
Chapter 9

One Way MANOVA Type Models

Multivariate regression is the study of the conditional distribution y|x of the
m× 1 vector of response variables y given the p× 1 vector of nontrivial pre-
dictors x. The multivariate linear model includes the following two models. i)
The multivariate linear regression model of Chapter 8 has at least one quan-
titative predictor variable. ii) For the MANOVA model, the predictors are
indicator variables. Often observations (Y1, ..., Ym, x1, x2, ..., xp) are collected
on the same person or thing and hence are correlated. If transformations can
be found such that the m response plots and residual plots of Section 9.2
look good, and n ≥ (m + p)2 (and ni ≥ 10m if there are p treatment groups
and n =

∑p

i=1 ni), then the MANOVA model can often be used to efficiently
analyze the data. These two plots and the DD plot of the residuals are useful
for checking the model and for outlier detection.

9.1 Introduction

Definition 9.1. The response variables are the variables that you want
to predict. The predictor variables are the variables used to predict the
response variables.

Notation. A multivariate linear model has m ≥ 2 response variables. A
multiple linear model = univariate linear model has m = 1 response variable,
but at least two nontrivial predictors, and usually a constant (so p ≥ 3).
A simple linear model has m = 1, one nontrivial predictor, and usually a
constant (so p = 2). Multiple linear regression models and ANOVA models
are special cases of multiple linear models.

Definition 9.2. The multivariate linear model

yi = BT xi + εi
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for i = 1, ..., n has m ≥ 2 response variables Y1, ..., Ym and p predictor vari-
ables x1, x2, ..., xp. The ith case is (xT

i , yT
i ) = (xi1, xi2, ..., xip, Yi1, ..., Yim). If

a constant xi1 = 1 is in the model, then xi1 could be omitted from the case.
The model is written in matrix form as Z = XB +E where the matrices are
the same as those between Definitions 8.2 and 8.3. The model has E(εk) = 0

and Cov(εk) = Σε = (σij) for k = 1, ..., n. Then the p×m coefficient matrix
B =

[
β1 β2 . . . βm

]
and the m × m covariance matrix Σε are to be esti-

mated, and E(Z) = XB while E(Yij) = xT
i βj. The εi are assumed to be

iid. The univariate linear model corresponds to m = 1 response variable, and
is written in matrix form as Y = Xβ + e. Subscripts are needed for the m
univariate linear models Y j = Xβj + ej for j = 1, ..., m where E(ej) = 0.
For the multivariate linear model, Cov(ei, ej) = σij In for i, j = 1, ..., m
where In is the n × n identity matrix.

Definition 9.3. The multivariate analysis of variance (MANOVA model)
yi = BT xi + εi for i = 1, ..., n has m ≥ 2 response variables Y1, ..., Ym

and p predictor variables X1, X2, ..., Xp. The MANOVA model is a special
case of the multivariate linear model. For the MANOVA model, the predic-
tors are not quantitative variables, so the predictors are indicator variables.
Sometimes the trivial predictor 1 is also in the model. In matrix form, the
MANOVA model is Z = XB +E. The model has E(εk) = 0 and Cov(εk) =
Σε = (σij) for k = 1, ..., n. Also E(ei) = 0 while Cov(ei, ej) = σijIn for
i, j = 1, ..., m. Then B and Σε are unknown matrices of parameters to be
estimated, and E(Z) = XB while E(Yij) = xT

i βj.

The data matrix W = [X Z]. If the model contains a constant, then
usually the first column of ones 1 of X is omitted from the data matrix for
software such as R and SAS.

Each response variable in a MANOVA model follows an ANOVA model
Y j = Xβj + ej for j = 1, ..., m where it is assumed that E(ej) = 0 and
Cov(ej) = σjjIn. Hence the errors corresponding to the jth response are
uncorrelated with variance σ2

j = σjj. Notice that the same design matrix

X of predictors is used for each of the m models, but the jth response variable
vector Y j, coefficient vector βj, and error vector ej change and thus depend
on j. Hence for a one way MANOVA model, each response variable follows a
one way ANOVA model, while for a two way MANOVA model, each response
variable follows a two way ANOVA model for j = 1, ..., m.

Once the ANOVA model is fixed, e.g. a one way ANOVA model, the design
matrix X depends on the parameterization of the ANOVA model. See Chap-
ter 3. The fitted values and residuals are the same for each parameterization,
but the interpretation of the parameters depends on the parameterization.

Now consider the ith case (xT
i , yT

i ) which corresponds to the ith row of
X and the ith row of Z. Then yi = E(yi) + εi where
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E(yi) = BT xi =





xT
i β1

xT
i β2
...

xT
i βm



 .

The notation yi|xi and E(yi|xi) is more accurate, but usually the con-
ditioning is suppressed. Taking E(yi|xi) to be a constant, yi and εi have
the same covariance matrix. In the MANOVA model, this covariance matrix
Σε does not depend on i. Observations from different cases are uncorrelated
(often independent), but the m errors for the m different response variables
for the same case are correlated.

