
Chapter 8

Multivariate Linear Regression

This chapter will show that multivariate linear regression with m ≥ 2 re-
sponse variables is nearly as easy to use, at least if m is small, as multiple
linear regression which has 1 response variable. For multivariate linear re-
gression, at least one predictor variable is quantitative. Plots for checking
the model, including outlier detection, are given. Prediction regions that are
robust to nonnormality are developed. For hypothesis testing, it is shown
that the Wilks’ lambda statistic, Hotelling Lawley trace statistic, and Pillai’s
trace statistic are robust to nonnormality.

8.1 Introduction

Definition 8.1. The response variables are the variables that you want
to predict. The predictor variables are the variables used to predict the
response variables.

Definition 8.2. The multivariate linear regression model

yi = BT xi + εi

for i = 1, ..., n has m ≥ 2 response variables Y1, ..., Ym and p predictor
variables x1, x2, ..., xp where x1 ≡ 1 is the trivial predictor. The ith case
is (xT

i , y
T
i ) = (1, xi2, ..., xip, Yi1, ..., Yim) where the 1 could be omitted. The

model is written in matrix form as Z = XB + E where the matrices are
defined below. The model has E(εk) = 0 and Cov(εk) = Σε = (σij) for
k = 1, ..., n. Then the p × m coefficient matrix B =

[
β1 β2 . . . βm

]
and

the m × m covariance matrix Σε are to be estimated, and E(Z) = XB

while E(Yij) = xT
i βj . The εi are assumed to be iid. Multiple linear regres-

sion corresponds to m = 1 response variable, and is written in matrix form
as Y = Xβ + e. Subscripts are needed for the m multiple linear regression
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354 8 Multivariate Linear Regression

models Y j = Xβj +ej for j = 1, ..., mwhere E(ej) = 0. For the multivariate
linear regression model, Cov(ei, ej) = σij In for i, j = 1, ..., m where In is
the n× n identity matrix.

Notation. The multiple linear regression model uses m = 1. See Def-
inition 1.9. The multivariate linear model yi = BT xi + εi for i = 1, ..., n
has m ≥ 2, and multivariate linear regression and MANOVA models are
special cases. See Definition 9.2. This chapter will use x1 ≡ 1 for the multi-
variate linear regression model. The multivariate location and dispersion
model is the special case where X = 1 and p = 1.

The data matrix W = [X Z] except usually the first column 1 of X is
omitted for software. The n×m matrix

Z =





Y1,1 Y1,2 . . . Y1,m

Y2,1 Y2,2 . . . Y2,m

...
...

. . .
...

Yn,1 Yn,2 . . . Yn,m




=
[
Y 1 Y 2 . . . Y m

]
=




yT

1
...

yT
n



 .

The n× p design matrix of predictor variables is

X =





x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p




=
[
v1 v2 . . . vp

]
=




xT

1
...

xT
n





where v1 = 1.
The p×m matrix

B =





β1,1 β1,2 . . . β1,m

β2,1 β2,2 . . . β2,m

...
...

. . .
...

βp,1 βp,2 . . . βp,m




=
[
β1 β2 . . . βm

]
.

The n×m matrix

E =





ε1,1 ε1,2 . . . ε1,m

ε2,1 ε2,2 . . . ε2,m

...
...

. . .
...

εn,1 εn,2 . . . εn,m



 =
[
e1 e2 . . . em

]
=




εT
1
...

εT
n



 .

Considering the ith row of Z,X, and E shows that yT
i = xT

i B + εT
i .

Each response variable in a multivariate linear regression model follows a
multiple linear regression model Y j = Xβj + ej for j = 1, ..., m where it
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is assumed that E(ej) = 0 and Cov(ej) = σjjIn. Hence the errors corre-
sponding to the jth response are uncorrelated with variance σ2

j = σjj. Notice
that the same design matrix X of predictors is used for each of the m
models, but the jth response variable vector Y j, coefficient vector βj , and
error vector ej change and thus depend on j.

Now consider the ith case (xT
i , y

T
i ) which corresponds to the ith row of Z

and the ith row of X . Then




Yi1 = β11xi1 + · · ·+ βp1xip + εi1 = xT
i β1 + εi1

Yi2 = β12xi1 + · · ·+ βp2xip + εi2 = xT
i β2 + εi2

...
Yim = β1mxi1 + · · ·+ βpmxip + εim = xT

i βm + εim





or yi = µxi
+ εi = E(yi) + εi where

E(yi) = µxi
= BT xi =





xT
i β1

xT
i β2
...

xT
i βm




.

The notation yi|xi and E(yi|xi) is more accurate, but usually the condi-
tioning is suppressed. Taking µxi

to be a constant (or condition on xi if the
predictor variables are random variables), yi and εi have the same covariance
matrix. In the multivariate regression model, this covariance matrix Σε does
not depend on i. Observations from different cases are uncorrelated (often
independent), but the m errors for the m different response variables for the
same case are correlated. If X is a random matrix, then assume X and E

are independent and that expectations are conditional on X .

Example 8.1. Suppose it is desired to predict the response variables Y1 =
height and Y2 = height at shoulder of a person from partial skeletal remains.
A model for prediction can be built from nearly complete skeletons or from
living humans, depending on the population of interest (e.g. ancient Egyp-
tians or modern US citizens). The predictor variables might be x1 ≡ 1, x2 =
femur length, and x3 = ulna length. The two heights of individuals with
x2 = 200mm and x3 = 140mm should be shorter on average than the two
heights of individuals with x2 = 500mm and x3 = 350mm. In this example
Y1, Y2, x2, and x3 are quantitative variables. If x4 = gender is a predictor
variable, then gender (coded as male = 1 and female = 0) is qualitative.

Definition 8.3. Least squares is the classical method for fitting multivari-
ate linear regression. The least squares estimators are

B̂ = (XT X)−1XT Z =
[
β̂1 β̂2 . . . β̂m

]
.

The predicted values or fitted values
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Ẑ = XB̂ =
[
Ŷ 1 Ŷ 2 . . . Ŷ m

]
=





Ŷ1,1 Ŷ1,2 . . . Ŷ1,m

Ŷ2,1 Ŷ2,2 . . . Ŷ2,m

...
...

. . .
...

Ŷn,1 Ŷn,2 . . . Ŷn,m




.

The residuals Ê = Z − Ẑ = Z − XB̂ =





ε̂T
1

ε̂T
2
...

ε̂T
n




=
[
r1 r2 . . . rm

]
=





ε̂1,1 ε̂1,2 . . . ε̂1,m

ε̂2,1 ε̂2,2 . . . ε̂2,m

...
...

. . .
...

ε̂n,1 ε̂n,2 . . . ε̂n,m




.

These quantities can be found from the m multiple linear regressions of Y j

on the predictors: β̂j = (XT X)−1XT Y j, Ŷ j = Xβ̂j, and rj = Y j − Ŷ j

for j = 1, ..., m. Hence ε̂i,j = Yi,j − Ŷi,j where Ŷ j = (Ŷ1,j, ..., Ŷn,j)
T . Finally,

Σ̂ε,d =

(Z − Ẑ)T (Z − Ẑ)

n− d
=

(Z − XB̂)T (Z − XB̂)

n− d
=

Ê
T
Ê

n − d
=

1

n− d

n∑

i=1

ε̂iε̂
T
i .

The choices d = 0 and d = p are common. If d = 1, then Σ̂ε,d=1 = Sr, the
sample covariance matrix of the residual vectors ε̂i, since the sample mean
of the ε̂i is 0. Let Σ̂ε = Σ̂ε,p be the unbiased estimator of Σε. Also,

Σ̂ε,d = (n− d)−1ZT [I − X(XT X)−1X ]Z,

and
Ê = [I − X(XT X)−1X ]Z.

The following two theorems show that the least squares estimators are
fairly good. Also see Theorem 8.7 in Section 8.4. Theorem 8.2 can also be

used for Σ̂ε,d =
n− 1

n − d
Sr.

Theorem 8.1, Johnson and Wichern (1988, p. 304): Suppose X has
full rank p < n and the covariance structure of Definition 8.2 holds. Then
E(B̂) = B so E(β̂j) = βj , Cov(β̂j, β̂k) = σjk(X

T X)−1 for j, k = 1, ..., p.

Also Ê and B̂ are uncorrelated, E(Ê) = 0, and

E(Σ̂ε) = E

(
Ê

T
Ê

n− p

)
= Σε.
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Theorem 8.2. Sr = Σε+OP (n−1/2) and 1
n

∑n
i=1 εiε

T
i = Σε+OP (n−1/2)

if the following three conditions hold: B − B̂ = OP (n−1/2), 1
n

∑n
i=1 εix

T
i =

OP (1), and 1
n

∑n
i=1 xix

T
i = OP (n1/2).

Proof. Note that yi = BT xi+εi = B̂
T
xi+ε̂i. Hence ε̂i = (B−B̂)T xi+εi.

Thus

n∑

i=1

ε̂iε̂
T
i =

n∑

i=1

(εi−εi+ε̂i)(εi−εi+ε̂i)
T =

n∑

i=1

[εiε
T
i +εi(ε̂i−εi)

T +(ε̂i−εi)ε̂
T
i ]

=

n∑

i=1

εiε
T
i + (

n∑

i=1

εix
T
i )(B − B̂) + (B − B̂)T (

n∑

i=1

xiε
T
i )+

(B − B̂)T (

n∑

i=1

xix
T
i )(B − B̂).

Thus 1
n

∑n
i=1 ε̂iε̂

T
i = 1

n

∑n
i=1 εiε

T
i +

OP (1)OP (n−1/2) + OP (n−1/2)OP (1) +OP (n−1/2)OP (n1/2)OP (n−1/2),

and the result follows since 1
n

∑n
i=1 εiε

T
i = Σε + OP (n−1/2) and

Sr =
n

n − 1

1

n

n∑

i=1

ε̂iε̂
T
i . �

Sr and Σ̂ε are also
√
n consistent estimators of Σε by Su and Cook (2012,

p. 692). See Theorem 8.7.

8.2 Plots for the Multivariate Linear Regression Model

This section suggests using residual plots, response plots, and the DD plot to
examine the multivariate linear model. The DD plot is used to examine the
distribution of the iid error vectors. The residual plots are often used to check
for lack of fit of the multivariate linear model. The response plots are used
to check linearity and to detect influential cases for the linearity assumption.
The response and residual plots are used exactly as in the m = 1 case corre-
sponding to multiple linear regression and experimental design models. See
Olive (2010, 2017a), Olive et al. (2015), Olive and Hawkins (2005), and Cook
and Weisberg (1999, p. 432).

Notation. Plots will be used to simplify the regression analysis, and in
this text a plot of W versus Z uses W on the horizontal axis and Z on the
vertical axis.
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Definition 8.4. A response plot for the jth response variable is a plot
of the fitted values Ŷij versus the response Yij. The identity line with slope
one and zero intercept is added to the plot as a visual aid. A residual plot
corresponding to the jth response variable is a plot of Ŷij versus rij.

Remark 8.1. Make the m response and residual plots for any multivariate
linear regression. In a response plot, the vertical deviations from the identity
line are the residuals rij = Yij− Ŷij . Suppose the model is good, the jth error
distribution is unimodal and not highly skewed for j = 1, ..., m, and n ≥ 10p.
Then the plotted points should cluster about the identity line in each of the
m response plots. If outliers are present or if the plot is not linear, then the
current model or data need to be transformed or corrected. If the model is
good, then each of the m residual plots should be ellipsoidal with no trend
and should be centered about the r = 0 line. There should not be any pattern
in the residual plot: as a narrow vertical strip is moved from left to right, the
behavior of the residuals within the strip should show little change. Outliers
and patterns such as curvature or a fan shaped plot are bad.

Rule of thumb 8.1. Use multivariate linear regression if

n ≥ max((m+ p)2, mp+ 30, 10p))

provided that the m response and residual plots all look good. Make the DD
plot of the ε̂i. If a residual plot would look good after several points have
been deleted, and if these deleted points were not gross outliers (points far
from the point cloud formed by the bulk of the data), then the residual plot
is probably good. Beginners often find too many things wrong with a good
model. For practice, use the computer to generate several multivariate linear
regression data sets, and make the m response and residual plots for these
data sets. This exercise will help show that the plots can have considerable
variability even when the multivariate linear regression model is good. The
linmodpack function MLRsim simulates response and residual plots for various
distributions when m = 1.

