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Preface

Many statistics departments offer a one semester graduate course in linear
model theory. Linear models include multiple linear regression and many
experimental design models. Three good books on linear model theory, in
increasing order of difficulty, are Myers and Milton (1991), Seber and Lee
(2003), and Christensen (2020). Other texts include Agresti (2015), Freed-
man (2005), Graybill (1976, 2000), Guttman (1982), Harville (2018), Hock-
ing (2013), Monahan (2008), Muller and Stewart (2006), Rao (1973), Rao et
al. (2008), Ravishanker, Chi, and Dey (2021), Rencher and Schaalje (2008),
Scheffé (1959), Searle and Gruber (2017), Sengupta and Jammalamadaka
(2019), Stapleton (2009), Wang and Chow (1994), and Zimmerman (2020ab).
A good summary is Olive (2017a, ch. 11).

The prerequisites for this text are i) a calculus based course in statistics
at the level of Chihara and Hesterberg (2011), Hogg et al. (2015), Larsen and
Marx (2017), Wackerly et al. (2008), and Walpole et al. (2016). ii) Linear
algebra at the level of Anton et al. (2019), and Leon (2015). iii) A calcu-
lus based course in multiple linear regression at the level of Abraham and
Ledolter (2006), Cook and Weisberg (1999), Kutner et al. (2005), Olive (2010,
2017a), and Weisberg (2014).

This text emphasizes large sample theory over normal theory, and shows
how to do inference after variable selection. The text is at a Master’s level
for the United States. Let n be the sample size and p the number of predic-
tor variables. Chapter 1 reviews some of the material from a calculus based
course in multiple linear regression as well as some of the material to be cov-
ered in the text. Chapter 1 also covers the multivariate normal distribution
and large sample theory. Most of these sections can be skimmed and then
reviewed as needed. Chapters 2 and 3 cover full and nonfull rank linear mod-
els, respectively, with emphasis on least squares. Chapter 4 considers variable
selection when n >> p. Chapter 5 considers Statistical Learning alternatives
to least squares when n >> p, including lasso, lasso variable selection, and
the elastic net. Chapter 6 shows how to use data splitting for inference if
n/p is not large. Chapter 7 gives theory for robust regression, using results
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from robust multivariate location and dispersion. Chapter 8 gives theory for
the multivariate linear model where there are m ≥ 2 response variables.
Chapter 9 examines the one way MANOVA model, which is a special case of
the multivariate linear model. Chapter 10 generalizes much of the material
from Chapters 2–6 to many other regression models, including generalized
linear models and some survival regression models. Chapter 11 gives some
information about R and some hints for homework problems.

Chapters 2–4 are the most important for a standard course in Linear Model
Theory, along with the multivariate normal distribution and some large sam-
ple theory from Chapter 1. Some highlights of this text follow.

• Prediction intervals are given that can be useful even if n < p.
• The response plot is useful for checking the model.
• The large sample theory for the elastic net, lasso, and ridge regression

is greatly simplified. Large sample theory for variable selection and lasso
variable selection is given.

• The bootstrap is used for inference after variable selection if n ≥ 10p.
• Data splitting is used for inference after variable selection or model build-

ing if n < 5p.
• Most of the above highlights are extended to many other regression models

such as generalized linear models and some survival regression models.

The website (http://parker.ad.siu.edu/Olive/linmodbk.htm) for this book
provides R programs in the file linmodpack.txt and several R data sets in
the file linmoddata.txt. Section 11.1 discusses how to get the data sets and
programs into the software, but the following commands will work.

Downloading the book’s R functions linmodpack.txt and data files
linmoddata.txt into R: The following commands

source("http://parker.ad.siu.edu/Olive/linmodpack.txt")

source("http://parker.ad.siu.edu/Olive/linmoddata.txt")

can be used to download the R functions and data sets into R. (Copy and paste
these two commands into R from near the top of the file (http://parker.ad.
siu.edu/Olive/linmodhw.txt), which contains commands that are useful for
doing many of the R homework problems.) Type ls(). Over 100 R functions
from linmodpack.txt should appear. Exit R with the command q() and click
No.

The R software is used in this text. See R Core Team (2016). Some pack-
ages used in the text include glmnet Friedman et al. (2015), leaps Lum-
ley (2009), MASS Venables and Ripley (2010), mgcv Wood (2017), and pls

Mevik et al. (2015).
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Chapter 1

Introduction

This chapter provides a preview of the book, and contains several sections
that will be useful for linear model theory. Section 1.2 defines 1D regression
and gives some techniques useful for checking the 1D regression model and vi-
sualizing data in the background of the data. Section 1.3 reviews the multiple
linear regression model. Sections 1.4 and 1.7 cover the multivariate normal
distribution and elliptically contoured distributions. Some large sample the-
ory is presented in Section 1.5, and Section 1.6 covers mixture distributions.
Section 1.4 is important, but the remaining sections can be skimmed and
then reviewed as needed.

1.1 Overview

Linear Model Theory provides theory for the multiple linear regression model
and some experimental design models. This text will also give theory for the
multivariate linear regression model where there are m ≥ 2 response vari-
ables. Emphasis is on least squares, but some alternative Statistical Learning
techniques, such as lasso and the elastic net, will also be covered. Chapter 10
considers theory for 1D regression models which include the multiple linear
regression model and generalized linear models.

Statistical Learning could be defined as the statistical analysis of multivari-
ate data. Machine learning, data mining, analytics, business analytics, data
analytics, and predictive analytics are synonymous terms. The techniques are
useful for Data Science and Statistics, the science of extracting information
from data. The R software will be used. See R Core Team (2020).

Let z = (z1, ..., zk)
T where z1, ..., zk are k random variables. Often z =

(xT , Y )T where xT = (x1, ..., xp) is the vector of predictors and Y is the
variable of interest, called a response variable. Predictor variables are also
called independent variables, covariates, or features. The response variable
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2 1 Introduction

is also called the dependent variable. Usually context will be used to decide
whether z is a random vector or the observed random vector.

Definition 1.1. A case or observation consists of k random variables
measured for one person or thing. The ith case zi = (zi1, ..., zik)

T . The
training data consists of z1, ..., zn. A statistical model or method is fit
(trained) on the training data. The test data consists of zn+1, ..., zn+m, and
the test data is often used to evaluate the quality of the fitted model.

Following James et al. (2013, p. 30), the previously unseen test data is not
used to train the Statistical Learning method, but interest is in how well the
method performs on the test data. If the training data is (x1, Y1), ..., (xn, Yn),
and the previously unseen test data is (xf , Yf), then particular interest is in

the accuracy of the estimator Ŷf of Yf obtained when the Statistical Learning
method is applied to the predictor xf . The two Pelawa Watagoda and Olive
(2021b) prediction intervals, developed in Section 4.3, will be tools for eval-
uating Statistical Learning methods for the additive error regression model
Yi = m(xi) + ei = E(Yi|xi) + ei for i = 1, ..., n where E(W ) is the expected
value of the random variableW . The multiple linear regression (MLR) model,
Yi = β1 + x2β2 + · · ·+ xpβp + e = xT β + e, is an important special case.

The estimator Ŷf is a prediction if the response variable Yf is continuous,

as occurs in regression models. If Yf is categorical, then Ŷf is a classification.
For example, if Yf can be 0 or 1, then xf is classified to belong to group i if

Ŷf = i for i = 0 or 1.

Following Marden (2006, pp. 5,6), the focus of supervised learning is pre-
dicting a future value of the response variable Yf given xf and the training
data (x1, Y1), ..., (x1, Yn). Hence the focus is not on hypothesis testing, con-
fidence intervals, parameter estimation, or which model fits best, although
these four inference topics can be useful for better prediction.

Notation: Typically lower case boldface letters such as x denote column
vectors, while upper case boldface letters such as S or Y are used for ma-
trices or column vectors. If context is not enough to determine whether y
is a random vector or an observed random vector, then Y = (Y1, ..., Yp)

T

may be used for the random vector, and y = (y1 , ..., yp)
T for the observed

value of the random vector. An upper case letter such as Y will usually be a
random variable. A lower case letter such as x1 will also often be a random
variable. An exception to this notation is the generic multivariate location
and dispersion estimator (T,C) where the location estimator T is a p × 1
vector such as T = x. C is a p× p dispersion estimator and conforms to the
above notation.

The main focus of the first seven chapters is developing tools to analyze
the multiple linear regression model Yi = xT

i β + ei for i = 1, ..., n. Classical
regression techniques use (ordinary) least squares (OLS) and assume n >> p,
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but Statistical Learning methods often give useful results if p >> n. OLS
forward selection, lasso, ridge regression, and the elastic net will be some of
the techniques examined.

For classical regression and multivariate analysis, we often want n ≥ 10p,
and a model with n < 5p is overfitting: the model does not have enough data
to estimate parameters accurately. Statistical Learning methods often use a
model with d predictor variables, where n ≥ Jd with J ≥ 5 and preferably
J ≥ 10.

Acronyms are widely used in regression and Statistical Learning, and some
of the more important acronyms appear in Table 1.1. Also see the text’s index.

Table 1.1 Acronyms

Acronym Description
AER additive error regression
AP additive predictor = SP for a GAM

BLUE best linear unbiased estimator
cdf cumulative distribution function
cf characteristic function
CI confidence interval

CLT central limit theorem
CV cross validation
EC elliptically contoured

EAP estimated additive predictor = ESP for a GAM
ESP estimated sufficient predictor
ESSP estimated sufficient summary plot = response plot
GAM generalized additive model
GLM generalized linear model

iff if and only if
iid independent and identically distributed

lasso an MLR method
LR logistic regression

MAD the median absolute deviation
MCLT multivariate central limit theorem
MED the median
mgf moment generating function
MLD multivariate location and dispersion
MLR multiple linear regression
MVN multivariate normal
OLS ordinary least squares
pdf probability density function
PI prediction interval
pmf probability mass function
SE standard error
SP sufficient predictor
SSP sufficient summary plot
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Remark 1.1. There are several important Statistical Learning principles.
1) There is more interest in prediction or classification, e.g. producing Ŷf ,
than in other types of inference such as parameter estimation, hypothesis
testing, confidence intervals, or which model fits best.
2) Often the focus is on extracting useful information for high dimensional
statistics where n/p is not large, e.g. p > n. If d is a crude estimator of the
fitted model complexity, such as the number of predictor variables used by
the model, we want n/d large. A sparse model has few nonzero coefficients.
We can have sparse population models and sparse fitted models. Sometimes
sparse fitted models are useful even if the population model is not sparse.
Often the number of nonzero coefficients of a sparse fitted model = d. Sparse
fitted models are often useful for prediction.
3) Interest is in how well the method performs on test data. Performance on
training data is overly optimistic for estimating performance on test data.
4) Some methods are flexible while others are unflexible. For unflexible re-
gression methods, the sufficient predictor is often a hyperplane SP = xT β
(see Definition 1.2), and often the mean function E(Y |x) = M(xT β) where
the function M is known but the p×1 vector of parameters β is unknown and
must be estimated (e.g. generalized linear models). Flexible methods tend to
be useful for more complicated regression methods where E(Y |x) = m(x)
for an unknown function m or SP 6= xT β (e.g. generalized additive models).
Flexibility tends to increase with d.

1.2 Response Plots and Response Transformations

This section will consider tools for visualizing the regression model in the
background of the data. The definitions in this section tend not to depend
on whether n/p is large or small, but the estimator ĥ tends to be better if
n/p is large. In regression, the response variable is the variable of interest:
the variable you want to predict. The predictors or features x1, ..., xp are
variables used to predict Y . See Chapter 10 for more on the 1D regression
model.

Definition 1.2. Regression investigates how the response variable Y
changes with the value of a p × 1 vector x of predictors. Often this con-
ditional distribution Y |x is described by a 1D regression model, where Y
is conditionally independent of x given the sufficient predictor SP = h(x),
written

Y x|SP or Y x|h(x), (1.1)

where the real valued function h : R
p → R. The estimated sufficient predictor

ESP = ĥ(x). An important special case is a model with a linear predictor

h(x) = xT β where ESP = xT β̂. This class of models includes the gener-
alized linear model (GLM). Another important special case is a generalized
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additive model (GAM), where Y is independent of x = (x1, ..., xp)
T given the

additive predictor AP = SP = α+
∑p

j=2 Sj(xj) for some (usually unknown)
functions Sj where x1 ≡ 1. The estimated additive predictor EAP = ESP =

α̂+
∑p

j=2 Ŝj(xj).

Notation. Often the index i will be suppressed. For example, the multiple
linear regression model

Yi = xT
i β + ei (1.2)

for i = 1, ..., n where β is a p× 1 unknown vector of parameters, and ei is a
random error. This model could be written Y = xT β + e. More accurately,
Y |x = xT β + e, but the conditioning on x will often be suppressed. Often
the errors e1, ..., en are iid (independent and identically distributed) from a
distribution that is known except for a scale parameter. For example, the
ei’s might be iid from a normal (Gaussian) distribution with mean 0 and
unknown standard deviation σ. For this Gaussian model, estimation of α, β,
and σ is important for inference and for predicting a new future value of the
response variable Yf given a new vector of predictors xf .

1.2.1 Response and Residual Plots

Definition 1.3. An estimated sufficient summary plot (ESSP) or response
plot is a plot of the ESP versus Y . A residual plot is a plot of the ESP versus
the residuals.

Notation: In this text, a plot of x versus Y will have x on the horizontal
axis, and Y on the vertical axis. For the additive error regression model
Y = m(x)+e, the ith residual is ri = Yi −m̂(xi) = Yi− Ŷi where Ŷi = m̂(xi)
is the ith fitted value. The additive error regression model is a 1D regression
model with sufficient predictor SP = h(x) = m(x).

For the additive error regression model, the response plot is a plot of Ŷ
versus Y where the identity line with unit slope and zero intercept is added as
a visual aid. The residual plot is a plot of Ŷ versus r. Assume the errors ei are
iid from a unimodal distribution that is not highly skewed. Then the plotted
points should scatter about the identity line and the r = 0 line (the horizontal
axis) with no other pattern if the fitted model (that produces m̂(x)) is good.

Example 1.1. Tremearne (1911) presents a data set of about 17 mea-
surements on 115 people of Hausa nationality. We deleted 3 cases because
of missing values and used height as the response variable Y . Along with a
constant xi,1 ≡ 1, the five additional predictor variables used were height
when sitting, height when kneeling, head length, nasal breadth, and span (per-
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Fig. 1.1 Residual and Response Plots for the Tremearne Data

haps from left hand to right hand). Figure 1.1 presents the (ordinary) least
squares (OLS) response and residual plots for this data set. These plots show
that an MLR model Y = xT β + e should be a useful model for the data
since the plotted points in the response plot are linear and follow the identity
line while the plotted points in the residual plot follow the r = 0 line with
no other pattern (except for a possible outlier marked 44). Note that many
important acronyms, such as OLS and MLR, appear in Table 1.1.

To use the response plot to visualize the conditional distribution of Y |xT β,

use the fact that the fitted values Ŷ = xT β̂. For example, suppose the height
given fit = 1700 is of interest. Mentally examine the plot about a narrow
vertical strip about fit = 1700, perhaps from 1685 to 1715. The cases in the
narrow strip have a mean close to 1700 since they fall close to the identity
line. Similarly, when the fit = w for w between 1500 and 1850, the cases have
heights near w, on average.
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Cases 3, 44, and 63 are highlighted. The 3rd person was very tall while
the 44th person was rather short. Beginners often label too many points
as outliers: cases that lie far away from the bulk of the data. See Chapter
7. Mentally draw a box about the bulk of the data ignoring any outliers.
Double the width of the box (about the identity line for the response plot
and about the horizontal line for the residual plot). Cases outside of this
imaginary doubled box are potential outliers. Alternatively, visually estimate
the standard deviation of the residuals in both plots. In the residual plot look
for residuals that are more than 5 standard deviations from the r = 0 line.
In Figure 1.1, the standard deviation of the residuals appears to be around
10. Hence cases 3 and 44 are certainly worth examining.

The identity line can also pass through or near an outlier or a cluster
of outliers. Then the outliers will be in the upper right or lower left of the
response plot, and there will be a large gap between the cluster of outliers and
the bulk of the data. Figure 1.1 was made with the following R commands,
using linmodpack function MLRplot and the major.lsp data set from the
text’s webpage.

major <- matrix(scan(),nrow=112,ncol=7,byrow=T)

#copy and paste the data set, then press enter

major <- major[,-1]

X<-major[,-6]

Y <- major[,6]

MLRplot(X,Y) #left click the 3 highlighted cases,

#then right click Stop for each of the two plots

A problem with response and residual plots is that there can be a lot of
black in the plot if the sample size n is large (more than a few thousand). A
variant of the response plot for the additive error regression model would plot
the identity line, the two lines parallel to the identity line corresponding to the
Section 4.1 large sample 100(1−δ)% prediction intervals for Yf that depends

on Ŷf . Then plot points corresponding to training data cases that do not lie in
their 100(1− δ)% PI. Use δ = 0.01 or 0.05. Try the following commands that
used δ = 0.2 since n is small. The commands use the linmodpack functions
AERplot and AERplot2. See Problem 1.31.

out<-lsfit(X,Y) #X and Y from the above R code

res<-out$res

yhat<-Y-res #usual response plot

AERplot(yhat,Y,res=res,d=2,alph=1)

AERplot(yhat,Y,res=res,d=2,alph=0.2)

#plots data outside the 80% pointwise PIs

n<-100000; q<-7 #q=p-1

b <- 0 * 1:q + 1

x <- matrix(rnorm(n * q), nrow = n, ncol = q)
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y <- 1 + x %*% b + rnorm(n)

out<-lsfit(x,y)

res<-out$res

yhat<-y-res

dd<-length(out$coef) #usual response plot

AERplot(yhat,y,res=res,d=dd,alph=1)

AERplot(yhat,y,res=res,d=dd,alph=0.01)

#plots data outside the 99% pointwise PIs

AERplot2(yhat,y,res=res,d=2)

#response plot with 90% pointwise prediction bands

1.2.2 Response Transformations

A response transformation Y = tλ(Z) can make the MLR model or additive
error regression model hold if the variable of interest Z is measured on the
wrong scale. For MLR, Y = tλ(Z) = xT β +e, while for additive error regres-
sion, Y = tλ(Z) = m(x) + e. Predictor transformations are used to remove
gross nonlinearities in the predictors, and this technique is often very useful.
However, if there are hundreds or more predictors, graphical methods for
predictor transformations take too long. Olive (2017a, Section 3.1) describes
graphical methods for predictor transformations.

Power transformations are particularly effective, and a power transforma-
tion has the form x = tλ(w) = wλ for λ 6= 0 and x = t0(w) = log(w) for
λ = 0. Often λ ∈ ΛL where

ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1} (1.3)

is called the ladder of powers. Often when a power transformation is needed,
a transformation that goes “down the ladder,” e.g. from λ = 1 to λ = 0 will
be useful. If the transformation goes too far down the ladder, e.g. if λ = 0
is selected when λ = 1/2 is needed, then it will be necessary to go back “up
the ladder.” Additional powers such as ±2 and ±3 can always be added. The
following rules are useful for both response transformations and predictor
transformations. In this text, log(x) = ln(x) = loge(x).

a) The log rule states that a positive variable that has the ratio between
the largest and smallest values greater than ten should be transformed to
logs. So W > 0 and max(W )/min(W ) > 10 suggests using log(W ).

b) The ladder rule appears in Cook and Weisberg (1999, p. 86), and is
used for a plot of two variables, such as ESP versus Y for response transfor-
mations or x1 versus x2 for predictor transformations.
Ladder rule: To spread small values of a variable, make λ smaller.
To spread large values of a variable, make λ larger.
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Consider the ladder of powers. Often no transformation (λ = 1) is best,
then the log transformation, then the square root transformation, then the
reciprocal transformation.
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Fig. 1.2 Plots to Illustrate the Ladder Rule

Example 1.2. Examine Figure 1.2. Since w is on the horizontal axis,
mentally add a narrow vertical slice to the plot. If a large amount of data falls
in the slice at the left of the plot, then small values need spreading. Similarly,
if a large amount of data falls in the slice at the right of the plot (compared
to the middle and left of the plot), then large values need spreading. For
the variable on the vertical axis, make a narrow horizontal slice. If the plot
looks roughly like the northwest corner of a square then small values of the
horizontal and large values of the vertical variable need spreading. Hence in
Figure 1.2a, small values of w need spreading. If the plot looks roughly like
the northeast corner of a square, then large values of both variables need
spreading. Hence in Figure 1.2b, large values of x need spreading. If the plot
looks roughly like the southwest corner of a square, as in Figure 1.2c, then
small values of both variables need spreading. If the plot looks roughly like
the southeast corner of a square, then large values of the horizontal and
small values of the vertical variable need spreading. Hence in Figure 1.2d,
small values of x need spreading.

Consider the additive error regression model Y = m(x) + e. Then the
response transformation model is Y = tλ(Z) = mλ(x)+ e, and the graphical
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method for selecting the response transformation is to plot m̂λi(x) versus
tλi(Z) for several values of λi, choosing the value of λ = λ0 where the plotted
points follow the identity line with unit slope and zero intercept. For the
multiple linear regression model, m̂λi (x) = xT β̂λi

where β̂λi
can be found

using the desired fitting method, e.g. OLS or lasso.

Definition 1.4. Assume that all of the values of the “response” Zi are
positive. A power transformation has the form Y = tλ(Z) = Zλ for λ 6= 0
and Y = t0(Z) = log(Z) for λ = 0 where

λ ∈ ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1}.

Definition 1.5. Assume that all of the values of the “response” Zi are
positive. Then the modified power transformation family

tλ(Zi) ≡ Z
(λ)
i =

Zλ
i − 1

λ
(1.4)

for λ 6= 0 and Z
(0)
i = log(Zi). Generally λ ∈ Λ where Λ is some interval such

as [−1, 1] or a coarse subset such as ΛL. This family is a special case of the
response transformations considered by Tukey (1957).

A graphical method for response transformations refits the model using
the same fitting method: changing only the “response” from Z to tλ(Z).
Compute the “fitted values” Ŵi using Wi = tλ(Zi) as the “response.” Then
a transformation plot of Ŵi versus Wi is made for each of the seven values of
λ ∈ ΛL with the identity line added as a visual aid. Vertical deviations from
the identity line are the “residuals” ri = Wi−Ŵi. Then a candidate response
transformation Y = tλ∗(Z) is reasonable if the plotted points follow the
identity line in a roughly evenly populated band if the MLR or additive error
regression model is reasonable for Y = W and x. Curvature from the identity
line suggests that the candidate response transformation is inappropriate.

Notice that the graphical method is equivalent to making “response plots”
for the seven values of W = tλ(Z), and choosing the “best response plot”
where the MLR model seems “most reasonable.” The seven “response plots”
are called transformation plots below. Our convention is that a plot of X
versus Y means that X is on the horizontal axis and Y is on the vertical
axis.

Definition 1.6. A transformation plot is a plot of Ŵ versus W with the
identity line added as a visual aid.

There are several reasons to use a coarse grid of powers. First, several of the
powers correspond to simple transformations such as the log, square root, and
cube root. These powers are easier to interpret than λ = 0.28, for example.
According to Mosteller and Tukey (1977, p. 91), the most commonly used
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Fig. 1.3 Four Transformation Plots for the Textile Data

power transformations are the λ = 0 (log), λ = 1/2, λ = −1, and λ = 1/3

transformations in decreasing frequency of use. Secondly, if the estimator λ̂n

can only take values in ΛL, then sometimes λ̂n will converge (e.g. in prob-
ability) to λ∗ ∈ ΛL. Thirdly, Tukey (1957) showed that neighboring power
transformations are often very similar, so restricting the possible powers to
a coarse grid is reasonable. Note that powers can always be added to the
grid ΛL. Useful powers are ±1/4,±2/3,±2, and ±3. Powers from numerical
methods can also be added.

Application 1.1. This graphical method for selecting a response trans-
formation is very simple. Let Wi = tλ(Zi). Then for each of the seven values
of λ ∈ ΛL, perform the regression fitting method, such as OLS or lasso, on
(Wi,xi) and make the transformation plot of Ŵi versus Wi. If the plotted
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points follow the identity line for λ∗, then take λ̂o = λ∗, that is, Y = tλ∗(Z)
is the response transformation.

If more than one value of λ ∈ ΛL gives a linear plot, take the simplest or
most reasonable transformation or the transformation that makes the most
sense to subject matter experts. Also check that the corresponding “residual
plots” of Ŵ versus W−Ŵ look reasonable. The values of λ in decreasing order
of importance are 1, 0, 1/2,−1, and 1/3. So the log transformation would be
chosen over the cube root transformation if both transformation plots look
equally good.

After selecting the transformation, the usual checks should be made. In
particular, the transformation plot for the selected transformation is the re-
sponse plot, and a residual plot should also be made. The following example
illustrates the procedure, and the plots show W = tλ(Z) on the vertical axis.
The label “TZHAT” of the horizontal axis are the “fitted values” Ŵ that
result from using W = tλ(Z) as the “response” in the OLS software.

Example 1.3: Textile Data. In their pioneering paper on response trans-
formations, Box and Cox (1964) analyze data from a 33 experiment on the
behavior of worsted yarn under cycles of repeated loadings. The “response”
Z is the number of cycles to failure and a constant is used along with the
three predictors length, amplitude, and load. Using the normal profile log
likelihood for λo, Box and Cox determine λ̂o = −0.06 with approximate 95
percent confidence interval −0.18 to 0.06. These results give a strong indi-
cation that the log transformation may result in a relatively simple model,
as argued by Box and Cox. Nevertheless, the numerical Box–Cox transfor-
mation method provides no direct way of judging the transformation against
the data.

Shown in Figure 1.3 are transformation plots of Ŵ versus W = Zλ for
four values of λ except log(Z) is used if λ = 0. The plots show how the trans-
formations bend the data to achieve a homoscedastic linear trend. Perhaps
more importantly, they indicate that the information on the transformation
is spread throughout the data in the plot since changing λ causes all points
along the curvilinear scatter in Figure 1.3a to form along a linear scatter in
Figure 1.3c. Dynamic plotting using λ as a control seems quite effective for
judging transformations against the data and the log response transformation
does indeed seem reasonable.

Note the simplicity of the method: Figure 1.3a shows that a response trans-
formation is needed since the plotted points follow a nonlinear curve while
Figure 1.3c suggests that Y = log(Z) is the appropriate response transforma-
tion since the plotted points follow the identity line. If all 7 plots were made
for λ ∈ ΛL, then λ = 0 would be selected since this plot is linear. Also, Figure
1.3a suggests that the log rule is reasonable since max(Z)/min(Z) > 10.
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1.3 A Review of Multiple Linear Regression

The following review follows Olive (2017a: ch. 2) closely. Several of the results
in this section will be covered in more detail or proven in Chapter 2.

Definition 1.7. Regression is the study of the conditional distribution
Y |x of the response variable Y given the vector of predictors x = (x1, ..., xp)

T .

Definition 1.8. A quantitative variable takes on numerical values while
a qualitative variable takes on categorical values.

Definition 1.9. Suppose that the response variable Y and at least one
predictor variable xi are quantitative. Then the multiple linear regression
(MLR) model is

Yi = xi,1β1 + xi,2β2 + · · ·+ xi,pβp + ei = xT
i β + ei (1.5)

for i = 1, . . . , n. Here n is the sample size and the random variable ei is the
ith error. Suppressing the subscript i, the model is Y = xT β + e.

In matrix notation, these n equations become

Y = Xβ + e, (1.6)

where Y is an n × 1 vector of dependent variables, X is an n × p matrix
of predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1
vector of unknown errors. Equivalently,




Y1

Y2

...
Yn


 =




x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p







β1

β2

...
βp


+




e1
e2
...
en


 . (1.7)

Often the first column of X is X1 = 1, the n × 1 vector of ones. The ith
case (xT

i , Yi) = (xi1, xi2, ..., xip, Yi) corresponds to the ith row xT
i of X and

the ith element of Y (if xi1 ≡ 1, then xi1 could be omitted). In the MLR
model Y = xT β + e, the Y and e are random variables, but we only have
observed values Yi and xi. If the ei are iid (independent and identically
distributed) with zero mean E(ei) = 0 and variance VAR(ei) = V (ei) = σ2,
then regression is used to estimate the unknown parameters β and σ2.

Definition 1.10. The constant variance MLR model uses the as-
sumption that the errors e1, ..., en are iid with mean E(ei) = 0 and variance
VAR(ei) = σ2 <∞. Also assume that the errors are independent of the pre-
dictor variables xi. The predictor variables xi are assumed to be fixed and
measured without error. The cases (xT

i , Yi) are independent for i = 1, ..., n.
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If the predictor variables are random variables, then the above MLR model
is conditional on the observed values of the xi. That is, observe the xi and
then act as if the observed xi are fixed.

Definition 1.11. The unimodal MLR model has the same assumptions
as the constant variance MLR model, as well as the assumption that the zero
mean constant variance errors e1, ..., en are iid from a unimodal distribution
that is not highly skewed. Note that E(ei) = 0 and V (ei) = σ2 <∞.

Definition 1.12. The normal MLR model or Gaussian MLR model has
the same assumptions as the unimodal MLR model but adds the assumption
that the errors e1, ..., en are iidN(0, σ2) random variables. That is, the ei are
iid normal random variables with zero mean and variance σ2.

The unknown coefficients for the above 3 models are usually estimated
using (ordinary) least squares (OLS).

Notation. The symbol A ≡ B = f(c) means that A and B are equivalent
and equal, and that f(c) is the formula used to compute A and B.

Definition 1.13. Given an estimate b of β, the corresponding vector of
predicted values or fitted values is Ŷ ≡ Ŷ (b) = Xb. Thus the ith fitted value

Ŷi ≡ Ŷi(b) = xT
i b = xi,1b1 + · · ·+ xi,pbp.

The vector of residuals is r ≡ r(b) = Y − Ŷ (b). Thus ith residual ri ≡
ri(b) = Yi − Ŷi(b) = Yi − xi,1b1 − · · · − xi,pbp.

Most regression methods attempt to find an estimate β̂ of β which mini-
mizes some criterion function Q(b) of the residuals.

Definition 1.14. The ordinary least squares (OLS) estimator β̂OLS min-
imizes

QOLS(b) =

n∑

i=1

r2i (b), (1.8)

and β̂OLS = (XT X)−1XT Y .

The vector of predicted or fitted values Ŷ OLS = Xβ̂OLS = HY where the
hat matrix H = X(XT X)−1XT provided the inverse exists. Typically the
subscript OLS is omitted, and the least squares regression equation is
Ŷ = β̂1x1 + β̂2x2 + · · ·+ β̂pxp where x1 ≡ 1 if the model contains a constant.

Definition 1.15. For MLR, the response plot is a plot of the ESP = fitted
values = Ŷi versus the response Yi, while the residual plot is a plot of the
ESP = Ŷi versus the residuals ri.
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Theorem 1.1. Suppose that the regression estimator b of β is used to
find the residuals ri ≡ ri(b) and the fitted values Ŷi ≡ Ŷi(b) = xT

i b. Then

in the response plot of Ŷi versus Yi, the vertical deviations from the identity
line (that has unit slope and zero intercept) are the residuals ri(b).

Proof. The identity line in the response plot is Y = xT b. Hence the
vertical deviation is Yi − xT

i b = ri(b). �

The results in the following theorem are properties of least squares (OLS),
not of the underlying MLR model. Chapter 2 gives linear model theory for
the full rank model. Definitions 1.13 and 1.14 define the hat matrix H, vector
of fitted values Ŷ , and vector of residuals r. Parts f) and g) make residual
plots useful. If the plotted points are linear with roughly constant variance
and the correlation is zero, then the plotted points scatter about the r = 0
line with no other pattern. If the plotted points in a residual plot of w versus
r do show a pattern such as a curve or a right opening megaphone, zero
correlation will usually force symmetry about either the r = 0 line or the
w = median(w) line. Hence departures from the ideal plot of random scatter
about the r = 0 line are often easy to detect.

Let the n× p design matrix of predictor variables be

X =




x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p


 =

[
v1 v2 . . . vp

]
=




xT
1
...

xT
n




where v1 = 1.
Warning: If n > p, as is usually the case for the full rank linear model,

X is not square, so (XT X)−1 6= X−1(XT )−1 since X−1 does not exist.

Theorem 1.2. Suppose that X is an n× p matrix of full rank p. Then
a) H is symmetric: H = HT .
b) H is idempotent: HH = H .
c) XT r = 0 so that vT

j r = 0.
d) If there is a constant v1 = 1 in the model, then the sum of the residuals

is zero:
∑n

i=1 ri = 0.

e) rT Ŷ = 0.
f) If there is a constant in the model, then the sample correlation of the

fitted values and the residuals is 0: corr(r, Ŷ ) = 0.
g) If there is a constant in the model, then the sample correlation of the

jth predictor with the residuals is 0: corr(r, vj) = 0 for j = 1, ..., p.

Proof. a) XT X is symmetric since (XT X)T = XT (XT )T = XT X .
Hence (XT X)−1 is symmetric since the inverse of a symmetric matrix is
symmetric. (Recall that if A has an inverse then (AT )−1 = (A−1)T .) Thus
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using (AT )T = A and (ABC)T = CT BT AT shows that

HT = XT [(XT X)−1]T (XT )T = H.

b) HH = X(XT X)−1XT X(XT X)−1XT = H since (XT X)−1XT X =
Ip, the p× p identity matrix.

c) XT r = XT (Ip − H)Y = [XT − XT X(XT X)−1XT ]Y =

[XT −XT ]Y = 0. Since vj is the jth column of X , vT
j is the jth row of XT

and vT
j r = 0 for j = 1, ..., p.

d) Since v1 = 1, vT
1 r =

∑n
i=1 ri = 0 by c).

e) rT Ŷ = [(In −H)Y ]THY = Y T (In −H)HY = Y T (H −H)Y = 0.

f) The sample correlation between W and Z is corr(W,Z) =

∑n
i=1(wi − w)(zi − z)

(n− 1)swsz
=

∑n
i=1(wi −w)(zi − z)√∑n

i=1(wi −w)2
∑n

i=1(zi − z)2

where sm is the sample standard deviation of m for m = w, z. So the result

follows if A =
∑n

i=1(Ŷi − Ŷ )(ri − r) = 0. Now r = 0 by d), and thus

A =

n∑

i=1

Ŷiri − Ŷ

n∑

i=1

ri =

n∑

i=1

Ŷiri

by d) again. But
∑n

i=1 Ŷiri = rT Ŷ = 0 by e).

g) Following the argument in f), the result follows if A =∑n
i=1(xi,j − xj)(ri − r) = 0 where xj =

∑n
i=1 xi,j/n is the sample mean of

the jth predictor. Now r =
∑n

i=1 ri/n = 0 by d), and thus

A =

n∑

i=1

xi,jri − xj

n∑

i=1

ri =

n∑

i=1

xi,jri

by d) again. But
∑n

i=1 xi,jri = vT
j r = 0 by c). �

1.3.1 The ANOVA F Test

After fitting least squares and checking the response and residual plots to see
that an MLR model is reasonable, the next step is to check whether there is
an MLR relationship between Y and the nontrivial predictors x2, ..., xp. If at

least one of these predictors is useful, then the OLS fitted values Ŷi should be
used. If none of the nontrivial predictors is useful, then Y will give as good
predictions as Ŷi. Here the sample mean
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Y =
1

n

n∑

i=1

Yi. (1.9)

In the definition below, SSE is the sum of squared residuals and a residual
ri = êi = “errorhat.” In the literature “errorhat” is often rather misleadingly
abbreviated as “error.”

Definition 1.16. Assume that a constant is in the MLR model.
a) The total sum of squares

SSTO =

n∑

i=1

(Yi − Y )2. (1.10)

b) The regression sum of squares

SSR =

n∑

i=1

(Ŷi − Y )2. (1.11)

c) The residual sum of squares or error sum of squares is

SSE =

n∑

i=1

(Yi − Ŷi)
2 =

n∑

i=1

r2i . (1.12)

The result in the following theorem is a property of least squares (OLS),
not of the underlying MLR model. An obvious application is that given any
two of SSTO, SSE, and SSR, the 3rd sum of squares can be found using the
formula SSTO = SSE + SSR.

Theorem 1.3. Assume that a constant is in the MLR model. Then
SSTO = SSE + SSR.

Proof.

SSTO =

n∑

i=1

(Yi − Ŷi + Ŷi − Y )2 = SSE + SSR + 2

n∑

i=1

(Yi − Ŷi)(Ŷi − Y ).

Hence the result follows if

A ≡
n∑

i=1

ri(Ŷi − Y ) = 0.

But

A =

n∑

i=1

riŶi − Y

n∑

i=1

ri = 0

by Theorem 1.2 d) and e). �
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Definition 1.17. Assume that a constant is in the MLR model and that
SSTO 6= 0. The coefficient of multiple determination

R2 = [corr(Yi, Ŷi)]
2 =

SSR

SSTO
= 1 − SSE

SSTO

where corr(Yi, Ŷi) is the sample correlation of Yi and Ŷi.

Warnings: i) 0 ≤ R2 ≤ 1, but small R2 does not imply that the MLR
model is bad.

ii) If the MLR model contains a constant, then there are several equivalent
formulas for R2. If the model does not contain a constant, then R2 depends
on the software package.

iii) R2 does not have much meaning unless the response plot and residual
plot both look good.

iv) R2 tends to be too high if n is small.
v) R2 tends to be too high if there are two or more separated clusters of

data in the response plot.
vi) R2 is too high if the number of predictors p is close to n.
vii) In large samples R2 will be large (close to one) if σ2 is small compared

to the sample variance S2
Y of the response variable Y . R2 is also large if the

sample variance of Ŷ is close to S2
Y . Thus R2 is sometimes interpreted as

the proportion of the variability of Y explained by conditioning on x, but
warnings i) - v) suggest that R2 may not have much meaning.

The following 2 theorems suggest that R2 does not behave well when many
predictors that are not needed in the model are included in the model. Such
a variable is sometimes called a noise variable and the MLR model is “fitting
noise.” Theorem 1.5 appears, for example, in Cramér (1946, pp. 414-415),
and suggests that R2 should be considerably larger than p/n if the predictors
are useful. Note that if n = 10p and p ≥ 2, then under the conditions of
Theorem 1.5, E(R2) ≤ 0.1.

Theorem 1.4. Assume that a constant is in the MLR model. Adding a
variable to the MLR model does not decrease (and usually increases) R2.

Theorem 1.5. Assume that a constant β1 is in the MLR model, that
β2 = · · · = βp = 0 and that the ei are iid N(0, σ2). Hence the Yi are iid
N(β1, σ

2). Then

a) R2 follows a beta distribution: R2 ∼ beta(p−1
2 , n−p

2 ).

b)

E(R2) =
p− 1

n− 1
.

c)

VAR(R2) =
2(p− 1)(n− p)

(n− 1)2(n+ 1)
.
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Notice that each SS/n estimates the variability of some quantity. SSTO/n
≈ S2

Y , SSE/n ≈ S2
e = σ2, and SSR/n ≈ S2

Ŷ
.

Definition 1.18. Assume that a constant is in the MLR model. Associated
with each SS in Definition 1.16 is a degrees of freedom (df) and a mean
square = SS/df . For SSTO, df = n − 1 and MSTO = SSTO/(n − 1).
For SSR, df = p − 1 and MSR = SSR/(p − 1). For SSE, df = n − p and
MSE = SSE/(n − p).

Under mild conditions, if the MLR model is appropriate, then MSE is a√
n consistent estimator of σ2 by Su and Cook (2012).

The ANOVA F test tests whether any of the nontrivial predictors x2, ..., xp

are needed in the OLS MLR model, that is, whether Yi should be predicted
by the OLS fit Ŷi = β̂1 + xi,2β̂2 + · · · + xi,pβ̂p or with the sample mean Y .
ANOVA stands for analysis of variance, and the computer output needed
to perform the test is contained in the ANOVA table. Below is an ANOVA
table given in symbols. Sometimes “Regression” is replaced by “Model” and
“Residual” by “Error.”

Summary Analysis of Variance Table

Source df SS MS F p-value

Regression p− 1 SSR MSR F0=MSR/MSE for H0:
Residual n− p SSE MSE β2 = · · · = βp = 0

Remark 1.2. Recall that for a 4 step test of hypotheses, the p–value is the
probability of getting a test statistic as extreme as the test statistic actually
observed and that H0 is rejected if the p–value < δ. As a benchmark for this
textbook, use δ = 0.05 if δ is not given. The 4th step is the nontechnical
conclusion which is crucial for presenting your results to people who are not
familiar with MLR. Replace Y and x2, ..., xp by the actual variables used in
the MLR model.

Notation. The p–value ≡ pvalue given by output tends to only be cor-
rect for the normal MLR model. Hence the output is usually only giving an
estimate of the pvalue, which will often be denoted by pval. So reject H0 if
pval ≤ δ. Often

pval− pvalue
P→ 0

(converges to 0 in probability, so pval is a consistent estimator of pvalue) as
the sample size n → ∞. See Section 1.5 and Chapter 2. Then the computer
output pval is a good estimator of the unknown pvalue. We will use Fo ≡ F0,
Ho ≡ H0, and Ha ≡ HA ≡ H1.

Be able to perform the 4 step ANOVA F test of hypotheses.
i) State the hypotheses H0 : β2 = · · · = βp = 0 HA: not H0.
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ii) Find the test statistic F0 = MSR/MSE or obtain it from output.
iii) Find the pval from output or use the F –table: pval =

P (Fp−1,n−p > F0).

iv) State whether you reject H0 or fail to reject H0. If H0 is rejected, conclude
that there is an MLR relationship between Y and the predictors x2, ..., xp. If
you fail to reject H0, conclude that there is not an MLR relationship between
Y and the predictors x2, ..., xp. (Or there is not enough evidence to conclude
that there is an MLR relationship between Y and the predictors.)

Some assumptions are needed on the ANOVA F test. Assume that both
the response and residual plots look good. It is crucial that there are no
outliers. Then a rule of thumb is that if n − p is large, then the ANOVA
F test p–value is approximately correct. An analogy can be made with the
central limit theorem, Y is a good estimator for µ if the Yi are iid N(µ, σ2)
and also a good estimator for µ if the data are iid with mean µ and variance
σ2 if n is large enough.

If all of the xi are different (no replication) and if the number of predictors
p = n, then the OLS fit Ŷi = Yi and R2 = 1. Notice that H0 is rejected if the
statistic F0 is large. More precisely, reject H0 if

F0 > Fp−1,n−p,1−δ

where
P (F ≤ Fp−1,n−p,1−δ) = 1 − δ

when F ∼ Fp−1,n−p. Since R2 increases to 1 while (n− p)/(p− 1) decreases
to 0 as p increases to n, Theorem 1.6a below implies that if p is large then
the F0 statistic may be small even if some of the predictors are very good. It
is a good idea to use n ≥ 10p or at least n ≥ 5p if possible.

Theorem 1.6. Assume that the MLR model has a constant β1.
a)

F0 =
MSR

MSE
=

R2

1 − R2

n− p

p− 1
.

b) If the errors ei are iid N(0, σ2), and if H0 : β2 = · · · = βp = 0 is true,
then F0 has an F distribution with p− 1 numerator and n − p denominator
degrees of freedom: F0 ∼ Fp−1,n−p.

c) If the errors are iid with mean 0 and variance σ2, if the error distribution
is close to normal, and if n − p is large enough, and if H0 is true, then
F0 ≈ Fp−1,n−p in that the p-value from the software (pval) is approximately
correct.

Remark 1.3. When a constant is not contained in the model (i.e. xi,1 is
not equal to 1 for all i), then the computer output still produces an ANOVA
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table with the test statistic and p–value, and nearly the same 4 step test of
hypotheses can be used. The hypotheses are now H0 : β1 = · · · = βp = 0
HA: not H0, and you are testing whether or not there is an MLR relationship
between Y and x1, ..., xp. An MLR model without a constant (no intercept)
is sometimes called a “regression through the origin.” See Section 1.3.7.

1.3.2 The Partial F Test

Suppose that there is data on variables Z, w1, ..., wr and that a useful MLR
model has been made using Y = t(Z), x1 ≡ 1, x2, ..., xp where each xi is
some function of w1, ..., wr. This useful model will be called the full model. It
is important to realize that the full model does not need to use every variable
wj that was collected. For example, variables with outliers or missing values
may not be used. Forming a useful full model is often very difficult, and it is
often not reasonable to assume that the candidate full model is good based
on a single data set, especially if the model is to be used for prediction.

Even if the full model is useful, the investigator will often be interested in
checking whether a model that uses fewer predictors will work just as well.
For example, perhaps xp is a very expensive predictor but is not needed given
that x1, ..., xp−1 are in the model. Also a model with fewer predictors tends
to be easier to understand.

Definition 1.19. Let the full model use Y , x1 ≡ 1, x2, ..., xp and let the
reduced model use Y , x1, xi2 , ..., xiq where {i2, ..., iq} ⊂ {2, ..., p}.

The partial F test is used to test whether the reduced model is good in
that it can be used instead of the full model. It is crucial that the reduced
and full models be selected before looking at the data. If the reduced model
is selected after looking at the full model output and discarding the worst
variables, then the p–value for the partial F test will be too high. If the
data needs to be looked at to build the full model, as is often the case, data
splitting is useful. See Section 6.2.

For (ordinary) least squares, usually a constant is used, and we are assum-
ing that both the full model and the reduced model contain a constant. The
partial F test has null hypothesis H0 : βiq+1

= · · · = βip = 0, and alternative
hypothesis HA : at least one of the βij 6= 0 for j > q. The null hypothesis is
equivalent to H0: “the reduced model is good.” Since only the full model and
reduced model are being compared, the alternative hypothesis is equivalent
to HA: “the reduced model is not as good as the full model, so use the full
model,” or more simply, HA : “use the full model.”

To perform the partial F test, fit the full model and the reduced model
and obtain the ANOVA table for each model. The quantities dfF , SSE(F)
and MSE(F) are for the full model and the corresponding quantities from
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the reduced model use an R instead of an F . Hence SSE(F) and SSE(R) are
the residual sums of squares for the full and reduced models, respectively.
Shown below is output only using symbols.

Full model

Source df SS MS F0 and p-value

Regression p − 1 SSR MSR F0=MSR/MSE
Residual dfF = n− p SSE(F) MSE(F) for H0 : β2 = · · · = βp = 0

Reduced model

Source df SS MS F0 and p-value

Regression q − 1 SSR MSR F0=MSR/MSE
Residual dfR = n− q SSE(R) MSE(R) for H0 : β2 = · · · = βq = 0

Be able to perform the 4 step partial F test of hypotheses. i) State
the hypotheses. H0: the reduced model is good HA: use the full model
ii) Find the test statistic. FR =

[
SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F )

iii) Find the pval = P(FdfR−dfF ,dfF > FR). ( Here dfR−dfF = p−q = number
of parameters set to 0, and dfF = n−p, while pval is the estimated p–value.)
iv) State whether you reject H0 or fail to reject H0. Reject H0 if the pval ≤ δ
and conclude that the full model should be used. Otherwise, fail to reject H0

and conclude that the reduced model is good.

Sometimes software has a shortcut. In particular, the R software uses the
anova command. As an example, assume that the full model uses x2 and
x3 while the reduced model uses x2. Both models contain a constant. Then
the following commands will perform the partial F test. (On the computer
screen the second command looks more like
red < − lm(y∼x2).)

full <- lm(y˜x2+x3)

red <- lm(y˜x2)

anova(red,full)

For an n × 1 vector a, let

‖a‖ =
√
a2
1 + · · ·+ a2

n =
√

aT a

be the Euclidean norm of a. If r and rR are the vector of residuals from
the full and reduced models, respectively, notice that SSE(F ) = ‖r‖2 and
SSE(R) = ‖rR‖2.
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The following theorem suggests that H0 is rejected in the partial F test if
the change in residual sum of squares SSE(R) − SSE(F ) is large compared
to SSE(F ). If the change is small, then FR is small and the test suggests
that the reduced model can be used.

Theorem 1.7. Let R2 and R2
R be the multiple coefficients of determi-

nation for the full and reduced models, respectively. Let Ŷ and Ŷ R be the
vectors of fitted values for the full and reduced models, respectively. Then
the test statistic in the partial F test is

FR =

[
SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F ) =

[
‖Ŷ ‖2 − ‖Ŷ R‖2

dfR − dfF

]
/MSE(F ) =

SSE(R) − SSE(F )

SSE(F )

n− p

p − q
=
R2 −R2

R

1 −R2

n− p

p− q
.

Definition 1.20. An FF plot is a plot of fitted values from 2 different
models or fitting methods. An RR plot is a plot of residuals from 2 different
models or fitting methods.

Six plots are useful diagnostics for the partial F test: the RR plot with
the full model residuals on the vertical axis and the reduced model residuals
on the horizontal axis, the FF plot with the full model fitted values on the
vertical axis, and always make the response and residual plots for the full
and reduced models. Suppose that the full model is a useful MLR model. If
the reduced model is good, then the response plots from the full and reduced
models should be very similar, visually. Similarly, the residual plots from
the full and reduced models should be very similar, visually. Finally, the
correlation of the plotted points in the RR and FF plots should be high,
≥ 0.95, say, and the plotted points in the RR and FF plots should cluster
tightly about the identity line. Add the identity line to both the RR and
FF plots as a visual aid. Also add the OLS line from regressing r on rR to
the RR plot (the OLS line is the identity line in the FF plot). If the reduced
model is good, then the OLS line should nearly coincide with the identity line
in that it should be difficult to see that the two lines intersect at the origin.
If the FF plot looks good but the RR plot does not, the reduced model may
be good if the main goal of the analysis is to predict Y.
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1.3.3 The Wald t Test

Often investigators hope to examine βk in order to determine the importance
of the predictor xk in the model; however, βk is the coefficient for xk given
that the other predictors are in the model. Hence βk depends strongly on
the other predictors in the model. Suppose that the model has an intercept:
x1 ≡ 1. The predictor xk is highly correlated with the other predictors if
the OLS regression of xk on x1, ..., xk−1, xk+1, ..., xp has a high coefficient of
determination R2

k. If this is the case, then often xk is not needed in the model
given that the other predictors are in the model. If at least one R2

k is high
for k ≥ 2, then there is multicollinearity among the predictors.

As an example, suppose that Y = height, x1 ≡ 1, x2 = left leg length, and
x3 = right leg length. Then x2 should not be needed given x3 is in the model
and β2 = 0 is reasonable. Similarly β3 = 0 is reasonable. On the other hand,
if the model only contains x1 and x2, then x2 is extremely important with β2

near 2. If the model contains x1, x2, x3, x4 = height at shoulder, x5 = right
arm length, x6 = head length, and x7 = length of back, then R2

i may be high
for each i ≥ 2. Hence xi is not needed in the MLR model for Y given that
the other predictors are in the model.

Definition 1.21. The 100 (1 − δ) % CI for βk is β̂k ± tn−p,1−δ/2 se(β̂k).
If the degrees of freedom d = n − p ≥ 30, the N(0,1) cutoff z1−δ/2 may be
used.

Know how to do the 4 step Wald t–test of hypotheses.
i) State the hypotheses H0 : βk = 0 HA : βk 6= 0.

ii) Find the test statistic to,k = β̂k/se(β̂k) or obtain it from output.
iii) Find pval from output or use the t–table: pval =

2P (tn−p < −|to,k|) = 2P (tn−p > |to,k|).

Use the normal table or the d = Z line in the t–table if the degrees of freedom
d = n − p ≥ 30. Again pval is the estimated p–value.
iv) State whether you reject H0 or fail to reject H0 and give a nontechnical
sentence restating your conclusion in terms of the story problem.

Recall thatH0 is rejected if the pval≤ δ. As a benchmark for this textbook,
use δ = 0.05 if δ is not given. If H0 is rejected, then conclude that xk is needed
in the MLR model for Y given that the other predictors are in the model.
If you fail to reject H0, then conclude that xk is not needed in the MLR
model for Y given that the other predictors are in the model. (Or there is
not enough evidence to conclude that xk is needed in the MLR model given
that the other predictors are in the model.) Note that xk could be a very
useful individual predictor, but may not be needed if other predictors are
added to the model.
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1.3.4 The OLS Criterion
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Fig. 1.4 The OLS Fit Minimizes the Sum of Squared Residuals

The OLS estimator β̂ minimizes the OLS criterion

QOLS(η) =

n∑

i=1

r2i (η)

where the residual ri(η) = Yi−xT
i η. In other words, let ri = ri(β̂) be the OLS

residuals. Then
∑n

i=1 r
2
i ≤∑n

i=1 r
2
i (η) for any p×1 vector η, and the equality

holds (if and only if) iff η = β̂ if the n×p design matrix X is of full rank p ≤ n.
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In particular, if X has full rank p, then
∑n

i=1 r
2
i <

∑n
i=1 r

2
i (β) =

∑n
i=1 e

2
i

even if the MLR model Y = Xβ + e is a good approximation to the data.
Warning: Often η is replaced by β: QOLS(β) =

∑n
i=1 r

2
i (β). This no-

tation is often used in Statistics when there are estimating equations. For
example, maximum likelihood estimation uses the log likelihood log(L(θ))
where θ is the vector of unknown parameters and the dummy variable in the
log likelihood.

Example 1.4. When a model depends on the predictors x only through
the linear combination xT β, then xT β is called a sufficient predictor and
xT β̂ is called an estimated sufficient predictor (ESP). For OLS the model is
Y = xT β + e, and the fitted value Ŷ = ESP . To illustrate the OLS criterion
graphically, consider the Gladstone (1905) data where we used brain weight as
the response. A constant, x2 = age, x3 = sex, and x4 = (size)1/3 were used
as predictors after deleting five “infants” from the data set. In Figure 1.4a, the
OLS response plot of the OLS ESP = Ŷ versus Y is shown. The vertical devi-
ations from the identity line are the residuals, and OLS minimizes the sum of
squared residuals. If any other ESP xT η is plotted versus Y , then the vertical
deviations from the identity line are the residuals ri(η). For this data, the OLS

estimator β̂ = (498.726,−1.597, 30.462, 0.696)T. Figure 1.4b shows the re-
sponse plot using the ESP xT η where η = (498.726,−1.597, 30.462, 0.796)T.
Hence only the coefficient for x4 was changed; however, the residuals ri(η) in
the resulting plot are much larger in magnitude on average than the residuals
in the OLS response plot. With slightly larger changes in the OLS ESP, the
resulting η will be such that the squared residuals are massive.

Theorem 1.8. The OLS estimator β̂ is the unique minimizer of the OLS
criterion if X has full rank p ≤ n.

Proof: Seber and Lee (2003, pp. 36-37). Recall that the hat matrix
H = X(XT X)−1XT and notice that (I−H)T = I−H, that (I−H)H = 0
and that HX = X . Let η be any p× 1 vector. Then

(Y − Xβ̂)T (Xβ̂ − Xη) = (Y − HY )T (HY − HXη) =

Y T (I − H)H(Y − Xη) = 0.

Thus QOLS(η) = ‖Y − Xη‖2 = ‖Y − Xβ̂ + Xβ̂ − Xη‖2 =

‖Y − Xβ̂‖2 + ‖Xβ̂ − Xη‖2 + 2(Y − Xβ̂)T (Xβ̂ − Xη).

Hence
‖Y − Xη‖2 = ‖Y − Xβ̂‖2 + ‖Xβ̂ − Xη‖2. (1.13)

So
‖Y − Xη‖2 ≥ ‖Y − Xβ̂‖2

with equality iff
X(β̂ − η) = 0
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iff β̂ = η since X is full rank. �

Alternatively calculus can be used. Notice that ri(η) = Yi−xi,1η1−xi,2η2−
· · · − xi,pηp. Recall that xT

i is the ith row of X while vj is the jth column.
Since QOLS(η) =

n∑

i=1

(Yi − xi,1η1 − xi,2η2 − · · · − xi,pηp)
2,

the jth partial derivative

∂QOLS(η)

∂ηj
= −2

n∑

i=1

xi,j(Yi−xi,1η1−xi,2η2−· · ·−xi,pηp) = −2(vj)
T (Y −Xη)

for j = 1, ..., p. Combining these equations into matrix form, setting the
derivative to zero and calling the solution β̂ gives

XT Y − XT Xβ̂ = 0,

or
XT Xβ̂ = XT Y . (1.14)

Equation (1.14) is known as the normal equations. If X has full rank then

β̂ = (XT X)−1XT Y . To show that β̂ is the global minimizer of the OLS
criterion, use the argument following Equation (1.13).

1.3.5 The Location Model

The location model
Yi = µ+ ei, i = 1, . . . , n (1.15)

is a special case of the multiple linear regression model where p = 1, X = 1,
and β = β1 = µ. This model contains a constant but no nontrivial predictors.

In the location model, β̂OLS = β̂1 = µ̂ = Y . To see this, notice that

QOLS(η) =

n∑

i=1

(Yi − η)2 and
dQOLS(η)

dη
= −2

n∑

i=1

(Yi − η).

Setting the derivative equal to 0 and calling the unique solution µ̂ gives∑n
i=1 Yi = nµ̂ or µ̂ = Y . The second derivative

d2QOLS(η)

dη2
= 2n > 0,

hence µ̂ is the global minimizer.
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1.3.6 Simple Linear Regression

The simple linear regression (SLR) model is

Yi = β1 + β2Xi + ei = α+ βXi + ei

where the ei are iid with E(ei) = 0 and VAR(ei) = σ2 for i = 1, ..., n. The Yi

and ei are random variables while the Xi are treated as known constants.
The SLR model is a special case of the MLR model with p = 2, xi,1 ≡ 1, and
xi,2 = Xi. For SLR, E(Yi) = β1 +β2Xi and the line E(Y ) = β1 +β2X is the
regression function. VAR(Yi) = σ2.

For SLR, the least squares estimators β̂1 and β̂2 minimize the least
squares criterion Q(η1, η2) =

∑n
i=1(Yi − η1 − η2Xi)

2. For a fixed η1 and η2,
Q is the sum of the squared vertical deviations from the line Y = η1 + η2X.

The least squares (OLS) line is Ŷ = β̂1 + β̂2X where the slope

β̂2 ≡ β̂ =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2

and the intercept β̂1 ≡ α̂ = Y − β̂2X.
By the chain rule,

∂Q

∂η1
= −2

n∑

i=1

(Yi − η1 − η2Xi)

and
∂2Q

∂η2
1

= 2n.

Similarly,

∂Q

∂η2
= −2

n∑

i=1

Xi(Yi − η1 − η2Xi)

and
∂2Q

∂η2
2

= 2

n∑

i=1

X2
i .

Setting the first partial derivatives to zero and calling the solutions β̂1 and
β̂2 shows that the OLS estimators β̂1 and β̂2 satisfy the normal equations:

n∑

i=1

Yi = nβ̂1 + β̂2

n∑

i=1

Xi and

n∑

i=1

XiYi = β̂1

n∑

i=1

Xi + β̂2

n∑

i=1

X2
i .
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The first equation gives β̂1 = Y − β̂2X.
There are several equivalent formulas for the slope β̂2.

β̂2 ≡ β̂ =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2
=

∑n
i=1XiYi − 1

n (
∑n

i=1Xi)(
∑n

i=1 Yi)∑n
i=1X

2
i − 1

n (
∑n

i=1Xi)2

=

∑n
i=1(Xi −X)Yi∑n
i=1(Xi −X)2

=

∑n
i=1XiYi − nX Y∑n

i=1X
2
i − n(X)2

= ρ̂sY /sX .

Here the sample correlation ρ̂ ≡ ρ̂(X, Y ) = corr(X, Y ) =

∑n
i=1(Xi −X)(Yi − Y )

(n− 1)sXsY
=

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
∑n

i=1(Yi − Y )2

where the sample standard deviation

sW =

√√√√ 1

n− 1

n∑

i=1

(Wi −W )2

for W = X, Y. Notice that the term n− 1 that occurs in the denominator of
ρ̂, s2Y , and s2X can be replaced by n as long as n is used in all 3 quantities.

Also notice that the slope β̂2 =
∑n

i=1 kiYi where the constants

ki =
Xi −X∑n

j=1(Xj −X)2
. (1.16)

1.3.7 The No Intercept MLR Model

The no intercept MLR model, also known as regression through the origin, is
still Y = Xβ+e, but there is no intercept in the model, so X does not contain
a column of ones 1. Hence the intercept term β1 = β1(1) is replaced by β1xi1.
Software gives output for this model if the “no intercept” or “intercept = F”
option is selected. For the no intercept model, the assumption E(e) = 0 is
important, and this assumption is rather strong.

Many of the usual MLR results still hold: β̂OLS = (XT X)−1XT Y , the

vector of predicted fitted values Ŷ = Xβ̂OLS = HY where the hat matrix
H = X(XT X)−1XT provided the inverse exists, and the vector of residuals

is r = Y − Ŷ . The response plot and residual plot are made in the same way
and should be made before performing inference.

The main difference in the output is the ANOVA table. The ANOVA F
test in Section 1.3.1 tests H0 : β2 = · · · = βp = 0. The test in this subsection
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tests H0 : β1 = · · · = βp = 0 ≡ H0 : β = 0. The following definition and test
follows Guttman (1982, p. 147) closely.

Definition 1.22. Assume that Y = Xβ +e where the ei are iid. Assume
that it is desired to test H0 : β = 0 versus HA : β 6= 0.

a) The uncorrected total sum of squares

SST =

n∑

i=1

Y 2
i . (1.17)

b) The model sum of squares

SSM =

n∑

i=1

Ŷ 2
i . (1.18)

c) The residual sum of squares or error sum of squares is

SSE =

n∑

i=1

(Yi − Ŷi)
2 =

n∑

i=1

r2i . (1.19)

d) The degrees of freedom (df) for SSM is p, the df for SSE is n − p and
the df for SST is n. The mean squares are MSE = SSE/(n− p) and MSM =
SSM/p.

The ANOVA table given for the “no intercept” or “intercept = F” option
is below.

Summary Analysis of Variance Table

Source df SS MS F p-value

Model p SSM MSM F0=MSM/MSE for H0:
Residual n− p SSE MSE β = 0

The 4 step no intercept ANOVA F test for β = 0 is below.
i) State the hypotheses H0 : β = 0, HA : β 6= 0.
ii) Find the test statistic F0 = MSM/MSE or obtain it from output.
iii) Find the pval from output or use the F –table: pval = P (Fp,n−p > F0).
iv) State whether you reject H0 or fail to reject H0. If H0 is rejected, conclude
that there is an MLR relationship between Y and the predictors x1, ..., xp. If
you fail to reject H0, conclude that there is not an MLR relationship between
Y and the predictors x1, ..., xp. (Or there is not enough evidence to conclude
that there is an MLR relationship between Y and the predictors.)
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1.4 The Multivariate Normal Distribution

For much of this book, X is an n×p design matrix, but this section will usu-
ally use the notation X = (X1, ..., Xp)

T and Y for the random vectors, and
x = (x1, ..., xp)

T for the observed value of the random vector. This notation
will be useful to avoid confusion when studying conditional distributions such
as Y |X = x. It can be shown that Σ is positive semidefinite and symmetric.

Definition 1.23: Rao (1965, p. 437). A p × 1 random vector X has
a p−dimensional multivariate normal distribution Np(µ,Σ) iff tT X has a
univariate normal distribution for any p× 1 vector t.

If Σ is positive definite, then X has a pdf

f(z) =
1

(2π)p/2|Σ|1/2
e−(1/2)(z−µ)T Σ−1

(z−µ) (1.20)

where |Σ|1/2 is the square root of the determinant of Σ. Note that if p = 1,
then the quadratic form in the exponent is (z − µ)(σ2)−1(z − µ) and X has
the univariate N(µ, σ2) pdf. If Σ is positive semidefinite but not positive
definite, then X has a degenerate distribution. For example, the univariate
N(0, 02) distribution is degenerate (the point mass at 0).

Definition 1.24. The population mean of a random p × 1 vector X =
(X1, ..., Xp)

T is
E(X) = (E(X1), ..., E(Xp))

T

and the p× p population covariance matrix

Cov(X) = E(X − E(X))(X −E(X))T = (σij).

That is, the ij entry of Cov(X) is Cov(Xi, Xj) = σij.

The covariance matrix is also called the variance–covariance matrix and
variance matrix. Sometimes the notation Var(X) is used. Note that Cov(X)
is a symmetric positive semidefinite matrix. If X and Y are p × 1 random
vectors, a a conformable constant vector, and A and B are conformable
constant matrices, then

E(a + X) = a +E(X) and E(X + Y ) = E(X) + E(Y ) (1.21)

and
E(AX) = AE(X) and E(AXB) = AE(X)B. (1.22)

Thus
Cov(a + AX) = Cov(AX) = ACov(X)AT . (1.23)
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Some important properties of multivariate normal (MVN) distributions are
given in the following three theorems. These theorems can be proved using
results from Johnson and Wichern (1988, pp. 127-132) or Severini (2005, ch.
8).

Theorem 1.9. a) If X ∼ Np(µ,Σ), then E(X) = µ and

Cov(X) = Σ.

b) If X ∼ Np(µ,Σ), then any linear combination tT X = t1X1 + · · · +
tpXp ∼ N1(t

T µ, tT Σt). Conversely, if tT X ∼ N1(t
T µ, tT Σt) for every p×1

vector t, then X ∼ Np(µ,Σ).

c) The joint distribution of independent normal random variables
is MVN. If X1, ..., Xp are independent univariate normal N(µi, σ

2
i ) random

vectors, then X = (X1 , ..., Xp)
T is Np(µ,Σ) where µ = (µ1, ..., µp)

T and
Σ = diag(σ2

1 , ..., σ
2
p) (so the off diagonal entries σij = 0 while the diagonal

entries of Σ are σii = σ2
i ).

d) If X ∼ Np(µ,Σ) and if A is a q×pmatrix, then AX ∼ Nq(Aµ,AΣAT ).
If a is a p × 1 vector of constants and b is a constant, then a + bX ∼
Np(a + bµ, b2Σ). (Note that bX = bIpX with A = bIp.)

It will be useful to partition X, µ, and Σ. Let X1 and µ1 be q×1 vectors,
let X2 and µ2 be (p − q) × 1 vectors, let Σ11 be a q × q matrix, let Σ12

be a q × (p − q) matrix, let Σ21 be a (p − q) × q matrix, and let Σ22 be a
(p− q) × (p− q) matrix. Then

X =

(
X1

X2

)
, µ =

(
µ1

µ2

)
, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Theorem 1.10. a) All subsets of a MVN are MVN: (Xk1
, ..., Xkq)

T

∼ Nq(µ̃, Σ̃) where µ̃i = E(Xki) and Σ̃ij = Cov(Xki , Xkj). In particular,
X1 ∼ Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22).

b) If X1 and X2 are independent, then Cov(X1,X2) = Σ12 =
E[(X1 −E(X1))(X2 − E(X2))

T ] = 0, a q × (p− q) matrix of zeroes.

c) If X ∼ Np(µ,Σ), then X1 and X2 are independent iff Σ12 = 0.

d) If X1 ∼ Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22) are independent, then

(
X1

X2

)
∼ Np

((
µ1

µ2

)
,

(
Σ11 0
0 Σ22

))
.