Let B̂ be the MANOVA estimator of B. MANOVA models are often fit
by least squares. Then the least squares estimators are

B̂ = B̂g = (XT X)−XT Z =
[
β̂1 β̂2 . . . β̂m

]

where (XT X)− is a generalized inverse of XT X. Here B̂g depends on the

generalized inverse. If X has full rank p then (XT X)− = (XT X)−1 and B̂

is unique.

Definition 9.4. The predicted values or fitted values

Ẑ = XB̂ =
[
Ŷ 1 Ŷ 2 . . . Ŷ m

]
=





Ŷ1,1 Ŷ1,2 . . . Ŷ1,m

Ŷ2,1 Ŷ2,2 . . . Ŷ2,m

...
...

. . .
...

Ŷn,1 Ŷn,2 . . . Ŷn,m



 .

The residuals Ê = Z − Ẑ = Z − XB̂ =





ε̂T
1

ε̂
T
2
...

ε̂T
n



 =
[
r̂1 r̂2 . . . r̂m

]
=





ε̂1,1 ε̂1,2 . . . ε̂1,m

ε̂2,1 ε̂2,2 . . . ε̂2,m

...
...

. . .
...

ε̂n,1 ε̂n,2 . . . ε̂n,m



 .

These quantities can be found by fitting m ANOVA models Y j = Xβj+ej to

get β̂j, Ŷ j = Xβ̂j, and r̂j = Y j−Ŷ j for j = 1, ..., m. Hence ε̂i,j = Yi,j− Ŷi,j

where Ŷ j = (Ŷ1,j, ..., Ŷn,j)
T . Finally, Σ̂ε,d =

(Z − Ẑ)T (Z − Ẑ)

n − d
=

(Z − XB̂)T (Z − XB̂)

n − d
=

Ê
T
Ê

n − d
=

1

n − d

n∑

i=1

ε̂iε̂
T
i .
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The choices d = 0 and d = p are common. Let Σ̂ε be the usual estimator
of Σε for the MANOVA model. If least squares is used with a full rank X ,
then Σ̂ε = Σ̂ε,d=p.

9.2 Plots for MANOVA Models

As in Chapter 8, this section suggests using residual plots, response plots,
and the DD plot to examine the multivariate linear model. The residual plots
are often used to check for lack of fit of the multivariate linear model. The
response plots are used to check linearity (and to detect influential cases and
outliers for linearity). The response and residual plots are used exactly as in
the m = 1 case corresponding to multiple linear regression and experimental
design models. See Olive (2010, 2017a), Olive and Hawkins (2005), and Cook
and Weisberg (1999, p. 432). Chapter 8 used the response and residual plots
for MLR for each response variable Yj . The one way MANOVA model will
use the response and residual plots for the one way ANOVA model for each
response variable Yj . See Chapter 3.

Definition 9.5. A response plot for the jth response variable is a plot
of the fitted values Ŷij versus the response Yij. The identity line with slope
one and zero intercept is added to the plot as a visual aid. A residual plot

corresponding to the jth response variable is a plot of Ŷij versus rij.

Remark 9.1. Make the m response and residual plots for any MANOVA
model. In a response plot, the vertical deviations from the identity line are the
residuals rij = Yij − Ŷij. Suppose the model is good, the error distribution is
not highly skewed, and n ≥ 10p. Then the plotted points should cluster about
the identity line in each of the m response plots. If outliers are present or if
the plot is not linear, then the current model or data need to be transformed
or corrected. If the model is good, then the each of the m residual plots
should be ellipsoidal with no trend and should be centered about the r = 0
line. There should not be any pattern in the residual plot: as a narrow vertical
strip is moved from left to right, the behavior of the residuals within the strip
should show little change. Outliers and patterns such as curvature or a fan
shaped plot are bad.

For some MANOVA models that do not use replication, the response and
residual plots look much like those for multivariate linear regression in Section
8.2. The response and residual plots for the one way MANOVA model need
some notation, and it is useful to use three subscripts. Suppose there are inde-
pendent random samples of size ni from p different populations (treatments),
or ni cases are randomly assigned to p treatment groups with n =

∑p

i=1 ni.
Assume that m response variables yij = (Yij1, ..., Yijm)T are measured for the
ith treatment. Hence i = 1, ..., p and j = 1, ..., ni. The Yijk follow different one
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way ANOVA models for k = 1, ..., m. Assume E(yij) = µi = (µi1, ..., µim)T

and Cov(yij) = Σε. Hence the p treatments have possibly different mean
vectors µi, but common covariance matrix Σε.

Then for the kth response variable, the response plot is a plot of Ŷijk ≡ µ̂ik

versus Yijk and the residual plot is a plot of Ŷijk ≡ µ̂ik versus rijk where µ̂ik is
the sample mean of the ni responses Yijk corresponding to the ith treatment
for the kth response variable. Add the identity line to the response plot and
r = 0 line to the residual plot as visual aids. The points in the response
plot scatter about the identity line and the points in the residual plot scatter
about the r = 0 line, but the scatter need not be in an evenly populated band.
A dot plot of Z1, ..., Zn consists of an axis and n points each corresponding to
the value of Zi. The response plot for the kth response variable consists of p
dot plots, one for each value of µ̂ik. The dot plot corresponding to µ̂ik is the
dot plot of Yi,1,k, ..., Yi,ni,k. Similarly, the residual plot for the kth response
variable consists of p dot plots, and the plot corresponding to µ̂ik is the dot
plot of ri,1,k, ..., ri,ni,k. Assuming the ni ≥ 10, the p dot plots for the kth
response variable should have roughly the same shape and spread in both

the response and residual plots. Note that µ̂ik = Y iok =
1

ni

ni∑

j=1

Yijk.

