
Chapter 3

Nonfull Rank Linear Models and Cell

Means Models

Much of Sections 2.1 and 2.2 apply to both full rank and nonfull rank linear
models. In this chapter we often assume X has rank r < p ≤ n.

3.1 Nonfull Rank Linear Models

Definition 3.1. The nonfull rank linear model is Y = Xβ +e where X

has rank r < p ≤ n, X is an n × p matrix, E(e) = 0 and Cov(e) = σ2I.

Nonfull rank models are often used in experimental design models. Much
of the nonfull rank model theory is similar to that of the full rank model,
but there are some differences. Now the generalized inverse (XT X)− is not

unique. Similarly, β̂ is a solution to the normal equations, but depends on the
generalized inverse and is not unique. Some properties of the least squares
estimators are summarized below. Let P = PX be the projection matrix
on C(X). Recall that projection matrices are symmetric and idempotent but
singular unless P = I . Also recall that PX = X , so X

T
P = X

T .

Theorem 3.1. Let Y = Xβ +e where X has rank r < p ≤ n, E(e) = 0,
and Cov(e) = σ2I .

i) P = X(XT X)−XT is the unique projection matrix on C(X) and does
not depend on the generalized inverse (XT X)−.

ii) β̂ = (XT X)−XT Y does depend on (XT X)− and is not unique.

iii) Ŷ = Xβ̂ = P Y , r = Y − Ŷ = Y −Xβ̂ = (I −P )Y and RSS = rT r

are unique and so do not depend on (XT
X)−.

iv) β̂ is a solution to the normal equations: XT Xβ̂ = XT Y .
v) Rank(P ) = r and rank(I − P ) = n − r.

vi) MSE =
RSS

n − r
=

rT r

n − r
is an unbiased estimator of σ2.
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114 3 Nonfull Rank Linear Models and Cell Means Models

vii) Let the columns of X1 form a basis for C(X). For example, take r lin-
early independent columns of X to form X1. Then P = X1(X

T
1 X1)

−1XT
1 .

Proof. Parts i) follows from Theorem 2.2 a), b). For part iii), P and I−P

are projection matrices and projections Pw and (I − P )w are unique since

projection matrices are unique. For ii), since (XT
X)− is not unique, β̂ is not

unique. Note that iv) holds since XT Xβ̂ = XT PY = XT Y since P X = X

and X
T
P = X

T . From the proof of Theorem 2.2, if M is a projection
matrix, then rank(M) = tr(M ) = the number of nonzero eigenvalues of
M = rank(X). Thus v) holds. vi) E(rT r) = E(eT (I − P )e) = tr[(I −
P )σ2I)] = σ2(n − r) by Theorem 2.5. Part vii) follows from Theorem 2.2.

�

Definition 3.2. Let a and b be constant vectors. Then aT β is estimable

if there exists a linear unbiased estimator b
T
Y so E(bT

Y ) = aT β.

The term “estimable” is misleading since there are nonestimable quantities
aT β that can be estimated with biased estimators. For full rank models, aT β

is estimable for any p × 1 constant vector a since aT β̂ is a linear unbiased
estimator of aT β. See the Gauss Markov Theorem (Full Rank Case) 2.22.
Estimable quantities tend to go with the nonfull rank linear model. We can
avoid nonestimable functions by using a full rank model instead of a nonfull
rank model (delete columns of X until it is full rank). From Chapter 2, the
linear estimator aT Y of cT θ is the best linear unbiased estimator (BLUE) of
cT θ if E(aT Y ) = cT θ, and if for any other unbiased linear estimator bT Y

of cT θ, V (aT Y ) ≤ V (bT
Y ). Note that E(bT

Y ) = cT θ.

Since r ≤ p ≤ n, the model is full rank in the following theorem if r = p.
Then the next theorem shows that the least squares estimator of an estimable
function aT β is aT β̂ = b

T
Xβ̂ = b

T
PY .

Theorem 3.2. Let Y = Xβ +e where X has rank r ≤ p ≤ n, E(e) = 0,
and Cov(e) = σ2I .

a) The quantity aT β is estimable iff aT = b
T
X iff a = X

T
b (for some

constant vector b) iff a ∈ C(XT ).

b) Let θ̂ = Xβ̂ and θ = Xβ. Suppose there exists a constant vector c

such that E(cT θ̂) = cT θ. Then among the class of linear unbiased estimators

of cT θ, the least squares estimator cT θ̂ is the unique BLUE.
c) Gauss Markov Theorem: If aT β is estimable and a least squares

estimator β̂ is any solution to the normal equations X
T
Xβ̂ = X

T
Y , then

aT β̂ is the unique BLUE of aT β.

Proof. a) If aT β is estimable, then aT β = E(bT
Y ) = b

T
Xβ for all

β ∈ R
p. Thus aT = b

T
X or a = XT b. Hence aT β is estimable iff aT = b

T
X

iff a = X
T
b iff a ∈ C(XT ).
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For part b), we use the proof from Seber and Lee (2003, p. 43). Since θ̂ =

Xβ̂ = P Y , it follows that E(cT θ̂) = E(cT P Y ) = cT P Xβ = cT Xβ = cT θ.

