

American Society of Civil Engineers (1950), “So You’re Going to Present a Paper,” *The American Statistician* 4, 6-8.

BIBLIOGRAPHY

Data,” (with discussion), Test, 8, 1-73.
 MathSoft (1999a), S-Plus 2000 User’s Guide, Data Analysis Products Division, MathSoft, Seattle, WA. (Mathsoft is now Insightful.)
 MathSoft (1999b), S-Plus 2000 Guide to Statistics, Volume 2, Data Analysis Products Division, MathSoft, Seattle, WA. (Mathsoft is now Insightful.)

Olive, D.J. (2011b), *The Number of Samples for Resampling Algorithms*, Preprint, see (www.math.siu.edu/olive/).

BIBLIOGRAPHY

Welch, B.L. (1947), “The Generalization of Student’s Problem When Several Different Population Variances are Involved,” Biometrika, 34, 28-35.

Index

M-estimators, 111
1D regression, 313, 315
affine equivariant, 73
affine transformation, 73
Aldrin, 318, 331
Alkenani, 172
Alqallaf, 109
Anderson, ix, 64, 244
ANOVA, 214
Arc, 341
Arcones, 106
Ash, 65
asymptotic distribution, 42, 45
asymptotic theory, 42
Atkinson, vii, 106, 308
attractor, 77
B, 342
Bølviken, 318, 331
Bali, 156
basic resampling, 77
Becker, 340, 342
Bentler, 156, 349
Berger, x
Berk, 301
Bernholdt, 110
Bernholt, 112
Bhatia, 144, 158
Bibby, ix, 40, 64, 142
Billor, 110
biplot, 163
Bishop, viii
bivariate normal, 34
Black, ix
Boente, 156
Bogdan, 133
Box, vi, 218, 228, 239–241, 263
Box–Cox transformation, 125, 265
breakdown, 74
Brillinger, 318
Bro, 156
Brown, 242, 243
bulging rule, 21
Butler, 77, 85
Buxton, 115, 125, 128, 145, 164, 310
Cai, 194
Cambanis, 64
canonical correlation analysis, 350
Carroll, 352
case, 11
Casella, x
Cator, 77, 83, 85
Cattell, 143, 156, 349
cdf, 5
centering matrix, 15, 27
Cerioi, vii, 106, 308
Chambers, 117, 342
Chang, 330
Chebyshev’s Inequality, 48
Chmielewski, 64
INDEX

Cleveland, 117
Cobb, 218, 228, 239
Cochran, 225
Cohen, 156
Collett, 195
concentration, 77, 81, 120, 338
conditional distribution, 34
consistent, 47
consistent estimator, 47
Continuity Theorem, 55
Continuous Mapping Theorem, 55
continuous random variable, 7
converges almost everywhere, 50
converges in distribution, 45
converges in law, 45
converges in probability, 47
converges in quadratic mean, 48
Cook, 18, 22, 24, 29, 37, 38, 68, 111, 125, 241, 265, 301, 304, 313, 314, 318, 319, 321, 326, 330, 341
Copas, 301
Cornish, 40
covariance matrix, 13, 26, 33
Cox, 241, 263
Cramér, 64
Crawley, 342
cross checking, 109, 353
Croux, 39, 108, 110
cube root rule, 22
czörgö, 133

DasGupta, 64
Datta, 76, 156
Davidson, 64
Davies, 77, 85, 110
DD plot, 117
Dehon, 39, 110
Delta Method, 43
determinant, 17
Devlin, 81, 338
DGK estimator, 81
diagnostic for linearity, 326
discrete random variable, 7
discriminant analysis, 350
discriminant function, 193
DOE, 214
dot plot, 221
Duan, 313, 315
Duda, viii
Easton, 120
Eaton, 37, 64, 144
EC, 107
Ehrenberg, 340
eigenvalue, 16
eigenvector, 16
elemental set, 77
ellipsoidal trimming, 309, 319
effectively contoured, 36, 40, 64, 123, 133
effectively contoured distribution, 14
effectively symmetric, 36
Elsner, 144, 158
Ernst, 242
ESP, 318
ESSP, 318
estimated sufficient predictor, 318
estimated sufficient summary plot, 315, 318
Euclidean norm, 57
expected value, 7
experimental design, 214