Assume that each ni ≥ 10. It is easier to check shape and spread in the
residual plot. If the response plot looks like the residual plot, then a horizontal
line fits the p dot plots about as well as the identity line, and there may not
be much difference in the µik. In the response plot, if the identity line fits
the plotted points better than any horizontal line, then conclude that at least
some of the means µik differ.

Definition 9.6. An outlier corresponds to a case that is far from the
bulk of the data. Look for a large vertical distance of the plotted point from
the identity line or the r = 0 line.

Rule of thumb 9.1. Mentally add 2 lines parallel to the identity line and
2 lines parallel to the r = 0 line that cover most of the cases. Then a case is
an outlier if it is well beyond these 2 lines.

This rule often fails for large outliers since often the identity line goes
through or near a large outlier so its residual is near zero. A response that is
far from the bulk of the data in the response plot is a “large outlier” (large
in magnitude). Look for a large gap between the bulk of the data and the
large outlier.

Suppose there is a dot plot of ni cases corresponding to treatment i with
mean µik that is far from the bulk of the data. This dot plot is probably not
a cluster of “bad outliers” if ni ≥ 4 and n ≥ 5p. If ni = 1, such a case may
be a large outlier.

Rule of thumb 9.2. Often an outlier is very good, but more often an
outlier is due to a measurement error and is very bad.
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Remark 9.2. Rule of thumb 3.2 for the one way ANOVA F test may also
be useful for the one way MANOVA model tests of hypotheses.

Remark 9.3. The above rules are mainly for linearity and tend to use
marginal models. The marginal models are useful for checking linearity, but
are not very useful for checking other model violations such as outliers in the
error vector distribution. The RMVN DD plot of the residual vectors is a
global method (takes into account the correlations of Y1, ..., Ym) for checking
the error vector distribution, but is not real effective for detecting outliers
since OLS is used to find the residual vectors. A DD plot of residual vectors
from a robust MANOVA method might be more effective for detecting out-
liers. This remark also applies to the plots used in Section 8.2 for multivariate
linear regression.

The RMVN DD plot of the residual vectors ε̂i is used to check the er-
ror vector distribution, to detect outliers, and to display the nonparametric
prediction region developed in Section 8.3. The DD plot suggests that the
error vector distribution is elliptically contoured if the plotted points cluster
tightly about a line through the origin as n → ∞. The plot suggests that
the error vector distribution is multivariate normal if the line is the identity
line. If n is large and the plotted points do not cluster tightly about a line
through the origin, then the error vector distribution may not be elliptically
contoured. These applications of the DD plot for iid multivariate data are
discussed in Olive (2002, 2008, 2013a) and Chapter 7. The RMVN estimator
has not yet been proven to be a consistent estimator for residual vectors,
but simulations suggest that the RMVN DD plot of the residual vectors is a
useful diagnostic plot.

Response transformations can also be made as in Section 1.2, but also make
the response plot of Ŷ j versus Y j and use the rules of Section 1.2 on Yj to
linearize the response plot for each of the m response variables Y1, ..., Ym.

Example 9.1. Consider the one way MANOVA model on the famous
iris data set with n = 150 and p = 3 species of iris: setosa, versicolor, and
virginica. The m = 4 variables are Y1 = sepal length, Y2 = sepal width, Y3 =
petal length, and Y4 = petal width. See Becker et al. (1988). The plots for the
m = 4 response variables look similar, and Figure 9.1 shows the response and
residual plots for Y4. Note that the spread of the three dot plots is similar.
The dot plot intersects the identity line at the sample mean of the cases in
the dot plot. The setosa cases in lowest dot plot have a sample mean of 0.246
and the horizontal line Y4 = 0.246 is below the dot plots for versicolor and
virginica which have means of 1.326 and 2.026. Hence the mean petal widths
differ for the three species, and it is easier to see this difference in the response
plot than the residual plot. The plots for the other three variables are similar.
Figure 9.2 shows that the DD plot of the residual vectors suggests that the
error vector distribution is elliptically contoured but not multivariate normal.



9.2 Plots for MANOVA Models 405

The DD plot also shows the prediction regions of Section 8.3 computed
using the residual vectors ε̂i. From Section 8.3, if {ε̂|Dε̂(0, Sr) ≤ h} is a
prediction region for the residual vectors, then {y|Dy(ŷf , Sr) ≤ h} is a
prediction region for yf . For the one way MANOVA model, a prediction
region for yf would only be valid for an xf which was observed, i.e., for
xf = xj, since only observed values of the categorical predictor variables
make sense. The 90% nonparametric prediction region corresponds to y with
distances to the left of the vertical line MD = 3.2.
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Fig. 9.1 Plots for Y4 = Petal Width.