Thus cT θ̂ = cT P Y = (P c)T Y is a linear unbiased estimator of cT θ. Let
d

T
Y be any other linear unbiased estimator of cT θ. Hence E(dT

Y ) = d
T
θ =

cT θ for all θ ∈ C(X). So (c − d)T θ = 0 for all θ ∈ C(X). Hence (c − d) ∈
[C(X)]⊥ and P (c − d) = 0, or P c = Pd. Thus V (cT θ̂) = V (cT PY ) =

V (dT
PY ) = σ2d

T
P T P d = σ2d

T
P d. Then V (dT

Y )−V (cT θ̂) = V (dT
Y )−

V (dT
PY ) = σ2[dT

d − d
T
P d] = σ2d

T (In − P )d = σ2d
T (In − P )T (In −

P )d = gT g ≥ 0 with equality iff g = (In −P )d = 0, or d = P d = P c. Thus

cT θ̂ has minimum variance and is unique.
c) Since aT β is estimable, aT β̂ = b

T
Xβ̂. Then aT β̂ = b

T
θ̂ is the unique

BLUE of aT β = b
T
θ by part b). �

Remark 3.1. There are several ways to show whether aT β is estimable
or nonestimable. i) For the full rank model, aT β is estimable: use the BLUE

aT β̂. Let θ̂ = Xβ̂ be the least squares estimator of Xβ where X has full
rank p. a) cT θ̂ is the unique BLUE of cT θ. b) aT β̂ is the BLUE of aT β for
every vector a.

Now consider the nonfull rank model. ii) If aT β is estimable: use the BLUE

aT β̂.
iii) There are two more ways to check whether aT β is estimable.
a) If there is a constant vector b such that E(bT Y ) = aT β, then aT β is

estimable.
b) If aT = b

T
X or a = XT b or a ∈ C(XT ), then aT β is estimable.

Then b
T
Y is a linear unbiased estimator of aT β, and the least squares esti-

mator b
T
PY = aT β̂ is the best linear unbiased estimator (BLUE) in that

V (aT β̂) = V (bT
P Y ) ≤ V (bT

Y ).

3.2 Cell Means Models

Nonfull rank models are often used for experimental design models, but cell
means models have full rank. The cell means models will be illustrated with
the one way Anova model. See Problem 3.9 for the cell means model for the
two way Anova model.

Definition 3.3. Models in which the response variable Y is quantitative,
but all of the predictor variables are qualitative are called analysis of vari-

ance (ANOVA or Anova) models, experimental design models, or design of

experiments (DOE) models. Each combination of the levels of the predictors
gives a different distribution for Y . A predictor variable W is often called a
factor and a factor level ai is one of the categories W can take.

The one way Anova model is used to compare p treatments. Usually there
is replication and H0 : µ1 = µ2 = · · · = µp is a hypothesis of interest.
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Investigators may also want to rank the population means from smallest to
largest.

Definition 3.4. Let fZ(z) be the pdf of Z. Then the family of pdfs fY (y) =
fZ(y−µ) indexed by the location parameter µ, −∞ < µ < ∞, is the location

family for the random variable Y = µ + Z with standard pdf fZ(z).

Definition 3.5. A one way fixed effects Anova model has a single quali-
tative predictor variable W with p categories a1, ..., ap. There are p different
distributions for Y , one for each category ai. The distribution of

Y |(W = ai) ∼ fZ(y − µi)

where the location family has second moments. Hence all p distributions come
from the same location family with different location parameter µi and the
same variance σ2.

Notation. It is convenient to relabel the response variable Y1, ..., Yn as
the vector Y = (Y11, ..., Y1,n1

, Y21, ..., Y2,n2
, ..., Yp1, ..., Yp,np

)T where the Yij

are independent and Yi1, ..., Yi,ni
are iid. Here j = 1, ..., ni where ni is the

number of cases from the ith level where i = 1, ..., p. Thus n1 + · · · + np =
n. Similarly use double subscripts on the errors. Then there will be many
equivalent parameterizations of the one way fixed effects Anova model.

Definition 3.6. The cell means model is the parameterization of the one
way fixed effects Anova model such that

Yij = µi + eij

where Yij is the value of the response variable for the jth trial of the ith
factor level. The µi are the unknown means and E(Yij) = µi. The eij are
iid from the location family with pdf fZ(z) and unknown variance σ2 =
VAR(Yij) = VAR(eij). For the normal cell means model, the eij are iid
N(0, σ2) for i = 1, ..., p and j = 1, ..., ni.

The cell means model is a linear model (without intercept) of the form
Y = Xcβc + e =
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. (3.1)

Notation. Let Yi0 =
∑ni

j=1
Yij and let

µ̂i = Y i0 = Yi0/ni =
1

ni

ni
∑

j=1

Yij. (3.2)

Hence the “dot notation” means sum over the subscript corresponding to the
0, e.g. j. Similarly, Y00 =

∑p
i=1

∑ni

j=1
Yij is the sum of all of the Yij.

Let Xc = [v1 v2 · · · vp], and notice that the indicator variables used in
the cell means model (3.1) are vhk = xhk = 1 if the hth case has W = ak, and
vhk = xhk = 0, otherwise, for k = 1, ..., p and h = 1, ..., n. So Yij has xhk = 1
only if i = k and j = 1, ..., ni. The model can use p indicator variables for the
factor instead of p−1 indicator variables because the model does not contain
an intercept. Also notice that (XT

c Xc) = diag(n1, ..., np),

E(Y ) = Xcβc = (µ1, ..., µ1, µ2, ..., µ2, ..., µp, ..., µp)
T ,

and XT
c Y = (Y10, ..., Y10, Y20, ..., Y20, ..., Yp0, ..., Yp0)

T . Hence (XT
c Xc)

−1 =
diag(1/n1, ..., 1/np) and the OLS estimator

β̂c = (XT
c Xc)

−1X
T
c Y = (Y 10, ..., Y p0)

T = (µ̂1, ..., µ̂p)
T .