Theorem 1.11. The conditional distribution of a MVN is MVN. If
X ∼ Np(µ,Σ), then the conditional distribution of X1 given that X2 = x2

is multivariate normal with mean µ1 + Σ12Σ
−1
22 (x2 − µ2) and covariance

matrix Σ11 − Σ12Σ
−1
22 Σ21. That is,
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X1|X2 = x2 ∼ Nq(µ1 + Σ12Σ
−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).

Example 1.5. Let p = 2 and let (Y,X)T have a bivariate normal distri-
bution. That is,

(
Y
X

)
∼ N2

((
µY

µX

)
,

(
σ2

Y Cov(Y,X)
Cov(X, Y ) σ2

X

))
.

Also, recall that the population correlation between X and Y is given by

ρ(X, Y ) =
Cov(X, Y )√

VAR(X)
√

VAR(Y )
=

σX,Y

σXσY

if σX > 0 and σY > 0. Then Y |X = x ∼ N(E(Y |X = x),VAR(Y |X = x))
where the conditional mean

E(Y |X = x) = µY + Cov(Y,X)
1

σ2
X

(x− µX) = µY + ρ(X, Y )

√
σ2

Y

σ2
X

(x− µX)

and the conditional variance

VAR(Y |X = x) = σ2
Y − Cov(X, Y )

1

σ2
X

Cov(X, Y )

= σ2
Y − ρ(X, Y )

√
σ2

Y

σ2
X

ρ(X, Y )
√
σ2

X

√
σ2

Y

= σ2
Y − ρ2(X, Y )σ2

Y = σ2
Y [1 − ρ2(X, Y )].

Also aX + bY is univariate normal with mean aµX + bµY and variance

a2σ2
X + b2σ2

Y + 2ab Cov(X, Y ).

Remark 1.4. There are several common misconceptions. First, it is not
true that every linear combination tT X of normal random variables
is a normal random variable, and it is not true that all uncorrelated
normal random variables are independent. The key condition in The-
orem 1.9b and Theorem 1.10c is that the joint distribution of X is MVN. It
is possible that X1, X2, ..., Xp each has a marginal distribution that is uni-
variate normal, but the joint distribution of X is not MVN. See Seber and
Lee (2003, p. 23), and examine the following example from Rohatgi (1976,
p. 229). Suppose that the joint pdf of X and Y is a mixture of two bivariate
normal distributions both with EX = EY = 0 and VAR(X) = VAR(Y ) = 1,
but Cov(X, Y ) = ±ρ. Hence f(x, y) =

1

2

1

2π
√

1 − ρ2
exp(

−1

2(1 − ρ2)
(x2 − 2ρxy + y2)) +
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1

2

1

2π
√

1 − ρ2
exp(

−1

2(1 − ρ2)
(x2 + 2ρxy + y2)) ≡ 1

2
f1(x, y) +

1

2
f2(x, y)

where x and y are real and 0 < ρ < 1. Since both marginal distributions
of fi(x, y) are N(0,1) for i = 1 and 2 by Theorem 1.10 a), the marginal
distributions of X and Y are N(0,1). Since

∫ ∫
xyfi(x, y)dxdy = ρ for i = 1

and −ρ for i = 2, X and Y are uncorrelated, butX and Y are not independent
since f(x, y) 6= fX(x)fY (y).

Remark 1.5. In Theorem 1.11, suppose that X = (Y,X2, ..., Xp)
T . Let

X1 = Y and X2 = (X2, ..., Xp)
T . Then E[Y |X2] = β1 + β2X2 + · · ·+ βpXp

and VAR[Y |X2] is a constant that does not depend on X2. Hence Y |X2 =
β1 + β2X2 + · · ·+ βpXp + e follows the multiple linear regression model.

1.5 Large Sample Theory

The first three subsections will review large sample theory for the univariate
case, then multivariate theory will be given.

1.5.1 The CLT and the Delta Method

Large sample theory, also called asymptotic theory, is used to approximate
the distribution of an estimator when the sample size n is large. This the-
ory is extremely useful if the exact sampling distribution of the estimator is
complicated or unknown. To use this theory, one must determine what the
estimator is estimating, the rate of convergence, the asymptotic distribution,
and how large n must be for the approximation to be useful. Moreover, the
(asymptotic) standard error (SE), an estimator of the asymptotic standard
deviation, must be computable if the estimator is to be useful for inference.
Often the bootstrap can be used to compute the SE.

Theorem 1.12: the Central Limit Theorem (CLT). Let Y1, ..., Yn be
iid with E(Y ) = µ and VAR(Y ) = σ2. Let the sample mean Y n = 1

n

∑n
i=1 Yi.

Then √
n(Y n − µ)

D→ N(0, σ2).

Hence
√
n

(
Y n − µ

σ

)
=

√
n

(∑n
i=1 Yi − nµ

nσ

)
D→ N(0, 1).

Note that the sample mean is estimating the population mean µ with a
√
n

convergence rate, the asymptotic distribution is normal, and the SE = S/
√
n
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where S is the sample standard deviation. For distributions “close” to the
normal distribution, the central limit theorem provides a good approximation
if the sample size n ≥ 30. Hesterberg (2014, pp. 41, 66) suggests n ≥ 5000
is needed for moderately skewed distributions. A special case of the CLT is
proven after Theorem 1.25.

Notation. The notation X ∼ Y and X
D
= Y both mean that the random

variables X and Y have the same distribution. Hence FX(x) = FY (y) for all

real y. The notation Yn
D→ X means that for large n we can approximate the

cdf of Yn by the cdf of X. The distribution of X is the limiting distribution
or asymptotic distribution of Yn. For the CLT, notice that

Zn =
√
n

(
Y n − µ

σ

)
=

(
Y n − µ

σ/
√
n

)

is the z–score of Y . If Zn
D→ N(0, 1), then the notation Zn ≈ N(0, 1), also

written as Zn ∼ AN(0, 1), means approximate the cdf of Zn by the standard
normal cdf. See Definition 1.25. Similarly, the notation

Y n ≈ N(µ, σ2/n),

also written as Y n ∼ AN(µ, σ2/n), means approximate the cdf of Y n as
if Y n ∼ N(µ, σ2/n). The distribution of X does not depend on n, but the
approximate distribution Y n ≈ N(µ, σ2/n) does depend on n.

The two main applications of the CLT are to give the limiting distribution
of

√
n(Y n −µ) and the limiting distribution of

√
n(Yn/n−µX) for a random

variable Yn such that Yn =
∑n

i=1Xi where the Xi are iid with E(X) = µX

and VAR(X) = σ2
X .

Example 1.6. a) Let Y1, ..., Yn be iid Ber(ρ). Then E(Y ) = ρ and
VAR(Y ) = ρ(1 − ρ). (The Bernoulli (ρ) distribution is the binomial (1,ρ)
distribution.) Hence

√
n(Y n − ρ)

D→ N(0, ρ(1− ρ))

by the CLT.

b) Now suppose that Yn ∼ BIN(n, ρ). Then Yn
D
=
∑n

i=1Xi where
X1, ..., Xn are iid Ber(ρ). Hence

√
n

(
Yn

n
− ρ

)
D→ N(0, ρ(1 − ρ))

since
√
n

(
Yn

n
− ρ

)
D
=

√
n(Xn − ρ)

D→ N(0, ρ(1 − ρ))
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by a).
c) Now suppose that Yn ∼ BIN(kn , ρ) where kn → ∞ as n→ ∞. Then

√
kn

(
Yn

kn
− ρ

)
≈ N(0, ρ(1 − ρ))

or
Yn

kn
≈ N

(
ρ,
ρ(1 − ρ)

kn

)
or Yn ≈ N(knρ, knρ(1 − ρ)) .

Theorem 1.13: the Delta Method. If g does not depend on n, g′(θ) 6= 0,
and √

n(Tn − θ)
D→ N(0, σ2),

then √
n(g(Tn) − g(θ))

D→ N(0, σ2[g′(θ)]2).

Example 1.7. Let Y1, ..., Yn be iid with E(Y ) = µ and VAR(Y ) = σ2.
Then by the CLT, √

n(Y n − µ)
D→ N(0, σ2).

Let g(µ) = µ2. Then g′(µ) = 2µ 6= 0 for µ 6= 0. Hence

√
n((Y n)2 − µ2)

D→ N(0, 4σ2µ2)

for µ 6= 0 by the delta method.

Example 1.8. Let X ∼ Binomial(n, p) where the positive integer n is

large and 0 < p < 1. Find the limiting distribution of
√
n

[ (
X

n

)2

− p2

]
.

Solution. Example 1.6b gives the limiting distribution of
√
n(X

n
− p). Let

g(p) = p2. Then g′(p) = 2p and by the delta method,

√
n

[ (
X

n

)2

− p2

]
=

√
n

(
g

(
X

n

)
− g(p)

)
D→

N(0, p(1− p)(g′(p))2) = N(0, p(1− p)4p2) = N(0, 4p3(1 − p)).

Example 1.9. Let Xn ∼ Poisson(nλ) where the positive integer n is large
and λ > 0.

a) Find the limiting distribution of
√
n

(
Xn

n
− λ

)
.

b) Find the limiting distribution of
√
n

[ √
Xn

n
−

√
λ

]
.
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Solution. a) Xn
D
=
∑n

i=1 Yi where the Yi are iid Poisson(λ). Hence E(Y ) =
λ = V ar(Y ). Thus by the CLT,

√
n

(
Xn

n
− λ

)
D
=

√
n

( ∑n
i=1 Yi

n
− λ

)
D→ N(0, λ).

b) Let g(λ) =
√
λ. Then g′(λ) = 1

2
√

λ
and by the delta method,

√
n

[ √
Xn

n
−

√
λ

]
=

√
n

(
g

(
Xn

n

)
− g(λ)

)
D→

N(0, λ (g′(λ))2) = N

(
0, λ

1

4λ

)
= N

(
0,

1

4

)
.

Example 1.10. Let Y1, ..., Yn be independent and identically distributed
(iid) from a Gamma(α, β) distribution.

a) Find the limiting distribution of
√
n
(
Y − αβ

)
.

b) Find the limiting distribution of
√
n
(

(Y )2 − c
)

for appropriate con-
stant c.

Solution: a) Since E(Y ) = αβ and V (Y ) = αβ2, by the CLT√
n
(
Y − αβ

) D→ N(0, αβ2).
b) Let µ = αβ and σ2 = αβ2. Let g(µ) = µ2 so g′(µ) = 2µ and

[g′(µ)]2 = 4µ2 = 4α2β2. Then by the delta method,
√
n
(

(Y )2 − c
) D→

N(0, σ2[g′(µ)]2) = N(0, 4α3β4) where c = µ2 = α2β2 .

1.5.2 Modes of Convergence and Consistency

Definition 1.25. Let {Zn, n = 1, 2, ...} be a sequence of random variables
with cdfs Fn, and letX be a random variable with cdf F . Then Zn converges
in distribution to X, written

Zn
D→ X,

or Zn converges in law to X, written Zn
L→ X, if

lim
n→∞

Fn(t) = F (t)

at each continuity point t of F . The distribution of X is called the limiting
distribution or the asymptotic distribution of Zn.
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An important fact is that the limiting distribution does not depend
on the sample size n. Notice that the CLT and delta method give the
limiting distributions of Zn =

√
n(Y n − µ) and Zn =

√
n(g(Tn) − g(θ)),

respectively.
Convergence in distribution is useful if the distribution of Xn is unknown

or complicated and the distribution of X is easy to use. Then for large n we
can approximate the probability that Xn is in an interval by the probability

that X is in the interval. To see this, notice that if Xn
D→ X, then P (a <

Xn ≤ b) = Fn(b) − Fn(a) → F (b) − F (a) = P (a < X ≤ b) if F is continuous
at a and b.

Warning: convergence in distribution says that the cdf Fn(t) of Xn gets
close to the cdf of F (t) of X as n → ∞ provided that t is a continuity
point of F . Hence for any ε > 0 there exists Nt such that if n > Nt, then
|Fn(t) −F (t)| < ε. Notice that Nt depends on the value of t. Convergence in
distribution does not imply that the random variables Xn ≡ Xn(ω) converge
to the random variable X ≡ X(ω) for all ω.

Example 1.11. Suppose that Xn ∼ U(−1/n, 1/n). Then the cdf Fn(x) of
Xn is

Fn(x) =





0, x ≤ −1
n

nx
2 + 1

2 ,
−1
n ≤ x ≤ 1

n
1, x ≥ 1

n .

Sketching Fn(x) shows that it has a line segment rising from 0 at x = −1/n
to 1 at x = 1/n and that Fn(0) = 0.5 for all n ≥ 1. Examining the cases
x < 0, x = 0, and x > 0 shows that as n → ∞,

Fn(x) →





0, x < 0
1
2
x = 0

1, x > 0.

Notice that the right hand side is not a cdf since right continuity does not
hold at x = 0. Notice that if X is a random variable such that P (X = 0) = 1,
then X has cdf

FX(x) =

{
0, x < 0
1, x ≥ 0.

Since x = 0 is the only discontinuity point of FX(x) and since Fn(x) → FX(x)
for all continuity points of FX(x) (i.e. for x 6= 0),

Xn
D→ X.

Example 1.12. Suppose Yn ∼ U(0, n). Then Fn(t) = t/n for 0 < t ≤ n
and Fn(t) = 0 for t ≤ 0. Hence limn→∞ Fn(t) = 0 for t ≤ 0. If t > 0 and
n > t, then Fn(t) = t/n → 0 as n → ∞. Thus limn→∞ Fn(t) = 0 for all
t, and Yn does not converge in distribution to any random variable Y since
H(t) ≡ 0 is not a cdf.
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Definition 1.26. A sequence of random variables Xn converges in distri-
bution to a constant τ (θ), written

Xn
D→ τ (θ), if Xn

D→ X

where P (X = τ (θ)) = 1. The distribution of the random variable X is said
to be degenerate at τ (θ) or to be a point mass at τ (θ).

Definition 1.27. A sequence of random variables Xn converges in prob-
ability to a constant τ (θ), written

Xn
P→ τ (θ),

if for every ε > 0,

lim
n→∞

P (|Xn − τ (θ)| < ε) = 1 or, equivalently, lim
n→∞

P(|Xn − τ (θ)| ≥ ε) = 0.

The sequence Xn converges in probability to X, written

Xn
P→ X,

if Xn −X
P→ 0.

Notice that Xn
P→ X if for every ε > 0,

lim
n→∞

P (|Xn −X| < ε) = 1, or, equivalently, lim
n→∞

P(|Xn − X| ≥ ε) = 0.

Definition 1.28. Let the parameter space Θ be the set of possible values
of θ. A sequence of estimators Tn of τ (θ) is consistent for τ (θ) if

Tn
P→ τ (θ)

for every θ ∈ Θ. If Tn is consistent for τ (θ), then Tn is a consistent esti-
mator of τ (θ).

Consistency is a weak property that is usually satisfied by good estimators.
Tn is a consistent estimator for τ (θ) if the probability that Tn falls in any
neighborhood of τ (θ) goes to one, regardless of the value of θ ∈ Θ.

Definition 1.29. For a real number r > 0, Yn converges in rth mean to a
random variable Y , written

Yn
r→ Y,

if
E(|Yn − Y |r) → 0
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as n→ ∞. In particular, if r = 2, Yn converges in quadratic mean to Y ,
written

Yn
2→ Y or Yn

qm→ Y,

if
E[(Yn − Y )2] → 0

as n → ∞.

Theorem 1.14: Generalized Chebyshev’s Inequality. Let u : R →
[0,∞) be a nonnegative function. If E[u(Y )] exists then for any c > 0,

P [u(Y ) ≥ c] ≤ E[u(Y )]

c
.

If µ = E(Y ) exists, then taking u(y) = |y− µ|r and c̃ = cr gives
Markov’s Inequality: for r > 0 and any c > 0,

P [|Y − µ| ≥ c] = P [|Y − µ|r ≥ cr] ≤ E[|Y − µ|r]
cr

.

If r = 2 and σ2 = VAR(Y ) exists, then we obtain
Chebyshev’s Inequality:

P [|Y − µ| ≥ c] ≤ VAR(Y )

c2
.

Proof. The proof is given for pdfs. For pmfs, replace the integrals by sums.
Now

E[u(Y )] =

∫

R

u(y)f(y)dy =

∫

{y:u(y)≥c}
u(y)f(y)dy +

∫

{y:u(y)<c}
u(y)f(y)dy

≥
∫

{y:u(y)≥c}
u(y)f(y)dy

since the integrand u(y)f(y) ≥ 0. Hence

E[u(Y )] ≥ c

∫

{y:u(y)≥c}
f(y)dy = cP [u(Y ) ≥ c]. �

The following theorem gives sufficient conditions for Tn to be a consistent
estimator of τ (θ). Notice that Eθ[(Tn − τ (θ))2] = MSEτ(θ)(Tn) → 0 for all

θ ∈ Θ is equivalent to Tn
qm→ τ (θ) for all θ ∈ Θ.

Theorem 1.15. a) If

lim
n→∞

MSEτ(θ)(Tn) = 0
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for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

b) If
lim

n→∞
VARθ(Tn) = 0 and lim

n→∞
Eθ(Tn) = τ (θ)

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

Proof. a) Using Theorem 1.14 with Y = Tn, u(Tn) = (Tn − τ (θ))2 and
c = ε2 shows that for any ε > 0,

Pθ(|Tn − τ (θ)| ≥ ε) = Pθ[(Tn − τ (θ))2 ≥ ε2] ≤ Eθ[(Tn − τ (θ))2 ]

ε2
.

Hence
lim

n→∞
Eθ[(Tn − τ (θ))2] = lim

n→∞
MSEτ(θ)(Tn) → 0

is a sufficient condition for Tn to be a consistent estimator of τ (θ).
b) Recall that

MSEτ(θ)(Tn) = VARθ(Tn) + [Biasτ(θ)(Tn)]
2

where Biasτ(θ)(Tn) = Eθ(Tn) − τ (θ). Since MSEτ(θ)(Tn) → 0 if both
VARθ(Tn) → 0 and Biasτ(θ)(Tn) = Eθ(Tn) − τ (θ) → 0, the result follows
from a). �

The following result shows estimators that converge at a
√
n rate are con-

sistent. Use this result and the delta method to show that g(Tn) is a consistent
estimator of g(θ). Note that b) follows from a) with Xθ ∼ N(0, v(θ)). The
WLLN shows that Y is a consistent estimator of E(Y ) = µ if E(Y ) exists.

Theorem 1.16. a) Let Xθ be a random variable with distribution de-
pending on θ, and 0 < δ ≤ 1. If

nδ(Tn − τ (θ))
D→ Xθ

then Tn
P→ τ (θ).

b) If √
n(Tn − τ (θ))

D→ N(0, v(θ))

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

Definition 1.30. A sequence of random variables Xn converges almost
everywhere (or almost surely, or with probability 1) to X if

P ( lim
n→∞

Xn = X) = 1.

This type of convergence will be denoted by

Xn
ae→ X.
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Notation such as “Xn converges to X ae” will also be used. Sometimes “ae”
will be replaced with “as” or “wp1.” We say that Xn converges almost ev-
erywhere to τ (θ), written

Xn
ae→ τ (θ),

if P (limn→∞Xn = τ (θ)) = 1.

Theorem 1.17. Let Yn be a sequence of iid random variables withE(Yi) =
µ. Then

a) Strong Law of Large Numbers (SLLN): Y n
ae→ µ, and

b) Weak Law of Large Numbers (WLLN): Y n
P→ µ.

Proof of WLLN when V (Yi) = σ2: By Chebyshev’s inequality, for every
ε > 0,

P (|Y n − µ| ≥ ε) ≤ V (Y n)

ε2
=

σ2

nε2
→ 0

as n → ∞. �

In proving consistency results, there is an infinite sequence of estimators
that depend on the sample size n. Hence the subscript n will be added to the
estimators.

Definition 1.31. Lehmann (1999, pp. 53-54): a) A sequence of random
variables Wn is tight or bounded in probability, written Wn = OP (1), if for
every ε > 0 there exist positive constants Dε and Nε such that

P (|Wn| ≤ Dε) ≥ 1 − ε

for all n ≥ Nε. Also Wn = OP (Xn) if |Wn/Xn| = OP (1). Similarly, Wn =
OP (n−1/2) if |√n Wn| = OP (1).

b) The sequence Wn = oP (n−δ) if nδWn = oP (1) which means that

nδWn
P→ 0.

c) Wn has the same order as Xn in probability, written Wn �P Xn, if for
every ε > 0 there exist positive constants Nε and 0 < dε < Dε such that

P

(
dε ≤

∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε

)
= P

(
1

Dε
≤
∣∣∣∣
Xn

Wn

∣∣∣∣ ≤
1

d ε

)
≥ 1 − ε

for all n ≥ Nε.
d) Similar notation is used for a k × r matrix An = A = [ai,j(n)] if each

element ai,j(n) has the desired property. For example, A = OP (n−1/2) if
each ai,j(n) = OP (n−1/2).

Definition 1.32. Let Wn = ‖µ̂n − µ‖.
a) If Wn �P n−δ for some δ > 0, then both Wn and µ̂n have (tightness)

rate nδ.
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b) If there exists a constant κ such that

nδ(Wn − κ)
D→ X

for some nondegenerate random variable X, then both Wn and µ̂n have
convergence rate nδ .

Theorem 1.18. Suppose there exists a constant κ such that

nδ(Wn − κ)
D→ X.

a) Then Wn = OP (n−δ).
b) If X is not degenerate, then Wn �P n−δ .

The above result implies that if Wn has convergence rate nδ, then Wn has
tightness rate nδ, and the term “tightness” will often be omitted. Part a) is
proved, for example, in Lehmann (1999, p. 67).

The following result shows that if Wn �P Xn, then Xn �P Wn, Wn =
OP (Xn), and Xn = OP (Wn). Notice that if Wn = OP (n−δ), then nδ is
a lower bound on the rate of Wn. As an example, if the CLT holds then
Y n = OP (n−1/3), but Y n �P n−1/2.

Theorem 1.19. a) If Wn �P Xn, then Xn �P Wn.
b) If Wn �P Xn, then Wn = OP (Xn).
c) If Wn �P Xn, then Xn = OP (Wn).
d) Wn �P Xn iff Wn = OP (Xn) and Xn = OP (Wn).

Proof. a) Since Wn �P Xn,

P

(
dε ≤

∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε

)
= P

(
1

Dε
≤
∣∣∣∣
Xn

Wn

∣∣∣∣ ≤
1

d ε

)
≥ 1 − ε

for all n ≥ Nε. Hence Xn �P Wn.
b) Since Wn �P Xn,

P (|Wn| ≤ |XnDε|) ≥ P

(
dε ≤

∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε

)
≥ 1 − ε

for all n ≥ Nε. Hence Wn = OP (Xn).
c) Follows by a) and b).
d) If Wn �P Xn, then Wn = OP (Xn) and Xn = OP (Wn) by b) and c).

Now suppose Wn = OP (Xn) and Xn = OP (Wn). Then

P (|Wn| ≤ |Xn|Dε/2) ≥ 1 − ε/2

for all n ≥ N1, and

P (|Xn| ≤ |Wn|1/dε/2) ≥ 1 − ε/2
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for all n ≥ N2. Hence

P (A) ≡ P

(∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε/2

)
≥ 1 − ε/2

and

P (B) ≡ P

(
dε/2 ≤

∣∣∣∣
Wn

Xn

∣∣∣∣
)

≥ 1 − ε/2

for all n ≥ N = max(N1, N2). Since P (A∩B) = P (A)+P (B)−P (A∪B) ≥
P (A) + P (B) − 1,

P (A ∩B) = P (dε/2 ≤
∣∣∣∣
Wn

Xn

∣∣∣∣ ≤ Dε/2) ≥ 1 − ε/2 + 1 − ε/2− 1 = 1 − ε

for all n ≥ N. Hence Wn �P Xn. �

The following result is used to prove the following Theorem 1.21 which says
that if there are K estimators Tj,n of a parameter β, such that ‖Tj,n −β‖ =
OP (n−δ) where 0 < δ ≤ 1, and if T ∗

n picks one of these estimators, then
‖T ∗

n − β‖ = OP (n−δ).

Theorem 1.20: Pratt (1959). Let X1,n, ..., XK,n each be OP (1) where
K is fixed. Suppose Wn = Xin,n for some in ∈ {1, ..., K}. Then

Wn = OP (1). (1.24)

Proof.

P (max{X1,n, ..., XK,n} ≤ x) = P (X1,n ≤ x, ..., XK,n ≤ x) ≤

FWn(x) ≤ P (min{X1,n, ..., XK,n} ≤ x) = 1 − P (X1,n > x, ..., XK,n > x).

SinceK is finite, there exists B > 0 andN such that P (Xi,n ≤ B) > 1−ε/2K
and P (Xi,n > −B) > 1 − ε/2K for all n > N and i = 1, ..., K. Bonferroni’s

inequality states that P (∩K
i=1Ai) ≥

∑K
i=1 P (Ai) − (K − 1). Thus

FWn(B) ≥ P (X1,n ≤ B, ..., XK,n ≤ B) ≥

K(1 − ε/2K)− (K − 1) = K − ε/2 −K + 1 = 1 − ε/2

and
−FWn(−B) ≥ −1 + P (X1,n > −B, ..., XK,n > −B) ≥

−1 +K(1 − ε/2K) − (K − 1) = −1 +K − ε/2−K + 1 = −ε/2.
Hence

FWn(B) − FWn(−B) ≥ 1 − ε for n > N. �

Theorem 1.21. Suppose ‖Tj,n − β‖ = OP (n−δ) for j = 1, ..., K where
0 < δ ≤ 1. Let T ∗

n = Tin,n for some in ∈ {1, ..., K} where, for example, Tin,n
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is the Tj,n that minimized some criterion function. Then

‖T ∗
n − β‖ = OP (n−δ). (1.25)

Proof. Let Xj,n = nδ‖Tj,n−β‖. Then Xj,n = OP (1) so by Theorem 1.20,
nδ‖T ∗

n − β‖ = OP (1). Hence ‖T ∗
n − β‖ = OP (n−δ). �

1.5.3 Slutsky’s Theorem and Related Results

Theorem 1.22: Slutsky’s Theorem. Suppose Yn
D→ Y and Wn

P→ w for
some constant w. Then

a) Yn +Wn
D→ Y + w,

b) YnWn
D→ wY, and

c) Yn/Wn
D→ Y/w if w 6= 0.

Theorem 1.23. a) If Xn
P→ X, then Xn

D→ X.

b) If Xn
ae→ X, then Xn

P→ X and Xn
D→ X.

c) If Xn
r→ X, then Xn

P→ X and Xn
D→ X.

d) Xn
P→ τ (θ) iff Xn

D→ τ (θ).

e) If Xn
P→ θ and τ is continuous at θ, then τ (Xn)

P→ τ (θ).

f) If Xn
D→ θ and τ is continuous at θ, then τ (Xn)

D→ τ (θ).

Suppose that for all θ ∈ Θ, Tn
D→ τ (θ), Tn

r→ τ (θ), or Tn
ae→ τ (θ). Then

Tn is a consistent estimator of τ (θ) by Theorem 1.23. We are assuming that
the function τ does not depend on n.

Example 1.13. Let Y1, ..., Yn be iid with mean E(Yi) = µ and variance
V (Yi) = σ2. Then the sample mean Y n is a consistent estimator of µ since i)
the SLLN holds (use Theorems 1.17 and 1.23), ii) the WLLN holds, and iii)
the CLT holds (use Theorem 1.16). Since

lim
n→∞

VARµ(Y n) = lim
n→∞

σ2/n = 0 and lim
n→∞

Eµ(Y n) = µ,

Y n is also a consistent estimator of µ by Theorem 1.15b. By the delta method
and Theorem 1.16b, Tn = g(Y n) is a consistent estimator of g(µ) if g′(µ) 6= 0
for all µ ∈ Θ. By Theorem 1.23e, g(Y n) is a consistent estimator of g(µ) if g
is continuous at µ for all µ ∈ Θ.

Theorem 1.24. Assume that the function g does not depend on n.

a) Generalized Continuous Mapping Theorem: If Xn
D→ X and the
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function g is such that P [X ∈ C(g)] = 1 where C(g) is the set of points

where g is continuous, then g(Xn)
D→ g(X).

b) Continuous Mapping Theorem: If Xn
D→ X and the function g is

continuous, then g(Xn)
D→ g(X).

Remark 1.6. For Theorem 1.23, a) follows from Slutsky’s Theorem by

taking Yn ≡ X = Y and Wn = Xn − X. Then Yn
D→ Y = X and Wn

P→ 0.

Hence Xn = Yn +Wn
D→ Y +0 = X. The convergence in distribution parts of

b) and c) follow from a). Part f) follows from d) and e). Part e) implies that
if Tn is a consistent estimator of θ and τ is a continuous function, then τ (Tn)
is a consistent estimator of τ (θ). Theorem 1.24 says that convergence in dis-
tribution is preserved by continuous functions, and even some discontinuities
are allowed as long as the set of continuity points is assigned probability 1
by the asymptotic distribution. Equivalently, the set of discontinuity points
is assigned probability 0.

Example 1.14. (Ferguson 1996, p. 40): If Xn
D→ X, then 1/Xn

D→ 1/X
if X is a continuous random variable since P (X = 0) = 0 and x = 0 is the
only discontinuity point of g(x) = 1/x.

Example 1.15. Show that if Yn ∼ tn, a t distribution with n degrees of

freedom, then Yn
D→ Z where Z ∼ N(0, 1).

Solution: Yn
D
= Z/

√
Vn/n where Z Vn ∼ χ2

n. If Wn =
√
Vn/n

P→ 1,

then the result follows by Slutsky’s Theorem. But Vn
D
=
∑n

i=1Xi where the

iid Xi ∼ χ2
1. Hence Vn/n

P→ 1 by the WLLN and
√
Vn/n

P→ 1 by Theorem
1.23e.

Theorem 1.25: Continuity Theorem. Let Yn be sequence of random
variables with characteristic functions φn(t). Let Y be a random variable
with characteristic function (cf) φ(t).

a)

Yn
D→ Y iff φn(t) → φ(t) ∀t ∈ R.

b) Also assume that Yn has moment generating function (mgf) mn and Y
has mgf m. Assume that all of the mgfs mn and m are defined on |t| ≤ d for
some d > 0. Then if mn(t) → m(t) as n→ ∞ for all |t| < c where 0 < c < d,

then Yn
D→ Y .

Application: Proof of a Special Case of the CLT. Following
Rohatgi (1984, pp. 569-9), let Y1, ..., Yn be iid with mean µ, variance σ2, and
mgf mY (t) for |t| < to. Then

Zi =
Yi − µ

σ
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has mean 0, variance 1, and mgf mZ(t) = exp(−tµ/σ)mY (t/σ) for |t| < σto.
We want to show that

Wn =
√
n

(
Y n − µ

σ

)
D→ N(0, 1).

Notice that Wn =

n−1/2
n∑

i=1

Zi = n−1/2
n∑

i=1

(
Yi − µ

σ

)
= n−1/2

∑n
i=1 Yi − nµ

σ
=
n−1/2

1
n

Y n − µ

σ
.

Thus

mWn(t) = E(etWn) = E[exp(tn−1/2
n∑

i=1

Zi)] = E[exp(

n∑

i=1

tZi/
√
n)]

=

n∏

i=1

E[etZi/
√

n] =

n∏

i=1

mZ(t/
√
n) = [mZ(t/

√
n)]n.

Set ψ(x) = log(mZ (x)). Then

log[mWn(t)] = n log[mZ(t/
√
n)] = nψ(t/

√
n) =

ψ(t/
√
n)

1
n

.

Now ψ(0) = log[mZ(0)] = log(1) = 0. Thus by L’Hôpital’s rule (where the
derivative is with respect to n), limn→∞ log[mWn(t)] =

lim
n→∞

ψ(t/
√
n )

1
n

= lim
n→∞

ψ′(t/
√
n )[−t/2

n3/2 ]

(−1
n2 )

=
t

2
lim

n→∞
ψ′(t/

√
n )

1√
n

.

Now

ψ′(0) =
m′

Z(0)

mZ(0)
= E(Zi)/1 = 0,

so L’Hôpital’s rule can be applied again, giving limn→∞ log[mWn(t)] =

t

2
lim

n→∞

ψ′′(t/
√
n )[ −t

2n3/2 ]

( −1
2n3/2 )

=
t2

2
lim

n→∞
ψ′′(t/

√
n ) =

t2

2
ψ′′(0).

Now

ψ′′(t) =
d

dt

m′
Z(t)

mZ(t)
=
m′′

Z(t)mZ(t) − (m′
Z (t))2

[mZ(t)]2
.

So
ψ′′(0) = m′′

Z(0) − [m′
Z(0)]2 = E(Z2

i ) − [E(Zi)]
2 = 1.

Hence limn→∞ log[mWn(t)] = t2/2 and
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lim
n→∞

mWn(t) = exp(t2/2)

which is the N(0,1) mgf. Thus by the continuity theorem,

Wn =
√
n

(
Y n − µ

σ

)
D→ N(0, 1). �

1.5.4 Multivariate Limit Theorems

Many of the univariate results of the previous 3 subsections can be extended
to random vectors. For the limit theorems, the vector X is typically a k × 1
column vector and XT is a row vector. Let ‖x‖ =

√
x2

1 + · · ·+ x2
k be the

Euclidean norm of x.

Definition 1.33. Let Xn be a sequence of random vectors with joint cdfs
Fn(x) and let X be a random vector with joint cdf F (x).

a) Xn converges in distribution to X, written Xn
D→ X , if Fn(x) →

F (x) as n → ∞ for all points x at which F (x) is continuous. The distribution
of X is the limiting distribution or asymptotic distribution of Xn.

b) Xn converges in probability to X, written Xn
P→ X, if for every

ε > 0, P (‖Xn − X‖ > ε) → 0 as n→ ∞.
c) Let r > 0 be a real number. Then Xn converges in rth mean to X ,

written Xn
r→ X, if E(‖Xn − X‖r) → 0 as n → ∞.

d) Xn converges almost everywhere to X , written Xn
ae→ X, if

P (limn→∞ Xn = X) = 1.

Theorems 1.26 and 1.27 below are the multivariate extensions of the
limit theorems in subsection 1.5.1. When the limiting distribution of Zn =√
n(g(T n) − g(θ)) is multivariate normal Nk(0,Σ), approximate the joint

cdf of Zn with the joint cdf of the Nk(0,Σ) distribution. Thus to find proba-
bilities, manipulate Zn as if Zn ≈ Nk(0,Σ). To see that the CLT is a special
case of the MCLT below, let k = 1, E(X) = µ, and V (X) = Σx = σ2.

Theorem 1.26: the Multivariate Central Limit Theorem (MCLT).
If X1, ...,Xn are iid k × 1 random vectors with E(X) = µ and Cov(X) =
Σx, then √

n(Xn − µ)
D→ Nk(0,Σx)

where the sample mean

Xn =
1

n

n∑

i=1

X i.
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To see that the delta method is a special case of the multivariate delta
method, note that if Tn and parameter θ are real valued, then Dg(θ) = g′(θ).

Theorem 1.27: the Multivariate Delta Method. If g does not depend
on n and √

n(T n − θ)
D→ Nk(0,Σ),

then √
n(g(T n) − g(θ))

D→ Nd(0,Dg(θ)
ΣDT

g(θ)
)

where the d× k Jacobian matrix of partial derivatives

Dg(θ)
=




∂
∂θ1

g1(θ) . . . ∂
∂θk

g1(θ)
...

...
∂

∂θ1
gd(θ) . . . ∂

∂θk
gd(θ)


 .

Here the mapping g : R
k → R

d needs to be differentiable in a neighborhood
of θ ∈ R

k.

Definition 1.34. If the estimator g(T n)
P→ g(θ) for all θ ∈ Θ, then g(T n)

is a consistent estimator of g(θ).

Theorem 1.28. If 0 < δ ≤ 1, X is a random vector, and

nδ(g(T n) − g(θ))
D→ X ,

then g(T n)
P→ g(θ).

Theorem 1.29. If X1, ...,Xn are iid, E(‖X‖) <∞, and E(X) = µ, then

a) WLLN: Xn
P→ µ, and

b) SLLN: Xn
ae→ µ.

Theorem 1.30: Continuity Theorem. Let Xn be a sequence of k × 1
random vectors with characteristic functions φn(t), and let X be a k × 1
random vector with cf φ(t). Then

Xn
D→ X iff φn(t) → φ(t)

for all t ∈ R
k.

Theorem 1.31: Cramér Wold Device. Let Xn be a sequence of k× 1
random vectors, and let X be a k × 1 random vector. Then

Xn
D→ X iff tTXn

D→ tTX

for all t ∈ R
k.
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Application: Proof of the MCLT Theorem 1.26. Note that for fixed
t, the tT X i are iid random variables with mean tT µ and variance tT Σt.

Hence by the CLT, tT√n(Xn − µ)
D→ N(0, tT Σt). The right hand side has

distribution tT X where X ∼ Nk(0,Σ). Hence by the Cramér Wold Device,
√
n(Xn − µ)

D→ Nk(0,Σ). �

Theorem 1.32. a) If Xn
P→ X , then Xn

D→ X .
b)

Xn
P→ g(θ) iff Xn

D→ g(θ).

Let g(n) ≥ 1 be an increasing function of the sample size n: g(n) ↑ ∞, e.g.
g(n) =

√
n. See White (1984, p. 15). If a k×1 random vector T n−µ converges

to a nondegenerate multivariate normal distribution with convergence rate√
n, then T n has (tightness) rate

√
n.

Definition 1.35. Let An = [ai,j(n)] be an r × c random matrix.
a) An = OP (Xn) if ai,j(n) = OP (Xn) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
b) An = op(Xn) if ai,j(n) = op(Xn) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
c) An �P (1/(g(n)) if ai,j(n) �P (1/(g(n)) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
d) Let A1,n = T n − µ and A2,n = Cn − cΣ for some constant c > 0. If
A1,n �P (1/(g(n)) and A2,n �P (1/(g(n)), then (T n,Cn) has (tightness)
rate g(n).

Theorem 1.33: Continuous Mapping Theorem. Let Xn ∈ R
k. If

Xn
D→ X and if the function g : R

k → R
j is continuous, then

g(Xn)
D→ g(X).

The following two theorems are taken from Severini (2005, pp. 345-349,
354).

Theorem 1.34. Let Xn = (X1n, ..., Xkn)T be a sequence of k × 1
random vectors, let Y n be a sequence of k × 1 random vectors, and let
X = (X1 , ..., Xk)

T be a k× 1 random vector. Let W n be a sequence of k× k
nonsingular random matrices, and let C be a k × k constant nonsingular
matrix.

a) Xn
P→ X iff Xin

P→ Xi for i = 1, ..., k.

b) Slutsky’s Theorem: If Xn
D→ X and Y n

P→ c for some constant k×1

vector c, then i) Xn + Y n
D→ X + c and

ii) Y T
nXn

D→ cT X .

c) If Xn
D→ X and W n

P→ C, then W nXn
D→ CX, XT

nW n
D→ XT C,

W−1
n Xn

D→ C−1X , and XT
n W−1

n
D→ XT C−1.

Theorem 1.35. LetWn, Xn, Yn, and Zn be sequences of random variables
such that Yn > 0 and Zn > 0. (Often Yn and Zn are deterministic, e.g.
Yn = n−1/2.)
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a) If Wn = OP (1) and Xn = OP (1), then Wn +Xn = OP (1) and WnXn =
OP (1), thus OP (1) + OP (1) = OP (1) and OP (1)OP (1) = OP (1).

b) If Wn = OP (1) and Xn = oP (1), then Wn +Xn = OP (1) and WnXn =
oP (1), thus OP (1) + oP (1) = OP (1) and OP (1)oP (1) = oP (1).

c) If Wn = OP (Yn) and Xn = OP (Zn), then Wn +Xn = OP (max(Yn, Zn))
and WnXn = OP (YnZn), thus OP (Yn) + OP (Zn) = OP (max(Yn, Zn)) and
OP (Yn)OP (Zn) = OP (YnZn).

Theorem 1.36. i) Suppose
√
n(Tn − µ)

D→ Np(θ,Σ). Let A be a q × p

constant matrix. Then A
√
n(Tn−µ) =

√
n(ATn −Aµ)

D→ Nq(Aθ,AΣAT ).
ii) Let Σ > 0. Assume n is large enough so that C > 0. If (T,C)

is a consistent estimator of (µ, s Σ) where s > 0 is some constant, then
D2

x(T,C) = (x − T )T C−1(x − T ) = s−1D2
x(µ,Σ) + oP (1), so D2

x(T,C) is
a consistent estimator of s−1D2

x(µ,Σ).

iii) Let Σ > 0. Assume n is large enough so that C > 0. If
√
n(T − µ)

D→
Np(0,Σ) and if C is a consistent estimator of Σ, then n(T − µ)T C−1(T −
µ)

D→ χ2
p. In particular,

n(x− µ)T S−1(x − µ)
D→ χ2

p.

Proof: ii) D2
x(T,C) = (x − T )T C−1(x− T ) =

(x− µ + µ− T )T [C−1 − s−1Σ−1 + s−1Σ−1](x− µ + µ− T )
= (x − µ)T [s−1Σ−1](x − µ) + (x − T )T [C−1 − s−1Σ−1](x− T )
+(x − µ)T [s−1Σ−1](µ− T ) + (µ− T )T [s−1Σ−1](x − µ)
+(µ − T )T [s−1Σ−1](µ− T ) = s−1D2

x(µ,Σ) + OP (1).
(Note that D2

x(T,C) = s−1D2
x(µ,Σ) +OP (n−δ) if (T,C) is a consistent

estimator of (µ, s Σ) with rate nδ where 0 < δ ≤ 0.5 if [C−1 − s−1Σ−1] =
OP (n−δ).)

Alternatively, D2
x(T,C) is a continuous function of (T,C) if C > 0 for

n > 10p. Hence D2
x(T,C)

P→ D2
x(µ, sΣ).

iii) Note that Zn =
√
n Σ−1/2(T − µ)

D→ Np(0, Ip). Thus ZT
nZn =

n(T − µ)T Σ−1(T − µ)
D→ χ2

p. Now n(T − µ)T C−1(T − µ) =

n(T − µ)T [C−1 − Σ−1 + Σ−1](T − µ) = n(T − µ)T Σ−1(T − µ) +

n(T −µ)T [C−1 −Σ−1](T −µ) = n(T −µ)T Σ−1(T −µ)+ oP (1)
D→ χ2

p since√
n(T − µ)T [C−1 − Σ−1]

√
n(T − µ) = OP (1)oP (1)OP (1) = oP (1). �

Example 1.16. Suppose that xn yn for n = 1, 2, .... Suppose xn
D→ x,

and yn
D→ y where x y. Then

[
xn

yn

]
D→
[

x
y

]

by Theorem 1.30. To see this, let t = (tT
1 , t

T
2 )T , zn = (xT

n , y
T
n )T , and z =

(xT , yT )T . Since xn yn and x y, the characteristic function
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φzn
(t) = φxn

(t1)φy
n
(t2) → φx(t1)φy(t2) = φz(t).

Hence g(zn)
D→ g(z) by Theorem 1.33.

Remark 1.7. In the above example, we can show x y instead of assum-
ing x y. See Ferguson (1996, p. 42).

1.6 Mixture Distributions

Mixture distributions are useful for model and variable selection since β̂Imin,0

is a mixture distribution of β̂Ij,0, and the lasso estimator β̂L is a mixture

distribution of β̂L,λi
for i = 1, ...,M . See Chapter 4. A random vector u has

a mixture distribution if u equals a random vector uj with probability πj

for j = 1, ..., J . See Definition 1.24 for the population mean and population
covariance matrix of a random vector.

Definition 1.36. The distribution of a g×1 random vector u is a mixture
distribution if the cumulative distribution function (cdf) of u is

Fu(t) =

J∑

j=1

πjFuj (t) (1.26)

where the probabilities πj satisfy 0 ≤ πj ≤ 1 and
∑J

j=1 πj = 1, J ≥ 2,
and Fuj (t) is the cdf of a g × 1 random vector uj . Then u has a mixture
distribution of the uj with probabilities πj.

Theorem 1.37. Suppose E(h(u)) and the E(h(uj)) exist. Then

E[h(u)] =

J∑

j=1

πjE[h(uj)]. (1.27)

Hence

E(u) =
J∑

j=1

πjE[uj ], (1.28)

and Cov(u) = E(uuT ) −E(u)E(uT ) = E(uuT ) − E(u)[E(u)]T =∑J
j=1 πjE[uju

T
j ]− E(u)[E(u)]T =

J∑

j=1

πjCov(uj) +

J∑

j=1

πjE(uj)[E(uj)]
T −E(u)[E(u)]T . (1.29)

If E(uj) = θ for j = 1, ..., J , then E(u) = θ and
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Cov(u) =

J∑

j=1

πjCov(uj).

This theorem is easy to prove if the uj are continuous random vectors with
(joint) probability density functions (pdfs) fuj (t). Then u is a continuous
random vector with pdf

fu(t) =

J∑

j=1

πjfuj (t), and E[h(u)] =

∫ ∞

−∞
· · ·
∫ ∞

−∞
h(t)fu(t)dt

=

J∑

j=1

πj

∫ ∞

−∞
· · ·
∫ ∞

−∞
h(t)fuj

(t)dt =

J∑

j=1

πjE[h(uj)]

where E[h(uj)] is the expectation with respect to the random vector uj . Note
that

E(u)[E(u)]T =

J∑

j=1

J∑

k=1

πjπkE(uj)[E(uk)]T . (1.30)

Alternatively, with respect to a Riemann Stieltjes integral, E[h(u)] =∫
h(t)dF (t) provided the expected value exists, and the integral is a lin-

ear operator with respect to both h and F . Hence for a mixture distribution,
E[h(u)] =

∫
h(t)dF (t) =

∫
h(t) d




J∑

j=1

πjFuj (t)


 =

J∑

j=1

πj

∫
h(t)dFuj(t) =

J∑

j=1

πjE[h(uj)].

1.7 Elliptically Contoured Distributions

Definition 1.37: Johnson (1987, pp. 107-108). A p×1 random vector X
has an elliptically contoured distribution, also called an elliptically symmetric
distribution, if X has joint pdf

f(z) = kp|Σ|−1/2g[(z − µ)T Σ−1(z − µ)], (1.31)

and we say X has an elliptically contoured ECp(µ,Σ, g) distribution.

If X has an elliptically contoured (EC) distribution, then the characteristic
function of X is

φX(t) = exp(itT µ)ψ(tT Σt) (1.32)

for some function ψ. If the second moments exist, then
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E(X) = µ (1.33)

and
Cov(X) = cXΣ (1.34)

where
cX = −2ψ′(0).

Definition 1.38. The population squared Mahalanobis distance

U ≡ D2 = D2(µ,Σ) = (X − µ)T Σ−1(X − µ). (1.35)

For elliptically contoured distributions, U has pdf

h(u) =
πp/2

Γ (p/2)
kpu

p/2−1g(u). (1.36)

For c > 0, an ECp(µ, cI, g) distribution is spherical about µ where I is
the p×p identity matrix. The multivariate normal distribution Np(µ,Σ) has
kp = (2π)−p/2, ψ(u) = g(u) = exp(−u/2), and h(u) is the χ2

p pdf.

The following theorem is useful for proving properties of EC distributions
without using the characteristic function (1.32). See Eaton (1986) and Cook
(1998, pp. 57, 130).

Theorem 1.38. Let X be a p× 1 random vector with 1st moments; i.e.,
E(X) exists. Let B be any constant full rank p× r matrix where 1 ≤ r ≤ p.
Then X is elliptically contoured iff for all such conforming matrices B,

E(X|BT X) = µ + MBBT (X − µ) = aB + MBBT X (1.37)

where the p× 1 constant vector aB and the p× r constant matrix MB both
depend on B.

A useful fact is that aB and MB do not depend on g:

aB = µ− MBBT µ = (Ip − MBBT )µ,

and
MB = ΣB(BT ΣB)−1.

See Problem 1.19. Notice that in the formula for MB , Σ can be replaced by
cΣ where c > 0 is a constant. In particular, if the EC distribution has 2nd
moments, Cov(X) can be used instead of Σ.

To use Theorem 1.38 to prove interesting properties, partition X, µ, and
Σ. Let X1 and µ1 be q × 1 vectors, let X2 and µ2 be (p − q) × 1 vectors.
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Let Σ11 be a q × q matrix, let Σ12 be a q × (p − q) matrix, let Σ21 be a
(p− q) × q matrix, and let Σ22 be a (p − q) × (p− q) matrix. Then

X =

(
X1

X2

)
, µ =

(
µ1

µ2

)
, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Also assume that the (p + 1) × 1 vector (Y,XT )T is ECp+1(µ,Σ, g) where
Y is a random variable, X is a p× 1 vector, and use

(
Y
X

)
, µ =

(
µY

µX

)
, and Σ =

(
ΣY Y ΣY X

ΣXY ΣXX

)
.

Theorem 1.39. Let X ∼ ECp(µ,Σ, g) and assume that E(X) exists.

a) Any subset of X is EC, in particular X1 is EC.

b) (Cook 1998 p. 131, Kelker 1970). If Cov(X) is nonsingular,

Cov(X|BT X) = dg(B
T X)[Σ − ΣB(BT ΣB)−1BT Σ]

where the real valued function dg(B
T X) is constant iff X is MVN.

Proof of a). Let A be an arbitrary full rank q×r matrix where 1 ≤ r ≤ q.
Let

B =

(
A
0

)
.

Then BT X = AT X1, and

E[X|BT X ] = E

[(
X1

X2

)
|AT X1

]
=

(
µ1

µ2

)
+

(
M1B

M2B

) (
AT 0T

) (X1 − µ1

X2 − µ2

)

by Theorem 1.38. Hence E[X1|AT X1] = µ1 + M1BAT (X1 − µ1). Since A
was arbitrary, X1 is EC by Theorem 1.38. Notice that MB = ΣB(BT ΣB)−1 =

(
Σ11 Σ12

Σ21 Σ22

) (
A
0

) [(
AT 0T

)(Σ11 Σ12

Σ21 Σ22

)(
A
0

)]−1

=

(
M1B

M2B

)
.

Hence
M1B = Σ11A(AT Σ11A)−1

and X1 is EC with location and dispersion parameters µ1 and Σ11. �

Theorem 1.40. Let (Y,XT )T be ECp+1(µ,Σ, g) where Y is a random
variable.
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a) Assume that E[(Y,XT )T ] exists. Then E(Y |X) = α + βT
2 X where

α = µY − βT
2 µX and

β2 = Σ−1
XXΣXY .

b) Even if the first moment does not exist, the conditional median

MED(Y |X) = α+ βT
2 X

where α and β2 are given in a).

Proof. a) The trick is to choose B so that Theorem 1.38 applies. Let

B =

(
0T

Ip

)
.

Then BT ΣB = ΣXX and

ΣB =

(
ΣY X

ΣXX

)
.

Now

E

[(
Y
X

)
| X

]
= E

[(
Y
X

)
| BT

(
Y
X

)]

= µ + ΣB(BT ΣB)−1BT

(
Y − µY

X − µX

)

by Theorem 1.38. The right hand side of the last equation is equal to

µ +

(
ΣY X

ΣXX

)
Σ−1

XX(X − µX) =

(
µY − ΣY XΣ−1

XXµX + ΣY XΣ−1
XXX

X

)

and the result follows since

βT
2 = ΣY XΣ−1

XX .

b) See Croux et al. (2001) for references.

Example 1.17. This example illustrates another application of Theorem
1.38. Suppose that X comes from a mixture of two multivariate normals with
the same mean and proportional covariance matrices. That is, let

X ∼ (1 − γ)Np(µ,Σ) + γNp(µ, cΣ)

where c > 0 and 0 < γ < 1. Since the multivariate normal distribution is
elliptically contoured (and see Theorem 1.37),

E(X|BT X) = (1 − γ)[µ + M1B
T (X − µ)] + γ[µ + M2B

T (X − µ)]

= µ + [(1 − γ)M 1 + γM 2]B
T (X − µ) ≡ µ + MBT (X − µ).
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Since MB only depends on B and Σ, it follows that M 1 = M2 = M = MB .
Hence X has an elliptically contoured distribution by Theorem 1.38. See
Problem 1.13 for a related result.

Let x ∼ Np(µ,Σ) and y ∼ χ2
d be independent. Let wi = xi/(y/d)

1/2 for
i = 1, ..., p. Then w has a multivariate t-distribution with parameters µ and
Σ and degrees of freedom d, an important elliptically contoured distribution.

Cornish (1954) showed that the covariance matrix of w is Cov(w) =
d

d− 2
Σ

for d > 2. The case d = 1 is known as a multivariate Cauchy distribution.
The joint pdf of w is

f(z) =
Γ ((d+ p)/2)) |Σ|−1/2

(πd)p/2Γ (d/2)
[1 + d−1(z − µ)T Σ−1(z − µ)]−(d+p)/2.

See Mardia et al. (1979, pp. 43, 57). See Johnson and Kotz (1972, p. 134) for
the special case where the xi ∼ N(0, 1).

The following EC(µ,Σ, g) distribution for a p × 1 random vector x is
the uniform distribution on a hyperellipsoid where f(z) = c for z in the
hyperellipsoid where c is the reciprocal of the volume of the hyperellipsoid.
The pdf of the distribution is

f(z) =
Γ (p

2
+ 1)

[(p+ 2)π]p/2
|Σ|−1/2I[(z − µ)T Σ−1(z − µ) ≤ p + 2].

Then E(x) = µ by symmetry and is can be shown that Cov(x) = Σ.
If x ∼ Np(µ,Σ) and ui = exp(xi) for i = 1, ..., p, then u has a multivariate

lognormal distribution with parameters µ and Σ. This distribution is not an
elliptically contoured distribution. See Problem 1.8.

1.8 Summary

1) A case or observation consists of k random variables measured for one
person or thing. The ith case zi = (zi1, ..., zik)

T . The training data consists
of z1, ..., zn. A statistical model or method is fit (trained) on the training
data. The test data consists of zn+1, ..., zn+m, and the test data is often
used to evaluate the quality of the fitted model.

2) For classical regression and multivariate analysis, we often want n ≥
10p, and a model with n < 5p is overfitting: the model does not have enough
data to estimate parameters accurately if x is p × 1. Statistical Learning
methods often use a model with d variables, where n ≥ Jd with J ≥ 5 and
preferably J ≥ 10. A model is underfitting if it omits important predictors.
Fix p, if the probability that a model underfits goes to 0 as the sample size
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n → ∞, then overfitting may not be too serious if n ≥ Jd. Underfitting can
cause the model to fail to hold.

3) Regression investigates how the response variable Y changes with the
value of a p × 1 vector x of predictors. For a 1D regression model, Y is
conditionally independent of x given the sufficient predictor SP = h(x),
written Y x|h(x), where the real valued function h : R

p → R. The estimated

sufficient predictorESP = ĥ(x). A response plot is a plot of the ESP versus

the response Y . Often SP = xT β and ESP = xT β̂. A residual plot is a plot
of the ESP versus the residuals. Tip: if the model for Y (more accurately
for Y |x) depends on x only through the real valued function h(x), then
SP = h(x).

4) If X and Y are p×1 random vectors, a a conformable constant vector,
and A and B are conformable constant matrices, then

E(X+Y ) = E(X)+E(Y ), E(a+Y ) = a+E(Y ), & E(AXB) = AE(X)B.

Also
Cov(a + AX) = Cov(AX) = ACov(X)AT .

Note that E(AY ) = AE(Y ) and Cov(AY ) = ACov(Y )AT .
5) If X ∼ Np(µ,Σ), then E(X) = µ and Cov(X) = Σ.

6) If X ∼ Np(µ,Σ) and if A is a q×pmatrix, then AX ∼ Nq(Aµ,AΣAT ).
If a is a p × 1 vector of constants, then X + a ∼ Np(µ + a,Σ).

7) All subsets of a MVN are MVN: (Xk1
, ..., Xkq)

T ∼ Nq(µ̃, Σ̃) where

µ̃i = E(Xki) and Σ̃ij = Cov(Xki , Xkj). In particular, X1 ∼ Nq(µ1,Σ11)
and X2 ∼ Np−q(µ2,Σ22). If X ∼ Np(µ,Σ), then X1 and X2 are indepen-
dent iff Σ12 = 0.

8)

Let

(
Y
X

)
∼ N2

((
µY

µX

)
,

(
σ2

Y Cov(Y,X)
Cov(X, Y ) σ2

X

))
.

Also recall that the population correlation between X and Y is given by

ρ(X, Y ) =
Cov(X, Y )√

VAR(X)
√

VAR(Y )
=

σX,Y

σXσY

if σX > 0 and σY > 0.
9) The conditional distribution of a MVN is MVN. If X ∼ Np(µ,Σ), then

the conditional distribution of X1 given that X2 = x2 is multivariate normal
with mean µ1+Σ12Σ

−1
22 (x2−µ2) and covariance matrix Σ11−Σ12Σ

−1
22 Σ21.

That is,

X1|X2 = x2 ∼ Nq(µ1 + Σ12Σ
−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).

10) Notation:

X1|X2 ∼ Nq(µ1 + Σ12Σ
−1
22 (X2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).
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11) Be able to compute the above quantities if X1 and X2 are scalars.
12) Let Xn be a sequence of random vectors with joint cdfs Fn(x) and let

X be a random vector with joint cdf F (x).

a) Xn converges in distribution to X, written Xn
D→ X , if Fn(x) →

F (x) as n → ∞ for all points x at which F (x) is continuous. The distribution
of X is the limiting distribution or asymptotic distribution of Xn. Note
that X does not depend on n.

b) Xn converges in probability to X, written Xn
P→ X, if for every

ε > 0, P (‖Xn − X‖ > ε) → 0 as n→ ∞.
13) Multivariate Central Limit Theorem (MCLT): If X1, ...,Xn are iid

k × 1 random vectors with E(X) = µ and Cov(X) = Σx, then

√
n(Xn − µ)

D→ Nk(0,Σx)

where the sample mean

Xn =
1

n

n∑

i=1

X i.

14) Suppose
√
n(Tn − µ)

D→ Np(θ,Σ). Let A be a q × p constant matrix.

Then A
√
n(Tn − µ) =

√
n(ATn − Aµ)

D→ Nq(Aθ,AΣAT ).

15) Suppose A is a conformable constant matrix and Xn
D→ X . Then

AXn
D→ AX .

16) A g × 1 random vector u has a mixture distribution of the uj

with probabilities πj if u is equal to uj with probability πj. The cdf of

u is Fu(t) =

J∑

j=1

πjFuj(t) where the probabilities πj satisfy 0 ≤ πj ≤

1 and
∑J

j=1 πj = 1, J ≥ 2, and Fuj
(t) is the cdf of a g × 1 ran-

dom vector uj . Then E(u) =
∑J

j=1 πjE[uj ] and Cov(u) = E(uuT ) −
E(u)E(uT ) = E(uuT )−E(u)[E(u)]T =

∑J
j=1 πjE[uju

T
j ]−E(u)[E(u)]T =∑J

j=1 πjCov(uj) +
∑J

j=1 πjE(uj)[E(uj)]
T −E(u)[E(u)]T . If E(uj) = θ for

j = 1, ..., J , then E(u) = θ and Cov(u) =
∑J

j=1 πjCov(uj). Note that

E(u)[E(u)]T =
∑J

j=1

∑J
k=1 πjπkE(uj)[E(uk)]T .

1.9 Complements

Graphical response transformation methods similar to those in Section 1.2
include Cook and Olive (2001) and Olive (2004b, 2017a: section 3.2). A nu-
merical method is given by Zhang and Yang (2017).
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Section 1.5 followed Olive (2014, ch. 8) closely, which is a good Master’s
level treatment of large sample theory. There are several PhD level texts
on large sample theory including, in roughly increasing order of difficulty,
Lehmann (1999), Ferguson (1996), Sen and Singer (1993), and Serfling (1980).
White (1984) considers asymptotic theory for econometric applications.

For a nonsingular matrix, the inverse of the matrix, the determinant of
the matrix, and the eigenvalues of the matrix are continuous functions of
the matrix. Hence if Σ̂ is a consistent estimator of Σ, then the inverse,
determinant, and eigenvalues of Σ̂ are consistent estimators of the inverse,
determinant, and eigenvalues of Σ > 0. See, for example, Bhatia et al. (1990),
Stewart (1969), and Severini (2005, pp. 348-349).

Big Data
Sometimes n is huge and p is small. Then importance sampling and se-

quential analysis with sample size less than 1000 can be useful for inference
for regression and time series models. Sometimes n is much smaller than p,
for example with microarrays. Sometimes both n and p are large.

1.10 Problems

Problems from old qualifying exams are marked with a Q since these problems
take longer than quiz and exam problems.

crancap hdlen hdht Data for 1.1

1485 175 132

1450 191 117

1460 186 122

1425 191 125

1430 178 120

1290 180 117

90 75 51

1.1∗. The table (W ) above represents 3 head measurements on 6 people
and one ape. Let X1 = cranial capacity, X2 = head length, and X3 = head
height. Let x = (X1, X2, X3)

T . Several multivariate location estimators, in-
cluding the coordinatewise median and sample mean, are found by applying
a univariate location estimator to each random variable and then collecting
the results into a vector. a) Find the coordinatewise median MED(W ).

b) Find the sample mean x.

1.2Q. Suppose that the regression model is Yi = 7+βXi +ei for i = 1, ..., n
where the ei are iid N(0, σ2) random variables. The least squares criterion is

Q(η) =

n∑

i=1

(Yi − 7 − ηXi)
2.
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a) What is E(Yi)?

b) Find the least squares estimator β̂ of β by setting the first derivative
d

dη
Q(η) equal to zero.

c) Show that your β̂ is the global minimizer of the least squares criterion

Q by showing that the second derivative
d2

dη2
Q(η) > 0 for all values of η.

1.3Q. The location model is Yi = µ+ei for i = 1, ..., n where the ei are iid
with mean E(ei) = 0 and constant variance VAR(ei) = σ2. The least squares

estimator µ̂ of µ minimizes the least squares criterion Q(η) =

n∑

i=1

(Yi − η)2.

To find the least squares estimator, perform the following steps.

a) Find the derivative
d

dη
Q, set the derivative equal to zero and solve for

η. Call the solution µ̂.

b) To show that the solution was indeed the global minimizer of Q, show

that
d2

dη2
Q > 0 for all real η. (Then the solution µ̂ is a local min and Q is

convex, so µ̂ is the global min.)

1.4Q. The normal error model for simple linear regression through the
origin is

Yi = βXi + ei

for i = 1, ..., n where e1, ..., en are iid N(0, σ2) random variables.

a) Show that the least squares estimator for β is

β̂ =

∑n
i=1XiYi∑n
i=1X

2
i

.

b) Find E(β̂).

c) Find VAR(β̂).

(Hint: Note that β̂ =
∑n

i=1 kiYi where the ki depend on the Xi which are
treated as constants.)

1.5Q. Suppose that the regression model is Yi = 10+2Xi2 +β3Xi3 +ei for
i = 1, ..., n where the ei are iid N(0, σ2) random variables. The least squares

criterion is Q(η3) =

n∑

i=1

(Yi − 10 − 2Xi2 − η3Xi3)
2. Find the least squares es-
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timator β̂3 of β3 by setting the first derivative
d

dη3
Q(η3) equal to zero. Show

that your β̂3 is the global minimizer of the least squares criterion Q by show-

ing that the second derivative
d2

dη2
3

Q(η3) > 0 for all values of η3.

1.6. Suppose x1, ...,xn are iid p × 1 random vectors from a multivariate
t-distribution with parameters µ and Σ with d degrees of freedom. Then

E(xi) = µ and Cov(x) =
d

d− 2
Σ for d > 2. Assuming d > 2, find the

limiting distribution of
√
n(x − c) for appropriate vector c.

1.7. Suppose x1, ...,xn are iid p× 1 random vectors where E(xi) = e0.51
and Cov(xi) = (e2 − e)Ip. Find the limiting distribution of

√
n(x − c) for

appropriate vector c.

1.8. Suppose x1, ...,xn are iid 2 × 1 random vectors from a multivariate
lognormal LN(µ, Σ) distribution. Let xi = (Xi1, Xi2)

T . Following Press
(2005, pp. 149-150), E(Xij) = exp(µj + σ2

j /2),

V (Xij) = exp(σ2
j )[exp(σ2

j ) − 1] exp(2µj) for j = 1, 2, and

Cov(Xi1, Xi2) = exp[µ1 + µ2 + 0.5(σ2
1 + σ2

2) + σ12][exp(σ12) − 1]. Find the
limiting distribution of

√
n(x − c) for appropriate vector c.

1.9. The most used Poisson regression model is Y |x ∼ Poisson(exp(xT β)).
What is the sufficient predictor SP = h(x)?

1.10∗. Suppose that




X1

X2

X3

X4


 ∼ N4







49
100
17
7


 ,




3 1 −1 0
1 6 1 −1
−1 1 4 0
0 −1 0 2





 .

a) Find the distribution of X2.

b) Find the distribution of (X1, X3)
T .

c) Which pairs of random variables Xi and Xj are independent?

d) Find the correlation ρ(X1 , X3).

1.11∗. Recall that if X ∼ Np(µ,Σ), then the conditional distribution of
X1 given that X2 = x2 is multivariate normal with mean µ1+Σ12Σ

−1
22 (x2−

µ2) and covariance matrix Σ11 − Σ12Σ
−1
22 Σ21.

Let σ12 = Cov(Y,X) and suppose Y and X follow a bivariate normal
distribution (

Y
X

)
∼ N2

((
49
100

)
,

(
16 σ12

σ12 25

))
.
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a) If σ12 = 0, find Y |X. Explain your reasoning.

b) If σ12 = 10, find E(Y |X).

c) If σ12 = 10, find Var(Y |X).