Rule of thumb 8.2. If the plotted points in the residual plot look like
a left or right opening megaphone, the first model violation to check is the
assumption of nonconstant variance. (This is a rule of thumb because it is
possible that such a residual plot results from another model violation such
as nonlinearity, but nonconstant variance is much more common.)

Remark 8.2. Residual plots magnify departures from the model while the
response plots emphasize how well the multivariate linear regression model
fits the data.

Definition 8.5. An RR plot is a scatterplot matrix of the m sets of
residuals r1, ..., rm.
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Definition 8.6. An FF plot is a scatterplot matrix of the m sets of fitted
values of response variables Ŷ 1, ..., Ŷ m. The m response variables Y 1, ...,Y m

can be added to the plot.

Remark 8.3. Some applications for multivariate linear regression need the
m error vectors to be linearly related, and larger sample sizes may be needed
if the error vectors are not linearly related. For example, the asymptotic
optimality of the prediction regions of Section 8.3 needs the error vectors to
be iid from an elliptically contoured distribution. Make the RR plot and a
DD plot of the residual vectors ε̂i to check that the error vectors are linearly
related. Make a DD plot of the continuous predictor variables to check for
x-outliers. Make a DD plot of Y1, ...., Ym to check for outliers, especially if
it is assumed that the response variables come from an elliptically contoured
distribution.

The RMVN DD plot of the residual vectors ε̂i is used to check the error
vector distribution, to detect outliers, and to display the nonparametric pre-
diction region developed in Section 8.3. The DD plot suggests that the error
vector distribution is elliptically contoured if the plotted points cluster tightly
about a line through the origin as n → ∞. The plot suggests that the error
vector distribution is multivariate normal if the line is the identity line. If n
is large and the plotted points do not cluster tightly about a line through the
origin, then the error vector distribution may not be elliptically contoured.
These applications of the DD plot for iid multivariate data are discussed in
Olive (2002, 2008, 2013a, 2017b) and Chapter 7. The RMVN estimator has
not yet been proven to be a consistent estimator when computed from resid-
ual vectors, but simulations suggest that the RMVN DD plot of the residual
vectors is a useful diagnostic plot. The linmodpack function mregddsim can
be used to simulate the DD plots for various distributions.

Predictor transformations for the continuous predictors can be made ex-
actly as in Section 1.2.

Warning: The log rule and other transformations do not always work. For
example, the log rule may fail. If the relationships in the scatterplot matrix are
already linear or if taking the transformation does not increase the linearity,
then no transformation may be better than taking a transformation. For
the Cook and Weisberg (1999) data set evaporat.lsp with m = 1, the log
rule suggests transforming the response variable Evap, but no transformation
works better.

Response transformations can also be made as in Section 1.2, but also
make the response plot of Ŷ j versus Y j , and use the rules of Section 1.2
on Yj to linearize the response plot for each of the m response variables
Y1, ..., Ym.



360 8 Multivariate Linear Regression

8.3 Asymptotically Optimal Prediction Regions

In this section, we will consider a more general multivariate regression model,
and then consider the multivariate linear model as a special case. Given n
cases of training or past data (x1, y1), ..., (xn, yn) and a vector of predictors
xf , suppose it is desired to predict a future test vector yf .

Definition 8.7. A large sample 100(1− δ)% prediction region is a set An

such that P (yf ∈ An) → 1−δ as n→ ∞, and is asymptotically optimal if the
volume of the region converges in probability to the volume of the population
minimum volume covering region.

The classical large sample 100(1− δ)% prediction region for a future value
xf given iid data x1, ..., ,xn is {x : D2

x(x,S) ≤ χ2
p,1−δ}, while for multi-

variate linear regression, the classical large sample 100(1 − δ)% prediction
region for a future value yf given xf and past data (x1, yi), ..., (xn, yn) is

{y : D2
y(ŷf , Σ̂ε) ≤ χ2

m,1−δ}. See Johnson and Wichern (1988, pp. 134, 151,
312). By Equation (1.36), these regions may work for multivariate normal xi

or εi, but otherwise tend to have undercoverage. Section 4.4 and Olive (2013a)
replaced χ2

p,1−δ by the order statistic D2
(Un) where Un decreases to dn(1−δ)e.

This section will use a similar technique from Olive (2018) to develop possibly
the first practical large sample prediction region for the multivariate linear
model with unknown error distribution. The following technical theorem will
be needed to prove Theorem 8.4.

Theorem 8.3. Let a > 0 and assume that (µ̂n, Σ̂n) is a consistent esti-
mator of (µ, aΣ).

a) D2
x(µ̂n, Σ̂n) − 1

a
D2

x(µ,Σ) = oP (1).

b) Let 0 < δ ≤ 0.5. If (µ̂n, Σ̂n)− (µ, aΣ) = Op(n
−δ) and aΣ̂

−1

n −Σ−1 =
OP (n−δ), then

D2
x(µ̂n, Σ̂n) − 1

a
D2

x(µ,Σ) = OP (n−δ).

Proof. Let Bn denote the subset of the sample space on which Σ̂n has an
inverse. Then P (Bn) → 1 as n→ ∞. Now

D2
x(µ̂n, Σ̂n) = (x − µ̂n)T Σ̂

−1

n (x − µ̂n) =

(x− µ̂n)T

(
Σ−1

a
− Σ−1

a
+ Σ̂

−1

n

)
(x − µ̂n) =

(x− µ̂n)T

(−Σ−1

a
+ Σ̂

−1

n

)
(x − µ̂n) + (x − µ̂n)T

(
Σ−1

a

)
(x − µ̂n) =
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1

a
(x − µ̂n)T (−Σ−1 + a Σ̂

−1

n )(x − µ̂n) +

(x− µ + µ − µ̂n)T

(
Σ−1

a

)
(x − µ + µ − µ̂n)

=
1

a
(x − µ)T Σ−1(x − µ) +

2

a
(x − µ)T Σ−1(µ− µ̂n)+

1

a
(µ − µ̂n)T Σ−1(µ − µ̂n) +

1

a
(x − µ̂n)T [aΣ̂

−1

n − Σ−1](x− µ̂n)

on Bn, and the last three terms are oP (1) under a) and OP (n−δ) under b).
�

Now suppose a prediction region for an m× 1 random vector yf given a
vector of predictors xf is desired for the multivariate linear model. If we had

many cases zi = BT xf + εi, then we could use the multivariate prediction
region for m variables from Section 4.4. Instead, Theorem 8.4 will use the

prediction region from Section 4.4 on the pseudodata ẑi = B̂
T
xf + ε̂i =

ŷf + ε̂i for i = 1, ..., n. This takes the data cloud of the n residual vectors ε̂i

and centers the cloud at ŷf . Note that ẑi = (B−B +B̂)T xf +(εi−εi+ε̂i) =

zi+(B̂−B)T xf +ε̂i−εi = zi+(B̂−B)T xf −(B̂−B)T xi = zi+OP (n−1/2).
Hence the distances based on the zi and the distances based on the ẑi have
the same quantiles, asymptotically (for quantiles that are continuity points
of the distribution of zi).

If the εi are iid from an ECm(0,Σ, g) distribution with continuous de-
creasing g and nonsingular covariance matrix Σε = cΣ for some con-
stant c > 0, then the population asymptotically optimal prediction region
is {y : Dy(BT xf ,Σε) ≤ D1−δ} where P (Dy(BT xf ,Σε) ≤ D1−δ) = 1 − δ.

For example, if the iid εi ∼ Nm(0,Σε), then D1−δ =
√
χ2

m,1−δ. If the er-

ror distribution is not elliptically contoured, then the above region still has
100(1− δ)% coverage, but prediction regions with smaller volume may exist.

A natural way to make a large sample prediction region is to estimate the
target population minimum volume covering region, but for moderate sam-
ples and many error distributions, the natural estimator that covers dn(1−δ)e
of the cases tends to have undercoverage as high as min(0.05, δ/2). This em-
pirical result is not too surprising since it is well known that the performance
of a prediction region on the training data is superior to the performance on
future test data, due in part to the unknown variability of the estimator. To
compensate for the undercoverage, let qn be as in Theorem 8.4.

Theorem 8.4. Suppose yi = E(yi|xi) + εi = ŷi + ε̂i where Cov(εi) =
Σε > 0, and where the zero mean εf and the εi are iid for i = 1, ..., n.

Given xf , suppose the fitted model produces ŷf and nonsingular Σ̂ε. Let
ẑi = ŷf + ε̂i and
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D2
i ≡ D2

i (ŷf , Σ̂ε) = (ẑi − ŷf )T Σ̂
−1

ε (ẑi − ŷf )

for i = 1, ..., n. Let qn = min(1 − δ + 0.05, 1− δ +m/n) for δ > 0.1 and

qn = min(1 − δ/2, 1− δ + 10δm/n), otherwise.

If qn < 1 − δ + 0.001, set qn = 1 − δ. Let 0 < δ < 1 and h = D(Un) where
D(Un) is the 100 qnth sample quantile of the Mahalanobis distances Di. Let
the nominal 100(1 − δ)% prediction region for yf be given by

{z : (z − ŷf )T Σ̂
−1

ε (z − ŷf ) ≤ D2
(Un)} =

{z : D2
z(ŷf , Σ̂ε) ≤ D2

(Un)} = {z : Dz(ŷf , Σ̂ε) ≤ D(Un)}. (8.1)

a) Consider the n prediction regions for the data where (yf,i,xf,i) =
(yi,xi) for i = 1, ..., n. If the order statistic D(Un) is unique, then Un of the
n prediction regions contain yi where Un/n→ 1 − δ as n → ∞.

b) If (ŷf , Σ̂ε) is a consistent estimator of (E(yf),Σε), then (8.1) is a
large sample 100(1− δ)% prediction region for yf .

c) If (ŷf , Σ̂ε) is a consistent estimator of (E(yf ),Σε), and the εi come
from an elliptically contoured distribution such that the unique highest den-
sity region is {z : Dz(0,Σε) ≤ D1−δ}, then the prediction region (8.1) is
asymptotically optimal.

Proof. a) Suppose (xf , yf ) = (xi, yi). Then

D2
y

i
(ŷi, Σ̂ε) = (yi − ŷi)

T Σ̂
−1

ε (yi − ŷi) = ε̂T
i Σ̂

−1

ε ε̂i = D2
ε̂i

(0, Σ̂ε).

Hence yi is in the ith prediction region {z : Dz(ŷi, Σ̂ε) ≤ D(Un)(ŷi, Σ̂ε)}
iff ε̂i is in prediction region {z : Dz(0, Σ̂ε) ≤ D(Un)(0, Σ̂ε)}, but exactly Un

of the ε̂i are in the latter region by construction, if D(Un) is unique. Since
D(Un) is the 100(1− δ)th percentile of the Di asymptotically, Un/n→ 1− δ.

b) Let P [Dz(E(yf ),Σε) ≤ D1−δ(E(yf),Σε)] = 1 − δ. Since Σε > 0,

Theorem 8.3 shows that if (ŷf , Σ̂ε)
P→ (E(yf),Σε) then D(ŷf , Σ̂ε)

D→
Dz(E(yf ),Σε). Hence the percentiles of the distances converge in distri-

bution, and the probability that yf is in {z : Dz(ŷf , Σ̂ε) ≤ D1−δ(ŷf , Σ̂ε)}
converges to 1 − δ = the probability that yf is in {z : Dz(E(yf ),Σε) ≤
D1−δ(E(yf),Σε)} at continuity points D1−δ of the distribution ofD(E(yf ),
Σε).

c) The asymptotically optimal prediction region is the region with the
smallest volume (hence highest density) such that the coverage is 1 − δ, as
n → ∞. This region is {z : Dz(E(yf),Σε) ≤ D1−δ(E(yf ),Σε)} if the
asymptotically optimal region for the εi is {z : Dz(0,Σε) ≤ D1−δ(0,Σε)}.
Hence the result follows by b). �
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Notice that if Σ̂
−1

ε exists, then 100qn% of the n training data yi are in their
corresponding prediction region with xf = xi, and qn → 1−δ even if (ŷi, Σ̂ε)
is not a good estimator or if the regression model is misspecified. Hence the
coverage qn of the training data is robust to model assumptions. Of course the
volume of the prediction region could be large if a poor estimator (ŷi, Σ̂ε) is
used or if the εi do not come from an elliptically contoured distribution. The
response, residual, and DD plots can be used to check model assumptions.
If the plotted points in the RMVN DD plot cluster tightly about some line
through the origin and if n ≥ max[3(m+p)2, mp+30], we expect the volume
of the prediction region may be fairly low for the least squares estimators.