Thus Ŷ = Xcβ̂c = (Y 10, ..., Y 10, ..., Y p0, ..., Y p0)
T . Hence the ijth fitted

value is
Ŷij = Y i0 = µ̂i (3.3)

and the ijth residual is

rij = Yij − Ŷij = Yij − µ̂i. (3.4)

Since the cell means model is a linear model, there is an associated response
plot and residual plot. However, many of the interpretations of the OLS
quantities for Anova models differ from the interpretations for MLR models.
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First, for MLR models, the conditional distribution Y |x makes sense even if
x is not one of the observed xi provided that x is not far from the xi. This
fact makes MLR very powerful. For MLR, at least one of the variables in x

is a continuous predictor. For the one way fixed effects Anova model, the p
distributions Y |xi make sense where xT

i is a row of Xc.
Also, the OLS MLR ANOVA F test for the cell means model tests H0 :

βc = 0 ≡ H0 : µ1 = · · · = µp = 0, while the one way fixed effects ANOVA F
test given after Definition 3.10 tests H0 : µ1 = · · · = µp.

Definition 3.7. Consider the one way fixed effects Anova model. The
response plot is a plot of Ŷij ≡ µ̂i versus Yij and the residual plot is a plot of

Ŷij ≡ µ̂i versus rij.

The points in the response plot scatter about the identity line and the
points in the residual plot scatter about the r = 0 line, but the scatter need
not be in an evenly populated band. A dot plot of Z1, ..., Zm consists of an
axis and m points each corresponding to the value of Zi. The response plot
consists of p dot plots, one for each value of µ̂i. The dot plot corresponding
to µ̂i is the dot plot of Yi1, ..., Yi,ni

. The p dot plots should have roughly the
same amount of spread, and each µ̂i corresponds to level ai. If a new level
af corresponding to xf was of interest, hopefully the points in the response
plot corresponding to af would form a dot plot at µ̂f similar in spread to
the other dot plots, but it may not be possible to predict the value of µ̂f .
Similarly, the residual plot consists of p dot plots, and the plot corresponding
to µ̂i is the dot plot of ri1, ..., ri,ni

.
Assume that each ni ≥ 10. Under the assumption that the Yij are from

the same location family with different parameters µi, each of the p dot plots
should have roughly the same shape and spread. This assumption is easier
to judge with the residual plot. If the response plot looks like the residual
plot, then a horizontal line fits the p dot plots about as well as the identity
line, and there is not much difference in the µi. If the identity line is clearly
superior to any horizontal line, then at least some of the means differ.

Definition 3.8. An outlier corresponds to a case that is far from the
bulk of the data. Look for a large vertical distance of the plotted point from
the identity line or the r = 0 line.

Rule of thumb 3.1. Mentally add 2 lines parallel to the identity line and
2 lines parallel to the r = 0 line that cover most of the cases. Then a case is
an outlier if it is well beyond these 2 lines.

This rule often fails for large outliers since often the identity line goes
through or near a large outlier so its residual is near zero. A response that is
far from the bulk of the data in the response plot is a “large outlier” (large
in magnitude). Look for a large gap between the bulk of the data and the
large outlier.
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Suppose there is a dot plot of nj cases corresponding to level aj that is
far from the bulk of the data. This dot plot is probably not a cluster of “bad
outliers” if nj ≥ 4 and n ≥ 5p. If nj = 1, such a case may be a large outlier.

The assumption of the Yij coming from the same location family with
different location parameters µi and the same constant variance σ2 is a big
assumption and often does not hold. Another way to check this assumption is
to make a box plot of the Yij for each i. The box in the box plot corresponds
to the lower, middle, and upper quartiles of the Yij. The middle quartile
is just the sample median of the data mij : at least half of the Yij ≥ mij

and at least half of the Yij ≤ mij . The p boxes should be roughly the same
length and the median should occur in roughly the same position (e.g. in
the center) of each box. The “whiskers” in each plot should also be roughly
similar. Histograms for each of the p samples could also be made. All of the
histograms should look similar in shape.

Example 3.1. Kuehl (1994, p. 128) gives data for counts of hermit crabs
on 25 different transects in each of six different coastline habitats. Let Z be
the count. Then the response variable Y = log10(Z + 1/6). Although the
counts Z varied greatly, each habitat had several counts of 0 and often there
were several counts of 1, 2, or 3. Hence Y is not a continuous variable. The
cell means model was fit with ni = 25 for i = 1, ..., 6. Each of the six habitats
was a level. Figure 3.1a and b shows the response plot and residual plot.
There are 6 dot plots in each plot. Because several of the smallest values in
each plot are identical, it does not always look like the identity line is passing
through the six sample means Y i0 for i = 1, ..., 6. In particular, examine the
dot plot for the smallest mean (look at the 25 dots furthest to the left that
fall on the vertical line FIT ≈ 0.36). Random noise (jitter) has been added to
the response and residuals in Figure 3.1c and d. Now it is easier to compare
the six dot plots. They seem to have roughly the same spread.

The plots contain a great deal of information. The response plot can be
used to explain the model, check that the sample from each population (treat-
ment) has roughly the same shape and spread, and to see which populations
have similar means. Since the response plot closely resembles the residual plot
in Figure 3.1, there may not be much difference in the six populations. Lin-
earity seems reasonable since the samples scatter about the identity line. The
residual plot makes the comparison of “similar shape” and “spread” easier.

Definition 3.9. a) The total sum of squares

SSTO =

p
∑

i=1

ni
∑

j=1

(Yij − Y 00)
2.

b) The treatment sum of squares
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Fig. 3.1 Plots for Crab Data

SSTR =

p
∑

i=1

ni(Y i0 − Y 00)
2.

c) The residual sum of squares or error sum of squares

SSE =

p
∑

i=1

ni
∑

j=1

(Yij − Y i0)
2.