R commands for these two figures are shown below, and will also show
the plots for Y1, Y2, and Y3. The linmodpack function manova1w makes the
response and residual plots while ddplot4 makes the DD plot. The last
command shows that the pvalue = 0 for the one way MANOVA test discussed
in the following section.

library(MASS)

y <- iris[,1:4] #m = 4 = number of response variables

group <- iris[,5]

#p = number of groups = number of dot plots

out<- manova1w(y,p=3,group=group) #right click

#Stop 8 times

ddplot4(out$res) #right click Stop

summary(out$out) #default is Pillai’s test
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Fig. 9.2 DD Plot of the Residual Vectors for Iris Data.

9.3 One Way MANOVA

Using double subscripts will be useful for describing the one way MANOVA
model. Suppose there are independent random samples of size ni from p
different populations (treatments), or ni cases are randomly assigned to p
treatment groups. Then n =

∑p

i=1 ni and the group sample sizes are ni for
i = 1, ..., p. Assume that m response variables yij = (Yij1, ..., Yijm)T are
measured for the ith treatment group and the jth case (often an individual
or thing) in the group. Hence i = 1, ..., p and j = 1, ..., ni. The Yijk follow
different one way ANOVA models for k = 1, ..., m. Assume E(yij) = µi and
Cov(yij) = Σε. Hence the p treatments have different mean vectors µi, but
common covariance matrix Σε. (The common covariance matrix assumption
can be relaxed for p = 2 with the appropriate 2 sample Hotelling’s T 2 test.)

The one way MANOVA is used to test H0 : µ1 = µ2 = · · · = µp. Often
µi = µ + τ i, so H0 becomes H0 : τ 1 = · · · = τ p. If m = 1, the one
way MANOVA model is the one way ANOVA model. MANOVA is useful
since it takes into account the correlations between the m response variables.
Performing m ANOVA tests fails to account for these correlations, but can
be a useful diagnostic. The Hotelling’s T 2 test that uses a common covariance
matrix is a special case of the one way MANOVA model with p = 2.

Let µi = µ+τ i where
∑p

i=1 niτ i = 0. The jth case from the ith population
or treatment group is yij = µ+τ i+εij where εij is an error vector, i = 1, ..., p
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and j = 1, ..., ni. Let y = µ̂ =
∑p

i=1

∑ni

j=1 yij/n be the overall mean. Let

yi =
∑ni

j=1 yij/ni so τ̂ i = yi − y. Let the residual vector ε̂ij = yij − yi =
yij − µ̂− τ̂ i. Then yij = y + (yi − y) + (yij − yi) = µ̂ + τ̂ i + ε̂ij.

Several m × m matrices will be useful. Let Si be the sample covariance
matrix corresponding to the ith treatment group. Then the within sum of
squares and cross products matrix is W = (n1 − 1)S1 + · · ·+ (np − 1)Sp =∑p

i=1

∑ni

j=1(yij − yi)(yij − yi)
T . Then Σ̂ε = W /(n− p). The treatment or

between sum of squares and cross products matrix is

BT =

p∑

i=1

ni(yi − y)(yi − y)T .

The total corrected (for the mean) sum of squares and cross products matrix
is T = BT + W =

∑p

i=1

∑ni

j=1(yij −y)(yij −y)T . Note that S = T /(n− 1)
is the usual sample covariance matrix of the yij if it is assumed that all n of
the yij are iid so that the µi ≡ µ for i = 1, ..., p.

The one way MANOVA model is yij = µ + τ i + εij where the εij are iid
with E(εij) = 0 and Cov(εij) = Σε. The MANOVA table is shown below.

Summary One Way MANOVA Table

Source matrix df

Treatment or Between BT p − 1
Residual or Error or Within W n − p

Total (corrected) T n − 1

If all n of the yij are iid with E(yij) = µ and Cov(yij) = Σε, it can

be shown that A/df
P→ Σε where A = W , BT , or T , and df is the corre-

sponding degrees of freedom. Let t0 be the test statistic. Often Pillai’s trace
statistic, the Hotelling Lawley trace statistic, or Wilks’ lambda are used.
Wilks’ lambda

Λ =
|W |

|BT + W | =
|W |
|T | =

|∑p

i=1(ni − 1)Si|
|(n − 1)S| =

|∑p

i=1

∑ni

j=1(yij − yi)(yij − yi)
T |

|∑p

i=1

∑ni

j=1(yij − y)(yij − y)T | .

Then to = −[n − 0.5(m + p − 2)] log(Λ) and pval = P (χ2
m(p−1) > t0). Hence

reject H0 if t0 > χ2
m(p−1)(1 − α). See Johnson and Wichern (1988, p. 238).