If n is too small, then multivariate data is sparse and the covering ellipsoid
for the training data may be far too small for future data, resulting in severe
undercoverage. Also notice that qn = 1−δ/2 or qn = 1−δ+0.05 for n ≤ 20p.
At the training data, the coverage qn ≥ 1 − δ, and qn converges to the
nominal coverage 1− δ as n → ∞. Suppose n ≤ 20p. Then the nominal 95%
prediction region uses qn = 0.975 while the nominal 50% prediction region
uses qn = 0.55.Prediction distributions depend both on the error distribution
and on the variability of the estimator (ŷf , Σ̂ε). This variability is typically
unknown but converges to 0 as n→ ∞. Also, residuals tend to underestimate
errors for small n. For moderate n, ignoring estimator variability and using
qn = 1 − δ resulted in undercoverage as high as min(0.05, δ/2). Letting the
“coverage” qn decrease to the nominal coverage 1 − δ inflates the volume of
the prediction region for small n, compensating for the unknown variability
of (ŷf , Σ̂ε).

Consider the multivariate linear regression model. Let Σ̂ε = Σ̂ε,d=p, ẑi =
ŷf + ε̂i, and D2

i (ŷf ,Sr) = (ẑi − ŷf )T S−1
r (ẑi − ŷf ) for i = 1, ..., n. Then the

large sample nonparametric 100(1− δ)% prediction region is

{z : D2
z(ŷf ,Sr) ≤ D2

(Un)} = {z : Dz(ŷf ,Sr) ≤ D(Un)}. (8.2)

Theorem 8.5 will show that this prediction region (8.2) can also be found
by applying the nonparametric prediction region (4.24) on the ẑi. Recall that
Sr defined in Definition 8.3 is the sample covariance matrix of the residual
vectors ε̂i. For the multivariate linear regression model, ifD1−δ is a continuity
point of the distribution of D, Assumption D1 above Theorem 8.7 holds, and
the εi have a nonsingular covariance matrix, then (8.2) is a large sample
100(1− δ)% prediction region for yf .

Theorem 8.5. For multivariate linear regression, when least squares is
used to compute ŷf , Sr , and the pseudodata ẑi, prediction region (8.2) is
the nonparametric prediction region (4.24) applied to the ẑi.

Proof. Multivariate linear regression with least squares satisfies Theorem
8.4 by Su and Cook (2012). (See Theorem 8.7.) Let (T,C) be the sample
mean and sample covariance matrix (see Definition 4.7) applied to the ẑi.
The sample mean and sample covariance matrix of the residual vectors is
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(0,Sr) since least squares was used. Hence the ẑi = ŷf + ε̂i have sample
covariance matrix Sr, and sample mean ŷf . Hence (T,C) = (ŷf ,Sr), and
the Di(ŷf ,Sr) are used to compute D(Un). �

The RMVN DD plot of the residual vectors will be used to display the
prediction regions for multivariate linear regression. See Example 8.3. The
nonparametric prediction region for multivariate linear regression of Theorem
8.5 uses (T,C) = (ŷf ,Sr) in (8.1), and has simple geometry. Let Rr be the
nonparametric prediction region (8.2) applied to the residuals ε̂i with ŷf = 0.
Then Rr is a hyperellipsoid with center 0, and the nonparametric prediction
region is the hyperellipsoid Rr translated to have center ŷf . Hence in a DD
plot, all points to the left of the line MD = D(Un) correspond to yi that are
in their prediction region, while points to the right of the line are not in their
prediction region.

The nonparametric prediction region has some interesting properties. This
prediction region is asymptotically optimal if the εi are iid for a large class
of elliptically contoured ECm(0,Σ, g) distributions. Also, if there are 100
different values (xjf , yjf) to be predicted, we only need to update ŷjf for
j = 1, ..., 100, we do not need to update the covariance matrix Sr .

It is common practice to examine how well the prediction regions work
on the training data. That is, for i = 1, ..., n, set xf = xi and see if yi is
in the region with probability near to 1 − δ with a simulation study. Note
that ŷf = ŷi if xf = xi. Simulation is not needed for the nonparametric
prediction region (8.2) for the data since the prediction region (8.2) centered
at ŷi contains yi iff Rr, the prediction region centered at 0, contains ε̂i since
ε̂i = yi − ŷi. Thus 100qn% of prediction regions corresponding to the data
(yi,xi) contain yi, and 100qn% → 100(1−δ)%. Hence the prediction regions
work well on the training data and should work well on (xf , yf) similar to
the training data. Of course simulation should be done for test data (xf , yf)
that are not equal to training data cases. See Problem 8.11.

This training data result holds provided that the multivariate linear regres-
sion using least squares is such that the sample covariance matrix Sr of the
residual vectors is nonsingular, the multivariate regression model need
not be correct. Hence the coverage at the n training data cases (xi, yi)
is robust to model misspecification. Of course, the prediction regions may
be very large if the model is severely misspecified, but severity of misspec-
ification can be checked with the response and residual plots. Coverage for
a future value yf can also be arbitrarily bad if there is extrapolation or if
(xf , yf ) comes from a different population than that of the data.
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8.4 Testing Hypotheses

This section considers testing a linear hypothesis H0 : LB = 0 versus
H1 : LB 6= 0 where L is a full rank r × p matrix.

Definition 8.8. Assume rank(X) = p. The total corrected (for the mean)
sum of squares and cross products matrix is

T = R + W e = ZT

(
In − 1

n
11T

)
Z.

Note that T /(n− 1) is the usual sample covariance matrix Σ̂y if all n of the
yi are iid, e.g. if B = 0. The regression sum of squares and cross products
matrix is

R = ZT

[
X(XT X)−1XT − 1

n
11T

]
Z = ZT XB̂ − 1

n
ZT11T Z.

Let H = B̂
T
LT [L(XT X)−1LT ]−1LB̂. The error or residual sum of squares

and cross products matrix is

W e = (Z − Ẑ)T (Z − Ẑ) = ZT Z − ZT XB̂ = ZT [In − X(XT X)−1XT ]Z.

Note that W e = Ê
T
Ê and W e/(n− p) = Σ̂ε.

Warning: SAS output uses E instead of W e.

The MANOVA table is shown below.

Summary MANOVA Table

Source matrix df

Regression or Treatment R p− 1
Error or Residual W e n− p

Total (corrected) T n− 1

Definition 8.9. Let λ1 ≥ λ2 ≥ · · · ≥ λm be the ordered eigenvalues of
W−1

e H. Then there are four commonly used test statistics.
The Roy’s maximum root statistic is λmax(L) = λ1.
The Wilks’ Λ statistic is Λ(L) = |(H + W e)

−1W e| = |W−1
e H + I|−1 =

m∏

i=1

(1 + λi)
−1.

The Pillai’s trace statistic is V (L) = tr[(H + W e)
−1H] =

m∑

i=1

λi

1 + λi
.
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The Hotelling-Lawley trace statistic is U(L) = tr[W−1
e H ] =

m∑

i=1

λi.

Typically some function of one of the four above statistics is used to get
pval, the estimated pvalue. Output often gives the pvals for all four test
statistics. Be cautious about inference if the last three test statistics do not
lead to the same conclusions (Roy’s test may not be trustworthy for r > 1).
Theory and simulations developed below for the four statistics will provide
more information about the sample sizes needed to use the four test statistics.
See the paragraphs after the following theorem for the notation used in that
theorem.

Theorem 8.6. The Hotelling-Lawley trace statistic

U(L) =
1

n − p
[vec(LB̂)]T [Σ̂

−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)]. (8.3)

Proof. Using the Searle (1982, p. 333) identity
tr(AGT DGC) = [vec(G)]T [CA ⊗ DT ][vec(G)], it follows that

(n− p)U(L) = tr[Σ̂
−1

ε B̂
T
LT [L(XT X)−1LT ]−1LB̂]

= [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)] = T where A = Σ̂
−1

ε ,

G = LB̂,D = [L(XT X)−1LT ]−1, and C = I. Hence (8.3) holds. �

Some notation is useful to show (8.3) and to show that (n−p)U(L)
D→ χ2

rm

under mild conditions if H0 is true. Following Henderson and Searle (1979),
let matrix A = [a1 a2 . . . ap]. Then the vec operator stacks the columns
of A on top of one another so

vec(A) =





a1

a2

...
ap




.

Let A = (aij) be an m × n matrix and B a p × q matrix. Then the
Kronecker product of A and B is the mp× nq matrix

A ⊗ B =





a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

... · · ·
...

am1B am2B · · · amnB




.

An important fact is that if A and B are nonsingular square matrices, then
[A⊗ B]−1 = A−1 ⊗ B−1. The following assumption is important.
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Assumption D1: Let hi be the ith diagonal element of X(XT X)−1XT .

Assume max1≤i≤n hi
P→ 0 as n → ∞, assume that the zero mean iid error

vectors have finite fourth moments, and assume that
1

n
XT X

P→ W−1.

Su and Cook (2012) proved a central limit type theorem for Σ̂ε and B̂ for
the partial envelopes estimator, and the least squares estimator is a special
case. These results prove the following theorem. Their theorem also shows
that for multiple linear regression (m = 1), σ̂2 = MSE is a

√
n consistent

estimator of σ2.

Theorem 8.7: Multivariate Least Squares Central Limit Theorem
(MLS CLT). For the least squares estimator, if assumption D1 holds, then

Σ̂ε is a
√
n consistent estimator of Σε and

√
n vec(B̂ − B)

D→ Npm(0,Σε ⊗ W ).

Theorem 8.8. If assumption D1 holds and if H0 is true, then

(n− p)U(L)
D→ χ2

rm.

Proof. By Theorem 8.7,
√
n vec(B̂ −B)

D→ Npm(0,Σε ⊗W ). Then un-

der H0,
√
n vec(LB̂)

D→ Nrm(0,Σε ⊗LWLT ), and n [vec(LB̂)]T [Σ−1
ε ⊗

(LWLT )−1][vec(LB̂)]
D→ χ2

rm. This result also holds if W and Σε are re-

placed by Ŵ = n(XT X)−1 and Σ̂ε. Hence under H0 and using the proof of
Theorem 8.6,

T = (n−p)U(L) = [vec(LB̂)]T [Σ̂
−1

ε ⊗(L(XT X)−1LT )−1][vec(LB̂)]
D→ χ2

rm.

�

Some more details on the above results may be useful. Consider testing a
linear hypothesis H0 : LB = 0 versus H1 : LB 6= 0 where L is a full rank
r × p matrix. For now assume the error distribution is multivariate normal
Nm(0,Σε). Then

vec(B̂ − B) =





β̂1 − β1

β̂2 − β2
...

β̂m − βm



 ∼ Npm(0,Σε ⊗ (XT X)−1)

where
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C = Σε⊗(XT X)−1 =





σ11(X
T X)−1 σ12(X

T X)−1 · · · σ1m(XT X)−1

σ21(X
T X)−1 σ22(X

T X)−1 · · · σ2m(XT X)−1

...
... · · ·

...

σm1(X
T X)−1 σm2(X

T X)−1 · · · σmm(XT X)−1




.

Now let A be an rm×pm block diagonal matrix: A = diag(L, ...,L). Then

A vec(B̂ − B) = vec(L(B̂ − B)) =





L(β̂1 − β1)

L(β̂2 − β2)
...

L(β̂m − βm)




∼ Nrm(0,Σε ⊗ L(XT X)−1LT )

where D = Σε ⊗ L(XT X)−1LT = ACAT =





σ11L(XT X)−1LT σ12L(XT X)−1LT · · · σ1mL(XT X)−1LT

σ21L(XT X)−1LT σ22L(XT X)−1LT · · · σ2mL(XT X)−1LT

...
... · · ·

...

σm1L(XT X)−1LT σm2L(XT X)−1LT · · · σmmL(XT X)−1LT




.

Under H0, vec(LB) = A vec(B) = 0, and

vec(LB̂) =





Lβ̂1

Lβ̂2
...

Lβ̂m



 ∼ Nrm(0,Σε ⊗ L(XT X)−1LT ).

Hence under H0,

[vec(LB̂)]T [Σ−1
ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)] ∼ χ2

rm,

and

T = [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)]
D→ χ2

rm. (8.4)

A large sample level δ test will reject H0 if pval ≤ δ where

pval = P

(
T

rm
< Frm,n−mp

)
. (8.5)

Since least squares estimators are asymptotically normal, if the εi are iid
for a large class of distributions,
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√
n vec(B̂ − B) =

√
n





β̂1 − β1

β̂2 − β2
...