Definition 3.10. Associated with each SS in Definition 3.9 is a degrees

of freedom (df) and a mean square = SS/df. For SSTO, df = n − 1 and
MSTO = SSTO/(n−1). For SSTR, df = p−1 and MSTR = SSTR/(p−1).
For SSE, df = n − p and MSE = SSE/(n − p).

Let S2
i =

∑ni

j=1(Yij − Y i0)
2/(ni − 1) be the sample variance of the ith

group. Then the MSE is a weighted sum of the S2
i :

σ̂2 = MSE =
1

n − p

p
∑

i=1

ni
∑

j=1

r2
ij =

1

n − p

p
∑

i=1

ni
∑

j=1

(Yij − Y i0)
2 =

1

n − p

p
∑

i=1

(ni − 1)S2
i = S2

pool

where S2
pool is known as the pooled variance estimator.

The ANOVA F test tests whether the p means are equal. If H0 is not
rejected and the means are equal, then it is possible that the factor is unim-
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portant, but it is also possible that the factor is important but the

level is not. For example, the factor might be type of catalyst. The yield
may be equally good for each type of catalyst, but there would be no yield if
no catalyst was used.

The ANOVA table is the same as that for MLR, except that SSTR re-
places the regression sum of squares. The MSE is again an estimator of σ2.
The ANOVA F test tests whether all p means µi are equal. Shown below is
an ANOVA table given in symbols. Sometimes “Treatment” is replaced by
“Between treatments,” “Between Groups,” “Model,” “Factor,” or “Groups.”
Sometimes “Error” is replaced by “Residual,” or “Within Groups.” Some-
times “p-value” is replaced by “P”, “Pr(> F ),” or “PR > F.” The “p-value”
is nearly always an estimated p-value, denoted by pval.

Summary Analysis of Variance Table

Source df SS MS F p-value

Treatment p − 1 SSTR MSTR F0=MSTR/MSE for H0:
Error n − p SSE MSE µ1 = · · · = µp

Here is the 4 step fixed effects one way ANOVA F test of hy-

potheses.
i) State the hypotheses H0 : µ1 = µ2 = · · · = µp and HA: not H0.
ii) Find the test statistic F0 = MSTR/MSE or obtain it from output.
iii) Find the pval from output or use the F –table: pval =

P (Fp−1,n−p > F0).

iv) State whether you reject H0 or fail to reject H0. If the pval ≤ δ, reject H0

and conclude that the mean response depends on the factor level. (Hence not
all of the treatment means are equal.) Otherwise fail to reject H0 and conclude
that the mean response does not depend on the factor level. (Hence all of the
treatment means are equal, or there is not enough evidence to conclude that
the mean response depends on the factor level.) Give a nontechnical sentence.

Rule of thumb 3.2. If

max(S1, ..., Sp) ≤ 2 min(S1 , ..., Sp),

then the one way ANOVA F test results will be approximately correct if the
response and residual plots suggest that the remaining one way Anova model
assumptions are reasonable. See Moore (2007, p. 634). If all of the ni ≥ 5,
replace the standard deviations by the ranges of the dot plots when exam-
ining the response and residual plots. The range Ri = max(Yi,1, ..., Yi,ni

) −
min(Yi,1, ..., Yi,ni

) = length of the ith dot plot for i = 1, ..., p.
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The assumption that the zero mean iid errors have constant variance
V (eij) ≡ σ2 is much stronger for the one way Anova model than for the mul-
tiple linear regression model. The assumption implies that the p population
distributions have pdfs from the same location family with different means
µ1, ..., µp but the same variances σ2

1 = · · · = σ2
p ≡ σ2. The one way ANOVA F

test has some resistance to the constant variance assumption, but confidence
intervals have much less resistance to the constant variance assumption. Con-
sider confidence intervals for µi such as Y i0 ± tni−1,1−δ/2

√
MSE/

√
ni. MSE

is a weighted average of the S2
i . Hence MSE overestimates small σ2

i and un-
derestimates large σ2

i when the σ2
i are not equal. Hence using

√
MSE instead

of Si will make the CI too long or too short, and Rule of thumb 3.2 does not
apply to confidence intervals based on MSE.

All of the parameterizations of the one way fixed effects Anova model
yield the same predicted values, residuals, and ANOVA F test, but the inter-
pretations of the parameters differ. The cell means model is a linear model
(without intercept) of the form Y = Xcβc + e = that can be fit using OLS.
The OLS MLR output gives the correct fitted values and residuals but an
incorrect ANOVA table. An equivalent linear model (with intercept) with
correct OLS MLR ANOVA table as well as residuals and fitted values can
be formed by replacing any column of the cell means model by a column of
ones 1. Removing the last column of the cell means model and making the
first column 1 gives the model Y = β0 + β1x1 + · · ·+ βp−1xp−1 + e given in
matrix form by (3.5) below.

It can be shown that the OLS estimators corresponding to (3.5) are β̂0 =

Y p0 = µ̂p, and β̂i = Y i0 − Y p0 = µ̂i − µ̂p for i = 1, ..., p− 1. The cell means

model has β̂i = µ̂i = Y i0.
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. (3.5)
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Definition 3.11. A contrast C =
∑p

i=1
kiµi where

∑p
i=1

ki = 0. The

estimated contrast is Ĉ =
∑p

i=1
kiY i0.