The four steps of the one way MANOVA test follow.
i) State the hypotheses H0 : µ1 = · · · = µp and H1 : not H0.
ii) Get t0 from output.
iii) Get pval from output.
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iv) State whether you reject H0 or fail to reject H0. If pval ≤ α, reject H0

and conclude that not all of the p treatment means are equal. If pval > α, fail
to reject H0 and conclude that all p treatment means are equal or that there
is not enough evidence to conclude that not all of the p treatment means are
equal. As a textbook convention, use α = 0.05 if α is not given.

Another way to perform the one way MANOVA test is to get R output.
The default test is Pillai’s test, but other tests can be obtained with the R

output shown below.

summary(out$out) #default is Pillai’s test

summary(out$out, test = "Wilks")

summary(out$out, test = "Hotelling-Lawley")

summary(out$out, test = "Roy")

Example 9.1, continued. The R output for the iris data gives a Pillai’s
F statistic of 53.466 and pval = 0.
i) H0 : µ1 = · · · = µ4 H1 : not H0

ii) F = 53.466
iii) pval = 0
iv) Reject H0. The means for the three varieties of iris do differ.

Following Mardia et al. (1979, p. 335), let λ1 ≥ λ2 · · · ≥ λm be the eigen-
values of W−1BT . Then 1 +λi for i = 1, ..., m are the eigenvalues of W−1T

and Λ =
∏m

i=1(1 + λi)
−1.

Following Fujikoshi (2002), let the Hotelling Lawley trace statistic U =
tr(BT W−1) = tr(W−1BT ) =

∑m

i=1 λi, and let Pillai’s trace statistic V =

tr(BT T−1) = tr(T−1BT ) =
m∑

i=1

λi

1 + λi

. If the yij −µj are iid with common

covariance matrix Σε, and if H0 is true, then under regularity conditions

−[n − 0.5(m + p − 2)] log(Λ)
D→ χ2

m(p−1), (n − m − p − 1)U
D→ χ2

m(p−1), and

(n − 1)V
D→ χ2

m(p−1). Note that the common covariance matrix assumption
implies that each of the p treatment groups or populations has the same
covariance matrix Σi = Σε for i = 1, ..., p, an extremely strong assumption.

Remark 9.4. Another method for one way MANOVA is to use the model
Z = XB + E or
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



Y111 Y112 · · · Y11m

...
... · · ·

...
Y1,n1,1 Y1,n1,2 · · · Y1,n1,m

Y211 Y211 · · · Y21m

...
... · · ·

...
Y2,n2,1 Y2,n2,2 · · · Y2,n2,m

...
... · · ·

...
Yp,11 Yp,1m · · · Yp,1m

...
... · · ·

...
Yp,np,1 Yp,np,2 · · · Yp,np,m





=





1 1 0 . . . 0
...

...
...

...
1 1 0 . . . 0
1 0 1 . . . 0
...

...
...

...
1 0 1 . . . 0
...

...
...

...
1 0 0 . . . 1
...

...
...

...
1 0 0 . . . 1
1 0 0 . . . 0
...

...
...

...
1 0 0 . . . 0









β1,1 β1,2 . . . β1,m

β2,1 β2,2 . . . β2,m

...
...

. . .
...

βp,1 βp,2 . . . βp,m




+ E.

Then X is full rank where the ith column of X is an indicator for group i−1
for i = 2, ..., p, β̂1k = Y pok = µ̂pk for k = 1, ..., m, and

β̂ik = Y i−1,ok − Y pok = µ̂i−1,k − µ̂pk

for k = 1, ..., m and i = 2, ..., p. Thus testing H0 : µ1 = · · · = µp is equivalent
to testing H0 : LB = 0 where L = [0 Ip−1]. Such tests are discussed in
Section 8.4. Then yij = µi + εij and

B =





µT
p

µT
1 − µT

p

µT
2 − µT

p

...
µT

p−2 − µT
p

µT
p−1 − µT

p





. (9.1)

Equation (3.5) used the same X for one way ANOVA model with m = 1
as the X used in the above one way MANOVA model. Then the MLR F test
was the same as the one way ANOVA F test. Similarly, if L = (0 Ip−1) then
the multivariate linear regression Hotelling Lawley test statistic for testing
H0 : LB = 0 versus H1 : LB 6= 0 is U = tr(W−1H) while the Hotelling
Lawley test statistic for the one way MANOVA test with H0 : µ1 = µ2 =
· · · = µp is U = tr(W−1BT ). Rupasinghe Arachchige Don (2018) showed
that these two test statistics are the the same for the above X by showing
that BT = H. Here H is given in Section 8.4 and is not the hat matrix.
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9.4 An Alternative Test Based on Large Sample Theory

Large sample theory can be also be used to derive a competing test. Let Σi

be the nonsingular population covariance matrix of the ith treatment group
or population. To simplify the large sample theory, assume ni = πin where
0 < πi < 1 and

∑p

i=1 πi = 1. Let Ti be a multivariate location estimator

such that
√

ni(Ti −µi)
D→ Nm(0, Σi), and

√
n(Ti −µi)

D→ Nm

(
0,

Σi

πi

)
. Let

T = (TT
1 , TT

2 , ..., TT
p )T , ν = (µT

1 , µT
2 , ..., µT

p )T , and A be a full rank r × mp
matrix with rank r, then a large sample test of the form H0 : Aν = θ0 versus
H1 : Aν 6= θ0 uses

A
√

n(T − ν)
D→ u ∼ Nr

(
0, A diag

(
Σ1

π1
,
Σ2

π2
, ...,

Σp

πp

)
AT

)
. (9.2)

Let the Wald-type statistic

t0 = [AT − θ0]
T

[
A diag

(
Σ̂1

n1
,
Σ̂2

n2
, ...,

Σ̂p

np

)
AT

]
−1

[AT − θ0]. (9.3)

These results prove the following theorem.