β̂m − βm




D→ Npm(0,Σε ⊗ W )

where
XT X

n

P→ W−1.

Then under H0,

√
n vec(LB̂) =

√
n





Lβ̂1

Lβ̂2
...

Lβ̂m




D→ Nrm(0,Σε ⊗ LWLT ),

and
n [vec(LB̂)]T [Σ−1

ε ⊗ (LWLT )−1][vec(LB̂)]
D→ χ2

rm.

Hence (8.4) holds, and (8.5) gives a large sample level δ test if the least
squares estimators are asymptotically normal.

Kakizawa (2009) showed, under stronger assumptions than Theorem 8.8,
that for a large class of iid error distributions, the following test statistics
have the same χ2

rm limiting distribution when H0 is true, and the same non-
central χ2

rm(ω2) limiting distribution with noncentrality parameter ω2 when
H0 is false under a local alternative. Hence the three tests are robust to the
assumption of normality. The limiting null distribution is well known when
the zero mean errors are iid from a multivariate normal distribution. See
Khattree and Naik (1999, p. 68): (n− p)U(L)

D→ χ2
rm, (n− p)V (L)

D→ χ2
rm,

and −[n − p − 0.5(m − r + 3)] log(Λ(L))
D→ χ2

rm. Results from Kshirsagar
(1972, p. 301) suggest that the third chi-square approximation is very good
if n ≥ 3(m+ p)2 for multivariate normal error vectors.

Theorems 8.6 and 8.8 are useful for relating multivariate tests with the
partial F test for multiple linear regression that tests whether a reduced
model that omits some of the predictors can be used instead of the full model
that uses all p predictors. The partial F test statistic is

FR =

[
SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F )

where the residual sums of squares SSE(F ) and SSE(R) and degrees of
freedom dfF and dfr are for the full and reduced model while the mean
square error MSE(F ) is for the full model. Let the null hypothesis for the
partial F test be H0 : Lβ = 0 where L sets the coefficients of the predictors
in the full model but not in the reduced model to 0. Seber and Lee (2003, p.
100) shows that
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FR =
[Lβ̂]T (L(XT X)−1LT )−1[Lβ̂]

rσ̂2

is distributed as Fr,n−p if H0 is true and the errors are iid N(0, σ2). Note
that for multiple linear regression with m = 1, FR = (n − p)U(L)/r since

Σ̂
−1

ε = 1/σ̂2. Hence the scaled Hotelling Lawley test statistic is the partial
F test statistic extended to m > 1 predictor variables by Theorem 8.6.

By Theorem 8.8, for example, rFR
D→ χ2

r for a large class of nonnormal

error distributions. If Zn ∼ Fk,dn
, then Zn

D→ χ2
k/k as dn → ∞. Hence using

the Fr,n−p approximation gives a large sample test with correct asymptotic
level, and the partial F test is robust to nonnormality.

Similarly, using an Frm,n−pm approximation for the following test statistics
gives large sample tests with correct asymptotic level by Kakizawa (2009) and
similar power for large n. The large sample test will have correct asymptotic
level as long as the denominator degrees of freedom dn → ∞ as n→ ∞, and
dn = n− pm reduces to the partial F test if m = 1 and U(L) is used. Then
the three test statistics are

−[n− p− 0.5(m− r + 3)]

rm
log(Λ(L)),

n− p

rm
V (L), and

n − p

rm
U(L).

By Berndt and Savin (1977) and Anderson (1984, pp. 333, 371),

V (L) ≤ − log(Λ(L)) ≤ U(L).

Hence the Hotelling Lawley test will have the most power and Pillai’s test
will have the least power.

Following Khattree and Naik (1999, pp. 67-68), there are several ap-
proximations used by the SAS software. For the Roy’s largest root test, if
h = max(r,m), use

n− p− h+ r

h
λmax(L) ≈ F (h, n− p− h+ r).

The simulations in Section 8.5 suggest that this approximation is good for
r = 1 but poor for r > 1. Anderson (1984, p. 333) stated that Roy’s largest
root test has the greatest power if r = 1 but is an inferior test for r > 1. Let
g = n−p−(m−r+1)/2, u = (rm−2)/4 and t =

√
r2m2 − 4/

√
m2 + r2 − 5 for

m2+r2−5 > 0 and t = 1, otherwise. Assume H0 is true. Thus U
P→ 0, V

P→ 0,

and Λ
P→ 1 as n → ∞. Then

gt− 2u

rm

1 − Λ1/t

Λ1/t
≈ F (rm, gt− 2u) or (n − p)t

1 − Λ1/t

Λ1/t
≈ χ2

rm.

For large n and t > 0, − log(Λ) = −t log(Λ1/t) = −t log(1 + Λ1/t − 1) ≈
t(1 − Λ1/t) ≈ t(1 − Λ1/t)/Λ1/t. If it can not be shown that
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(n− p)[− log(Λ) − t(1 − Λ1/t)/Λ1/t]
P→ 0 as n → ∞,

then it is possible that the approximate χ2
rm distribution may be the limiting

distribution for only a small class of iid error distributions. When the εi are
iid Nm(0,Σε), there are some exact results. For r = 1,

n− p−m+ 1

m

1 − Λ

Λ
∼ F (m, n− p−m+ 1).

For r = 2,

2(n− p−m+ 1)

2m

1 − Λ1/2

Λ1/2
∼ F (2m, 2(n− p−m+ 1)).

For m = 2,
2(n− p)

2r

1 − Λ1/2

Λ1/2
∼ F (2r, 2(n− p)).

Let s = min(r,m), m1 = (|r −m| − 1)/2 and m2 = (n− p−m− 1)/2. Note
that s(|r −m| + s) = min(r,m)max(r,m) = rm. Then

n − p

rm

V

1 − V/s
=

n− p

s(|r −m| + s)

V

1 − V/s
≈ 2m2 + s+ 1

2m1 + s+ 1

V

s− V
≈

F (s(2m1+s+1), s(2m2+s+1)) ≈ F (s(|r−m|+s), s(n−p)) = F (rm, s(n−p)).
This approximation is asymptotically correct by Slutsky’s theorem since

1− V/s
P→ 1. Finally,

n− p

rm
U =

n− p

s(|r −m| + s)
U ≈ 2(sm2 + 1)

s2(2m1 + s+ 1)
U ≈ F (s(2m1 + s+ 1), 2(sm2 + 1))

≈ F (s(|r −m| + s), s(n − p)) = F (rm, s(n− p)).

This approximation is asymptotically correct for a wide range of iid error
distributions.

Multivariate analogs of tests for multiple linear regression can be derived
with appropriate choice of L. Assume a constant x1 = 1 is in the model. As
a textbook convention, use δ = 0.05 if δ is not given.

The four step MANOVA test of linear hypotheses is useful.
i) State the hypotheses H0 : LB = 0 and H1 : LB 6= 0.
ii) Get test statistic from output.
iii) Get pval from output.
iv) State whether you reject H0 or fail to reject H0. If pval ≤ δ, reject H0

and conclude that LB 6= 0. If pval > δ, fail to reject H0 and conclude that
LB = 0 or that there is not enough evidence to conclude that LB 6= 0.
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The MANOVA test of H0 : B = 0 versus H1 : B 6= 0 is the special case

corresponding to L = I and H = B̂
T
XT XB̂ = Ẑ

T
Ẑ, but is usually not a

test of interest.

The analog of the ANOVA F test for multiple linear regression is the
MANOVA F test that uses L = [0 Ip−1] to test whether the nontrivial
predictors are needed in the model. This test should reject H0 if the response
and residual plots look good, n is large enough, and at least one response
plot does not look like the corresponding residual plot. A response plot for
Yj will look like a residual plot if the identity line appears almost horizontal,

hence the range of Ŷj is small. Response and residual plots are often useful
for n ≥ 10p.

The 4 step MANOVA F test of hypotheses uses L = [0 Ip−1].
i) State the hypotheses H0: the nontrivial predictors are not needed in the
mreg model H1: at least one of the nontrivial predictors is needed.
ii) Find the test statistic F0 from output.
iii) Find the pval from output.
iv) If pval ≤ δ, reject H0. If pval > δ, fail to reject H0. If H0 is rejected,
conclude that there is a mreg relationship between the response variables
Y1, ..., Ym and the predictors x2, ..., xp. If you fail to reject H0, conclude
that there is a not a mreg relationship between Y1, ..., Ym and the predictors
x2, ..., xp. (Or there is not enough evidence to conclude that there is a
mreg relationship between the response variables and the predictors. Get the
variable names from the story problem.)

The Fj test of hypotheses uses Lj = [0, ..., 0, 1, 0, ..., 0], where the 1 is in
the jth position, to test whether the jth predictor xj is needed in the model
given that the other p− 1 predictors are in the model. This test is an analog
of the t tests for multiple linear regression. Note that xj is not needed in the
model corresponds to H0 : Bj = 0 while xj needed in the model corresponds

to H1 : Bj 6= 0 where BT
j is the jth row of B.

The 4 step Fj test of hypotheses uses Lj = [0, ..., 0, 1, 0, ..., 0] where the 1
is in the jth position.
i) State the hypotheses H0 : xj is not needed in the model
H1 : xj is needed.
ii) Find the test statistic Fj from output.
iii) Find pval from output.
iv) If pval ≤ δ, reject H0. If pval > δ, fail to reject H0. Give a nontechnical
sentence restating your conclusion in terms of the story problem. If H0 is
rejected, then conclude that xj is needed in the mreg model for Y1, ..., Ym

given that the other predictors are in the model. If you fail to reject H0, then
conclude that xj is not needed in the mreg model for Y1, ..., Ym given that
the other predictors are in the model. (Or there is not enough evidence to
conclude that xj is needed in the model. Get the variable names from the
story problem.)
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The Hotelling Lawley statistic

Fj =
1

dj
B̂

T

j Σ̂
−1

ε B̂j =
1

dj
(β̂j1, β̂j2, ..., β̂jm)Σ̂

−1

ε





β̂j1

β̂j2

...

β̂jm





where B̂
T

j is the jth row of B̂ and dj = (XT X)−1
jj , the jth diagonal entry of

(XT X)−1. The statistic Fj could be used for forward selection and backward
elimination in variable selection.

The 4 step MANOVA partial F test of hypotheses has a full model
using all of the variables and a reduced model where r of the variables are
deleted. The ith row of L has a 1 in the position corresponding to the ith
variable to be deleted. Omitting the jth variable corresponds to the Fj test
while omitting variables x2, ..., xp corresponds to the MANOVA F test. Using
L = [0 Ik] tests whether the last k predictors are needed in the multivariate
linear regression model given that the remaining predictors are in the model.
i) State the hypotheses H0: the reduced model is good H1: use the full
model.
ii) Find the test statistic FR from output.
iii) Find the pval from output.
iv) If pval ≤ δ, reject H0 and conclude that the full model should be used.
If pval > δ, fail to reject H0 and conclude that the reduced model is good.

The linmodpack function mltreg produces the m response and residual
plots, gives B̂, Σ̂ε, the MANOVA partial F test statistic and pval corre-
sponding to the reduced model that leaves out the variables given by indices
(so x2 and x4 in the output below with F = 0.77 and pval = 0.614), Fj and
the pval for the Fj test for variables 1, 2, ..., p (where p = 4 in the output
below so F2 = 1.51 with pval = 0.284), and F0 and pval for the MANOVA
F test (in the output below F0 = 3.15 and pval= 0.06). Right click Stop

on the plots m times to advance the plots and to get the cursor back on the
command line in R.

