s
T 2 test from 2 groups to p ≥ 2 groups, assumed to have different means
but a common covariance matrix Σε. Want to test H0 : µ1 = · · · = µp.
This model is a multivariate linear model so there are m response variables
Y1, ..., Ym measured for each group. Each Yi follows a one way ANOVA model
for i = 1, ..., m.

5) For the one way MANOVA model, make a DD plot of the residuals ε̂i

where i = 1, ..., n. Use the plot to check whether the εi follow a multivariate
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normal distribution or some other elliptically contoured distribution. Want
n > 10p.

6) For the one way MANOVA model, write the data as Yijk where i =
1, ..., p and j = 1, ..., ni. So k corresponds to the kth variable Yk for k =
1, ..., m. Then Ŷijk = µ̂ik = Y i0k for i = 1, ..., p. So for the kth variable,

mean µ1k, ..., µpk are of interest. The residuals are rijk = Yijk− Ŷijk. For each
variable Yk make a response plot of Y i0k versus Yijk and a residual plot of
Y i0k versus rijk. Both plots will consist of p dot plots of nk cases located at
the Y i0k. The dot plots should follow the identity line in the response plot
and the horizontal r = 0 line in the residual plot for each of the m response
variables Y1, ..., Ym. For each variable Yk, let Rik be the range of the ith dot
plot. If each ni ≥ 5, want max(R1k, ..., Rpk) ≤ 2min(R1k, ..., Rpk). The one
way MANOVA model may be reasonable if the m response and residual plots
satisfy the above graphical checks.

7) The four steps of the one way MANOVA test follow.
i) State the hypotheses H0 : µ1 = · · · = µp and H1 : not H0.
ii) Get t0 from output.
iii) Get pval from output.
iv) State whether you reject H0 or fail to reject H0. If pval ≤ α, reject H0

and conclude that not all of the p treatment means are equal. If pval > α, fail
to reject H0 and conclude that all p treatment means are equal or that there
is not enough evidence to conclude that not all of the p treatment means are
equal. Give a nontechnical sentence as the conclusion, if possible.

8) The one way MANOVA test assumes that Σx1
= · · · = Σxp

, but has
some resistance to this assumption. See point 6).

9) Know how to use randomization to assign units to treatment groups
with the R/Splus function sample that is used to draw a random permutation
of {1, 2, ..., n}. If the units are a1, ..., a9 and the sample(9) command gives
6 7 9 5 1 4 2 8 3, then a6, a7 and a9 are assigned treatment 1, a5, a1

and a4 are assigned treatment 2, and a2, a8 and a3 are assigned treatment 3.

10.6 Complements

Four good tests on the design and analysis of experiments (ANOVA) are
Box, Hunter and Hunter (2005), Cobb (1998), Kuehl (1994) and Ledolter
and Swersey (2007). Also see Olive (2010, ch. 5-9). Section 10.2 followed
Olive (2010, ch. 5) closely.
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All of the parameterizations of the one way fixed effects ANOVA model
yield the same predicted values, residuals and ANOVA F test, but the inter-
pretations of the parameters differ. The cell means model is a linear model
(without intercept) of the form Y = Xcβc + e = that can be fit using OLS.
The OLS MLR output gives the correct fitted values and residuals but an
incorrect ANOVA table. An equivalent linear model (with intercept) with
correct OLS MLR ANOVA table as well as residuals and fitted values can
be formed by replacing any column of the cell means model by a column of
ones 1. Removing the last column of the cell means model and making the
first column 1 gives the model Y = β0 + β1x1 + · · · + βp−1xp−1 + e given in
matrix form by (10.8).

It can be shown that the OLS estimators corresponding to (10.8) are
β̂0 = Y p0 = µ̂p, and β̂i = Y i0 − Y p0 = µ̂i − µ̂p for i = 1, ..., p − 1. The cell

means model has β̂i = µ̂i = Y i0.







































Y11
...

Y1,n1

Y21
...

Y2,n2

...
Yp,1
...