Theorem 9.1. Under the above conditions, t0
D→ χ2

r if H0 is true.

This test is due to Rupasinghe Arachchige Don and Olive (2019), and a
special case was used by Zhang and Liu (2013) and Konietschke et al. (2015)

with Ti = yi and Σ̂i = Si. The p = 2 case gives analogs to the two sample
Hotelling’s T 2 test. See Rupasinghe Arachchige Don and Pelawa Watagoda
(2018). The m = 1 case gives analogs of the one way ANOVA test. If m = 1,
see competing tests in Brown and Forsythe (1974a,b), Olive (2017a, pp. 200-
202), and Welch (1947, 1951).

For the one way MANOVA type test, let A be the block matrix

A =





I 0 0 . . . -I
0 I 0 . . . -I
...

...
...

...
0 0 . . . I -I



 .

Let µi ≡ µ, let H0 : µ1 = · · · = µp or, equivalently, H0 : Aν = 0, and let
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w = AT =





T1 − Tp

T2 − Tp

...
Tp−2 − Tp

Tp−1 − Tp




. (9.4)

Then
√

nw
D→ Nm(p−1)(0, Σw) if H0 is true with Σw = (Σij) where Σij =

Σp

πp

for i 6= j, and Σii =
Σi

πi

+
Σp

πp

for i = j. Hence

t0 = nwT Σ̂
−1

w w = wT

(
Σ̂w

n

)
−1

w
D→ χ2

m(p−1)

as the ni → ∞ if H0 is true. Here

Σ̂w

n
=





ˆΣ1

n1

+
ˆΣp

np

ˆΣp

np

ˆΣp

np
. . .

ˆΣp

np

ˆΣp

np

ˆΣ2

n2

+
ˆΣp

np

ˆΣp

np
. . .

ˆΣp

np

...
...

...
...

ˆΣp

np

ˆΣp

np

ˆΣp

np
. . .

ˆΣp−1

np−1

+
ˆΣp

np




(9.5)

is a block matrix where the off diagonal block entries equal Σ̂p/np and the

ith diagonal block entry is
Σ̂i

ni

+
Σ̂p

np

for i = 1, ..., (p− 1).

Reject H0 if
t0 > m(p − 1)Fm(p−1),dn

(1 − δ) (9.6)

where dn = min(n1, ..., np). See Theorem 2.25. It may make sense to relabel

the groups so that np is the largest ni or Σ̂p/np has the smallest general-

ized variance of the Σ̂i/ni. This test may start to outperform the one way
MANOVA test if n ≥ (m + p)2 and ni ≥ 40m for i = 1, ..., p.

If Σi ≡ Σ and Σ̂i is replaced by Σ̂, we will show that for the one way
MANOVA test that t0 = (n− p)U where U is the Hotelling Lawley statistic.
For the proof, some results on the vec and Kronecker product will be useful.
Following Henderson and Searle (1979), vec(G) and vec(GT ) contain the
same elements in different sequences. Define the permutation matrix P r,m

such that
vec(G) = P r,mvec(GT ) (9.7)

where G is r × m. Then P T
r,m = P m,r, and P r,mP m,r = P m,rP r,m = Irm.

If C is s × m and D is p × r, then

C ⊗ D = P p,s(D ⊗ C)P m,q. (9.8)
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Also
(C ⊗ D)vec(G) = vec(DGCT ) = P p,s(D ⊗ C)vec(GT ). (9.9)

If C is m × mand D is r × r, then C ⊗ D = P r,m(D ⊗ C)P m,r , and

[vec(G)]T (C ⊗ D)vec(G) = [vec(GT )]T (D ⊗ C)vec(GT ). (9.10)

Theorem 9.2. For the one way MANOVA test using A as defined below
Theorem 9.1, let the Hotelling Lawley trace statistic U = tr(W−1BT ). Then

(n − p)U = t0 = [AT − θ0]
T

[
A diag

(
Σ̂

n1
,
Σ̂

n2
, ...,

Σ̂

np

)
AT

]
−1

[AT − θ0].

Hence if the Σi ≡ Σ and H0 : µ1 = · · · = µp is true, then (n − p)U = t0
D→

χ2
m(p−1).