factor analysis, 350
Fang, 64, 120
INDEX

Ferguson, 55, 64
FF plot, 259, 268
Fidell, ix
Fischer, 112
Fisher, 110
Flury, ix
Forsythe, 242, 243
Fox, 241
Fraiman, 156
Freeman, 340
full model, 268
Furnival, 271
García-Escudero, 111
general position, 74
generalized correlation matrix, 138
generalized linear model, 313
generalized sample variance, 18, 27
Gladstone, 91, 115, 251, 273
Gnanadesikan, 81, 108, 109, 338
Gonzalez, 340
Good, 211
Gordaliza, 111
Grimm, ix
Gupta, 64
Hadi, 110
Hair, ix
Hamada, 340
Hand, 3, 194
Hart, viii
He, 109, 111, 112, 353
Hebbler, 250, 294
Helmreich, 241
Henderson, 289
heteroscedastic, 314

high median, 6
highest density region, 17, 141
Hoaglin, 241, 340
Hoeffding, 242
Hopke, 197
Hosmer, 193
Hotelling’s t test, 350
Huang, 64
Huber, 111, 113, 278
Hubert, x, 80, 110–113
Huberty, 194, 244
Hunter, 218, 228, 239–241
Huyett, 108
hyperellipsoid, 17
identity line, 258, 269
Jacobian matrix, 58
Jhun, 77, 85
Jiang, 64
Johnson, ix, 4, 12, 16–18, 33, 36, 40, 64, 76, 82, 87, 143, 160, 167, 201, 233, 245, 257
joint distribution, 34
Jolliffe, 156
Jones, 269
Kachigan, ix
Kelker, 38
Keller-McNulty, 340
Kendall, 142
Kent, ix, 40, 64, 142
Kettenring, 81, 108, 109, 338
Khattree, 159, 244, 286, 301
Kilss, 340
Kim, 106
Kirk, 242
Kleiner, 117
Koch, 156
<table>
<thead>
<tr>
<th>Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koltchinskii</td>
<td>134</td>
</tr>
<tr>
<td>Konis</td>
<td>109</td>
</tr>
<tr>
<td>Kosfeld</td>
<td>249</td>
</tr>
<tr>
<td>Kotz</td>
<td>40, 64</td>
</tr>
<tr>
<td>Kowalski</td>
<td>35</td>
</tr>
<tr>
<td>Krause</td>
<td>144, 158</td>
</tr>
<tr>
<td>Kuehl</td>
<td>222, 231, 239</td>
</tr>
<tr>
<td>ladder of powers</td>
<td>19</td>
</tr>
<tr>
<td>ladder rule</td>
<td>22</td>
</tr>
<tr>
<td>Lauh</td>
<td>108</td>
</tr>
<tr>
<td>least squares estimators</td>
<td>256</td>
</tr>
<tr>
<td>Ledolter</td>
<td>239</td>
</tr>
<tr>
<td>Lee</td>
<td>35</td>
</tr>
<tr>
<td>Lehmann</td>
<td>51, 52, 64</td>
</tr>
<tr>
<td>Lemeshow</td>
<td>193</td>
</tr>
<tr>
<td>Leon</td>
<td>82</td>
</tr>
<tr>
<td>Leroy</td>
<td>xii, 73, 81, 111, 279, 352</td>
</tr>
<tr>
<td>Li</td>
<td>120, 134, 313, 315, 326</td>
</tr>
<tr>
<td>limiting distribution</td>
<td>42, 45</td>
</tr>
<tr>
<td>Little</td>
<td>352</td>
</tr>
<tr>
<td>Liu</td>
<td>120, 194</td>
</tr>
<tr>
<td>Locantore</td>
<td>156</td>
</tr>
<tr>
<td>location family</td>
<td>218</td>
</tr>
<tr>
<td>location model</td>
<td>4</td>
</tr>
<tr>
<td>log rule</td>
<td>21, 231</td>
</tr>
<tr>
<td>Lopuhaä</td>
<td>77, 83, 85, 94</td>
</tr>
<tr>
<td>low median</td>
<td>6</td>
</tr>
<tr>
<td>lowess</td>
<td>316</td>
</tr>
<tr>
<td>M</td>
<td>156, 342</td>
</tr>
<tr>
<td>Möller</td>
<td>156</td>
</tr>
<tr>
<td>mad</td>
<td>5, 6</td>
</tr>
<tr>
<td>Mahalanobis distance</td>
<td>15, 32, 36, 40, 41, 73, 117, 125, 319</td>
</tr>
<tr>
<td>Mai</td>
<td>194</td>
</tr>
<tr>
<td>Mallow</td>
<td>269</td>
</tr>
<tr>
<td>MANOVA model</td>
<td>213, 216</td>
</tr>
<tr>
<td>Manzotti</td>
<td>134</td>
</tr>
<tr>
<td>Mardia</td>