Yp,np







































=



















































1 1 0 . . . 0
...

...
...

...
1 1 0 . . . 0
1 0 1 . . . 0
...

...
...

...
1 0 1 . . . 0
...

...
...

...
1 0 0 . . . 1
...

...
...

...
1 0 0 . . . 1
1 0 0 . . . 0
...

...
...

...
1 0 0 . . . 0





























































β0

β1
...

βp−1











+







































e11
...

e1,n1

e21
...

e2,n2

...
ep,1
...

ep,np







































. (10.8)

Graphical Anova uses scaled treatment effects = scaled treatment de-
viations d̃i = cdi = c(Y i0 − Y 00) for i = 1, ..., p. Following Box, Hunter
and Hunter (2005, p. 166), suppose ni ≡ m = n/p for i = 1, ..., n. If Ho
µ1 = · · · = µp is true, want the sample variance of the scaled deviations
to be approximately equal to the sample variance of the residuals. So want

1 ≈
1
p

∑p

i=1 c2d2
i

1
n

∑n
i=1 r2

i

= F0 =
MSTR

MSE
=

SSTR/(p − 1)

SSE/(n − p)
=

∑p

i=1 md2
i /(p − 1)

∑n

i=1 r2
i /(n − p)
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since SSTR =
∑p

i=1 m(Y i0 − Y 00)
2 =

∑p

i=1 md2
i . So

F0 =

∑p

i=1 c2 n
p
d2

i
∑n

i=1 r2
i

=

∑p

i=1
m(n−p)

p−1
d2

i
∑n

i=1 r2
i

.

Equating numerators gives

c2 =
mp

n

(n − p)

(p − 1)
=

(n − p)

(p − 1)

since mp/n = 1. Thus c =
√

(n − p)/(p − 1).
For Graphical Anova, see Box, Hunter and Hunter (2005, p. 136, 150,

164, 166) and Hoaglin, Mosteller, and Tukey (1991). The R package granova,
available from (http://streaming.stat.iastate.edu/CRAN/) and authored by
R.M. Pruzek and J.E. Helmreich, may be useful.

The modified power transformation family

Yi = tλ(Zi) ≡ Z
(λ)
i =

Zλ
i − 1

λ

for λ 6= 0 and t0(Zi) = log(Zi) for λ = 0 where λ ∈ ΛL.
Box and Cox (1964) give a numerical method for selecting the response

transformation for the modified power transformations. Although the method
gives a point estimator λ̂o, often an interval of “reasonable values” is gen-
erated (either graphically or using a profile likelihood to make a confidence
interval), and λ̂ ∈ ΛL is used if it is also in the interval.

There are several reasons to use a coarse grid ΛL of powers. First, several
of the powers correspond to simple transformations such as the log, square
root, and reciprocal. These powers are easier to interpret than λ = .28,
for example. Secondly, if the estimator λ̂n can only take values in ΛL, then
sometimes λ̂n will converge in probability to λ∗ ∈ ΛL. Thirdly, Tukey (1957)
showed that neighboring modified power transformations are often very sim-
ilar, so restricting the possible powers to a coarse grid is reasonable.

The graphical method for response transformations is due to Olive (2004,
2010: ch. 5). A variant of the method would plot the residual plot or
both the response and the residual plot for each of the five values of λ.
Residual plots are also useful, but they do not distinguish between nonlinear
monotone relationships and nonmonotone relationships. See Fox (1991, p.
55). Alternative methods are given by Cook and Olive (2001) and Box,
Hunter and Hunter (2005, p. 321).
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A randomization test for the one way ANOVA model has H0: the
different treatments have no effect. This null hypothesis is also true if all p
pdfs Y |(W = ai) ∼ fZ(y − µ) are the same. An impractical randomization
test uses all M = n!

n1!···np!
ways of assigning ni of the Yij to treatment i for

i = 1, ..., p. Let F0 be the usual F statistic. The F statistic is computed
for each of the M permutations and H0 is rejected if the proportion of the
M F statistics that are larger than F0 is less than δ. The distribution of
the M F statistics is approximately Fp−1,n−p for large n when H0 is true.
The power of the randomization test is also similar to that of the usual F
test. See Hoeffding (1952). These results suggest that the usual F test is
semiparametric: the pvalue is approximately correct if n is large and if all p
pdfs Y |(W = ai) ∼ fZ(y − µ) are the same.