Proof. Let B and X be as in Remark 9.4. Let L = [0 Ip−1] be an s × p
matrix with s = p− 1. For this choice of X , U = tr(W−1BT ) = tr(W −1H)
by Remark 9.4. Hence by Theorem 8.6,

(n − p)U = [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)]. (9.11)

Now vec([LB̂]T ) = w = AT of Equation (9.4) with Ti = yi. Then

t0 = wT

(
Σ̂w

n

)
−1

w

where
Σ̂w

n
= L(XT X)−1LT ⊗ Σ̂

is given by Equation (9.5) with each Σ̂i replaced by Σ̂. Thus t0 =

[vec([LB̂]T )]T [(L(XT X)−1LT )−1 ⊗ Σ̂
−1

ε ][vec([LB̂]T )]. (9.12)

Then t0 = (n − p)U by Equation (9.10) with G = LB̂. �

Hence the one way MANOVA test is a special case of Equation (9.3) where

θ0 = 0 and Σ̂i ≡ Σ̂, but then Theorem 9.1 only holds if H0 is true and
Σi ≡ Σ. Note that the large sample theory of Theorem 9.1 is trivial compared
to the large sample theory of (n−p)U given in Theorem 9.2. Fujikoshi (2002)

showed (n−m− p− 1)U
D→ χ2

m(p−1) while (n− p)U
D→ χ2

m(p−1) by Theorem
9.2 if H0 is true under the common covariance matrix assumption. There is no

contradiction since (m+1)U
P→ 0 as the ni → ∞. Note the A is m(p−1)×mp.
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For tests corresponding to Theorem 9.1, we will use bootstrap with the
prediction region method of Chapter 4 to test H0 when Σ̂w or the Σ̂i are
unknown or difficult to estimate. To bootstrap the test H0 : Aν = θ0 versus
H1 : Aν 6= θ0, use Zn = AT . Take a sample of size nj with replacement from
the nj cases for each group for j = 1, 2, ..., p to obtain T ∗

j and T ∗

1. Repeat B
times to obtain T ∗

1, ..., T
∗

B . Then Z∗

i = AT ∗

i for i = 1, ..., B. We will illustrate
this method with the analog for the one way MANOVA test for H0 : Aθ = 0

which is equivalent to H0 : µ1 = · · · = µp, where 0 is an r × 1 vector of
zeroes with r = m(p − 1). Then Zn = AT = w given by Equation (9.4).
Hence the m(p− 1)× 1 vector Z∗

i = AT ∗

i = ((T ∗

1 − T ∗

p )T , ..., (T ∗

p−1 − T ∗

p )T )T

where Tj is a multivariate location estimator (such as the sample mean,
coordinatewise median, or trimmed mean), applied to the cases in the jth
treatment group. The prediction region method fails to reject H0 if 0 is in
the resulting confidence region.

We may need B ≥ 50m(p−1), n ≥ (m+p)2, and ni ≥ 40m. If the ni are not
large, the one way MANOVA test can be regarded as a regularized estimator,
and can perform better than the tests that do not assume equal population
covariance matrices. See the simulations in Rupasinghe Arachchige Don and
Olive (2019).

If H0 : Aν = θ0 is true and if the Σi ≡ Σ for i = 1, ..., p, then

t0 = [AT − θ0]
T

[
A diag

(
Σ̂

n1
,
Σ̂

n2
, ...,

Σ̂

np

)
AT

]
−1

[AT − θ0]
D→ χ2

r.

If H0 is true but the Σi are not equal, we may be able to get a bootstrap
cutoff by using

t∗0i = [AT ∗

i − AT ]T

[
A diag

(
Σ̂

n1
,
Σ̂

n2
, ...,

Σ̂

np

)
AT

]
−1

[AT ∗

i − AT ] =

D2
AT ∗

i

(
AT , A diag

(
Σ̂

n1
,
Σ̂

n2
, ...,

Σ̂

np

)
AT

)
.

9.5 Summary

1) The multivariate linear model yi = BT xi+εi for i = 1, ..., n has m ≥ 2
response variables Y1, ..., Ym and p predictor variables x1, x2, ..., xp. The ith
case is (xT

i , yT
i ) = (xi1, xi2, ..., xip, Yi1, ..., Yim). If a constant xi1 = 1 is in

the model, then xi1 could be omitted from the case. The model is written
in matrix form as Z = XB + E. The model has E(εk) = 0 and Cov(εk) =
Σε = (σij) for k = 1, ..., n. Also E(ei) = 0 while Cov(ei, ej) = σijIn for
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i, j = 1, ..., m. Then B and Σε are unknown matrices of parameters to be
estimated, and E(Z) = XB while E(Yij) = xT

i βj.
The data matrix W = [X Z] except usually the first column 1 of X is

omitted if xi,1 ≡ 1. The n × m matrix

Z =





Y1,1 Y1,2 . . . Y1,m

Y2,1 Y2,2 . . . Y2,m

...
...

. . .
...

Yn,1 Yn,2 . . . Yn,m




=
[
Y 1 Y 2 . . . Y m

]
=




yT

1
...

yT
n



 .

The n × p matrix

X =





x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p




=
[
v1 v2 . . . vp

]
=




xT

1
...

xT
n





where often v1 = 1.
The p × m matrix

B =





β1,1 β1,2 . . . β1,m

β2,1 β2,2 . . . β2,m

...
...