1.12. Let σ12 = Cov(Y,X) and suppose Y andX follow a bivariate normal
distribution (

Y
X

)
∼ N2

((
15
20

)
,

(
64 σ12

σ12 81

))
.

a) If σ12 = 10, find E(Y |X).

b) If σ12 = 10, find Var(Y |X).

c) If σ12 = 10, find ρ(Y,X), the correlation between Y and X.

1.13. Suppose that

X ∼ (1 − γ)ECp(µ,Σ, g1) + γECp(µ, cΣ, g2)

where c > 0 and 0 < γ < 1. Following Example 1.17, show that X has
an elliptically contoured distribution assuming that all relevant expectations
exist.

1.14. In Theorem 1.39b, show that if the second moments exist, then Σ
can be replaced by Cov(X).

1.15. Using the notation in Theorem 1.40, show that if the second mo-
ments exist, then

Σ−1
XXΣXY = [Cov(X)]−1Cov(X , Y ).

1.16. Using the notation under Theorem 1.38, show that if X is elliptically
contoured, then the conditional distribution of X1 given that X2 = x2 is
also elliptically contoured.

1.17∗. Suppose Y ∼ Nn(Xβ, σ2I). Find the distribution of
(XT X)−1XT Y if X is an n × p full rank constant matrix and β is a p× 1
constant vector.

1.18. Recall that Cov(X,Y ) = E[(X − E(X))(Y − E(Y ))T ]. Using the
notation of Theorem 1.40, let (Y,XT )T be ECp+1(µ,Σ, g) where Y is a

random variable. Let the covariance matrix of (Y,XT ) be

Cov((Y,XT )T ) = c

(
ΣY Y ΣY X

ΣXY ΣXX

)
=

(
VAR(Y ) Cov(Y,X)

Cov(X , Y ) Cov(X)

)
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where c is some positive constant. Show that E(Y |X) = α+ βT X where

α = µY − βT µX and

β = [Cov(X)]−1Cov(X , Y ).

1.19. (Due to R.D. Cook.) Let X be a p×1 random vector with E(X) = 0
and Cov(X) = Σ. Let B be any constant full rank p × r matrix where
1 ≤ r ≤ p. Suppose that for all such conforming matrices B,

E(X |BT X) = MBBT X

where MB a p× r constant matrix that depend on B.
Using the fact that ΣB = Cov(X,BTX) = E(XXTB) =

E[E(XXTB|BTX)], compute ΣB and show that MB = ΣB(BT ΣB)−1.
Hint: what acts as a constant in the inner expectation?

1.20. Let x be a p× 1 random vector with covariance matrix Cov(x). Let
A be an r × p constant matrix and let B be a q × p constant matrix. Find
Cov(Ax,Bx) in terms of A,B, and Cov(x).

1.21. Suppose that




X1

X2

X3

X4


 ∼ N4







9
16
4
1


 ,




1 0.8 −0.4 0
0.8 1 −0.56 0
−0.4 −0.56 1 0

0 0 0 1





 .

a) Find the distribution of X3.

b) Find the distribution of (X2, X4)
T .

c) Which pairs of random variables Xi and Xj are independent?

d) Find the correlation ρ(X1 , X3).

1.22. Suppose x1, ...,xn are iid p× 1 random vectors where

xi ∼ (1 − γ)Np(µ,Σ) + γNp(µ, cΣ)

with 0 < γ < 1 and c > 0. Then E(xi) = µ and Cov(xi) = [1 + γ(c − 1)]Σ.
Find the limiting distribution of

√
n(x − d) for appropriate vector d.

1.23. Let X be an n × p constant matrix and let β be a p × 1 constant
vector. Suppose Y ∼ Nn(Xβ, σ2I). Find the distribution of HY if HT =
H = H2 is an n× n matrix and if HX = X . Simplify.

1.24. Recall that if X ∼ Np(µ,Σ), then the conditional distribution of X1

given that X2 = x2 is multivariate normal with mean µ1+Σ12Σ
−1
22 (x2−µ2)

and covariance matrix Σ11 − Σ12Σ
−1
22 Σ21. Let Y and X follow a bivariate
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normal distribution
(
Y
X

)
∼ N2

((
134
96

)
,

(
24.5 1.1
1.1 23.0

))
.

a) Find E(Y |X).

b) Find Var(Y |X).
1.25. Suppose that




X1

X2

X3

X4


 ∼ N4







1
7
3
0


 ,




4 0 2 1
0 1 0 0
2 0 3 1
1 0 1 5





 .

a) Find the distribution of (X1, X4)
T .

b) Which pairs of random variables Xi and Xj are independent?

c) Find the correlation ρ(X1, X4).

1.26. Suppose that




X1

X2

X3

X4


 ∼ N4







3
4
2
3


 ,




3 2 1 1
2 4 1 0
1 1 2 0
1 0 0 3





 .

a) Find the distribution of (X1, X3)
T .

b) Which pairs of random variables Xi and Xj are independent?

c) Find the correlation ρ(X1, X3).

1.27. Suppose that




X1

X2

X3

X4


 ∼ N4







49
25
9
4


 ,




2 −1 3 0
−1 5 −3 0
3 −3 5 0
0 0 0 4





 .

a) Find the distribution of (X1, X3)
T .

b) Which pairs of random variables Xi and Xj are independent?

c) Find the correlation ρ(X1, X3).

1.28. Recall that if X ∼ Np(µ,Σ), then the conditional distribution of X1

given that X2 = x2 is multivariate normal with mean µ1+Σ12Σ
−1
22 (x2−µ2)
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and covariance matrix Σ11 − Σ12Σ
−1
22 Σ21. Let Y and X follow a bivariate

normal distribution
(
Y
X

)
∼ N2

((
49
17

)
,

(
3 −1
−1 4

))
.

a) Find E(Y |X).

b) Find Var(Y |X).

1.29. Following Srivastava and Khatri (1979, p. 47), let

X =

(
X1

X2

)
∼ Np

[(
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

)]
.

a) Show that the nonsingular linear transformation

(
I −Σ12Σ

−1
22

0 I

)(
X1

X2

)
=

(
X1 − Σ12Σ

−1
22 X2

X2

)
∼

Np

[(
µ1 − Σ12Σ

−1
22 µ2

µ2

)
,

(
Σ11 − Σ12Σ

−1
22 Σ21 0

0 Σ22

)]
.

b) Then X1 − Σ12Σ
−1
22 X2 X2, and

X1 − Σ12Σ
−1
22 X2 ∼ Nq(µ1 − Σ12Σ

−1
22 µ2,Σ11 − Σ12Σ

−1
22 Σ21).

By independence, X1 − Σ12Σ
−1
22 X2 has the same distribution as

(X1−Σ12Σ
−1
22 X2)|X2, and the term −Σ12Σ

−1
22 X2 is a constant, given X2.

Use this result to show that

X1|X2 ∼ Nq(µ1 + Σ12Σ
−1
22 (X2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).

1.30. Let Tn be as estimator of θ with µ = E(Tn). Assume Cov(Tn) exists.
Then the mean square error MSEθ(Tn) = tr(E[(Tn − θ)(Tn − θ)T ] =
E[(Tn−θ)T (Tn−θ)]. Show that MSEθ(Tn) = tr[Cov(Tn)]+(µ−θ)T (µ−θ).

Hint: Let tr be the trace operator. If AB is a square matrix, then
tr(AB) = tr(BA). Also, tr(A + B) = tr(A) + tr(B), and E[tr(X)] =
tr(E[X]) when the expected value of the random matrix X exists.

1.31Q. For the simple linear regression model, Yi = β1 + xiβ2 + ei for
i = 1, ..., n or Y = Xβ +e where X = [1 x] and β = (β1 β2)

T . Find β̂1 and

β̂2 by minimizing the least squares criterion.

1.32. Consider the following two simple linear regression models:
Model I: Yi = β0 + β1xi + ei

Model II: Yi = β1xi + ei

with ei iid with mean 0 and variance σ2 and i = 1, ..., n,
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a) State (but do not derive) the least squares estimators of β1 for both
models. Are these estimators “BLUE”? Why or why not. Quote the relevant
theorem(s) in support of your assertation.

b) Prove than V (β̂1) = σ2/

n∑

i=1

(xi − x)2 for model I, and V (β̂1) =

σ2/

n∑

i=1

(xi)
2 for model II.

c) Referring to b), show that the variance V (β̂1) for Model I is never

smaller than the variance V (β̂1) for model II.

1.33.

1.34.

1.35.

1.36.

1.37.

1.38.

1.39.

R Problem

Use the command source(“G:/linmodpack.txt”) to download the
functions and the command source(“G:/linmoddata.txt”) to download the
data. See Preface or Section 11.1. Typing the name of the slpack func-
tion, e.g. tplot2, will display the code for the function. Use the args com-
mand, e.g. args(tplot2), to display the needed arguments for the function.
For the following problem, the R command can be copied and pasted from
(http://parker.ad.siu.edu/Olive/linmodrhw.txt) into R.

1.40. This problem uses some of the R commands at the end of Section
1.2.1. A problem with response and residual plots is that there can be a lot
of black in the plot if the sample size n is large (more than a few thousand).
A variant of the response plot for the additive error regression model Y =
m(x)+e would plot the identity line, the two lines parallel to the identity line
corresponding to the Section 4.3 large sample 100(1−δ)% prediction intervals
for Yf that depends on Ŷf . Then plot points corresponding to training data
cases that do not lie in their 100(1−δ)% PI. We will use δ = 0.01, n = 100000,
and p = 8.

a) Copy and paste the commands for this part from linmodrhw into R.
They make the usual response plot with a lot of black. Do not include the
plot in Word.
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b) Copy and paste the commands for this part into R. They make the
response plot with the points within the pointwise 99% prediction interval
bands omitted. Include this plot in Word. For example, left click on the plot
and hit the Ctrl and c keys at the same time to make a copy. Then paste the
plot into Word, e.g., get into Word and hit the Ctrl and v keys at the same
time.

c) The additive error regression model is a 1D regression model. What is
the sufficient predictor = h(x)?

1.41. The linmodpack function tplot2 makes transformation plots for
the multiple linear regression model Y = t(Z) = xT β + e. Type = 1 for full
model OLS and should not be used if n < 5p, type = 2 for elastic net, 3 for
lasso, 4 for ridge regression, 5 for PLS, 6 for PCR, and 7 for forward selection
with Cp if n ≥ 10p and EBIC if n < 10p. These methods are discussed in
Chapter 5.

Copy and paste the three library commands near the top of linmodrhw
into R.

For parts a) and b), n = 100, p = 4 and Y = log(Z) = 0x1 + x2 + 0x3 +
0x4 + e = x2 + e. (Y and Z are swapped in the R code.)

a) Copy and paste the commands for this part into R. This makes the
response plot for the elastic net using Y = Z and x when the linear model
needs Y = log(Z). Do not include the plot in Word, but explain why the plot
suggests that something is wrong with the model Z = xT β + e.

b) Copy and paste the command for this part into R. Right click Stop 3
times until the horizontal axis has log(z). This is the response plot for the
true model Y = log(Z) = xT β + e = x2 + e. Include the plot in Word. Right
click Stop 3 more times so that the cursor returns in the command window.

c) Is the response plot linear?
For the remaining parts, n = p − 1 = 100 and Y = log(Z) = 0x1 + x2 +

0x3 + · · ·+ 0x101 + e = x2 + e. Hence the model is sparse.
d) Copy and paste the commands for this part into R. Right click Stop 3

times until the horizontal axis has log(z). This is the response plot for the
true model Y = log(Z) = xT β + e = x2 + e. Include the plot in Word. Right
click Stop 3 more times so that the cursor returns in the command window.

e) Is the plot linear?
f) Copy and paste the commands for this part into R. Right click Stop 3

times until the horizontal axis has log(z). This is the response plot for the true
model Y = log(Z) = xT β + e = x2 + e. Include the plot in Word. Right click
Stop 3 more times so that the cursor returns in the command window. PLS
is probably overfitting since the identity line nearly interpolates the fitted
points.

1.42. Get the R commands for this problem. The data is such that Y =
2 + x2 + x3 + x4 + e where the zero mean errors are iid [exponential(2) -
2]. Hence the residual and response plots should show high skew. Note that
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β = (2, 1, 1, 1)T. The R code uses 3 nontrivial predictors and a constant, and
the sample size n = 1000.

a) Copy and paste the commands for part a) of this problem into R. Include
the response plot in Word. Is the lowess curve fairly close to the identity line?

b) Copy and paste the commands for part b) of this problem into R.
Include the residual plot in Word: press the Ctrl and c keys as the same time.
Then use the menu command “Paste” in Word. Is the lowess curve fairly
close to the r = 0 line? The lowess curve is a flexible scatterplot smoother.

c) The output out$coef gives β̂. Write down β̂ or copy and paste β̂ into

Word. Is β̂ close to β?





Chapter 2

Full Rank Linear Models

2.1 Projection Matrices and the Column Space

Vector spaces, subspaces, and column spaces should be familiar from linear
algebra, but are reviewed below.

Definition 2.1. A set V ⊆ R
k is a vector space if for any vectors

x, y, z ∈ V, and scalars a and b, the operations of vector addition and scalar
multiplication are defined as follows.
1) (x + y) + z = x + (y + z).
2) x + y = y + x.
3) There exists 0 ∈ V such that x + 0 = x = 0 + x.
4) For any x ∈ V, there exists y = −x such that x + y = y + x = 0.
5) a(x + y) = ax + ay.
6) (a + b)x = ax + by.
7) (ab) x = a(b x).
8) 1 x = x.

Hence for a vector space, addition is associative and commutative, there
is an additive identity vector 0, there is an additive inverse −x for each
x ∈ V, scalar multiplication is distributive and associative, and 1 is the
scalar identity element.

Two important vector spaces are R
k and V = {0}. Showing that a set M

is a subspace is a common method to show that M is a vector space.

Definition 2.2. Let M be a nonempty subset of a vector space V. If i)
ax ∈ M ∀x ∈ M and for any scalar a, and ii) x + y ∈ M ∀x, y ∈ M, then
M is a vector space known as a subspace.

Definition 2.3. The set of all linear combinations of x1, ...,xn is the
vector space known as span(x1, ...,xn) = {y ∈ R

k : y =
∑n

i=1 aixi for some
constants a1, ..., an}.

71
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Definition 2.4. Let x1, ...,xk ∈ V. If ∃ scalars α1, ..., αk not all zero such
that

∑k
i=1 αixi = 0, then x1, ...,xk are linearly dependent. If

∑k
i=1 αixi = 0

only if αi = 0 ∀ i = 1, ..., k, then x1, ...,xk are linearly independent. Suppose
{x1, ...,xk} is a linearly independent set and V = span(x1, ...,xk). Then
{x1, ...,xk} is a linearly independent spanning set for V, known as a basis.

Definition 2.5. Let A = [a1 a2 ... am] be an n ×m matrix. The space
spanned by the columns of A = column space of A = C(A). Then C(A) =
{y ∈ R

n : y = Aw for some w ∈ R
m} = {y : y = w1a1 +w2a2 + · · ·+wmam

for some scalars w1, ...., wm} = span(a1, ...,am).

The space spanned by the rows of A is the row space of A. The row space
of A is the column space C(AT ) of AT . Note that

Aw = [a1 a2 ... am]



w1

...
wm


 =

m∑

i=1

wiai.

With the design matrix X , different notation is used to denote the columns
of X since both the columns and rows X are important. Let

X = [v1 v2 ... vp] =




xT
1
...

xT
n




be an n× p matrix. Note that C(X) = {y ∈ R
n : y = Xb for some b ∈ R

p}.
Hence Xb is a typical element of C(X) and Aw is a typical element of C(A).
Note that

Xb =




xT
1
...

xT
n


b =




xT
1 b
...

xT
nb


 = [v1 v2 ... vp]



b1
...
bp


 =

p∑

i=1

bivi.

If the function Xf(b) = Xb where the f indicates that the operation
Xf : R

p → R
n is being treated as a function, then C(X) is the range of Xf .

Hence some authors call the column space of A the range of A.
Let B be n × k, and let A be n ×m. One way to show C(A) = C(B)

is to show that i) ∀x ∈ R
m, ∃ y ∈ R

k such that Ax = By ∈ C(B) so
C(A) ⊆ C(B), and ii) ∀y ∈ R

k, ∃ x ∈ R
m such that By = Ax ∈ C(A) so

C(B) ⊆ C(A). Another way to show C(A) = C(B) is to show that a basis
for C(A) is also a basis for C(B).

Definition 2.6. The dimension of a vector space V = dim(V) = the
number of vectors in a basis of V. The rank of a matrix A = rank(A) =
dim(C(A)), the dimension of the column space of A. Let A be n×m. Then
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rank(A) = rank(AT ) ≤ min(m, n). If rank(A) = min(m, n), then A has full
rank, or A is a full rank matrix.

Definition 2.7. The null space of A = N(A) = {x : Ax = 0} = kernel
of A. The nullity of A = dim[N(A)]. The subspace V⊥ = {y ∈ R

k : y ⊥ V}
is the orthogonal complement of V, where y ⊥ V means yT x = 0 ∀ x ∈ V.
N(AT ) = [C(A)]⊥, so N(A) = [C(AT )]⊥.

Theorem 2.1: Rank Nullity Theorem. Let A be n × m. Then
rank(A) + dim(N(A)) = m.

Generalized inverses are useful for the non-full rank linear model and for
defining projection matrices.

Definition 2.8. A generalized inverse of an n × m matrix A is any
m× n matrix A− satisfying AA−A = A.

Other names are conditional inverse, pseudo inverse, g-inverse, and p-
inverse. Usually a generalized inverse is not unique, but if A−1 exists, then
A− = A−1 is unique.

Notation: G := A− means G is a generalized inverse of A.

Recall that if A is idempotent, then A2 = A. A matrix A is tripotent if
A3 = A. For both these cases, A := A− since AAA = A. It will turn out
that symmetric idempotent matrices are projection matrices.

Definition 2.9. Let V be a subspace of R
n. Then every y ∈ R

n can be
expressed uniquely as y = w + z where w ∈ V and z ∈ V⊥. Let X =
[v1 v2 ... vp] be n× p, and let V = C(X) = span(v1, ..., vp). Then the n× n
matrix P V = P X is a projection matrix on C(X) if PX y = w ∀ y ∈ R

n.
(Here y = w + z = wy + zy , so w depends on y.)

Note: Some authors call a projection matrix an “orthogonal projection
matrix,” and call an idempotent matrix a “projection matrix.”

Theorem 2.2: Projection Matrix Theorem. a) PX is unique.

b) P X = X(XT X)−XT where (XT X)− is any generalized inverse of

XT X .
c) A is a projection matrix onC(A) iff A is symmetric and idempotent. Hence
PX is a projection matrix on C(PX ) = C(X), and PX is symmetric and
idempotent. Also, each column pi of P X satisfies P Xpi = pi ∈ C(X).
d) In − P X is the projection matrix on [C(X)]⊥.
e) A = P X iff i) y ∈ C(X) implies Ay = y and ii) y ⊥ C(X) implies
Ay = 0.
f) P XX = X, and P XW = W if each column of W ∈ C(X).
g) P Xvi = vi.
h) If C(XR) is a subspace of C(X), then P XP XR

= P XR
P X = PXR

.
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i) The eigenvalues of P X are 0 or 1.
j) Let tr(A) = trace(A). Then rank(P X) = tr(P X) = rank(X).
k) P X is singular unless X is a nonsingular n×n matrix, and then P X = In.
l) Let X = [Z Xr ] where rank(X) = rank(Xr) = r so the columns of Xr

form a basis for C(X). Then

[
0 0

0 (XT
r Xr)

−1

]

is a generalized inverse of XT X , and PX = Xr(X
T
r Xr)

−1XT
r .

Two important consequences of the above theorem follow. First, P is
a projection matrix iff P is symmetric and idempotent. Partition X as
X = [X1 X2], let P be the projection matrix for C(X) and let P 1 be
the projection matrix for C(X1). Since C(P 1) = C(X1) ⊆ C(X), P P 1 = P 1.
Hence P 1P = (P P 1)

T = P T
1 = P 1.

Some results from linear algebra are needed to prove parts of the above
theorem. Unless told otherwise, matrices in this text are real. Then the
eigenvalues of a symmetric matrix A are real. If A is symmetric, then
rank(A) = number of nonzero eigenvalues of A. Recall that if AB is
a square matrix, then tr(AB) = tr(BA). Similarly, if A1 is m1 × m2,
A2 is m2 × m3, ..., Ak−1 is mk−1 × mk, and Ak is mk × m1 , then
tr(A1A2 · · ·Ak) = tr(AkA1A2 · · ·Ak−1) = tr(Ak−1AkA1A2 · · ·Ak−2) =
· · · = tr(A2A3 · · ·AkA1). Also note that a scalar is a 1 × 1 matrix, so
tr(a) = a. The next two paragraphs follow Christensen (1987, pp. 335-338)
closely.

If P and A are n× n matrices, then P = A iff P y = Ay for all y ∈ R
n

iff yT P = yT A for all y ∈ R
n. Let V be a subspace of R

n. Let y ∈ R
n

with y = w + z where w ∈ V and z ∈ V⊥. Let A and P be projection
matrices on V. Then Ay = w = Py. Since y was arbitrary, A = P and
projection matrices are unique. We prove that P X is symmetric below. Then

the projection matrix A = A(AT A)−A is symmetric by replacing X by A.
Hence Az = AT z = 0. Thus A2y = Aw = w = Ay, and A2 = A since y
was arbitrary.

Now suppose A2 = A = AT , and let w ∈ C(A). Hence w = Aa for some
vector a. Thus Aw = A2a = Aa = w. Let z ⊥ C(A) = C(AT ). Then
zT A = zT AT = 0. Thus Ay = Aw = w, and A is a projection matrix on
C(A). Note that C(PX) ⊆ C(X) since P XX = X , and C(X) ⊆ C(PX)

since PX = XW where W = (XT X)−XT . Thus C(X) = C(P X). To
show that P XX = X , let y = w + z with w = Xa and zT X = 0.

Note that yT P XX = wT X(XT X)−XT X = aT XT X(XT X)−XT X =

aT XT X = wT X = yT X. Since y was arbitrary, P XX = X. Note that

PXy = P X(w+z) = P Xw = X(XT X)−XT Xa = PXXa = Xa = w.
Thus PX is a projection matrix on C(X).
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Note that if G is a generalized linear inverse of a symmetric matrix A,
then AT = AT GT AT = AGT A = A. Hence GT is a generalized linear
inverse of A. Also, AGAGT A = AGT A = A. Hence GAGT , a symmetric
matrix, is a generalized inverse of A. Thus a symmetric matrix A always
has a symmetric generalized linear inverse. Hence let B := (XT X)− be a
symmetric matrix. Then P X = XT BX = XT (XT X)−X is symmetric

since P X is unique, even if (XT X)− is not symmetric.
For part d), note that if y = w + z, then (In − PX )y = z ∈ [C(X)]⊥.

Hence the result follows from the definition of a projection matrix by in-
terchanging the roles of w and z. Part e) follows from the definition of
a projection matrix since if y ∈ C(X) then y = y + 0 where y = w
and 0 = z. If y ⊥ C(X) then y = 0 + y where 0 = w and y = z.
Part g) is a special case of f). In k), P X is singular unless p = n since
rank(X) = r ≤ min(p, n) < max(n, p) unless p = n, and PX is an
n × n matrix. Need rank(P X) = n for P X to be nonsingular. For h),
PXPXR

= P XR
by f) since each column of P Xr

∈ C(P X ). Taking
transposes and using symmetry shows P XR

P X = P XR
. For i), if λ is an

eigenvalue of PX , then for some x 6= 0, λx = P Xx = P 2
Xx = λ2x since

PX is idempotent by c). Hence λ = λ2 is real since P X is symmetric, so
λ = 0 or λ = 1. Then j) follows from i) since rank(PX ) = number of nonzero
eigenvalues of PX = tr(P X ).

For l), note that C(X) = C(Xr). Thus Xr(X
T
r Xr)

−1XT
r = PX . Then

XT X =

[
ZT Z ZT Xr

XT
r Z XT

r Xr

]
and XT X

[
0 0

0 (XT
r Xr)

−1

]
XT X =

[
ZT Xr(X

T
r Xr)

−1XT
r Z ZT Xr

XT
r Z XT

r Xr

]
= XT X

since ZT P XZ = ZT Z because each column of Z ∈ C(X).

Most of the above results apply to full rank and nonfull rank matrices.
A corollary of the following theorem is that if X is full rank, then P X =

X(XT X)−1XT = H.
Suppose A is p×p. Then the following are equivalent. 1) A is nonsingular,

2) A has a left inverse L with LA = Ip, and 3) A has a right inverse R
with AR = Ip. To see this, note that 1) implies (2) and 3) since A−1A =
Ip = AA−1 by the definition of an inverse matrix. Suppose AR = Ip. Then
the determinant det(Ip) = 1 = det(AR) = det(A) det(R). Hence det(A) 6= 0
and A is nonsingular. Hence R = A−1AR = A−1 and 3) implies 1). Similarly
2) implies 1). Also note that L = LIp = LAR = IpR = R = A−1. Hence
in the proof below, we could just show that A− = L or A− = R.

Theorem 2.3. If A is nonsingular, the unique generalized inverse of A is
A−1.
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Proof. Let A− be any generalized inverse of A. We give two proofs. i)
A− = A−1AA−AA−1 = A−1AA−1 = A−1. ii) A−A = A−1AA−A =
A−1A = I and AA− = AA−AA−1 = AA−1 = I. Thus A− = A−1. �

2.2 Quadratic Forms

Definition 2.10. Let A be an n×nmatrix and let x ∈ R
n. Then a quadratic

form xT Ax =
∑n

i=1

∑n
j=1 aijxixj , and a linear form is Ax. Suppose A

is a symmetric matrix. Then A is positive definite (A > 0) if xT Ax >
0 ∀ x 6= 0, and A is positive semidefinite (A ≥ 0) if xT Ax ≥ 0 ∀ x.

Notation: The matrix A in a quadratic form xT Ax will be symmetric
unless told otherwise. Suppose B is not symmetric. Since the quadratic form
is a scalar, xT Bx = (xT Bx)T = xT BT x = xT (B+BT )x/2, and the matrix
A = (B + BT )/2 is symmetric. If A ≥ 0 then the eigenvalues λi of A are
real and nonnegative. If A ≥ 0, let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. If A > 0, then
λn > 0. Some authors say symmetric A is nonnegative definite if A ≥ 0, and
that A is positive semidefinite if A ≥ 0 and there exists a nonzero x such
that xT Ax = 0. Then A is singular.

The spectral decomposition theorem is very useful. One application for
linear models is defining the square root matrix.

Theorem 2.4: Spectral Decomposition Theorem. Let A be an n×n
symmetric matrix with eigenvalue eigenvector pairs (λ1, t1), (λ2, t2), ..., (λn, tn)
where tT

i ti = 1 and tT
i tj = 0 if i 6= j for i = 1, ..., n. Hence Ati = λiti. Then

the spectral decomposition of A is

A =
n∑

i=1

λitit
T
i = λ1t1t

T
1 + · · ·+ λntntT

n .

Let T = [t1 t2 · · · tn] be the n × n orthogonal matrix with ith column

ti. Then TT T = T T T = I . Let Λ = diag(λ1, ..., λn) and let Λ1/2 =
diag(

√
λ1, ...,

√
λn). Then A = TΛT T .

Definition 2.11. If A is a positive definite n× n symmetric matrix with
spectral decomposition A =

∑n
i=1 λitit

T
i , then A = TΛT T and

A−1 = TΛ−1T T =
n∑

i=1

1

λi
tit

T
i .

The square root matrix A1/2 = TΛ1/2T T is a positive definite symmetric
matrix such that A1/2A1/2 = A.
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The following theorem is often useful. Both the expected value and trace
are linear operators. Hence tr(A + B) = tr(A) + tr(B), and E[tr(X)] =
tr(E[X]) when the expected value of the random matrix X exists.

Theorem 2.5: expected value of a quadratic form. Let x be a ran-
dom vector with E(x) = µ and Cov(x) = Σ. Then

E(xT Ax) = tr(AΣ) + µT Aµ.

Proof. Two proofs are given. i) Searle (1971, p. 55): Note that E(xxT ) =
Σ + µµT . Since the quadratic form is a scalar and the trace is a linear
operator, E[xT Ax] = E[tr(xT Ax)] = E[tr(AxxT )] = tr(E[AxxT ]) =
tr(AΣ + AµµT ) = tr(AΣ) + tr(AµµT ) = tr(AΣ) + µT Aµ.

ii) Graybill (1976, p. 140): Using E(xixj) = σij + µiµj , E[xT Ax] =∑n
i=1

∑n
j=1 aijE(xixj) =

∑n
i=1

∑n
j=1 aij(σij +µiµj) = tr(AΣ)+µT Aµ. �

Much of the theoretical results for quadratic forms assumes that the ei

are iid N(0, σ2). These exact results are often special cases of large sample
theory that holds for a large class of iid zero mean error distributions that
have V (ei) ≡ σ2. For linear models, Y is typically an n × 1 random vector.
The following theorem from statistical inference will be useful.

Theorem 2.6. Suppose x y, g(x) is a function of x alone, and h(y) is
a function of y alone. Then g(x) h(y).

The following theorem shows that independence of linear forms implies
independence of quadratic forms.

Theorem 2.7. If A and B are symmetric matrices and AY BY , then
Y T AY Y T BY .

Proof. Let g(AY ) = Y T AT A−AY = Y T AA−AY = Y T AY , and
let h(BY ) = Y T BT B−BY = Y T BB−BY = Y T BY . Then the result
follows by Theorem 2.6. �

Theorem 2.8. Let Y ∼ Nn(µ,Σ). a) Let u = AY and w = BY .
Then AY BY iff Cov(u,w) = AΣBT = 0 iff BΣAT = 0. Note that if
Σ = σ2In, then AY BY iff ABT = 0 iff BAT = 0.

b) If A is a symmetric n × n matrix, and B is an m × n matrix, then
Y T AY BY if AΣBT = 0 if BΣAT = BΣA = 0. Note that if Σ =
σ2In, then Y T AY BY if ABT = 0 if BA = 0.

Proof. a) Note that

(
u
w

)
=

(
AY
BY

)
=

(
A
B

)
Y

has a multivariate normal distribution. Hence AY BY iff Cov(u,w) = 0.
Taking transposes shows Cov(u,w) = AΣBT = 0 iff BΣAT = 0.
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b) If AΣBT = 0 , then AY BY by a). Let g(AY ) = Y T AT A−AY =
Y T AA−AY = Y T AY . Then g(AY ) = Y T AY BY by Theorem 2.6. �

One of the most useful theorems for proving that Y T AY Y T BY is
Craig’s Theorem. Taking transposes shows AΣB = 0 iff BΣA = 0. Note
that if AΣB = 0, then (∗) holds. Note AΣB = 0 is a sufficient condition
for Y T AY Y T BY if Σ ≥ 0, but necessary and sufficient if Σ > 0. If
Y ∼ Nn(µ,Σ) and AY BY , then Y T AY Y T BY , but if Σ is singular,
it is possible that Y T AY Y T BY even if AY and BY are dependent.

Theorem 2.9: Craig’s Theorem. Let Y ∼ Nn(µ,Σ).
a) If Σ > 0, then Y T AY Y T BY iff AΣB = 0 iff BΣA = 0.
b) If Σ ≥ 0, then Y T AY Y T BY if AΣB = 0 (or if BΣA = 0).
c) If Σ ≥ 0, then Y T AY Y T BY iff

(∗) ΣAΣBΣ = 0,ΣAΣBµ = 0,ΣBΣAµ = 0, and µT AΣBµ = 0.
Proof. For a) and b), AΣB = 0 implies Y T AY Y T BY by c)

or by Theorems 2.6, 2.7, and 2.8. See Reid and Driscoll (1988) for why
Y T AY Y T BY implies AΣB = 0 in a).

c) See Driscoll and Krasnicka (1995).

The following theorem is a corollary of Craig’s Theorem.

Theorem 2.10. Let Y ∼ Nn(0, In), with A and B symmetric. If
Y T AY ∼ χ2

r and Y T BY ∼ χ2
d, then Y T AY Y T BY iff AB = 0.

Theorem 2.11. If Y ∼ Nn(µ,Σ) with Σ > 0, then the population
squared Mahalanobis distance (Y − µ)T Σ−1(Y − µ) ∼ χ2

n.

Proof. Let Z = Σ−1/2(Y −µ) ∼ Nn(0, I). Then Z = (Z1 , ..., Zn)T where
the Zi are iidN(0, 1). Hence (Y −µ)T Σ−1(Y −µ) = ZT Z =

∑n
i=1 Z

2
i ∼ χ2

n.
�

For large sample theory, the noncentral χ2 distribution is important. If
Z1, ..., Zn are independent N(0, 1) random variables, then

∑n
i=1 Z

2
i ∼ χ2

n.
The noncentral χ2(n, γ) distribution is the distribution of

∑n
i=1 Y

2
i where

Y1, ..., Yn are independent N(µi, 1) random variables. Note that if Y ∼
N(µ, 1), then Y 2 ∼ χ2(n = 1, γ = µ2/2), and if Y ∼ N(

√
2γ, 1), then

Y 2 ∼ χ2(n = 1, γ).

Definition 2.12. Suppose Y1, ..., Yn are independent N(µi, 1) random
variables so that Y = (Y1, ..., Yn)T ∼ Nn(µ, In). Then Y T Y =

∑n
i=1 Y

2
i ∼

χ2(n, γ = µT µ/2), a noncentral χ2(n, γ) distribution, with n degrees of free-
dom and noncentrality parameter γ = µT µ/2 = 1

2

∑n
i=1 µ

2
i ≥ 0. The noncen-

trality parameter δ = µT µ = 2γ is also used. If W ∼ χ2
n, then W ∼ χ2(n, 0)

so γ = 0. The χ2
n distribution is also called the central χ2 distribution.

Some of the proof ideas for the following theorem came from Marden
(2012, pp. 48, 96-97). Recall that if Y1, ..., Yk are independent with moment
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generating functions (mgfs) mYi(t), then the mgf of
∑k

i=1 Yi is m∑k
i=1 Yi

(t) =
k∏

i=1

mYi(t). If Y ∼ χ2(n, γ), then the probability density function (pdf) of Y

is rather hard to use, but is given by

f(y) =

∞∑

j=0

e−γγj

j!

y
n
2
+j−1e−y/2

2
n
2
+jΓ (n

2 + j)
=

∞∑

j=0

pγ(j)fn+2j(y)

where pγ(j) = P (W = j) is the probability mass function of a Poisson(γ)
random variable W , and fn+2j(y) is the pdf of a χ2

n+2j random variable. If

γ = 0, define γ0 = 1 in the first sum, and p0(0) = 1 with p0(j) = 0 for
j > 0 in the second sum. For computing moments and the moment gen-
erating function, the integration and summation operations can be inter-
changed. Hence

∫∞
0
f(y)dy =

∑∞
j=0 pγ(j)

∫∞
0
fn+2j(y)dy =

∑∞
j=0 pγ(j) = 1.

Similarly, if mn+2j(t) = (1 − 2t)−(n+2j)/2 is the mgf of a χ2
n+2j ran-

dom variable, then the mgf of Y is mY (t) = E(etY ) =
∫∞
0 etyf(y)dy =∑∞

j=0 pγ(j)
∫∞
0
etyfn+2j(y)dy =

∑∞
j=0 pγ(j)mn+2j(t).

Theorem 2.12. a) If Y ∼ χ2(n, γ), then the moment generating function
of Y is mY (t) = (1 − 2t)−n/2 exp(−γ[1 − (1 − 2t)−1]) =
(1 − 2t)−n/2 exp[2γt/(1 − 2t)] for t < 0.5.

b) If Yi ∼ χ2(ni, γi) are independent for i = 1, ..., k, then∑k
i=1 Yi ∼ χ2

(∑k
i=1 ni,

∑k
i=1 γi

)
.

c) If Y ∼ χ2(n, γ), then E(Y ) = n+ 2γ and V (Y ) = 2n+ 8γ.
Proof. Two proofs are given. a) i) From the above remarks, and using ex =

∞∑

j=0

xj

j!
,mY (t) =

∞∑

j=0

e−γγj

j!
(1−2t)−(n+2j)/2 = (1−2t)−n/2

∞∑

j=0

e−γ
(

γ
1−2t

)j

j!
=

(1 − 2t)−n/2 exp

(
−γ +

γ

1 − 2t

)
= (1 − 2t)−n/2 exp

(
2γt

1 − 2t

)
.

ii) Let W ∼ N(
√
δ, 1) where δ = 2γ. Then W 2 ∼ χ2(1, δ/2) = χ2(1, γ).

Let W X where X ∼ χ2
n−1 ∼ χ2(n− 1, 0), and let Y = W 2 +X ∼ χ2(n, γ)

by b). Then mW2 (t) =

E(etW2

) =

∫ ∞

−∞
etw2 1√

2π
exp

[−1

2
(w −

√
δ)2
]
dw =

∫ ∞

−∞

1√
2π

exp

[
2

2
tw2 − 1

2
(w2 − 2

√
δ w + δ)

]
dw =

∫ ∞

−∞

1√
2π

exp

[−1

2
(w2 − 2tw2 − 2

√
δ w + δ)

]
dw =
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∫ ∞

−∞

1√
2π

exp

[−1

2
(w2(1 − 2t) − 2

√
δw + δ)

]
dw =

∫ ∞

−∞

1√
2π

exp

[−1

2
A

]
dw

where A = [
√

1 − 2t (w − b)]2 + c with

b =

√
δ

1 − 2t
and c =

−2tδ

1 − 2t

after algebra. Hence m2
W (t) =

e−c/2

√
1

1 − 2t

∫ ∞

−∞

1√
2π

1√
1

1−2t

exp

[
−1

2

1
1

1−2t

(w − b)2

]
dw = e−c/2

√
1

1 − 2t

since the integral = 1 =
∫∞
−∞ f(w)dw where f(w) is the N(b, 1/(1− 2t)) pdf.

Thus

mW2 (t) =
1√

1 − 2t
exp

(
tδ

1 − 2t

)
.

So mY (t) = mW2+X(t) = mW2 (t)mX (t) =

1√
1 − 2t

exp

(
tδ

1 − 2t

)(
1

1− 2t

)(n−1)/2

=
1

(1 − 2t)n/2
exp

(
tδ

1 − 2t

)
=

(1 − 2t)−n/2 exp

(
2γt

1 − 2t

)
.

b) i) By a), m∑k
i=1 Yi

(t) =

k∏

i=1

mYi(t) =

k∏

i=1

(1 − 2t)−ni/2 exp(−γi[1− (1 − 2t)−1]) =

(1 − 2t)−
∑k

i=1 ni/2 exp

(
−

k∑

i=1

γi[1− (1 − 2t)−1]

)
,

the χ2

(
k∑

i=1

ni,

k∑

i=1

γi

)
mgf.

ii) Let Yi = ZT
i Zi where the Zi ∼ Nni (µi, Ini) are independent. Let

Z =




Z1

Z2

...
Zk


 ∼ N∑k

i=1
ni







µ1

µ2
...

µk


 , I∑k

i=1
ni


 ∼ N∑k

i=1
ni

(µZ , I
∑k

i=1
ni

).
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Then ZT Z =

k∑

i=1

ZT
i Zi =

k∑

i=1

Yi ∼ χ2

(
k∑

i=1

ni, γZ

)
where

γZ =
µT

ZµZ
2

=

k∑

i=1

µT
i µi

2
=

k∑

i=1

γi.

c) i) Let W ∼ χ2(1, γ) X ∼ χ2
n−1 ∼ χ2(n − 1, 0). Then by b) Y =

W+X ∼ χ2(n, γ). Let Z ∼ N(0, 1) and δ = 2γ. Then
√
δ+Z ∼ N(

√
δ, 1), and

W = (
√
δ+Z)2. Thus E(W ) = E[(

√
δ+Z)2 ] = δ+2

√
δE(Z)+E(Z2) = δ+1.

Using the binomial theorem

(x+ y)n =

n∑

i=0

(
n

i

)
xiyn−i

with x =
√
δ, y = Z, and n = 4, E(W 2) = E[(

√
δ + Z)4] =

E[δ2 + 4δ3/2Z + 6δZ2 + 4
√
δZ3 + Z4] = δ2 + 6δ + 3

since E(Z) = E(Z3) = 0, and E(Z4) = 3 by Problem 2.8. Hence V (W ) =
E(W 2)− [E(W )]2 = δ2 +6δ+3−(δ+1)2 = δ2 +6δ+3−δ2 −2δ−1 = 4δ+2.
Thus E(Y ) = E(W ) + E(X) = δ + 1 + n − 1 = n + δ = n + 2γ, and
V (Y ) = V (W ) + V (X) = 4δ + 2 + 2(n− 1) = 8δ + 2n.

ii) Let Zi ∼ N(µi, 1) so E(Z2
i ) = σ2 + µ2

i = 1 + µ2
i . By Problem 2.8,

E(Z3
i ) = µ3

i + 3µi, and E(Z4
i ) = µ4

i + 6µ2
i + 3. Hence Y ∼ χ2(n, γ) where

Y = ZT Z =
∑n

i=1 Z
2
i where Z ∼ Nn(µ, I). So E(Y ) =

∑n
i=1 E(Z2

i ) =∑n
i=1(1 + µ2

i ) = n+ µT µ = n+ 2γ, and V (Y ) =
∑n

i=1 V (Z2
i ) =

n∑

i=1

[E(Z4
i ) − (E[Z2

i ])2] =

n∑

i=1

[µ4
i + 6µ2

i + 3 − µ4
i − 2µ2

i − 1] =

n∑

i=1

[4µ2
i + 2]

= 2n+ 4µT µ = 2n+ 8γ. �

For the following theorem, see Searle (1971, p. 57). Most of the results in
Theorem 2.14 are corollaries of Theorem 2.13. Recall that the matrix in a
quadratic form is symmetric, unless told otherwise.

Theorem 2.13. If Y ∼ Nn(µ,Σ) where Σ > 0, then Y T AY ∼
χ2(rank(A),µTAµ/2) iff AΣ is idempotent.
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For the following theorem, note that if A = AT = A2, then A is a
projection matrix since A is symmetric and idempotent. An n×n projection
matrix A is not a full rank matrix unless A = In. See Theorem 2.2 j) and
k). Often results are given for Y ∼ Nn(0, I), and then the Y ∼ Nn(0, σ2I)
case is handled as in c) and g) below, since Y /σ ∼ Nn(0, I).

Theorem 2.14. Let A = AT be symmetric.
a) If Y ∼ Nn(0,Σ) where Σ is a projection matrix, then Y T Y ∼

χ2(rank(Σ)) where rank(Σ) = tr(Σ).
b) If Y ∼ Nn(0, I), then Y T AY ∼ χ2

r iff A is idempotent with rank(A) =
tr(A) = r.

c) Let Y ∼ Nn(0, σ2I). Then

Y T AY

σ2
∼ χ2

r or Y TAY ∼ σ2 χ2
r

iff A is idempotent of rank r.
d) If Y ∼ Nn(0,Σ) where Σ > 0, then Y T AY ∼ χ2

r iff AΣ is idempotent
with rank(A) = r = rank(AΣ).

e) If Y ∼ Nn(µ, σ2I) then
Y T Y

σ2
∼ χ2

(
n,

µT µ

2σ2

)
.

f) If Y ∼ Nn(µ, I) then Y T AY ∼ χ2(r,µT Aµ/2) iff A is idempotent
with rank(A) = tr(A) = r.

g) If Y ∼ Nn(µ, σ2I) then
Y T AY

σ2
∼ χ2

(
r,

µT Aµ

2σ2

)
iff A is idempotent

with rank(A) = tr(A) = r.

Note that A is a projection matrix iff A is idempotent in b) since A is
symmetric. Thus b) is a special case d). To see that c) holds, note Z = Y /σ ∼
Nn(0, I). Hence by b)

Y T AY

σ2
= ZT AZ ∼ χ2

r

iff A is idempotent of rank r. Much of Theorem 2.14 follows from Theorem
2.13. For f), we give another proof from Christensen (1987, p. 8). Since A is a
projection matrix with rank(A) = r, let {b1, ..., br} be an orthonormal basis
for C(A) and let B = [b1 b2 ... br ]. Then BT B = Ir and the projection
matrix A = B(BT B)−1BT = BBT . Thus Y T AY = Y T BBT Y = ZT Z
where Z = BT Y ∼ Nr(B

T µ,BT IB) ∼ Nr(B
T µ, Ir). Thus Y T AY =

ZT Z ∼ χ2(r,µT BBT µ/2) ∼ χ2(r,µT Aµ/2) by Definition 2.12.

The following theorem is useful for constructing ANOVA tables. See Searle
(1971, pp. 60-61).

Theorem 2.15: Generalized Cochran’s Theorem. Let Y ∼ Nn(µ,Σ).

Let Ai = AT
i have rank ri for i = 1, ..., k, and let A =

∑k
i=1 Ai = AT have
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rank r. Then Y T AiY ∼ χ2(ri,µ
T Aiµ/2), and the Y T AiY are independent,

and Y T AY ∼ χ2(r,µT Aµ/2), iff
I) any 2 of a) AiΣ are idempotent ∀i,
b) AiΣAj = 0 ∀i < j,
c) AΣ is idempotent

are true; or II) c) is true and d) r =
∑k

i=1 ri;
or III) c) is true and e) A1Σ, ..,Ak−1Σ are idempotent and AkΣ ≥ 0 is
singular.

2.3 Least Squares Theory

Definition 2.13. Estimating equations are used to find estimators of
unknown parameters. The least squares criterion and log likelihood for max-
imum likelihood estimators are important examples.

Estimating equations are often used with a model, like Y = Xβ + e,
and often have a variable β that is used in the equations to find the es-
timator β̂ of the vector of parameters in the model. For example, the log
likelihood log(L(β, σ2)) has β and σ2 as variables for a parametric statistical
model where β and σ2 are fixed unknown parameters, and maximizing the
log likelihood with respect to these variables gives the maximum likelihood
estimators of the parameters β and σ2. So the term β is both a variable in
the estimating equations, which could be replaced by another variable such
as η, and a vector of parameters in the model. In the theorem below, we
could replace η by β where β is a vector of parameters in the linear model
and a variable in the least squares criterion which is an estimating equation.

Theorem 2.16. Let θ = Xη ∈ C(X) where Yi = xT
i η + ri(η) and the

residual ri(η) depends on η. The least squares estimator β̂ is the value
of η ∈ R

p that minimizes the least squares criterion∑n
i=1 r

2
i (η) = ‖Y − Xη‖2.

Proof. Following Seber and Lee (2003, pp. 36-38), let Ŷ = θ̂ = P XY ∈
C(X), r = (I − PX )Y ∈ [C(X)]⊥, and θ ∈ C(X). Then (Y − θ̂)T (θ̂ −
θ) = (Y − P XY )T (P XY − PXθ) = Y T (I − P X)P X (Y − θ) = 0 since

PXθ = θ. Thus ‖Y − θ‖2 = (Y − θ̂ + θ̂ − θ)T (Y − θ̂ + θ̂ − θ) =

‖Y − θ̂‖2 + ‖θ̂ − θ‖2 + 2(Y − θ̂)T (θ̂ − θ) ≥ ‖Y − θ̂‖2

with equality iff ‖θ̂ − θ‖2 = 0 iff θ̂ = θ = Xη. Since θ̂ = Xβ̂ the result
follows. �

Definition 2.14. The normal equations are
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XT Xβ̂ = XT Y .

To see that the normal equations hold, note that r = Y − Ŷ ⊥ C(X) by
Theorem 1.2 c) (and Theorem 2.20 i)). Thus r ∈ [C(X)]⊥ = N(XT ), and

XT (Y − Ŷ ) = 0. Hence XT Ŷ = XT Xβ̂ = XT Y .

The maximum likelihood estimator uses the log likelihood as an estimating
equation. Note that it is crucial to observe that the likelihood function is a
function of θ (and that y1, ..., yn act as fixed constants). Also, if the MLE θ̂

exists, then θ̂ ∈ Θ, the parameter space.

Definition 2.15. Let f(y|θ) be the joint pdf of Y1, ..., Yn. If Y = y is
observed, then the likelihood function L(θ) = f(y|θ). For each sample

point y = (y1, ..., yn), let θ̂(y) be a parameter value at which L(θ|y) attains
its maximum as a function of θ with y held fixed. Then a maximum likelihood
estimator (MLE) of the parameter θ based on the sample Y is θ̂(Y ).

Definition 2.16. Let the log likelihood of θ1 and θ2 be log[L(θ1, θ2)]. If θ̂2

is the MLE of θ2, then the log profile likelihood is log[Lp(θ1)] = log[L(θ1, θ̂2)].

We can often fix σ and then show β̂ is the MLE by direct maximization.
Then the MLE σ̂ or σ̂2 can be found by maximizing the log profile likelihood
function log[Lp(σ)] or log[Lp(σ

2)] where Lp(σ) = L(σ,β = β̂).

Remark 2.1. a) Know how to find the max and min of a function h that
is continuous on an interval [a,b] and differentiable on (a, b). Solve h′(x) ≡ 0
and find the places where h′(x) does not exist. These values are the critical
points. Evaluate h at a, b, and the critical points. One of these values will
be the min and one the max.

b) Assume h is continuous. Then a critical point θo is a local max of h(θ)
if h is increasing for θ < θo in a neighborhood of θo and if h is decreasing for
θ > θo in a neighborhood of θo. The first derivative test is often used.

c) If h is strictly concave

(
d2

dθ2
h(θ) < 0 for all θ

)
, then any local max

of h is a global max.

d) Suppose h′(θo) = 0. The 2nd derivative test states that if
d2

dθ2
h(θo) < 0,

then θo is a local max.
e) If h(θ) is a continuous function on an interval with endpoints a < b

(not necessarily finite), and differentiable on (a, b) and if the critical point
is unique, then the critical point is a global maximum if it is a local
maximum (because otherwise there would be a local minimum and the critical

point would not be unique). To show that θ̂ is the MLE (the global maximizer
of h(θ) = logL(θ)), show that logL(θ) is differentiable on (a, b). Then show

that θ̂ is the unique solution to the equation
d

dθ
logL(θ) = 0 and that the
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2nd derivative evaluated at θ̂ is negative:
d2

dθ2
logL(θ)|θ̂ < 0. Similar remarks

hold for finding σ̂2 using the profile likelihood.

Theorem 2.17. Let Y = Xβ + e = Ŷ + r where X is full rank, and
Y ∼ Nn(Xβ, σ2I). Then the MLE of β is the least squares estimator β̂ and
the MLE of σ2 is RSS/n = (n− p)MSE/n.

Proof. The Yi = Yi|xi are independent N(xT
i β, σ2) random variables with

probability density functions (pdfs) fYi(yi). Let yi be the observed values of
Yi. Thus the likelihood function

L(β, σ2) =

n∏

i=1

fYi(yi) =

n∏

i=1

1

σ
√

2π
exp

(
1

2σ2
(yi − xT

i β)2
)

=

(2πσ2)−n/2 exp

(
1

2σ2

n∑

i=1

(yi − xT
i β)2

)
= (2πσ2)−n/2 exp

( −1

2σ2
‖y − Xβ‖2

)
.

The least squares criterion Q(β) =
∑n

i=1(yi − xT
i β)2 =

∑n
i=1 r

2
i (β) = ‖y −

Xβ‖2 = (y − Xβ)T (y − Xβ). For fixed σ2, maximizing the likelihood is
equivalent to maximizing

exp

( −1

2σ2
‖y − Xβ‖2

)
,

which is equivalent to minimizing ‖y−Xβ‖2. But the least squares estimator

minimizes ‖y − Xβ‖2 by Theorem 2.16. Hence β̂ is the MLE of β.

Let Q = ‖y − Xβ̂‖2. Then the MLE of σ2 can be found by maximizing
the log profile likelihood log(LP (σ2)) where

LP (σ2) =
1

(2πσ2)n/2
exp

( −1

2σ2
Q

)
.

Let τ = σ2. Then

log(Lp(σ
2)) = c− n

2
log(σ2) − 1

2σ2
Q,

and

log(Lp(τ )) = c − n

2
log(τ ) − 1

2τ
Q.

Hence
d log(LP (τ ))

dτ
=

−n
2τ

+
Q

2τ2

set
= 0

or −nτ +Q = 0 or nτ = Q or

τ̂ =
Q

n
= σ̂2 =

∑n
i=1 r

2
i

n
=
n− p

n
MSE,
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which is a unique solution.
Now

d2 log(LP (τ ))

dτ2
=

n

2τ2
− 2Q

2τ3

∣∣∣∣
τ=τ̂

=
n

2τ̂2
− 2nτ̂

2τ̂3
=

−n
2τ̂2

< 0.

Thus by Remark 2.1, σ̂2 is the MLE of σ2. �

Now assume the n × p matrix X has full rank p. There are two ways to
compute β̂. Use β̂ = (XT X)−1XT Y , and use sample covariance matrices.
The population OLS coefficients are defined below. Let xT

i = (1,uT
i ) where

ui is the vector of nontrivial predictors. Let
1

n

n∑

j=1

Xjk = Xok = uok for

k = 2, ..., p. The subscript “ok” means sum over the first subscript j. Let
u = (uo,2, ..., uo,p)T be the sample mean of the ui. Note that regressing on u
is equivalent to regressing on x if there is an intercept β1 in the model.

Definition 2.17. Using the above notation, let xT
i = (1,uT

i ), and let βT =
(β1,β

T
2 ) where β1 is the intercept and the slopes vector β2 = (β2, ..., βp)

T .
Let the population covariance matrices

Cov(u) = E[(u −E(u))(u − E(u))T ] = Σu, and

Cov(u, Y ) = E[(u −E(u))(Y −E(Y ))] = ΣuY .

Then the population coefficients from an OLS regression of Y on x (even if
a linear model does not hold) are

β1 = E(Y ) − βT
2 E(u) and β2 = Σ−1

u ΣuY.

Definition 2.18. Let the sample covariance matrices be

Σ̂u =
1

n− 1

n∑

i=1

(ui − u)(ui − u)T and Σ̂uY =
1

n − 1

n∑

i=1

(ui − u)(Yi − Y ).

Let the method of moments or maximum likelihood estimators be Σ̃u =
1

n

n∑

i=1

(ui−u)(ui−u)T and Σ̃uY =
1

n

n∑

i=1

(ui−u)(Yi−Y ) =
1

n

n∑

i=1

uiYi−u Y .

Refer to Definitions 1.27, 1.28, and 1.33 for the notation “θ̂
P→ θ as n →

∞,” which means that θ̂ is a consistent estimator of θ, or that θ̂ converges

in probability to θ. Note that D = XT
1 X1 − nu uT = (n − 1)Σ̂

−1

u .

Theorem 2.18: Seber and Lee (2003, p. 106). Let X = (1 X1).

Then XT Y =

(
nY

XT
1 Y

)
=

(
nY∑n

i=1 uiYi

)
, XT X =

(
n nuT

nu XT
1 X1

)
,
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and (XT X)−1 =

(
1
n + uT D−1u −uT D−1

−D−1u D−1

)

where the (p− 1) × (p − 1) matrix D−1 = [(n− 1)Σ̂u]−1 = Σ̂
−1

u /(n− 1).

Theorem 2.19: Second way to compute β̂:

a) If Σ̂
−1

u exists, then β̂1 = Y − β̂
T

2 u and

β̂2 =
n

n− 1
Σ̂

−1

u Σ̃uY = Σ̃
−1

u Σ̃uY = Σ̂
−1

u Σ̂uY .

b) Suppose that (Yi,u
T
i )T are iid random vectors such that σ2

Y , Σ−1
u , and

ΣuY exist. Then β̂1
P→ β1 and

β̂2
P→ β2 as n → ∞.

Proof. Note that

Y T X1 = (Y1 · · ·Yn)




uT
1
...

uT
n


 =

n∑

i=1

Yiu
T
i

and

XT
1 Y = [u1 · · ·un]



Y1

...
Yn


 =

n∑

i=1

uiYi.

So [
β̂1

β̂2

]
=

[
1
n

+ uT D−1u −uT D−1

−D−1u D−1

] [
1T

XT
1

]
Y =

[
1
n + uT D−1u −uT D−1

−D−1u D−1

] [
nY

XT
1 Y

]
.

Thus β̂2 = −nD−1u Y + D−1XT
1 Y = D−1(XT

1 Y − nu Y ) =

D−1

[
n∑

i=1

uiYi − nu Y

]
=

Σ̂
−1

u
n− 1

nΣ̂uY =
n

n− 1
Σ̂

−1

u Σ̂uY . Then

β̂1 = Y + nuT D−1u Y − uT D−1XT
1 Y = Y + [nYuT D−1 − Y T X1D

−1]u

= Y − β̂
T

2 u. The convergence in probability results hold since sample means
and sample covariance matrices are consistent estimators of the population
means and population covariance matrices. �

It is important to note that the convergence in probability results are
for iid (Yi,u

T
i )T with second moments and nonsingular Σu: a linear model
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Y = Xβ+e does not need to hold. Also, X is a random matrix, and the least
squares regression is conditional on X. When the linear model does hold, the
second method for computing β̂ is still valid even if X is a constant matrix,

and β̂
P→ β by the LS CLT. Some properties of the least squares estimators

and related quantities are given below, where X is a constant matrix. The
population results of Definition 2.17 were also shown when




Y
x2

...
xp


 ∼ Np

[(
E(Y )
E(u)

)
,

(
σ2

Y ΣY u
ΣuY Σuu

)]

in Remark 1.5. Also see Theorem 1.40. The following theorem is similar to
Theorem 1.2.

Theorem 2.20. Let Y = Xβ + e = Ŷ + r where X has full rank p,
E(e) = 0, and Cov(e) = σ2I. Let P = PX be the projection matrix on

C(X) so Ŷ = PX , r = Y − Ŷ = (I −P )Y , and PX = X so XT P = XT .
i) The predictor variables and residuals are orthogonal. Hence the columns
of X and the residual vector are orthogonal: XT r = 0.
ii) E(Y ) = Xβ.
iii) Cov(Y ) = Cov(e) = σ2I.

iv) The fitted values and residuals are uncorrelated: Cov(r, Ŷ ) = 0.

v) The least squares estimator β̂ is an unbiased estimator of β : E(β̂) = β.

vi) Cov(β̂) = σ2(XT X)−1.

Proof. i) XT r = XT (I−P )Y = 0Y = 0, while ii) and iii) are immediate.

iv) Cov(r, Ŷ ) = E([r − E(r)][Ŷ − E(Ŷ )]T ) =

E([(I − P )Y − (I − P )E(Y )][PY − PE(Y )]T ) =

E[(I − P )[Y − E(Y )][Y − E(Y )]T P ] = (I − P )σ2IP = σ2(I − P )P = 0.

v) E(β̂) = E[(XT X)−1XT Y ] = (XT X)−1XTE[Y ] = (XT X)−1XT Xβ
= β.

vi) Cov(β̂) = Cov[(XT X)−1XT Y ] = Cov(AY ) = ACov(Y )AT =

σ2(XT X)−1XT IX(XT X)−1 = σ2(XT X)−1. �

Definition 2.19. Let a, b, and c be n × 1 constant vectors. A linear
estimator aT Y of cT θ is the best linear unbiased estimator (BLUE) of cT θ
if E(aT Y ) = cT θ, and for any other unbiased linear estimator bT Y of cT θ,
V ar(aT Y ) ≤ V ar(bT Y ).

The following theorem is useful for finding the BLUE when X has full
rank. Note that if W is a random variable, then the covariance matrix of
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W is Cov(W ) = Cov(W,W ) = V (W ). Note that the theorem shows that

bT Xβ̂ = bT P Y = aT β̂ is the BLUE of bT Xβ = aT β where aT = bT X
and θ = Xβ. Also, if bT Y is an unbiased estimator of aT β = bT Xβ, then
bT P Y = aT β̂ is a better unbiased estimator in that V (bT PY ) ≤ V (bT Y ).

Since X is full rank, aT β is estimable with BLUE aT β̂ for every p × 1
constant vector A. Note that the ei are uncorrelated with zero mean, but not
necessarily independent or identically distributed in the following theorem.
Note that if b = d = Pb, then P b = PP b = P b = d. The proof of the more
general Theorem 3.2 c) also proves Theorem 2.21.

Theorem 2.21: Gauss Markov Theorem-Full Rank Case. Let Y =
Xβ + e where X is full rank, E(e) = 0, and Cov(e) = σ2I . Then aT β̂ is
the unique BLUE of aT β for every constant p × 1 vector a.

Proof. Let bT Y be any linear unbiased estimator of aT β. Then E(bT Y ) =
aT β = bTE(Y ) = bT Xβ for any β ∈ R

p, the parameter space of β. Hence

aT = bT X . The least squares estimator aT β̂ = aT (XT X)−1XT Y =

dT Y = bT Xβ̂ = bT PY is a linear unbiased estimator of aT β since
E(aT β̂) = aT β. Now V (bT Y ) − V (aT β̂) = V (bT Y ) − V (bT P Y ) =
Cov(bT Y )−Cov(bT PY ) = σ2bT b−σ2bT Pb = σ2bT (I −P )b = σ2zT z ≥ 0

with equality iff z = (I − P )b = 0 iff b = d = P b iff bT Y = bT P Y = aT β̂.
Since bT Y was an arbitrary unbiased linear estimator, the least squares es-
timator aT β̂ is BLUE. �

Lai et al. (1979) note that if E(β̂) = β and Cov(β̂) = σ2(XT X)−1 → 0

as n → ∞, then β̂ is a consistent estimator of β. Also see Zhang (2019).
The following theorem gives some properties of the least squares estimators
β̂ and MSE under the normal least squares model. Similar properties will be
developed without the normality assumption.

Theorem 2.22. Suppose Y = Xβ + e where X is full rank, e ∼
Nn(0, σ2I), and Y ∼ Nn(Xβ, σ2I).

a) β̂ ∼ Np(β, σ2(XT X)−1).

b)
(β̂ − β)T XT X(β̂ − β)

σ2
∼ χ2

p.

c) β̂ MSE.

d)
RSS

σ2
=

(n − p)MSE

σ2
∼ χ2

n−p.

Proof. Let P = PX .

a) Since A = (XT X)−1XT is a constant matrix,

β̂ = AY ∼ Np(AE(Y ),ACov(Y )AT ) ∼

Np((XT X)−1XT Xβ, σ2(XT X)−1XT IX(XT X)−1) ∼

Np(β, σ
2(XT X)−1).
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b) The population Mahalanobis distance of β̂ is

(β̂ − β)T XT X(β̂ − β)

σ2
= (β̂ − β)T [Cov(β̂)]−1(β̂ − β) ∼ χ2

p

by Theorem 2.11.
c) Since Cov(β̂, r) = Cov((XT X)−1XT Y , (I − P )Y ) =

σ2(XT X)−1XT I(I−P ) = 0, β̂ r. Thus β̂ RSS = ‖r‖2, and β̂ MSE.
d) Since P X = X and XT P = XT , it follows that XT (I − P ) = 0 and

(I − P )X = 0. Thus RSS = rT r = Y T (I − P )Y =

(Y − Xβ)T (I − P )(Y − Xβ) = eT (I − P )e.

Since e ∼ Nn(0, σ2I), then by Theorem 2.14 c), eT (I − P )e/σ2 ∼ χ2
n−p

where n− p = rank(I − P ) = tr(I − P ). �

2.3.1 Hypothesis Testing

Suppose Y = Xβ + e where rank(X) = p, E(e) = 0 and Cov(e) = σ2I. Let
L be an r × p constant matrix with rank(L) = r, let c be an r × 1 constant
vector, and consider testing H0 : Lβ = c. First theory will be given for when
e ∼ Nn(0, σ2I). The large sample theory will be given for when the iid zero
mean ei have V (ei) = σ2. Note that the normal model will satisfy the large
sample theory conditions.

The partial F test, and its special cases the ANOVA F test and the Wald
t test, use c = 0. Let the full model use Y , x1 ≡ 1, x2, ..., xp, and let
the reduced model use Y , x1 = xj1 ≡ 1, xj2 , ..., xjk where {j1, ..., jk} ⊂
{1, ..., p} and j1 = 1. Here 1 ≤ k < p, and if k = 1, then the model is
Yi = β1 +ei. Hence the full model is Yi = β1 +β2xi,2 + · · ·+βpxi,p +ei, while
the reduced model is Yi = β1 + βj2xi,j2 + · · ·+ βjkxi,jk + ei. In matrix form,
the full model is Y = Xβ + e and the reduced model is Y = XRβR + eR

where the columns of XR are a proper subset of the columns of X . i) The
partial F test has H0 : βjk+1

= · · · = βjp = 0, or H0 : the reduced model is
good, or H0 : Lβ = 0 where L is a (p− k)× p matrix where the ith row of L
has a 1 in the jk+ith position and zeroes elsewhere. In particular, if β1, ..., βk

are the only βi in the reduced model, then L = [0 Ip−k] and 0 is a (p−k)×k
matrix. Hence r = p− k = number of predictors in the full model but not in
the reduced model. ii) The ANOVA F test is the special case of the partial
F test where the reduced model is Yi = β1+εi. Hence H0 : β2 = · · · = βp = 0,
or H0 : none of the nontrivial predictors x2, ..., xp are needed in the linear
model, or H0 : Lβ = 0 where L = [0 Ip−1] and 0 is a (p − 1) × 1 vector.
Hence r = p − 1. iii) The Wald t test uses the reduced model that deletes
the jth predictor from the full model. Hence H0 : βj = 0, or H0 : the jth
predictor xj is not needed in the linear model given that the other predictors
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are in the model, or H0 : Ljβ = 0 where Lj = [0, ..., 0, 1, 0, ..., 0] is a 1 × p
row vector with a 1 in the jth position for j = 1, ..., p. Hence r = 1.

A way to get the test statistic FR for the partial F test is to fit the
full model and the reduced model. Let RSS be the RSS of the full model,
and let RSS(R) be the RSS of the reduced model. Similarly, let MSE and
MSE(R) be the MSE of the full and reduced models. Let dfR = n− k and
dfF = n− p be the degrees of freedom for the reduced and full models. Then

FR =
RSS(R) −RSS

rMSE
where r = dfR − dfF = p− k = number of predictors

in the full model but not in the reduced model.
If β̂ ∼ Np(β, σ2(XT X)−1), then

Lβ̂ − c ∼ Nr(Lβ − c, σ2L(XT X)−1LT ).

If H0 is true then Lβ̂ − c ∼ Nr(0, σ
2L(XT X)−1LT ), and by Theorem 2.11

rF1 =
1

σ2
(Lβ̂ − c)T [L(XT X)−1LT ]−1(Lβ̂ − c) ∼ χ2

r .