Let [x] be the integer part of x, eg [7.7] = 7. Olive (2011b) shows that
practical randomization tests that use a random sample of max(1000, [n log(n)])
permutations have level and power similar to the tests that use all M possi-
ble permutations. See Ernst (2009) and the mpack function rand1way for R
code.

Another alternative to one way ANOVA is to use feasible weighted least
squares (FWLS) on the cell means model with σ2V = diag(σ2

1, ..., σ
2
p) where

σ2
i is the variance of the ith group for i = 1, ..., p. Then V̂ = diag(S2

1 , ..., S
2
p)

where S2
i = 1

ni−1

∑ni

j=1(Yij − Y i0)
2 is the sample variance of the Yij . Hence

the estimated weights for FWLS are ŵij ≡ ŵi = 1/S2
i . Then the FWLS cell

means model has Y = Xcβc+e as in (10.4) except Cov(e) = diag(σ2
1, ..., σ

2
p).

Hence Z = U cβc + ε. Then UT
c U c = diag(n1ŵ1, ..., npŵp), (UT

c U c)
−1 =

diag(S2
1/n1, ..., S

2
p/np) = (XV̂

−1
XT )−1, and UT

c Z = (ŵ1Y10, ..., ŵpYp0)
T .

Thus
β̂FWLS = (Y 10, ..., Y p0)

T = β̂c.

That is, the FWLS estimator equals the one way ANOVA estimator of β

based on OLS applied to the cell means model. The ANOVA F test gener-
alizes the pooled t test in that the two tests are equivalent for p = 2. The
FWLS procedure is also known as the Welch one way ANOVA and general-
izes the Welch t test. The Welch t test is thought to be much better than
the pooled t test. See Brown and Forsythe (1974ab), Kirk (1982, p. 100,
101, 121, 122) and Welch (1947, 1951).
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In matrix form Z = U cβc + ε becomes







































√
ŵ1Y1,1

...√
ŵ1Y1,n1√
ŵ2Y21

...√
ŵ2Y2,n2

...
√

ŵpYp,1
...

√

ŵpYp,np







































=







































√
ŵ1 0 0 . . . 0
...

...
...

...√
ŵ1 0 0 . . . 0
0

√
ŵ2 0 . . . 0

...
...

...
...

0
√

ŵ2 0 . . . 0
...

...
...

...

0 0 0 . . .
√

ŵp

...
...

...
...

0 0 0 . . .
√

ŵp

















































µ1

µ2
...

µp











+







































ε11
...

ε1,n1

ε21
...

ε2,n2

...
εp,1
...

εp,np







































.

(10.9)
Four tests for Ho : µ1 = · · · = µp can be used if Rule of Thumb 10.3:

max(S1, ..., Sp) ≤ 2min(S1, ..., Sp) fails. Let Y = (Y1, ..., Yn)
T , and let Y(1) ≤

Y(2) · · · ≤ Y(n) be the order statistics. Then the rank transformation of the
response is Z = rank(Y ) where Zi = j if Yi = Y(j) is the jth order statistic.
For example, if Y = (7.7, 4.9, 33.3, 6.6)T , then Z = (3, 1, 4, 2)T . The first test
performs the one way ANOVA F test with Z replacing Y . See Montgomery
(1984, p. 117-118). Two of the next three tests are described in Brown and
Forsythe (1974b). Let dxe be the smallest integer ≥ x, eg d7.7e = 8. Then
the Welch (1951) ANOVA F test uses test statistic

FW =

∑p

i=1 wi(Y i0 − Ỹ00)
2/(p − 1)

1 + 2(p−2)
p2−1

∑p

i=1(1 − wi

u
)2/(ni − 1)

where wi = ni/S
2
i , u =

∑p

i=1 wi and Ỹ00 =
∑p

i=1 wiY i0/u. Then the test
statistic is compared to an Fp−1,dW

distribution where dW = dfe and

1/f =
3

p2 − 1

p
∑

i=1

(1 − wi

u
)2/(ni − 1).