If the null hypothesis of the fixed effects one way ANOVA test is not true,
then not all of the means µi are equal. Researchers will often have hypotheses,
before examining the data, that they desire to test. Often such a hypothesis
can be put in the form of a contrast. For example, the contrast C = µi − µj

is used to compare the means of the ith and jth groups while the contrast
µ1 − (µ2 + · · · + µp)/(p − 1) is used to compare the last p − 1 groups with
the 1st group. This contrast is useful when the 1st group corresponds to a
standard or control treatment while the remaining groups correspond to new
treatments.

Assume that the normal cell means model is a useful approximation to the
data. Then the Y i0 ∼ N(µi, σ

2/ni) are independent, and

Ĉ =

p
∑

i=1

kiY i0 ∼ N

(

C, σ2

p
∑

i=1

k2
i

ni

)

.

Hence the standard error

SE(Ĉ) =

√

√

√

√MSE

p
∑

i=1

k2
i

ni
.

The degrees of freedom is equal to the MSE degrees of freedom = n − p.
Consider a family of null hypotheses for contrasts {Ho :

∑p
i=1 kiµi = 0

where
∑p

i=1 ki = 0 and the ki may satisfy other constraints}. Let δS denote
the probability of a type I error for a single test from the family where a type
I error is a false rejection. The family level δF is an upper bound on the
(usually unknown) size δT . Know how to interpret δF ≈ δT =
P(of making at least one type I error among the family of contrasts).

Two important families of contrasts are the family of all possible con-
trasts and the family of pairwise differences Cij = µi − µj where i 6= j. The
Scheffé multiple comparisons procedure has a δF for the family of all possible
contrasts, while the Tukey multiple comparisons procedure has a δF for the
family of all

(

p
2

)

pairwise contrasts.

3.3 Summary

1) The nonfull rank linear model: suppose Y = Xβ + e where X has
rank r < p and X is an n × p matrix.

i) P X = X(XT X)−XT is the unique projection matrix on C(X) and

does not depend on the generalized inverse (XT X)−.
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ii) β̂ = (XT X)−XT Y does depend on (XT X)− and is not unique.

iii) Ŷ = Xβ̂ = P XY , e = Y − Ŷ = Y − Xβ̂ = (I − PX )Y and

RSS = eT e are unique and so do not depend on (XT X)−.

iv) β̂ is a solution to the normal equations: XT Xβ̂ = XT Y .
v) It can be shown that rank(PX ) = r and rank(I − P X ) = n − r.

vi) Let θ̂ = Xβ̂ and θ = Xθ. Suppose there exists a constant vector c

such that E(cT θ̂) = cT θ. Then among the class of linear unbiased estimators

of cT θ, the least squares estimator cT θ̂ is BLUE.

vii) If Cov(Y ) = Cov(ε) = σ2I, then MSE =
RSS

n − r
=

eT e

n − r
is an

unbiased estimator of σ2.
viii) Let the columns of X1 form a basis for C(X). For example, take r lin-

early independent columns of X to form X1. Then P X = X1(X
T
1 X1)

−1XT
1 .

2) Let a and b be constant vectors. Then aT β is estimable if there exists
a linear unbiased estimator b

T
Y so E(bT

Y ) = aT β.
3) The quantity aT β is estimable iff aT = b

T
X iff a = X

T
b (for some

constant vector b) iff a ∈ C(XT ).

4) If aT β is estimable and a least squares estimator β̂ is any solution to

the normal equations XT Xβ̂ = XT Y . Then aT β is unique and aT β̂ is the
BLUE of aT β.

5) The term “estimable” is misleading since there are nonestimable quan-
tities aT β that can be estimated with biased or nonlinear estimators.

6) Estimable quantities tend to go with the nonfull rank linear model. Can
avoid nonestimable functions by using a full rank model instead of a nonfull
rank model (delete columns of X until it is full rank).

7) The linear estimator aT Y of cT θ is the best linear unbiased estimator
(BLUE) of cT θ if E(aT Y ) = cT θ, and if for any other unbiased linear
estimator bT Y of cT θ, V (aT Y ) ≤ V (bT Y ). Note that E(bT Y ) = cT θ.

8) Let θ̂ = Xβ̂ be the least squares estimator of Xβ where X has full

rank p. a) cT θ̂ is the unique BLUE of cT θ. b) aT β̂ is the BLUE of aT β for
every vector a.

9) In experimental design models or design of experiments (DOE), the
entries of X are coded, often as −1, 0 or 1. Often X is not a full rank matrix.

10) Some DOE models have one Yi per xi and lots of xi’s. Then the
response and residual plots are used like those for MLR.

11) Some DOE models have ni Yi’s per xi, and only a few distinct values
of xi. Then the response and residual plots no longer look like those for MLR.

12) A dot plot of Z1, ..., Zm consists of an axis and m points each corre-
sponding to the value of Zi.

13) Let fZ(z) be the pdf of Z. Then the family of pdfs fY (y) = fZ(y − µ)
indexed by the location parameter µ, −∞ < µ < ∞, is the location family

for the random variable Y = µ +Z with standard pdf fZ(y). A one way fixed
effects ANOVA model has a single qualitative predictor variable W with p
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categories a1, ..., ap. There are p different distributions for Y , one for each
category ai. The distribution of

Y |(W = ai) ∼ fZ(y − µi)

where the location family has second moments. Hence all p distributions come
from the same location family with different location parameter µi and the
same variance σ2. The one way fixed effects normal ANOVA model is the
special case where Y |(W = ai) ∼ N(µi, σ

2).
14) The response plot is a plot of Ŷ versus Y . For the one way Anova model,

the response plot is a plot of Ŷij = µ̂i versus Yij . Often the identity line with
unit slope and zero intercept is added as a visual aid. Vertical deviations from
the identity line are the residuals eij = Yij − Ŷij = Yij − µ̂i. The plot will
consist of p dot plots that scatter about the identity line with similar shape
and spread if the fixed effects one way ANOVA model is appropriate. The
ith dot plot is a dot plot of Yi,1, ..., Yi,ni

. Assume that each ni ≥ 10. If the
response plot looks like the residual plot, then a horizontal line fits the p dot
plots about as well as the identity line, and there is not much difference in
the µi. If the identity line is clearly superior to any horizontal line, then at
least some of the means differ.