The command out <- mltreg(x,y,indices=c(2)) would produce
a MANOVA partial F test corresponding to the F2 test while the command
out <- mltreg(x,y,indices=c(2,3,4)) would produce a MANOVA
partial F test corresponding to the MANOVA F test for a data set with
p = 4 predictor variables. The Hotelling Lawley trace statistic is used in the
tests.

out <- mltreg(x,y,indices=c(2,4))

$Bhat

[,1] [,2] [,3]

[1,] 47.96841291 623.2817463 179.8867890
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[2,] 0.07884384 0.7276600 -0.5378649

[3,] -1.45584256 -17.3872206 0.2337900

[4,] -0.01895002 0.1393189 -0.3885967

$Covhat

[,1] [,2] [,3]

[1,] 21.91591 123.2557 132.339

[2,] 123.25566 2619.4996 2145.780

[3,] 132.33902 2145.7797 2954.082

$partial

partialF Pval

[1,] 0.7703294 0.6141573

$Ftable

Fj pvals

[1,] 6.30355375 0.01677169

[2,] 1.51013090 0.28449166

[3,] 5.61329324 0.02279833

[4,] 0.06482555 0.97701447

$MANOVA

MANOVAF pval

[1,] 3.150118 0.06038742

#Output for Example 8.2

y<-marry[,c(2,3)]; x<-marry[,-c(2,3)];

mltreg(x,y,indices=c(3,4))

$partial

partialF Pval

[1,] 0.2001622 0.9349877

$Ftable

Fj pvals

[1,] 4.35326807 0.02870083

[2,] 600.57002201 0.00000000

[3,] 0.08819810 0.91597268

[4,] 0.06531531 0.93699302

$MANOVA

MANOVAF pval

[1,] 295.071 1.110223e-16

Example 8.2. The above output is for the Hebbler (1847) data from
the 1843 Prussia census. Sometimes if the wife or husband was not at the
household, then s/he would not be counted. Y1 = number of married civilian
men in the district, Y2 = number of women married to civilians in the district,
x2 = population of the district in 1843, x3 = number of married military men
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in the district, and x4 = number of women married to military men in the
district. The reduced model deletes x3 and x4. The constant uses x1 = 1.

a) Do the MANOVA F test.
b) Do the F2 test.
c) Do the F4 test.
d) Do an appropriate 4 step test for the reduced model that deletes x3

and x4.
e) The output for the reduced model that deletes x1 and x2 is shown below.

Do an appropriate 4 step test.

$partial

partialF Pval

[1,] 569.6429 0

Solution:
a) i) H0: the nontrivial predictors are not needed in the mreg model

H1: at least one of the nontrivial predictors is needed
ii) F0 = 295.071
iii) pval = 0
iv) Reject H0, the nontrivial predictors are needed in the mreg model.

b) i) H0: x2 is not needed in the model H1: x2 is needed
ii) F2 = 600.57
iii) pval = 0
iv) Reject H0, population of the district is needed in the model.

c) i) H0: x4 is not needed in the model H1: x4 is needed
ii) F4 = 0.065
iii) pval = 0.937
iv) Fail to reject H0, number of women married to military men is not

needed in the model given that the other predictors are in the model.

d) i) H0: the reduced model is good H1: use the full model.
ii) FR = 0.200
iii) pval = 0.935
iv) Fail to reject H0, so the reduced model is good.
e) i) H0: the reduced model is good H1: use the full model.
ii) FR = 569.6
iii) pval = 0.00
iv) Reject H0, so use the full model.

8.5 An Example and Simulations

In the DD plot, cases to the left of the vertical line are in their nonparametric
prediction region. The long horizontal line corresponds to a similar cutoff
based on the RD. The shorter horizontal line that ends at the identity line



376 8 Multivariate Linear Regression

is the parametric MVN prediction region from Section 4.4 applied to the
ẑi. Points below these two lines are only conjectured to be large sample
prediction regions, but are added to the DD plot as visual aids. Note that
ẑi = ŷf + ε̂i, and adding a constant ŷf to all of the residual vectors does not
change the Mahalanobis distances, so the DD plot of the residual vectors can
be used to display the prediction regions.
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Fig. 8.1 Plots for Y1 = log(S).

Example 8.3. Cook and Weisberg (1999, pp. 351, 433, 447) gave a data
set on 82 mussels sampled off the coast of New Zealand. Let Y1 = log(S)
and Y2 = log(M) where S is the shell mass and M is the muscle mass.
The predictors are X2 = L, X3 = log(W ), and X4 = H : the shell length,
log(width), and height. To check linearity of the multivariate linear regression
model, Figures 8.1 and 8.2 give the response and residual plots for Y1 and
Y2. The response plots show strong linear relationships. For Y1, case 79 sticks
out while for Y2, cases 8, 25, and 48 are not fit well. Highlighted cases had
Cook’s distance > min(0.5, 2p/n). See Cook (1977).

To check the error vector distribution, the DD plot should be used instead
of univariate residual plots, which do not take into account the correlations
of the random variables ε1, ..., εm in the error vector ε. A residual vector
ε̂ = (ε̂ − ε) + ε is a combination of ε and a discrepancy ε̂ − ε that tends
to have an approximate multivariate normal distribution. The ε̂ − ε term
can dominate for small to moderate n when ε is not multivariate normal,
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Fig. 8.2 Plots for Y2 = log(M).
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Fig. 8.3 DD Plot of the Residual Vectors for the Mussels Data.
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incorrectly suggesting that the distribution of the error vector ε is closer to a
multivariate normal distribution than is actually the case. Figure 8.3 shows
the DD plot of the residual vectors. The plotted points are highly correlated
but do not cover the identity line, suggesting an elliptically contoured error
distribution that is not multivariate normal. The nonparametric 90% predic-
tion region for the residuals consists of the points to the left of the vertical
line MD = 2.60. Cases 8, 48, and 79 have especially large distances.

The four Hotelling Lawley Fj statistics were greater than 5.77 with pvalues
less than 0.005, and the MANOVA F statistic was 337.8 with pvalue ≈ 0.

The response, residual, and DD plots are effective for finding influential
cases, for checking linearity, for checking whether the error distribution is
multivariate normal or some other elliptically contoured distribution, and
for displaying the nonparametric prediction region. Note that cases to the
right of the vertical line correspond to cases with yi that are not in their
prediction region. These are the cases corresponding to residual vectors with
large Mahalanobis distances. Adding a constant does not change the distance,
so the DD plot for the residual vectors is the same as the DD plot for the ẑi.
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Fig. 8.4 Plots for Y2 = M .

c) Now suppose the same model is used except Y2 = M . Then the response
and residual plots for Y1 remain the same, but the plots shown in Figure 8.4
show curvature about the identity and r = 0 lines. Hence the linearity condi-
tion is violated. Figure 8.5 shows that the plotted points in the DD plot have
correlation well less than one, suggesting that the error vector distribution
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Fig. 8.5 DD Plot When Y2 = M .

is no longer elliptically contoured. The nonparametric 90% prediction region
for the residual vectors consists of the points to the left of the vertical line
MD = 2.52, and contains 95% of the training data. Note that the plots can
be used to quickly assess whether power transformations have resulted in a
linear model, and whether influential cases are present. R code for producing
the five figures is shown below.

y <- log(mussels)[,4:5]

x <- mussels[,1:3]

x[,2] <- log(x[,2])

z<-cbind(x,y) #scatterplot matrix

pairs(z, labels=c("L","log(W)","H","log(S)","log(M)"))

ddplot4(z) #right click Stop, DD plot of MLD model

out <- mltreg(x,y) #right click Stop 4 times, Fig. 8.1, 8.2

ddplot4(out$res) #right click Stop, Fig. 8.3

y[,2] <- mussels[,5]

tem <- mltreg(x,y) #right click Stop 4 times, Fig. 8.4

ddplot4(tem$res) #right click Stop, Fig. 8.5
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8.5.1 Simulations for Testing

A small simulation was used to study the Wilks’ Λ test, the Pillai’s trace
test, the Hotelling Lawley trace test, and the Roy’s largest root test for the
Fj tests and the MANOVA F test for multivariate linear regression. The first
row of B was always 1T and the last row of B was always 0T . When the null
hypothesis for the MANOVA F test is true, all but the first row corresponding
to the constant are equal to 0T . When p ≥ 3 and the null hypothesis for the
MANOVA F test is false, then the second to last row of B is (1, 0, ..., 0),
the third to last row is (1, 1, 0, ..., 0) et cetera as long as the first row is
not changed from 1T . First m× 1 error vectors wi were generated such that
the m random variables in the vector wi are iid with variance σ2. Let the
m×m matrix A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j.

Then εi = Awi so that Σε = σ2AAT = (σij) where the diagonal entries
σii = σ2[1+(m−1)ψ2 ] and the off diagonal entries σij = σ2[2ψ+(m−2)ψ2 ]
where ψ = 0.10. Hence the correlations are (2ψ+(m−2)ψ2)/(1+(m−1)ψ2 ).
As ψ gets close to 1, the error vectors cluster about the line in the direction
of (1, ..., 1)T. We used wi ∼ Nm(0, I),wi ∼ (1 − τ )Nm(0, I) + τNm(0, 25I)
with 0 < τ < 1 and τ = 0.25 in the simulation, wi ∼ multivariate td with
d = 7 degrees of freedom, or wi ∼ lognormal - E(lognormal): where the m
components of wi were iid with distribution ez − E(ez) where z ∼ N(0, 1).
Only the lognormal distribution is not elliptically contoured.

Table 8.1 Test Coverages: MANOVA F H0 is True.

w dist n test F1 F2 Fp−1 Fp FM

MVN 300 W 1 0.043 0.042 0.041 0.018
MVN 300 P 1 0.040 0.038 0.038 0.007
MVN 300 HL 1 0.059 0.058 0.057 0.045
MVN 300 R 1 0.051 0.049 0.048 0.993
MVN 600 W 1 0.048 0.043 0.043 0.034
MVN 600 P 1 0.046 0.042 0.041 0.026
MVN 600 HL 1 0.055 0.052 0.050 0.052
MVN 600 R 1 0.052 0.048 0.047 0.994
MIX 300 W 1 0.042 0.043 0.044 0.017
MIX 300 P 1 0.039 0.040 0.042 0.008
MIX 300 HL 1 0.057 0.059 0.058 0.039
MIX 300 R 1 0.050 0.050 0.051 0.993

MVT(7) 300 W 1 0.048 0.036 0.045 0.020
MVT(7) 300 P 1 0.046 0.032 0.042 0.011
MVT(7) 300 HL 1 0.064 0.049 0.058 0.045
MVT(7) 300 R 1 0.055 0.043 0.051 0.993

LN 300 W 1 0.043 0.047 0.040 0.020
LN 300 P 1 0.039 0.045 0.037 0.009
LN 300 HL 1 0.057 0.061 0.058 0.041
LN 300 R 1 0.049 0.055 0.050 0.994
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Table 8.2 Test Coverages: MANOVA F H0 is False.

n m = p test F1 F2 Fp−1 Fp FM

30 5 W 0.012 0.222 0.058 0.000 0.006
30 5 P 0.000 0.000 0.000 0.000 0.000
30 5 HL 0.382 0.694 0.322 0.007 0.579
30 5 R 0.799 0.871 0.549 0.047 0.997
50 5 W 0.984 0.955 0.644 0.017 0.963
50 5 P 0.971 0.940 0.598 0.012 0.871
50 5 HL 0.997 0.979 0.756 0.053 0.991
50 5 R 0.996 0.978 0.744 0.049 1

105 10 W 0.650 0.970 0.191 0.000 0.633
105 10 P 0.109 0.812 0.050 0.000 0.000
105 10 HL 0.964 0.997 0.428 0.000 1
105 10 R 1 1 0.892 0.052 1
150 10 W 1 1 0.948 0.032 1
150 10 P 1 1 0.941 0.025 1
150 10 HL 1 1 0.966 0.060 1
150 10 R 1 1 0.965 0.057 1
450 20 W 1 1 0.999 0.020 1
450 20 P 1 1 0.999 0.016 1
450 20 HL 1 1 0.999 0.035 1
450 20 R 1 1 0.999 0.056 1

The simulation used 5000 runs, and H0 was rejected if the F statistic
was greater than Fd1,d2

(0.95) where P (Fd1,d2
< Fd1,d2

(0.95)) = 0.95 with
d1 = rm and d2 = n−mp for the test statistics

−[n− p− 0.5(m− r + 3)]

rm
log(Λ(L)),

n− p

rm
V (L), and

n − p

rm
U(L),

while d1 = h = max(r,m) and d2 = n− p− h+ r for the test statistic

n− p− h+ r

h
λmax(L).

Denote these statistics by W , P , HL, and R. Let the coverage be the propor-
tion of times that H0 is rejected. We want coverage near 0.05 when H0 is true
and coverage close to 1 for good power when H0 is false. With 5000 runs,
coverage outside of (0.04,0.06) suggests that the true coverage is not 0.05.
Coverages are tabled for the F1, F2, Fp−1, and Fp test and for the MANOVA
F test denoted by FM . The null hypothesis H0 was always true for the Fp

test and always false for the F1 test. When the MANOVA F test was true,
H0 was true for the Fj tests with j 6= 1. When the MANOVA F test was
false, H0 was false for the Fj tests with j 6= p, but the Fp−1 test should be
hardest to reject for j 6= p by construction of B and the error vectors.