For the modified Welch (1947) test, the test statistic is compared to an
Fp−1,dMW

distribution where dMW = dfe and

f =

∑p

i=1(S
2
i /ni)

2

∑p

i=1
1

ni−1
(S2

i /ni)2
=

∑p

i=1(1/wi)
2

∑p

i=1
1

ni−1
(1/wi)2

.
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Some software uses f instead of dW or dMW , and variants on the denominator
degrees of freedom dW or dMW are common.

The modified ANOVA F test uses test statistic

FM =

∑p

i=1 ni(Y i0 − Y 00)
2

∑p
i=1(1 − ni

n
)S2

i

The test statistic is compared to an Fp−1,dM
distribution where dM = dfe

and

1/f =

p
∑

i=1

c2
i /(ni − 1)

where

ci = (1 − ni

n
)S2

i /[

p
∑

i=1

(1 − ni

n
)S2

i ].

The mpack function anovasim can be used to compare the five tests.

Huberty and Olejnik (2006) and Khattree and Naik (1999, ch. 4) are use-
ful reference for MANOVA. Mardia (1971) notes that the one way MANOVA
test based on Pillai’s trace V is robust to nonnormality, especially when all
of the treatment sample sizes are the same: ni ≡ h. Permutation tests offer
an alternative. See, for example, Anderson (2001).

10.7 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

10.1∗. In the MANOVA model, β̂i = (XT X)−1XT Y i, and Y i = Xβi +
ei. Treating Xβi as a constant, Cov(Y i, Y j) = Cov(ei, ej) = σijIn. Using

this information, show Cov(β̂i, β̂j) = σij(X
T X)−1.

10.2. SAS Institute (1985, p. 498 - 501) describes a one way MANOVA
model. There are two groups for gender: female and male. There were p = 4
(skull measurements) variables X1 = length X2 = basilar, X3 = zygomat
and X4 = postorb. There were n1 = 18 females and n2 = 22 males measured.
Suppose t0 = 0.9567 and pvalue = 0.6566. Here to was Wilk’s lambda, but
the other three test statistics gave the same pvalue. Do a 4 step one way
MANOVA test.
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10.3. Suppose the 15 units are 1 Adatorwovor, 2 Adhikari, 3 Alanzi, 4
Alsibiani, 5 AlTalib, 6 Fan, 7 Kuo, 8 Lamsal, 9 Liu, 10 Meyer, 11 Peiris,
12 Rathnayake, 13 Rupasinghe, 14 Schroeppel and 15 Watagoda. Use the
following output to allocate the 15 units to three groups of 5. Show the three
groups.

> sample(15)

[1] 6 3 4 2 1 10 7 5 12 15 13 8 14 11 9

R/Splus Problems

Warning: Use the command source(“G:/mpack.txt”) to download
the programs. See Preface or Section 15.2. Typing the name of the
mpack function, eg ddplot, will display the code for the function. Use the
args command, eg args(ddplot), to display the needed arguments for the
function.

10.4. The Johnson and Wichern (1988, p. 262) turtle data gives the
length, width and height of painted turtle shells. There is a sample of 24
female and a sample of 24 male turtles.

a) The R command for this part make the response and residual plots for
each of the three variables. Click the rightmost mouse button and highlight
Stop to advance the plot. When you have the response and residual plots for
one variable on the screen, copy and paste the two plots into Word. Do this
three times, once for each variable. The male turtles are smaller than the
female turtles.

b) The R command for this plot makes a DD plot of the residuals and
adds the lines corresponding to the three prediction regions of Section 5.2.
The robust cutoff is larger than the semiparametric cutoff. Place the plot in
Word. Do the residuals appear to follow a multivariate normal distribution?
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