The residual plot is a plot of Ŷ versus e where the residual e = Y − Ŷ . The
plot will consist of p dot plots that scatter about the e = 0 line with similar
shape and spread if the fixed effects one way ANOVA model is appropriate.
The ith dot plot is a dot plot of ei,1, ..., ei,ni

. Assume that each ni ≥ 10.
Under the assumption that the Yij are from the same location scale family
with different parameters µi, each of the p dot plots should have roughly the
same shape and spread. This assumption is easier to judge with the residual
plot than with the response plot.

15) Rule of thumb: Let Ri be the range of the ith dot plot =
max(Yi1, ..., Yi,ni

)−min(Yi1, ..., Yi,ni
). If the ni ≈ n/p and if max(R1, ..., Rp) ≤

2 min(R1, ..., Rp), then the one way ANOVA F test results will be approxi-
mately correct if the response and residual plots suggest that the remaining
one way ANOVA model assumptions are reasonable. Confidence intervals
need stronger assumptions.

16) Let Yi0 =
∑ni

j=1 Yij and let

µ̂i = Y i0 = Yi0/ni =
1

ni

ni
∑

j=1

Yij.

Hence the “dot notation” means sum over the subscript corresponding to the
0, e.g. j. Similarly, Y00 =

∑p
i=1

∑ni

j=1 Yij is the sum of all of the Yij . Be able
to find µ̂i from data.

17) The cell means model for the fixed effects one way Anova is Yij =
µi + εij where Yij is the value of the response variable for the jth trial of the
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ith factor level for i = 1, ..., p and j = 1, ..., ni. The µi are the unknown means
and E(Yij) = µi. The εij are iid from the location family with pdf fZ(z), zero
mean and unknown variance σ2 = V (Yij) = V (εij). For the normal cell means

model, the εij are iid N(0, σ2). The estimator µ̂i = Y i0 =
∑ni

j=1
Yij/ni = Ŷij.

The ith residual is eij = Yij−Y i0, and Y 00 is the sample mean of all of the Yij

and n =
∑p

i=1 ni. The total sum of squares SSTO =
∑p

i=1

∑ni

j=1(Yij −Y 00)
2,

the treatment sum of squares SSTR =
∑p

i=1 ni(Y i0−Y 00)
2, and the error sum

of squares SSE = RSS =
∑p

i=1

∑ni

j=1(Yij −Y i0)
2. The MSE is an estimator of

σ2. The Anova table is the same as that for multiple linear regression, except
that SSTR replaces the regression sum of squares and that SSTO, SSTR and
SSE have n − 1, p − 1 and n − p degrees of freedom.

Summary Analysis of Variance Table

Source df SS MS F p-value

Treatment p − 1 SSTR MSTR F0=MSTR/MSE for H0:
Error n − p SSE MSE µ1 = · · · = µp

18) Shown is a one way ANOVA table given in symbols. Sometimes “Treat-
ment” is replaced by “Between treatments,” “Between Groups,” “Model,”
“Factor” or “Groups.” Sometimes “Error” is replaced by “Residual,” or
“Within Groups.” Sometimes “p-value” is replaced by “P”, “Pr(> F )” or
“PR > F.” SSE is often replaced by RSS = residual sum of squares.

19) In matrix form, the cell means model is the linear model without an
intercept (although 1 ∈ C(X)), where µ = β = (µ1, ..., µp)

T , and Y =
Xµ + ε =









































Y11

...
Y1,n1

Y21

...
Y2,n2

...
Yp,1

...
Yp,np









































=









































1 0 0 . . . 0
...

...
...

...
1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

...
0 1 0 . . . 0
...

...
...

...
0 0 0 . . . 1
...

...
...

...
0 0 0 . . . 1



















































µ1

µ2

...
µp











+









































ε11

...
ε1,n1

ε21

...
ε2,n2

...
εp,1

...
εp,np









































.

20) For the cell means model, XT X = diag(n1, ..., np), (XT X)−1 =

diag(1/n1, ..., 1/np), and XT Y = (Y10, ..., Yp0)
T . So β̂ = µ̂ = (XT X)−1XT Y

= (Y 10, ..., Y p0)
T . Then Ŷ = X(XT X)−1XT Y = Xµ̂, and Ŷij = Y i0.

Hence the ijth residual eij = Yij − Ŷij = Yij − Y i0 for i = 1, ..., p and
j = 1, ..., ni.
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21) In the response plot, the dot plot for the jth treatment crosses the
identity line at Y j0.