Let rFR = σ2rF1/MSE. If H0 is true, rFR
D→ χ2

r for a large class of zero
mean error distributions. See Theorem 2.26 c).

From Definition 1.25, if Zn
D→ Z as n → ∞, then Zn converges in dis-

tribution to the random vector Z, and “Z is the limiting distribution of
Zn” means that the distribution of Z is the limiting distribution of Zn. The

notation Zn
D→ Nk(µ,Σ) means Z ∼ Nk(µ,Σ).

Remark 2.2. a) Z is the limiting distribution of Zn, and does not depend
on the sample size n (since Z is found by taking the limit as n→ ∞).

b) When Zn
D→ Z, the distribution of Z can be used to approximate

probabilities P (Zn ≤ c) ≈ P (Z ≤ c) at continuity points c of the cdf FZ (z).
Often the limiting distribution is a continuous distribution, so all points c
are continuity points.

c) Often the two quantities Zn
D→ Nk(µ,Σ) and Zn ∼ Nk(µ,Σ) behave

similarly. A big difference is that the distribution on the RHS (right hand

side) can depend on n for ∼ but not for
D→. In particular, if Zn

D→ Nk(µ,Σ),

then AZn + b
D→ Nm(Aµ + b,AΣAT ), provided the RHS does not depend

on n, where A is an m×k constant matrix and b is an m×1 constant vector.
d) We often want a normal approximation where the RHS can depend on n.

Write Zn ∼ ANk(µ,Σ) for an approximate multivariate normal distribution
where the RHS may depend on n. For normal linear model, if e ∼ Nn(0, σ2I),

then β̂ ∼ Np(β, σ
2(XT X)−1). If the ei are iid with E(ei) = 0 and V (ei) =

σ2, use the multivariate normal approximation β̂ ∼ ANp(β, σ2(XT X)−1) or

β̂ ∼ ANp(β,MSE(XT X)−1). The RHS depends on n since the number of
rows of X is n.
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Theorem 2.23. Suppose Σ̂n and Σ are positive definite and symmetric.

If W n
D→ Nk(µ,Σ) and Σ̂n

P→ Σ, then Zn = Σ̂
−1/2

n (W n − µ)
D→ Nk(0, I),

and ZT
nZn = (W n − µ)T Σ̂

−1

n (W n − µ)
D→ χ2

k.

Proof. Zn = (Σ̂
−1/2

n − Σ−1/2 + Σ−1/2)(W n − µ) =

(Σ̂
−1/2

n − Σ−1/2)(W n − µ) + Σ−1/2(W n − µ)
D→ 0 + Nk(0, I) ∼ Nk(0, I)

by Slutsky’s Theorem 1.34 b). Hence ZT
nZn

D→ χ2
k. �

See Remark 2.3 for why Theorem 2.24 is useful.

Theorem 2.24. If Wn ∼ Fr,dn where the positive integer dn → ∞ as

n→ ∞, then rWn
D→ χ2

r.

Proof. If X1 ∼ χ2
d1

X2 ∼ χ2
d2
, then

X1/d1

X2/d2
∼ Fd1,d2

.

If Ui ∼ χ2
1 are iid then

∑k
i=1 Ui ∼ χ2

k. Let d1 = r and k = d2 = dn. Hence if
X2 ∼ χ2

dn
, then

X2

dn
=

∑dn

i=1 Ui

dn
= U

P→ E(Ui) = 1

by the law of large numbers. Hence if W ∼ Fr,dn , then rWn
D→ χ2

r . �

The following theorem is analogous to the central limit theorem and the
theory for the t–interval for µ based on Y and the sample standard deviation
(SD) SY . If the data Y1, ..., Yn are iid with mean 0 and variance σ2, then Y
is asymptotically normal and the t–interval will perform well if the sample
size is large enough. The result below suggests that the OLS estimators Ŷi

and β̂ are good if the sample size is large enough. The condition maxhi → 0
in probability usually holds if the researcher picked the design matrix X or
if the xi are iid random vectors from a well behaved population. Outliers

can cause the condition to fail. Convergence in distribution, Zn
D→ Np(0,Σ),

means the multivariate normal approximation can be used for probability
calculations involving Zn. When p = 1, the univariate normal distribution
can be used. See Sen and Singer (1993, p. 280) for the theorem, which implies

that β̂ ≈ Np(β, σ2(XT X)−1)). Let hi = Hii where H = PX . Note that

the following theorem is for the full rank model since XT X is nonsingular.

Theorem 2.25, LS CLT (Least Squares Central Limit Theo-
rem): Consider the MLR model Yi = xT

i β + ei and assume that the zero
mean errors are iid with E(ei) = 0 and VAR(ei) = σ2. Also assume that
maxi(h1, ..., hn) → 0 in probability as n → ∞ and



2.3 Least Squares Theory 93

XT X

n
→ W−1

as n → ∞. Then the least squares (OLS) estimator β̂ satisfies

√
n(β̂ − β)

D→ Np(0, σ
2 W ). (2.1)

Equivalently,

(XT X)1/2(β̂ − β)
D→ Np(0, σ

2 Ip). (2.2)

If Σ = σ2W , then Σ̂n = nMSE(XT X)−1. Hence

β̂ ∼ ANp(β,MSE(XT X)−1), and

rFR =
1

MSE
(Lβ̂ − c)T [L(XT X)−1LT ]−1(Lβ̂ − c)

D→ χ2
r (2.3)

as n → ∞ if H0 : Lβ = c is true so that
√
n(Lβ̂ − c)

D→ Nr(0, σ
2 LWLT ).

Definition 2.20. A test with test statistic Tn is a large sample right tail
δ test if the test rejects H0 if Tn > an and P (Tn > an) = δn → δ as n → ∞
when H0 is true.

Typically we want δ ≤ 0.1, and the values δ = 0.05 or δ = 0.01 are
common. (An analogy is a large sample 100(1 − δ)% confidence interval or
prediction interval.)

Remark 2.3. Suppose P (W ≤ χ2
q(1−δ)) = 1−δ and P (W > χ2

q(1−δ)) =
δ where W ∼ χ2

q . Suppose P (W ≤ Fq,dn(1 − δ)) = 1 − δ when W ∼ Fq,dn .
Also write χ2

q(1− δ) = χ2
q,1−δ and Fq,dn(1− δ) = Fq,dn,1−δ. Suppose P (W >

z1−δ) = δ when W ∼ N(0, 1), and P (W > tdn,1−δ) = δ when W ∼ tdn .
i) Theorem 2.24 is important because it can often be shown that a statistic

Tn = rWn
D→ χ2

r when H0 is true. Then tests that reject H0 when Tn >
χ2

r(1 − δ) or when Tn/r = Wn > Fr,dn(1 − δ) are both large sample right
tail δ tests if the positive integer dn → ∞ as n → ∞. Large sample F tests
and intervals are used instead of χ2 tests and intervals since the F tests and
intervals are more accurate for moderate n.

ii) An analogy is that if test statistic Tn
D→ N(0, 1) when H0 is true, then

tests that reject H0 if Tn > z1−δ or if Tn > tdn,1−δ are both large sample
right tail δ tests if the positive integer dn → ∞ as n → ∞. Large sample t
tests and intervals are used instead of Z tests and intervals since the t tests
and intervals are more accurate for moderate n.

iii) Often n ≥ 10p starts to give good results for the OLS output for error
distributions not too far from N(0, 1). Larger values of n tend to be needed
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if the zero mean iid errors have a distribution that is far from a normal
distribution. Also see Theorem 1.5.

Theorem 2.26, Partial F Test Theorem. Suppose H0 : Lβ = 0 is
true for the partial F test. Under the OLS full rank model, a)

FR =
1

rMSE
(Lβ̂)T [L(XT X)−1LT ]−1(Lβ̂).

b) If e ∼ Nn(0, σ2I), then FR ∼ Fr,n−p.

c) For a large class of zero mean error distributions rFR
D→ χ2

r.
d) The partial F test that rejects H0 : Lβ = 0 if FR > Fr,n−p(1 − δ) is a
large sample right tail δ test for the OLS model for a large class of zero mean
error distributions.

Proof sketch. a) Seber and Lee (2003, p. 100) show that

RSS(R) − RSS = (Lβ̂)T [L(XT X)−1LT ]−1(Lβ̂).

b) Let the full model Y = Xβ + e with a constant β1 in the model:
1 is the 1st column of X . Let the reduced model Y = XRβR + e also
have a constant in the model where the columns of XR are a subset of
k of the columns of X . Let P R be the projection matrix on C(XR) so

PP R = P R. Then FR =
SSE(R) − SSE(F )

rMSE(F )
where r = dfR − dfF = p −

k = number of predictors in the full model but not in the reduced model.
MSE = MSE(F ) = SSE(F )/(n−p) where SSE = SSE(F ) = Y (I−P )Y .
SSE(R) − SSE(F ) = Y T (P − P R)Y where SSE(R) = Y T (I − P R)Y .

Now assume Y ∼ Nn(Xβ, σ2I), and whenH0 is true, Y ∼ Nn(XRβR, σ
2I).

Since (I − P )(P − P R) = 0, [SSE(R) − SSE(F )] MSE(F ) by Craig’s
Theorem. When H0 is true, µ = XRβR and µT Aµ = 0 where A = (I − P )
or A = (P − P R). Hence the noncentrality parameter is 0, and by The-
orem 2.14 g), SSE ∼ σ2χ2

n−p and SSE(R) − SSE(F ) ∼ σ2χ2
p−k since

rank(P − P R) = tr(P − P R) = p− k. Hence under H0, FR ∼ Fp−k,n−p.

Alternatively, let Y ∼ Nn(Xβ, σ2In) where X is an n× p matrix of rank
p. Let X = [X1 X2] and β = (βT

1 βT
2 )T where X1 is an n × k matrix and

r = p−k. Consider testing H0 : β2 = 0. (The columns of X can be rearranged
so that H0 corresponds to the partial F test.) Let P be the projection matrix
on C(X). Then rT r = Y T (I − P )Y = eT (I − P )e =
(Y − Xβ)T (I − P )(Y − Xβ) since P X = X and XT P = XT imply that
XT (I − P ) = 0 and (I − P )X = 0.

Suppose that H0 : β2 = 0 is true so that Y ∼ Nn(X1β1, σ
2In). Let

P 1 be the projection matrix on C(X1). By the above argument, rT
RrR =

Y T (I −P 1)Y = (Y −X1β1)
T (I −P 1)(Y −X1β1) = eT

R(I −P 1)eR where
eR ∼ Nn(0, σ2In) when H0 is true. Or use RHS = Y T (I − P 1)Y

−βT
1 XT

1 (I − P 1)Y + βT
1 XT

1 (I − P 1)X1β1 − Y T (I − P 1)X1β1,
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and the last three terms equal 0 since XT
1 (I−P 1) = 0 and (I −P 1)X1 = 0.

Hence
Y T (I − P )Y

σ2
∼ χ2

n−p

Y T (P − P 1)Y

σ2
∼ χ2

r

by Theorem 2.14 c) using e and eR instead of Y , and Craig’s Theorem 2.9 b)
since n− p = rank(I −P ) = tr(I −P ), r = rank(P − P 1) = tr(P −P 1) =
p− k, and (I − P )(P − P 1) = 0.

If X1 ∼ χ2
d1

X2 ∼ χ2
d2
, then

X1/d1

X2/d2
∼ Fd1,d2

.

Hence
Y T (P − P 1)Y /r

Y T (I − P )Y /(n− p)
=

Y T (P − P 1)Y

rMSE
∼ Fr,n−p

when H0 is true. Since RSS = Y T (I −P )Y and RSS(R) = Y T (I −P 1)Y ,
RSS(R) − RSS = Y T (I − P 1 − [I − P ])Y = Y T (P − P 1)Y , and thus

FR =
Y T (P − P 1)Y

rMSE
∼ Fr,n−p.

c) Assume H0 is true. By the OLS CLT,
√
n(Lβ̂ − Lβ) =

√
nLβ̂

D→
Nr(0, σ

2 LWLT ). Thus
√
n(Lβ̂)T (σ2LWLT )−1

√
nLβ̂

D→ χ2
r. Let σ̂2 =

MSE and Ŵ = n(XT X)−1. Then

n(Lβ̂)T [MSE Ln(XT X)−1LT ]−1Lβ̂ = rFR
D→ χ2

r.

d) By Theorem 2.24, if Wn ∼ Fr,dn then rWn
D→ χ2

r as n → ∞ and
dn → ∞. Hence the result follows by c). �

An ANOVA table for the partial F test is shown below, where k = pR is
the number of predictors used by the reduced model, and r = p− pR = p− k
is the number of predictors in the full model that are not in the reduced
model.

Source df SS MS F

Reduced n− pR SSE(R) = Y T (I − P R)Y MSE(R) FR =
SSE(R)−SSE

rMSE =

Full n− p SSE = Y T (I − P )Y MSE
Y T (P − P R)Y /r

Y T (I − P )Y /(n− p)

The ANOVA F test is the special case where k = 1, XR = 1, P R = P 1,
and SSE(R) − SSE(F ) = SSTO − SSE = SSR.
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ANOVA table: Y = Xβ + e with a constant β1 in the model: 1 is the
1st column of X . MS = SS/df .

SSTO = Y T (I − 1

n
11T )Y =

n∑

i=1

(Yi − Y )2, SSE =
∑n

i=1 r
2
i , SSR =

∑n
i=1(Ŷi − Y )2, SSTO = SSR + SSE. SSTO is the SSE (residual sum

of squares) for the location model Y = 1β1 + e that contains a con-
stant but no nontrivial predictors. The location model has projection matrix

P 1 = 1(1T1)−11T =
1

n
11T . Hence PP 1 = P 1 and P1 = P 11 = 1.

Source df SS MS F p-value

Regression p-1 SSR = Y T (P − 1

n
11T )Y MSR F0 = MSR

MSE for H0:

Residual n-p SSE = Y T (I − P )Y MSE β2 = · · · = βp = 0
The matrices in the quadratic forms for SSR and SSE are symmet-

ric and idempotent and their product is 0. Hence if e ∼ Nn(0, σ2I) so
Y ∼ Nn(Xβ, σ2I), then SSE SSR by Craig’s Theorem. If H0 is
true under normality, then Y ∼ Nn(1β1, σ

2I), and by Theorem 2.14 g),
SSE ∼ σ2χ2

n−p and SSR ∼ σ2χ2
p−1 since rank(I − P ) = tr(I − P ) = n− p

and rank(P − 1
n11T ) = tr(P − 1

n11T ) = p − 1. Hence under normality,
F0 ∼ Fp−1,n−p.

Let X ∼ tn−p. Then X2 ∼ F1,n−p. The two tail Wald t test for H0 :
βj = 0 versus H1 : βj 6= 0 is equivalent to the corresponding right tailed F
test since rejecting H0 if |X| > tn−p(1 − δ) is equivalent to rejecting H0 if
X2 > F1,n−p(1 − δ).

Definition 2.21. The pvalue of a test is the probability, assuming H0 is
true, of observing a test statistic as extreme as the test statistic Tn actually
observed. For a right tail test, pvalue = PH0

(of observing a test statistic
≥ Tn).

Under the OLS model where FR ∼ Fq,n−p when H0 is true (so the ei are
iid N(0, σ2)), the pvalue = P (W > FR) where W ∼ Fq,n−p. In general, we
can only estimate the pvalue. Let pval be the estimated pvalue. Then pval

= P (W > FR) where W ∼ Fq,n−p, and pval
P→ pvalue an n → ∞ for the

large sample partial F test. The pvalues in output are usually actually pvals
(estimated pvalues).

Definition 2.22. Let Y ∼ F (d1, d2) ∼ F (d1, d2, 0). Let X1 ∼ χ2(d1, γ)

X2 ∼ χ2(d2, 0). Then W =
X1/d1

X2/d2
∼ F (d1, d2, γ), a noncentral F distri-

bution with d1 and d2 numerator and denominator degrees of freedom, and
noncentrality parameter γ.
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Theorem 2.27, distribution of FR under normality when H0 may
not hold. Assume Y = Xβ + e where e ∼ Nn(0, σ2I). Let X = [X1 X2]
be full rank, and let the reduced model Y = X1β1 + eR. Then

FR =
Y T (P − P 1)Y /r

Y T (I − P )Y /(n− p)
∼ F

(
r, n− p,

βT XT (P − P 1)Xβ

2σ2

)
.

If H0 : β2 = 0 is true, then γ = 0.

Proof. Note that the denominator is the MSE, and (n − p)MSE/σ2 ∼
χ2

n−p by the proof of Theorem 2.26. By Theorem 2.14 f),

Y T (P − P 1)Y /σ2 ∼ χ2

(
r,

βT XT (P − P 1)Xβ

2σ2

)

where r = rank(P −P 1) = tr(P −P 1) = p− k since P −P 1 is a projection
matrix (symmetric and idempotent). �

Consider the test H0 : Lβ = c versus H1 : Lβ 6= c, and suppose H0 is

true. Then
√
n(Lβ̂ − c)

D→ Nr(0, σ
2LWLT ). Hence

rF0 =
1

MSE
(Lβ̂ − c)T (L(XT X)−1LT )−1(Lβ̂ − c)

D→ χ2
p,

and rejecting H0 if F0 > Fr,n−p,1−δ is a large sample right tail δ test for a
large class of zero mean error distributions. Seber and Lee (2003, pp. 100-101)
show that F0 ∼ Fr,n−p if H0 is true and e ∼ Np(0, σ2I), but the above result
is far stronger: if the iid ei has to satisfy ei ∼ N(0, σ2), OLS inference would
rarely be useful.

Remark 2.4. Suppose tests and confidence intervals are derived under
the assumption e ∼ Nn(0, σ2I). Then by the LS CLT and Remark 2.3,
the inference tends to give large sample tests and confidence intervals for
a large class of zero mean error distributions. For linear models, often the
error distribution has heavier tails than the normal distribution. See Huber
and Ronchetti (2009, p. 3). If some points stick out a bit in residual and/or
response plots, then the error distribution likely has heavier tails than the
normal distribution. See Figure 1.1.

2.4 WLS and Generalized Least Squares

Definition 2.23. Suppose that the response variable and at least one of the
predictor variables is quantitative. Then the generalized least squares (GLS)
model is
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Y = Xβ + e, (2.4)

where Y is an n × 1 vector of dependent variables, X is an n × p matrix
of predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1
vector of unknown errors. Also E(e) = 0 and Cov(e) = σ2V where V is a
known n× n positive definite matrix.

Definition 2.24. The GLS estimator

β̂GLS = (XT V −1X)−1XT V −1Y . (2.5)

The fitted values are Ŷ GLS = Xβ̂GLS .

Definition 2.25. Suppose that the response variable and at least one of
the predictor variables is quantitative. Then the weighted least squares (WLS)
model with weights w1, ..., wn is the special case of the GLS model where V
is diagonal: V = diag(v1, ..., vn) and wi = 1/vi. Hence

Y = Xβ + e, (2.6)

E(e) = 0, and Cov(e) = σ2V = σ2diag(v1, ..., vn) = σ2diag(1/w1, ..., 1/wn).

Definition 2.26. The WLS estimator

β̂WLS = (XT V −1X)−1XT V −1Y . (2.7)

The fitted values are Ŷ WLS = Xβ̂WLS .

Definition 2.27. The feasible generalized least squares (FGLS) model is
the same as the GLS estimator except that V = V (θ) is a function of an

unknown q×1 vector of parameters θ. Let the estimator of V be V̂ = V (θ̂).
Then the FGLS estimator

β̂FGLS = (XT V̂
−1

X)−1XT V̂
−1

Y . (2.8)

The fitted values are Ŷ FGLS = Xβ̂FGLS . The feasible weighted least squares
(FWLS) estimator is the special case of the FGLS estimator where V =

V (θ) is diagonal. Hence the estimated weights ŵi = 1/v̂i = 1/vi(θ̂). The

FWLS estimator and fitted values will be denoted by β̂FWLS and Ŷ FWLS ,
respectively.

Notice that the ordinary least squares (OLS) model is a special case of
GLS with V = In, the n× n identity matrix. It can be shown that the GLS
estimator minimizes the GLS criterion

QGLS(η) = (Y − Xη)T V −1(Y − Xη).



2.4 WLS and Generalized Least Squares 99

Notice that the FGLS and FWLS estimators have p+ q+1 unknown param-
eters. These estimators can perform very poorly if n < 10(p+ q + 1).

The GLS and WLS estimators can be found from the OLS regression
(without an intercept) of a transformed model. Typically there will be a
constant in the model: the first column of X is a vector of ones. Let the
symmetric, nonsingular n× n square root matrix R = V 1/2 with V = RR.
Let Z = R−1Y , U = R−1X and ε = R−1e.

Theorem 2.28. a)
Z = Uβ + ε (2.9)

follows the OLS model since E(ε) = 0 and Cov(ε) = σ2In.

b) The GLS estimator β̂GLS can be obtained from the OLS regression
(without an intercept) of Z on U .

c) For WLS, Yi = xT
i β + ei. The corresponding OLS model Z = Uβ + ε

is equivalent to Zi = uT
i β + εi for i = 1, ..., n where uT

i is the ith row of U .

Then Zi =
√
wi Yi and ui =

√
wi xi. Hence β̂WLS can be obtained from the

OLS regression (without an intercept) of Zi =
√
wi Yi on ui =

√
wi xi.

Proof. a) E(ε) = R−1E(e) = 0 and

Cov(ε) = R−1Cov(e)(R−1)T = σ2R−1V (R−1)T

= σ2R−1RR(R−1) = σ2In.

Notice that OLS without an intercept needs to be used since U does not
contain a vector of ones. The first column of U is R−11 6= 1.

b) Let β̂ZU denote the OLS estimator obtained by regressing Z on U .
Then

β̂ZU = (UT U)−1UT Z = (XT (R−1)T R−1X)−1XT (R−1)T R−1Y

and the result follows since V −1 = (RR)−1 = R−1R−1 = (R−1)T R−1.

c) The result follows from b) if Zi =
√
wi Yi and ui =

√
wi xi. But for

WLS, V = diag(v1, ..., vn) and hence R = diag(
√

v1, ...,
√

vn). Hence

R−1 = diag(1/
√

v1, ..., 1/
√

vn) = diag(
√

w1, ...,
√

wn)

and Z = R−1Y has ith element Zi =
√
wi Yi. Similarly, U = R−1X has ith

row uT
i =

√
wi xT

i . �

Remark 2.5. Standard software produces WLS output and the ANOVA
F test and Wald t tests are performed using this output.

Remark 2.6. The FGLS estimator can also be found from the OLS re-
gression (without an intercept) of Z on U where V (θ̂) = RR. Similarly the
FWLS estimator can be found from the OLS regression (without an inter-
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cept) of Zi =
√
ŵiYi on ui =

√
ŵixi. But now U is a random matrix instead

of a constant matrix. Hence these estimators are highly nonlinear. OLS out-
put can be used for exploratory purposes, but the p–values are generally not
correct. The Olive (2018) bootstrap tests may be useful for FGLS and FWLS.
See Chapter 4.

Under regularity conditions, the OLS estimator β̂OLS is a consistent esti-

mator of β when the GLS model holds, but β̂GLS should be used because it
generally has higher efficiency.

Definition 2.28. Let β̂ZU be the OLS estimator from regressing Z on

U . The vector of fitted values is Ẑ = Uβ̂ZU and the vector of residuals

is rZU = Z − Ẑ. Then β̂ZU = β̂GLS for GLS, β̂ZU = β̂FGLS for FGLS,

β̂ZU = β̂WLS for WLS, and β̂ZU = β̂FWLS for FWLS. For GLS, FGLS,
WLS, and FWLS, a residual plot is a plot of Ẑi versus rZU,i and a response

plot is a plot of Ẑi versus Zi.

Inference for the GLS model Y = Xβ + e can be performed by using
the partial F test for the equivalent no intercept OLS model Z = Uβ + ε.
Following Section 1.3.7, create Z and U , fit the full and reduced model using
the “no intercept” or “intercept = F” option. Let pval be the estimated
pvalue.

The 4 step partial F test of hypotheses: i) State the hypotheses H0:
the reduced model is good HA: use the full model
ii) Find the test statistic FR =

[
SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F )

iii) Find the pval = P(FdfR−dfF ,dfF > FR). (On exams often an F table is
used. Here dfR−dfF = p−q = number of parameters set to 0, and dfF = n−p.)
iv) State whether you reject H0 or fail to reject H0. Reject H0 if pval ≤ δ
and conclude that the full model should be used. Otherwise, fail to reject H0

and conclude that the reduced model is good.

Assume that the GLS model contains a constant β1. The GLS ANOVA
F test of H0 : β2 = · · · = βp versus HA: not H0 uses the reduced model
that contains the first column of U . The GLS ANOVA F test of H0 : βi = 0
versus HA : βi 6= 0 uses the reduced model with the ith column of U deleted.
For the special case of WLS, the software will often have a weights option
that will also give correct output for inference.

Freedman (1981) shows that the nonparametric bootstrap can be use-
ful for the WLS model with the ei independent. For this case, the sand-
wich estimator is Ĉov(β̂OLS) = (XT X)−1XT ŴX(XT X)−1 with Ŵ =
n diag(r21, ..., r

2
n)/(n− p) where the ri are the OLS residuals and W = σ2V .

See Hinkley (1977), MacKinnon and White (1985), and White (1980).
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A major problem with the following theorem from Christensen (1987, p.
23) is that the weights wi are rarely known if heterogeneity (nonconstant vari-
ance) is present. Another problem is that normality is rare: the assumption
that the ei are independent with ei ∼ N(0, σ2/wi) is too strong. However,
the theorem is useful for qualifying exam problems. From Definition 2.26, the
WLS estimator of β is β̂WLS = (XT V −1X)−1XT V −1Y . The OLS estima-

tor is the special case with V = I. We will say that β̂WLS is the BLUE of β
for the WLS model.

Theorem 2.29. Consider the WLS model Y = Xβ + e where E(e) = 0
and Cov(e) = σ2V = σ2diag(v1, ..., vn) = σ2diag(1/w1, ..., 1/wn). Suppose
the n× p matrix X has full rank p. Let a be a p× 1 constant vector.

a) The WLS estimator aT β̂WLS is the BLUE of aT β.

b) If e ∼ N(0, σ2V ), then the WLS estimator aT β̂WLS is the UMVUE
(uniformly minimum variance unbiased estimator) of aT β.

c) If e ∼ N(0, σ2V ), then the WLS estimator aT β̂WLS is the MLE of β.

Hence the WLS estimator aT β̂WLS is the MLE of aT β.

Example 2.1. Let Y1, . . . , Yn be independent random variables, and let
Yi have a N(iθ, i2σ2) distribution for i = 1, . . . , n. A statistician decided to
construct two estimators for the parameter θ by using two models. [Leave the
sum of the series

∑n
i=1 i,

∑n
i=1 i

2,
∑n

i=1 i
4, etc. as they are, without replacing

them with their exact values.]

a) Write the linear model and state the assumptions.

b) Simplify the weighted least squares estimate of θ, and call it θ̂1. Then,

simplify the distribution of θ̂1.
c) Simplify the ordinary least squares estimator, and call it (θ̂2). Simplify

the distribution of θ̂2.
d) Which estimator has a smaller variance? Is any of θ̂1, θ̂2 a BLUE (Best

Linear Unbiased Estimator)?
Solution: When a WLS problem asks for a distribution and no other in-

formation is given, assume the errors are independent with ei ∼ N(0, σ2/wi)
and e ∼ N(0, σ2V ).

a) Y = Xθ+ e or




Y1

Y2

...
Yn


 =




1
2
...
n


 θ +




e1
e2
...
en


 where X =




1
2
...
n


 ,

and e ∼ Nn(0, σ2V ) with V = diag(1, 22, ..., n2).
b) Note that XT = (1, 2, ..., n), V −1 = diag(1, 1/22, ..., 1/n2), XT V −1 =

(1, 1/2, ..., 1/n), and XT V −1X = 1+1+ · · ·+1 = n. Thus (XT V −1X)−1 =
1/n and XT V −1Y = Y1 + Y2/2 + · · · + Yn/n =

∑n
i=1 Yi/i. Thus the WLS
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estimator

θ̂1 = (XT V −1X)−1XT V −1Y =
1

n

n∑

i=1

Yi

i
.

Now

E(θ̂1) =
1

n

n∑

i=1

iθ

i
= θ,

and

V (θ̂1) =

n∑

i=1

V

(
Yi

n i

)
=

n∑

i=1

i2σ2

n2i2
= σ2/2.

Thus θ̂1 ∼ N(θ, σ2/n).
c) The OLS estimator

θ̂2 = (XT X)−1XT Y =

∑n
i=1 iYi∑n
i=1 i

2
.

Now

E(θ̂2) =

∑n
i=1 i i θ∑n

i=1 i
2

= θ,

and

V (θ̂2) =

n∑

i=1

V

(
iYi∑n
i=1 i

2

)
=

∑n
i=1 i

2i2σ2

(
∑n

i=1 i
2)2

= σ2

∑n
i=1 i

4

(
∑n

i=1 i
2)2

.

Thus

θ̂2 ∼ N

(
θ, σ2

∑n
i=1 i

4

(
∑n

i=1 i
2)2

)
.

d) The WLS estimator θ̂1 is BLUE and thus has smaller variance than

the OLS estimator θ̂2 (which is a linear unbiased estimator: WLS is “better
than” OLS when the weights are known).

2.5 Summary

1) The set of all linear combinations of x1, ...,xn is the vector space known
as span(x1, ...,xn) = {y ∈ R

k : y =
∑n

i=1 aixi for some constants a1, ..., an}.
2) Let A = [a1 a2 ... am] be an n×m matrix. The space spanned by the

columns of A = column space of A = C(A). Then C(A) = {y ∈ R
n : y =

Aw for some w ∈ R
m} = {y : y = w1a1 + w2a2 + · · · + wmam for some

scalars w1, ...., wm} = span(a1, ...,am).
3) A generalized inverse of an n×m matrix A is any m×n matrix A−

satisfying AA−A = A.
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4) The projection matrix P = PX onto the column space of X is
unique, symmetric, and idempotent. P X = X , and PW = W if each
column of W ∈ C(X). The eigenvalues of P X are 0 or 1. Rank(P ) = tr(P ).
Hence P is singular unless X is a nonsingular n×nmatrix, and then P = In.
If C(XR) is a subspace of C(X), then P XP XR

= P XR
P X = PXR

.

5) In − P is the projection matrix on [C(X)]⊥.
6) Let A be a positive definite symmetric matrix. The square root matrix

A1/2 is a positive definite symmetric matrix such that A1/2A1/2 = A.
7) The matrix A in a quadratic form xT Ax will be symmetric unless

told otherwise.
8) Theorem 2.5. Let x be a random vector with E(x) = µ and Cov(x) =

Σ. Then E(xT Ax) = tr(AΣ) + µT Aµ.
9) Theorem 2.7. If A and B are symmetric matrices and AY BY ,

then Y T AY Y T BY .
10) The important part of Craig’s Theorem is that if Y ∼ Nn(µ,Σ),

then Y T AY Y T BY if AΣB = 0.
11) Theorem 2.14. Let A = AT be symmetric. b) If Y ∼ Nn(0, I),

then Y T AY ∼ χ2
r iff A is idempotent of rank r. c) If Y ∼ Nn(0, σ2I), then

Y T AY ∼ σ2 χ2
r iff A is idempotent of rank r.

12) Often theorems are given for when Y ∼ Nn(0, I). If Y ∼ Nn(0, σ2I),
then apply the theorem using Z = Y /σ ∼ Nn(0, I).

13) Suppose Y1, ..., Yn are independent N(µi, 1) random variables so that
Y = (Y1, ..., Yn)T ∼ Nn(µ, In). Then Y T Y =

∑n
i=1 Y

2
i ∼ χ2(n, γ =

µT µ/2), a noncentral χ2(n, γ) distribution, with n degrees of freedom and
noncentrality parameter γ = µT µ/2 = 1

2

∑n
i=1 µ

2
i ≥ 0. The noncentrality

parameter δ = µT µ = 2γ is also used.
14) Theorem 2.16. Let θ = Xη ∈ C(X) where Yi = xT

i η+ri(η) and the

residual ri(η) depends on η. The least squares estimator β̂ is the value
of η ∈ R

p that minimizes the least squares criterion∑n
i=1 r

2
i (η) = ‖Y − Xη‖2.

15) Let xT
i = (1,uT

i ), and let βT = (β1,β
T
2 ) where β1 is the intercept and

the slopes vector β2 = (β2, ..., βp)
T . Let the population covariance matrices

Cov(u) = Σu, and Cov(u, Y ) = ΣuY . If the (Yi,u
T
i )T are iid, then the

population coefficients from an OLS regression of Y on x are

β1 = E(Y ) − βT
2 E(u) and β2 = Σ−1

u ΣuY.

16) Theorem 2.19: Second way to compute β̂: a) If Σ̂
−1

u exists, then

β̂1 = Y − β̂
T

2 u and

β̂2 =
n

n− 1
Σ̂

−1

u Σ̃uY = Σ̃
−1

u Σ̃uY = Σ̂
−1

u Σ̂uY .
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b) Suppose that (Yi,u
T
i )T are iid random vectors such that σ2

Y , Σ−1
u , and

ΣuY exist. Then β̂1
P→ β1 and β̂2

P→ β2 as n → ∞ even if the OLS model
Y = Xβ + e does not hold.

17) Theorem 2.20. Let Y = Xβ + e = Ŷ + r where X is full rank,
E(e) = 0, and Cov(e) = σ2I. Let P = PX be the projection matrix on

C(X) so Ŷ = PX , r = Y − Ŷ = (I −P )Y , and PX = X so XT P = XT .
i) The predictor variables and residuals are orthogonal. Hence the columns
of X and the residual vector are orthogonal: XT r = 0.
ii) E(Y ) = Xβ.
iii) Cov(Y ) = Cov(e) = σ2I.

iv) The fitted values and residuals are uncorrelated: Cov(r, Ŷ ) = 0.

v) The least squares estimator β̂ is an unbiased estimator of β : E(β̂) = β.

vi) Cov(β̂) = σ2(XT X)−1.
18) LS CLT. Suppose that the ei are iid and

XT X

n
→ W−1.

Then the least squares (OLS) estimator β̂ satisfies

√
n(β̂ − β)

D→ Np(0, σ
2 W ).

Also,

(XT X)1/2(β̂ − β)
D→ Np(0, σ

2 Ip).

19) Theorem 2.26, Partial F Test Theorem. Suppose H0 : Lβ = 0 is
true for the partial F test. Under the OLS full rank model, a)

FR =
1

rMSE
(Lβ̂)T [L(XT X)−1LT ]−1(Lβ̂).

b) If e ∼ Nn(0, σ2I), then FR ∼ Fr,n−p.

c) For a large class of zero mean error distributions rFR
D→ χ2

r.
d) The partial F test that rejects H0 : Lβ = 0 if FR > Fr,n−p(1 − δ) is a
large sample right tail δ test for the OLS model for a large class of zero mean
error distributions.

2.6 Complements

A good reference for quadratic forms and the noncentral χ2, t, and F distri-
butions is Johnson and Kotz (1970, ch. 28-31).

The theory for GLS and WLS is similar to the theory for the OLS MLR
model, but the theory for FGLS and FWLS is often lacking or huge sample
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sizes are needed. However, FGLS and FWLS are often used in practice be-
cause usually V is not known and V̂ must be used instead. See Eicker (1963,
1967).

Least squares theory can be extended in at least two ways. For the first
extension, see Chang and Olive (2010) and Chapter 10. The second extension
of least squares theory is to an autoregressive AR(p) time series model: Yt =
φ0 +φ1Yt−1 + · · ·+φpYt−p +et. In matrix form, this model is Y = Xβ +e =




Yp+1

Yp+2

...
Yn


 =




1 Yp Yp−1 . . . Y1

1 Yp+1 Yp . . . Y2

...
...

...
. . .

...
1 Yn−1 Yn−2 . . . Yn−p







φ0

φ1

...
φp


+




ep+1

ep+2

...
en


 .

If the AR(p) model is stationary, then under regularity conditions, OLS
partial F tests are large sample tests for this model. See Anderson (1971, pp.
210–217).

2.7 Problems

Problems from old qualifying exams are marked with a Q since these problems
take longer than quiz and exam problems.

2.1Q. Suppose Yi = xT
i β +ei for i = 1, ..., n where the errors are indepen-

dent N(0, σ2). Then the likelihood function is

L(β, σ2) = (2πσ2)−n/2 exp

( −1

2σ2
‖Y − Xβ‖2

)
.

a) Since the least squares estimator β̂ minimizes ‖Y − Xβ‖2, show that

β̂ is the MLE of β.

b) Then find the MLE σ̂2 of σ2.

2.2Q. Suppose Yi = xT
i β+ei for i = 1, ..., nwhere the errors are iid double

exponential (0, σ) with σ > 0. Then the likelihood function is

L(β, σ) =
1

2n

1

σn
exp

(
−1

σ

n∑

i=1

|Yi − xT
i β|

)
.

Suppose that β̃ is a minimizer of Q(β) =
∑n

i=1 |Yi − xT
i β|.

a) By direct maximization, show that β̃ is an MLE of β regardless of the
value of σ.

b) Find an MLE of σ by maximizing
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L(σ) ≡ L(β̃, σ) =
1

2n

1

σn
exp

(
−1

σ

n∑

i=1

|Yi − xT
i β̃|

)
.

2.3Q. Suppose Yi = xT
i β+ei where the errors are independent N(0, σ2/wi)

where wi > 0 are known constants. Then the likelihood function is

L(β, σ2) =

(
n∏

i=1

√
wi

)(
1√
2π

)n
1

σn
exp

(
−1

2σ2

n∑

i=1

wi(yi − xT
i β)2

)
.

a) Suppose that β̂W minimizes
∑n

i=1 wi(yi −xT
i β)2. Show that β̂W is the

MLE of β.

b) Then find the MLE σ̂2 of σ2.

2.4Q. Suppose Y ∼ Nn(Xβ, σ2V ) for known positive definite n×n matrix
V . Then the likelihood function is

L(β, σ2) =

(
1√
2π

)n
1

|V |1/2

1

σn
exp

( −1

2σ2
(y − Xβ)T V −1(y − Xβ)

)
.

a) Suppose that β̂G minimizes (y − Xβ)T V −1(y − Xβ). Show that β̂G

is the MLE of β.

b) Find the MLE σ̂2 of σ2.

2.5. Find the vector a such that aT Y is an unbiased estimator for E(Yi)
if the usual linear model holds.

2.6. Write the following quantities as bT Y or Y T AY or AY .

a) Y , b)
∑

i(Yi − Ŷi)
2, c)

∑
i(Ŷi)

2, d) β̂, e) Ŷ

2.7. Show that I −H = I −X(XT X)−1XT is idempotent, that is, show
that (I − H)(I − H) = (I − H)2 = I − H.

2.8. Let Y ∼ N(µ, σ2) so that E(Y ) = µ and Var(Y ) = σ2 = E(Y 2) −
[E(Y )]2. If k ≥ 2 is an integer, then

E(Y k) = (k − 1)σ2E(Y k−2) + µE(Y k−1).

Let Z = (Y − µ)/σ ∼ N(0, 1). Hence µk = E(Y − µ)k = σkE(Zk). Use this
fact and the above recursion relationship E(Zk) = (k − 1)E(Zk−2) to find
a) µ3 and b) µ4.

2.9. Let A and B be matrices with the same number of rows. If C is
another matrix such that A = BC, is it true that rank(A) = rank(B)?
Prove or give a counterexample.
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2.10. Let x be an n× 1 vector and let B be an n× n matrix. Show that
xT Bx = xT BT x.

(The point of this problem is that if B is not a symmetric n× n matrix,

then xT Bx = xT Ax where A =
B + BT

2
is a symmetric n× n matrix.)

2.11. Consider the model Yi = β1 +β2Xi,2 + · · ·+βpXi,p +ei = xT
i β +ei.

The least squares estimator β̂ minimizes

QOLS(η) =

n∑

i=1

(Yi − xT
i η)2

and the weighted least squares estimator minimizes

QWLS(η) =
n∑

i=1

wi(Yi − xT
i η)2

where the wi, Yi and xi are known quantities. Show that

n∑

i=1

wi(Yi − xT
i η)2 =

n∑

i=1

(Ỹi − x̃T
i η)2

by identifying Ỹi, and x̃i. (Hence the WLS estimator is obtained from the
least squares regression of Ỹi on x̃i without an intercept.)

2.12. Suppose that X is an n × p matrix but the rank of X < p < n.
Then the normal equations XT Xβ = XT Y have infinitely many solutions.
Let β̂ be a solution to the normal equations. So XT Xβ̂ = XT Y . Let G =
(XT X)− be a generalized inverse of (XT X). Assume that E(Y ) = Xβ and
Cov(Y ) = σ2I . It can be shown that all solutions to the normal equations
have the form bz given below.

a) Show that bz = GXT Y + (GXT X − I)z is a solution to the normal
equations where the p× 1 vector z is arbitrary.

b) Show that E(bz) 6= β.

(Hence some authors suggest that bz should be called a solution to the
normal equations but not an estimator of β.)

c) Show that Cov(bz) = σ2GXT XGT .

d) Although G is not unique, the projection matrix P = XGXT onto

C(X) is unique. Use this fact to show that Ŷ = Xbz does not depend on G
or z.
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e) There are two ways to show that aT β is an estimable function. Either
show that there exists a vector c such that E(cT Y ) = aT β, or show that
a ∈ C(XT ). Suppose that a = XT w for some fixed vector w. Show that
E(aT bz) = aT β.

(Hence aT β is estimable by aT bz where bz is any solution of the normal
equations.)

f) Suppose that a = XT w for some fixed vector w. Show that V ar(aT bz) =
σ2wT P w.

2.13. Let P be a projection matrix.
a) Show that P is a generalized inverse of P .
b) Show that P = P (P T P )−P T .

2.14Q. Suppose Yi = xT
i β + ei with Q(β) ≥ 0. Let cn be a constant that

does not depend on β or σ. Suppose the likelihood function is

L(β, σ) = cn
1

σn
exp

(−1

σ
Q(β)

)
.

a) Suppose that β̂Q minimizes Q(β). Show that β̂Q is an MLE of β.
b) Then find an MLE σ̂ of σ.

2.15Q. Suppose Yi = xT
i β + εi with Q(β) ≥ 0. Let cn be a constant that

does not depend on β or σ2. Suppose the likelihood function is

L(β, σ2) = cn
1

σn
exp

( −1

2σ2
Q(β)

)
.

a) Suppose that β̂Q minimizes Q(β). Show that β̂Q is the MLE of β.
b) Then find the MLE σ̂2 of σ2.

2.16. Suppose that G is a generalized inverse of a symmetric matrix A.

a) Show that GT is a generalized inverse of A.
b) Show that GAGT is a generalized inverse of A. (Hence, since a gener-

alized inverse always exists, a symmetric generalized inverse of a symmetric
matrix A always exists.)

2.17. (Searle (1971, p. 217)): Let A =




1 2 4 3
3 −1 2 −2
5 −4 0 −7


 and show that A− =

1
7




1 2 0
3 −1 0
0 0 0
0 0 0


 is a generalized inverse of A.
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2.18. Find the projection matrix P for C(X) where X is the 2×1 vector
X = (1, 2)T .

2.19. Let y ∼ Np(θ,Σ) where Σ is positive definite. Let A be a symmetric
p× p matrix.

a) Let x = y − θ. What is the distribution of x?
b) Show that

E[(y − θ)T A(y − θ)] = E[xTAx]

is a function of A and Σ but not of θ.

2.20. (Hocking (2003, p. 61): Let y ∼ N3(µ, σ
2I) where y = (Y1, Y2, Y3)

T

and µ = (µ1, µ2, µ3)
T .

Let A = 1
2




1 −1 0
−1 1 0
0 0 0


 and B = 1

6




1 1 −2
1 1 −2
−2 −2 4


.

Are yT Ay and yT By independent? Explain.

2.21Q. Let Y = Xβ+e where e ∼ Nn(0, σ2In). Assume X has full rank.
Let r be the vector of residuals. Then the residual sum of squares RSS =

rT r. The sum of squared fitted values is Ŷ
T
Ŷ . Prove that rT r and Ŷ

T
Ŷ

independent (or dependent).
(Hint: write each term as a quadratic form.)

2.22. Let B =

[
1 2
2 4

]
.

a) Find rank(B).
b) Find a basis for C(B).
c) Find [C(B)]⊥ = nullspace of BT .

d) Show that B− =

[
1 −1
1 0

]
is a generalized inverse of B.

2.23. Suppose that Y = Xβ+e where Cov(e) = σ2Σ and Σ = Σ1/2Σ1/2

where Σ1/2 is nonsingular and symmetric. Hence Σ−1/2Y = Σ−1/2Xβ +
Σ−1/2e. Find Cov(Σ−1/2e). Simplify.

2.24. Let y ∼ N2(µ, σ
2I) where y = (Y1, Y2)

T and µ = (µ1, µ2)
T . Let

A =

[
1/2 1/2
1/2 1/2

]
and B =

[
1/2 −1/2
−1/2 1/2

]
.

Are yT Ay and yT By independent? Explain.

2.25. Assuming the assumptions of the least squares central limit theorem
hold, what is the limiting distribution of

√
n (β̂ − β) if (X ′X)/n → W−1

as n → ∞?

√
n (β̂ − β)

D→

2.26. Let the model be Yi = β1 +β2xi2 +β3xi3 +β4xi4 + ...+β10xi10 +ei.
The model in matrix form is Y = Xβ + e where e ∼ Nn(0, σ2I). Let P be
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the projection matrix on C(X) where the n × p matrix X has full rank p.
What is the distribution of Y T PY ?

Hint: If Y ∼ Nn(µ, I), then Y T AY ∼ χ2(rank(A),µTAµ/2) iff A = AT

is idempotent. Y ∼ Nn(Xβ, σ2I), so
Y

σ
∼ Nn

(
Xβ

σ
, I

)
. Simplify.

2.27. Let Y ′ = Y T . Let Y ∼ Nn(Xβ, σ2I). Recall that E(Y ′AY ) =
tr(ACov(Y )) + E(Y ′)AE(Y ).
Find E(Y ′Y ) = E(Y ′IY ).

2.28. Let y ∼ N2(µ, σ
2I) where y = (Y1, Y2)

T and µ = (µ1, µ2)
T . Let

A =

[
1/2 1/2
1/2 1/2

]
and B =

[
1/4

√
3/4√

3/4 3/4

]
.

Are Ay and By independent? Explain.

2.29. Let X =




1 0
1 0
1 1


 .

a) Find rank(X).
b) Find a basis for C(X).
c) Find [C(X)]⊥ = nullspace of XT .

2.30Q. Let Y = Xβ + e where e ∼ Nn(0, σ2In). Assume X has full
rank and that the first column of X = 1 so that a constant is in the model.
Let r be the vector of residuals. Then the residual sum of squares RSS =
rT r = ‖(I − P )Y ‖2. The sample mean Y = 1

n1T Y . Prove that rT r and Y
independent (or dependent).
(Hint: If Y ∼ Nn(µ,Σ), then AY BY iff AΣBT = 0.

So prove whether (I − P )Y
1

n
1T Y .)

2.31. Let the full model be Yi = β1+β2xi2+β3xi3+β4xi4+β5xi5+β6xi6+ei

and let the reduced model be Yi = β1+β3xi3+ei for i = 1, ..., n. Write the full
model as Y = Xβ+e = X1β1+X2β2 +e, and consider testing H0 : β2 = 0
where β1 corresponds to the reduced model. Let P 1 be the projection matrix
on C(X1) and let P be the projection matrix on C(X).

Then FR =
n− p

q

Y T (P − P 1)Y

Y T (I − P )Y
.

Assume ε ∼ Nn(0, σ2I). Assume H0 is true.
a) What is q?
b) What is the distribution of Y T (P − P 1)Y ?
c) What is the distribution of Y T (I − P )Y ?
d) What is the distribution of FR?

2.32Q. If P is a projection matrix, prove a) the eigenvalues of P are 0 or
1, b) rank(P ) = tr(P ).

2.33Q. Suppose that AY and BY are independent where A and B are
symmetric matrices. Are Y ′AY and Y ′BY independent? (Hint: show that
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the quadratic form Y ′AY is a function of AY by using the definition of the
generalized inverse A−.)

2.34. Craig’s theorem states that if x ∼ Nn(µ,V ) and if A and B are
symmetric matrices, then the quadratic forms x′Ax and x′Bx are indepen-
dent iff i) V AV BV = 0, ii) V AV Bµ = 0, iii) V BV Aµ = 0, and iv)
µ′AV Bµ = 0. Here V is positive semidefinite. Hence V could be singular.
Notice that V is symmetric since it is a covariance matrix.

Suppose that AV B = 0. Are x′Ax and x′Bx are independent? Explain
briefly.

2.35Q. 2.35. Let Y be an n×1 random vector and A an n×n symmetric
matrix. Let E(Y ) = θ and Cov(Y ) = Σ = (σij).

a) Prove that E(Y T AY ) = tr(AΣ) + θT Aθ.
b) Let E(Yi) = θ for all i, σii = σ2 for all i, and σij = ρσ2 for i 6= j

where −1 < ρ < 1. Show that
∑

i(Yi − Y )2 is an unbiased estimator of

σ2(1 − ρ)(n − 1). Hint: write
∑

i(Yi − Y )2 = Y T AY and use a).
c) Show when

∑
i(Yi − Y )2 and Y are independent if Σ = σ2I. State the

theorems clearly wherever used in your proof.
2.36Q (NIU, summer 1991). Consider the regression model Yi = βxi +

ei for i = 1, ..., n where the ei are iid N(0, σ2).
a) Show that the least squares estimator of β is

β̂ =

∑n
i=1 xiYi∑n
i=1 x

2
i

.

b) Express β̂ as a linear combination of the responses and derive its mean
and variance.

c) Show that Ŷi = β̂xi is an unbiased estimator of E(Yi)and derive its
variance.

d) Derive the maximum likelihood estimators of β and σ2.

2.37Q. a) For an n× 1 vector Y with E(Y ) = µ and Cov(Y ) = Σ, show
E(Y T AY ) = trace(AΣ) + µT Aµ. is normality necessary here?

b) Consider the usual full rank linear model Y = Xβ + e where X is
n× p, the first column of X is 1, β is p× 1 and e ∼ Nn(0, σ2I).

i) Write down an ANOVA table to test (β2, ..., βp)
T = 0, giving expressions

for the regression sum of squares (SSR) and the error sum of squares (SSE).
ii) Find E(SSR) and E(SSE) when H0 is true.
iii) Derive the distribution of SSE/σ2 if H0 is true. State any theorems

used.
2.38Q. a) Define a generalized inverse of a matrix A.
b) i) Suppose X is n × p with rank r < p. Give the formula for the

projection matrix P onto the column space of X.
ii) For
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X =




1 −2
1 −2
1 −2


 ,

calculate P .
iii) With X as above and Y = (1, 2, 3)T , calculate the error sum of squares

SSE.
2.39Q. Consider the usual full rank model Y = Xβ + e where X is n× p

and e ∼ Nn(0, σ2In). Let β = (βT
1 βT

2 )T where βi is pi × 1.
a) Write down the complete ANOVA table for the test H0 : β2 = 0,

including the expected mean squares.
b) Prove that SSE(R) − SSE and MSE are independent.
c) If H0 is true, show FR ∼ Fp2,n−p.
2.40Q. Let Y ∼ Nn(µ,Σ) where Σ > 0, and let A be a symmetric matrix.
a) State the necessary and sufficient condition(s) for Y T AY to be a chi-

square random variable.
b) Suppose rank(Σ) = n and BΣA = 0 where B is a q×n matrix. Prove

that Y T AY and BY are independent.
c) If µ = µ1 and Σ = σ2I where σ2 > 0, prove that

Y =
1

n

n∑

i=1

Yi and
1

n− 1

n∑

i=1

(Yi − Y )2 are independent.

2.41Q. Let Y = Xβ + e where e ∼ Nn(0, σ2I), X is an n × p matrix of
rank p, and β is a p× 1 vector.

a) Write down (do not derive) the MLEs of β and σ2.
b) If σ̂2 is the MLE of σ2, derive the distribution of (n− p)σ̂2/σ2.

c) Prove that β̂ (MLE of β) and σ̂2 are independent.
d) Now suppose e ∼ Nn(0, σ2V ) where V is a known positive definite

matrix. Write down the MLE of β.
2.42Q. a) Suppose Y ∼ Nn(µ,Σ). Let A be an n× n symmetric matrix.
i) Show E[(Y − µ)T A(Y − µ)] = tr(AΣ). Is normality of Y necessary

here?
ii) State a necessary and sufficient condition for (Y −µ)T A(Y −µ) to be

a chi-square random variable.
iii) State a necessary and sufficient condition for (Y −µ)T A(Y −µ) and

BY to be independent where B is an q × n matrix.
b) Suppose Y ∼ Nn(Xβ, σ2I) where X is an n× p matrix of rank p and

β is p× 1.

i) Derive the distribution of
1

σ
(I−H)Y where H is the projection matrix

onto the column space C(X).

ii) Derive the distribution of u =
Y T (I − H)Y

σ2
.

iii) Show that u and v = HY are independent.

2.43Q. Consider the regression model yi = βxi + ei for i = 1, ..., n where
the ei are iid N(0, σ2).
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a) Derive the least squares estimator of β.
b) Write down an unbiased estimator of σ2.
c) Derive the maximum likelihood estimators of β and σ2.
2.44Q. Let Y1 and Y2 be independent random variables with mean θ and

2θ respectively. Find the least squares estimate of θ and the residual sum of
squares.

2.45Q. a) By the least squares central limit theorem,
√
n(β̂ − β)

D→
Np(0, σ

2 W ).Hence the limiting distribution of of
√
n(β̂−β) is theNp(0, σ2 W )

distribution. Let A be a constant r×p matrix. Find the limiting distribution
of A

√
n(β̂ − β).

b) Suppose Zn
D→ Nk(µ, I). Let A be a constant r × k matrix. Find the

limiting distribution of A(Zn − µ).
2.46. Suppose that Y1, . . . , Yn are independent random with Yi ∼ N(βxi, σ

2),
where x1, . . . , xn are fixed known constants, and β and σ2 are unknown.

a) Find the MLE of β, and show that it is an unbiased estimator of β.
b) Find the distribution of the MLE of β.

c) Two other possible estimators for β are given by U =

∑
Yi∑
xi

and V =

1

n

∑ Yi

xi
.

i) Show these two estimators are also unbiased estimators of β.
ii) Calculate their variances and compare them with the variance of MLE.
2.47. Consider the usual multiple linear regression model, written in ma-

trix notation as Y = Xβ + ε, where ε ∼ Np(0, σ2I). Assume that X has
full rank. Recall that the various sums of squares from the ANOVA table for
this model have the following forms:

a) SSTotegr = Y T (I − n−1J)Y

b) SSE= Y T (I − H)Y
c) SSRegr = Y T (H − n−1J)Y

where the hat matrix is H = X(XT X)−1XT and J = 11T , with 1T =
[1 1 . . . 1]. As is well-known, these sums of squares are quadratic forms.
Show that in each case, the matrix of the quadratic form is symmetric and
idempotent.

(Hint: where necessary, you may assume that the design matrix can be
partitioned as X = [1 X∗], where X∗ is an n × (p− 1) submatrix made up
of columns that are the individual p− 1 predictor variables.)

2.48. Suppose that the regression model is Yi = ai + βxi + ei for i =
1, ..., nwhere the ai are known constants and the ei are iid N(0, σ2) random

variables. The least squares criterion is Q(η) =

n∑

i=1

(Yi − ai − ηxi)
2.

a) What is E(Yi|xi)?

b) Find the least squares estimator β̂ of β. Prove that your β̂ is the global
minimizer of the least squares criterion Q.
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c) If each xi = 1 for i = 1, ..., n, what are β̂,
d

dη
Q(η), and

d2

dη2
Q(η)?

d) The likelihood function is

L(β, σ2) = (2πσ2)−n/2 exp

(
−1

2σ2

n∑

i=1

(Yi − ai − βxi)
2

)
.

Since the least squares estimator β̂ minimizes
∑n

i=1(Yi − ai − βxi)
2, show

that β̂ is the (maximum likelihood estimator) MLE of β.
e) Then find the MLE σ̂2 of σ2.

2.49. Let A′ = AT be the transpose of A.
a) Suppose that the usual Gaussian linear model holds and that the sample

size is n. Find E(Y ′Y ).
b) Let y ∼ Np(θ,Σ) where Σ is positive definite. Let A be a symmetric

p× p matrix. Let x = y − θ. Find

E[(y − θ)′A(y − θ)] = E[x′Ax].

2.50Q. Consider the regression model yi = βxi + ei for i = 1, ..., n where
the ei are iid N(0, σ2).

a) Derive the least squares estimator of β.
b) Write down an unbiased estimator of σ2.
c) Derive the maximum likelihood estimators of β and σ2.

2.51Q. Let Y1, . . . , Yn be independent random variables, and let Yi have a
N(iθ, i2σ2) distribution for i = 1, . . . , n. A statistician decided to construct
two estimators for the parameter θ by using two models. [Leave the sum of
the series

∑n
i=1 i,

∑n
i=1 i

2,
∑n

i=1 i
4, etc. as they are, without replacing them

with their exact values.]

a) Write the linear model and state the assumptions.

b) Simplify the weighted least squares estimate of θ, and call it θ̂1. Then,

simplify the distribution of θ̂1.
c) Simplify the ordinary least squares estimator, and call it (θ̂2). Simplify

the distribution of θ̂2.
d) Which estimator has a smaller variance? Is any of θ̂1, θ̂2 a BLUE (Best

Linear Unbiased Estimator)?
2.52.
2.53.

R Problems
Use the command source(“G:/linmodpack.txt”) to download the

functions and the command source(“G:/linmoddata.txt”) to download the
data. See Preface or Section 11.1. Typing the name of the linmodpack
function, e.g. regbootsim2, will display the code for the function. Use the
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args command, e.g. args(regbootsim2), to display the needed arguments for
the function. For the following problem, the R commands can be copied and
pasted from (http://parker.ad.siu.edu/Olive/linmodrhw.txt) into R.

2.74. Generalized and weighted least squares are each equivalent to
a least squares regression without intercept. Let w′ = wT . Let V =
diag(1, 1/2, 1/3, ..., 1/9) = diag(wi) where n = 9 and the weights wi = i
for i = 1, ..., 9. Let x′ = (1, x1, x2, x3). Then the weighted least squares
with weight vector w′ = (1, 2, ..., 9) is equivalent to the OLS regression of√
wi Yi = Zi on u where u =

√
wix = (

√
wi,

√
wix1,

√
wix2,

√
wix3)

′. There
is no intercept because the vector of ones has been replaced by a vector of
the

√
wi’s. Copy and paste the commands for this problem into R. The com-

mands fit weightd least squares and the equivalent OLS regression without
an intercept. Include one page of output in Word.





Chapter 3

Nonfull Rank Linear Models and Cell

Means Models

Much of Sections 2.1 and 2.2 apply to both full rank and nonfull rank linear
models. In this chapter we often assume X has rank r < p ≤ n.

3.1 Nonfull Rank Linear Models

Definition 3.1. The nonfull rank linear model is Y = Xβ +e where X
has rank r < p ≤ n, X is an n× p matrix, E(e) = 0 and Cov(e) = σ2I.

Nonfull rank models are often used in experimental design models. Much
of the nonfull rank model theory is similar to that of the full rank model,
but there are some differences. Now the generalized inverse (XT X)− is not

unique. Similarly, β̂ is a solution to the normal equations, but depends on the
generalized inverse and is not unique. Some properties of the least squares
estimators are summarized below. Let P = PX be the projection matrix
on C(X). Recall that projection matrices are symmetric and idempotent but
singular unless P = I . Also recall that PX = X , so XT P = XT .

Theorem 3.1. Let Y = Xβ +e where X has rank r < p ≤ n, E(e) = 0,
and Cov(e) = σ2I .

i) P = X(XT X)−XT is the unique projection matrix on C(X) and does
not depend on the generalized inverse (XT X)−.

ii) β̂ = (XT X)−XT Y does depend on (XT X)− and is not unique.

iii) Ŷ = Xβ̂ = P Y , r = Y − Ŷ = Y −Xβ̂ = (I −P )Y and RSS = rT r
are unique and so do not depend on (XT X)−.

iv) β̂ is a solution to the normal equations: XT Xβ̂ = XT Y .
v) Rank(P ) = r and rank(I − P ) = n− r.

vi) MSE =
RSS

n− r
=

rT r

n− r
is an unbiased estimator of σ2.

117
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vii) Let the columns of X1 form a basis for C(X). For example, take r lin-
early independent columns of X to form X1. Then P = X1(X

T
1 X1)

−1XT
1 .

Proof. Parts i) follows from Theorem 2.2 a), b). For part iii), P and I−P
are projection matrices and projections Pw and (I − P )w are unique since

projection matrices are unique. For ii), since (XT X)− is not unique, β̂ is not

unique. Note that iv) holds since XT Xβ̂ = XT PY = XT Y since P X = X
and XT P = XT . From the proof of Theorem 2.2, if M is a projection
matrix, then rank(M) = tr(M ) = the number of nonzero eigenvalues of
M = rank(X). Thus v) holds. vi) E(rT r) = E(eT (I − P )e) = tr[(I −
P )σ2I)] = σ2(n − r) by Theorem 2.5. Part vii) follows from Theorem 2.2.

�

Definition 3.2. Let a and b be constant vectors. Then aT β is estimable
if there exists a linear unbiased estimator bT Y so E(bT Y ) = aT β.

The term “estimable” is misleading since there are nonestimable quantities
aT β that can be estimated with biased estimators. For full rank models, aT β
is estimable for any p × 1 constant vector a since aT β̂ is a linear unbiased
estimator of aT β. See the Gauss Markov Theorem (Full Rank Case) 2.22.
Estimable quantities tend to go with the nonfull rank linear model. We can
avoid nonestimable functions by using a full rank model instead of a nonfull
rank model (delete columns of X until it is full rank). From Chapter 2, the
linear estimator aT Y of cT θ is the best linear unbiased estimator (BLUE) of
cT θ if E(aT Y ) = cT θ, and if for any other unbiased linear estimator bT Y
of cT θ, V (aT Y ) ≤ V (bT Y ). Note that E(bT Y ) = cT θ.

Since r ≤ p ≤ n, the model is full rank in the following theorem if r = p.
Then the next theorem shows that the least squares estimator of an estimable
function aT β is aT β̂ = bT Xβ̂ = bT PY .

Theorem 3.2. Let Y = Xβ +e where X has rank r ≤ p ≤ n, E(e) = 0,
and Cov(e) = σ2I .

a) The quantity aT β is estimable iff aT = bT X iff a = XT b (for some
constant vector b) iff a ∈ C(XT ).

b) Let θ̂ = Xβ̂ and θ = Xβ. Suppose there exists a constant vector c

such that E(cT θ̂) = cT θ. Then among the class of linear unbiased estimators

of cT θ, the least squares estimator cT θ̂ is the unique BLUE.
c) Gauss Markov Theorem: If aT β is estimable and a least squares

estimator β̂ is any solution to the normal equations XT Xβ̂ = XT Y , then
aT β̂ is the unique BLUE of aT β.

Proof. a) If aT β is estimable, then aT β = E(bT Y ) = bT Xβ for all
β ∈ R

p. Thus aT = bT X or a = XT b. Hence aT β is estimable iff aT = bT X
iff a = XT b iff a ∈ C(XT ).
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For part b), we use the proof from Seber and Lee (2003, p. 43). Since θ̂ =

Xβ̂ = P Y , it follows that E(cT θ̂) = E(cT P Y ) = cT P Xβ = cT Xβ = cT θ.

Thus cT θ̂ = cT P Y = (P c)T Y is a linear unbiased estimator of cT θ. Let
dT Y be any other linear unbiased estimator of cT θ. Hence E(dT Y ) = dT θ =
cT θ for all θ ∈ C(X). So (c − d)T θ = 0 for all θ ∈ C(X). Hence (c − d) ∈
[C(X)]⊥ and P (c − d) = 0, or P c = Pd. Thus V (cT θ̂) = V (cT PY ) =

V (dT PY ) = σ2dT P T P d = σ2dT P d. Then V (dT Y )−V (cT θ̂) = V (dT Y )−
V (dT PY ) = σ2[dT d − dT P d] = σ2dT (In − P )d = σ2dT (In − P )T (In −
P )d = gT g ≥ 0 with equality iff g = (In −P )d = 0, or d = P d = P c. Thus

cT θ̂ has minimum variance and is unique.
c) Since aT β is estimable, aT β̂ = bT Xβ̂. Then aT β̂ = bT θ̂ is the unique

BLUE of aT β = bT θ by part b). �

Remark 3.1. There are several ways to show whether aT β is estimable
or nonestimable. i) For the full rank model, aT β is estimable: use the BLUE

aT β̂. Let θ̂ = Xβ̂ be the least squares estimator of Xβ where X has full
rank p. a) cT θ̂ is the unique BLUE of cT θ. b) aT β̂ is the BLUE of aT β for
every vector a.

Now consider the nonfull rank model. ii) If aT β is estimable: use the BLUE

aT β̂.
iii) There are two more ways to check whether aT β is estimable.
a) If there is a constant vector b such that E(bT Y ) = aT β, then aT β is

estimable.
b) If aT = bT X or a = XT b or a ∈ C(XT ), then aT β is estimable.

Then bT Y is a linear unbiased estimator of aT β, and the least squares esti-
mator bT PY = aT β̂ is the best linear unbiased estimator (BLUE) in that

V (aT β̂) = V (bT P Y ) ≤ V (bT Y ).

3.2 Cell Means Models

Nonfull rank models are often used for experimental design models, but cell
means models have full rank. The cell means models will be illustrated with
the one way Anova model. See Problem 3.9 for the cell means model for the
two way Anova model.

Definition 3.3. Models in which the response variable Y is quantitative,
but all of the predictor variables are qualitative are called analysis of vari-
ance (ANOVA or Anova) models, experimental design models, or design of
experiments (DOE) models. Each combination of the levels of the predictors
gives a different distribution for Y . A predictor variable W is often called a
factor and a factor level ai is one of the categories W can take.

The one way Anova model is used to compare p treatments. Usually there
is replication and H0 : µ1 = µ2 = · · · = µp is a hypothesis of interest.
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Investigators may also want to rank the population means from smallest to
largest.

Definition 3.4. Let fZ(z) be the pdf of Z. Then the family of pdfs fY (y) =
fZ(y−µ) indexed by the location parameter µ, −∞ < µ <∞, is the location
family for the random variable Y = µ+ Z with standard pdf fZ(z).