When the null hypothesisH0 was true, simulated values started to get close
to nominal levels for n ≥ 0.8(m+p)2, and were fairly good for n ≥ 1.5(m+p)2.
The exception was Roy’s test which rejects H0 far too often if r > 1. See Table
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8.1 where we want values for the F1 test to be close to 1 since H0 is false
for the F1 test, and we want values close to 0.05, otherwise. Roy’s test was
very good for the Fj tests but very poor for the MANOVA F test. Results
are shown for m = p = 10. As expected from Berndt and Savin (1977),
Pillai’s test rejected H0 less often than Wilks’ test which rejected H0 less
often than the Hotelling Lawley test. Based on a much larger simulation
study, using the four types of error vector distributions and m = p, the tests
had approximately correct level if n ≥ 0.83(m+ p)2 for the Hotelling Lawley
test, if n ≥ 2.80(m+ p)2 for the Wilks’ test (agreeing with Kshirsagar (1972)
n ≥ 3(m + p)2 for multivariate normal data), and if n ≥ 4.2(m + p)2 for
Pillai’s test.

In Table 8.2, H0 is only true for the Fp test where p = m, and we want
values in the Fp column near 0.05. We want values near 1 for high power
otherwise. If H0 is false, often H0 will be rejected for small n. For example,
if n ≥ 10p, then the m residual plots should start to look good, and the
MANOVA F test should be rejected. For the simulated data, the test had
fair power for n not much larger thanmp. Results are shown for the lognormal
distribution.

Some R output for reproducing the simulation is shown below. The linmod-
pack function is mregsim and etype = 1 uses data from a MVN distribution.
The fcov line computed the Hotelling Lawley statistic using Equation (8.3)
while the hotlawcov line used Definition 8.9. The mnull=T part of the com-
mand means we want the first value near 1 for high power and the next three
numbers near the nominal level 0.05 except for mancv where we want all
of the MANOVA F test statistics to be near the nominal level of 0.05. The
mnull=F part of the command means want all values near 1 for high power
except for the last column (for the terms other than mancv) corresponding to
the Fp test where H0 is true so we want values near the nominal level of 0.05.
The “coverage” is the proportion of times that H0 is rejected, so “coverage”
is short for “power” and “level”: we want the coverage near 1 for high power
when H0 is false and we want the coverage near the nominal level 0.05 when
H0 is true. Also see Problem 8.10.

mregsim(nruns=5000,etype=1,mnull=T)

$wilkcov

[1] 1.0000 0.0450 0.0462 0.0430

$pilcov

[1] 1.0000 0.0414 0.0432 0.0400

$hotlawcov

[1] 1.0000 0.0522 0.0516 0.0490

$roycov

[1] 1.0000 0.0512 0.0500 0.0480

$fcov

[1] 1.0000 0.0522 0.0516 0.0490

$mancv

wcv pcv hlcv rcv fcv
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[1,] 0.0406 0.0332 0.049 0.1526 0.049

mregsim(nruns=5000,etype=2,mnull=F)

$wilkcov

[1] 0.9834 0.9814 0.9104 0.0408

$pilcov

[1] 0.9824 0.9804 0.9064 0.0372

$hotlawcov

[1] 0.9856 0.9838 0.9162 0.0480

$roycov

[1] 0.9848 0.9834 0.9156 0.0462

$fcov

[1] 0.9856 0.9838 0.9162 0.0480

$mancv

wcv pcv hlcv rcv fcv

[1,] 0.993 0.9918 0.9942 0.9978 0.9942

See Olive (2017b,
∮

12.5.2) for simulations for the prediction region. Also
see Problem 8.11.

8.6 The Robust rmreg2 Estimator

The robust multivariate linear regression estimator rmreg2 is the classi-
cal multivariate linear regression estimator applied to the RMVN set when
RMVN is computed from the vectors ui = (xi2, ..., xip, Yi1, ..., Yim)T for
i = 1, ..., n. Hence ui is the ith case with xi1 = 1 deleted. This regression
estimator has considerable outlier resistance, and is one of the most outlier
resistant practical robust regression estimator for the m = 1 multiple linear
regression case. See Chapter 7. The rmreg2 estimator has been shown to be
consistent if the ui are iid from a large class of elliptically contoured distri-
butions, which is a much stronger assumption than having iid error vectors
εi.

Theorem 2.20 gave a second way to compute β̂, and there is a similar result
for multivariate linear regression. Let x = (1,uT )T and let β = (β1,β

T
2 )T =

(α,ηT )T . Now for multivariate linear regression, β̂j = (α̂j, η̂
T
j )T where α̂j =

Y j−η̂T
j u and η̂j = Σ̂

−1

u Σ̂uYj
by Theorem 2.20. Let Σ̂uy = 1

n−1

∑n
i=1(wi−

w)(yi − y)T which has jth column Σ̂wYj
for j = 1, ..., m. Let

v =

(
u

y

)
, E(v) = µv =

(
E(u)
E(y)

)
=

(
µu
µy

)
, and Cov(v) = Σv =
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(
Σuu Σuy
Σyu Σyy

)
.

Let the vector of constants be αT = (α1, ..., αm) and the matrix of slope
vectors BS =

[
η1 η2 . . . ηm

]
. Then the population least squares coefficient

matrix is

B =

(
αT

BS

)

where α = µy − BT
Sµu and BS = Σ−1

u Σuy where Σu = Σuu.
If the ui are iid with nonsingular covariance matrix Cov(u), the least

squares estimator

B̂ =

(
α̂T

B̂S

)

where α̂ = y − B̂
T

Su and B̂S = Σ̂
−1

u Σ̂uy . The least squares multivariate
linear regression estimator can be calculated by computing the classical esti-
mator (v,Sv) = (v, Σ̂v) of multivariate location and dispersion on the vi,

and then plug in the results into the formulas for α̂ and B̂S .
Let (T,C) = (µ̃v , Σ̃v) be a robust estimator of multivariate location and

dispersion. If µ̃v is a consistent estimator of µv and Σ̃v is a consistent
estimator of c Σv for some constant c > 0, then a robust estimator of mul-

tivariate linear regression is the plug in estimator α̃ = µ̃y − B̃
T

S µ̃u and

B̃S = Σ̃
−1

u Σ̃uy .
For the rmreg2 estimator, (T,C) is the classical estimator applied to

the RMVN set when RMVN is applied to vectors vi for i = 1, ..., n (could
use (T,C) = RMVN estimator since the scaling does not matter for this
application). Then (T,C) is a

√
n consistent estimator of (µv , cΣv) if the vi

are iid from a large class of ECd(µv ,Σv , g) distributions where d = m+p−1.
Thus the classical and robust estimators of multivariate linear regression are
both

√
n consistent estimators of B if the vi are iid from a large class of

elliptically contoured distributions. This assumption is quite strong, but the
robust estimator is useful for detecting outliers. When there are categorical
predictors or the joint distribution of v is not elliptically contoured, it is
possible that the robust estimator is bad and very different from the good
classical least squares estimator. The linmodpack function rmreg2 computes
the rmreg2 estimator and produces the response and residual plots.

Example 8.4. Buxton (1920) gave various measurements of 88 men. Let
Y1 = nasal height and Y2 = height with x2 = head length, x3 = bigonal breadth,
and x4 = cephalic index. Five individuals, numbers 62–66, were reported to
be about 0.75 inches tall with head lengths well over five feet! Thus Y2 and
x2 have massive outliers. Figures 8.6 and 8.7 show that the response and
residual plots corresponding to rmreg2 do not have fits that pass through
the outliers.

These figures can be made with the following R commands.



8.6 The Robust rmreg2 Estimator 385

35 40 45 50
4

5
5

0
5

5
6

0

fit[, 1]

y
[,

 1
]

Response Plot

35 40 45 50

−
5

0
5

1
0

1
5

2
0

fit[, 1]

re
s
[,

 1
]

Residual Plot

Fig. 8.6 Plots for Y1 = nasal height using rmreg2.
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Fig. 8.7 Plots for Y2 = height using rmreg2.
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ht <- buxy; z <- cbind(buxx,ht);

y <- z[,c(2,5)]; x <- z[,c(1,3,4)]

# compare mltreg(x,y) #right click Stop 4 times

out <- rmreg2(x,y) #right click Stop 4 times

# try ddplot4(out$res) #right click Stop

The residual bootstrap for the test H0 : LB = 0 may be useful. Take a
sample of size n with replacement from the residual vectors to form Z∗

1 with
ith row y∗T

i where y∗
i = ŷi + ε∗i . The function rmreg3 gets the rmreg2

estimator without the plots. Using rmreg3, regress Z on X to get vec(LB̂
∗

1).

Repeat B times to get a bootstrap sample w1, ...,wB where wi = vec(LB̂
∗

i ).
The nonparametric bootstrap uses n cases drawn with replacement, and may
also be useful. Apply the nonparametric prediction region to the wi and see
if 0 is in the region. If L is r × p, then w is rp × 1, and we likely need
n ≥ max[50rp, 3(m+ p)2].

8.7 Bootstrap

8.7.1 Parametric Bootstrap

The parametric bootstrap for the multivariate linear regression model uses

y∗
i ∼ Nm(B̂

T
xi, Σ̂ε) for i = 1, ..., n where we are not assuming that the

εi ∼ Nm(0,Σε). Let Z∗
j have ith row y∗T

i and regress Z∗
j on X to obtain

B̂
∗

j for j = 1, ..., B. Let S ⊆ I, let B̂I = (XT
I XI)

−1XT
I Z∗, and assume

n(XT
I XI)

−1 P→ W I for any I such that S ⊆ I. Then with calculations
similar to those for the multiple linear regression model parametric bootstrap

of Section 4.6.1, E(B̂
∗

I) = B̂I ,

√
n vec(B̂I − BI)

D→ NaIm(0,Σε ⊗ W I),

and
√

n vec(B̂
∗

I − B̂I) ∼ NaIm(0, Σ̂ε ⊗ n(XT
I X I)

−1)
D→ NaIm(0,Σε ⊗W I)

as n, B → ∞ if S ⊆ I. Let B̂
∗

I,0 be formed from B̂
∗

I by adding rows of zeros
corresponding to omitted variables.

8.7.2 Residual Bootstrap

The residual bootstrap uses the multivariate linear regression model

Z∗ = XB̂ + Ê
W
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where the rows of Ê
W

are sampled with replacement from the rows of Ê
W

.

Regress Z∗ of X and repeat to get the bootstrap sample B̂
∗

1, ..., B̂
∗

B .

8.7.3 Nonparametric Bootstrap

The nonparametric bootstrap samples cases (yT
i ,x

T
i )T with replacement to

form (Z∗
j ,X

∗
j ), and regresses Z∗

j on X∗
j to get B̂

∗

j for j = 1, ..., B. The
nonparametric bootstrap can be useful even if heteroscedasticity or overdis-
persion is present, if the cases are an iid sample from some population, a
very strong assumption. See Eck (2018) for using the residual bootstrap and
nonparametric bootstrap to bootstrap multivariate linear regression.

8.8 Data Splitting

The theory for multivariate linear regression assumes that the model is known
before gathering data. If variable selection and response transformations are
performed to build a model, then the estimators are biased and results for
inference fail to hold in that pvalues and coverage of confidence and prediction
regions will be wrong.

Data splitting can be used in a manner similar to how data splitting is
used for MLR and other regression models. A pilot study is an alternative to
data splitting.

8.9 Summary

1) The multivariate linear regression model is a special case of the multi-
variate linear model where at least one predictor variable xj is continuous.
The MANOVA model in Chapter 9 is a multivariate linear model where all
of the predictors are categorical variables so the xj are coded and are often
indicator variables.

2) The multivariate linear regression model yi = BT xi + εi for
i = 1, ..., n has m ≥ 2 response variables Y1, ..., Ym and p predictor variables
x1, x2, ..., xp. The ith case is (xT

i , y
T
i ) = (xi1, xi2, ..., xip, Yi1, ..., Yim). The

constant xi1 = 1 is in the model, and is often omitted from the case and
the data matrix. The model is written in matrix form as Z = XB + E.
The model has E(εk) = 0 and Cov(εk) = Σε = (σij) for k = 1, ..., n. Also
E(ei) = 0 while Cov(ei, ej) = σijIn for i, j = 1, ..., m. Then B and Σε are
unknown matrices of parameters to be estimated, and E(Z) = XB while
E(Yij) = xT

i βj.
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3) Each response variable in a multivariate linear regression model follows
a multiple linear regression model Y j = Xβj + ej for j = 1, ..., m where it
is assumed that E(ej) = 0 and Cov(ej) = σjjIn.