. . .
...

βp,1 βp,2 . . . βp,m




=
[
β1 β2 . . . βm

]
.

The n × m matrix

E =





ε1,1 ε1,2 . . . ε1,m

ε2,1 ε2,2 . . . ε2,m

...
...

. . .
...

εn,1 εn,2 . . . εn,m




=
[
e1 e2 . . . em

]
=




εT
1
...

εT
n



 .

2) The univariate linear model is Yi = xi,1β1 + xi,2β2 + · · ·+xi,pβp + ei =

xT
i β + ei = βT xi + ei for i = 1, . . . , n. In matrix notation, these n equations

become Y = Xβ + e, where Y is an n × 1 vector of response variables, X

is an n × p matrix of predictors, β is a p × 1 vector of unknown coefficients,
and e is an n × 1 vector of unknown errors.

3) Each response variable in a multivariate linear model follows a univari-
ate linear model Y j = Xβj + ej for j = 1, ..., m where it is assumed that
E(ej) = 0 and Cov(ej) = σjjIn.

4) In a MANOVA model, yk = BT xk + εk for k = 1, ..., n is written in
matrix form as Z = XB+E. The model has E(εk) = 0 and Cov(εk) = Σε =
(σij) for k = 1, ..., n. Each response variable in a MANOVA model follows
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an ANOVA model Y j = Xβj + ej for j = 1, ..., m where it is assumed that
E(ej) = 0 and Cov(ej) = σjjIn.

5) The one way MANOVA model is as above where Y j = Xβj + ej

is a one way ANOVA model for j = 1, ..., m. Check the model by making m
response and residual plots and a DD plot of the residual vectors ε̂i.

6) The one way MANOVA model is a generalization of the Hotelling’s
T 2 test from 2 groups to p ≥ 2 groups, assumed to have different means
but a common covariance matrix Σε. Want to test H0 : µ1 = · · · = µp.
This model is a multivariate linear model so there are m response variables
Y1, ..., Ym measured for each group. Each Yi follows a one way ANOVA model
for i = 1, ..., m.

7) For the one way MANOVA model, make a DD plot of the residual
vectors ε̂i where i = 1, ..., n. Use the plot to check whether the εi follow a
multivariate normal distribution or some other elliptically contoured distri-
bution. We want n ≥ (m + p)2 and ni ≥ 10m.

8) For the one way MANOVA model, write the data as Yijk where i =
1, ..., p and j = 1, ..., ni. So k corresponds to the kth variable Yk for k =
1, ..., m. Then Ŷijk = µ̂ik = Y iok for i = 1, ..., p. So for the kth variable, the

means µ1k, ..., µpk are of interest. The residuals are rijk = Yijk − Ŷijk. For
each variable Yk make a response plot of Y iok versus Yijk and a residual plot
of Y iok versus rijk. Both plots will consist of p dot plots of ni cases located
at the Y iok. The dot plots should follow the identity line in the response plot
and the horizontal r = 0 line in the residual plot for each of the m response
variables Y1, ..., Ym. For each variable Yk, let Rik be the range of the ith dot
plot. If each ni ≥ 5, we want max(R1k, ..., Rpk) ≤ 2 min(R1k, ..., Rpk). The
one way MANOVA model may be reasonable for the test in point 9) if the
m response and residual plots satisfy the above graphical checks.

9) The four steps of the one way MANOVA test follow.
i) State the hypotheses H0 : µ1 = · · · = µp and H1 : not H0.
ii) Get t0 from output.
iii) Get pval from output.
iv) State whether you reject H0 or fail to reject H0. If pval ≤ α, reject H0

and conclude that not all of the p treatment means are equal. If pval > α, fail
to reject H0 and conclude that all p treatment means are equal or that there
is not enough evidence to conclude that not all of the p treatment means
are equal. Give a nontechnical sentence as the conclusion, if possible. As a
textbook convention, use α = 0.05 if α is not given.

10) The one way MANOVA test assumes that the p treatment groups or
populations have the same covariance matrix: Σ1 = · · · = Σp, but the test
has some resistance to this assumption. See points 6) and 8).
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9.6 Complements

The linmodpack function manbtsim2 simulates the bootstrap tests corre-
sponding to Theorem 9.1 using the sample mean, coordinatewise median, and
coordinatewise 25% trimmed mean. The function manbtsim4 adds the test
corresponding to Equation (9.6). The function manbtsim is like manbtsim2,
but adds TRMV N from Definition 7.17 to the simulation, making the simu-
lation very slow. The prediction region method was proven to work for the
sample mean, coordinatwise median, and coordinatwise trimmed means in
Rupasinghe Arachchige Don and Olive (2019). We only conjecture that the
prediction region method works for TRMV N .

9.7 Problems

10.1∗. If X is of full rank and least squares is used to fit the MANOVA
model, then β̂i = (XT X)−1XT Y i, and Y i = Xβi + ei. Treating Xβi as a
constant, Cov(Y i, Y j) = Cov(ei, ej) = σijIn. Using this information, show

Cov(β̂i, β̂j) = σij(X
T X)−1.