Definition 3.5. A one way fixed effects Anova model has a single quali-
tative predictor variable W with p categories a1, ..., ap. There are p different
distributions for Y , one for each category ai. The distribution of

Y |(W = ai) ∼ fZ(y − µi)

where the location family has second moments. Hence all p distributions come
from the same location family with different location parameter µi and the
same variance σ2.

Notation. It is convenient to relabel the response variable Y1, ..., Yn as
the vector Y = (Y11, ..., Y1,n1

, Y21, ..., Y2,n2
, ..., Yp1, ..., Yp,np)

T where the Yij

are independent and Yi1, ..., Yi,ni are iid. Here j = 1, ..., ni where ni is the
number of cases from the ith level where i = 1, ..., p. Thus n1 + · · · + np =
n. Similarly use double subscripts on the errors. Then there will be many
equivalent parameterizations of the one way fixed effects Anova model.

Definition 3.6. The cell means model is the parameterization of the one
way fixed effects Anova model such that

Yij = µi + eij

where Yij is the value of the response variable for the jth trial of the ith
factor level. The µi are the unknown means and E(Yij) = µi. The eij are
iid from the location family with pdf fZ(z) and unknown variance σ2 =
VAR(Yij) = VAR(eij). For the normal cell means model, the eij are iid
N(0, σ2) for i = 1, ..., p and j = 1, ..., ni.

The cell means model is a linear model (without intercept) of the form
Y = Xcβc + e =
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Y11

...
Y1,n1

Y21

...
Y2,n2

...
Yp,1

...
Yp,np




=




1 0 0 . . . 0
...

...
...

...
1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

...
0 1 0 . . . 0
...

...
...

...
0 0 0 . . . 1
...

...
...

...
0 0 0 . . . 1







µ1

µ2

...
µp


+




e11

...
e1,n1

e21

...
e2,n2

...
ep,1

...
ep,np




. (3.1)

Notation. Let Yi0 =
∑ni

j=1 Yij and let

µ̂i = Y i0 = Yi0/ni =
1

ni

ni∑

j=1

Yij. (3.2)

Hence the “dot notation” means sum over the subscript corresponding to the
0, e.g. j. Similarly, Y00 =

∑p
i=1

∑ni

j=1 Yij is the sum of all of the Yij.

Let Xc = [v1 v2 · · · vp], and notice that the indicator variables used in
the cell means model (3.1) are vhk = xhk = 1 if the hth case has W = ak, and
vhk = xhk = 0, otherwise, for k = 1, ..., p and h = 1, ..., n. So Yij has xhk = 1
only if i = k and j = 1, ..., ni. The model can use p indicator variables for the
factor instead of p−1 indicator variables because the model does not contain
an intercept. Also notice that (XT

c Xc) = diag(n1, ..., np),

E(Y ) = Xcβc = (µ1, ..., µ1, µ2, ..., µ2, ..., µp, ..., µp)
T ,

and XT
c Y = (Y10, ..., Y10, Y20, ..., Y20, ..., Yp0, ..., Yp0)

T . Hence (XT
c Xc)

−1 =
diag(1/n1, ..., 1/np) and the OLS estimator

β̂c = (XT
c Xc)

−1XT
c Y = (Y 10, ..., Y p0)

T = (µ̂1, ..., µ̂p)
T .

Thus Ŷ = Xcβ̂c = (Y 10, ..., Y 10, ..., Y p0, ..., Y p0)
T . Hence the ijth fitted

value is
Ŷij = Y i0 = µ̂i (3.3)

and the ijth residual is

rij = Yij − Ŷij = Yij − µ̂i. (3.4)

Since the cell means model is a linear model, there is an associated response
plot and residual plot. However, many of the interpretations of the OLS
quantities for Anova models differ from the interpretations for MLR models.
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First, for MLR models, the conditional distribution Y |x makes sense even if
x is not one of the observed xi provided that x is not far from the xi. This
fact makes MLR very powerful. For MLR, at least one of the variables in x
is a continuous predictor. For the one way fixed effects Anova model, the p
distributions Y |xi make sense where xT

i is a row of Xc.
Also, the OLS MLR ANOVA F test for the cell means model tests H0 :

βc = 0 ≡ H0 : µ1 = · · · = µp = 0, while the one way fixed effects ANOVA F
test given after Definition 3.10 tests H0 : µ1 = · · · = µp.

Definition 3.7. Consider the one way fixed effects Anova model. The
response plot is a plot of Ŷij ≡ µ̂i versus Yij and the residual plot is a plot of

Ŷij ≡ µ̂i versus rij.

The points in the response plot scatter about the identity line and the
points in the residual plot scatter about the r = 0 line, but the scatter need
not be in an evenly populated band. A dot plot of Z1, ..., Zm consists of an
axis and m points each corresponding to the value of Zi. The response plot
consists of p dot plots, one for each value of µ̂i. The dot plot corresponding
to µ̂i is the dot plot of Yi1, ..., Yi,ni. The p dot plots should have roughly the
same amount of spread, and each µ̂i corresponds to level ai. If a new level
af corresponding to xf was of interest, hopefully the points in the response
plot corresponding to af would form a dot plot at µ̂f similar in spread to
the other dot plots, but it may not be possible to predict the value of µ̂f .
Similarly, the residual plot consists of p dot plots, and the plot corresponding
to µ̂i is the dot plot of ri1, ..., ri,ni.

Assume that each ni ≥ 10. Under the assumption that the Yij are from
the same location family with different parameters µi, each of the p dot plots
should have roughly the same shape and spread. This assumption is easier
to judge with the residual plot. If the response plot looks like the residual
plot, then a horizontal line fits the p dot plots about as well as the identity
line, and there is not much difference in the µi. If the identity line is clearly
superior to any horizontal line, then at least some of the means differ.

Definition 3.8. An outlier corresponds to a case that is far from the
bulk of the data. Look for a large vertical distance of the plotted point from
the identity line or the r = 0 line.

Rule of thumb 3.1. Mentally add 2 lines parallel to the identity line and
2 lines parallel to the r = 0 line that cover most of the cases. Then a case is
an outlier if it is well beyond these 2 lines.

This rule often fails for large outliers since often the identity line goes
through or near a large outlier so its residual is near zero. A response that is
far from the bulk of the data in the response plot is a “large outlier” (large
in magnitude). Look for a large gap between the bulk of the data and the
large outlier.
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Suppose there is a dot plot of nj cases corresponding to level aj that is
far from the bulk of the data. This dot plot is probably not a cluster of “bad
outliers” if nj ≥ 4 and n ≥ 5p. If nj = 1, such a case may be a large outlier.

The assumption of the Yij coming from the same location family with
different location parameters µi and the same constant variance σ2 is a big
assumption and often does not hold. Another way to check this assumption is
to make a box plot of the Yij for each i. The box in the box plot corresponds
to the lower, middle, and upper quartiles of the Yij. The middle quartile
is just the sample median of the data mij : at least half of the Yij ≥ mij

and at least half of the Yij ≤ mij . The p boxes should be roughly the same
length and the median should occur in roughly the same position (e.g. in
the center) of each box. The “whiskers” in each plot should also be roughly
similar. Histograms for each of the p samples could also be made. All of the
histograms should look similar in shape.

Example 3.1. Kuehl (1994, p. 128) gives data for counts of hermit crabs
on 25 different transects in each of six different coastline habitats. Let Z be
the count. Then the response variable Y = log10(Z + 1/6). Although the
counts Z varied greatly, each habitat had several counts of 0 and often there
were several counts of 1, 2, or 3. Hence Y is not a continuous variable. The
cell means model was fit with ni = 25 for i = 1, ..., 6.Each of the six habitats
was a level. Figure 3.1a and b shows the response plot and residual plot.
There are 6 dot plots in each plot. Because several of the smallest values in
each plot are identical, it does not always look like the identity line is passing
through the six sample means Y i0 for i = 1, ..., 6. In particular, examine the
dot plot for the smallest mean (look at the 25 dots furthest to the left that
fall on the vertical line FIT ≈ 0.36). Random noise (jitter) has been added to
the response and residuals in Figure 3.1c and d. Now it is easier to compare
the six dot plots. They seem to have roughly the same spread.

The plots contain a great deal of information. The response plot can be
used to explain the model, check that the sample from each population (treat-
ment) has roughly the same shape and spread, and to see which populations
have similar means. Since the response plot closely resembles the residual plot
in Figure 3.1, there may not be much difference in the six populations. Lin-
earity seems reasonable since the samples scatter about the identity line. The
residual plot makes the comparison of “similar shape” and “spread” easier.

Definition 3.9. a) The total sum of squares

SSTO =

p∑

i=1

ni∑

j=1

(Yij − Y 00)
2.

b) The treatment sum of squares
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Fig. 3.1 Plots for Crab Data

SSTR =

p∑

i=1

ni(Y i0 − Y 00)
2.

c) The residual sum of squares or error sum of squares

SSE =

p∑

i=1

ni∑

j=1

(Yij − Y i0)
2.

Definition 3.10. Associated with each SS in Definition 3.9 is a degrees
of freedom (df) and a mean square = SS/df. For SSTO, df = n − 1 and
MSTO = SSTO/(n−1). For SSTR, df = p−1 and MSTR = SSTR/(p−1).
For SSE, df = n− p and MSE = SSE/(n − p).

Let S2
i =

∑ni

j=1(Yij − Y i0)
2/(ni − 1) be the sample variance of the ith

group. Then the MSE is a weighted sum of the S2
i :

σ̂2 = MSE =
1

n− p

p∑

i=1

ni∑

j=1

r2ij =
1

n − p

p∑

i=1

ni∑

j=1

(Yij − Y i0)
2 =

1

n− p

p∑

i=1

(ni − 1)S2
i = S2

pool

where S2
pool is known as the pooled variance estimator.

The ANOVA F test tests whether the p means are equal. If H0 is not
rejected and the means are equal, then it is possible that the factor is unim-
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portant, but it is also possible that the factor is important but the
level is not. For example, the factor might be type of catalyst. The yield
may be equally good for each type of catalyst, but there would be no yield if
no catalyst was used.

The ANOVA table is the same as that for MLR, except that SSTR re-
places the regression sum of squares. The MSE is again an estimator of σ2.
The ANOVA F test tests whether all p means µi are equal. Shown below
is an ANOVA table given in symbols. Sometimes “Treatment” is replaced
by “Between treatments,” “Between Groups,” “Between,” “Model,” “Fac-
tor,” or “Groups.” Sometimes “Error” is replaced by “Residual,” or “Within
Groups.” Sometimes “p-value” is replaced by “P”, “Pr(> F ),” or “PR > F.”
The “p-value” is nearly always an estimated p-value, denoted by pval. An ex-
ception is when the ei are iid N(0, σ2

e). Normality is rare and the constant
variance assumption rarely holds.

Summary Analysis of Variance Table

Source df SS MS=SS/df F p-value

Treatment p− 1 SSTR MSTR F0=MSTR/MSE for H0:
Error n− p SSE MSE µ1 = · · · = µp

Here is the 4 step fixed effects one way ANOVA F test of hy-
potheses.
i) State the hypotheses H0 : µ1 = µ2 = · · · = µp and HA: not H0.
ii) Find the test statistic F0 = MSTR/MSE or obtain it from output.
iii) Find the pval from output or use the F –table: pval =

P (Fp−1,n−p > F0).

iv) State whether you reject H0 or fail to reject H0. If the pval ≤ δ, reject H0

and conclude that the mean response depends on the factor level. (Hence not
all of the treatment means are equal.) Otherwise fail to reject H0 and conclude
that the mean response does not depend on the factor level. (Hence all of the
treatment means are equal, or there is not enough evidence to conclude that
the mean response depends on the factor level.) Give a nontechnical sentence.

Rule of thumb 3.2. If

max(S1, ..., Sp) ≤ 2 min(S1 , ..., Sp),

then the one way ANOVA F test results will be approximately correct if the
response and residual plots suggest that the remaining one way Anova model
assumptions are reasonable. See Moore (2007, p. 634). If all of the ni ≥ 5,
replace the standard deviations by the ranges of the dot plots when exam-
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ining the response and residual plots. The range Ri = max(Yi,1, ..., Yi,ni) −
min(Yi,1, ..., Yi,ni) = length of the ith dot plot for i = 1, ..., p.

The assumption that the zero mean iid errors have constant variance
V (eij) ≡ σ2 is much stronger for the one way Anova model than for the mul-
tiple linear regression model. The assumption implies that the p population
distributions have pdfs from the same location family with different means
µ1, ..., µp but the same variances σ2

1 = · · · = σ2
p ≡ σ2. The one way ANOVA F

test has some resistance to the constant variance assumption, but confidence
intervals have much less resistance to the constant variance assumption. Con-
sider confidence intervals for µi such as Y i0 ± tni−1,1−δ/2

√
MSE/

√
ni. MSE

is a weighted average of the S2
i . Hence MSE overestimates small σ2

i and un-
derestimates large σ2

i when the σ2
i are not equal. Hence using

√
MSE instead

of Si will make the CI too long or too short, and Rule of thumb 3.2 does not
apply to confidence intervals based on MSE.

Sometimes SSTR is written as RSSH −RSS as in the Table below. Note
that RSS = SSE.

Summary Analysis of Variance Table

Source df SS MS=SS/df F p-value

Between p− 1 RSSH − RSS MSTR F0=MSTR/MSE for H0:
Error n− p RSS MSE µ1 = · · · = µp

Example 3.2. An experiment was run to compare three different primitive
altimeters (an altimeter is a device which measures altitude). The response
is the error in reading.

Altimeter 1: 3, 6, 3
Altimeter 2: 4, 5, 4
Altimeter 3: 7, 8, 7
We like to compare the means of these three altimeters.

a) Write the linear model. Describe all terms and assumptions. Use βi instead
of µi.
b) Given that RSSH − RSS = 20.22 and RSS = 7.33, state the hypotheses
that the means are equal, and complete the ANOVA table if the p-value =
0.0188.
c) Find the distribution of the test statistic under normality, and show how
to precisely make the decision. (no calculation necessary, only show the steps)

Solution. a) Let Y be 9 × 1. Then
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Y =




1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1






β1

β2

β3


+ e

where e ∼ N(0, σ2I).
b) H0 : β1 = β2 = β3 versus H1 : not H0

Note that n = 9, p = 3, and ni = 3 for i = 1, 2, 3.

Source df SS MS = SS/df F=MSB/MSE p-value

Between 2 = p− 1 20.22 20.22/2 = 10.11 10.11/1.222 = 8.273 0.0188
Error 6 = n− p 7.33 7.33/6 = 1.222

c) Reject H0 if 8.273 > F (2, 6, 0.05) where P [F (2, 6) > F (2, 6, 0.05)] =
0.05 and F (2, 6) is an F random variable with 2 numerator and 6 denominator
degrees of freedom.

All of the parameterizations of the one way fixed effects Anova model
yield the same predicted values, residuals, and ANOVA F test, but the inter-
pretations of the parameters differ. The cell means model is a linear model
(without intercept) of the form Y = Xcβc + e = that can be fit using OLS.
The OLS MLR output gives the correct fitted values and residuals but an
incorrect ANOVA table. An equivalent linear model (with intercept) with
correct OLS MLR ANOVA table as well as residuals and fitted values can
be formed by replacing any column of the cell means model by a column of
ones 1. Removing the last column of the cell means model and making the
first column 1 gives the model Y = β0 + β1x1 + · · ·+ βp−1xp−1 + e given in
matrix form by (3.5) below.

It can be shown that the OLS estimators corresponding to (3.5) are β̂0 =

Y p0 = µ̂p, and β̂i = Y i0 − Y p0 = µ̂i − µ̂p for i = 1, ..., p− 1. The cell means

model has β̂i = µ̂i = Y i0.



128 3 Nonfull Rank Linear Models and Cell Means Models




Y11

...
Y1,n1

Y21

...
Y2,n2

...
Yp,1

...
Yp,np




=




1 1 0 . . . 0
...

...
...

...
1 1 0 . . . 0
1 0 1 . . . 0
...

...
...

...
1 0 1 . . . 0
...

...
...

...
1 0 0 . . . 1
...

...
...

...
1 0 0 . . . 1
1 0 0 . . . 0
...

...
...

...
1 0 0 . . . 0







β0

β1

...
βp−1


+




e11

...
e1,n1

e21

...
e2,n2

...
ep,1

...
ep,np




. (3.5)

Definition 3.11. A contrast C =
∑p

i=1 kiµi where
∑p

i=1 ki = 0. The

estimated contrast is Ĉ =
∑p

i=1 kiY i0.

If the null hypothesis of the fixed effects one way ANOVA test is not true,
then not all of the means µi are equal. Researchers will often have hypotheses,
before examining the data, that they desire to test. Often such a hypothesis
can be put in the form of a contrast. For example, the contrast C = µi − µj

is used to compare the means of the ith and jth groups while the contrast
µ1 − (µ2 + · · · + µp)/(p − 1) is used to compare the last p − 1 groups with
the 1st group. This contrast is useful when the 1st group corresponds to a
standard or control treatment while the remaining groups correspond to new
treatments.

Assume that the normal cell means model is a useful approximation to the
data. Then the Y i0 ∼ N(µi, σ

2/ni) are independent, and

Ĉ =

p∑

i=1

kiY i0 ∼ N

(
C, σ2

p∑

i=1

k2
i

ni

)
.

Hence the standard error

SE(Ĉ) =

√√√√MSE

p∑

i=1

k2
i

ni
.

The degrees of freedom is equal to the MSE degrees of freedom = n− p.
Consider a family of null hypotheses for contrasts {Ho :

∑p
i=1 kiµi = 0

where
∑p

i=1 ki = 0 and the ki may satisfy other constraints}. Let δS denote
the probability of a type I error for a single test from the family where a type
I error is a false rejection. The family level δF is an upper bound on the
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(usually unknown) size δT . Know how to interpret δF ≈ δT =
P(of making at least one type I error among the family of contrasts).

Two important families of contrasts are the family of all possible con-
trasts and the family of pairwise differences Cij = µi − µj where i 6= j. The
Scheffé multiple comparisons procedure has a δF for the family of all possible
contrasts, while the Tukey multiple comparisons procedure has a δF for the
family of all

(
p
2

)
pairwise contrasts.

3.3 Summary

1) The nonfull rank linear model: suppose Y = Xβ + e where X has
rank r < p and X is an n× p matrix.

i) P X = X(XT X)−XT is the unique projection matrix on C(X) and

does not depend on the generalized inverse (XT X)−.

ii) β̂ = (XT X)−XT Y does depend on (XT X)− and is not unique.

iii) Ŷ = Xβ̂ = P XY , e = Y − Ŷ = Y − Xβ̂ = (I − PX )Y and

RSS = eT e are unique and so do not depend on (XT X)−.

iv) β̂ is a solution to the normal equations: XT Xβ̂ = XT Y .
v) It can be shown that rank(PX ) = r and rank(I − P X ) = n− r.

vi) Let θ̂ = Xβ̂ and θ = Xθ. Suppose there exists a constant vector c

such that E(cT θ̂) = cT θ. Then among the class of linear unbiased estimators

of cT θ, the least squares estimator cT θ̂ is BLUE.

vii) If Cov(Y ) = Cov(ε) = σ2I, then MSE =
RSS

n− r
=

eT e

n− r
is an

unbiased estimator of σ2.
viii) Let the columns of X1 form a basis for C(X). For example, take r lin-

early independent columns of X to form X1. Then P X = X1(X
T
1 X1)

−1XT
1 .

2) Let a and b be constant vectors. Then aT β is estimable if there exists
a linear unbiased estimator bT Y so E(bT Y ) = aT β.

3) The quantity aT β is estimable iff aT = bT X iff a = XT b (for some
constant vector b) iff a ∈ C(XT ).

4) If aT β is estimable and a least squares estimator β̂ is any solution to

the normal equations XT Xβ̂ = XT Y . Then aT β is unique and aT β̂ is the
BLUE of aT β.

5) The term “estimable” is misleading since there are nonestimable quan-
tities aT β that can be estimated with biased or nonlinear estimators.

6) Estimable quantities tend to go with the nonfull rank linear model. Can
avoid nonestimable functions by using a full rank model instead of a nonfull
rank model (delete columns of X until it is full rank).
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7) The linear estimator aT Y of cT θ is the best linear unbiased estimator
(BLUE) of cT θ if E(aT Y ) = cT θ, and if for any other unbiased linear
estimator bT Y of cT θ, V (aT Y ) ≤ V (bT Y ). Note that E(bT Y ) = cT θ.

8) Let θ̂ = Xβ̂ be the least squares estimator of Xβ where X has full

rank p. a) cT θ̂ is the unique BLUE of cT θ. b) aT β̂ is the BLUE of aT β for
every vector a.

9) In experimental design models or design of experiments (DOE), the
entries of X are coded, often as −1, 0 or 1. Often X is not a full rank matrix.

10) Some DOE models have one Yi per xi and lots of xi’s. Then the
response and residual plots are used like those for MLR.

11) Some DOE models have ni Yi’s per xi, and only a few distinct values
of xi. Then the response and residual plots no longer look like those for MLR.

12) A dot plot of Z1, ..., Zm consists of an axis and m points each corre-
sponding to the value of Zi.

13) Let fZ(z) be the pdf of Z. Then the family of pdfs fY (y) = fZ(y− µ)
indexed by the location parameter µ, −∞ < µ < ∞, is the location family
for the random variable Y = µ+Z with standard pdf fZ(y). A one way fixed
effects ANOVA model has a single qualitative predictor variable W with p
categories a1, ..., ap. There are p different distributions for Y , one for each
category ai. The distribution of

Y |(W = ai) ∼ fZ(y − µi)

where the location family has second moments. Hence all p distributions come
from the same location family with different location parameter µi and the
same variance σ2. The one way fixed effects normal ANOVA model is the
special case where Y |(W = ai) ∼ N(µi, σ

2).
14) The response plot is a plot of Ŷ versus Y . For the one way Anova model,

the response plot is a plot of Ŷij = µ̂i versus Yij . Often the identity line with
unit slope and zero intercept is added as a visual aid. Vertical deviations from
the identity line are the residuals eij = Yij − Ŷij = Yij − µ̂i. The plot will
consist of p dot plots that scatter about the identity line with similar shape
and spread if the fixed effects one way ANOVA model is appropriate. The
ith dot plot is a dot plot of Yi,1, ..., Yi,ni. Assume that each ni ≥ 10. If the
response plot looks like the residual plot, then a horizontal line fits the p dot
plots about as well as the identity line, and there is not much difference in
the µi. If the identity line is clearly superior to any horizontal line, then at
least some of the means differ.

The residual plot is a plot of Ŷ versus e where the residual e = Y − Ŷ . The
plot will consist of p dot plots that scatter about the e = 0 line with similar
shape and spread if the fixed effects one way ANOVA model is appropriate.
The ith dot plot is a dot plot of ei,1, ..., ei,ni. Assume that each ni ≥ 10.
Under the assumption that the Yij are from the same location scale family
with different parameters µi, each of the p dot plots should have roughly the
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same shape and spread. This assumption is easier to judge with the residual
plot than with the response plot.

15) Rule of thumb: Let Ri be the range of the ith dot plot =
max(Yi1, ..., Yi,ni)−min(Yi1, ..., Yi,ni). If the ni ≈ n/p and if max(R1, ..., Rp) ≤
2 min(R1, ..., Rp), then the one way ANOVA F test results will be approxi-
mately correct if the response and residual plots suggest that the remaining
one way ANOVA model assumptions are reasonable. Confidence intervals
need stronger assumptions.

16) Let Yi0 =
∑ni

j=1 Yij and let

µ̂i = Y i0 = Yi0/ni =
1

ni

ni∑

j=1

Yij.

Hence the “dot notation” means sum over the subscript corresponding to the
0, e.g. j. Similarly, Y00 =

∑p
i=1

∑ni

j=1 Yij is the sum of all of the Yij . Be able
to find µ̂i from data.

17) The cell means model for the fixed effects one way Anova is Yij =
µi + εij where Yij is the value of the response variable for the jth trial of the
ith factor level for i = 1, ..., p and j = 1, ..., ni. The µi are the unknown means
and E(Yij) = µi. The εij are iid from the location family with pdf fZ(z), zero
mean and unknown variance σ2 = V (Yij) = V (εij). For the normal cell means

model, the εij are iidN(0, σ2). The estimator µ̂i = Y i0 =
∑ni

j=1 Yij/ni = Ŷij.

The ith residual is eij = Yij−Y i0, and Y 00 is the sample mean of all of the Yij

and n =
∑p

i=1 ni. The total sum of squares SSTO =
∑p

i=1

∑ni

j=1(Yij −Y 00)
2,

the treatment sum of squares SSTR =
∑p

i=1 ni(Y i0−Y 00)
2, and the error sum

of squares SSE = RSS =
∑p

i=1

∑ni

j=1(Yij −Y i0)
2. The MSE is an estimator of

σ2. The Anova table is the same as that for multiple linear regression, except
that SSTR replaces the regression sum of squares and that SSTO, SSTR and
SSE have n − 1, p− 1 and n− p degrees of freedom.

Summary Analysis of Variance Table

Source df SS MS F p-value

Treatment p− 1 SSTR MSTR F0=MSTR/MSE for H0:
Error n− p SSE MSE µ1 = · · · = µp

18) Shown is a one way ANOVA table given in symbols. Sometimes “Treat-
ment” is replaced by “Between treatments,” “Between Groups,” “Model,”
“Factor” or “Groups.” Sometimes “Error” is replaced by “Residual,” or
“Within Groups.” Sometimes “p-value” is replaced by “P”, “Pr(> F )” or
“PR > F.” SSE is often replaced by RSS = residual sum of squares.

19) In matrix form, the cell means model is the linear model without an
intercept (although 1 ∈ C(X)), where µ = β = (µ1, ..., µp)

T , and Y =
Xµ + ε =
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Y11

...
Y1,n1

Y21

...
Y2,n2

...
Yp,1

...
Yp,np




=




1 0 0 . . . 0
...

...
...

...
1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

...
0 1 0 . . . 0
...

...
...

...
0 0 0 . . . 1
...

...
...

...
0 0 0 . . . 1







µ1

µ2

...
µp


+




ε11

...
ε1,n1

ε21

...
ε2,n2

...
εp,1

...
εp,np




.

20) For the cell means model, XT X = diag(n1, ..., np), (XT X)−1 =

diag(1/n1, ..., 1/np), and XT Y = (Y10, ..., Yp0)
T . So β̂ = µ̂ = (XT X)−1XT Y

= (Y 10, ..., Y p0)
T . Then Ŷ = X(XT X)−1XT Y = Xµ̂, and Ŷij = Y i0.

Hence the ijth residual eij = Yij − Ŷij = Yij − Y i0 for i = 1, ..., p and
j = 1, ..., ni.

21) In the response plot, the dot plot for the jth treatment crosses the
identity line at Y j0.

22) The one way Anova F test has hypotheses H0 : µ1 = · · · = µp and HA:
not H0 (not all of the p population means are equal). The one way Anova
table for this test is given above 18). Let RSS = SSE. The test statistic

F =
MSTR

MSE
=

[RSS(H) −RSS]/(p − 1)

MSE
∼ Fp−1,n−p

if the εij are iidN(0, σ2). If H0 is true, then Yij = µ+εij and µ̂ = Y 00. Hence
RSS(H) = SSTO =

∑p
i=1

∑ni

j=1(Yij −Y 00)
2. Since SSTO = SSE +SSTR,

the quantity SSTR = RSS(H) −RSS, and MSTR = SSTR/(p − 1).
23) The one way Anova F test is a large sample test if the εij are iid with

mean 0 and variance σ2. Then the Yij come from the same location family
with the same variance σ2

i = σ2 and different mean µi for i = 1, ..., p. Thus
the p treatments (groups, populations) have the same variance σ2

i = σ2. The
V (εij) ≡ σ2 assumption (which implies that σ2

i = σ2 for i = 1, ..., p) is a
much stronger assumption for the one way Anova model than for MLR, but
the test has some resistance to the assumption that σ2

i = σ2 by 15).
24) Other design matrices X can be used for the full model. One design

matrix adds a column of ones to the cell means design matrix. This model is
no longer a full rank model.
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Y11

...
Y1,n1

Y21

...
Y2,n2

...
Yp,1

...
Yp,np




=




1 1 0 . . . 0
...

...
...

...
1 1 0 . . . 0
1 0 1 . . . 0
...

...
...

...
1 0 1 . . . 0
...

...
...

...
1 0 0 . . . 1
...

...
...

...
1 0 0 . . . 1
1 0 0 . . . 0
...

...
...

...
1 0 0 . . . 0







β0

β1

...
βp−1


+




ε11

...
ε1,n1

ε21

...
ε2,n2

...
εp,1

...
εp,np




.

25) A full rank one way Anova model with an intercept adds a constant but
deletes the last column of the X for the cell means model. Then Y = Xβ+ε
where Y and ε are as in the cell means model. Then β = (β0, β1, ..., βp−1)

T =
(µp, µ1 − µp, µ2 − µp, ..., µp−1 − µp)

T . So β0 = µp and βi = µi − µp for
i = 1, ..., p− 1.

It can be shown that the OLS estimators are β̂0 = Y p0 = µ̂p, and β̂i =

Y i0 −Y p0 = µ̂i − µ̂p for i = 1, ..., p− 1. (The cell means model has β̂i = µ̂i =
Y i0.) In matrix form the model is shown above.

Then XT Y = (Y00, Y10, Y20, ..., Yp−1,0)
T and

XT X =




n n1 n2 n3 · · · np−2 np−1

n1 n1 0 0 · · · 0 0
n2 0 n2 0 · · · 0 0
...

...
...

... · · ·
...

...
np−2 0 0 0 · · · np−2 0
np−1 0 0 0 · · · 0 np−1




=




n (n1 n2 · · · np−1)


n1

n2

...
np−1


 diag(n1, ..., np−1)



.

Hence (XTX)−1 =
1

np




1 −1 −1 −1 · · · −1 −1
−1 1 +

np

n1
1 1 · · · 1 1

−1 1 1 +
np

n2
1 · · · 1 1

...
...

...
... · · ·

...
...

−1 1 1 1 · · · 1 +
np

np−2
1

−1 1 1 1 · · · 1 1 +
np

np−1




=

1

np

[
1 −1T

−1 11T + diag(
np

n1
, ...,

np

np−1
)

]
.
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This model is interesting since the one way Anova F test of H0 : µ1 =
· · · = µp versus HA : not H0 corresponds to the MLR Anova F test of
H0 : β1 = · · · = βp−1 = 0 versus HA : not H0.

26) A contrast θ =
∑p

i=1 ciµi where
∑p

i=1 ci = 0. The estimated contrast

is θ̂ =
∑p

i=1 ciY i0. Then SE(θ̂) =
√
MSE

√√√√
p∑

i=1

c2i
ni

and a 100(1 − δ)% CI

for θ is θ̂ ± tn−1,1−δ/2SE(θ̂). CIs for one way Anova are less robust to the
assumption that σ2

i ≡ σ2 than the one way Anova F test.
27) Two important families of contrasts are the family of all possible con-

trasts and the family of pairwise differences θij = µi − µj where i 6= j. The
Scheffé multiple comparisons procedure has a δF for the family of all possible
contrasts while the Tukey multiple comparisons procedure has a δF for the
family of all

(
p
2

)
pairwise contrasts.

3.4 Complements

Section 3.2 followed Olive (2017a, ch. 5) closely. The one way Anova model
assumption that the groups have the same variance is very strong. Chapter
9 shows how to use large sample theory to create better one way MANOVA
type tests, and better one way Anova tests are a special case. The tests tend
to be better when all of the ni are large enough for the CLT to hold for each
Y io. Also see Rupasinghe Arachchige Don and Olive (2019).

3.5 Problems

3.1. When X is not full rank, the projection matrix P X for C(X) is P X =
X(X ′X)−X ′ where X′ = XT . To show that C(P X) = C(X), you can show
that a) P Xw = Xy ∈ C(X) where w is an arbitrary conformable constant
vector, and b) Xy = P Xw ∈ C(P X) where y is an arbitrary conformable
constant vector.

a) Show P Xw = Xy and identify y.
b) Show Xy = P Xw and identify w. Hint: P XX = X.

3.2. Let P = X(XT X)−XT be the projection matrix onto the column
space of X. Using P X = X, show P is idempotent.

3.3. Suppose that X is an n× p matrix but the rank of X < p < n. Then
the normal equations X ′Xβ = X ′Y have infinitely many solutions. Let β̂ be
a solution to the normal equations. So X′Xβ̂ = X′Y . Let G = (X ′X)− be a
generalized inverse of (X ′X). Assume that E(Y ) = Xβ and Cov(Y ) = σ2I .
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It can be shown that all solutions to the normal equations have the form bz
given below.

a) Show that bz = GX ′Y + (GX′X − I)z is a solution to the normal
equations where the p× 1 vector z is arbitrary.

b) Show that E(bz) 6= β.

(Hence some authors suggest that bz should be called a solution to the
normal equations but not an estimator of β.)

c) Show that Cov(bz) = σ2GX ′XG′.

d) Although G is not unique, the projection matrix P = XGX ′ onto

C(X) is unique. Use this fact to show that Ŷ = Xbz does not depend on G
or z.

e) There are two ways to show that a′β is an estimable function. Either
show that there exists a vector c such that E(c′Y ) = a′β, or show that
a ∈ C(X ′). Suppose that a = X ′w for some fixed vector w. Show that
E(a′bz) = a′β.

(Hence a′β is estimable by a′bz where bz is any solution of the normal
equations.)

f) Suppose that a = X ′w for some fixed vector w. Show that V ar(a′bz) =
σ2w′Pw.

3.4. Let Y = Xβ + e where E(e) = 0, Cov(e) = σ2In, and X has full
rank. Let a be a constant vector. (Hint: full rank model formulas are rather
simple.)

a) Find E(aT β̂).
b) Is aT β estimable? Explain briefly.

3.5. Let Y = Xβ+e where Y = (Y1, Y2, Y3)
′, X =




1 2
1 2
2 4


, β = (β1 , β2)

′,

E(e) = 0, and Cov(e) = σ2I .
a) Find [C(X′)].
Show whether or not the following functions are estimable.
b) 5β1 + 10β2

c) β1

d) β1 − 2β2

3.6. Let Y = Xβ + e where E(e) = 0, Cov(e) = σ2In, and X has full
rank. Note that Yi = xT

i β + ei. Assume X is a constant matrix.
a) Find E(Yi).
b) Is E(Yi) estimable? Explain briefly.
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3.7. An overparameterized two way Anova model is Yijk = µ+ αi + βj +
τij + eijk for i = 1, ..., a and j = 1, ..., b and k = 1, ..., m. Suppose a = 2,
b = 2, and m = 2. Then




Y111

Y112

Y121

Y122

Y211

Y212

Y221

Y222




= X




µ
α1

α2

β1

β2

τ11

τ12

τ21

τ22




+




e111

e112

e121

e122

e211

e212

e221

e222




.

a) Give the matrix X.
b) We can write the above model as Y = Xβ + e. This model is not full

rank. What is the projection matrix P (onto the column space of X)? Hint:
XT X is singular, so use the generalized inverse.

3.8. Suppose that Y = (Y1, Y2)
′, Var(Y ) = σ2I , E(Y1) = E(Y2) = β1 −

2β2. Show whether or not the following functions are estimable. Hint E(Y ) =
Xβ, so find X .

a) β1

b) β2

c) −β1 + 2β2

d) 4β1 − 8β2

3.9. The cell means model for the two way Anova model is Yijk = µij +eijk

for i = 1, ..., a and j = 1, ..., b and k = 1, ..., m. Suppose a = 2, b = 2, and
m = 2. Then 



Y111

Y112

Y121

Y122

Y211

Y212

Y221

Y222




= X




µ11

µ12

µ21

µ22


+




e111

e112

e121

e122

e211

e212

e221

e222




.

a) Give the matrix X.
b) Suppose that a full rank cell means two way Anova model is written in

matrix form as Y = Xβ + e. What is the vector of residuals r?

3.10. Note that C(X′X) = C(X′) since C(X′X) ⊆ C(X ′) and rank(X′X) =
rank(X′).

Use this result to explain why there is always a solution β̂ to the normal
equations:

X′Xβ̂ = X′Y .
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3.11. An alternative parameterization of the one way Anova model is
Yij = µ+αi +eij for i = 1, ..., p and j = 1, ..., ni. Hence µi = µ+αi. Suppose
p = 3 and ni = 2. Then




Y11

Y12

Y21

Y22

Y31

Y32




= X




µ
α1

α2

α3


+




e11

e12

e21

e22

e31

e32



.

Give the matrix X .

3.12Q. Consider the linear regression model Yi = β1+β2xi2+· · ·+βpxip+ei

or Y = Xβ+e where Y ∼ Nn(Xβ, σ2I). Assume X is n×p with rank(X) =
r ≤ p.

a) Give expressions for SSE and SSR using matrix notation.
b) Find E(SSE) and E(SSR).
c) Find the distribution of i) SSE, ii) SSR, and iii) MSR/MSE under the

assumption β2 = · · · = βp = 0.

3.13Q. Consider the linear regression model Y = Xβ + e where Y ∼
Nn(Xβ, σ2I). Assume X is n× p with rank(X) = r ≤ p.

a) i) Define what is meant by an estimable linear function of β.
ii) Write down the least squares estimator of an estimable function of β.
iii) Write down an unbiased estimator of σ2.
b) Show the estimators of part a) ii) and iii) are unbiased.
c) State the Gauss Markov Theorem.
d) Give expressions for SSE and SSR using matrix notation.

3.14Q. Let E(Y ) = Xβ where Y is 3× 1, X is 3× 2, and β is 2× 1. Let

i) X =




2 0
1 1
0 2


 and ii) X =




3 6
2 4
1 2


 .

a) In each of cases i) and ii), state whether β is estimable and explain your
answer.

b) If the answer is “yes,” then determine the matrix B in β̂ = BY .
c) If the answer is “no,” then produce one estimable parametric function

and its unbiased estimator.
3.15Q. Let y ∼ Np(Aβ, σ2Ip), where A is a known p × n matrix of

constants and β an n×1 vector of unknown parameters. Let r = rank(A), 0 <
r < p. Define the vector of fitted values ŷ, and the vector of residuals e, as
ŷ = P Ay and e = y − ŷ (P A is the projection matrix on C(A), the column
space of A).

(a) Provide the distribution of ŷ.

(b) Provide the distribution of e.
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(c) Are y and e distributed independently? Explain your answer.

(d) Are ŷ and e distributed independently? Explain your answer.
3.16Q. Let Y ∼ Nn(Xβ, σ2In), where X is n×k matrix with n > k ≥ 2,

and β ∈ R
k. Suppose a hypothesis H0 states that under H0 the data vector

Y has the mean E[Y ] = Zγ , where Z is a suitable matrix with C(Z) is a
proper subset of C(X).

(a) Show that there is a matrix B so that Z = XB.

(b) Show that P XP Z = P Z .

(c) Show that P X − P Z is an idempotent matrix.

(d) Define SSE = Y >[I−P X ]Y and SSE2 = Y >[I−P Z ]Y . Show that
SSE2 ≥ SSE.

(e) Show that SSE2 − SSE and SSE are independently distributed.

(f) Can you suggest a test of H0 based on SSE2 − SSE and SSE?
3.17Q. Consider a two-way cross-classified data where the factor A has 3

levels and the factor B has 4 levels. The numbers of observations for the 12
cells in the two-way classification are as given in the following table. Thus
we have no observations in a number of cells. If nij denotes the number of
observations in the cell corresponding to the ith level of A and the jth level
of B, we have in our data n11 = 1, n12 = 1, n13 = 1, n21 = 1, n22 = 2, n23 =
1, n34 = 2, and all other nijs are zero. For a non-empty cell (i, j), we use Yijk

to denote the kth observation in the cell. We also assume the additive model
given by (when nij > 0)

E(Yijk) = µ + αi + βj , k = 1, ..., nij, i = 1, 2, 3, j = 1, 2, 3, 4,

B
1 2 3 4

1
A 2

3

1 1 1 0
1 2 1 0
0 0 0 2

Table 3.1 Frequency Table

We denote the data in vector notation as Y = (Y111, Y121, Y131, Y211, Y221, Y222, Y231, Y341, Y342)
>.

Also, we write β = (µ, α1, α2, α3, β1, β2, β3, β4)
>.

(a) Find the model matrix (design matrix) X for the model so that
E(Y ) = Xβ.

(b) Find the vector X>Y .

(c) Decide whether Ȳ.1. − Ȳ.3. is the OLS estimator for β1 − β3 . Explain

your answer. Here Ȳ.j. =
∑3

i=1

∑nij

k=1 Yijk/
∑3

i=1 nij.

(d) Decide whether Ȳ1.. − Ȳ3.. is the OLS estimator for α1 − α3 . Explain

your answer. Here Ȳi.. =
∑4

j=1

∑nij

k=1 Yijk/
∑4

j=1 nij .
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3.18Q. Let Y = Xβ + ε where Y = (Y1, Y2, Y3)
′, X =




1 2
1 2
2 4


, β =

(β1, β2)
′, E(ε) = 0, and Cov(ε) = σ2I .

a) Find C(X ′).

Show whether or not the following functions are estimable.

b) 5β1 + 10β2

c) β1

d) β1 − 2β2

3.19Q. Let Y = Xβ + ε where Y = (Y1, Y2, Y3)
′ = (1, 2, 3)′, X =


1 −2
1 −2
1 −2


, β = (β1, β2)

′, E(ε) = 0, and Cov(ε) = σ2I.

a) Calculate P , the projection matrix P onto the column space of X .
b) Calculate the error sum of squares SSE.
c) Find C(X ′).

Show whether or not the following functions are estimable.

d) 5β1 + 10β2

e) β1

f) β1 − 2β2

3.20Q. Let Y = Xβ + ε. Suppose that aT
1 β, ...,aT

k β are estimable func-

tions. Prove or disprove:

k∑

i=1

cia
T
i β is estimable where c1, ..., ck are known

constants.

3.21Q. a) Let X be an n×1 random vector withE(X) = µ andCov(X) =
Σ of rank r. Find E(XT Σ−X).

b) Consider the one way fixed effects ANOVA model with 2 replications
per group so that Y is a 2p× 1 random vector:

Y = Xβ + e =




Y1,1

Y1,2

Y2,1

Y2,2

...
Yp,1

Yp,2




=




1 1 0 . . . 0
1 1 0 . . . 0
1 0 1 . . . 0
1 0 1 . . . 0
...

...
...

...
...

1 0 0 . . . 1
1 0 0 . . . 1
1 0 0 . . . 0
1 0 0 . . . 0







β0

β1

β2

...
βp−1




+




e1,1

e1,2

e2,1

e2,2

...
ep,1

ep,2




with E(e) = 0.
i) Simplify E(Y ) = Xβ.
ii) If
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E(Y ) = Xβ =




0
β0

β0


 ,

find β1, ..., βp−1 in terms of β0 .
3.22Q. An experiment was run to compare three different primitive al-

timeters (an altimeter is a device which measures altitude). The response is
the error in reading.

Altimeter 1: 3, 6, 3
Altimeter 2: 4, 5, 4
Altimeter 3: 7, 8, 7
We like to compare the means of these three altimeters.

a) Write the linear model. Describe all terms and assumptions. Use βi instead
of µi.
b) Given that RSSH − RSS = 20.22 and RSS = 7.33, state the hypotheses
that the means are equal, and complete the ANOVA table (omit the p-value).
c) Find the distribution of the test statistic under normality, and show how
to precisely make the decision. (no calculation necessary, only show the steps)



Chapter 4

Prediction and Variable Selection When

n >> p

This chapter considers variable selection when n >> p and prediction in-
tervals that can work if n > p or p > n. Prediction regions and prediction
intervals applied to a bootstrap sample can result in confidence regions and
confidence intervals. The bootstrap confidence regions will be used for infer-
ence after variable selection.

4.1 Variable Selection

Variable selection, also called subset or model selection, is the search for a
subset of predictor variables that can be deleted with little loss of information
if n/p is large. Consider the 1D regression model where Y x|SP where
SP = xT β. See Chapters 1 and 10. A model for variable selection can be
described by

xT β = xT
SβS + xT

EβE = xT
SβS (4.1)

where x = (xT
S ,x

T
E)T is a p× 1 vector of predictors, xS is an aS × 1 vector,

and xE is a (p− aS) × 1 vector. Given that xS is in the model, βE = 0 and
E denotes the subset of terms that can be eliminated given that the subset
S is in the model.

Since S is unknown, candidate subsets will be examined. Let xI be the
vector of a terms from a candidate subset indexed by I, and let xO be the
vector of the remaining predictors (out of the candidate submodel). Then

xT β = xT
I βI + xT

OβO.

Suppose that S is a subset of I and that model (4.1) holds. Then

xT β = xT
SβS = xT

S βS + xT
I/Sβ(I/S) + xT

O0 = xT
I βI

141



142 4 Prediction and Variable Selection When n >> p

where xI/S denotes the predictors in I that are not in S. Since this is true
regardless of the values of the predictors, βO = 0 and the sample correlation
corr(xT

i β,xT
I,iβI) = 1.0 for the population model if S ⊆ I. The estimated

sufficient predictor (ESP) is xT β̂, and a submodel I is worth considering if
the correlation corr(ESP,ESP (I)) ≥ 0.95.

Definition 4.1. The model Y x|xT β that uses all of the predictors is
called the full model. A model Y xI |xT

I βI that uses a subset xI of the
predictors is called a submodel. The full model is always a submodel.
The full model has sufficient predictor SP = xT β and the submodel has
SP = xT

I βI .

Forward selection or backward elimination with the Akaike (1973) AIC
criterion or Schwarz (1978) BIC criterion are often used for variable selec-
tion. The relaxed lasso or relaxed elastic net estimator fits the regression
method, such as a GLM or Cox (1972) proportional hazards regression, to
the predictors than had nonzero lasso or elastic net coefficients. See Chapters
5 and 10.

To clarify notation, suppose p = 4, a constant x1 = 1 corresponding to β1 is
always in the model, and β = (β1, β2, 0, 0)T . Then the J = 2p−1 = 8 possible
subsets of {1, 2, ..., p} that always contain 1 are I1 = {1}, S = I2 = {1, 2},
I3 = {1, 3}, I4 = {1, 4}, I5 = {1, 2, 3}, I6 = {1, 2, 4}, I7 = {1, 3, 4}, and
I8 = {1, 2, 3, 4}. There are 2p−aS = 4 subsets I2, I5, I6, and I8 such that

S ⊆ Ij. Let β̂I7
= (β̂1 , β̂3, β̂4)

T and xI7
= (x1, x3, x4)

T .
Underfitting occurs if submodel I does not contain S. Following, for ex-

ample, Pelawa Watagoda (2019), let X = [XI XO] and β = (βT
I ,β

T
O)T .

Then Xβ = XIβI + XOβO, and β̂I = (XIXI)
−1XT

I Y = AY . Assuming

the usual MLR model, Cov(β̂I) = Cov(AY ) = Aσ2IAT = σ2(XT
I XI)

−1.

Now E(β̂I) = E(AY ) = AXβ = (XIXI)
−1XT

I (XIβI + XOβO) =

βI + (XIXI)
−1XT

I XOβO = βI + AXOβO.

If S ⊆ I, then βO = 0, but if underfitting occurs then the bias vector
AXOβO can be large.

4.1.1 OLS Variable Selection

Simpler models are easier to explain and use than more complicated mod-
els, and there are several other important reasons to perform variable se-
lection. For example, an OLS MLR model with unnecessary predictors has∑n

i=1 V (Ŷi) that is too large. If (4.1) holds, S ⊆ I, βS is an aS × 1 vector,
and βI is a j × 1 vector with j > aS , then
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1

n

n∑

i=1

V (ŶIi) =
σ2j

n
>
σ2aS

n
=

1

n

n∑

i=1

V (ŶSi). (4.2)

In particular, the full model has j = p. Hence having unnecessary predic-
tors decreases the precision for prediction. Fitting unnecessary predictors is
sometimes called fitting noise or overfitting. As an extreme case, suppose
that the full model contains p = n predictors, including a constant, so that
the hat matrix H = In, the n × n identity matrix. Then Ŷ = Y so that
VAR(Ŷ |x) = VAR(Y ). A model I underfits if it does not include all of the
predictors in S. A model I does not underfit if S ⊆ I.

To see that (4.2) holds, assume that the full model includes all p possible

terms so the full model may overfit but does not underfit. Then Ŷ = HY
and Cov(Ŷ ) = σ2HIHT = σ2H. Thus

1

n

n∑

i=1

V (Ŷi) =
1

n
tr(σ2H) =

σ2

n
tr((XT X)−1XT X) =

σ2p

n

where tr(A) is the trace operation. Replacing p by j and aS and replac-
ing H by HI and HS implies Equation (4.2). Hence if only aS parame-
ters are needed and p >> aS , then serious overfitting occurs and increases

1

n

n∑

i=1

V (Ŷi).

Two important summaries for submodel I are R2(I), the proportion of
the variability of Y explained by the nontrivial predictors in the model,
and MSE(I) = σ̂2

I , the estimated error variance. See Definitions 1.17 and
1.18. Suppose that model I contains k predictors, including a constant. Since
adding predictors does not decrease R2, the adjusted R2

A(I) is often used,
where

R2
A(I) = 1 − (1 − R2(I))

n

n − k
= 1 −MSE(I)

n

SST
.

See Seber and Lee (2003, pp. 400-401). Hence the model with the maximum
R2

A(I) is also the model with the minimum MSE(I).

For multiple linear regression, recall that if the candidate model of xI

has k terms (including the constant), then the partial F statistic for testing
whether the p− k predictor variables in xO can be deleted is

FI =
SSE(I) − SSE

(n− k) − (n − p)
/
SSE

n− p
=
n− p

p− k

[
SSE(I)

SSE
− 1

]

where SSE is the error sum of squares from the full model, and SSE(I) is the
error sum of squares from the candidate submodel. An extremely important
criterion for variable selection is the Cp criterion.

Definition 4.2.
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Cp(I) =
SSE(I)

MSE
+ 2k − n = (p − k)(FI − 1) + k

where MSE is the error mean square for the full model.

Note that when H0 is true, (p−k)(FI −1)+k
D→ χ2

p−k +2k−p for a large
class of iid error distributions. Minimizing Cp(I) is equivalent to minimizing
MSE [Cp(I)] = SSE(I) + (2k− n)MSE = rT (I)r(I) + (2k− n)MSE. The
following theorem helps explain why Cp is a useful criterion and suggests that
for subsets I with k terms, submodels with Cp(I) ≤ min(2k, p) are especially
interesting. Olive and Hawkins (2005) show that this interpretation of Cp can

be generalized to 1D regression models with a linear predictor βT x = xT β,
such as generalized linear models. Denote the residuals and fitted values from
the full model by ri = Yi−xT

i β̂ = Yi−Ŷi and Ŷi = xT
i β̂ respectively. Similarly,

let β̂I be the estimate of βI obtained from the regression of Y on xI and

denote the corresponding residuals and fitted values by rI,i = Yi − xT
I,iβ̂I

and ŶI,i = xT
I,iβ̂I where i = 1, ..., n.

Theorem 4.1. Suppose that a numerical variable selection method sug-
gests several submodels with k predictors, including a constant, where 2 ≤
k ≤ p.

a) The model I that minimizes Cp(I) maximizes corr(r, rI).

b) Cp(I) ≤ 2k implies that corr(r, rI) ≥
√

1 − p

n
.

c) As corr(r, rI) → 1,

corr(xTβ̂,xT
I β̂I) = corr(ESP,ESP(I)) = corr(Ŷ, ŶI) → 1.

Proof. These results are a corollary of Theorem 4.2 below. �

Remark 4.1. Consider the model Ii that deletes the predictor xi. Then
the model has k = p − 1 predictors including the constant, and the test
statistic is ti where

t2i = FIi.

Using Definition 4.2 and Cp(Ifull) = p, it can be shown that

Cp(Ii) = Cp(Ifull) + (t2i − 2).

Using the screen Cp(I) ≤ min(2k, p) suggests that the predictor xi should
not be deleted if

|ti| >
√

2 ≈ 1.414.

If |ti| <
√

2 then the predictor can probably be deleted since Cp decreases.
The literature suggests using the Cp(I) ≤ k screen, but this screen eliminates
too many potentially useful submodels.
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More generally, it can be shown that Cp(I) ≤ 2k iff

FI ≤ p

p− k
.

Now k is the number of terms in the model I including a constant while p−k
is the number of terms set to 0. As k → 0, the partial F test will reject Ho:
βO = 0 (i.e. say that the full model should be used instead of the submodel
I) unless FI is not much larger than 1. If p is very large and p − k is very
small, then the partial F test will tend to suggest that there is a model I
that is about as good as the full model even though model I deletes p − k
predictors.

Definition 4.3. The “fit–fit” or FF plot is a plot of ŶI,i versus Ŷi while
a “residual–residual” or RR plot is a plot rI,i versus ri. A response plot is a

plot of ŶI,i versus Yi. An EE plot is a plot of ESP(I) versus ESP. For MLR,
the EE and FF plots are equivalent.

Six graphs will be used to compare the full model and the candidate sub-
model: the FF plot, RR plot, the response plots from the full and submodel,
and the residual plots from the full and submodel. These six plots will con-
tain a great deal of information about the candidate subset provided that
Equation (4.1) holds and that a good estimator (such as OLS) for β̂ and β̂I

is used.

Application 4.1. To visualize whether a candidate submodel using pre-
dictors xI is good, use the fitted values and residuals from the submodel and
full model to make an RR plot of the rI,i versus the ri and an FF plot of ŶI,i

versus Ŷi. Add the OLS line to the RR plot and identity line to both plots as
visual aids. The subset I is good if the plotted points cluster tightly about
the identity line in both plots. In particular, the OLS line and the identity
line should “nearly coincide” so that it is difficult to tell that the two lines
intersect at the origin in the RR plot.

To verify that the six plots are useful for assessing variable selection,
the following notation will be useful. Suppose that all submodels include
a constant and that X is the full rank n × p design matrix for the full
model. Let the corresponding vectors of OLS fitted values and residuals
be Ŷ = X(XT X)−1XT Y = HY and r = (I − H)Y , respectively.
Suppose that XI is the n × k design matrix for the candidate submodel
and that the corresponding vectors of OLS fitted values and residuals are
Ŷ I = XI(X

T
I XI)

−1XT
I Y = HIY and rI = (I − HI)Y , respectively.

A plot can be very useful if the OLS line can be compared to a reference
line and if the OLS slope is related to some quantity of interest. Suppose that
a plot of w versus z places w on the horizontal axis and z on the vertical axis.
Then denote the OLS line by ẑ = a+ bw. The following theorem shows that
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the plotted points in the FF, RR, and response plots will cluster about the
identity line. Notice that the theorem is a property of OLS and holds even if
the data does not follow an MLR model. Let corr(x, y) denote the correlation
between x and y.

Theorem 4.2. Suppose that every submodel contains a constant and that
X is a full rank matrix.
Response Plot: i) If w = ŶI and z = Y then the OLS line is the identity
line.
ii) If w = Y and z = ŶI then the OLS line has slope b = [corr(Y, ŶI )]2 = R2(I)
and intercept a = Y (1 − R2(I)) where Y =

∑n
i=1 Yi/n and R2(I) is the

coefficient of multiple determination from the candidate model.
FF or EE Plot: iii) If w = ŶI and z = Ŷ then the OLS line is the identity
line. Note that ESP (I) = ŶI and ESP = Ŷ .
iv) If w = Ŷ and z = ŶI then the OLS line has slope b = [corr(Ŷ , ŶI)]

2 =
SSR(I)/SSR and intercept a = Y [1 − (SSR(I)/SSR)] where SSR is the
regression sum of squares.
RR Plot: v) If w = r and z = rI then the OLS line is the identity line.
vi) If w = rI and z = r then a = 0 and the OLS slope b = [corr(r, rI)]

2 and

corr(r, rI) =

√
SSE

SSE(I)
=

√
n− p

Cp(I) + n − 2k
=

√
n− p

(p− k)FI + n− p
.

Proof: Recall that H and HI are symmetric idempotent matrices and
that HHI = HI . The mean of OLS fitted values is equal to Y and the
mean of OLS residuals is equal to 0. If the OLS line from regressing z on w
is ẑ = a+ bw, then a = z − bw and

b =

∑
(wi −w)(zi − z)∑

(wi −w)2
=
SD(z)

SD(w)
corr(z, w).

Also recall that the OLS line passes through the means of the two variables
(w, z).

(*) Notice that the OLS slope from regressing z on w is equal to one if
and only if the OLS slope from regressing w on z is equal to [corr(z, w)]2.

i) The slope b = 1 if
∑
ŶI,iYi =

∑
Ŷ 2

I,i. This equality holds since Ŷ
T

I Y =

Y T HIY = Y T HIHIY = Ŷ
T

I Ŷ I . Since b = 1, a = Y − Y = 0.

ii) By (*), the slope

b = [corr(Y, ŶI )]2 = R2(I) =

∑
(ŶI,i − Y )2∑
(Yi − Y )2

= SSR(I)/SSTO.

The result follows since a = Y − bY .
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iii) The slope b = 1 if
∑
ŶI,iŶi =

∑
Ŷ 2

I,i. This equality holds since

Ŷ
T
Ŷ I = Y T HHIY = Y T HIY = Ŷ

T

I Ŷ I . Since b = 1, a = Y − Y = 0.

iv) From iii),

1 =
SD(Ŷ )

SD(ŶI )
[corr(Ŷ , ŶI)].

Hence

corr(Ŷ , ŶI) =
SD(ŶI )

SD(Ŷ )

and the slope

b =
SD(ŶI )

SD(Ŷ )
corr(Ŷ , ŶI) = [corr(Ŷ , ŶI)]

2.

Also the slope

b =

∑
(ŶI,i − Y )2∑
(Ŷi − Y )2

= SSR(I)/SSR.

The result follows since a = Y − bY .

v) The OLS line passes through the origin. Hence a = 0. The slope b =
rT rI/r

T r. Since rT rI = Y T (I − H)(I − HI)Y and (I − H)(I − HI) =
I − H, the numerator rT rI = rT r and b = 1.

vi) Again a = 0 since the OLS line passes through the origin. From v),

1 =

√
SSE(I)

SSE
[corr(r, rI)].

Hence

corr(r, rI) =

√
SSE

SSE(I)

and the slope

b =

√
SSE

SSE(I)
[corr(r, rI)] = [corr(r, rI)]

2.

Algebra shows that

corr(r, rI) =

√
n − p

Cp(I) + n− 2k
=

√
n− p

(p− k)FI + n− p
. �

Remark 4.2. Let Imin be the model than minimizes Cp(I) among the
models I generated from the variable selection method such as forward se-
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lection. Assuming the the full model Ip is one of the models generated, then
Cp(Imin) ≤ Cp(Ip) = p, and corr(r, rImin) → 1 as n → ∞ by Theorem 4.2
vi). Referring to Equation (4.1), if P (S ⊆ Imin) does not go to 1 as n→ ∞,
then the above correlation would not go to one. Hence P (S ⊆ Imin) → 1 as
n→ ∞.

A standard model selection procedure will often be needed to suggest
models. For example, forward selection or backward elimination could be
used. If p < 30, Furnival and Wilson (1974) provide a technique for selecting
a few candidate subsets after examining all possible subsets.

Remark 4.3. Daniel and Wood (1980, p. 85) suggest using Mallows’
graphical method for screening subsets by plotting k versus Cp(I) for models
close to or under the Cp = k line. Theorem 4.2 vi) implies that if Cp(I) ≤ k
or FI < 1, then corr(r, rI) and corr(ESP,ESP (I)) both go to 1.0 as n→ ∞.
Hence models I that satisfy the Cp(I) ≤ k screen will contain the true model
S with high probability when n is large. This result does not guarantee that
the true model S will satisfy the screen, but overfit is likely. Let d be a lower
bound on corr(r, rI). Theorem 4.2 vi) implies that if

Cp(I) ≤ 2k + n

[
1

d2
− 1

]
− p

d2
,

then corr(r, rI) ≥ d. The simple screen Cp(I) ≤ 2k corresponds to

d ≡ dn =

√
1 − p

n
.

To avoid excluding too many good submodels, consider models I with
Cp(I) ≤ min(2k, p). Models under both the Cp = k line and the Cp = 2k line
are of interest.

Rule of thumb 4.1. a) After using a numerical method such as forward
selection or backward elimination, let Imin correspond to the submodel with
the smallest Cp. Find the submodel II with the fewest number of predictors
such that Cp(II) ≤ Cp(Imin)+1. Then II is the initial submodel that should
be examined. It is possible that II = Imin or that II is the full model. Do
not use more predictors than model II to avoid overfitting.

b) Models I with fewer predictors than II such that Cp(I) ≤ Cp(Imin)+4
are interesting and should also be examined.

c) Models I with k predictors, including a constant and with fewer predic-
tors than II such that Cp(Imin) + 4 < Cp(I) ≤ min(2k, p) should be checked
but often underfit: important predictors are deleted from the model. Underfit
is especially likely to occur if a predictor with one degree of freedom is deleted
(if the c − 1 indicator variables corresponding to a factor are deleted, then
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the factor has c− 1 degrees of freedom) and the jump in Cp is large, greater
than 4, say.

d) If there are no models I with fewer predictors than II such that Cp(I) ≤
min(2k, p), then model II is a good candidate for the best subset found by
the numerical procedure.

Forward selection forms a sequence of submodels I1, ..., Ip where Ij uses j
predictors including the constant. Let I1 use x∗1 = x1 ≡ 1: the model has a
constant but no nontrivial predictors. To form I2, consider all models I with
two predictors including x∗1. Compute SSE(I) = RSS(I) = rT (I)r(I) =∑n

i=1 r
2
i (I) =

∑n
i=1(Yi − Ŷi(I))

2. Let I2 minimize SSE(I) for the p − 1
models I that contain x∗1 and one other predictor. Denote the predictors in
I2 by x∗1, x

∗
2. In general, to form Ij consider all models I with j predictors

including variables x∗1, ..., x
∗
j−1. Compute SSE(I) and let Ij minimizeSSE(I)

for the p − j + 1 models I that contain x∗1, ..., x
∗
j−1 and one other predictor

not already selected. Denote the predictors in Ij by x∗1, ..., x
∗
j. Continue in

this manner for j = 2, ...,M = p.
Backward elimination also forms a sequence of submodels I1, ..., Ip where

Ij uses j predictors including the constant. Let Ip be the full model. To
form Ip−1 consider all models I with p− 1 predictors including the constant.
Compute SSE(I), and let Ip−1 minimize Qp−1(I) for the p − 1 models I
that exclude one of the predictors x2, ..., xp. Denote the predictors in Ip−1

by x∗1, x
∗
2, ..., x

∗
p−1. In general, to form Ij consider all models I with j pre-

dictors including variables x∗1, ..., x
∗
j+1. Compute SSE(I), and let Ij mini-

mize SSE(I) for the p − j + 1 models I that exclude one of the predictors
x∗2, ..., x

∗
j+1. Denote the predictors in Ij by x∗1, ..., x

∗
j. Continue in this manner

for j = p = M, p− 1, ..., 2, 1 where I1 uses x∗1 = x1 ≡ 1.
Several criterion produce the same sequence of models if forward selection

or backward elimination are used, includingMSE(I), Cp(I), R
2
A(I), AIC(I),

BIC(I), and EBIC(I). This result holds since if the number of predictors
k in the model I is fixed, the criterion is equivalent to minimizing SSE(I)
plus a constant. The constants differ so the model Imin that minimizes the
criterion often differ. Heuristically, backward elimination tries to delete the
variable that will increase Cp the least while forward selection tries to add
the variable that will decrease Cp the most.

When there is a sequence of M submodels, the final submodel Id needs to
be selected with ad terms, including a constant. Let the candidate model I
contain a terms, including a constant, and let xI and β̂I be a × 1 vectors.
Then there are many criteria used to select the final submodel Id. For a given
data set, the quantities p, n, and σ̂2 act as constants, and a criterion below
may add a constant or be divided by a positive constant without changing
the subset Imin that minimizes the criterion.

Let criteria CS(I) have the form

CS(I) = SSE(I) + aKnσ̂
2.
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These criteria need a good estimator of σ2 and n/p large. See Shibata (1984).
The criterion Cp(I) = AICS(I) uses Kn = 2 while the BICS(I) criterion uses
Kn = log(n). See Jones (1946) and Mallows (1973) for Cp. It can be shown
that Cp(I) = AICS(I) is equivalent to the CP (I) criterion of Definition 4.2.
Typically σ̂2 is the OLS full model MSE when n/p is large.

The following criteria also need n/p large. AIC is due to Akaike (1973),
AICC is due to Hurvich and Tsai (1989), and BIC to Schwarz (1978) and
Akaike (1977, 1978). Also see Burnham and Anderson (2004).

AIC(I) = n log

(
SSE(I)

n

)
+ 2a,

AICC(I) = n log

(
SSE(I)

n

)
+

2a(a+ 1)

n− a− 1
,

and BIC(I) = n log

(
SSE(I)

n

)
+ a log(n).

Forward selection with Cp and AIC often gives useful results if n ≥ 5p
and if the final model has n ≥ 10ad. For p < n < 5p, forward selection with
Cp and AIC tends to pick the full model (which overfits since n < 5p) too
often, especially if σ̂2 = MSE. The Hurvich and Tsai (1989, 1991) AICC

criterion can be useful if n ≥ max(2p, 10ad).
The EBIC criterion given in Luo and Chen (2013) may be useful when

n/p is not large. Let 0 ≤ γ ≤ 1 and |I| = a ≤ min(n, p) if β̂I is a × 1. We
may use a ≤ min(n/5, p). Then EBIC(I) =

n log

(
SSE(I)

n

)
+ a log(n) + 2γ log

[(
p

a

)]
= BIC(I) + 2γ log

[(
p

a

)]
.

This criterion can give good results if p = pn = O(nk) and γ > 1 − 1/(2k).
Hence we will use γ = 1. Then minimizing EBIC(I) is equivalent to mini-
mizing BIC(I) − 2 log[(p− a)!]− 2 log(a!) since log(p!) is a constant.

The above criteria can be applied to forward selection and relaxed lasso.
The Cp criterion can also be applied to lasso. See Efron and Hastie (2016,
pp. 221, 231).