22) The one way Anova F test has hypotheses H0 : µ1 = · · · = µp and HA:
not H0 (not all of the p population means are equal). The one way Anova
table for this test is given above 18). Let RSS = SSE. The test statistic

F =
MSTR

MSE
=

[RSS(H) − RSS]/(p − 1)

MSE
∼ Fp−1,n−p

if the εij are iid N(0, σ2). If H0 is true, then Yij = µ+εij and µ̂ = Y 00. Hence
RSS(H) = SSTO =

∑p
i=1

∑ni

j=1
(Yij −Y 00)

2. Since SSTO = SSE +SSTR,
the quantity SSTR = RSS(H) − RSS, and MSTR = SSTR/(p − 1).

23) The one way Anova F test is a large sample test if the εij are iid with
mean 0 and variance σ2. Then the Yij come from the same location family
with the same variance σ2

i = σ2 and different mean µi for i = 1, ..., p. Thus
the p treatments (groups, populations) have the same variance σ2

i = σ2. The
V (εij) ≡ σ2 assumption (which implies that σ2

i = σ2 for i = 1, ..., p) is a
much stronger assumption for the one way Anova model than for MLR, but
the test has some resistance to the assumption that σ2

i = σ2 by 15).
24) Other design matrices X can be used for the full model. One design

matrix adds a column of ones to the cell means design matrix. This model is
no longer a full rank model.









































Y11

...
Y1,n1

Y21

...
Y2,n2

...
Yp,1

...
Yp,np









































=























































1 1 0 . . . 0
...

...
...

...
1 1 0 . . . 0
1 0 1 . . . 0
...

...
...

...
1 0 1 . . . 0
...

...
...

...
1 0 0 . . . 1
...

...
...

...
1 0 0 . . . 1
1 0 0 . . . 0
...

...
...

...
1 0 0 . . . 0

































































β0

β1

...
βp−1











+









































ε11

...
ε1,n1

ε21

...
ε2,n2

...
εp,1

...
εp,np









































.

25) A full rank one way Anova model with an intercept adds a constant but
deletes the last column of the X for the cell means model. Then Y = Xβ+ε

where Y and ε are as in the cell means model. Then β = (β0, β1, ..., βp−1)
T =

(µp, µ1 − µp, µ2 − µp, ..., µp−1 − µp)
T . So β0 = µp and βi = µi − µp for

i = 1, ..., p− 1.



128 3 Nonfull Rank Linear Models and Cell Means Models

It can be shown that the OLS estimators are β̂0 = Y p0 = µ̂p, and β̂i =

Y i0 −Y p0 = µ̂i − µ̂p for i = 1, ..., p− 1. (The cell means model has β̂i = µ̂i =
Y i0.) In matrix form the model is shown above.

Then X
T
Y = (Y00, Y10, Y20, ..., Yp−1,0)

T and

XT X =



















n n1 n2 n3 · · · np−2 np−1

n1 n1 0 0 · · · 0 0
n2 0 n2 0 · · · 0 0
...

...
...

... · · ·
...

...
np−2 0 0 0 · · · np−2 0
np−1 0 0 0 · · · 0 np−1



















=















n (n1 n2 · · · np−1)










n1

n2

...
np−1











diag(n1, ..., np−1)















.

Hence (XTX)−1 =
1

np





















1 −1 −1 −1 · · · −1 −1
−1 1 +

np

n1

1 1 · · · 1 1

−1 1 1 +
np

n2

1 · · · 1 1
...

...
...

... · · ·
...

...
−1 1 1 1 · · · 1 +

np

np−2

1

−1 1 1 1 · · · 1 1 +
np

np−1





















=

1

np

[

1 −1T

−1 11T + diag(
np

n1

, ...,
np

np−1

)

]

.

This model is interesting since the one way Anova F test of H0 : µ1 =
· · · = µp versus HA : not H0 corresponds to the MLR Anova F test of
H0 : β1 = · · · = βp−1 = 0 versus HA : not H0.

26) A contrast θ =
∑p

i=1
ciµi where

∑p
i=1

ci = 0. The estimated contrast

is θ̂ =
∑p

i=1
ciY i0. Then SE(θ̂) =

√
MSE

√

√

√

√

p
∑

i=1

c2
i

ni
and a 100(1 − δ)% CI

for θ is θ̂ ± tn−1,1−δ/2SE(θ̂). CIs for one way Anova are less robust to the
assumption that σ2

i ≡ σ2 than the one way Anova F test.
27) Two important families of contrasts are the family of all possible con-

trasts and the family of pairwise differences θij = µi − µj where i 6= j. The
Scheffé multiple comparisons procedure has a δF for the family of all possible
contrasts while the Tukey multiple comparisons procedure has a δF for the
family of all

(

p
2

)

pairwise contrasts.

3.4 Complements

Section 3.2 followed Olive (2017a, ch. 5) closely. The one way Anova model
assumption that the groups have the same variance is very strong. Chapter
9 shows how to use large sample theory to create better one way MANOVA
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type tests, and better one way Anova tests are a special case. The tests tend
to be better when all of the ni are large enough for the CLT to hold for each
Y io. Also see Rupasinghe Arachchige Don and Olive (2019).

3.5 Problems

3.1. When X is not full rank, the projection matrix P X for C(X) is P X =
X(X ′X)−X ′ where X′ = XT . To show that C(P X) = C(X), you can show
that a) P Xw = Xy ∈ C(X) where w is an arbitrary conformable constant
vector, and b) Xy = P Xw ∈ C(P X) where y is an arbitrary conformable
constant vector.

a) Show P Xw = Xy and identify y.
b) Show Xy = P Xw and identify w. Hint: P XX = X.

3.2. Let P = X(XT X)−XT be the projection matrix onto the column
space of X. Using P X = X, show P is idempotent.

3.3. Suppose that X is an n× p matrix but the rank of X < p < n. Then
the normal equations X ′Xβ = X ′Y have infinitely many solutions. Let β̂ be
a solution to the normal equations. So X′Xβ̂ = X′Y . Let G = (X ′X)− be a
generalized inverse of (X ′X). Assume that E(Y ) = Xβ and Cov(Y ) = σ2I .
It can be shown that all solutions to the normal equations have the form bz
given below.

a) Show that bz = GX
′
Y + (GX

′
X − I)z is a solution to the normal

equations where the p × 1 vector z is arbitrary.

b) Show that E(bz) 6= β.