4) For each variable Yk make a response plot of Ŷik versus Yik and a residual
plot of Ŷik versus rik = Yik − Ŷik. If the multivariate linear regression model
is appropriate, then the plotted points should cluster about the identity line
in each of the m response plots. If outliers are present or if the plot is not
linear, then the current model or data need to be transformed or corrected.
If the model is good, then each of the m residual plots should be ellipsoidal
with no trend and should be centered about the r = 0 line. There should not
be any pattern in the residual plot: as a narrow vertical strip is moved from
left to right, the behavior of the residuals within the strip should show little
change. Outliers and patterns such as curvature or a fan shaped plot are bad.

5) Make a scatterplot matrix of Y1, ..., Ym and of the continuous predictors.
Use power transformations to remove strong nonlinearities.

6) Consider testing LB = 0 where L is an r × p full rank matrix. Let

W e = Ê
T
Ê and W e/(n−p) = Σ̂ε. Let H = B̂

T
LT [L(XT X)−1LT ]−1LB̂.

Let λ1 ≥ λ2 ≥ · · · ≥ λm be the ordered eigenvalues of W−1
e H. Then there

are four commonly used test statistics.
The Wilks’ Λ statistic is Λ(L) = |(H + W e)

−1W e| = |W−1
e H + I|−1 =

m∏

i=1

(1 + λi)
−1.

The Pillai’s trace statistic is V (L) = tr[(H + W e)
−1H] =

m∑

i=1

λi

1 + λi
.

The Hotelling-Lawley trace statistic is U(L) = tr[W−1
e H ] =

m∑

i=1

λi.

The Roy’s maximum root statistic is λmax(L) = λ1.
7) Theorem: The Hotelling-Lawley trace statistic

U(L) =
1

n− p
[vec(LB̂)]T [Σ̂

−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)].

8) Assumption D1: Let hi be the ith diagonal element of X(XT X)−1XT .

Assume max(h1, ..., hn)
P→ 0 as n→ ∞, assume that the zero mean iid error

vectors have finite fourth moments, and assume that
1

n
XT X

P→ W−1.

9) Multivariate Least Squares Central Limit Theorem (MLS

CLT): For the least squares estimator, if assumption D1 holds, then Σ̂ε is

a
√
n consistent estimator of Σε, and

√
n vec(B̂ −B)

D→ Npm(0,Σε ⊗W ).
10) Theorem: If assumption D1 holds and if H0 is true, then

(n− p)U(L)
D→ χ2

rm.
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11) Under regularity conditions, −[n−p+1−0.5(m− r+3)] log(Λ(L))
D→

χ2
rm, (n − p)V (L)

D→ χ2
rm, and (n − p)U(L)

D→ χ2
rm.

These statistics are robust against nonnormality.
12) For the Wilks’ Lambda test,

pval = P

(−[n− p+ 1 − 0.5(m− r + 3)]

rm
log(Λ(L)) < Frm,n−rm

)
.

For the Pillai’s trace test, pval = P

(
n − p

rm
V (L) < Frm,n−rm

)
.

For the Hotelling Lawley trace test, pval = P

(
n− p

rm
U(L) < Frm,n−rm

)
.

The above three tests are large sample tests, P(reject H0|H0 is true) → δ
as n → ∞, under regularity conditions.

13) The 4 step MANOVA F test of hypotheses uses L = [0 Ip−1].
i) State the hypotheses H0: the nontrivial predictors are not needed in the
mreg model H1: at least one of the nontrivial predictors is needed.
ii) Find the test statistic Fo from output.
iii) Find the pval from output.
iv) If pval ≤ δ, reject H0. If pval > δ, fail to reject H0. If H0 is rejected,
conclude that there is a mreg relationship between the response variables
Y1, ..., Ym and the predictors x2, ..., xp. If you fail to reject H0, conclude that
there is a not a mreg relationship between Y1, ..., Ym and the predictors x2,
..., xp. (Get the variable names from the story problem.)

14) The 4 step Fj test of hypotheses uses Lj = [0, ..., 0, 1, 0, ..., 0] where

the 1 is in the jth position. Let BT
j be the jth row of B. The hypotheses are

equivalent to H0 : BT
j = 0 H1 : BT

j 6= 0. i) State the hypotheses
H0: xj is not needed in the model H1: xj is needed in the model.
ii) Find the test statistic Fj from output.
iii) Find pval from output.
iv) If pval ≤ δ, reject H0. If pval > δ, fail to reject H0. Give a nontechnical
sentence restating your conclusion in terms of the story problem. If H0 is
rejected, then conclude that xj is needed in the mreg model for Y1, ..., Ym. If
you fail to reject H0, then conclude that xj is not needed in the mreg model
for Y1, ..., Ym given that the other predictors are in the model.

15) The 4 step MANOVA partial F test of hypotheses has a full model
using all of the variables and a reduced model where r of the variables are
deleted. The ith row of L has a 1 in the position corresponding to the ith
variable to be deleted. Omitting the jth variable corresponds to the Fj test
while omitting variables x2, ..., xp corresponds to the MANOVA F test.
i) State the hypotheses H0: the reduced model is good
H1: use the full model.
ii) Find the test statistic FR from output.
iii) Find the pval from output.
iv) If pval ≤ δ, reject H0 and conclude that the full model should be used.
If pval > δ, fail to reject H0 and conclude that the reduced model is good.
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16) The 4 step MANOVA F test should reject H0 if the response and
residual plots look good, n is large enough, and at least one response plot
does not look like the corresponding residual plot. A response plot for Yj will
look like a residual plot if the identity line appears almost horizontal, hence
the range of Ŷj is small.

17) The linmodpack function mltreg produces the m response and resid-

ual plots, gives B̂, Σ̂ε, the MANOVA partial F test statistic and pval cor-
responding to the reduced model that leaves out the variables given by in-
dices (so x2 and x4 in the output below with F = 0.77 and pval = 0.614),
Fj and the pval for the Fj test for variables 1, 2, ..., p (where p = 4 in
the output below so F2 = 1.51 with pval = 0.284), and F0 and pval for
the MANOVA F test (in the output below F0 = 3.15 and pval= 0.06).
The command out <- mltreg(x,y,indices=c(2)) would produce a
MANOVA partial F test corresponding to the F2 test while the command
out <- mltreg(x,y,indices=c(2,3,4)) would produce a MANOVA
partial F test corresponding to the MANOVA F test for a data set with
p = 4 predictor variables. The Hotelling Lawley trace statistic is used in the
tests.

out <- mltreg(x,y,indices=c(2,4))

$Bhat [,1] [,2] [,3]

[1,] 47.96841291 623.2817463 179.8867890

[2,] 0.07884384 0.7276600 -0.5378649

[3,] -1.45584256 -17.3872206 0.2337900

[4,] -0.01895002 0.1393189 -0.3885967

$Covhat

[,1] [,2] [,3]

[1,] 21.91591 123.2557 132.339

[2,] 123.25566 2619.4996 2145.780

[3,] 132.33902 2145.7797 2954.082

$partial

partialF Pval

[1,] 0.7703294 0.6141573

$Ftable

Fj pvals

[1,] 6.30355375 0.01677169

[2,] 1.51013090 0.28449166

[3,] 5.61329324 0.02279833

[4,] 0.06482555 0.97701447

$MANOVA

MANOVAF pval

[1,] 3.150118 0.06038742

18) Given B̂ = [β̂1 β̂2 · · · β̂m] and xf , find ŷf = (ŷ1, ..., ŷm)T where

ŷi = β̂
T

i xf .
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19) Σ̂ε =
Ê

T
Ê

n− p
=

1

n− p

n∑

i=1

ε̂iε̂
T
i while the sample covariance matrix of

the residuals is Sr =
n − p

n − 1
Σ̂ε =

Ê
T
Ê

n− 1
. Both Σ̂ε and Sr are

√
n consistent

estimators of Σε for a large class of distributions for the error vectors εi.
20) The 100(1 − δ)% nonparametric prediction region for yf given xf is

the nonparametric prediction region from
∮

4.4 applied to ẑi = ŷf + ε̂i =

B̂
T
xf + ε̂i for i = 1, ..., n. This takes the data cloud of the n residual vectors

ε̂i and centers the cloud at ŷf . Let

D2
i (ŷf ,Sr) = (ẑi − ŷf)T S−1

r (ẑi − ŷf )

for i = 1, ..., n. Let qn = min(1 − δ + 0.05, 1− δ +m/n) for δ > 0.1 and

qn = min(1 − δ/2, 1− δ + 10δm/n), otherwise.

If qn < 1 − δ + 0.001, set qn = 1 − δ. Let 0 < δ < 1 and h = D(Un) where
D(Un) is the qnth sample quantile of the Di. The 100(1− δ)% nonparametric
prediction region for yf is

{y : (y − ŷf)T S−1
r (y − ŷf ) ≤ D2

(Un)} = {y : Dy(ŷf ,Sr) ≤ D(Un)}.

a) Consider the n prediction regions for the data where (yf,i,xf,i) =
(yi,xi) for i = 1, ..., n. If the order statistic D(Un) is unique, then Un of the
n prediction regions contain yi where Un/n→ 1 − δ as n → ∞.

b) If (ŷf ,Sr) is a consistent estimator of (E(yf ),Σε) then the nonpara-
metric prediction region is a large sample 100(1 − δ)% prediction region for
yf .

c) If (ŷf ,Sr) is a consistent estimator of (E(yf ),Σε), and the εi come
from an elliptically contoured distribution such that the unique highest den-
sity region is {y : Dy(0,Σε) ≤ D1−δ}, then the nonparametric prediction
region is asymptotically optimal.

21) On the DD plot for the residual vectors, the cases to the left of the
vertical line correspond to cases that would have yf = yi in the nonpara-
metric prediction region if xf = xi, while the cases to the right of the line
would not have yf = yi in the nonparametric prediction region.

22) The DD plot for the residual vectors is interpreted almost exactly as
a DD plot for iid multivariate data is interpreted. Plotted points clustering
about the identity line suggests that the εi may be iid from a multivariate
normal distribution, while plotted points that cluster about a line through
the origin with slope greater than 1 suggests that the εi may be iid from an
elliptically contoured distribution that is not MVN. Points to the left of the
vertical line corresponds to the cases that are in their nonparamtric prediction
region. Robust distances have not been shown to be consistent estimators of
the population distances, but are useful for a graphical diagnostic.
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23) Multiple Linear Regression Multivariate Linear Regression
Y = Xβ + e Z = XB + E

1) E(Y ) = Xβ E[Z] = XB

2) Yi = xT
i β + ei yi = BT xi + εi

3) E(e) = 0 E[E] = 0

4) H = P = X(XT X)−1XT H = P = X(XT X)−1XT

5) β̂ = (XT X)−1XT Y B̂ = (XT X)−1XT Z

6) Ŷ = P Y Ẑ = P Z

7) r = ê = (I − P )Y Ê = (I − P )Z

8) E[β̂] = β E[B̂] = B

9) E(Ŷ ) = E(Y ) = Xβ E[Ẑ] = XB

10) σ̂2 = rT r
n−p Σ̂ε =

Ê
T
Ê

n− p

11) V (ei) = σ2 Cov(εi) = Σε

12) E(Yi) = βT xi E[yi] = BT xi

H0 : Lβ = 0 H0 : LB = 0

13) rFR
D→ χ2

r (n− p)U(L)
D→ χ2

rm

14) LS CLT MLS CLT
√
n(β̂ − β)

D→ Np(0, σ2W )
√
n vec(B̂ − B)

D→ Npm(0,Σε ⊗ W ).
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23) The table on the previous page compares MLR and MREG.
24) The robust multivariate linear regression method rmreg2 computes

the classical estimator on the RMVN set where RMVN is computed from
the n cases vi = (xi2, ..., xpi, Yi1, ..., Yim)T . This estimator has considerable
outlier resistance but theory currently needs very strong assumptions. The
response and residual plots and DD plot of the residuals from this estimator
are useful for outlier detection. The rmreg2 estimator is superior to the
rmreg estimator for outlier detection.

8.10 Complements

This chapter followed Olive (2017b, ch. 12) closely. Multivariate linear re-
gression is a semiparametric method that is nearly as easy to use as multiple
linear regression if m is small. Section 8.3 followed Olive (2018) closely. The
material on plots and testing followed Olive et al. (2015) closely. The m re-
sponse and residual plots should be made as well as the DD plot, and the
response and residual plots are very useful for the m = 1 case of multiple
linear regression and experimental design. These plots speed up the model
building process for multivariate linear models since the success of power
transformations achieving linearity can be quickly assessed, and influential
cases can be quickly detected. See Cook and Olive (2001).