Now suppose p = 6 and S in Equation (4.1) corresponds to x1 ≡ 1, x2,
and x3. Suppose the data set is such that underfitting (omitting a predic-
tor in S) does not occur. Then there are eight possible submodels that
contain S: i) x1, x2, x3; ii) x1, x2, x3, x4; iii) x1, x2, x3, x5; iv) x1, x2, x3, x6;
v) x1, x2, x3, x4, x5; vi) x1, x2, x3, x4, x6; vii) x1, x2, x3, x5, x6; and the full
model viii) x1, x2, x3, x4, x5, x6. The possible submodel sizes are k = 3, 4, 5,
or 6. Since the variable selection criteria for forward selection described above
minimize the MSE given that x∗1, ..., x

∗
k−1 are in the model, the MSE(Ik) are

too small and underestimate σ2. Also the model Imin fits the data a bit too
well. Suppose Imin = Id. Compared to selecting a model Ik before examining
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the data, the residuals ri(Imin) are too small in magnitude, the |ŶImin,i −Yi|
are too small, and MSE(Imin) is too small. Hence using Imin = Id as the full
model for inference does not work. In particular, the partial F test statistic
FR in Theorem 2.27, using Id as the full model, is too large since the MSE
is too small. Thus the partial F test rejects H0 too often. Similarly, the con-
fidence intervals for βi are too short, and hypothesis tests reject H0 : βi = 0
too often when H0 is true. The fact that the selected model Imin from vari-
able selection cannot be used as the full model for classical inference is known
as selection bias. Also see Hurvich and Tsai (1990).

This chapter offers two remedies: i) use the large sample theory of β̂Imin,0

(defined two paragraphs below) and the bootstrap for inference after variable
selection, and ii) use data splitting for inference after variable selection.

4.2 Large Sample Theory for Some Variable Selection

Estimators

Large sample theory is often tractable if the optimization problem is convex.
The optimization problem for variable selection is not convex, so new tools
are needed. Tibshirani et al. (2018) and Leeb and Pötscher (2006, 2008) note

that we can not find the limiting distribution of Zn =
√
nA(β̂Imin

− βI)

after variable selection. One reason is that with positive probability, β̂Imin

does not have the same dimension as βI if AIC or Cp is used. Hence Zn is
not defined with positive probability.

The large sample theory for OLS variable selection estimators such as for-
ward selection and lasso variable selection in this section is due to Pelawa
Watagoda and Olive (2019, 2020). Rathnayake and Olive (2020) extend this
theory to many other variable selection estimators such as generalized lin-
ear models. Charkhi and Claeskens (2018) have a related result for forward
selection with AIC when the iid errors are N(0, σ2). Assume p is fixed, and
n→ ∞. Suppose that model (4.1) holds. Assume the maximum leverage

max
i=1,...,n

xT
iIj

(XT
Ij

XIj )
−1xiIj → 0

in probability as n → ∞ for each Ij with S ⊆ Ij where the dimension of Ij

is aj. For the OLS model with S ⊆ Ij ,
√
n(β̂Ij

− βIj
)

D→ Naj (0,V j) where

V j = σ2W j and (XT
Ij

XIj)/n
P→ W−1

j by the LS CLT Theorem 2.26. Then

ujn =
√
n(β̂Ij ,0 − β)

D→ uj ∼ Np(0,V j,0) (4.3)

where V j,0 adds columns and rows of zeros corresponding to the xi not in
Ij, and V j,0 is singular unless Ij corresponds to the full model.
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For MLR, V j,0 = σ2W j,0. For example, if p = 3 and model Ij uses a
constant x1 ≡ 1 and x3 with

V j =

[
V11 V12

V21 V22

]
, then V j,0 =



V11 0 V12

0 0 0
V21 0 V22


 .

Let Imin correspond to the set of predictors selected by a variable selection
method such as forward selection or lasso variable selection. Use zero padding
to form the p×1 variable selection estimator β̂V S . For example, if p = 4 and

β̂Imin
= (β̂1, β̂3)

T , then β̂V S = β̂Imin,0 = (β̂1, 0, β̂3, 0)T . In the following
definition, if each subset contains at least one variable, then there are J =
2p − 1 subsets.

Definition 4.4. The variable selection estimator β̂V S = β̂Imin,0, and

β̂V S = β̂Ik,0 with probabilities πkn = P (Imin = Ik) for k = 1, ..., J where
there are J subsets.

Definition 4.5. Let β̂MIX be a random vector with a mixture distribu-

tion of the β̂Ik,0 with probabilities equal to πkn. Hence β̂MIX = β̂Ik,0 with

same probabilities πkn of the variable selection estimator β̂V S , but the Ik are
randomly selected.

The large sample distribution of β̂MIX is simpler than that of β̂V S , and

is useful for explaining the large sample distribution of β̂V S . For how to

bootstrap β̂MIX , see Rathnayake and Olive (2020). For mixture distributions,
see Section 1.6.

The first assumption in Theorem 4.3 is P (S ⊆ Imin) → 1 as n→ ∞. Then
the variable selection estimator corresponding to Imin underfits with prob-
ability going to zero, and the assumption holds under regularity conditions
if BIC or AIC is used. See Charkhi and Claeskens (2018) and Claeskens and
Hjort (2008, pp. 70, 101, 102, 114, 232). For multiple linear regression with
Mallows (1973) Cp or AIC, see Li (1987), Nishii (1984), and Shao (1993).

For a shrinkage estimator that does variable selection, let β̂Imin
be the OLS

estimator applied to a constant and the variables with nonzero shrinkage es-
timator coefficients. If the shrinkage estimator is a consistent estimator of β,
then P (S ⊆ Imin) → 1 as n → ∞. See Zhao and Yu (2006, p. 2554). Hence
Theorem 4.3c) proves that the lasso variable selection and elastic net variable
selection estimators are

√
n consistent estimators of β if lasso and elastic net

are consistent. Also see Theorem 4.4 and Remark 4.5. The assumption on
ujn in Theorem 4.3 is reasonable by (4.3) since S ⊆ Ij for each πj, and since

β̂MIX uses random selection.

Theorem 4.3. Assume P (S ⊆ Imin) → 1 as n → ∞, and let β̂MIX =

β̂Ik,0 with probabilities πkn where πkn → πk as n→ ∞. Denote the positive
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πk by πj. Assume ujn =
√
n(β̂Ij,0 − β)

D→ uj ∼ Np(0,V j,0). a) Then

un =
√
n(β̂MIX − β)

D→ u (4.4)

where the cdf of u is Fu(t) =
∑

j πjFuj(t). Thus u has a mixture distribution
of the uj with probabilities πj, E(u) = 0, and Cov(u) = Σu =

∑
j πjV j,0.

b) Let A be a g × p full rank matrix with 1 ≤ g ≤ p. Then

vn = Aun =
√
n(Aβ̂MIX − Aβ)

D→ Au = v (4.5)

where v has a mixture distribution of the vj = Auj ∼ Ng(0,AV j,0A
T ) with

probabilities πj .

c) The estimator β̂V S is a
√
n consistent estimator of β. Hence√

n(β̂V S − β) = OP (1).

d) If πd = 1, then
√
n(β̂SEL − β)

D→ u ∼ Np(0,V d,0) where SEL is V S
or MIX.

Proof. a) Since un has a mixture distribution of the ukn with probabilities
πkn, the cdf of un is Fun(t) =

∑
k πknFukn

(t) → Fu(t) =
∑

j πjFuj(t) at
continuity points of the Fuj (t) as n→ ∞.

b) Since un
D→ u, then Aun

D→ Au.
c) The result follows since selecting from a finite number J of

√
n consistent

estimators (even on a set that goes to one in probability) results in a
√
n

consistent estimator by Pratt (1959).
d) If πd = 1, there is no selection bias, asymptotically. The result also follows
by Pötscher (1991, Lemma 1). �

The following subscript notation is useful. Subscripts before the MIX
are used for subsets of β̂MIX = (β̂1, ..., β̂p)

T . Let β̂i,MIX = β̂i. Similarly, if

I = {i1, ..., ia}, then β̂I,MIX = (β̂i1 , ..., β̂ia)
T . Subscripts after MIX denote

the ith vector from a sample β̂MIX,1, ..., β̂MIX,B . Similar notation is used for

other estimators such as β̂V S . The subscript 0 is still used for zero padding.

We may use FULL to denote the full model β̂ = β̂FULL.
Typically the mixture distribution is not asymptotically normal unless a

πd = 1 (e.g. if S is the full model), or if for each πj, Auj ∼ Ng(0,AV j,0A
T ) =

Ng(0,AΣAT ). Then
√
n(Aβ̂MIX −Aβ)

D→ Au ∼ Ng(0,AΣAT ). This spe-

cial case occurs for β̂S,MIX if
√
n(β̂ − β)

D→ Np(0,V ) where the asymptotic

covariance matrix V is diagonal and nonsingular. Then β̂S,MIX and β̂S,FULL

have the same multivariate normal limiting distribution. For several criteria,
this result should hold for β̂V S since asymptotically,

√
n(Aβ̂V S − Aβ) is

selecting from the Auj which have the same distribution. Then the confi-

dence regions applied to Aβ̂
∗
SEL = Bβ̂

∗
S,SEL should have similar volume and

cutoffs where SEL is MIX, V S, or FULL.
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Theorem 4.3 can be used to justify prediction intervals after variable se-
lection. See Pelawa Watagoda and Olive (2020). Theorem 4.3d) is useful for
variable selection consistency and the oracle property where πd = πS = 1 if
P (Imin = S) → 1 as n → ∞. See Claeskens and Hjort (2008, pp. 101-114) and
Fan and Li (2001) for references. A necessary condition for P (Imin = S) → 1
is that S is one of the models considered with probability going to one.
This condition holds under strong regularity conditions for fast methods. See
Wieczorek and Lei (2021) for forward selection and Hastie et al. (2015, pp.
295-302) for lasso, where the predictors need a “near orthogonality” condi-
tion.

Remark 4.4. If A1, A2, ..., Ak are pairwise disjoint and if ∪k
i=1Ai = S,

then the collection of sets A1, A2, ..., Ak is a partition of S. Then the Law of
Total Probability states that if A1, A2, ..., Ak form a partition of S such that
P (Ai) > 0 for i = 1, ..., k, then

P (B) =

k∑

j=1

P (B ∩Aj) =

k∑

j=1

P (B|Aj)P (Aj).

Let sets Ak+1, ..., Am satisfy P (Ai) = 0 for i = k+1, ..., m.Define P (B|Aj) =
0 if P (Aj = 0. Then a Generalized Law of Total Probability is

P (B) =
m∑

j=1

P (B ∩Aj) =
m∑

j=1

P (B|Aj)P (Aj),

and will be used in the following paragraph.

Pötscher (1991) used the conditional distribution of β̂V S |(β̂V S = β̂Ik,0)

to find the distribution of wn =
√
n(β̂V S −β). Let W = WV S = k if β̂V S =

β̂Ik,0 where P (WV S = k) = πkn for k = 1, ..., J. Then (β̂V S:n,WV S:n) =

(β̂V S ,WV S) has a joint distribution where the sample size n is usually sup-

pressed. Note that β̂V S = β̂IW ,0. Define P (B|Ak)P (Ak) = 0 if P (Ak) = 0.

Let β̂
C

Ik,0 be a random vector from the conditional distribution β̂Ik,0|(WV S =

k). Let wkn =
√
n(β̂Ik,0 − β)|(WV S = k) ∼ √

n(β̂
C

Ik,0 − β). Denote
Fz(t) = P (z1 ≤ t1, ..., zp ≤ tp) by P (z ≤ t). Then

Fwn(t) = P [n1/2(β̂V S − β) ≤ t] =

J∑

k=1

P [n1/2(β̂V S − β) ≤ t|(β̂V S = β̂Ik,0)]P (β̂V S = β̂Ik,0) =

J∑

k=1

P [n1/2(β̂Ik,0 − β) ≤ t|(β̂V S = β̂Ik,0)]πkn
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=

J∑

k=1

P [n1/2(β̂
C

Ik,0 − β) ≤ t]πkn =

J∑

k=1

Fwkn(t)πkn.

Hence β̂V S has a mixture distribution of the β̂
C

Ik,0 with probabilities πkn,
and wn has a mixture distribution of the wkn with probabilities πkn.

Charkhi and Claeskens (2018) showed that wjn =
√
n(β̂

C

Ij ,0 − β)
D→ wj if

S ⊆ Ij for the MLE with AIC. Here wj is a multivariate truncated normal
distribution (where no truncation is possible) that is symmetric about 0.
Hence E(wj) = 0, and Cov(wj) = Σj exits. Referring to Definitions 4.4

and 4.5, note that both
√
n(β̂MIX −β) and

√
n(β̂V S −β) are selecting from

the ukn =
√
n(β̂Ik,0 − β) and asymptotically from the uj of Equation (4.3).

The random selection for β̂MIX does not change the distribution of ujn, but
selection bias does change the distribution of the selected ujn to that of wjn.
Similarly, selection bias does change the distribution of the selected uj to

that of wj . The reasonable Theorem 4.4 assumption that wjn
D→ wj may

not be mild.

Theorem 4.4, Variable Selection CLT. Assume P (S ⊆ Imin) → 1

as n → ∞, and let β̂V S = β̂Ik,0 with probabilities πkn where πkn → πk as

n→ ∞. Denote the positive πk by πj . Assume wjn =
√
n(β̂

C

Ij,0 − β)
D→ wj .

Then
wn =

√
n(β̂V S − β)

D→ w (4.6)

where the cdf of w is Fw(t) =
∑

j πjFwj (t). Thus w is a mixture distribution
of the wj with probabilities πj.

Proof. Since wn has a mixture distribution of the wkn with probabilities
πkn, the cdf of wn is Fwn(t) =

∑
k πknFwkn(t) → Fw(t) =

∑
j πjFwj(t) at

continuity points of the Fwj (t) as n → ∞. �

Remark 4.5. If P (S ⊆ Imin) → 1 as n→ ∞, then β̂V S is a
√
n consistent

estimator of β since selecting from a finite number J of
√
n consistent estima-

tors (even on a set that goes to one in probability) results in a
√
n consistent

estimator by Pratt (1959). By both this result and Theorems 4.3 and 4.4, the
lasso variable selection and elastic net variable selection estimators are

√
n

consistent if lasso and elastic net are consistent.

Mixture distributions are useful for variable selection since β̂Imin,0 has a

mixture distribution of the β̂Ij,0. Review mixture distributions from Section
1.6. The following theorem is due to Pelawa Watagoda and Olive (2019a).
Note that the cdf of Tn is FTn(z) =

∑
j πjnFTjn(z) where FTjn(z) is the cdf

of Tjn.

Theorem 4.5, Mixture Distribution CLT. Suppose the g×1 statistic
Tn is equal to the estimator Tjn with probability πjn for j = 1, ..., J where
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∑
j πjn = 1, πjn → πj as n → ∞, and ujn =

√
n(Tjn − θ)

D→ uj with
E(uj) = 0 and Cov(uj) = Σj . Then

√
n(Tn − θ)

D→ u (4.7)

where the cdf of u is Fu(z) =
∑

j πjFuj
(z) and Fuj

(z) is the cdf of uj .
Thus, u is a mixture distribution of the uj with probabilities πj, E(u) = 0,
and Cov(u) = Σu =

∑
j πjΣj.

Proof: Note that Tn has a mixture distribution of the Tjn with prob-
abilities πjn. Hence

√
n(Tn − θ) has a mixture distribution of the ujn =√

n(Tjn − θ), and the cdf of
√
n(Tn − θ) is

∑
j πjnFujn

(z) →∑
j πjFuj

(z)
at continuity points z of the Fuj . �

Remark 4.6. Another variable selection model is xT β = xT
Si

βSi
for i =

1, ..., K. Then submodel I underfits if no Si ⊆ I. A necessary condition for
an estimator to be consistent is P(no Si ⊆ Imin) → 0 as n → ∞. Then in
Theorem 4.4, we can replace P (S ⊆ Imin) → 1 by P(no Si ⊆ Imin) → 0 as
n→ ∞.

4.3 Prediction Intervals

Prediction intervals for regression and prediction regions for multivariate re-
gression are important topics. Inference after variable selection will consider
bootstrap hypothesis testing. Applying certain prediction intervals or pre-
diction regions to the bootstrap sample will result in confidence intervals or
confidence regions. The prediction intervals and regions are based on samples
of size n, while the bootstrap sample size is B = Bn. Hence this section and
the following section are important.

Definition 4.6. Consider predicting a future test value Yf given a p × 1
vector of predictors xf and training data (Y1,x1), ..., (Yn,xn). A large sam-

ple 100(1 − δ)% prediction interval (PI) for Yf has the form [L̂n, Ûn] where

P (L̂n ≤ Yf ≤ Ûn) is eventually bounded below by 1 − δ as the sample size
n→ ∞. A large sample 100(1− δ)% PI is asymptotically optimal if it has the
shortest asymptotic length: the length of [L̂n, Ûn] converges to Us − Ls as
n→ ∞ where [Ls, Us] is the population shorth: the shortest interval covering
at least 100(1 − δ)% of the mass.

If Yf |xf has a pdf, we often want P (L̂n ≤ Yf ≤ Ûn) → 1 − δ as n → ∞.
The interpretation of a 100 (1 − δ)% PI for a random variable Yf is similar
to that of a confidence interval (CI). Collect data, then form the PI, and
repeat for a total of k times where the k trials are independent from the
same population. If Yfi is the ith random variable and PIi is the ith PI,
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then the probability that Yfi ∈ PIi for j of the PIs approximately follows a
binomial(k, ρ= 1− δ) distribution. Hence if 100 95% PIs are made, ρ = 0.95
and Yfi ∈ PIi happens about 95 times.

There are two big differences between CIs and PIs. First, the length of the
CI goes to 0 as the sample size n goes to ∞ while the length of the PI con-
verges to some nonzero number J , say. Secondly, many confidence intervals
work well for large classes of distributions while many prediction intervals
assume that the distribution of the data is known up to some unknown pa-
rameters. Usually the N(µ, σ2) distribution is assumed, and the parametric
PI may not perform well if the normality assumption is violated. This section
will describe three nonparametric PIs for the additive error regression model,
Y = m(x) + e, that work well for a large class of unknown zero mean error
distributions.

First we will consider the location model, Yi = µ+ ei, where Y1, ..., Yn, Yf

are iid and there are no vectors of predictors xi and xf . Let Z(1) ≤ Z(2) ≤
· · · ≤ Z(n) be the order statistics of n iid random variables Z1, ..., Zn. Let a
future random variableZf be such that Z1, ..., Zn, Zf are iid. Let k1 = dnδ/2e
and k2 = dn(1 − δ/2)e where dxe is the smallest integer ≥ x. For example,
d7.7e = 8. Then a common nonparametric large sample 100(1−δ)% prediction
interval for Zf is

[Z(k1), Z(k2)] (4.8)

where 0 < δ < 1. See Frey (2013) for references.
The shorth(c) estimator of the population shorth is useful for making

asymptotically optimal prediction intervals. With the Zi and Z(i) as in the
above paragraph, let the shortest closed interval containing at least c of the
Zi be

shorth(c) = [Z(s),Z(s+c−1)]. (4.9)

Let
kn = dn(1 − δ)e. (4.10)

Frey (2013) showed that for large nδ and iid data, the shorth(kn) prediction
interval has maximum undercoverage ≈ 1.12

√
δ/n, and used the shorth(c)

estimator as the large sample 100(1− δ)% PI where

c = min(n, dn[1 − δ + 1.12
√
δ/n ] e). (4.11)

An interesting fact is that the maximum undercoverage occurs for the family
of uniform U(θ1, θ2) distributions where such a distribution has pdf f(y) =
1/(θ2 − θ1) for θ1 ≤ y ≤ θ2 where f(y) = 0, otherwise, and θ1 < θ2.

A problem with the prediction intervals that cover ≈ 100(1 − δ)% of the
training data cases Yi (such as (4.8) using c = kn given by (4.9)), is that they
have coverage lower than the nominal coverage of 1− δ for moderate n. This
result is not surprising since empirically statistical methods perform worse on
test data. For iid data, Frey (2013) used (4.10) to correct for undercoverage.
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Example 4.1. Given below were votes for preseason 1A basketball poll
from Nov. 22, 2011 WSIL News where the 778 was a typo: the actual value
was 78. As shown below, finding shorth(3) from the ordered data is simple.
If the outlier was corrected, shorth(3) = [76,78].

111 89 778 78 76

order data: 76 78 89 111 778

13 = 89 - 76

33 = 111 - 78

689 = 778 - 89

shorth(3) = [76,89]
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Fig. 4.1 The 36.8% Highest Density Region is [0,1]

Remark. 4.7. The large sample 100(1 − δ)% shorth PI (4.10) may or
may not be asymptotically optimal if the 100(1 − δ)% population shorth is
[Ls, Us] and F (x) is not strictly increasing in intervals (Ls − ε, Ls + ε) and
(Us − ε, Us + ε) for some ε > 0. To see the issue, suppose Y has probability
mass function (pmf) p(0) = 0.4, p(1) = 0.3, p(2) = 0.2, p(3) = 0.06, and
p(4) = 0.04. Then the 90% population shorth is [0,2] and the 100(1 − δ)%
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population shorth is [0,3] for (1 − δ) ∈ (0.9, 0.96]. Let Wi = I(Yi ≤ x) = 1 if
Yi ≤ x and 0, otherwise. The empirical cdf

F̂n(x) =
1

n

n∑

i=1

I(Yi ≤ x) =
1

n

n∑

i=1

I(Y(i) ≤ x)

is the sample proportion of Yi ≤ x. If Y1, ..., Yn are iid, then for fixed x,
nF̂n(x) ∼ binomial(n, F (x)). Thus F̂n(x) ∼ AN(F (x), F (x)(1 − F (x))/n).

For the Y with the above pmf, F̂n(2)
P→ 0.9 as n → ∞ with P (F̂n(2) < 0.9) →

0.5 and P (F̂n(2) ≥ 0.9) → 0.5 as n → ∞. Hence the large sample 90% PI
(4.10) will be [0,2] or [0,3] with probabilities → 0.5 as n → ∞ with expected
asymptotic length of 2.5 and expected asymptotic coverage converging to
0.93. However, the large sample 100(1−δ)% PI (4.10) converges to [0,3] and is
asymptotically optimal with asymptotic coverage 0.96 for (1−δ) ∈ (0.9, 0.96).

For a random variable Y , the 100(1−δ)% highest density region is a union
of k ≥ 1 disjoint intervals such that the mass within the intervals ≥ 1 − δ
and the sum of the k interval lengths is as small as possible. Suppose that
f(z) is a unimodal pdf that has interval support, and that the pdf f(z) of Y
decreases rapidly as z moves away from the mode. Let [a, b] be the shortest
interval such that FY (b) − FY (a) = 1 − δ where the cdf FY (z) = P (Y ≤ z).
Then the interval [a, b] is the 100(1 − δ) highest density region. To find the
100(1 − δ)% highest density region of a pdf, move a horizontal line down
from the top of the pdf. The line will intersect the pdf or the boundaries of
the support of the pdf at [a1, b1], ..., [ak, bk] for some k ≥ 1. Stop moving the
line when the areas under the pdf corresponding to the intervals is equal to
1 − δ. As an example, let f(z) = e−z for z > 0. See Figure 4.1 where the
area under the pdf from 0 to 1 is 0.368. Hence [0,1] is the 36.8% highest
density region. The shorth PI estimates the highest density interval which is
the highest density region for a distribution with a unimodal pdf. Often the
highest density region is an interval [a, b] where f(a) = f(b), especially if the
support where f(z) > 0 is (−∞,∞).

The additive error regression model is Y = m(x) + e where m(x) is a real
valued function and the ei are iid, often with zero mean and constant variance
V (e) = σ2. The large sample theory for prediction intervals is simple for this
model, and variable selection models for the multiple linear regression model
have this form withm(x) = xT β = xT

I βI if S ⊆ I. Let the residuals ri = Yi−
m̂(xi) = Yi−Ŷi for i = 1, ..., n. Assume m̂(x) is a consistent estimator ofm(x)
such that the sample percentiles [L̂n(r), Ûn(r)] of the residuals are consistent
estimators of the population percentiles [L, U ] of the error distribution where
P (e ∈ [L, U ]) = 1 − δ. Let Ŷf = m̂(xf). Then P (Yf ∈ [Ŷf + L̂n(r), Ŷf +

Ûn(r)] → P (Yf ∈ [m(xf )+L,m(xf )+U ]) = P (e ∈ [L, U ]) = 1−δ as n→ ∞.
Three common choices are a) P (e ≤ U) = 1 − δ/2 and P (e ≤ L) = δ/2, b)
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P (e2 ≤ U2) = P (|e| ≤ U) = P (−U ≤ e ≤ U) = 1 − δ with L = −U , and c)
the population shorth is the shortest interval (with length U − L) such that
P [e ∈ [L, U ]) = 1 − δ. The PI c) is asymptotically optimal while a) and b)
are asymptotically optimal on the class of symmetric zero mean unimodal
error distributions. The split conformal PI (4.16), described below, estimates
[−U, U ] in b).

Prediction intervals based on the shorth of the residuals need a correction
factor for good coverage since the residuals tend to underestimate the errors
in magnitude. With the exception of ridge regression, let d be the number
of “variables” used by the method. For MLR, forward selection, lasso, and
relaxed lasso use variables x∗1, ..., x

∗
d while PCR and PLS use variables that

are linear combinations of the predictors Vj = γT
j x for j = 1, ..., d. (We could

let d = j if j is the degrees of freedom of the selected model if that model
was chosen in advance without model or variable selection. Hence d = j is
not the model degrees of freedom if model selection was used.) See Chapter
5 for more about these estimators. See Hong et al. (2018) for why classical
prediction intervals after variable selection fail to work.

For n/p large and d = p, Olive (2013a) developed prediction intervals for
models of the form Yi = m(xi) + ei, and variable selection models for MLR
have this form, as noted by Olive (2018). Pelawa Watagoda and Olive (2019b)
gave two prediction intervals that can be useful even if n/p is not large. These
PIs will be defined below. The first PI modifies the Olive (2013a) PI that can
only be computed if n > p. Olive (2007, 2017a, 2017b, 2018) used similar
correction factors for several prediction intervals and prediction regions with
d = p. We want n ≥ 10d so that the model does not overfit.

If the OLS model I has d predictors, and S ⊆ I, then

E(MSE(I)) = E

(
n∑

i=1

r2i
n− d

)
= σ2 = E

(
n∑

i=1

e2i
n

)

and MSE(I) is a
√
n consistent estimator of σ2 for many error distributions

by Su and Cook (2012). Also see Freedman (1981). For a wide range of regres-
sion models, extrapolation occurs if the leverage hf = xT

I,f (XT
I XI)

−1xI,f >
2d/n: if xI,f is too far from the data xI,1, ...,xI,n, then the model may not
hold and prediction can be arbitrarily bad. These results suggests that

√
n

n− d

√
(1 + hf) ri ≈

√
n+ 2d

n− d
ri ≈ ei.

In simulations for prediction intervals and prediction regions with n = 20d,
the maximum simulated undercoverage was near 5% if qn in (4.11) is changed
to qn = 1 − δ.

Next we give the correction factor and the first prediction interval. Let
qn = min(1 − δ + 0.05, 1− δ + d/n) for δ > 0.1 and



4.3 Prediction Intervals 161

qn = min(1 − δ/2, 1− δ + 10δd/n), otherwise. (4.12)

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Let

c = dnqne, (4.13)

and let

bn =

(
1 +

15

n

)√
n+ 2d

n− d
(4.14)

if d ≤ 8n/9, and

bn = 5

(
1 +

15

n

)
,

otherwise. As d gets close to n, the model overfits and the coverage will
be less than the nominal. The piecewise formula for bn allows the prediction
interval to be computed even if d ≥ n. Compute the shorth(c) of the residuals
= [r(s), r(s+c−1)] = [ξ̃δ1

, ξ̃1−δ2
]. Then the first 100 (1 − δ)% large sample PI

for Yf is

[m̂(xf) + bnξ̃δ1
, m̂(xf) + bnξ̃1−δ2

]. (4.15)

The second PI randomly divides the data into two half sets H and V
where H has nH = dn/2e of the cases and V has the remaining nV = n−nH

cases i1, ..., inV . The estimator m̂H(x) is computed using the training data
set H . Then the validation residuals vj = Yij −m̂H(xij) are computed for the
j = 1, ..., nV cases in the validation set V . Find the Frey PI [v(s), v(s+c−1)]
of the validation residuals (replacing n in (4.10) by nV = n− nH). Then the
second new 100(1− δ)% large sample PI for Yf is

[m̂H(xf) + v(s), m̂H(xf) + v(s+c−1)]. (4.16)

Remark 4.8. Note that correction factors bn → 1 are used in large sample
confidence intervals and tests if the limiting distribution is N(0,1) or χ2

p, but
a tdn or pFp,dn cutoff is used: tdn,1−δ/z1−δ → 1 and pFp,dn,1−δ/χ

2
p,1−δ → 1 if

dn → ∞ as n→ ∞. Using correction factors for large sample confidence inter-
vals, tests, prediction intervals, prediction regions, and bootstrap confidence
regions improves the performance for moderate sample size n.

Remark 4.9. For a good fitting model, residuals ri tend to be smaller in
magnitude than the errors ei, while validation residuals vi tend to be larger
in magnitude than the ei. Thus the Frey correction factor can be used for PI
(4.15) while PI (4.14) needs a stronger correction factor.

We can also motivate PI (4.15) by modifying the justification for the Lei
et al. (2018) split conformal prediction interval

[m̂H(xf) − aq, m̂H(xf ) + aq] (4.17)



162 4 Prediction and Variable Selection When n >> p

where aq is the 100(1 − α)th quantile of the absolute validation residuals.
PI (4.15) is a modification of the split conformal PI that is asymptotically
optimal. Suppose (Yi,xi) are iid for i = 1, ..., n, n + 1 where (Yf ,xf) =

(Yn+1,xn+1). Compute m̂H(x) from the cases in H . For example, get β̂H

from the cases in H . Consider the validation residuals vi for i = 1, ..., nV and
the validation residual vnV +1 for case (Yf ,xf). Since these nV + 1 cases are
iid, the probability that vt has rank j for j = 1, ..., nV + 1 is 1/(nV + 1) for
each t, i.e., the ranks follow the discrete uniform distribution. Let t = nV +1
and let the v(j) be the ordered residuals using j = 1, ..., nV . That is, get the
order statistics without using the unknown validation residual vnV +1. Then
v(i) has rank i if v(i) < vnV +1 but rank i+ 1 if v(i) > vnV +1. Thus

P (Yf ∈ [m̂H(xf )+v(k), m̂H(xf )+v(k+b−1)]) = P (v(k) ≤ vnV +1 ≤ v(k+b−1)) ≥

P (vnV +1 has rank between k + 1 and k + b− 1 and there are no tied ranks)
≥ (b− 1)/(nV + 1) ≈ 1 − δ if b = d(nV + 1)(1 − δ)e + 1 and k + b− 1 ≤ nV .
This probability statement holds for a fixed k such as k = dnV δ/2e. The
statement is not true when the shorth(b) estimator is used since the shortest
interval using k = s can have s change with the data set. That is, s is not
fixed. Hence if PI’s were made from J independent data sets, the PI’s with
fixed k would contain Yf about J(1−δ) times, but this value would be smaller
for the shorth(b) prediction intervals where s can change with the data set.
The above argument works if the estimator m̂(x) is “symmetric in the data,”
which is satisfied for multiple linear regression estimators.

The PIs (4.14) to (4.16) can be used with m̂(x) = Ŷf = xT
Id

β̂Id
where Id

denotes the index of predictors selected from the model or variable selection
method. If β̂ is a consistent estimator of β, the PIs (4.14) and (4.15) are
asymptotically optimal for a large class of error distributions while the split
conformal PI (4.16) needs the error distribution to be unimodal and symmet-
ric for asymptotic optimality. Since m̂H uses n/2 cases, m̂H has about half
the efficiency of m̂. When p ≥ n, the regularity conditions for consistent esti-
mators are strong. For example, EBIC and lasso can have P (S ⊆ Imin) → 1
as n→ ∞. Then forward selection with EBIC and relaxed lasso can produce
consistent estimators. PLS can be

√
n consistent. See Chapter 5 for the large

sample for many MLR estimators.
None of the three prediction intervals (4.14), (4.15), and (4.16) dominates

the other two. Recall that βS is an aS × 1 vector in (4.1). If a good fit-
ting method, such as lasso or forward selection with EBIC, is used, and
1.5aS ≤ n ≤ 5aS , then PI (4.14) can be much shorter than PIs (4.15) and
(4.16). For n/d large, PIs (4.14) and (4.15) can be shorter than PI (4.16) if
the error distribution is not unimodal and symmetric; however, PI (4.16) is
often shorter if n/d is not large since the sample shorth converges to the pop-
ulation shorth rather slowly. Grübel (1982) shows that for iid data, the length
and center the shorth(kn) interval are

√
n consistent and n1/3 consistent es-

timators of the length and center of the population shorth interval. For a
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unimodal and symmetric error distribution, the three PIs are asymptotically
equivalent, but PI (4.16) can be the shortest PI due to different correction
factors.

If the estimator is poor, the split conformal PI (4.16) and PI (4.15) can
have coverage closer to the nominal coverage than PI (4.14). For example, if
m̂ interpolates the data and m̂H interpolates the training data from H , then
the validation residuals will be huge. Hence PI (4.15) will be long compared
to PI (4.16).

Asymptotically optimal PIs estimate the population shorth of the zero
mean error distribution. Hence PIs that use the shorth of the residuals, such
as PIs (4.14) and (4.15), are the only easily computed asymptotically optimal

PIs for a wide range of consistent estimators β̂ of β for the multiple linear
regression model. If the error distribution is e ∼ EXP (1) − 1, then the
asymptotic length of the 95% PI (4.14) or (4.15) is 2.966 while that of the
split conformal PI is 2(1.966) = 3.992. For more about these PIs applied to
MLR models, see Section 5.10 and Pelawa Watagoda and Olive (2019b).

4.4 Prediction Regions

Consider predicting a p × 1 future test value xf , given past training data
x1, ...,xn where x1, ...,xn,xf are iid. Much as confidence regions and inter-

vals give a measure of precision for the point estimator θ̂ of the parameter
θ, prediction regions and intervals give a measure of precision of the point
estimator T = x̂f of the future random vector xf .

Definition 4.7. A large sample 100(1 − δ)% prediction region is a set
An such that P (xf ∈ An) is eventually bounded below by 1 − δ as n →
∞. A prediction region is asymptotically optimal if its volume converges in
probability to the volume of the minimum volume covering region or the
highest density region of the distribution of xf .

If xf has a pdf, we often want P (xf ∈ An) → 1 − δ as n → ∞. A PI
is a prediction region where p = 1. Highest density regions are usually hard
to estimate for p not much larger than four, but many elliptically contoured
distributions with a nonsingular population covariance matrix, including the
multivariate normal distribution, have highest density regions that can be
estimated by the nonparametric prediction region (4.24). For more about
highest density regions, see Olive (2017b, pp. 148-155) and Hyndman (1996).

For multivariate data, sample Mahalanobis distances play a role similar to
that of residuals in multiple linear regression. Let the observed training data
be collected in an n× p matrix W . Let the p× 1 column vector T = T (W )
be a multivariate location estimator, and let the p × p symmetric positive
definite matrix C = C(W ) be a dispersion estimator.
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Definition 4.8. Let x1j, ..., xnj be measurements on the jth random
variable Xj corresponding to the jth column of the data matrix W . The

jth sample mean is xj =
1

n

n∑

k=1

xkj. The sample covariance Sij estimates

Cov(Xi, Xj) = σij = E[(Xi −E(Xi))(Xj − E(Xj))], and

Sij =
1

n− 1

n∑

k=1

(xki − xi)(xkj − xj).

Sii = S2
i is the sample variance that estimates the population variance

σii = σ2
i . The sample correlation rij estimates the population correlation

Cor(Xi, Xj) = ρij =
σij

σiσj
, and

rij =
Sij

SiSj
=

Sij√
SiiSjj

=

∑n
k=1(xki − xi)(xkj − xj)√∑n

k=1(xki − xi)2
√∑n

k=1(xkj − xj)2
.

Definition 4.9. Let x1, ...,xn be the data where xi is a p× 1 vector. The
sample mean or sample mean vector

x =
1

n

n∑

i=1

xi = (x1, ..., xp)T =
1

n
W T1

where 1 is the n × 1 vector of ones. The sample covariance matrix

S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T = (Sij).

That is, the ij entry of S is the sample covariance Sij. The classical estima-
tor of multivariate location and dispersion is (T,C) = (x,S). The sample
correlation matrix

R = (rij).

That is, the ij entry of R is the sample correlation rij.

It can be shown that (n− 1)S =
∑n

i=1 xix
T
i − x xT =

W T W − 1

n
W T11T W .

Hence if the centering matrix G = I − 1

n
11T , then (n− 1)S = W T GW .

See Definition 1.24 for the population mean and population covariance
matrix. Definition 2.18 also defined a sample covariance matrix. The Ma-
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halanobis distance in Definition 4.9 is a random variable that estimates the
population Mahalanobis distance of Definition 1.38.

Definition 4.9. The ith Mahalanobis distance Di =
√
D2

i where the ith
squared Mahalanobis distance is

D2
i = D2

i (T (W ),C(W )) = (xi − T (W ))T C−1(W )(xi − T (W )) (4.18)

for each point xi. Notice that D2
i is a random variable (scalar valued). Let

(T,C) = (T (W ),C(W )). Then

D2
x(T,C) = (x− T )T C−1(x− T ).

Hence D2
i uses x = xi.

Let the p × 1 location vector be µ, often the population mean, and let
the p × p dispersion matrix be Σ, often the population covariance matrix.
Notice that if x is a random vector, then the population squared Mahalanobis
distance from Definition 1.38 is

D2
x(µ,Σ) = (x − µ)T Σ−1(x − µ) (4.19)

and that the term Σ−1/2(x− µ) is the p−dimensional analog to the z-score
used to transform a univariate N(µ, σ2) random variable into a N(0, 1) ran-
dom variable. Hence the sample Mahalanobis distance Di =

√
D2

i is an ana-
log of the absolute value |Zi| of the sample Z-score Zi = (Xi −X)/σ̂. Also
notice that the Euclidean distance of xi from the estimate of center T (W )
is Di(T (W ), Ip) where Ip is the p× p identity matrix.

Consider the hyperellipsoid

An = {x : D2
x(x,S) ≤ D2

(c)} = {x : Dx(x,S) ≤ D(c)}. (4.20)

If n is large, we can use c = kn = dn(1 − δ)e. If n is not large, using c = Un

where Un decreases to kn, can improve small sample performance. Un will be
defined in the paragraph below Equation (4.23). Olive (2013a) showed that
(4.19) is a large sample 100(1− δ)% prediction region under mild conditions,
although regions with smaller volumes may exist. Note that the result follows
since if Σx and S are nonsingular, then the Mahalanobis distance is a con-

tinuous function of (x,S). Let µ = E(x) and D = D(µ,Σx). Then Di
D→ D

and D2
i

D→ D2. Hence the sample percentiles of the Di are consistent estima-
tors of the population percentiles of D at continuity points of the cumulative
distribution function of D.

A problem with the prediction regions that cover ≈ 100(1 − δ)% of the
training data cases xi (such as (4.19) for c = kn), is that they have coverage
lower than the nominal coverage of 1 − δ for moderate n. This result is not
surprising since empirically statistical methods perform worse on test data.



166 4 Prediction and Variable Selection When n >> p

Increasing c will improve the coverage for moderate samples. Also see Remark
4.8. Empirically for many distributions, for n ≈ 20p, the prediction region
(4.19) applied to iid data using c = kn = dn(1 − δ)e tended to have under-
coverage as high as 5%. The undercoverage decreases rapidly as n increases.
Let qn = min(1 − δ + 0.05, 1− δ + p/n) for δ > 0.1 and

qn = min(1 − δ/2, 1− δ + 10δp/n), otherwise. (4.21)

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Using

c = dnqne (4.22)

in (4.19) decreased the undercoverage. Note that Equations (4.11) and (4.12)
are similar to Equations (4.20) and (4.21), but replace p by d.

If (T,C) is a
√
n consistent estimator of (µ, d Σ) for some constant d > 0

where Σ is nonsingular, then D2(T,C) = (x − T )T C−1(x − T ) =

(x − µ + µ − T )T [C−1 − d−1Σ−1 + d−1Σ−1](x− µ + µ− T )

= d−1D2(µ,Σ) + op(1).

Thus the sample percentiles of D2
i (T,C) are consistent estimators of the per-

centiles of d−1D2(µ,Σ) (at continuity points D1−δ of the cdf of D2(µ,Σ)).
If x ∼ Nm(µ,Σ), then D2

x(µ,Σ) = D2(µ,Σ) ∼ χ2
m.

Suppose (T,C) = (xM , b SM ) is the sample mean and scaled sample
covariance matrix applied to some subset of the data. The classical estimator
and RMVN estimator from Section 7.1 satisfy this assumption. For h > 0,
the hyperellipsoid

{z : (z − T )T C−1(z − T ) ≤ h2} = {z : D2
z ≤ h2} = {z : Dz ≤ h} (4.23)

has volume equal to

2πp/2

pΓ (p/2)
hp
√
det(C) =

2πp/2

pΓ (p/2)
hpbp/2

√
det(SM). (4.24)

A future observation (random vector) xf is in the region (4.22) if Dxf
≤ h.

If (T,C) is a consistent estimator of (µ, dΣ) for some constant d > 0 where
Σ is nonsingular, then (4.22) is a large sample 100(1− δ)% prediction region
if h = D(Un) where D(Un) is the 100qnth sample quantile of the Di where qn

is defined above (4.21). If x1, ...,xn and xf are iid, then prediction region
(4.24) is asymptotically optimal for a large class of elliptically contoured
distributions since the volume of (4.24) converges in probability to the volume
of the highest density region. (These distributions have a highest density
region which is a hyperellipsoid determined by a population Mahalanobis
distance. See Section 1.7.)
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The Olive (2013a) nonparametric prediction region uses (T,C) = (x,S).
For the classical prediction region, see Chew (1966) and Johnson and Wichern
(1988, pp. 134, 151). Refer to the above paragraph for D(Un).

Definition 4.10. The large sample 100(1− δ)% nonparametric prediction
region for a future value xf given iid data x1, ...,xn is

{z : D2
z(x,S) ≤ D2

(Un)}, (4.25)

while the large sample 100(1− δ)% classical prediction region is

{z : D2
z(x,S) ≤ χ2

p,1−δ}. (4.26)

If p is small, Mahalanobis distances tend to be right skewed with a pop-
ulation shorth that discards the right tail. For p = 1 and n ≥ 20, the finite
sample correction factors c/n for c given by (4.10) and (4.21) do not differ
by much more than 3% for 0.01 ≤ δ ≤ 0.5. See Figure 4.2 where ol = (Eq.
4.21)/n is plotted versus fr = (Eq. 4.10)/n for n = 20, 21, ..., 500. The top
plot is for δ = 0.01, while the bottom plot is for δ = 0.3. The identity line is
added to each plot as a visual aid. The value of n increases from 20 to 500
from the right of the plot to the left of the plot. Examining the axes of each
plot shows that the correction factors do not differ greatly. R code to create
Figure 4.2 is shown below.

cmar <- par("mar"); par(mfrow = c(2, 1))

par(mar=c(4.0,4.0,2.0,0.5))

frey(0.01); frey(0.3)

par(mfrow = c(1, 1)); par(mar=cmar)

Remark 4.10. The nonparametric prediction region (4.24) is useful if
x1, ...,xn,xf are iid from a distribution with a nonsingular covariance matrix,
and the sample size n is large enough. The distribution could be continuous,
discrete, or a mixture. The asymptotic coverage is 1 − δ if D has a pdf,
although prediction regions with smaller volume may exist. If the 100(1−δ)th
percentile D1−δ of D is not a continuity point of the distribution of D, then
the asymptotic coverage tends to be ≥ 1 − δ since a sample percentile with
cutoff qn that decreases to 1−δ is used and a closed region is used. OftenD has
a continuous distribution and hence has no discontinuity points for 0 < δ < 1.
(If there is a jump in the distribution from 0.9 to 0.96 at discontinuity point a,
and the nominal coverage is 0.95, we want 0.96 coverage instead of 0.9. So we
want the sample percentile to decrease to a.) The nonparametric prediction
region (4.24) contains Un of the training data cases xi provided that S is
nonsingular, even if the model is wrong. For many distributions, the coverage
started to be close to 1 − δ for n ≥ 10p where the coverage is the simulated
percentage of times that the prediction region contained xf .
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Fig. 4.2 Correction Factor Comparison when δ = 0.01 (Top Plot) and δ = 0.3
(Bottom Plot)

Remark 4.11. The most used prediction regions assume that the error
vectors are iid from a multivariate normal distribution. Using (4.23), the ratio
of the volumes of regions (4.25) and (4.24) is

(
χ2

p,1−δ

D2
(Un)

)p/2

,

which can become close to zero rapidly as p gets large if the xi are not
from the light tailed multivariate normal distribution. For example, suppose
χ2

4,0.5 ≈ 3.33 and D2
(Un) ≈ D2

x,0.5 = 6. Then the ratio is (3.33/6)2 ≈ 0.308.
Hence if the data is not multivariate normal, severe undercoverage can occur
if the classical prediction region is used, and the undercoverage tends to get
worse as the dimension p increases. The coverage need not to go to 0, since by
the multivariate Chebyshev’s inequality, P (D2

x(µ,Σx) ≤ γ) ≥ 1 − p/γ > 0
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for γ > p where the population covariance matrix Σx = Cov(x). See Budny
(2014), Chen (2011), and Navarro (2014, 2016). Using γ = h2 = p/δ in (4.22)
usually results in prediction regions with volume and coverage that is too
large.

Remark 4.12. The nonparametric prediction region (4.24) starts to have
good coverage for n ≥ 10p for a large class of distributions. Olive (2013a)
suggests n ≥ 50p may be needed for the prediction region to have a good
volume. Of course for any n there are error distributions that will have severe
undercoverage. Statisticians often say that correction factors are ad hoc, but
doing nothing is much more ad hoc than using correction factors.

For the multivariate lognormal distribution with n = 20p, the large sample
nonparametric 95% prediction region (4.24) had coverages 0.970, 0.959, and
0.964 for p = 100, 200, and 500. Some R code is below.

nruns=1000 #lognormal, p = 100, n = 20p = 2000

count<-0

for(i in 1:nruns){

x <- exp(matrix(rnorm(200000),ncol=100,nrow=2000))

xff <- exp(as.vector(rnorm(100)))

count <- count + predrgn(x,xf=xff)$inr}

count #970/1000, may take a few minutes

Notice that for the training data x1, ...,xn, if C−1 exists, then c ≈ 100qn%
of the n cases are in the prediction regions for xf = xi, and qn → 1−δ even if
(T,C) is not a good estimator. Hence the coverage qn of the training data is
robust to model assumptions. Of course the volume of the prediction region
could be large if a poor estimator (T,C) is used or if the xi do not come
from an elliptically contoured distribution. Also notice that qn = 1 − δ/2 or
qn = 1 − δ + 0.05 for n ≤ 20p and qn → 1 − δ as n → ∞. If qn ≡ 1 − δ and
(T,C) is a consistent estimator of (µ, dΣ) where d > 0 and Σ is nonsingular,
then (4.22) with h = D(Un) is a large sample prediction region, but taking
qn given by (4.20) improves the finite sample performance of the prediction
region. Taking qn ≡ 1 − δ does not take into account variability of (T,C),
and for n = 20p the resulting prediction region tended to have undercoverage
as high as min(0.05, δ/2). Using (4.20) helped reduce undercoverage for small
n ≥ 20p due to the unknown variability of (T,C).

4.5 Bootstrapping Hypothesis Tests and Confidence

Regions

This section shows that, under regularity conditions, applying the nonpara-
metric prediction region of Section 4.4 to a bootstrap sample results in a
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confidence region. The volume of a confidence region → 0 as n → 0, while
the volume of a prediction region goes to that of a population region that
would contain a new xf with probability 1 − δ. The nominal coverage is
100(1− δ). If the actual coverage 100(1− δn) > 100(1− δ), then the region is
conservative. If 100(1− δn) < 100(1 − δ), then the region is liberal. A region
that is 5% conservative is considered “much better” than a region that is 5%
liberal.

When teaching confidence intervals, it is often noted that by the central
limit theorem, the probability that Y n is within two standard deviations
(2SD(Y n) = 2σ/

√
n) of θ = µ is about 95%. Hence the probability that θ is

within two standard deviations of Y n is about 95%. Thus the interval [θ −
1.96S/

√
n, θ+1.96S/

√
n] is a large sample 95% prediction interval for a future

value of the sample mean Y n,f if θ is known, while [Y n − 1.96S/
√
n, Y n +

1.96S/
√
n] is a large sample 95% confidence interval for the population mean

θ. Note that the lengths of the two intervals are the same. Where the interval
is centered, at the parameter θ or the statistic Y n, determines whether the
interval is a prediction or a confidence interval. See Theorem 4.7 for a similar
relationship between confidence regions and prediction regions.

Definition 4.11. A large sample 100(1−δ)% confidence region for a vector
of parameters θ is a set An such that P (θ ∈ An) is eventually bounded below
by 1 − δ as n → ∞.

If An is based on a squared Mahalanobis distance D2 with a limiting
distribution that has a pdf, we often want P (θ ∈ An) → 1 − δ as n→ ∞.

There are several methods for obtaining a bootstrap sample T ∗
1 , ...., T

∗
B

where the sample size n is suppressed: T ∗
i = T ∗

in. The parametric bootstrap,
nonparametric bootstrap, and residual bootstrap will be used. Applying pre-
diction region (4.24) to the bootstrap sample will result in a confidence region
for θ. When g = 1, applying the shorth PI (4.10) or PI (4.7) to the bootstrap
sample results in a confidence interval for θ. Section 4.5.2 will help clarify
ideas.

When g = 1, a confidence interval is a special case of a confidence region.
One sided confidence intervals give a lower or upper confidence bound for θ.
A large sample 100(1−δ)% lower confidence interval (−∞, Un] uses an upper

confidence bound Un and is in the lower tail of the distribution of θ̂. A large
sample 100(1−δ)% upper confidence interval [Ln,∞) uses a lower confidence

bound Ln and is in the upper tail of the distribution of θ̂. These CIs can be
useful if θ ∈ [a, b] and θ = a or θ = b is of interest for a hypothesis test. For
example, [a, b] = [0, 1] if θ = ρ2, the squared population correlation. Then use
[0, Un] and [Ln, 1] as CIs, e.g. if we expect θ = 0 we might test H0 : θ ≤ 0.05
versus H0 : θ > 0.05, and fail to reject H0 if Un < 0.05. See Section 4.5.4 for
an illustration. Again we often want the probability to converge to 1 − δ if
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the confidence interval is based on a statistic with an asymptotic distribution
that has a pdf.

Definition 4.12. The interval [Ln, Un] is a large sample 100(1 − δ)%
confidence interval for θ if P (Ln ≤ θ ≤ Un) is eventually bounded below by
1 − δ as n → ∞. The interval (−∞, Un] is a large sample 100(1− δ)% lower
confidence interval for θ if P (θ ≤ Un) is eventually bounded below by 1 − δ
as n → ∞. The interval [Ln,∞) is large sample 100(1−δ)% upper confidence
interval for θ if P (θ ≥ Ln) is eventually bounded below by 1− δ as n→ ∞.

Next we discuss bootstrap confidence intervals that are obtained by ap-
plying prediction intervals (4.7) and (4.10) to the bootstrap sample. Some
additional bootstrap CIs are obtained from bootstrap confidence regions
from Section 4.5.2 when g = 1. See Efron (1982) and Chen (2016) for the
percentile method CI. Let Tn be an estimator of a parameter θ such as
Tn = Z =

∑n
i=1 Zi/n with θ = E(Z1). Let T ∗

1 , ..., T
∗
B be a bootstrap sample

for Tn. Let T ∗
(1), ..., T

∗
(B) be the order statistics of the the bootstrap sample.

The CI (4.26) is obtained by applying PI (4.7) to the bootstrap sample with
B used instead of n. Hence (4.26) is also a large sample prediction interval for
a future value of T ∗

f if the T ∗
i are iid from the empirical distribution discussed

in Section 4.5.1.

Definition 4.13. The bootstrap percentile method large sample 100(1−
δ)% confidence interval for θ is an interval [T ∗

(kL), T
∗
(KU)] containing ≈ dB(1−

δ)e of the T ∗
i . Let k1 = dBδ/2e and k2 = dB(1 − δ/2)e. A common choice is

[T ∗
(k1)

, T ∗
(k2)

]. (4.27)

The large sample 100(1− δ)% lower percentile method CI for θ is
(−∞, T ∗

(dB(1−δ)e)]. The large sample 100(1− δ)% upper percentile method CI

for θ is [T ∗
(dBδe),∞).

Definition 4.14. The large sample 100(1 − δ)% lower shorth CI for θ
is (−∞, T ∗

(c)], while the large sample 100(1 − δ)% upper shorth CI for θ is
[T ∗

(B−c+1),∞). The large sample 100(1 − δ)% shorth(c) CI uses the interval
[T ∗

(1), T
∗
(c)], [T

∗
(2), T

∗
(c+1)], ..., [T

∗
(B−c+1), T

∗
(B)] of shortest length. Here

c = min(B, dB[1 − δ + 1.12
√
δ/B ] e). (4.28)

Applied to a bootstrap sample, the Frey shorth interval can be regarded as
the shortest percentile method confidence interval, asymptotically. Hence the
shorth confidence interval is a practical implementation of the Hall (1988)
shortest bootstrap interval based on all possible bootstrap samples. See Re-
mark 4.16 for some theory for bootstrap CIs such as (4.26) and (4.27).
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4.5.1 The Bootstrap

This subsection illustrates the nonparametric bootstrap with some examples.
Suppose a statistic Tn is computed from a data set of n cases. The nonpara-
metric bootstrap draws n cases with replacement from that data set. Then
T ∗

1 is the statistic Tn computed from the sample. This process is repeated
B times to produce the bootstrap sample T ∗

1 , ..., T
∗
B. Sampling cases with

replacement uses the empirical distribution.

Definition 4.15. Suppose that data x1, ...,xn has been collected and
observed. Often the data is a random sample (iid) from a distribution with
cdf F . The empirical distribution is a discrete distribution where the xi are
the possible values, and each value is equally likely. If w is a random variable
having the empirical distribution, then pi = P (w = xi) = 1/n for i = 1, ..., n.
The cdf of the empirical distribution is denoted by Fn.

Example 4.2. Let w be a random variable having the empirical distri-
bution given by Definition 4.15. Show that E(w) = x ≡ xn and Cov(w) =
n− 1

n
S ≡ n− 1

n
Sn.

Solution: Recall that for a discrete random vector, the population expected
value E(w) =

∑
xipi where xi are the values that w takes with positive

probability pi. Similarly, the population covariance matrix

Cov(w) = E[(w −E(w))(w − E(w))T ] =
∑

(xi − E(w))(xi −E(w))T pi.

Hence

E(w) =

n∑

i=1

xi
1

n
= x,

and

Cov(w) =

n∑

i=1

(xi − x)(xi − x)T 1

n
=
n− 1

n
S. �

Example 4.3. If W1, ...,Wn are iid from a distribution with cdf FW , then
the empirical cdf Fn corresponding to FW is given by

Fn(y) =
1

n

n∑

i=1

I(Wi ≤ y)

where the indicator I(Wi ≤ y) = 1 if Wi ≤ y and I(Wi ≤ y) = 0 if Wi > y.
Fix n and y. Then nFn(y) ∼ binomial (n, FW (y)). Thus E[Fn(y)] = FW (y)
and V [Fn(y)] = FW (y)[1 − FW (y)]/n. By the central limit theorem,

√
n(Fn(y) − FW (y))

D→ N(0, FW(y)[1 − FW (y)]).
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Thus Fn(y) − FW (y) = OP (n−1/2), and Fn is a reasonable estimator of FW

if the sample size n is large.

Suppose there is data w1, ...,wn collected into an n × p matrix W . Let
the statistic Tn = t(W ) = T (Fn) be computed from the data. Suppose the
statistic estimates µ = T (F ), and let t(W ∗) = t(F ∗

n) = T ∗
n indicate that

t was computed from an iid sample from the empirical distribution Fn: a
sample w∗

1, ...,w
∗
n of size n was drawn with replacement from the observed

sample w1, ...,wn. This notation is used for von Mises differentiable statistical
functions in large sample theory. See Serfling (1980, ch. 6). The empirical
distribution is also important for the influence function (widely used in robust
statistics). The nonparametric bootstrap draws B samples of size n from the
rows of W , e.g. from the empirical distribution of w1, ...,wn. Then T ∗

jn is
computed from the jth bootstrap sample for j = 1, ..., B.

Example 4.4. Suppose the data is 1, 2, 3, 4, 5, 6, 7. Then n = 7 and the
sample median Tn is 4. Using R, we drew B = 2 bootstrap samples (samples
of size n drawn with replacement from the original data) and computed the
sample median T ∗

1,n = 3 and T ∗
2,n = 4.

b1 <- sample(1:7,replace=T)

b1

[1] 3 2 3 2 5 2 6

median(b1)

[1] 3

b2 <- sample(1:7,replace=T)

b2

[1] 3 5 3 4 3 5 7

median(b2)

[1] 4

The bootstrap has been widely used to estimate the population covariance
matrix of the statistic Cov(Tn), for testing hypotheses, and for obtaining
confidence regions (often confidence intervals). An iid sample T1n, ..., TBn of
size B of the statistic would be very useful for inference, but typically we
only have one sample of data and one value Tn = T1n of the statistic. Often
Tn = t(w1, ...,wn), and the bootstrap sample T ∗

1n, ..., T
∗
Bn is formed where

T ∗
jn = t(w∗

j1, ...,w
∗
jn). Section 4.5.3 will show that T ∗

1n − Tn, ..., T
∗
Bn − Tn is

pseudodata for T1n − θ, ..., TBn − θ when n is large in that
√
n(Tn − θ)

D→ u

and
√
n(T ∗ − Tn)

D→ u.

Example 4.5. Suppose there is training data (yi,xi) for the model yi =
m(xi) + εi for i = 1, ..., n, and it is desired to predict a future test value
yf given xf and the training data. The model can be fit and the residual
vectors formed. One method for obtaining a prediction region for yf is to
form the pseudodata ŷf + ε̂i for i = 1, ..., n, and apply the nonparametric
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prediction region (4.24) to the pseudodata. See Section 8.3 and Olive (2017b,
2018). The residual bootstrap could also be used to make a bootstrap sample
ŷf + ε̂∗1, ..., ŷf + ε̂∗B where the ε̂∗j are selected with replacement from the
residual vectors for j = 1, ..., B. As B → ∞, the bootstrap sample will take
on the n values ŷf + ε̂i (the pseudodata) with probabilities converging to 1/n
for i = 1, ..., n.

Suppose there is a statistic Tn that is a g × 1 vector. Let

T
∗

=
1

B

B∑

i=1

T ∗
i and S∗

T =
1

B − 1

B∑

i=1

(T ∗
i − T

∗
)(T ∗

i − T
∗
)T (4.29)

be the sample mean and sample covariance matrix of the bootstrap sample
T ∗

1 , ..., T
∗
B where T ∗

i = T ∗
i,n. Fix n, and let E(T ∗

i,n) = θn and Cov(T ∗
i,n) = Σn.

We will often assume that Cov(Tn) = ΣT , and
√
n(Tn − θ)

D→ Ng(0,ΣA)

where ΣA > 0 is positive definite and nonsingular. Often nΣ̂T
P→ ΣA.

For example, using least squares and the residual bootstrap for the multiple

linear regression model, Σn =
n− p

n
MSE(XT X)−1, Tn = θn = β̂, θ = β,

Σ̂T = MSE(XT X)−1 and ΣA = σ2 limn→∞(XT X/n)−1. See Example 4.6
in Section 4.6.

Suppose the T ∗
i = T ∗

i,n are iid from some distribution with cdf F̃n. For

example, if T ∗
i,n = t(F ∗

n) where iid samples from Fn are used, then F̃n is the

cdf of t(F ∗
n). With respect to F̃n, both θn and Σn are parameters, but with

respect to F , θn is a random vector and Σn is a random matrix. For fixed
n, by the multivariate central limit theorem,

√
B(T

∗ − θn)
D→ Ng(0,Σn) and B(T

∗ − θn)
T[S∗

T]−1(T
∗ − θn)

D→ χ2
r

as B → ∞.

Remark 4.13. For Examples 4.2, 4.5, and 4.6, the bootstrap works but
is expensive compared to alternative methods. For Example 4.2, fix n, then

T
∗ P→ θn = x and S∗

T
P→ (n − 1)S/n as B → ∞, but using (x,S) makes

more sense. For Example 4.5, use the pseudodata instead of the residual boot-
strap. For Example 4.6, using β̂ and the classical estimated covariance ma-
trix Ĉov(β̂) = MSE(XT X)−1 makes more sense than using the bootstrap.
For these three examples, it is known how the bootstrap sample behaves as

B → ∞. The bootstrap can be very useful when
√
n(Tn − θ)

D→ Ng(0,ΣA),
but it not known how to estimate ΣA without using a resampling method

like the bootstrap. The bootstrap may be useful when
√
n(Tn − θ)

D→ u, but
the limiting distribution (the distribution of u) is unknown.
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4.5.2 Bootstrap Confidence Regions for Hypothesis

Testing

When the bootstrap is used, a large sample 100(1 − δ)% confidence region
for a g × 1 parameter vector θ is a set An = An,B such that P (θ ∈ An,B) is
eventually bounded below by 1− δ as n, B → ∞. The B is often suppressed.
Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ0 is a known g × 1
vector. Then reject H0 if θ0 is not in the confidence region An. Let the g× 1
vector Tn be an estimator of θ. Let T ∗

1 , ..., T
∗
B be the bootstrap sample for Tn.

Let A be a full rank g × p constant matrix. For variable selection, consider
testing H0 : Aβ = θ0 versus H1 : Aβ 6= θ0 with θ = Aβ where often

θ0 = 0. Then let Tn = Aβ̂Imin,0 and let T ∗
i = Aβ̂

∗
Imin,0,i for i = 1, ..., B.

The statistic β̂Imin,0 is the variable selection estimator padded with zeroes.

See Section 4.2. Let T
∗

and S∗
T be the sample mean and sample covariance

matrix of the bootstrap sample T ∗
1 , ..., T

∗
B. See Equation (4.28). See Theorem

2.25 for why dnFg,dn,1−δ → χ2
g,1−δ as dn → ∞. Here P (X ≤ χ2

g,1−δ) = 1 − δ

if X ∼ χ2
g , and P (X ≤ Fg,dn,1−δ) = 1− δ if X ∼ Fg,dn . Let kB = dB(1− δ)e.

Definition 4.16. a) The standard bootstrap large sample 100(1 − δ)%
confidence region for θ is {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
1−δ} =

{w : D2
w(Tn,S

∗
T ) ≤ D2

1−δ} (4.30)

where D2
1−δ = χ2

g,1−δ or D2
1−δ = dnFg,dn,1−δ where dn → ∞ as n → ∞. b)

The Bickel and Ren (2001) large sample 100(1− δ)% confidence region for θ

is {w : (w − Tn)T [Σ̂A/n]−1(w − Tn) ≤ D2
(kB ,T )} =

{w : D2
w(Tn, Σ̂A/n) ≤ D2

(kB,T )} (4.31)

where the cutoff D2
(kB,T ) is the 100kBth sample quantile of the

D2
i = (T ∗

i − Tn)T [Σ̂A/n]−1(T ∗
i − Tn) = n(T ∗

i − Tn)T [Σ̂A]−1(T ∗
i − Tn).

Confidence region (4.29) needs
√
n(Tn − θ)

D→ Ng(0,ΣA) and nS∗
T

P→
ΣA > 0 as n, B → ∞. See Machado and Parente (2005) for regularity con-
ditions for this assumption. Bickel and Ren (2001) have interesting sufficient

conditions for (4.30) to be a confidence region when Σ̂A is a consistent esti-
mator of positive definite ΣA. Let the vector of parameters θ = T (F ), the
statistic Tn = T (Fn), and the bootstrapped statistic T ∗ = T (F ∗

n) where F
is the cdf of iid x1, ...,xn, Fn is the empirical cdf, and F ∗

n is the empiri-
cal cdf of x∗

1, ...,x
∗
n, a sample from Fn using the nonparametric bootstrap.

If
√
n(Fn − F )

D→ zF , a Gaussian random process, and if T is sufficiently

smooth (has a Hadamard derivative Ṫ (F )), then
√
n(Tn − θ)

D→ u and
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√
n(T ∗

i −Tn)
D→ u with u = Ṫ (F )zF . Note that Fn is a perfectly good cdf “F ”

and F ∗
n is a perfectly good empirical cdf from Fn = “F .” Thus if n is fixed,

and a sample of size m is drawn with replacement from the empirical distribu-

tion, then
√
m(T (F ∗

m)−Tn)
D→ Ṫ (Fn)zFn . Now let n → ∞ with m = n. Then

bootstrap theory gives
√
n(T ∗

i − Tn)
D→ limn→∞ Ṫ (Fn)zFn = Ṫ (F )zF ∼ u.

The following three confidence regions will be used for inference after vari-
able selection. The Olive (2017ab, 2018) prediction region method applies
prediction region (4.24) to the bootstrap sample. Olive (2017ab, 2018) also

gave the modified Bickel and Ren confidence region that uses Σ̂A = nS∗
T .

The hybrid confidence region is due to Pelawa Watagoda and Olive (2019a).
Let qB = min(1 − δ + 0.05, 1− δ + g/B) for δ > 0.1 and

qB = min(1 − δ/2, 1− δ + 10δg/B), otherwise. (4.32)

If 1 − δ < 0.999 and qB < 1 − δ + 0.001, set qB = 1 − δ. Let D(UB) be the
100qBth sample quantile of the Di. Use (4.31) as a correction factor for finite
B ≥ 50g.