<td>ix, 40, 64, 142, 244</td>
</tr>
<tr>
<td>Markov’s Inequality</td>
<td>48</td>
</tr>
<tr>
<td>Maronna</td>
<td>vii, x, 78, 89, 109, 112, 113, 150, 156</td>
</tr>
<tr>
<td>Marron</td>
<td>156</td>
</tr>
<tr>
<td>Martin</td>
<td>vii, x, 78, 109, 112, 113, 156</td>
</tr>
<tr>
<td>Mathsoft</td>
<td>341, 342</td>
</tr>
<tr>
<td>MB estimator</td>
<td>81</td>
</tr>
<tr>
<td>McCulloch</td>
<td>120</td>
</tr>
<tr>
<td>MCD</td>
<td>77</td>
</tr>
<tr>
<td>McDonald</td>
<td>30</td>
</tr>
<tr>
<td>McLachlan</td>
<td>194</td>
</tr>
<tr>
<td>mean</td>
<td>5</td>
</tr>
<tr>
<td>median</td>
<td>5, 6</td>
</tr>
<tr>
<td>median absolute deviation</td>
<td>6</td>
</tr>
<tr>
<td>Mehrotra</td>
<td>109</td>
</tr>
<tr>
<td>Mendenhall</td>
<td>x</td>
</tr>
<tr>
<td>Miller</td>
<td>112, 301</td>
</tr>
<tr>
<td>minimum covariance determinant</td>
<td>76</td>
</tr>
<tr>
<td>minimum volume ellipsoid</td>
<td>110</td>
</tr>
<tr>
<td>Minor</td>
<td>196</td>
</tr>
<tr>
<td>missing values</td>
<td>352</td>
</tr>
<tr>
<td>mixture distribution</td>
<td>7</td>
</tr>
<tr>
<td>MLD</td>
<td>vi</td>
</tr>
<tr>
<td>modified power transformation</td>
<td>262</td>
</tr>
<tr>
<td>monotonicity</td>
<td>326</td>
</tr>
<tr>
<td>Montgomery</td>
<td>111, 243</td>
</tr>
<tr>
<td>Moore</td>
<td>224</td>
</tr>
<tr>
<td>Mosteller</td>
<td>241, 262</td>
</tr>
<tr>
<td>mpack</td>
<td>ix, 341</td>
</tr>
<tr>
<td>Mudholkar</td>
<td>199, 339</td>
</tr>
<tr>
<td>Muirhead</td>
<td>64, 172</td>
</tr>
<tr>
<td>multiple linear regression</td>
<td>254, 267, 314</td>
</tr>
<tr>
<td>Multivariate Central Limit Theorem</td>
<td>58</td>
</tr>
<tr>
<td>Multivariate Delta Method</td>
<td>58</td>
</tr>
</tbody>
</table>
multivariate linear regression model, 253, 255
multivariate location and dispersion, 11, 77
multivariate normal, 32, 37, 64, 117, 120, 126
MVN, 32, 107
Nachtsheim, 125, 338
Naik, 159, 244, 286, 301
Ng, 64
Oja, 156
Olejnik, 194, 244
OLS view, 318
order statistics, 5
outlier, 221
Pérez, 134
Parelius, 120
partitioning, 80, 109
Peña, 111
Pederson, 352
Pedrosa De Lima, 64
Pison, 211
Polansky, 64
pooled variance estimator, 224
Poor, x
population correlation, 35
population correlation matrix, 13, 26
population mean, 12, 33
positive breakdown, 74
positive definite, 16
positive semidefinite, 16
power transformation, 230, 262
Pratt, 79, 87, 310
predictor variables, 213, 253
Press, ix, 293
Prieto, 111
principal component regression, 350
principal components, 349, 350
Pruzek, 241
Pun, 301
Quiroz, 134
R, 341
r, 242
random vector, 11
range rule, 21
Rao, 32
Raveh, 194
Rencher, ix, 301
residual plot, 258, 268
response plot, 258, 268, 315
response transformation, 263
response transformation model, 314
response variables, 213, 253
Reyen, 112
RFCH estimator, 88, 120
Riani, vii, 106, 308
Riedwyl, ix
Ripley, 162, 342
Rocke, 77, 90, 109, 111
Rohatgi, 35, 56
Ronchetti, 111, 113
Rousseeuw, x, xii, 39, 73, 78, 80, 81, 85, 98, 109, 110, 112, 113, 117, 120, 211, 279, 330, 338, 352
RR plot, 259, 268
Rubin, 340, 352
rule of thumb, 21, 258
Ruppert, 111
INDEX