Work is needed on variable selection and on determining the sample sizes
for when the tests and prediction regions start to work well. Response and
residual plots can look good for n ≥ 10p, but for testing and prediction
regions, we may need n ≥ a(m+p)2 where 0.8 ≤ a ≤ 5 even for well behaved
elliptically contoured error distributions. Variable selection for multivariate
linear regression is discussed in Fujikoshi et al. (2014). R programs are needed
to make variable selection easy. Forward selection would be especially useful.

Often observations (Y1, ..., Ym, x2, ..., xp) are collected on the same person
or thing and hence are correlated. If transformations can be found such that
the DD plot and the m response plots and residual plots look good, and
n is large (n ≥ max[(m + p)2, mp + 30)] starts to give good results), then
multivariate linear regression can be used to efficiently analyze the data.
Examiningm multiple linear regressions is an incorrect method for analyzing
the data.

In addition to robust estimators and seemingly unrelated regressions, en-
velope estimators and partial least squares (PLS) are competing methods for
multivariate linear regression. See recent work by Cook such as Cook (2018),
Cook and Su (2013), Cook et al. (2013), and Su and Cook (2012). Methods
like ridge regression and lasso can also be extended to multivariate linear re-
gression. See, for example, Obozinski et al. (2011). Relaxed lasso extensions
are likely useful. Prediction regions for alternative methods with n >> p
could be made following Section 8.3.
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Plugging in robust dispersion estimators in place of the covariance matri-
ces, as done in Section 8.6, is not a new idea. Maronna and Morgenthaler
(1986) used M–estimators when m = 1. Problems can occur if the error
distribution is not elliptically contoured. See Nordhausen and Tyler (2015).

Khattree and Naik (1999, pp. 91-98) discussed testing H0 : LBM = 0
versus H1 : LBM 6= 0 where M = I gives a linear test of hypotheses.
Johnstone and Nadler (2017) gave useful approximations for Roy’s largest
root test when the error vector distribution is multivariate normal.

8.11 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

8.1∗. Consider the Hotelling Lawley test statistic. Let

T (W ) = n [vec(LB̂)]T [Σ̂
−1

ε ⊗ (LWLT )−1][vec(LB̂)].

Let
XT X

n
= Ŵ

−1
.

Show T (Ŵ ) = [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)].

8.2. Consider the Hotelling Lawley test statistic. Let T =

[vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)].

Let L = Lj = [0, ..., 0, 1, 0, ..., 0] have a 1 in the jth position. Let b̂
T

j = LB̂ be

the jth row of B̂. Let dj = Lj(X
T X)−1LT

j = (XT X)−1
jj , the jth diagonal

entry of (XT X)−1. Then Tj = 1
dj

b̂
T

j Σ̂
−1

ε b̂j. The Hotelling Lawley statistic

U = tr([(n− p)Σ̂ε]−1B̂
T
LT [L(XT X)−1LT ]−1LB̂]).

Hence if L = Lj , then Uj = 1
dj(n−p) tr(Σ̂

−1

ε b̂j b̂
T

j ).

Using tr(ABC) = tr(CAB) and tr(a) = a for scalar a, show that
(n− p)Uj = Tj.

8.3. Consider the Hotelling Lawley test statistic. Using the Searle (1982,
p. 333) identity

tr(AGT DGC) = [vec(G)]T [CA ⊗ DT ][vec(G)],
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show (n − p)U(L) = tr[Σ̂
−1

ε B̂
T
LT[L(XTX)−1LT]−1LB̂]

= [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)] by identifying A,G,D,
and C.

$Ftable Fj pvals #Output for problem 8.4.

[1,] 82.147221 0.000000e+00

[2,] 58.448961 0.000000e+00

[3,] 15.700326 4.258563e-09

[4,] 9.072358 1.281220e-05

[5,] 45.364862 0.000000e+00

$MANOVA

MANOVAF pval

[1,] 67.80145 0

8.4. The output above is for the R Seatbelts data set where Y1 = drivers =
number of drivers killed or seriously injured, Y2 = front = number of front
seat passengers killed or seriously injured, and Y3 = back = number of back
seat passengers killed or seriously injured. The predictors were x2 = kms =
distance driven, x3 = price = petrol price, x4 = van = number of van drivers
killed, and x5 = law = 0 if the law was in effect that month and 1 otherwise.
The data consists of 192 monthly totals in Great Britain from January 1969 to
December 1984, and the compulsory wearing of seat belts law was introduced
in February 1983.

a) Do the MANOVA F test.

b) Do the F4 test.

8.5. a) Sketch a DD plot of the residual vectors ε̂i for the multivariate
linear regression model if the error vectors εi are iid from a multivariate
normal distribution. b) Does the DD plot change if the one way MANOVA
model is used instead of the multivariate linear regression model?

8.6. The output below is for the R judge ratings data set consisting of
lawyer ratings for n = 43 judges. Y1 = oral = sound oral rulings, Y2 = writ =
sound written rulings, and Y3 = rten = worthy of retention. The predictors
were x2 = cont = number of contacts of lawyer with judge, x3 = intg =
judicial integrity, x4 = dmnr = demeanor, x5 = dilg = diligence, x6 =
cfmg = case flow managing, x7 = deci = prompt decisions, x8 = prep =
preparation for trial, x9 = fami = familiarity with law, and x10 = phys =
physical ability.

a) Do the MANOVA F test.

b) Do the MANOVA partial F test for the reduced model that deletes
x2, x5, x6, x7, and x8.

y<-USJudgeRatings[,c(9,10,12)] #See problem 8.6.



396 8 Multivariate Linear Regression

x<-USJudgeRatings[,-c(9,10,12)]

mltreg(x,y,indices=c(2,5,6,7,8))

$partial

partialF Pval

[1,] 1.649415 0.1855314

$MANOVA

MANOVAF pval

[1,] 340.1018 1.121325e-14

8.7. Let βi be p× 1 and suppose

(
β̂1 − β1

β̂2 − β2

)
∼ N2p

((
0
0

)
,

[
σ11(X

T X)−1 σ12(X
T X)−1

σ21(X
T X)−1 σ22(X

T X)−1

])
.

Find the distribution of

[L 0]

(
β̂1 − β1

β̂2 − β2

)
= Lβ̂1

where Lβ1 = 0 and L is r × p with r ≤ p. Simplify.

8.8. Let y = BT x + ε. Suppose x = (1, x2, ..., xp)
T = (1 wT )T where

w = (x2, ..., xp)
T . Let

B =

(
αT

BS

)
.

Suppose (
y

w

)
∼ Nm+p−1

[(
µy
µw

)
,

(
Σyy Σyw
Σwy Σww

)]
.

Then y|w ∼ Nm(µy + ΣywΣ−1
ww(w−µw),Σyy −ΣywΣ−1

wwΣww),

and ε ∼ Nm(0,Σyy − ΣywΣ−1
wwΣww) = Nm(0,Σε).

Now

y|x = y|
(

1
w

)
= BT x + ε,

and

y|w = BT x+ε =

(
αT

BS

)T (
1
w

)
+ε = (α BT

S )

(
1
w

)
+ε = α+BT

Sw +ε.

Hence E(y|w) = µy + ΣywΣ−1
ww(w − µw) = α + BT

Sw.

a) Show α = µy − BT
Sµw .

b) Show BS = Σ−1
w Σwy where Σw = Σww .

(Hence BT
S = ΣywΣ−1

w .)

R Problems
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Warning: Use the command source(“G:/linmodpack.txt”) to down-
load the programs. See Preface or Section 11.1. Typing the name of
the mpack function, e.g. ddplot, will display the code for the function. Use
the args command, e.g. args(ddplot), to display the needed arguments for
the function. For some of the following problems, the R commands can be
copied and pasted from (http://parker.ad.siu.edu/Olive/linmodrhw.txt) into
R.

8.9. This problem examines multivariate linear regression on the Cook
and Weisberg (1999) mussels data with Y1 = log(S) and Y2 = log(M) where
S is the shell mass and M is the muscle mass. The predictors are X2 = L,
X3 = log(W ), and X4 = H : the shell length, log(width), and height.

a) The R command for this part makes the response and residual plots
for each of the two response variables. Click the rightmost mouse button and
highlight Stop to advance the plot. When you have the response and residual
plots for one variable on the screen, copy and paste the two plots into Word.
Do this two times, once for each response variable. The plotted points fall in
roughly evenly populated bands about the identity or r = 0 line.

b) Copy and paste the output produced from the R command for this part
from $partial on. This gives the output needed to do the MANOVA F test,
MANOVA partial F test, and the Fj tests.

c) The R command for this part makes a DD plot of the residual vectors
and adds the lines corresponding to those in Figure 8.3. Place the plot in
Word. Do the residual vectors appear to follow a multivariate normal distri-
bution? (Right click Stop once.)

d) Do the MANOVA partial F test where the reduced model deletes X3

and X4.
e) Do the F2 test.
f) Do the MANOVA F test.

8.10. This problem examines multivariate linear regression on the SAS
Institute (1985, p. 146) Fitness Club Data with Y1 = chinups, Y2 = situps,
and Y3 = jumps. The predictors are X2 = weight, X3 = waist, and X4 =
pulse.

a) The R command for this part makes the response and residual plots for
each of the three variables. Click the rightmost mouse button and highlight
Stop to advance the plot. When you have the response and residual plots for
one variable on the screen, copy and paste the three plots into Word. Do this
three times, once for each response variable. Are there any outliers?

b) The R command for this part makes a DD plot of the residual vectors
and adds the lines corresponding to those in Figure 8.3. Place the plot in
Word. Are there any outliers? (Right click Stop once.)

8.11. This problem uses the linmodpack function mregsim to simulate the
Wilks’Λ test, Pillai’s trace test, Hotelling Lawley trace test, and Roy’s largest
root test for the Fj tests and the MANOVA F test for multivariate linear
regression. When mnull = T the first row of B is 1T while the remaining



398 8 Multivariate Linear Regression

rows are equal to 0T . Hence the null hypothesis for the MANOVA F test is
true. When mnull = F the null hypothesis is true for p = 2, but false for
p > 2. Now the first row of B is 1T and the last row of B is 0T . If p > 2,
then the second to last row of B is (1, 0, ..., 0), the third to last row is (1,
1, 0, ..., 0) et cetera as long as the first row is not changed from 1T . First
m iid errors zi are generated such that the m errors are iid with variance
σ2. Then εi = Azi so that Σ̂ε = σ2AAT = (σij) where the diagonal entries
σii = σ2[1+(m−1)ψ2 ] and the off diagonal entries σij = σ2[2ψ+(m−2)ψ2 ]
where ψ = 0.10. Terms like Wilkcov give the percentage of times the Wilks’
test rejected the F1, F2, ..., Fp tests. The $mancv wcv pcv hlcv rcv fcv output
gives the percentage of times the 4 test statistics reject the MANOVA F test.
Here hlcov and fcov both correspond to the Hotelling Lawley test using the
formulas in Problem 8.3.

5000 runs will be used so the simulation may take several minutes. Sample
sizes n = (m + p)2, n = 3(m + p)2, and n = 4(m+ p)2 were interesting. We
want coverage near 0.05 when H0 is true and coverage close to 1 for good
power when H0 is false. Multivariate normal errors were used in a) and b)
below.

a) Copy the coverage parts of the output produced by the R commands
for this part where n = 20, m = 2, and p = 4. Here H0 is true except for
the F1 test. Wilks’ and Pillai’s tests had low coverage < 0.05 when H0 was
false. Roy’s test was good for the Fj tests, but why was Roy’s test bad for
the MANOVA F test?

b) Copy the coverage parts of the output produced by the R commands
for this part where n = 20, m= 2, and p = 4. Here H0 is false except for the
F4 test. Which two tests seem to be the best for this part?

8.12. This problem uses the linmodpack function mpredsim to simulate
the prediction regions for yf given xf for multivariate regression. With 5000
runs this simulation may take several minutes. The R command for this
problem generates iid lognormal errors then subtracts the mean, producing
zi. Then the εi = Azi are generated as in Problem 8.11 with n=100, m=2,
and p=4. The nominal coverage of the prediction region is 90%, and 92%
of the training data is covered. The ncvr output gives the coverage of the
nonparametric region. What was ncvr?