Definition 4.17. a) The prediction region method large sample 100(1 −
δ)% confidence region for θ is {w : (w − T

∗
)T [S∗

T ]−1(w − T
∗
) ≤ D2

(UB)} =

{w : D2
w(T

∗
,S∗

T ) ≤ D2
(UB)} (4.33)

where D2
(UB) is computed from D2

i = (T ∗
i − T

∗
)T [S∗

T ]−1(T ∗
i − T

∗
) for i =

1, ..., B. Note that the corresponding test for H0 : θ = θ0 rejects H0 if (T
∗ −

θ0)
T [S∗

T ]−1(T
∗ − θ0) > D2

(UB). (This procedure is basically the one sample

Hotelling’s T 2 test applied to the T ∗
i using S∗

T as the estimated covariance
matrix and replacing the χ2

g,1−δ cutoff by D2
(UB).) b) The modified Bickel

and Ren (2001) large sample 100(1 − δ)% confidence region is {w : (w −
Tn)T [S∗

T ]−1(w − Tn) ≤ D2
(UB ,T )} =

{w : D2
w(Tn,S

∗
T ) ≤ D2

(UB,T )} (4.34)

where the cutoff D2
(UB ,T ) is the 100qBth sample quantile of the D2

i = (T ∗
i −

Tn)T [S∗
T ]−1(T ∗

i − Tn). Note that the corresponding test for H0 : θ = θ0

rejects H0 if (Tn − θ0)
T [S∗

T ]−1(Tn − θ0) > D2
(UB ,T ). c) Shift region (4.32) to

have center Tn, or equivalently, change the cutoff of region (4.33) to D2
(UB)

to get the hybrid large sample 100(1 − δ)% confidence region: {w : (w −
Tn)T [S∗

T ]−1(w − Tn) ≤ D2
(UB)} =

{w : D2
w(Tn,S

∗
T ) ≤ D2

(UB)}. (4.35)

Note that the corresponding test for H0 : θ = θ0 rejects H0 if
(Tn − θ0)

T [S∗
T ]−1(Tn − θ0) > D2

(UB).
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Hyperellipsoids (4.32) and (4.34) have the same volume since they are the
same region shifted to have a different center. The ratio of the volumes of
regions (4.32) and (4.33) is

|S∗
T |1/2

|S∗
T |1/2

(
D(UB)

D(UB,T )

)g

=

(
D(UB)

D(UB ,T )

)g

. (4.36)

The volume of confidence region (4.33) tends to be greater than that of (4.32)

since the T ∗
i are closer to T

∗
than Tn on average.

If g = 1, then a hyperellipsoid is an interval, and confidence intervals are
special cases of confidence regions. Suppose the parameter of interest is θ, and
there is a bootstrap sample T ∗

1 , ..., T
∗
B where the statistic Tn is an estimator

of θ based on a sample of size n. The percentile method uses an interval that
contains UB ≈ kB = dB(1−δ)e of the T ∗

i . Let ai = |T ∗
i −T ∗|. Let T

∗
and S2∗

T

be the sample mean and variance of the T ∗
i . Then the squared Mahalanobis

distanceD2
θ = (θ−T ∗

)2/S∗2
T ≤ D2

(UB) is equivalent to θ ∈ [T
∗−S∗

TD(UB), T
∗
+

S∗
TD(UB)] = [T

∗ −a(UB), T
∗
+a(UB)], which is an interval centered at T

∗
just

long enough to cover UB of the T ∗
i . Hence the prediction region method is

a special case of the percentile method if g = 1. See Definition 4.13. Efron
(2014) used a similar large sample 100(1− δ)% confidence interval assuming

that T
∗

is asymptotically normal. The CI corresponding to (4.33) is defined
similarly, and [Tn − a(UB), Tn + a(UB)] is the CI for (4.34). Note that the
three CIs corresponding to (4.32)–(4.34) can be computed without finding
S∗

T or D(UB) even if S∗
T = 0. The Frey (2013) shorth(c) CI (4.27) computed

from the T ∗
i can be much shorter than the Efron (2014) or prediction region

method confidence intervals. See Remark 4.16 for some theory for bootstrap
CIs.

Remark 4.14. From Example 4.6, Cov(β̂
∗
) =

n − p

n
MSE(XT X)−1 =

n− p

n
Ĉov(β̂) where Ĉov(β̂) = MSE(XT X)−1 starts to give good estimates

of Cov(β̂) = ΣT for many error distributions if n ≥ 10p and T = β̂. For

the residual bootstrap with large B, note that S∗
T ≈ 0.95Ĉov(β̂) for n = 20p

and S∗
T ≈ 0.99Ĉov(β̂) for n = 100p. Hence we may need n >> p before the

S∗
T is a good estimator of Cov(T ) = ΣT . The distribution of

√
n(Tn − θ) is

approximated by the distribution of
√
n(T ∗ − Tn) or by the distribution of√

n(T ∗ − T
∗
), but n may need to be large before the approximation is good.

Suppose the bootstrap sample mean T
∗

estimates θ, and the bootstrap
sample covariance matrix S∗

T estimates cnĈov(Tn) ≈ cnΣT where cn in-

creases to 1 as n → ∞. Then S∗
T is not a good estimator of Ĉov(Tn) un-

til cn ≈ 1 (n ≥ 100p for OLS β̂), but the squared Mahalanobis distance

D2∗
w(T

∗
,S∗

T ) ≈ D2
w(θ,ΣT )/cn and D2∗

(UB) ≈ D2
1−δ/cn. Hence the prediction

region method has a cutoff D2∗
(UB) that estimates the cutoff D2

1−δ/cn. Thus
the prediction region method may give good results for much smaller n than
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a bootstrap method that uses a χ2
g,1−δ cutoff when a cutoff χ2

g,1−δ/cn should
be used for moderate n.

Remark 4.15. For bootstrapping the p× 1 vector β̂Imin,0, we will often
want n ≥ 20p and B ≥ max(100, n, 50p). If Tn is g × 1, we might replace p
by g or replace p by d if d is the model degrees of freedom. Sometimes much
larger n is needed to avoid undercoverage. We want B ≥ 50g so that S∗

T is a
good estimator of Cov(T ∗

n). Prediction region theory uses correction factors
like (4.21) and (4.10) to compensate for finite n. The bootstrap confidence
regions (4.32)–(4.34) and the shorth CI use the correction factors (4.31) and
(4.27) to compensate for finite B ≥ 50g. Note that the correction factors
make the volume of the confidence region larger as B decreases. Hence a test
with larger B will have more power.

4.5.3 Theory for Bootstrap Confidence Regions

Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ is g × 1. This
section gives some theory for bootstrap confidence regions and for the bag-
ging estimator T

∗
, also called the smoothed bootstrap estimator. Empirically,

bootstrapping with the bagging estimator often outperforms bootstrapping
with Tn. See Breiman (1996), Yang (2003), and Efron (2014). See Büchlmann
and Yu (2002) and Friedman and Hall (2007) for theory and references for
the bagging estimator. Since (4.33) is a large sample confidence region by

Bickel and Ren (2001), (4.32) and (4.34) are too, provided
√
n(T

∗−Tn)
P→ 0.

If i)
√
n(Tn−θ)

D→ u, then under regularity conditions, ii)
√
n(T ∗

i −Tn)
D→

u, iii)
√
n(T

∗ − θ)
D→ u, iv)

√
n(T ∗

i − T
∗
)

D→ u, and v) nS∗
T

P→ Cov(u).
Suppose i) and ii) hold with E(u) = 0 and Cov(u) = Σu. With respect

to the bootstrap sample, Tn is a constant and the
√
n(T ∗

i − Tn) are iid for

i = 1, ..., B. Let
√
n(T ∗

i − Tn)
D→ vi ∼ u where the vi are iid with the same

distribution as u. Fix B. Then the average of the
√
n(T ∗

i − Tn) is

√
n(T

∗ − Tn)
D→ 1

B

B∑

i=1

vi ∼ ANg

(
0,

Σu
B

)

where z ∼ ANg(0,Σ) is an asymptotic multivariate normal approximation.

Hence as B → ∞,
√
n(T

∗ − Tn)
P→ 0, and iii) and iv) hold. If B is fixed and

u ∼ Ng(0,Σu), then

1

B

B∑

i=1

vi ∼ Ng

(
0,

Σu
B

)
and

√
B
√

n(T
∗ − Tn)

D→ Ng(0,Σu).
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Hence the prediction region method gives a large sample confidence region for
θ provided that the sample percentile D̂2

1−δ of the D2
T∗

i
(T

∗
,S∗

T ) =
√
n(T ∗

i −
T

∗
)T (nS∗

T )−1
√
n(T ∗

i − T
∗
) is a consistent estimator of the percentile D2

n,1−δ

of the random variable D2
θ
(T

∗
,S∗

T ) =
√
n(θ − T

∗
)T (nS∗

T )−1√n(θ − T
∗
) in

that D̂2
1−δ −D2

n,1−δ
P→ 0. Since iii) and iv) hold, the sample percentile will

be consistent under much weaker conditions than v) if Σu is nonsingular.
Olive (2017b:

∮
5.3.3, 2018) proved that the prediction region method gives a

large sample confidence region under the much stronger conditions of v) and
u ∼ Ng(0,Σu), but the above Pelawa Watagoda and Olive (2019a) proof is
simpler.

Remark 4.16. Note that if
√
n(Tn−θ) D→ U and

√
n(T ∗

i −Tn)
D→ U where

U has a unimodal probability density function symmetric about zero, then
the confidence intervals from the three confidence regions (4.32)–(4.34), the
shorth confidence interval (4.27), and the “usual” percentile method confi-
dence interval (4.26) are asymptotically equivalent (use the central proportion
of the bootstrap sample, asymptotically).

Assume nS∗
T

P→ ΣA as n, B → ∞ where ΣA and S∗
T are nonsingular g×g

matrices, and Tn is an estimator of θ such that

√
n (Tn − θ)

D→ u (4.37)

as n → ∞. Then

√
n Σ

−1/2
A (Tn − θ)

D→ Σ
−1/2
A u = z,

n (Tn − θ)T Σ̂
−1

A (Tn − θ)
D→ zT z = D2

as n → ∞ where Σ̂A is a consistent estimator of ΣA, and

(Tn − θ)T [S∗
T ]−1 (Tn − θ)

D→ D2 (4.38)

as n, B → ∞. Assume the cumulative distribution function of D2 is continu-
ous and increasing in a neighborhood ofD2

1−δ where P (D2 ≤ D2
1−δ) = 1−δ. If

the distribution ofD2 is known, then we could use the large sample confidence
region (4.29) {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
1−δ}. Often by a central

limit theorem or the multivariate delta method,
√
n(Tn − θ)

D→ Ng(0,ΣA),

and D2 ∼ χ2
g. Note that [S∗

T ]−1 could be replaced by nΣ̂
−1

A .

Remark 4.17. Under reasonable conditions, i)
√
n(Tn − θ)

D→ u, ii)
√
n(T ∗

i − Tn)
D→ u, iii)

√
n(T

∗ − θ)
D→ u, and iv)

√
n(T ∗

i − T
∗
)

D→ u. Then

D2
1 = D2

T∗
i
(T

∗
,S∗

T ) =
√
n(T ∗

i − T
∗
)T (nS∗

T )−1√n(T ∗
i − T

∗
),
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D2
2 = D2

θ(Tn,S
∗
T ) =

√
n(Tn − θ)T (nS∗

T )−1
√
n(Tn − θ),

D2
3 = D2

θ(T
∗
,S∗

T ) =
√
n(T

∗ − θ)T (nS∗
T )−1√n(T

∗ − θ), and

D2
4 = D2

T∗

i
(Tn,S

∗
T ) =

√
n(T ∗

i − Tn)T (nS∗
T )−1

√
n(T ∗

i − Tn),

are well behaved. If (nS∗
T )−1 P→ Σ−1

T , thenD2
j

D→ D2 = uT Σ−1
T u. If (nS∗

T )−1

is “not too ill conditioned” then D2
j ≈ uT (nS∗

T )−1u for large n, and the
confidence regions (4.32), (4.33), and (4.34) will have coverage near 1 − δ.
The regularity conditions for (4.32)–(4.34) are weaker when g = 1, since S∗

T

does not need to be computed.

The following Pelawa Watagoda and Olive (2019a) theorem is very useful.
Let D2

(UB) be the cutoff for the nonparametric prediction region (4.24) com-

puted from the D2
i (T ,ST ) for i = 1, ..., B. Hence n is replaced by B. Since

Tn depends on the sample size n, we need (nST )−1 to be fairly well behaved
(“not too ill conditioned”) for each n ≥ 20g, say. This condition is weaker

than (nST )−1 P→ Σ−1
A . Note that Ti = Tin.

Theorem 4.7: Geometric Argument. Suppose
√
n(Tn − θ)

D→ u with
E(u) = 0 and Cov(u) = Σu. Assume T1, ..., TB are iid with nonsingular
covariance matrix ΣTn . Then the large sample 100(1− δ)% prediction region
Rp = {w : D2

w(T ,ST ) ≤ D2
(UB)} centered at T contains a future value of

the statistic Tf with probability 1− δB → 1− δ as B → ∞. Hence the region
Rc = {w : D2

w(Tn,ST ) ≤ D2
(UB)} is a large sample 100(1 − δ)% confidence

region for θ where Tn is a randomly selected Ti.
Proof. The region Rc centered at a randomly selected Tn contains T with

probability 1 − δB which is eventually bounded below by 1 − δ as B → ∞.
Since the

√
n(Ti − θ) are iid,




√
n(T1 − θ)

...√
n(TB − θ)


 D→




v1

...
vB




where the vi are iid with the same distribution as u. (Use Theorems 1.30
and 1.31, and see Example 1.16.) For fixed B, the average of these random
vectors is

√
n(T − θ)

D→ 1

B

B∑

i=1

vi ∼ ANg

(
0,

Σu
B

)

by Theorem 1.33. Hence (T − θ) = OP ((nB)−1/2), and T gets arbitrarily
close to θ compared to Tn as B → ∞. Thus Rc is a large sample 100(1− δ)%
confidence region for θ as n, B → ∞. �
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Fig. 4.3 Confidence Regions for 2 Statistics with MVN Distributions
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Examining the iid data cloud T1, ..., TB and the bootstrap sample data
cloud T ∗

1 , ..., T
∗
B is often useful for understanding the bootstrap. If

√
n(Tn−θ)

and
√
n(T ∗

i − Tn) both converge in distribution to u, then the bootstrap
sample data cloud of T ∗

1 , ..., T
∗
B is like the data cloud of iid T1, ..., TB shifted

to be centered at Tn. The nonparametric confidence region (4.32) applies the
prediction region to the bootstrap. Then the hybrid region (4.34) centers that
region at Tn. Hence (4.34) is a confidence region by the geometric argument,

and (4.32) is a confidence region if
√
n(T

∗−Tn)
P→ 0. Since the T ∗

i are closer

to T
∗

than Tn on average, D2
(UB,T ) tends to be greater than D2

(UB). Hence

the coverage and volume of (4.33) tend to be at least as large as the coverage
and volume of (4.34).

The hyperellipsoid corresponding to the squared Mahalanobis distance
D2(Tn,C) is centered at Tn, while the hyperellipsoid corresponding to
the squared Mahalanobis distance D2(T ,C) is centered at T . Note that
D2

T
(Tn,C) = (T −Tn)T C−1(T −Tn) = (Tn−T )T C−1(Tn−T ) = D2

Tn
(T ,C).

Thus D2
T
(Tn,C) ≤ D2

(UB) iff D2
Tn

(T ,C) ≤ D2
(UB).

The prediction region method will often simulate well even if B is rather
small. If the ellipses are centered at Tn or T

∗
, Figure 4.3 shows confidence

regions if the plotted points are T ∗
1 , ..., T

∗
B where the T ∗

i are approximately
multivariate normal. If the ellipses are centered at T , Figure 4.3 shows 10%,
30%, 50%, 70%, 90%, and 98% prediction regions for a future value of Tf for
two multivariate normal statistics. Then the plotted points are iid T1, ..., TB.

If nCov(T )
P→ ΣA, and the T ∗

i are iid from the bootstrap distribution, then

Cov(T
∗
) ≈ Cov(T )/B ≈ ΣA/(nB). By Theorem 4.7, if T

∗
is in the 90% pre-

diction region with probability near 90%, then the confidence region should
give simulated coverage near 90% and the volume of the confidence region
should be near that of the 90% prediction region. If B = 100, then T

∗
falls

in a covering region of the same shape as the prediction region, but centered
near Tn and the lengths of the axes are divided by

√
B. Hence if B = 100,

then the axes lengths of this covering region are about one tenth of those in
Figure 4.3. Hence when Tn falls within the 70% prediction region, the prob-
ability that T

∗
falls in the 90% prediction region is near one. If Tn is just

within or just without the boundary of the 90% prediction region, T
∗

tends
to be just within or just without of the 90% prediction region. Hence the
coverage and volume of prediction region confidence region is near that of
the nominal coverage 90% and near the volume of the 90% prediction region.

Hence B does not need to be large provided that n and B are large enough
so that S∗

T ≈ Cov(T ∗) ≈ ΣA/n. If n is large, the sample covariance matrix
starts to be a good estimator of the population covariance matrix when B ≥
Jg where J = 20 or 50. For small g, using B = 1000 often led to good
simulations, but B = max(50g, 100) may work well.

Remark 4.18. Remark 4.14 suggests that even if the statistic Tn is asymp-
totically normal so the Mahalanobis distances are asymptotically χ2

g , the pre-
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diction region method can give better results for moderate n by using the
cutoff D2

(UB) instead of the cutoff χ2
g,1−δ. Theorem 4.7 says that the hyper-

ellipsoidal prediction and confidence regions have exactly the same volume.
We compensate for the prediction region undercoverage when n is moderate
by using D2

(Un). If n is large, by using D2
(UB), the prediction region method

confidence region compensates for undercoverage when B is moderate, say
B ≥ Jg where J = 20 or 50. See Remark 4.15. This result can be useful
if a simulation with B = 1000 or B = 10000 is much slower than a simu-
lation with B = Jg. The price to pay is that the prediction region method
confidence region is inflated to have better coverage, so the power of the
hypothesis test is decreased if moderate B is used instead of larger B.

4.5.4 Bootstrapping the Population Coefficient of

Multiple Determination

This subsection illustrates a case where the shorth(c) bootstrap CI fails, but
the lower shorth CI can be useful. See Definition 4.14.

The multiple linear regression (MLR) model is

Yi = β1 + xi,2β2 + · · ·+ xi,pβp + ei = xT
i β + ei

for i = 1, ..., n.See Definition 1.17 for the coefficient of multiple determination

R2 = [corr(Yi, Ŷi)]
2 =

SSR

SSTO
= 1 − SSE

SSTO

where corr(Yi, Ŷi) is the sample correlation of Yi and Ŷi.
Assume that the variance of the errors is σ2

e and that the variance of Y is
σ2

Y . Let the linear combination L =
∑p

i=2 xiβi where Y = β1 +
∑p

i=2 xiβi +
e = β1 + L + e. Let the variance of L be σ2

L. Then

R2 = 1 −
∑n

i=1 r
2
i∑n

i=1(Yi − Y )2
P→ τ2 = 1 − σ2

e

σ2
Y

= 1 − σ2
e

σ2
e + σ2

L

.

Here we assume that e is independent of the predictors x2, ..., xp. Hence e is
independent of L and the variance σ2

Y = V (L+e) = V (L)+V (e) = σ2
L +σ2

e .
One of the sufficient conditions for the shorth(c) interval to be a large

sample CI for θ is
√
n(T − θ)

D→ N(0, σ2). If the function t(θ) has an inverse,

and
√
n(t(T )− t(θ))

D→ N(0, v2), then the above condition typically holds by
the delta method. See Remark 4.16.

For T = R2 and θ = τ2, the test statistic F0 for testing H0 : β2 = · · · =

βp = 0 in the Anova F test has (p − 1)F0
D→ χ2

p−1 for a large class of error
distributions when H0 is true, where
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F0 =
R2

1 −R2

n− p

p − 1

if the MLR model has a constant. If H0 is false, then F0 has an asymptotic
scaled noncentral χ2 distribution. These results suggest that the large sample
distribution of

√
n(R2 − τ2) may not be N(0, σ2) if H0 is false so τ2 > 0. If

τ2 = 0, we may have
√
n(R2 − 0)

D→ N(0, 0), the point mass at 0. Hence the
shorth CI may not be a large sample CI for τ2. The lower shorth CI should
be useful for testing H0 : τ2 = 0 versus HA : τ2 > a where 0 < a ≤ 1 since
the coverage is 1 and the length of the CI converges to 0. So reject H0 if a is
not in the CI.

The simulation simulated iid data w with u = Aw and Aij = ψ for i 6= j
and Aii = 1 where 0 ≤ ψ < 1 and u = (x2, ..., xp)

T . Hence Cor(xi, xj) = ρ =
[2ψ+(p−3)ψ2]/[1+(p−2)ψ2] for i 6= j. If ψ = 1/

√
kp, then ρ→ 1/(k+1) as

p→ ∞ where k > 0. We used w ∼ Np−1(0, Ip−1). If ψ is high or if p is large
with ψ ≥ 0.5, then the data are clustered tightly about the line with direction
1 = (1, ..., 1)T, and there is a dominant principal component with eigenvector
1 and eigenvalue λ1. We used ψ = 0, 1/

√
p, and 0.9. Then ρ = 0, ρ→ 0.5, or

ρ→ 1 as p → ∞.
We also used V (x2) = · · · = V (xp) = σ2

x. If p > 2, then Cov(xi, xj) = ρσ2
x

for i 6= j and Cov(xi, xj) = V (xi) = σ2
x for i = j. Then V (Y ) = σ2

Y = σ2
L+σ2

e

where

σ2
L = V (L) = V (

p∑

i=2

βixi) = Cov(

p∑

i=2

βixi,

p∑

j=2

βjxj) =

p∑

i=2

p∑

j=2

βiβjCov(xi, xj)

=

p∑

i=2

β2
i σ

2
x + 2ρσ2

x

p∑

i=2

p∑

j=i+1

βiβj .

The simulations took βi ≡ 0 or βi ≡ 1 for i = 2, ..., p. For the latter case,

σ2
L = V (L) = (p − 1)σ2

x + 2ρσ2
xp(p− 1)/2.

The zero mean errors ei were from 5 distributions: i) N(0,1), ii) t3, iii)
EXP (1)− 1, iv) uniform(−1, 1), and v) (1− ε)N(0, 1)+ εN(0, (1+ s)2) with
ε = 0.1 and s = 9 in the simulation. Then Y = 1 + bx2 + bx3 + · · ·+ bxp + e
with b = 0 or b = 1.

Remark 4.19. Suppose the simulation uses K runs and Wi = 1 if µ is
in the ith CI, and Wi = 0 otherwise, for i = 1, ..., K. Then the Wi are iid
binomial(1,1− δn) where ρn = 1− δn is the true coverage of the CI when the

sample size is n. Let ρ̂n = W . Since
∑K

i=1Wi ∼ binomial(K, ρn), the standard

error SE(W ) =
√
ρn(1 − ρn)/K. For K = 5000 and ρn near 0.9, we have

3SE(W ) ≈ 0.01. Hence an observed coverage of ρ̂n within 0.01 of the nominal
coverage 1 − δ suggests that there is no reason to doubt that the nominal
CI coverage is different from the observed coverage. So for a large sample
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95% CI, we want the observed coverage to be between 0.94 and 0.96. Also
a difference of 0.01 is not large. Coverage slightly higher than the nominal
coverage is better than coverage slightly lower than the nominal coverage.

Bootstrapping confidence intervals for quantities like ρ2 and τ2 is notori-
ously difficult. If β2 = · · · = βp = 0, then σ2

L = 0 and τ2 = 0. However, the
probability that R2∗

i > 0 = 1. Hence the usual two sided bootstrap percentile
and shorth intervals for τ2 will never contain 0. The one sided bootstrap CI
[0, T ∗

(c)] always contains 0, and is useful if the length of the CI goes to 0 as

n→ ∞. In the table below, βi = b for i = 2, ..., p. If b = 0, then τ2 = 0.
The simulation for the table used 5000 runs with the bootstrap sample

size B = 1000. When n = 400, the shorth(c) CI never contains τ2 = 0 and
the average length of the CI is 0.035. See ccov and clen. The lower shorth CI
always contained τ2 = 0 with lcov = 1, and the average CI length was llen =
0.036. The upper shorth CI never contains τ2 = 0, and the average length is
near 1.

Table 4.1 Bootstrapping τ2 with R2 and B = 1000

etype n p b ψ τ2 ccov clen lcov llen ucov ulen
1 100 4 0 0 0 0 0.135 1 0.137 0 0.990
1 200 4 0 0 0 0 0.0693 1 0.0702 0 0.995
1 400 4 0 0 0 0 0.0354 1 0.0358 0 0.988

Three linmodpack functions were used in the simulation. The function
shorthLU gets the shorth(c) CI, the lower shorth CI, and the upper shorth
CI. The function Rsqboot bootstraps R2, while the function Rsqbootsim

does the simulation. Some R code for the first line of Table 4.1 is below where
b = cc.

Rsqbootsim(n=100,p=4,BB=1000,nruns=5000,type=1,psi=0,

cc=0)

$rho

[1] 0

$sigesq

[1] 1

$sigLsq

[1] 0

$poprsq

[1] 0

$cicov

[1] 0

$avelen

[1] 0.1348881

$lcicov
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[1] 1

$lavelen

[1] 0.13688

$ucicov

[1] 0

$uavelen

[1] 0.9896608

4.6 Bootstrapping Variable Selection

This section considers bootstrapping the MLR variable selection model. Rath-
nayake and Olive (2020) shows how to bootstrap variable selection for many
other regression models. This section will explain why the bootstrap con-
fidence regions (4.32), (4.33), and (4.34) give useful results. Much of the
theory in Section 4.5.3 does not apply to the variable selection estimator
Tn = Aβ̂Imin,0 with θ = Aβ, because Tn is not smooth since Tn is equal to
the estimator Tjn with probability πjn for j = 1, ..., J . Here A is a known
full rank g × p matrix with 1 ≤ g ≤ p.

Obtaining the bootstrap samples for β̂V S and β̂MIX is simple. Generate

Y ∗ and X∗ that would be used to produce β̂
∗

if the full model estimator β̂

was being bootstrapped. Instead of computing β̂
∗
, compute the variable selec-

tion estimator β̂
∗
V S,1 = β̂

∗C

Ik1
,0. Then generate another Y ∗ and X∗ and com-

pute β̂
∗
MIX,1 = β̂

∗
Ik1

,0 (using the same subset Ik1
). This process is repeated

B times to get the two bootstrap samples for i = 1, ..., B. Let the selection
probabilities for the bootstrap variable selection estimator be ρkn. Then this
bootstrap procedure bootstraps both β̂V S and β̂MIX with πkn = ρkn.

The key idea is to show that the bootstrap data cloud is slightly more
variable than the iid data cloud, so confidence region (4.33) applied to the
bootstrap data cloud has coverage bounded below by (1−δ) for large enough
n and B.

For the bootstrap, suppose that T ∗
i is equal to T ∗

ij with probability ρjn

for j = 1, ..., J where
∑

j ρjn = 1, and ρjn → πj as n → ∞. Let Bjn count
the number of times T ∗

i = T ∗
ij in the bootstrap sample. Then the bootstrap

sample T ∗
1 , ..., T

∗
B can be written as

T ∗
1,1, ..., T

∗
B1n,1, ..., T

∗
1,J, ..., T

∗
BJn,J

where the Bjn follow a multinomial distribution and Bjn/B
P→ ρjn as B →

∞. Denote T ∗
1j , ..., T

∗
Bjn,j as the jth bootstrap component of the bootstrap

sample with sample mean T
∗
j and sample covariance matrix S∗

T,j. Then
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T
∗

=
1

B

B∑

i=1

T ∗
i =

∑

j

Bjn

B

1

Bjn

Bjn∑

i=1

T ∗
ij =

∑

j

ρ̂jnT
∗
j .

Similarly, we can define the jth component of the iid sample T1, ..., TB to
have sample mean T j and sample covariance matrix ST,j.

Let Tn = β̂MIX and Tij = β̂Ij,0. If S ⊆ Ij , assume
√
n(β̂Ij

− βIj
)

D→
Naj(0,V j) and

√
n(β̂

∗
Ij

− β̂Ij
)

D→ Naj (0,V j). Then by Equation (4.3),

√
n(β̂Ij ,0−β)

D→ Np(0,V j,0) and
√

n(β̂
∗
Ij,0

−β̂Ij,0)
D→ Np(0,V j,0). (4.39)

This result means that the component clouds have the same variability
asymptotically. The iid data component clouds are all centered at β. If the
bootstrap data component clouds were all centered at the same value β̃, then
the bootstrap cloud would be like an iid data cloud shifted to be centered at
β̃, and (4.33) would be a confidence region for θ = β. Instead, the bootstrap
data component clouds are shifted slightly from a common center, and are
each centered at a β̂Ij,0. Geometrically, the shifting of the bootstrap compo-
nent data clouds makes the bootstrap data cloud similar but more variable
than the iid data cloud asymptotically (we want n ≥ 20p), and centering
the bootstrap data cloud at Tn results in the confidence region (4.33) hav-
ing slightly higher asymptotic coverage than applying (4.33) to the iid data
cloud. Also, (4.33) tends to have higher coverage than (4.34) since the cutoff
for (4.33) tends to be larger than the cutoff for (4.34). Region (4.32) has
the same volume as region (4.34), but tends to have higher coverage since

empirically, the bagging estimator T
∗

tends to estimate θ at least as well as
Tn for a mixture distribution. A similar argument holds if Tn = Aβ̂MIX ,

Tij = Aβ̂Ij,0, and θ = Aβ.
To see that T ∗ has more variability than Tn, asymptotically, look at Figure

4.3. Imagine that n is huge and the J = 6 ellipsoids are 99.9% covering
regions for the component data clouds corresponding to Tjn for j = 1, ..., J .
Separating the clouds slightly, without rotation, increases the variability of
the overall data cloud. The bootstrap distribution of T ∗ corresponds to the
separated clouds. The shape of the overall data cloud does not change much,
but the volume does increase.

In the simulations for H0 : Aβ = BβS = θ0 with n ≥ 20p, the coverage
tended to get close to 1− δ for B ≥ max(200, 50p) so that S∗

T is a good esti-
mator of Cov(T ∗). In the simulations where S is not the full model, inference
with backward elimination with Imin using AIC was often more precise than
inference with the full model if n ≥ 20p and B ≥ 50p.

The matrix S∗
T can be singular due to one or more columns of zeros

in the bootstrap sample for β1, ..., βp. The variables corresponding to these
columns are likely not needed in the model given that the other predictors
are in the model. A simple remedy is to add d bootstrap samples of the
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full model estimator β̂
∗

= β̂
∗
FULL to the bootstrap sample. For example,

take d = dcBe with c = 0.01. A confidence interval [Ln, Un] can be com-
puted without S∗

T for (4.32), (4.33), and (4.34). Using the confidence interval
[max(Ln, T

∗
(1)),min(Un, T

∗
(B))] can give a shorter covering region.

Undercoverage can occur if bootstrap sample data cloud is less variable
than the iid data cloud, e.g., if (n−p)/n is not close to one. Coverage can be
higher than the nominal coverage for two reasons: i) the bootstrap data cloud
is more variable than the iid data cloud of T1, ..., TB, and ii) zero padding.

The bootstrap component clouds for β̂
∗
V S are again separated compared

to the iid clouds for β̂V S , which are centered about β. Heuristically, most of
the selection bias is due to predictors in E, not to the predictors in S. Hence

β̂
∗
S,V S is roughly similar to β̂

∗
S,MIX . Typically the distributions of β̂

∗
E,V S

and β̂
∗
E,MIX are not similar, but use the same zero padding. In simulations,

confidence regions for β̂V S tended to have less undercoverage than confidence

regions for β̂
∗
MIX .

4.6.1 The Parametric Bootstrap

The parametric bootstrap generates Y ∗
j = (Y ∗

i ) from a parametric distribu-

tion. Then regress Y ∗
j on X to get β̂

∗
j for j = 1, ..., B. Consider the paramet-

ric bootstrap for the MLR model with Y ∗ ∼ Nn(Xβ̂, σ̂2
nI) ∼ Nn(HY , σ̂2

nI)
where we are not assuming that the ei ∼ N(0, σ2), and

σ̂2
n = MSE =

1

n − p

n∑

i=1

r2i

where the residuals are from the full OLS model. Then MSE is a
√
n con-

sistent estimator of σ2 under mild conditions by Su and Cook (2012). Hence

Y ∗ = Xβ̂OLS + e∗

where the e∗i are iid N(0,MSE) and β̂ = β̂OLS .

Thus β̂
∗
I = (XT

I XI)
−1XT

I Y ∗ ∼ NaI (β̂I , σ̂
2
n(XT

I XI)
−1) since E(β̂

∗
I ) =

(XT
I XI)

−1XT
I HY = β̂I because HXI = XI , and Cov(β̂

∗
I) = σ̂2

n(XT
I XI)

−1.
Hence √

n(β̂
∗
I − β̂I) ∼ NaI (0, nσ̂

2
n(XT

I XI)
−1)

D→ NaI (0,V I)

as n, B → ∞ if S ⊆ I.
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4.6.2 The Residual Bootstrap

The residual bootstrap is often useful for additive error regression models of
the form Yi = m(xi) + ei = m̂(xi) + ri = Ŷi + ri for i = 1, ..., n where the
ith residual ri = Yi − Ŷi. Let Y = (Y1, ..., Yn)T , r = (r1, ..., rn)T , and let
X be an n × p matrix with ith row xT

i . Then the fitted values Ŷi = m̂(xi),
and the residuals are obtained by regressing Y on X . Here the errors ei are
iid, and it would be useful to be able to generate B iid samples e1j , ..., enj

from the distribution of ei where j = 1, ..., B. If the m(xi) were known, then
we could form a vector Y j where the ith element Yij = m(xi) + eij for
i = 1, ..., n. Then regress Y j on X. Instead, draw samples r∗1j, ..., r

∗
nj with

replacement from the residuals, then form a vector Y ∗
j where the ith element

Y ∗
ij = m̂(xi) + r∗ij for i = 1, ..., n. Then regress Y ∗

j on X . If the residuals do
not sum to 0, it is often useful to replace ri by εi = ri − r, and r∗ij by ε∗ij.

Example 4.6. For multiple linear regression, Yi = xT
i β + ei is written in

matrix form as Y = Xβ + e. Regress Y on X to obtain β̂, r, and Ŷ with
ith element Ŷi = m̂(xi) = xT

i β̂. For j = 1, ..., B, regress Y ∗
j on X to form

β̂
∗
1,n, ..., β̂

∗
B,n using the residual bootstrap.

Now examine the OLS model. Let Ŷ = Ŷ OLS = Xβ̂OLS = HY be the
fitted values from the OLS full model. Let rW denote an n×1 random vector
of elements selected with replacement from the OLS full model residuals.
Following Freedman (1981) and Efron (1982, p. 36),

Y ∗ = Xβ̂OLS + rW

follows a standard linear model where the elements rW
i of rW are iid from

the empirical distribution of the OLS full model residuals ri. Hence

E(rW
i ) =

1

n

n∑

i=1

ri = 0, V (rW
i ) = σ2

n =
1

n

n∑

i=1

r2i =
n− p

n
MSE,

E(rW ) = 0, and Cov(Y ∗) = Cov(rW) = σ2
nIn.

Let β̂ = β̂OLS . Then β̂
∗

= (XT X)−1XT Y ∗ with Cov(β̂
∗
) = σ2

n(XT X)−1 =
n− p

n
MSE(XT X)−1, and E(β̂

∗
) = (XT X)−1XTE(Y ∗) =

(XT X)−1XT HY = β̂ = β̂n since HX = X . The expectations are with

respect to the bootstrap distribution where Ŷ acts as a constant.
For the OLS estimator β̂ = β̂OLS , the estimated covariance matrix

of β̂OLS is Ĉov(β̂OLS) = MSE(XT X)−1. The sample covariance matrix

of the β̂
∗

is estimating Cov(β̂
∗
) as B → ∞. Hence the residual boot-

strap standard error SE(β̂∗
i ) ≈

√
n− p

n
SE(β̂i) for i = 1, ..., p where
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β̂OLS = β̂ = (β̂1, ..., β̂p)
T . The LS CLT Theorem 2.26 says

√
n(β̂ − β)

D→ Np(0, lim
n→∞

nĈov(β̂OLS)) ∼ Np(0, σ
2W )

where n(XT X)−1 → W . Since Y ∗ = Xβ̂OLS +rW follows a standard linear
model, it may not be surprising that

√
n(β̂

∗ − β̂OLS)
D→ Np(0, lim

n→∞
nĈov(β̂

∗
)) ∼ Np(0, σ

2W ).

See Freedman (1981).

For the above residual bootstrap, β̂
∗
Ij

= (XT
Ij

XIj)
−1XT

Ij
Y ∗ = DjY

∗

with Cov(β̂
∗
Ij

) = σ2
n(XT

Ij
XIj)

−1 and E(β̂
∗
Ij

) = (XT
Ij

XIj )
−1XT

Ij
E(Y ∗) =

(XT
Ij

XIj)
−1XT

Ij
HY = β̂Ij

since HXIj = XIj . The expectations are with

respect to the bootstrap distribution where Ŷ acts as a constant.
Thus for S ⊆ I and the residual bootstrap using residuals from the full

OLS model, E(β̂
∗
I ) = β̂I and nCov(β̂

∗
I) = n[(n− p)/n]σ̂2

n(XT
I XI)

−1 P→ V I

as n → ∞ with σ̂2
n = MSE. Hence β̂

∗
I − β̂I

P→ 0 as n → ∞ by Lai et al

(1979). Note that β̂
∗
I = β̂

∗
I,n and β̂I = β̂I,n depend on n.

Remark 4.20. The Cauchy Schwartz inequality says |aT b| ≤ ‖a‖ ‖b‖.
Suppose

√
n(β̂ − β) = OP (1) is bounded in probability. This will occur if

√
n(β̂ − β)

D→ Np(0,Σ), e.g. if β̂ is the OLS estimator. Then

|ri − ei| = |Yi − xT
i β̂ − (Yi − xT

i β)| = |xT
i (β̂ − β)|.

Hence

√
n max

i=1,...,n
|ri − ei| ≤ ( max

i=1,...,n
‖xi‖) ‖

√
n(β̂ − β)‖ = OP (1)

since max‖xi‖ = OP (1) or there is extrapolation. Hence OLS residuals be-
have well if the zero mean error distribution of the iid ei has a finite variance
σ2.

Remark 4.21. Note that both the residual bootstrap and parametric
bootstrap for OLS are robust to the unknown error distribution of the iid ei.
For the residual bootstrap with S ⊆ I where I is not the full model, it may

not be true that
√
n(β̂

∗
I − β̂I)

D→ NaI (0,V I) as n, B → ∞. For the model
Y = Xβ + e, the ei are iid from a distribution that does not depend on n,
and βE = 0. For Y ∗ = Xβ̂ + rW , the distribution of the rW

i depends on n

and β̂E 6= 0 although
√
nβ̂E = OP (1).
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4.6.3 The Nonparametric Bootstrap

The nonparametric bootstrap (also called the empirical bootstrap, naive
bootstrap, the pairwise bootstrap, and the pairs bootstrap) draws a sam-
ple of n cases (Y ∗

i ,x
∗
i ) with replacement from the n cases (Yi,xi), and re-

gresses the Y ∗
i on the x∗

i to get β̂
∗
V S,1, and then draws another sample to get

β̂
∗
MIX,1. This process is repeated B times to get the two bootstrap samples

for i = 1, ..., B.
Then for the full model,

Y ∗ = X∗β̂OLS + rW

and for a submodel I,

Y ∗ = X∗
I β̂I,OLS + rW

I .

Freedman (1981) showed that under regularity conditions for the OLS MLR

model,
√
n(β̂

∗ − β̂)
D→ Np(0, σ2W ) ∼ Np(0,V ). Hence if S ⊆ Ij ,

√
n(β̂

∗
I − β̂I)

D→ NaI (0,V I)

as n, B → ∞. (Treat Ij as if Ij is the full model.)
One set of regularity conditions is that the MLR model holds, and if xi =

(1 uT
i )T , then the wi = (Yi uT

i )T are iid from some population with a
nonsingular covariance matrix. Since cases are sampled with replacement, we
have Y ∗

i = x∗T
i β + e∗i for i = 1, ..., n. In matrix form Y ∗ = X∗β + e∗, but

X∗ is a random matrix and the e∗i are not iid from the distribution of the ei

since the e∗i are “sampled with replacement” from the unknown e1, ..., en.
The nonparametric bootstrap uses w∗

1, ...,w
∗
n where the w∗

i are sampled
with replacement from w1, ...,wn. By Example 4.2, E(w∗) = w, and

Cov(w∗) =
1

n

n∑

i=1

(wi − w)(wi − w)T = Σ̃w =

[
S̃2

Y Σ̃Y u
Σ̃uY Σ̃u

]
.

Note that β̂ is a constant with respect to the bootstrap distribution. Assume
all inverse matrices exist. Then by Theorem 2.20,

β̂
∗

=

[
β̂∗

1

β̂
∗
u

]
=

[
Y

∗ − β̂
∗T

u u∗

Σ̃
−1∗

u Σ̃
∗
uY

]
P→
[
Y − β̂

T

uu

Σ̃
−1

u Σ̃uY

]
=

[
β̂1

β̂u

]
= β̂

as B → ∞. This result suggests that the nonparametric bootstrap for OLS
MLR might work under milder regularity conditions than the wi being iid
from some population with a nonsingular covariance matrix.
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4.6.4 Bootstrapping OLS Variable Selection

Undercoverage can occur if the bootstrap sample data cloud is less variable
than the iid data cloud, e.g., if (n−p)/n is not close to one. Coverage can be
higher than the nominal coverage for two reasons: i) the bootstrap data cloud
is more variable than the iid data cloud of T1, ..., TB, and ii) zero padding.

To see the effect of zero padding, consider H0 : Aβ = βO = 0 where
βO = (βi1 , ...., βig)

T and O ⊆ E in (4.1) so thatH0 is true. Suppose a nominal
95% confidence region is used and UB = 0.96. Hence the confidence region

(4.32) or (4.33) covers at least 96% of the bootstrap sample. If β̂
∗
O,j = 0 for

more than 4% of the β̂
∗
O,1, ..., β̂

∗
O,B , then 0 is in the confidence region and the

bootstrap test fails to reject H0. If this occurs for each run in the simulation,
then the observed coverage will be 100%.

Now suppose β̂
∗
O,j = 0 for j = 1, ..., B. Then S∗

T is singular, but the
singleton set {0} is the large sample 100(1 − δ)% confidence region (4.32),
(4.33), or (4.34) for βO and δ ∈ (0, 1), and the pvalue for H0 : βO = 0 is

one. (This result holds since {0} contains 100% of the β̂
∗
O,j in the bootstrap

sample.) For large sample theory tests, the pvalue estimates the population
pvalue. Let I denote the other predictors in the model so β = (βT

I ,β
T
O)T . For

the Imin model from forward selection, there may be strong evidence that xO

is not needed in the model given xI is in the model if the “100%” confidence
region is {0}, n ≥ 20p, B ≥ 50p, and the error distribution is unimodal and
not highly skewed. (Since the pvalue is one, this technique may be useful
for data snooping: applying OLS theory to submodel I may have negligible
selection bias.)

Remark 4.22. The assumption ρjn → πj as n → ∞ seems to be the most
reasonable for the residual bootstrap since |ri −ei| → 0 fast by Remark 4.20.
The assumption may not hold for the parametric bootstrap of Section 4.6.1 if
the ei are not iid N(0, σ2). Another way to look at the bootstrap confidence
region for OLS variable selection estimators is to consider the estimator T2,n

that chooses Ij with probability equal to the observed bootstrap proportion
ρ̂jn. The bootstrap sample T ∗

1 , ..., T
∗
B tends to be slightly more variable than

an iid sample T2,1, ..., T2,B, and the geometric argument suggests that the
large sample coverage of the nominal 100(1 − δ)% confidence region will be
at least as large as the nominal coverage 100(1− δ)%.

Remark 4.23. Note that there are several important variable selection
models, including the model given by Equation (4.1) where xT β = xT

SβS .
Another model is xT β = xT

Si
βSi

for i = 1, ..., K. Then there are K ≥ 2
competing “true” nonnested submodels where βSi

is aSi × 1. For example,
suppose the K = 2 models have predictors x1, x2, x3 for S1 and x1, x2, x4 for
S2. Then x3 and x4 are likely to be selected and omitted often by forward
selection for the B bootstrap samples. Hence omitting all predictors xi that
have a β∗

ij = 0 for at least one of the bootstrap samples j = 1, ..., B could
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result in underfitting, e.g. using just x1 and x2 in the above K = 2 example.
If n and B are large enough, the singleton set {0} could still be the “100%”
confidence region for a vector βO . See Remark 4.6.

Suppose the predictors xi have been standardized. Then another important
regression model has the βi taper off rapidly, but no coefficients are equal to
zero. For example, βi = e−i for i = 1, ..., p.

Example 4.7. Cook and Weisberg (1999, pp. 351, 433, 447) gives a data
set on 82 mussels sampled off the coast of New Zealand. Let the response
variable be the logarithm log(M) of the muscle mass, and the predictors are
the length L and heightH of the shell in mm, the logarithm log(W ) of the shell
width W, the logarithm log(S) of the shell mass S, and a constant. Inference
for the full model is shown below along with the shorth(c) nominal 95%
confidence intervals for βi computed using the nonparametric and residual
bootstraps. As expected, the residual bootstrap intervals are close to the
classical least squares confidence intervals ≈ β̂i ± 1.96SE(β̂i).

large sample full model inference

Est. SE t Pr(>|t|) nparboot resboot

int -1.249 0.838 -1.49 0.14 [-2.93,-0.093][-3.045,0.473]

L -0.001 0.002 -0.28 0.78 [-0.005,0.003][-0.005,0.004]

logW 0.130 0.374 0.35 0.73 [-0.457,0.829][-0.703,0.890]

H 0.008 0.005 1.50 0.14 [-0.002,0.018][-0.003,0.016]

logS 0.640 0.169 3.80 0.00 [ 0.244,1.040][ 0.336,1.012]

output and shorth intervals for the min Cp submodel FS

Est. SE 95% shorth CI 95% shorth CI

int -0.9573 0.1519 [-3.294, 0.495] [-2.769, 0.460]

L 0 [-0.005, 0.004] [-0.004, 0.004]

logW 0 [ 0.000, 1.024] [-0.595, 0.869]

H 0.0072 0.0047 [ 0.000, 0.016] [ 0.000, 0.016]

logS 0.6530 0.1160 [ 0.322, 0.901] [ 0.324, 0.913]

for forward selection for all subsets

The minimum Cp model from all subsets variable selection and forward
selection both used a constant, H , and log(S). The shorth(c) nominal 95%
confidence intervals for βi using the residual bootstrap are shown. Note that
the intervals for H are right skewed and contain 0 when closed intervals
are used instead of open intervals. Some least squares output is shown, but
should only be used for inference if the model was selected before looking at
the data.

It was expected that log(S) may be the only predictor needed, along with
a constant, since log(S) and log(M) are both log(mass) measurements and
likely highly correlated. Hence we want to test H0 : β2 = β3 = β4 = 0 with
the Imin model selected by all subsets variable selection. (Of course this test
would be easy to do with the full model using least squares theory.) Then
H0 : Aβ = (β2 , β3, β4)

T = 0. Using the prediction region method with the
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full model gave an interval [0,2.930] with D0 = 1.641. Note that
√
χ2

3,0.95 =

2.795. So fail to reject H0. Using the prediction region method with the Imin

variable selection model had [0, D(UB)] = [0, 3.293] while D0 = 1.134. So fail
to reject H0.

Then we redid the bootstrap with the full model and forward selection. The
full model had [0, D(UB)] = [0, 2.908] with D0 = 1.577. So fail to reject H0.
Using the prediction region method with the Imin forward selection model
had [0, D(UB)] = [0, 3.258] whileD0 = 1.245. So fail to reject H0. The ratio of
the volumes of the bootstrap confidence regions for this test was 0.392. (Use
(4.35) with S∗

T and D from forward selection for the numerator, and from
the full model for the denominator.) Hence the forward selection bootstrap
test was more precise than the full model bootstrap test. Some R code used
to produce the above output is shown below.

library(leaps)

y <- log(mussels[,5]); x <- mussels[,1:4]

x[,4] <- log(x[,4]); x[,2] <- log(x[,2])

out <- regboot(x,y,B=1000)

tem <- rowboot(x,y,B=1000)

outvs <- vselboot(x,y,B=1000) #get bootstrap CIs

outfs <- fselboot(x,y,B=1000) #get bootstrap CIs

apply(out$betas,2,shorth3);

apply(tem$betas,2,shorth3);

apply(outvs$betas,2,shorth3) #for all subsets

apply(outfs$betas,2,shorth3) #for forward selection

ls.print(outvs$full)

ls.print(outvs$sub)

ls.print(outfs$sub)

#test if beta_2 = beta_3 = beta_4 = 0

Abeta <- out$betas[,2:4] #full model

#prediction region method with residual bootstrap

out<-predreg(Abeta)

Abeta <- outvs$betas[,2:4]

#prediction region method with Imin all subsets

outvs <- predreg(Abeta)

Abeta <- outfs$betas[,2:4]

#prediction region method with Imin forward sel.

outfs<-predreg(Abeta)

#ratio of volumes for forward selection and full model

(sqrt(det(outfs$cov))*outfs$D0ˆ3)/(sqrt(det(out$cov))*out$D0ˆ3)

Example 4.8. Consider the Gladstone (1905) data set that has 12 vari-
ables on 267 persons after death. The response variable was brain weight.
Head measurements were breadth, circumference, head height, length, and
size as well as cephalic index and brain weight. Age, height, and two categor-
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ical variables ageclass (0: under 20, 1: 20-45, 2: over 45) and sex were also
given. The eight predictor variables shown in the output were used.

Output is shown below for the full model and the bootstrapped minimum
Cp forward selection estimator. Note that the shorth intervals for length and
sex are quite long. These variables are often in and often deleted from the
bootstrap forward selection. Model II is the model with the fewest predictors
such that CP (II ) ≤ CP (Imin)+1. For this data set, II = Imin. The bootstrap
CIs differ due to different random seeds.

large sample full model inference for Ex. 4.8

Estimate SE t Pr(>|t|) 95% shorth CI

Int -3021.255 1701.070 -1.77 0.077 [-6549.8,322.79]

age -1.656 0.314 -5.27 0.000 [ -2.304,-1.050]

breadth -8.717 12.025 -0.72 0.469 [-34.229,14.458]

cephalic 21.876 22.029 0.99 0.322 [-20.911,67.705]

circum 0.852 0.529 1.61 0.109 [ -0.065, 1.879]

headht 7.385 1.225 6.03 0.000 [ 5.138, 9.794]

height -0.407 0.942 -0.43 0.666 [ -2.211, 1.565]

len 13.475 9.422 1.43 0.154 [ -5.519,32.605]

sex 25.130 10.015 2.51 0.013 [ 6.717,44.19]

output and shorth intervals for the min Cp submodel

Estimate SE t Pr(>|t|) 95% shorth CI

Int -1764.516 186.046 -9.48 0.000 [-6151.6,-415.4]

age -1.708 0.285 -5.99 0.000 [ -2.299,-1.068]

breadth 0 [-32.992, 8.148]

cephalic 5.958 2.089 2.85 0.005 [-10.859,62.679]

circum 0.757 0.512 1.48 0.140 [ 0.000, 1.817]

headht 7.424 1.161 6.39 0.000 [ 5.028, 9.732]

height 0 [ -2.859, 0.000]

len 6.716 1.466 4.58 0.000 [ 0.000,30.508]

sex 25.313 9.920 2.55 0.011 [ 0.000,42.144]

output and shorth for I_I model

Estimate Std.Err t-val Pr(>|t|) 95% shorth CI

Int -1764.516 186.046 -9.48 0.000 [-6104.9,-778.2]

age -1.708 0.285 -5.99 0.000 [ -2.259,-1.003]

breadth 0 [-31.012, 6.567]

cephalic 5.958 2.089 2.85 0.005 [ -6.700,61.265]

circum 0.757 0.512 1.48 0.140 [ 0.000, 1.866]

headht 7.424 1.161 6.39 0.000 [ 5.221,10.090]

height 0 [ -2.173, 0.000]

len 6.716 1.466 4.58 0.000 [ 0.000,28.819]

sex 25.313 9.920 2.55 0.011 [ 0.000,42.847]

The R code used to produce the above output is shown below. The last
four commands are useful for examining the variable selection output.

x<-cbrainx[,c(1,3,5,6,7,8,9,10)]
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y<-cbrainy

library(leaps)

out <- regboot(x,y,B=1000)

outvs <- fselboot(x,cbrainy) #get bootstrap CIs,

apply(out$betas,2,shorth3)

apply(outvs$betas,2,shorth3)

ls.print(outvs$full)

ls.print(outvs$sub)

outvs <- modIboot(x,cbrainy) #get bootstrap CIs,

apply(outvs$betas,2,shorth3)

ls.print(outvs$sub)

tem<-regsubsets(x,y,method="forward")

tem2<-summary(tem)

tem2$which

tem2$cp

4.6.5 Simulations

For variable selection with the p × 1 vector β̂Imin,0, consider testing H0 :
Aβ = θ0 versus H1 : Aβ 6= θ0 with θ = Aβ where often θ0 = 0. Then let

Tn = Aβ̂Imin,0 and let T ∗
i = Aβ̂

∗
Imin,0,i for i = 1, ..., B. The shorth estimator

can be applied to a bootstrap sample β̂∗
i1, ..., β̂

∗
iB to get a confidence interval

for βi. Here Tn = β̂i and θ = βi.
Assume p is fixed, n ≥ 20p, and that the error distribution is unimodal

and not highly skewed. Then the plotted points in the response and residual
plots should scatter in roughly even bands about the identity line (with unit
slope and zero intercept) and the r = 0 line, respectively. See Figure 1.1. If
the error distribution is skewed or multimodal, then much larger sample sizes
may be needed.

Next, we describe a small simulation study that was done using B =
max(1000, n/25, 50p) and 5000 runs. The simulation used p = 4, 6, 7, 8, and
10; n = 25p and 50p; ψ = 0, 1/

√
p, and 0.9; and k = 1 and p − 2 where

k and ψ are defined in the following paragraph. In the simulations, we use
θ = Aβ = βi, θ = Aβ = βS = 1 and θ = Aβ = βE = 0.

Let x = (1 uT )T where u is the (p− 1)× 1 vector of nontrivial predictors.
In the simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I) where the
m = p − 1 elements of the vector wi are iid N(0,1). Let the m×m matrix
A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j. Then the

vector ui = Awi so that Cov(ui) = Σu = AAT = (σij) where the diagonal
entries σii = [1+(m−1)ψ2 ] and the off diagonal entries σij = [2ψ+(m−2)ψ2 ].
Hence the correlations are Cor(xi, xj) = ρ = (2ψ + (m − 2)ψ2)/(1 + (m −
1)ψ2) for i 6= j where xi and xj are nontrivial predictors. If ψ = 1/

√
cp,
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then ρ → 1/(c + 1) as p → ∞ where c > 0. As ψ gets close to 1, the
predictor vectors cluster about the line in the direction of (1, ..., 1)T . Let
Yi = 1 + 1xi,2 + · · ·+ 1xi,k+1 + ei for i = 1, ..., n. Hence β = (1, .., 1, 0, ..., 0)T

with k + 1 ones and p − k − 1 zeros. The zero mean errors ei were iid from
five distributions: i) N(0,1), ii) t3, iii) EXP(1) - 1, iv) uniform(−1, 1), and v)
0.9 N(0,1) + 0.1 N(0,100). Only distribution iii) is not symmetric.

When ψ = 0, the full model least squares confidence intervals for βi should
have length near 2t96,0.975σ/

√
n ≈ 2(1.96)σ/10 = 0.392σ when n = 100 and

the iid zero mean errors have variance σ2. The simulation computed the Frey
shorth(c) interval for each βi and used bootstrap confidence regions to test
H0 : βS = 1 (whether first k + 1 βi = 1) and H0 : βE = 0 (whether the last
p − k − 1 βi = 0). The nominal coverage was 0.95 with δ = 0.05. Observed
coverage between 0.94 and 0.96 suggests coverage is close to the nominal
value.

The regression models used the residual bootstrap on the forward selection
estimator β̂Imin,0. Table 4.2 gives results for when the iid errors ei ∼ N(0, 1)
with n = 100, p = 4, and k = 1. Table 4.2 shows two rows for each model
giving the observed confidence interval coverages and average lengths of the
confidence intervals. The term “reg” is for the full model regression, and the
term “vs” is for forward selection. The last six columns give results for the
tests. The terms pr, hyb, and br are for the prediction region method (4.32),
hybrid region (4.34), and Bickel and Ren region (4.33). The 0 indicates the
test was H0 : βE = 0, while the 1 indicates that the test was H0 : βS = 1.
The length and coverage = P(fail to reject H0) for the interval [0, D(UB)] or
[0, D(UB,T )] where D(UB) or D(UB,T ) is the cutoff for the confidence region.

The cutoff will often be near
√
χ2

g,0.95 if the statistic T is asymptotically nor-

mal. Note that
√
χ2

2,0.95 = 2.448 is close to 2.45 for the full model regression

bootstrap tests.
Volume ratios of the three confidence regions can be compared using (4.35),

but there is not enough information in Table 4.2 to compare the volume of
the confidence region for the full model regression versus that for the forward
selection regression since the two methods have different determinants |S∗

T |.
The inference for forward selection was often as precise or more precise

than the inference for the full model. The coverages were near 0.95 for the
regression bootstrap on the full model, although there was slight undercov-
erage for the tests since (n − p)/n = 0.96 when n = 25p. Suppose ψ = 0.

Then from Section 4.2, β̂S has the same limiting distribution for Imin and
the full model. Note that the average lengths and coverages were similar for
the full model and forward selection Imin for β1, β2, and βS = (β1, β2)

T .
Forward selection inference was more precise for βE = (β3, β4)

T . The Bickel
and Ren (4.33) cutoffs and coverages were at least as high as those of the
hybrid region (4.34).

For ψ > 0 and Imin, the coverages for the βi corresponding to βS were
near 0.95, but the average length could be shorter since Imin tends to have
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Table 4.2 Bootstrapping OLS Forward Selection with Cp, ei ∼ N(0,1)

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1
reg,0 0.946 0.950 0.947 0.948 0.940 0.941 0.941 0.937 0.936 0.937
len 0.396 0.399 0.399 0.398 2.451 2.451 2.452 2.450 2.450 2.451
vs,0 0.948 0.950 0.997 0.996 0.991 0.979 0.991 0.938 0.939 0.940
len 0.395 0.398 0.323 0.323 2.699 2.699 3.002 2.450 2.450 2.457

reg,0.5 0.946 0.944 0.946 0.945 0.938 0.938 0.938 0.934 0.936 0.936
len 0.396 0.661 0.661 0.661 2.451 2.451 2.452 2.451 2.451 2.452

vs,0.5 0.947 0.968 0.997 0.998 0.993 0.984 0.993 0.955 0.955 0.963
len 0.395 0.658 0.537 0.539 2.703 2.703 2.994 2.461 2.461 2.577

reg,0.9 0.946 0.941 0.944 0.950 0.940 0.940 0.940 0.935 0.935 0.935
len 0.396 3.257 3.253 3.259 2.451 2.451 2.452 2.451 2.451 2.452

vs,0.9 0.947 0.968 0.994 0.996 0.992 0.981 0.992 0.962 0.959 0.970
len 0.395 2.751 2.725 2.735 2.716 2.716 2.971 2.497 2.497 2.599

less multicorrelation than the full model. For ψ ≥ 0, the Imin coverages were
higher than 0.95 for β3 and β4 and for testing H0 : βE = 0 since zeros often

occurred for β̂∗
j for j = 3, 4. The average CI lengths were shorter for Imin

than for the OLS full model for β3 and β4. Note that for Imin, the coverage
for testing H0 : βS = 1 was higher than that for the OLS full model.

Table 4.3 Bootstrap CIs with Cp, p = 10, k = 8, ψ = 0.9, error type v)

n β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

250 0.945 0.824 0.822 0.827 0.827 0.824 0.826 0.817 0.827 0.999
shlen 0.825 6.490 6.490 6.482 6.485 6.479 6.512 6.496 6.493 6.445
250 0.946 0.979 0.980 0.985 0.981 0.983 0.983 0.977 0.983 0.998

prlen 0.807 7.836 7.850 7.842 7.830 7.830 7.851 7.840 7.839 7.802
250 0.947 0.976 0.978 0.984 0.978 0.978 0.979 0.973 0.980 0.996

brlen 0.811 8.723 8.760 8.765 8.736 8.764 8.745 8.747 8.753 8.756
2500 0.951 0.947 0.948 0.948 0.948 0.947 0.949 0.944 0.951 0.999
shlen 0.263 2.268 2.271 2.271 2.273 2.262 2.632 2.277 2.272 2.047
2500 0.945 0.961 0.959 0.955 0.960 0.960 0.961 0.958 0.961 0.998
prlen 0.258 2.630 2.639 2.640 2.632 2.632 2.641 2.638 2.642 2.517
2500 0.946 0.958 0.954 0.960 0.956 0.960 0.962 0.955 0.961 0.997
brlen 0.258 2.865 2.875 2.882 2.866 2.871 2.887 2.868 2.875 2.830
25000 0.952 0.940 0.939 0.935 0.940 0.942 0.938 0.937 0.942 1.000
shlen 0.083 0.809 0.808 0.806 0.805 0.807 0.808 0.808 0.809 0.224
25000 0.948 0.964 0.968 0.962 0.964 0.966 0.964 0.964 0.967 0.991
prlen 0.082 0.806 0.805 0.801 0.800 0.805 0.805 0.803 0.806 0.340
25000 0.949 0.969 0.972 0.968 0.967 0.971 0.969 0.969 0.973 0.999
brlen 0.082 0.810 0.810 0.805 0.804 0.809 0.810 0.808 0.810 0.317

Results for other values of n, p, k, and distributions of ei were similar. For
forward selection with ψ = 0.9 and Cp, the hybrid region (4.34) and shorth
confidence intervals occasionally had coverage less than 0.93. It was also rare
for the bootstrap to have one or more columns of zeroes so S∗

T was singular.
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For error distributions i)-iv) and ψ = 0.9, sometimes the shorth CIs needed
n ≥ 100p for all p CIs to have good coverage. For error distribution v) and
ψ = 0.9, even larger values of n were needed. Confidence intervals based on
(4.32) and (4.33) worked for much smaller n, but tended to be longer than
the shorth CIs.

See Table 4.3 for one of the worst scenarios for the shorth, where shlen,
prlen, and brlen are for the average CI lengths based on the shorth, (4.32), and
(4.33), respectively. In Table 4.3, k = 8 and the two nonzero πj correspond

to the full model β̂ and β̂S,0. Hence βi = 1 for i = 1, ..., 9 and β10 = 0.
Hence confidence intervals for β10 had the highest coverage and usually the
shortest average length (for i 6= 1) due to zero padding. Theory in Section
4.2 showed that the CI lengths are proportional to 1/

√
n. When n = 25000,

the shorth CI uses the 95.16th percentile while CI (4.32) uses the 95.00th
percentile, allowing the average CI length of (4.32) to be shorter than that of

the shorth CI, but the distribution for β̂∗
i is likely approximately symmetric

for i 6= 10 since the average lengths of the three confidence intervals were
about the same for each i 6= 10.

When BIC was used, undercoverage was a bit more common and severe,
and undercoverage occasionally occurred with regions (4.32) and (4.33). BIC
also occasionally had 100% coverage since BIC produces more zeroes than
Cp.

Some R code for the simulation is shown below.

record coverages and ‘‘lengths" for

b1, b2, bp-1, bp, pm0, hyb0, br0, pm1, hyb1, br1

regbootsim3(n=100,p=4,k=1,nruns=5000,type=1,psi=0)

$cicov

[1] 0.9458 0.9500 0.9474 0.9484 0.9400 0.9408 0.9410

0.9368 0.9362 0.9370

$avelen

[1] 0.3955 0.3990 0.3987 0.3982 2.4508 2.4508 2.4521

[8] 2.4496 2.4496 2.4508

$beta

[1] 1 1 0 0

$k

[1] 1

library(leaps)

vsbootsim4(n=100,p=4,k=1,nruns=5000,type=1,psi=0)

$cicov

[1] 0.9480 0.9496 0.9972 0.9958 0.9910 0.9786 0.9914

0.9384 0.9394 0.9402

$avelen

[1] 0.3954 0.3987 0.3233 0.3231 2.6987 2.6987 3.0020

[8] 2.4497 2.4497 2.4570
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$beta

[1] 1 1 0 0

$k

[1] 1

4.7 Data Splitting

Data splitting is used for inference after model selection. Use a training set
to select a full model, and a validation set for inference with the selected full
model. Here p >> n is possible. See Chapter 6, Hurvich and Tsai (1990, p.
216) and Rinaldo et al. (2019). Typically when training and validation sets
are used, the training set is bigger than the validation set or half sets are
used, often causing large efficiency loss.

Let J be a positive integer and let bxc be the integer part of x, e.g.,
b7.7c = 7. Initially divide the data into two sets H1 with n1 = bn/(2J)c
cases and V1 with n − n1 cases. If the fitted model from H1 is not good
enough, randomly select n1 cases from V1 to add to H1 to form H2. Let V2

have the remaining cases from V1. Continue in this manner, possibly forming
sets (H1, V1), (H2, V2), ..., (HJ, VJ) where Hi has ni = in1 cases. Stop when
Hd gives a reasonable model Id with ad predictors if d < J . Use d = J ,
otherwise. Use the model Id as the full model for inference with the data in
Vd.

This procedure is simple for a fixed data set, but it would be good to
automate the procedure. Forward selection with the Chen and Chen (2008)
EBIC criterion and lasso are useful for finding a reasonable fitted model.
BIC and the Hurvich and Tsai (1989) AICC criterion can be useful if n ≥
max(2p, 10ad). For example, if n = 500000 and p = 90, using n1 = 900 would
result in a much smaller loss of efficiency than n1 = 250000.

4.8 Summary

1) A model for variable selection can be described by xT β = xT
SβS +xT

EβE =
xT

SβS where x = (xT
S ,x

T
E)T is a p × 1 vector of predictors, xS is an aS × 1

vector, and xE is a (p−aS)×1 vector. Given that xS is in the model, βE = 0.
Assume p is fixed while n→ ∞.