(Hence some authors suggest that bz should be called a solution to the
normal equations but not an estimator of β.)

c) Show that Cov(bz) = σ2GX ′XG′.

d) Although G is not unique, the projection matrix P = XGX ′ onto

C(X) is unique. Use this fact to show that Ŷ = Xbz does not depend on G

or z.

e) There are two ways to show that a′β is an estimable function. Either
show that there exists a vector c such that E(c′Y ) = a′β, or show that
a ∈ C(X ′). Suppose that a = X ′w for some fixed vector w. Show that
E(a′bz) = a′β.

(Hence a′β is estimable by a′bz where bz is any solution of the normal
equations.)



130 3 Nonfull Rank Linear Models and Cell Means Models

f) Suppose that a = X ′w for some fixed vector w. Show that V ar(a′bz) =
σ2w′Pw.

3.4. Let Y = Xβ + e where E(e) = 0, Cov(e) = σ2In, and X has full
rank. Let a be a constant vector. (Hint: full rank model formulas are rather
simple.)

a) Find E(aT β̂).
b) Is aT β estimable? Explain briefly.

3.5. Let Y = Xβ+e where Y = (Y1, Y2, Y3)
′, X =





1 2
1 2
2 4



, β = (β1 , β2)
′,

E(e) = 0, and Cov(e) = σ2I .
a) Find [C(X′)].
Show whether or not the following functions are estimable.
b) 5β1 + 10β2

c) β1

d) β1 − 2β2

3.6. Let Y = Xβ + e where E(e) = 0, Cov(e) = σ2In, and X has full
rank. Note that Yi = xT

i β + ei. Assume X is a constant matrix.
a) Find E(Yi).
b) Is E(Yi) estimable? Explain briefly.

3.7. An overparameterized two way Anova model is Yijk = µ + αi + βj +
τij + eijk for i = 1, ..., a and j = 1, ..., b and k = 1, ..., m. Suppose a = 2,
b = 2, and m = 2. Then

























Y111

Y112

Y121

Y122

Y211

Y212

Y221

Y222

























= X





























µ
α1

α2

β1

β2

τ11

τ12

τ21

τ22





























+

























e111

e112

e121

e122

e211

e212

e221

e222

























.

a) Give the matrix X.
b) We can write the above model as Y = Xβ + e. This model is not full

rank. What is the projection matrix P (onto the column space of X)? Hint:
XT X is singular, so use the generalized inverse.

3.8. Suppose that Y = (Y1, Y2)
′, Var(Y ) = σ2I , E(Y1) = E(Y2) = β1 −

2β2. Show whether or not the following functions are estimable. Hint E(Y ) =
Xβ, so find X .

a) β1

b) β2

c) −β1 + 2β2
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d) 4β1 − 8β2

3.9. The cell means model for the two way Anova model is Yijk = µij +eijk

for i = 1, ..., a and j = 1, ..., b and k = 1, ..., m. Suppose a = 2, b = 2, and
m = 2. Then

























Y111

Y112

Y121

Y122

Y211

Y212

Y221

Y222

























= X









µ11

µ12

µ21

µ22









+

























e111

e112

e121

e122

e211

e212

e221

e222

























.

a) Give the matrix X.
b) Suppose that a full rank cell means two way Anova model is written in

matrix form as Y = Xβ + e. What is the vector of residuals r?

3.10. Note that C(X′X) = C(X′) since C(X′X) ⊆ C(X ′) and rank(X′X) =
rank(X′).

Use this result to explain why there is always a solution β̂ to the normal
equations:

X′Xβ̂ = X′Y .

3.11. An alternative parameterization of the one way Anova model is
Yij = µ+αi +eij for i = 1, ..., p and j = 1, ..., ni. Hence µi = µ+αi. Suppose
p = 3 and ni = 2. Then

















Y11

Y12

Y21

Y22

Y31

Y32
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µ
α1

α2

α3









+

















e11

e12

e21

e22

e31

e32

















.

Give the matrix X .

3.12Q. Consider the linear regression model Yi = β1+β2xi2+· · ·+βpxip+ei

or Y = Xβ+e where Y ∼ Nn(Xβ, σ2I). Assume X is n×p with rank(X) =
r ≤ p.

a) Give expressions for SSE and SSR using matrix notation.
b) Find E(SSE) and E(SSR).
c) Find the distribution of i) SSE, ii) SSR, and iii) MSR/MSE under the

assumption β2 = · · · = βp = 0.

3.13Q. Consider the linear regression model Y = Xβ + e where Y ∼
Nn(Xβ, σ2I). Assume X is n × p with rank(X) = r ≤ p.

a) i) Define what is meant by an estimable linear function of β.
ii) Write down the least squares estimator of an estimable function of β.
iii) Write down an unbiased estimator of σ2.
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b) Show the estimators of part a) ii) and iii) are unbiased.
c) State the Gauss Markov Theorem.
d) Give expressions for SSE and SSR using matrix notation.

3.14Q. Let E(Y ) = Xβ where Y is 3× 1, X is 3× 2, and β is 2× 1. Let

i) X =





2 0
1 1
0 2



 and ii) X =





3 6
2 4
1 2



 .

a) In each of cases i) and ii), state whether β is estimable andexplain your
answer.

b) If the answer is “yes,” then determine the matrix B in β̂ = BY .
c) If the answer is “no,” then produce one estimable parametric function

and its unbiased estimator.