S, 50
sample correlation matrix, 15, 27
sample covariance matrix, 14, 26
sample mean, 14, 26, 42
SAS Institute, 227, 244, 304
scatterplot, 19
scatterplot matrix, 19, 24
Schaaffhausen, 115
Scheaffer, x
Schindler-Kaudelka, 197
Schweder, 318, 331
Schwing, 30
scree plot, 142
scree plots, 349
SE, 42
Searle, 289, 302
Seber, 35
seemingly unrelated regressions model, 293
Sen, 64, 65
Serfling, 64
Setodji, 301
Severini, 60, 158
shape, 17, 18
Sheather, 10
Silverman, 183, 184, 194
Simonoff, 111
Simons, 64
Simpson, 111, 156
Singer, 64, 65
Singh, 120
single index model, 313, 317
Sitter, 340
Slutsky’s Theorem, 54, 60
Smith, 340
Snedecor, 225
spectral decomposition, 16
spherical, 37
square root matrix, 16, 27
Srivastava, 199, 339
SSP, 314
standard deviation, 6
standard error, 42
STATLIB, 340
Staudte, 10
Stewart, 158
Stork, viii
Su, 301
submodel, 268
sufficient predictor, 268
sufficient summary plot, 314
supervised classification, 178
Swersey, 239
Tabachnick, ix
Tallis, 106
Taskinen, 156
Tatham, ix
Thode, 133
transformation plot, 231, 262, 263
Tremearne, 90, 259
trimmed view, 321
Tripoli, 156
Tukey, 22, 117, 241, 262, 263
TV estimator, 310, 330
Tyler, 144, 156
unit rule, 21
Van Aelst, x, 39, 80, 108, 112, 113, 211
van der Vaart, 64
Van Driessen, xii, 78, 80, 85, 98, 109, 111, 112, 117, 120, 338
van Zomeren, xii, 111, 330
Varga, 64
variable selection, 267
INDEX

variance, 5, 6
Velilla, 125
Velleman, 110
Venables, 162, 342
Verdonck, 110
von Frese, 156

W, 50
Wackerly, x
Wang, 109, 111, 112, 156, 353
Waternaux, 156, 172
Wegman, 112
weighted least squares, 312
Weisberg, 18, 22, 24, 29, 111, 265,
304, 313, 314, 318, 319, 321,
330, 341, 348, 352
Welch, 242, 243
Welsh, 279
White, x, 59, 64, 293
Wichern, ix, 4, 12, 16–18, 33, 64, 76,
82, 87, 143, 160, 167, 201, 233,
245, 257
Wilcox, vii, 301
Wilk, 108
Wilks, 342
Willems, 211
Wilson, 271
Winsor’s principle, 319
Wisnowski, 111
Wisseman, 197
Woodruff, 77, 90, 109, 111

Yadine, 110
Yao, 211
Yarnold, ix
Ye, 172
Yohai, vii, x, 78, 112, 113, 156
Yu, 172

Yuan, 156, 194, 349
Zamar, 89, 109, 150
zero breakdown, 74
Zhang, 101, 156, 157, 172, 203, 211
Zhu, 120
Zou, 194

Zhang, 101, 156, 157, 172, 203, 211
Zhu, 120
Zou, 194