2) If β̂I is a × 1, form the p × 1 vector β̂I,0 from β̂I by adding 0s cor-

responding to the omitted variables. For example, if p = 4 and β̂Imin
=

(β̂1, β̂3)
T , then β̂Imin,0 = (β̂1, 0, β̂3, 0)T . For the OLS model with S ⊆ I,

√
n(β̂I − βI)

D→ NaI (0,V I) where (XT
I XI)/(nσ

2)
P→ V −1

I .
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3) Theorem 4.4, Variable Selection CLT. Assume P (S ⊆ Imin) → 1

as n → ∞, and let Tn = β̂Imin,0 and Tjn = β̂Ij ,0. Let Tn = Tkn = β̂Ik,0

with probabilities πkn where πkn → πk as n → ∞. Denote the πk with
S ⊆ Ik by πj. The other πk = 0 since P (S ⊆ Imin) → 1 as n → ∞. Assume
√
n(β̂Ij

−βIj
)

D→ Naj (0,V j) and ujn =
√
n(β̂Ij,0 −β)

D→ uj ∼ Np(0,V j,0).
a) Then √

n(β̂Imin,0 − β)
D→ u

where the cdf of u is Fu(z) =
∑

j πjFuj
(z). Thus u is a mixture distribution

of the uj with probabilities πj, E(u) = 0, and Cov(u) = Σu =
∑

j πjV j,0.
b) Let A be a g × p full rank matrix with 1 ≤ g ≤ p. Then

√
n(Aβ̂Imin,0 − Aβ)

D→ Au = v

where Au has a mixture distribution of the Auj ∼ Ng(0,AV j,0A
T ) with

probabilities πj .

4) For h > 0, the hyperellipsoid {z : (z − T )T C−1(z − T ) ≤ h2} =
{z : D2

z ≤ h2} = {z : Dz ≤ h}. A future observation (random vector) xf is
in this region if Dxf ≤ h. A large sample 100(1− δ)% prediction region is a
set An such that P (xf ∈ An) is eventually bounded below by 1−δ as n → ∞
where 0 < δ < 1. A large sample 100(1−δ)% confidence region for a vector of
parameters θ is a set An such that P (θ ∈ An) is eventually bounded below
by 1 − δ as n → ∞.

5) Let qn = min(1 − δ + 0.05, 1− δ + p/n) for δ > 0.1 and qn =
min(1−δ/2, 1−δ+10δp/n), otherwise. If qn < 1−δ+0.001, set qn = 1−δ. If
(T,C) is a consistent estimator of (µ, dΣ), then {z : Dz(T,C) ≤ h} is a large
sample 100(1−δ)% prediction regions if h = D(Un) where D(Un) is the 100qnth
sample quantile of the Di. The large sample 100(1 − δ)% nonparametric
prediction region {z : D2

z (x,S) ≤ D2
(Un)} uses (T,C) = (x,S). We want

n ≥ 10p for good coverage and n ≥ 50p for good volume.
6) Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ0 is a known

g × 1 vector. Make a confidence region and reject H0 if θ0 is not in the
confidence region. Let qB and UB be as in 5) with n replaced by B and p

replaced by g. Let T
∗

and S∗
T be the sample mean and sample covariance

matrix of the bootstrap sample T ∗
1 , ..., T

∗
B. a) The prediction region method

large sample 100(1−δ)% confidence region for θ is {w : (w−T ∗
)T [S∗

T ]−1(w−
T

∗
) ≤ D2

(UB)} = {w : D2
w(T

∗
,S∗

T ) ≤ D2
(UB)} where D2

(UB) is computed from

D2
i = (T ∗

i −T
∗
)T [S∗

T ]−1(T ∗
i −T

∗
) for i = 1, ..., B. Note that the corresponding

test for H0 : θ = θ0 rejects H0 if (T
∗ − θ0)

T [S∗
T ]−1(T

∗ − θ0) > D2
(UB).

This procedure applies the nonparametric prediction region to the bootstrap
sample. b) The modified Bickel and Ren (2001) large sample 100(1 − δ)%
confidence region is {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
(UB,T )} = {w :

D2
w(Tn,S

∗
T ) ≤ D2

(UB ,T )} where the cutoff D2
(UB,T ) is the 100qBth sample
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quantile of the D2
i = (T ∗

i −Tn)T [S∗
T ]−1(T ∗

i −Tn). c) The hybrid large sample
100(1− δ)% confidence region: {w : (w − Tn)T [S∗

T ]−1(w − Tn) ≤ D2
(UB)} =

{w : D2
w(Tn,S

∗
T ) ≤ D2

(UB)}.
If g = 1, confidence intervals can be computed without S∗

T or D2 for a),
b), and c).

For some data sets, S∗
T may be singular due to one or more columns of

zeroes in the bootstrap sample for β1, ..., βp. The variables corresponding to
these columns are likely not needed in the model given that the other predic-
tors are in the model if n and B are large enough. Let βO = (βi1 , ..., βig)

T ,

and consider testing H0 : AβO = 0. If Aβ̂
∗
O,i = 0 for greater than Bδ of the

bootstrap samples i = 1, ..., B, then fail to reject H0. (If S∗
T is nonsingular,

the 100(1− δ)% prediction region method confidence region contains 0.)

7) Theorem 4.7: Geometric Argument. Suppose
√
n(Tn − θ)

D→ u
withE(u) = 0 and Cov(u) = Σu. Assume T1, ..., TB are iid with nonsingular
covariance matrix ΣTn . Then the large sample 100(1− δ)% prediction region
Rp = {w : D2

w(T ,ST ) ≤ D2
(UB)} centered at T contains a future value of

the statistic Tf with probability 1− δB → 1− δ as B → ∞. Hence the region
Rc = {w : D2

w(Tn,ST ) ≤ D2
(UB)} is a large sample 100(1 − δ)% confidence

region for θ.
8) Applying the nonparametric prediction region (4.24) to the iid data

T1, ..., TB results in the 100(1−δ)% confidence region {w : (w−Tn)T S−1
T (w−

Tn) ≤ D2
(UB)(Tn,ST )} where D2

(UB)(Tn,ST ) is computed from the (Ti −
Tn)T S−1

T (Ti − Tn) provided the ST = STn are “not too ill conditioned.”
For OLS variable selection, assume there are two or more component clouds.
The bootstrap component data clouds have the same asymptotic covariance
matrix as the iid component data clouds, which are centered at θ. The jth
bootstrap component data cloud is centered at E(T ∗

ij) and often E(T ∗
jn) =

Tjn. Confidence region (4.32) is the prediction region (4.24) applied to the
bootstrap sample, and (4.32) is slightly larger in volume than (4.24) applied
to the iid sample, asymptotically. The hybrid region (4.34) shifts (4.32) to be
centered at Tn. Shifting the component clouds slightly and computing (4.24)
does not change the axes of the prediction region (4.24) much compared
to not shifting the component clouds. Hence by the geometric argument, we
expect (4.34) to have coverage at least as high as the nominal, asymptotically,
provided the S∗

T are “not too ill conditioned.” The Bickel and Ren confidence

region (4.33) tends to have higher coverage and volume than (4.34). Since T
∗

tends to be closer to θ than Tn, (4.32) tends to have good coverage.
9) Suppose m independent large sample 100(1 − δ)% prediction regions

are made where x1, ...,xn,xf are iid from the same distribution for each of
the m runs. Let Y count the number of times xf is in the prediction region.
Then Y ∼ binomial (m, 1− δn) where 1− δn is the true coverage. Simulation
can be used to see if the true or actual coverage 1−δn is close to the nominal
coverage 1− δ. A prediction region with 1− δn < 1− δ is liberal and a region
with 1− δn > 1− δ is conservative. It is better to be conservative by 3% than
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liberal by 3%. Parametric prediction regions tend to have large undercoverage
and so are too liberal. Similar definitions are used for confidence regions.

10) For the bootstrap, perform variable selection on Y ∗
i and X (or X∗

for the nonparametric bootstrap), fit the model that minimizes the criterion,
and add 0s corresponding to the omitted variables, resulting in estimators

β̂
∗
1, ..., β̂

∗
B where β̂

∗
i = β̂

∗
Imin,0,i.

11) Let Z1, ..., Zn be random variables, let Z(1), ..., Z(n) be the order
statistics, and let c be a positive integer. Compute Z(c) − Z(1), Z(c+1) −
Z(2), ..., Z(n) − Z(n−c+1). Let shorth(c) = [Z(d),Z(d+c−1)] correspond to the
interval with the shortest length.

The large sample 100(1−δ)% shorth(c) CI uses the interval [T ∗
(1), T

∗
(c)], [T

∗
(2),

T ∗
(c+1)], ..., [T

∗
(B−c+1), T

∗
(B)] of shortest length. Here c = min(B, dB[1 − δ +

1.12
√
δ/B ] e). The shorth CI is computed by applying the shorth PI to the

bootstrap sample.

4.9 Complements

This chapter followed Olive (2017b, ch. 5) and Pelawa Watagoda and Olive
(2019ab) closely. Also see Olive (2013a, 2018), Pelawa Watagoda (2017), and
Rathnayake and Olive (2019). For MLR, Olive (2017a: p. 123, 2017b: p. 176)

showed that β̂Imin,0 is a consistent estimator. Olive (2014: p. 283, 2017ab,
2018) recommended using the shorth(c) estimator for the percentile method.
Olive (2017a: p. 128, 2017b: p. 181, 2018) showed that the prediction region

method can simulate well for the p× 1 vector β̂Imin,0. Hastie et al. (2009, p.
57) noted that variable selection is a shrinkage estimator: the coefficients are
shrunk to 0 for the omitted variables.

Good references for the bootstrap include Efron (1979, 1982), Efron and
Hastie (2016, ch. 10–11), and Efron and Tibshirani (1993). Also see Chen
(2016) and Hesterberg (2014). One of the sufficient conditions for the boot-
strap confidence region is that T has a well behaved Hadamard derivative.
Fréchet differentiability implies Hadamard differentiability, and many statis-
tics are shown to be Hadamard differentiable in Bickel and Ren (2001), Clarke
(1986, 2000), Fernholtz (1983), Gill (1989), Ren (1991), and Ren and Sen
(1995). Bickel and Ren (2001) showed that their method can work when
Hadamard differentiability fails.

There is a massive literature on variable selection and a fairly large litera-
ture for inference after variable selection. See, for example, Leeb and Pötscher
(2005, 2006, 2008), Leeb et al. (2015), Tibshirani et al. (2016), and Tibshi-
rani et al. (2018). Knight and Fu (2000) have some results on the residual
bootstrap that uses residuals from one estimator, such as full model OLS,
but fit another estimator, such as lasso.
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Inference techniques for the variable selection model, other than data split-
ting, have not had much success. For multiple linear regression, the methods
are often inferior to data splitting, often assume normality, or are asymptot-
ically equivalent to using the full model, or find a quantity to test that is not
Aβ. See Ewald and Schneider (2018). Berk et al. (2013) assumes normality,
needs p no more than about 30, assumes σ2 can be estimated independently
of the data, and Leeb et al. (2015) say the method does not work. The

bootstrap confidence region (4.32) is centered at T
∗ ≈ ∑

j ρjnTjn, which is
closely related to a model averaging estimator. Wang and Zhou (2013) show
that the Hjort and Claeskens (2003) confidence intervals based on frequentist
model averaging are asymptotically equivalent to those obtained from the
full model. See Buckland et al. (1997) and Schomaker and Heumann (2014)
for standard errors when using the bootstrap or model averaging for linear
model confidence intervals.

Efron (2014) used the confidence interval T
∗ ± z1−δSE(T

∗
) assuming T

∗

is asymptotically normal and using delta method techniques, which require
nonsingular covariance matrices. There is not yet rigorous theory for this
method. Section 4.2 proved that T

∗
is asymptotically normal: under regular-

ity conditions: if
√
n(Tn − θ)

D→ Ng(0,ΣA) and
√
n(T ∗

i − Tn)
D→ Ng(0,ΣA),

then under regularity conditions
√
n(T

∗ − θ)
D→ Ng(0,ΣA). If g = 1,

then the prediction region method large sample 100(1 − δ)% CI for θ has

P (θ ∈ [T
∗ − a(UB), T

∗
+ a(UB)]) → 1 − δ as n → ∞. If the Frey CI also has

coverage converging to 1−δ, than the two methods have the same asymptotic
length (scaled by multiplying by

√
n), since otherwise the shorter interval will

have lower asymptotic coverage.
For the mixture distribution with two or more component groups,

√
n(Tn−

θ)
D→ v by Theorem 4.4 b). If

√
n(T ∗

i − cn)
D→ u then cn must be a value

such as cn = T
∗
, cn =

∑
j ρjnTjn, or cn =

∑
j πjTjn. Next we will examine

T
∗
. If S ⊆ Ij , then

√
n(β̂Ij,0 − β)

D→ Np(0,V j,0), and for the parametric

and nonparametric bootstrap,
√
n(β̂

∗
Ij,0 − β̂Ij,0)

D→ Np(0,V j,0). Let Tn =

Aβ̂Imin,0 and Tjn = Aβ̂Ij,0 = ADj0Y using notation from Section 4.6. Let

θ = Aβ. Hence from Section 4.5.3,
√
n(T

∗
j − Tjn)

P→ 0. Assume ρ̂in
P→ ρi as

n→ ∞. Then
√
n(T

∗ − θ) =

∑

i

ρ̂in

√
n(T

∗
i − θ) =

∑

j

ρ̂jn

√
n(T

∗
j − θ) +

∑

k

ρ̂kn

√
n(T

∗
k − θ)

= dn + an where an
P→ 0 since ρk = 0. Now

dn =
∑

j

ρ̂jn

√
n(T

∗
j − Tjn + Tjn − θ) =

∑

j

ρ̂jn

√
n(Tjn − θ) + cn
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where cn = oP (1) since
√
n(T

∗
j − Tjn) = oP (1). Hence under regularity con-

ditions, if
√
n(T

∗ − θ)
D→ w then

∑
j ρj

√
n(Tjn − θ)

D→ w.
To examine the last term and w, let the n×1 vector Y have characteristic

function φY , E(Y ) = Xβ, and Cov(Y ) = σ2I. Let Z = (Y T , ...,Y T )T be a

Jn× 1 vector with J copies of Y stacked into a vector. Let t = (tT
1 , ..., t

T
J )T .

Then Z has characteristic function φZ (t) = φY (
∑J

j=1 ti) = φY (s). Now

assume Y ∼ Nn(Xβ, σ2I). Then tT Z = sT Y ∼ N(sT Xβ, σ2sT s). Hence
Z has a multivariate normal distribution by Definition 1.23 with E(Z) =
(XβT , ...,XβT )T , and Cov(Z) a block matrix with J × J blocks each equal
to σ2I . Then

∑

j

ρjTjn =
∑

j

ρjADj0Y = BY ∼ Ng(θ, σ2BBT ) =

Ng(θ, σ2
∑

j

∑

k

ρjρkADj0D
T
k0A)

since E(Tjn) = E(Aβ̂Ij,0) = Aβ = θ if S ⊆ Ij . Since (TT
1n, ..., T

T
jn)T =

diag(AD10, ...,ADJ0)Z, then (TT
1n, ..., T

T
jn)

T is multivariate normal and

∑

j

ρjTjn ∼ Ng[θ,
∑

j

∑

k

πjπkCov(Tjn, Tkn)].

Now assume nDj0D
T
k0

P→ W jk as n → ∞. Then

∑

j

ρj

√
n(Tjn − θ)

D→ w ∼ Ng(0, σ
2
∑

j

∑

k

ρjρkAW jkA).

We conjecture that this result may hold under milder conditions than
Y ∼ Nn(Xβ, σ2I), but even the above results are not yet rigorous. If
√
n(Tjn − θ)

D→ wj ∼ Ng(0,Σj), then a possibly poor approximation is

T
∗ ≈∑j ρjTjn ≈ Ng[θ,

∑
j

∑
k ρjρkCov(Tjn, Tkn)], and estimating∑

j

∑
k ρjρkCov(Tjn, Tkn) with delta method techniques may not be possible.

The double bootstrap technique may be useful. See Hall (1986) and Chang

and Hall (2015) for references. The double bootstrap for T
∗

= T
∗
B says that

Tn = T
∗

is a statistic that can be bootstrapped. Let Bd ≥ 50gmax where
1 ≤ gmax ≤ p is the largest dimension of θ to be tested with the double
bootstrap. Draw a bootstrap sample of size B and compute T

∗
= T ∗

1 . Repeat
for a total of Bd times. Apply the confidence region (4.32), (4.33), or (4.34) to

the double bootstrap sample T ∗
1 , ..., T

∗
Bd

. If D(UBd
) ≈ D(UBd

,T ) ≈
√
χ2

g,1−δ,

then T
∗

may be approximately multivariate normal. The CI (4.32) applied
to the double bootstrap sample could be regarded as a modified Frey CI
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without delta method techniques. Of course the double bootstrap tends to
be too computationally expensive to simulate.

We can get a prediction region by randomly dividing the data into two
half sets H and V where H has nH = dn/2e of the cases and V has the
remaining m = nV = n − nH cases. Compute (xH ,SH) from the cases in
H . Then compute the distances D2

i = (xi − xH)T S−1
H (xi − xH) for the m

vectors xi in V . Then a large sample 100(1− δ)% prediction region for xF is
{x : D2

x(xH ,SH) ≤ D2
(km)} where km = dm(1 − δ)e. This prediction region

may give better coverage than the nonparametric prediction region (4.24) if
5p ≤ n ≤ 20p.

The iid sample T1, ..., TB has sample mean T . Let Tin = Tijn if Tjn is

chosen Djn times where the random variables Djn/B
P→ πjn. The Djn follow

a multinomial distribution. Then the iid sample can be written as

T1,1, ..., TD1n,1, ..., T1,J, ..., TDJn,J ,

where the Tij are not iid. Denote T1j, ..., TDjn,j as the jth component of the

iid sample with sample mean T j and sample covariance matrix ST,j. Thus

T =
1

B

B∑

i=1

Tijn =
∑

j

Djn

B

1

Djn

Djn∑

i=1

Tij =
∑

j

π̂jnT j.

Hence T is a random linear combination of the T j . Conditionally on the Djn,
the Tij are independent, and T is a linear combination of the T j . Note that
Cov(T ) = Cov(Tn)/B.

Software. The simulations were done in R. See R Core Team (2016). We
used several R functions including forward selection as computed with the
regsubsets function from the leaps library. Several linmodpack functions
were used. The function predrgn makes the nonparametric prediction re-
gion and determines whether xf is in the region. The function predreg also
makes the nonparametric prediction region, and determines if 0 is in the re-
gion. For multiple linear regression, the function regboot does the residual
bootstrap for multiple linear regression, regbootsim simulates the residual
bootstrap for regression, and the function rowboot does the empirical non-
parametric bootstrap. The function vsbootsim simulates the bootstrap for
all subsets variable selection, so needs p small, while vsbootsim2 simulates
the prediction region method for forward selection. The functions fselboot
and vselboot bootstrap the forward selection and all subsets variable selec-
tion estimators that minimize Cp. See Examples 4.7 and 4.8. The shorth3
function computes the shorth(c) intervals with the Frey (2013) correction
used when g = 1. Table 4.2 was made using regbootsim3 for the OLS full
model and vsbootsim4 for forward selection. The functions bicboot and
bicbootsim are useful if BIC is used instead of Cp. For forward selection
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with Cp, the function vscisim was used to make Table 4.3, and can be used
to compare the shorth, prediction region method, and Bickel and Ren CIs for
βi.

4.10 Problems

4.1. Consider the Cushny and Peebles data set (see Staudte and Sheather
1990, p. 97) listed below. Find shorth(7). Show work.

0.0 0.8 1.0 1.2 1.3 1.3 1.4 1.8 2.4 4.6

4.2. Find shorth(5) for the following data set. Show work.

6 76 90 90 94 94 95 97 97 1008

4.3. Find shorth(5) for the following data set. Show work.

66 76 90 90 94 94 95 95 97 98

4.4. Suppose you are estimating the mean θ of losses with the maxi-
mum likelihood estimator (MLE)X assuming an exponential (θ) distribution.
Compute the sample mean of the fourth bootstrap sample.

actual losses 1, 2, 5, 10, 50: X = 13.6
bootstrap samples:
2, 10, 1, 2, 2: X = 3.4
50, 10, 50, 2, 2: X = 22.8
10, 50, 2, 1, 1: X = 12.8
5, 2, 5, 1, 50: X =?

4.5. The data below are a sorted residuals from a least squares regression
where n = 100 and p = 4. Find shorth(97) of the residuals.

number 1 2 3 4 ... 97 98 99 100

residual -2.39 -2.34 -2.03 -1.77 ... 1.76 1.81 1.83 2.16

4.6. To find the sample median of a list of n numbers where n is odd, order
the numbers from smallest to largest and the median is the middle ordered
number. The sample median estimates the population median. Suppose the
sample is {14, 3, 5, 12, 20, 10, 9}. Find the sample median for each of the three
bootstrap samples listed below.
Sample 1: 9, 10, 9, 12, 5, 14, 3
Sample 2: 3, 9, 20, 10, 9, 5, 14
Sample 3: 14, 12, 10, 20, 3, 3, 5

4.7. Suppose you are estimating the mean µ of losses with T = X.
actual losses 1, 2, 5, 10, 50: X = 13.6,
a) Compute T ∗

1 , ..., T
∗
4 , where T ∗

i is the sample mean of the ith bootstrap
sample. bootstrap samples:
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2, 10, 1, 2, 2:

50, 10, 50, 2, 2:

10, 50, 2, 1, 1:

5, 2, 5, 1, 50:

b) Now compute the bagging estimator which is the sample mean of the

T ∗
i : the bagging estimator T

∗
=

1

B

B∑

i=1

T ∗
i where B = 4 is the number of

bootstrap samples.

4.8. Consider the output for Example 4.7 for the minimum Cp forward
selection model.

a) What is β̂Imin
?

b) What is β̂Imin,0?
c) The large sample 95% shorth CI for H is [0,0.016]. Is H needed is the

minimum Cp model given that the other predictors are in the model?
d) The large sample 95% shorth CI for log(S) is [0.324,0.913] for all subsets.

Is log(S) needed is the minimum Cp model given that the other predictors
are in the model?

e) Suppose x1 = 1, x4 = H = 130, and x5 = log(S) = 5.075. Find

Ŷ = (x1 x4 x5)β̂Imin
. Note that Y = log(M).

4.9Q. Suppose Y ∗ = Xβ̂ + rW where where E(rW ) = 0 and Cov(rW ) =

Cov(Y ∗) = MSE In. Then β̂
∗

= (XT X)−1XT Y ∗. Recall that X is an
n× p constant matrix. Simplify quantities when possible.

a) What is E(β̂
∗
)?

b) What is Cov(β̂
∗
)?

c) Recall that Xβ̂ = PY . What is E(β̂
∗
I) = E[(XT

I XI)
−1XT

I Y ∗]?

d) What is Cov(β̂
∗
I)?

4.10Q. Suppose Y ∗ ∼ Nn(Xβ̂, σ2
nIn). Hence Y ∗

i = xT
i β̂ + εPi where

E(εPi ) = 0 and V (εPi ) = σ2
n. Hence AY ∗ ∼ Ng(AXβ̂, σ2

nAAT ) if A is a
g × n constant matrix. Recall that X is an n × p constant matrix. Simplify
quantities when possible.

a) What is the distribution of β̂
∗

= (XT X)−1XT Y ∗?

b) Using a), what is E(β̂
∗
)?

c) Recall that Xβ̂ = PY . What is the distribution of β̂
∗
I = (XT

I XI)
−1XT

I Y ∗

if β̂
∗
I is k × 1?

4.11Q. Suppose Y ∗ = Xβ̂ + rW where E(rW ) = 0 and Cov(rW ) =

Cov(Y ∗) = diag(r2i ) = diag(r21, ..., r
2
n). Then β̂

∗
= (XT X)−1XT Y ∗ is the

least squares estimator from regressing Y ∗ on X, an n× p constant matrix.
This model is used for the wild bootstrap. Simplify quantities when possible.
(Can simplify a) and c), but can’t simplify b) and d) much.)
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a) What is E(β̂
∗
)?

b) What is Cov(β̂
∗
)?

c) Recall that Xβ̂ = PY . What is E(β̂
∗
I) = E[(XT

I XI)
−1XT

I Y ∗]?

d) What is Cov(β̂
∗
I)?

4.12.

4.13.

4.14.

4.15.

4.16.

4.17.

4.18.

4.19.

4.20.

R Problems
Use the command source(“G:/linmodpack.txt”) to download the

functions and the command source(“G:/linmoddata.txt”) to download the
data. See Preface or Section 11.1. Typing the name of the linmodpack
function, e.g. regbootsim2, will display the code for the function. Use the
args command, e.g. args(regbootsim2), to display the needed arguments for
the function. For the following problem, the R command can be copied and
pasted from (http://parker.ad.siu.edu/Olive/linmodrhw.txt) into R.

4.21. a) Type the R command predsim() and paste the output into
Word.

This program computes xi ∼ N4(0, diag(1, 2, 3, 4)) for i = 1, ..., 100 and
xf = x101. One hundred such data sets are made, and ncvr, scvr, and mcvr
count the number of times xf was in the nonparametric, semiparametric,
and parametric MVN 90% prediction regions. The volumes of the prediction
regions are computed and voln, vols, and volm are the average ratio of the
volume of the ith prediction region over that of the semiparametric region.
Hence vols is always equal to 1. For multivariate normal data, these ratios
should converge to 1 as n → ∞.

b) Were the three coverages near 90%?

4.22. Consider the multiple linear regression model Yi = β1 + β2xi,2 +
β3xi,3 + β4xi,4 + ei where β = (1, 1, 0, 0)T . The function regbootsim2

bootstraps the regression model, finds bootstrap confidence intervals for βi

and a bootstrap confidence region for (β3 , β4)
T corresponding to the test

H0 : β3 = β4 = 0 versus HA: not H0. See the R code near Table 4.3. The
lengths of the CIs along with the proportion of times the CI for βi contained
βi are given. The fifth interval gives the length of the interval [0, D(c)] where
H0 is rejected if D0 > D(c) and the fifth “coverage” is the proportion of times
the test fails to reject H0. Since nominal 95% CIs were used and the nominal
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level of the test is 0.05 when H0 is true, we want the coverages near 0.95.
The CI lengths for the first 4 intervals should be near 0.392. The residual
bootstrap is used.

Copy and paste the commands for this problem into R, and include the
output in Word.



Chapter 5

Statistical Learning Alternatives to OLS

This chapter considers several alternatives to OLS for the multiple linear
regression model. Large sample theory is give for p fixed, but the prediction
intervals can have p > n.

5.1 The MLR Model

From Definition 1.9, the multiple linear regression (MLR) model is

Yi = β1 + xi,2β2 + · · ·+ xi,pβp + ei = xT
i β + ei (5.1)

for i = 1, ..., n.This model is also called the full model. Here n is the sample
size and the random variable ei is the ith error. Assume that the ei are iid
with variance V (ei) = σ2. In matrix notation, these n equations become
Y = Xβ + e where Y is an n × 1 vector of dependent variables, X is an
n× p matrix of predictors, β is a p× 1 vector of unknown coefficients, and e
is an n× 1 vector of unknown errors.

There are many methods for estimating β, including (ordinary) least
squares (OLS) for the full model, forward selection with OLS, elastic net,
principal components regression (PCR), partial least squares (PLS), lasso,
lasso variable selection, and ridge regression (RR). For the last six methods,
it is convenient to use centered or scaled data. Suppose U has observed val-
ues U1, ..., Un. For example, if Ui = Yi then U corresponds to the response
variable Y . The observed values of a random variable V are centered if their
sample mean is 0. The centered values of U are Vi = Ui − U for i = 1, ..., n.
Let g be an integer near 0. If the sample variance of the Ui is

σ̂2
g =

1

n− g

n∑

i=1

(Ui − U)2,

211
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then the sample standard deviation of Ui is σ̂g. If the values of Ui are not all
the same, then σ̂g > 0, and the standardized values of the Ui are

Wi =
Ui − U

σ̂g
.

Typically g = 1 or g = 0 are used: g = 1 gives an unbiased estimator
of σ2 while g = 0 gives the method of moments estimator. Note that the
standardized values are centered, W = 0, and the sample variance of the
standardized values

1

n − g

n∑

i=1

W 2
i = 1. (5.2)

Remark 5.1. Let the nontrivial predictors uT
i = (xi,2, ..., xi,p) = (ui,1, ...,

ui,p−1). Then xi = (1,uT
i )T . Let the n × (p − 1) matrix of standardized

nontrivial predictors W g = (Wij) when the predictors are standardized using
σ̂g. Thus,

∑n
i=1Wij = 0 and

∑n
i=1W

2
ij = n− g for j = 1, ..., p− 1. Hence

Wij =
xi,j+1 − xj+1

σ̂j+1
where σ̂2

j+1 =
1

n − g

n∑

i=1

(xi,j+1 − xj+1)
2

is σ̂g for the (j + 1)th variable xj+1. Let wT
i = (wi,1, ..., wi,p−1) be the

standardized vector of nontrivial predictors for the ith case. Since the stan-
dardized data are also centered, w = 0. Then the sample covariance matrix
of the wi is the sample correlation matrix of the ui:

ρ̂u = Ru = (rij) =
W T

g W g

n − g

where rij is the sample correlation of ui = xi+1 and uj = xj+1. Thus the
sample correlation matrix Ru does not depend on g. Let Z = Y −Y where
Y = Y 1. Since the R software tends to use g = 0, let W = W 0. Note that
n × (p − 1) matrix W does not include a vector 1 of ones. Then regression
through the origin is used for the model

Z = Wη + e (5.3)

where Z = (Z1, ..., Zn)T and η = (η1, ..., ηp−1)
T . The vector of fitted values

Ŷ = Y + Ẑ.

Remark 5.2. i) Interest is in model (5.1): estimate Ŷf and β̂. For many
regression estimators, a method is needed so that everyone who uses the same
units of measurements for the predictors and Y gets the same (Ŷ , β̂). Also,
see Remark 7.7. Equation (5.3) is a commonly used method for achieving this
goal. Suppose g = 0. The method of moments estimator of the variance σ2

w

is
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σ̂2
g=0 = S2

M =
1

n

n∑

i=1

(wi −w)2.

When data xi are standardized to have w = 0 and S2
M = 1, the standardized

data wi has no units. ii) Hence the estimators Ẑ and η̂ do not depend on
the units of measurement of the xi if standardized data and Equation (5.3)
are used. Linear combinations of the wi are linear combinations of the ui,
which are linear combinations of the xi. (Note that γT u = (0 γT ) x.) Thus

the estimators Ŷ and β̂ are obtained using Ẑ, η̂, and Y . The linear trans-
formation to obtain (Ŷ , β̂) from (Ẑ, η̂) is unique for a given set of units of
measurements for the xi and Y . Hence everyone using the same units of mea-
surements gets the same (Ŷ , β̂). iii) Also, since W j = 0 and S2

M,j = 1, the
standardized predictor variables have similar spread, and the magnitude of
η̂i is a measure of the importance of the predictor variable Wj for predicting
Y .

Remark 5.3. Let σ̂j be the sample standard deviation of variable xj

(often with g = 0) for j = 2, ...., p. Let Ŷi = β̂1 +xi,2β̂2 + · · ·+xi,pβ̂p = xT
i β̂.

If standardized nontrivial predictors are used, then

Ŷi = γ̂ + wi,1η̂1 + · · ·+wi,p−1η̂p−1 = γ̂ +
xi,2 − x2

σ̂2
η̂1 + · · ·+ xi,p − xp

σ̂p
η̂p−1

= γ̂ + wT
i η̂ = γ̂ + Ẑi (5.4)

where
η̂j = σ̂j+1β̂j+1 (5.5)

for j = 1, ..., p− 1. Often γ̂ = Y so that Ŷi = Y if xi,j = xj for j = 2, ..., p.

Then Ŷ = Y + Ẑ where Y = Y 1. Note that

γ̂ = β̂1 +
x2

σ̂2
η̂1 + · · ·+ xp

σ̂p
η̂p−1.

Notation. The symbol A ≡ B = f(c) means that A and B are equivalent
and equal, and that f(c) is the formula used to compute A and B.

Most regression methods attempt to find an estimate β̂ of β which
minimizes some criterion function Q(b) of the residuals. As in Definition
1.13, given an estimate b of β, the corresponding vector of fitted values is
Ŷ ≡ Ŷ (b) = Xb, and the vector of residuals is r ≡ r(b) = Y − Ŷ (b). See
Definition 1.14 for the OLS model for Y = Xβ + e. The following model is
useful for the centered response and standardized nontrivial predictors, or if
Z = Y , W = XI , and η = βI corresponds to a submodel I.
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Definition 5.1. If Z = Wη +e, where the n× q matrix W has full rank
q = p− 1, then the OLS estimator

η̂OLS = (W T W )−1W T Z

minimizes the OLS criterion QOLS(η) = r(η)T r(η) over all vectors η ∈
R

p−1. The vector of predicted or fitted values ẐOLS = Wη̂OLS = HZ where
H = W (W T W )−1W T . The vector of residuals r = r(Z,W ) = Z − Ẑ =
(I − H)Z.

Assume that the sample correlation matrix

Ru =
W T W

n

P→ V −1. (5.6)

Note that V −1 = ρu, the population correlation matrix of the nontrivial
predictors ui, if the ui are a random sample from a population. Let H =

W (W T W )−1W T = (hij), and assume that maxi=1,...,n hii
P→ 0 as n → ∞.

Then by Theorem 2.26 (the LS CLT), the OLS estimator satisfies

√
n(η̂OLS − η)

D→ Np−1(0, σ
2V ). (5.7)

Remark 5.4: Variable selection is the search for a subset of predictor
variables that can be deleted without important loss of information if n/p is
large (and the search for a useful subset of predictors if n/p is not large). Refer
to Chapter 4 for variable selection and Equation (4.1) where xT β = xT

SβS +
xT

EβE = xT
S βS . Let p be the number of predictors in the full model, including

a constant. Let q = p − 1 be the number of nontrivial predictors in the full
model. Let a = aI be the number of predictors in the submodel I, including
a constant. Let k = kI = aI − 1 be the number of nontrivial predictors
in the submodel. For submodel I, think of I as indexing the predictors in
the model, including the constant. Let A index the nontrivial predictors in
the model. Hence I adds the constant (trivial predictor) to the collection
of nontrivial predictors in A. In Equation (4.1), there is a “true submodel”
Y = XSβS + e where all of the elements of βS are nonzero but all of the
elements of β that are not elements of βS are zero. Then a = aS is the
number of predictors in that submodel, including a constant, and k = kS is
the number of active predictors = number of nonnoise variables = number
of nontrivial predictors in the true model S = IS . Then there are p− a noise
variables (xi that have coefficient βi = 0) in the full model. The true model
is generally only known in simulations. For Equation (4.1), we also assume
that if xT β = xT

I βI , then S ⊆ I. Hence S is the unique smallest subset of
predictors such that xT β = xT

SβS . Two alternative variable selection models
were given by Remark 4.24.
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Model selection generates M models. Then a hopefully good model is
selected from these M models. Variable selection is a special case of model
selection. Many methods for variable and model selection have been suggested
for the MLR model. We will consider several R functions including i) forward
selection computed with the regsubsets function from the leaps library,
ii) principal components regression (PCR) with the pcr function from the
pls library, iii) partial least squares (PLS) with the plsr function from the
pls library, iv) ridge regression with the cv.glmnet or glmnet function
from the glmnet library, v) lasso with the cv.glmnet or glmnet function
from the glmnet library, and vi) relaxed lasso which is OLS applied to
the lasso active set (nontrivial predictors with nonzero coefficients) and a
constant. See Sections 5.2–5.7 and James et al. (2013, ch. 6).

These six methods produce M models and use a criterion to select the
final model (e.g. Cp or 10-fold cross validation (CV)). See Section 5.10. The
number of models M depends on the method. Often one of the models is the
full model (5.1) that uses all p − 1 nontrivial predictors. The full model is
(approximately) fit with (ordinary) least squares. For one of the M models,
some of the methods use η̂ = 0 and fit the model Yi = β1 + ei with Ŷi ≡ Y
that uses none of the nontrivial predictors. Forward selection, PCR, and PLS
use variables v1 = 1 (the constant or trivial predictor) and vj = γT

j x that are
linear combinations of the predictors for j = 2, ..., p. Model Ii uses variables
v1, v2, ..., vi for i = 1, ...,M where M ≤ p and often M ≤ min(p, n/10). Then
M models Ii are used. (For forward selection and PCR, OLS is used to regress
Y (or Z) on v1, ..., vi.) Then a criterion chooses the final submodel Id from
candidates I1, ..., IM.

Remark 5.5. Prediction interval (4.14) used a number d that was often
the number of predictors in the selected model. For forward selection, PCR,
PLS, lasso, and relaxed lasso, let d be the number of predictors vj = γT

j x in
the final model (with nonzero coefficients), including a constant v1. For for-
ward selection, lasso, and relaxed lasso, vj corresponds to a single nontrivial
predictor, say vj = x∗j = xkj . Another method for obtaining d is to let d = j
if j is the degrees of freedom of the selected model if that model was chosen
in advance without model or variable selection. Hence d = j is not the model
degrees of freedom if model selection was used.

Overfitting or “fitting noise” occurs when there is not enough data to
estimate the p × 1 vector β well with the estimation method, such as OLS.
The OLS model is overfitting if n < 5p. When n > p, X is not invertible,
but if n = p, then Ŷ = HY = X(XT X)−1XT Y = InY = Y regardless of

how bad the predictors are. If n < p, then the OLS program fails or Ŷ = Y :
the fitted regression plane interpolates the training data response variables
Y1, ..., Yn. The following rule of thumb is useful for many regression methods.
Note that d = p for the full OLS model.
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Rule of thumb 5.1. We want n ≥ 10d to avoid overfitting. Occasionally
n as low as 5d is used, but models with n < 5d are overfitting.

Remark 5.6. Use Zn ∼ ANr (µn,Σn) to indicate that a normal approx-
imation is used: Zn ≈ Nr(µn,Σn). Let a be a constant, let A be a k × r
constant matrix (often with full rank k ≤ r), and let c be a k × 1 constant

vector. If
√
n(θ̂n − θ)

D→ Nr(0,V ), then aZn = aIrZn with A = aIr,

aZn ∼ ANr

(
aµn, a

2Σn

)
, and AZn + c ∼ ANk

(
Aµn + c,AΣnAT

)
,

θ̂n ∼ ANr

(
θ,

V

n

)
, and Aθ̂n + c ∼ ANk

(
Aθ + c,

AV AT

n

)
.

Theorem 2.26 gives the large sample theory for the OLS full model. Then
β̂ ≈ Np(β, σ

2(XT X)−1)) or β̂ ∼ ANp(β,MSE(XT X)−1)).

When minimizing or maximizing a real valued function Q(η) of the k × 1
vector η, the solution η̂ is found by setting the gradient of Q(η) equal to
0. The following definition and lemma follow Graybill (1983, pp. 351-352)
closely. Maximum likelihood estimators are examples of estimating equations.
There is a vector of parameters η, and the gradient of the log likelihood
function logL(η) is set to zero. The solution η̂ is the MLE, an estimator
of the parameter vector η, but in the log likelihood, η is a dummy variable
vector, not the fixed unknown parameter vector.

Definition 5.2. Let Q(η) be a real valued function of the k× 1 vector η.
The gradient of Q(η) is the k × 1 vector

5Q = 5Q(η) =
∂Q

∂η
=
∂Q(η)

∂η
=




∂
∂η1

Q(η)
∂

∂η2
Q(η)
...

∂
∂ηk

Q(η)



.

Suppose there is a model with unknown parameter vector η. A set of esti-
mating equations f(η) is used to maximize or minimize Q(η) where η is a
dummy variable vector.

Often f(η) = 5Q, and we solve f(η) = 5Q set
= 0 for the solution η̂, and

f : R
k → R

k. Note that η̂ is an estimator of the unknown parameter vector
η in the model, but η is a dummy variable in Q(η). Hence we could use Q(b)
instead of Q(η), but the solution of the estimating equations would still be

b̂ = η̂.
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As a mnemonic (memory aid) for the following theorem, note that the

derivative
d

dx
ax =

d

dx
xa = a and

d

dx
ax2 =

d

dx
xax = 2ax.

Theorem 5.1. a) If Q(η) = aT η = ηT a for some k × 1 constant vector
a, then 5Q = a.

b) If Q(η) = ηT Aη for some k × k constant matrix A, then 5Q = 2Aη.

c) If Q(η) =
∑k

i=1 |ηi| = ‖η‖1, then 5Q = s = sη where si = sign(ηi)
where sign(ηi) = 1 if ηi > 0 and sign(ηi) = −1 if ηi < 0. This gradient is only
defined for η where none of the k values of ηi are equal to 0.

Example 5.1. If Z = Wη+e, then the OLS estimator minimizesQ(η) =
‖Z − Wη‖2

2 = (Z − Wη)T (Z − Wη) = ZT Z − 2ZT Wη + ηT (W T W )η.
Using Theorem 5.1 with aT = ZT W and A = W T W shows that 5Q =
−2W T Z+2(W T W )η. Let 5Q(η̂) denote the gradient evaluated at η̂. Then
the OLS estimator satisfies the normal equations (W T W )η̂ = W T Z.

Example 5.2. The Hebbler (1847) data was collected from n = 26 dis-
tricts in Prussia in 1843. We will study the relationship between Y = the
number of women married to civilians in the district with the predictors x1

= constant, x2 = pop = the population of the district in 1843, x3 = mmen
= the number of married civilian men in the district, x4 = mmilmen = the
number of married men in the military in the district, and x5 = milwmn =
the number of women married to husbands in the military in the district.
Sometimes the person conducting the survey would not count a spouse if
the spouse was not at home. Hence Y is highly correlated but not equal to
x3. Similarly, x4 and x5 are highly correlated but not equal. We expect that
Y = x3 +e is a good model, but n/p = 5.2 is small. See the following output.

ls.print(out)

Residual Standard Error=392.8709

R-Square=0.9999, p-value=0

F-statistic (df=4, 21)=67863.03

Estimate Std.Err t-value Pr(>|t|)

Intercept 242.3910 263.7263 0.9191 0.3685

pop 0.0004 0.0031 0.1130 0.9111

mmen 0.9995 0.0173 57.6490 0.0000

mmilmen -0.2328 2.6928 -0.0864 0.9319

milwmn 0.1531 2.8231 0.0542 0.9572

res<-out$res

yhat<-Y-res #d = 5 predictors used including x_1

AERplot2(yhat,Y,res=res,d=5)

#response plot with 90% pointwise PIs

$respi #90% PI for a future residual

[1] -950.4811 1445.2584 #90% PI length = 2395.74
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5.2 Forward Selection

Variable selection methods such as forward selection were covered in Chapter
4 where model Ij uses j predictors x∗1, ..., x

∗
j including the constant x∗1 ≡ 1. If

n/p is not large, forward selection can be done as in Chapter 4 except instead
of forming p submodels I1, ..., Ip, form the sequence ofM submodels I1, ..., IM
where M = min(dn/Je, p) for some positive integer J such as J = 5, 10, or 20.
Here dxe is the smallest integer ≥ x, e.g., d7.7e = 8. Then for each submodel
Ij, OLS is used to regress Y on 1, x∗2, ..., x

∗
j. Then a criterion chooses which

model Id from candidates I1, ..., IM is to be used as the final submodel.

Remark 5.7. Suppose n/J is an integer. If p ≤ n/J , then forward selec-
tion fits (p−1)+(p−2)+ · · ·+2+1 = p(p−1)/2 ≈ p2/2 models, where p− i
models are fit at step i for i = 1, ..., (p−1). If n/J < p, then forward selection
uses (n/J) − 1 steps and fits ≈ (p − 1) + (p − 2) + · · · + (p − (n/J) + 1) =
p((n/J) − 1) − (1 + 2 + · · ·+ ((n/J) − 1)) =

p(
n

J
− 1) −

n
J (n

J − 1)

2
≈ n

J

(2p− n
J )

2

models. Thus forward selection can be slow if n and p are both large, al-
though the R package leaps uses a branch and bound algorithm that likely
eliminates many of the possible fits. Note that after step i, the model has
i+ 1 predictors, including the constant.

The R function regsubsets can be used for forward selection if p < n,
and if p ≥ n if the maximum number of variables is less than n. Then warning
messages are common. Some R code is shown below.

#regsubsets works if p < n, e.g. p = n-1, and works

#if p > n with warnings if nvmax is small enough

set.seed(13)

n<-100

p<-200

k<-19 #the first 19 nontrivial predictors are active

J<-5

q <- p-1

b <- 0 * 1:q

b[1:k] <- 1 #beta = (1, 1, ..., 1, 0, 0, ..., 0)ˆT

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

y <- 1 + x %*% b + rnorm(n)

nc <- ceiling(n/J)-1 #the constant will also be used

nc <- min(nc,q)

nc <- max(nc,1) #nc is the maximum number of

#nontrivial predictors used by forward selection

pp <- nc+1 #d = pp is used for PI (4.14)
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vars <- as.vector(1:(p-1))

temp<-regsubsets(x,y,nvmax=nc,method="forward")

out<-summary(temp)

num <- length(out$cp)

mod <- out$which[num,] #use the last model

#do not need the constant in vin

vin <- vars[mod[-1]]

out$rss

[1] 1496.49625 1342.95915 1214.93174 1068.56668

973.36395 855.15436 745.35007 690.03901

638.40677 590.97644 542.89273 503.68666

467.69423 420.94132 391.41961 328.62016

242.66311 178.77573 79.91771

out$bic

[1] -9.4032 -15.6232 -21.0367 -29.2685

-33.9949 -42.3374 -51.4750 -54.5804

-57.7525 -60.8673 -64.7485 -67.6391

-70.4479 -76.3748 -79.0410 -91.9236

-117.6413 -143.5903 -219.498595

tem <- lsfit(x[,1:19],y) #last model used the

sum(tem$residˆ2) #first 19 predictors

[1] 79.91771 #SSE(I) = RSS(I)

n*log(out$rss[19]/n) + 20*log(n)

[1] 69.68613 #BIC(I)

for(i in 1:19) #a formula for BIC(I)

print( n*log(out$rss[i]/n) + (i+1)*log(n) )

bic <- c(279.7815, 273.5616, 268.1480, 259.9162,

255.1898, 246.8474, 237.7097, 234.6043, 231.4322,

228.3175, 224.4362, 221.5456, 218.7368, 212.8099,

210.1437, 197.2611, 171.5435, 145.5944, 69.6861)

tem<-lsfit(bic,out$bic)

tem$coef

Intercept X

-289.1846831 0.9999998 #bic - 289.1847 = out$bic

xx <- 1:min(length(out$bic),p-1)+1

ebic <- out$bic+2*log(dbinom(x=xx,size=p,prob=0.5))

#actually EBIC(I) - 2 p log(2).

Example 5.2, continued. The output below shows results from forward
selection for the marry data. The minimum Cp model Imin uses a constant
and mmem. The forward selection PIs are shorter than the OLS full model
PIs.

library(leaps);Y <- marry[,3]; X <- marry[,-3]

temp<-regsubsets(X,Y,method="forward")
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out<-summary(temp)

Selection Algorithm: forward

pop mmen mmilmen milwmn

1 ( 1 ) " " "*" " " " "

2 ( 1 ) " " "*" "*" " "

3 ( 1 ) "*" "*" "*" " "

4 ( 1 ) "*" "*" "*" "*"

out$cp

[1] -0.8268967 1.0151462 3.0029429 5.0000000

#mmen and a constant = Imin

mincp <- out$which[out$cp==min(out$cp),]

#do not need the constant in vin

vin <- vars[mincp[-1]]

sub <- lsfit(X[,vin],Y)

ls.print(sub)

Residual Standard Error=369.0087

R-Square=0.9999

F-statistic (df=1, 24)=307694.4

Estimate Std.Err t-value Pr(>|t|)

Intercept 241.5445 190.7426 1.2663 0.2175

X 1.0010 0.0018 554.7021 0.0000

res<-sub$res

yhat<-Y-res #d = 2 predictors used including x_1

AERplot2(yhat,Y,res=res,d=2)

#response plot with 90% pointwise PIs

$respi #90% PI for a future residual

[1] -778.2763 1336.4416 #length 2114.72

Consider forward selection where xI is a × 1. Underfitting occurs if S
is not a subset of I so xI is missing important predictors. A special case
of underfitting is d = a < aS . Overfitting for forward selection occurs if i)
n < 5a so there is not enough data to estimate the a parameters in βI well,
or ii) S ⊆ I but S 6= I. Overfitting is serious if n < 5a, but “not much of a
problem” if n > Jp where J = 10 or 20 for many data sets. Underfitting is a
serious problem. Let Yi = xT

I,iβI + eI,i. Then V (eI,i) may not be a constant

σ2: V (eI,i) could depend on case i, and the model may no longer be linear.
Check model I with response and residual plots.

Forward selection is a shrinkage method: pmodels are produced and except
for the full model, some |β̂i| are shrunk to 0. Lasso and ridge regression are

also shrinkage methods. Ridge regression is a shrinkage method, but |β̂i| is

not shrunk to 0. Shrinkage methods that shrink β̂i to 0 are also variable
selection methods. See Sections 5.5, 5.6, and 5.8.

Definition 5.3. Suppose the population MLR model has βS an aS × 1
vector. The population MLR model is sparse if aS is small. The population
MLR model is dense or abundant if n/aS < J where J = 5 or J = 10, say.
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The fitted model β̂ = β̂Imin,0 is sparse if d = number of nonzero coefficients
is small. The fitted model is dense if n/d < J where J = 5 or J = 10.

5.3 Principal Components Regression

Some notation for eigenvalues, eigenvectors, orthonormal eigenvectors, posi-
tive definite matrices, and positive semidefinite matrices will be useful before
defining principal components regression, which is also called principal com-
ponent regression.

Notation: Recall that a square symmetric p × p matrix A has an eigen-
value λ with corresponding eigenvector x 6= 0 if

Ax = λx. (5.8)

The eigenvalues of A are real since A is symmetric. Note that if constant
c 6= 0 and x is an eigenvector of A, then c x is an eigenvector of A. Let
e be an eigenvector of A with unit length ‖e‖2 =

√
eT e = 1. Then e and

−e are eigenvectors with unit length, and A has p eigenvalue eigenvector
pairs (λ1, e1), (λ2, e2), ..., (λp, ep). Since A is symmetric, the eigenvectors are
chosen such that the ei are orthonormal: eT

i ei = 1 and eT
i ej = 0 for i 6=

j. The symmetric matrix A is positive definite iff all of its eigenvalues are
positive, and positive semidefinite iff all of its eigenvalues are nonnegative.
If A is positive semidefinite, let λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0. If A is positive
definite, then λp > 0.

Theorem 5.2. Let A be a p×p symmetric matrix with eigenvector eigen-
value pairs (λ1, e1), (λ2, e2), ..., (λp, ep) where eT

i ei = 1 and eT
i ej = 0 if i 6= j

for i = 1, ..., p. Then the spectral decomposition of A is

A =

p∑

i=1

λieie
T
i = λ1e1e

T
1 + · · ·+ λpepe

T
p .

Using the same notation as Johnson and Wichern (1988, pp. 50-51),
let P = [e1 e2 · · · ep] be the p × p orthogonal matrix with ith column

ei. Then P P T = P T P = I . Let Λ = diag(λ1, ..., λp) and let Λ1/2 =

diag(
√
λ1, ...,

√
λp). If A is a positive definite p × p symmetric matrix with

spectral decomposition A =
∑p

i=1 λieie
T
i , then A = P ΛP T and

A−1 = P Λ−1P T =

p∑

i=1

1

λi
eie

T
i .
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Theorem 5.3. Let A be a positive definite p× p symmetric matrix with
spectral decomposition A =

∑p
i=1 λieie

T
i . The square root matrix A1/2 =

PΛ1/2P T is a positive definite symmetric matrix such that A1/2A1/2 = A.

Principal components regression (PCR) uses OLS regression on the prin-
cipal components of the correlation matrix Ru of the p − 1 nontrivial pre-
dictors u1 = x2, ..., up−1 = xp. Suppose Ru has eigenvalue eigenvector pairs

(λ̂1, ê1), ..., (λ̂K, êK) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂K ≥ 0 where K = min(n, p−1).

Then Ruêi = λ̂iêi for i = 1, ..., K. Since Ru is a symmetric positive semidef-
inite matrix, the λ̂i are real and nonnegative.

The eigenvectors êi are orthonormal: êT
i êi = 1 and êT

i êj = 0 for i 6= j.
If the eigenvalues are unique, then êi and −êi are the only orthonormal
eigenvectors corresponding to λ̂i. For example, the eigenvalue eigenvector
pairs can be found using the singular value decomposition of the matrix
W g/

√
n− g where W g is the matrix of the standardized nontrivial predictors

wi, the sample covariance matrix

Σ̂w =
W T

g W g

n− g
=

1

n− g

n∑

i=1

(wi − w)(wi − w)T =
1

n− g

n∑

i=1

wiw
T
i = Ru,

and usually g = 0 or g = 1. If n > K = p−1, then the spectral decomposition
of Ru is

Ru =

p−1∑

i=1

λ̂iêiê
T
i = λ̂1ê1ê

T
1 + · · ·+ λ̂p−1êp−1ê

T
p−1,

and
∑p−1

i=1 λ̂i = p− 1.
Let w1, ...,wn denote the standardized vectors of nontrivial predictors.

Then the K principal components corresponding to the jth case wj are

Pj1 = êT
1 wj, ..., PjK = êT

Kwj . Following Hastie et al. (2009, p. 66), the ith
eigenvector ei is known as the ith principal component direction or Karhunen
Loeve direction of W g .

Principal components have a nice geometric interpretation if n > K =
p− 1. If n > K and Ru is nonsingular, then the hyperellipsoid

{w|D2
w(0,Ru) ≤ h2} = {w : wT R−1

u w ≤ h2}

is centered at 0. The volume of the hyperellipsoid is

2πK/2

KΓ (K/2)
|Ru|1/2hK .

Then points at squared distance wT R−1
u w = h2 from the origin lie on the

hyperellipsoid centered at the origin whose axes are given by the eigenvectors
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êi where the half length in the direction of êi is h
√
λ̂i. Let j = 1, ..., n. Then

the first principal component Pj1 is obtained by projecting the wj on the
(longest) major axis of the hyperellipsoid, the second principal component Pj2

is obtained by projecting the wj on the next longest axis of the hyperellipsoid,
..., and the (p − 1)th principal component Pj,p−1 is obtained by projecting
the wj on the (shortest) minor axis of the hyperellipsoid. Examine Figure 4.3
for two ellipsoids with 2 nontrivial predictors. The axes of the hyperellipsoid
are a rotation of the usual axes about the origin.

Let the random variable Vi correspond to the ith principal component,
and let (P1i, ..., Pni)

T = (V1i, ..., Vni)
T be the observed data for Vi. Let g = 1.

Then the sample mean

V i =
1

n

n∑

k=1

Vki =
1

n

n∑

k=1

êT
i wk = êT

i w = êT
i 0 = 0,

and the sample covariance of Vi and Vj is Cov(Vi, Vj) =

1

n

n∑

k=1

(Vki − V i)(Vkj − V j) =
1

n

n∑

k=1

êT
i wkwT

k êj = êT
i Ruêj

= λ̂j ê
T
i êj = 0 for i 6= j since the sample covariance matrix of the standard-

ized data is
1

n

n∑

k=1

wkwT
k = Ru

and Ruêj = λ̂jêj . Hence Vi and Vj are uncorrelated.
PCR uses linear combinations of the standardized data as predictors. Let

Vj = êT
j w for j = 1, ..., K. Let model Ji contain V1, ..., Vi. Then for model Ji,

use OLS regression of Z = Y − Y on V1, ..., Vi with Ŷ = Ẑ + Y . Since linear
combinations of w are linear combinations of x, Ŷ = Xβ̂PCR,Ij

where the
model Ij uses a constant and the first j − 1 PCR components.

Notation: Just as we use xi or Xi to denote the ith predictor, we will
use vj or Vj to denote predictors that are linear combinations of the original
predictors: e.g. vj = Vj = γT

j x or vj = Vj = γT
j u.

Remark 5.8. The set of (p− 1)× 1 vectors {(1, 0, ..., 0)T , (0, 1, 0, ..., 0)T,
(0, ...0, 1)T} is the standard basis for R

p−1. The set of vectors {ê1, ..., êp−1}
is also a basis for R

p−1. For PCR and some constants θi,
∑j

i=1 θiê
T
j w =∑p−1

i=1 ηiwi if j = p− 1, but not if j < p− 1 in general. Hence PCR tends to
give inconsistent estimators unless P(j = p− 1) = P(PCR uses the OLS full
model) goes to one.

There are at least two problems with PCR. i) In general, β̂PCR,Ij
is an

inconsistent estimator of β̂ unless P (j → p− 1) = P (β̂PCR,Ij
→ β̂OLS) → 1



224 5 Statistical Learning Alternatives to OLS

as n → ∞. ii) Generally there is no reason why the predictors should be
ranked from best to worst by V1, V2, ..., VK. For example, the last few prin-
cipal components (and a constant) could be much better for prediction than
the other principal components. See Jolliffe (1983) and Cook and Forzani
(2008). If n ≥ 10p, often PCR needs to use all p − 1 components (i.e., PCR
= OLS full model) to be competitive with other regression models. Per-
forming OLS forward selection or lasso on V1, ..., VK may be more effective.
There is one exception. Suppose

∑J
i=1 λ̂i ≥ q(p − 1) where 0.5 ≤ q ≤ 1, e.g.

q = 0.8 where J is a lot smaller than p− 1. Then the J predictors V1, ..., VJ

capture much of the information of the standardized nontrivial predictors
w1, ..., wp−1. Then regressing Y on 1, V1, ..., VJ may be competitive with re-
gressing Y on 1, w1, ..., wp−1. PCR is equivalent to OLS on the full model
when Y is regressed on a constant and all K of the principal components.
PCR can also be useful if X is singular or nearly singular (ill conditioned).

Example 5.2, continued. The PCR output below shows results for the
marry data where 10-fold CV was used. The OLS full model was selected.

library(pls); y <- marry[,3]; x <- marry[,-3]

z <- as.data.frame(cbind(y,x))

out<-pcr(y˜.,data=z,scale=T,validation="CV")

tem<-MSEP(out)

tem

(Int) 1 comps 2 comps 3 comps 4 comps

CV 1.743e+09 449479706 8181251 371775 197132

cvmse<-tem$val[,,1:(out$ncomp+1)][1,]

nc <-max(which.min(cvmse)-1,1)

res <- out$residuals[,,nc]

yhat<-y-res #d = 5 predictors used including constant

AERplot2(yhat,y,res=res,d=5)

#response plot with 90% pointwise PIs

$respi #90% PI same as OLS full model

-950.4811 1445.2584 #PI length = 2395.74

5.4 Partial Least Squares

Partial least squares (PLS) uses variables v1 = 1 (the constant or trivial
predictor) and “PLS components” vj = γT

j x for j = 2, ..., p. Next let the
response Y be used with the standardized predictors Wj. Let the “PLS com-

ponents” Vj = ĝT
j w. Let model Ji contain V1, ..., Vi. Often k–fold cross val-

idation is used to pick the PLS model from J1, ..., JM. PLS seeks directions
ĝj such that the PLS components Vj are highly correlated with Y , subject to
being uncorrelated with other PLS components Vi for i 6= j. Note that PCR
components are formed without using Y .
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Remark 5.9. PLS may or may not give a consistent estimator of β if p/n
does not go to zero: rather strong regularity conditions have been used to
prove consistency or inconsistency if p/n does not go to zero. See Chun and
Keleş (2010), Cook (2018), Cook et al. (2013), and Cook and Forzani (2018,
2019).

Following Hastie et al. (2009, pp. 80-81), let W = [s1, ..., sp−1] so sj is
the vector corresponding to the standardized jth nontrivial predictor. Let
ĝ1i = sT

j Y be n times the least squares coefficient from regressing Y on

si. Then the first PLS direction ĝ1 = (ĝ11, ..., ĝ1,p−1)
T . Note that Wĝi =

(Vi1, ..., Vin)T = pi is the ith PLS component. This process is repeated using
matrices W k = [sk

1 , ..., s
k
p−1] where W 0 = W and W k is orthogonalized

with respect to pk for k = 1, ..., p− 2. So sk
j = sk−1

j − [pT
k sk−1

j /(pT
k pk)]pk

for j = 1, ..., p− 1. If the PLS model Ii uses a constant and PLS components
V1, ..., Vi−1, let Ŷ Ii be the predicted values from the PLS model using Ii.

Then Ŷ Ii = Ŷ Ii−1
+ θ̂ipi where Ŷ I0

= Y 1 and θ̂i = pT
i Y /(pT

i pi). Since

linear combinations of w are linear combinations of x, Ŷ = Xβ̂PLS,Ij
where

Ij uses a constant and the first j − 1 PLS components. If j = p, then the
PLS model Ip is the OLS full model.

Example 5.2, continued. The PLS output below shows results for the
marry data where 10-fold CV was used. The OLS full model was selected.

library(pls); y <- marry[,3]; x <- marry[,-3]

z <- as.data.frame(cbind(y,x))

out<-plsr(y˜.,data=z,scale=T,validation="CV")

tem<-MSEP(out)

tem

(Int) 1 comps 2 comps 3 comps 4 comps

CV 1.743e+09 256433719 6301482 249366 206508

cvmse<-tem$val[,,1:(out$ncomp+1)][1,]

nc <-max(which.min(cvmse)-1,1)

res <- out$residuals[,,nc]

yhat<-y-res #d = 5 predictors used including constant

AERplot2(yhat,y,res=res,d=5)

$respi #90% PI same as OLS full model

-950.4811 1445.2584 #PI length = 2395.74

The Mevik et al. (2015) pls library is useful for computing PLS and PCR.

5.5 Ridge Regression

Consider the MLR model Y = Xβ + e. Ridge regression uses the centered
response Zi = Yi − Y and standardized nontrivial predictors in the model
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Z = Wη +e. Then Ŷi = Ẑi +Y . Note that in Definition 5.5, λ1,n is a tuning

parameter, not an eigenvalue. The residuals r = r(β̂R) = Y − Ŷ . Refer to
Definition 5.1 for the OLS estimator η̂OLS = (W T W )−1W T Z.

Definition 5.4. Consider the MLR model Z = Wη + e. Let b be a
(p − 1) × 1 vector. Then the fitted value Ẑi(b) = wT

i b and the residual

ri(b) = Zi − Ẑi(b). The vector of fitted values Ẑ(b) = Wb and the vector of

residuals r(b) = Z − Ẑ(b).

Definition 5.5. Consider fitting the MLR model Y = Xβ + e using
Z = Wη + e. Let λ ≥ 0 be a constant. The ridge regression estimator η̂R

minimizes the ridge regression criterion

QR(η) =
1

a
(Z − Wη)T (Z − Wη) +

λ1,n

a

p−1∑

i=1

η2
i (5.9)

over all vectors η ∈ R
p−1 where λ1,n ≥ 0 and a > 0 are known constants

with a = 1, 2, n, and 2n common. Then

η̂R = (W T W + λ1,nIp−1)
−1W T Z. (5.10)

The residual sum of squares RSS(η) = (Z −Wη)T (Z −Wη), and λ1,n = 0
corresponds to the OLS estimator η̂OLS. The ridge regression vector of fitted
values is Ẑ = ẐR = Wη̂R, and the ridge regression vector of residuals
rR = r(η̂R) = Z − ẐR. The estimator is said to be regularized if λ1,n > 0.

Obtain Ŷ and β̂R using η̂R, Ẑ, and Y .

Using a vector of parameters η and a dummy vector η in QR is common
for minimizing a criterion Q(η), often with estimating equations. See the
paragraphs above and below Definition 5.2. We could also write

QR(b) =
1

a
r(b)T r(b) +

λ1,n

a
bT b

where the minimization is over all vectors b ∈ R
p−1. Note that

∑p−1
i=1 η

2
i =

ηT η = ‖η‖2
2. The literature often uses λa = λ = λ1,n/a.

Note that λ1,nbT b = λ1,n

∑p−1
i=1 b

2
i . Each coefficient bi is penalized equally

by λ1,n. Hence using standardized nontrivial predictors makes sense so that
if ηi is large in magnitude, then the standardized variable wi is important.

Remark 5.10. i) If λ1,n = 0, the ridge regression estimator becomes the
OLS full model estimator: η̂R = η̂OLS.

ii) If λ1,n > 0, then W T W + λ1,nIp−1 is nonsingular. Hence η̂R exists
even if X and W are singular or ill conditioned, or if p > n.
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iii) Following Hastie et al. (2009, p. 96), let the augmented matrix W A

and the augmented response vector ZA be defined by

W A =

(
W√

λ1,n Ip−1

)
, and ZA =

(
Z
0

)
,

where 0 is the (p− 1)× 1 zero vector. For λ1,n > 0, the OLS estimator from
regressing ZA on W A is

η̂A = (W T
AW A)−1W T

AZA = η̂R

since W T
AZA = W T Z and

W T
AW A =

(
W T

√
λ1,n Ip−1

)( W√
λ1,n Ip−1

)
= W T W + λ1,n Ip−1.

iv) A simple way to regularize a regression estimator, such as the L1 esti-
mator, is to compute that estimator from regressing ZA on W A.

Remark 5.10 iii) is interesting. Note that for λ1,n > 0, the (n+p−1)×(p−1)
matrix W A has full rank p−1. The augmented OLS model consists of adding
p− 1 pseudo-cases (wT

n+1, Zn+1)
T , ..., (wT

n+p−1, Zn+p−1)
T where Zj = 0 and

wj = (0, ...,
√
λ1,n, 0, ..., 0)T for j = n+1, ..., n+p−1 where the nonzero entry

is in the kth position if j = n + k. For centered response and standardized
nontrivial predictors, the population OLS regression fit runs through the
origin (wT , Z)T = (0T , 0)T . Hence for λ1,n = 0, the augmented OLS model
adds p − 1 typical cases at the origin. If λ1,n is not large, then the pseudo-
data can still be regarded as typical cases. If λ1,n is large, the pseudo-data
act as w–outliers (outliers in the standardized predictor variables), and the

OLS slopes go to zero as λ1,n gets large, making Ẑ ≈ 0 so Ŷ ≈ Y .
To prove Remark 5.10 ii), let (ψ, g) be an eigenvalue eigenvector pair of

W T W = nRu. Then [WT W + λ1,nIp−1]g = (ψ+ λ1,n)g, and (ψ+λ1,n, g)

is an eigenvalue eigenvector pair of W T W +λ1,nIp−1 > 0 provided λ1,n > 0.

The degrees of freedom for a ridge regression with known λ1,n is also
interesting and will be found in the next paragraph. The sample correlation
matrix of the nontrivial predictors

Ru =
1

n− g
W T

g W g

where we will use g = 0 and W = W 0. Then W T W = nRu. By singular
value decomposition (SVD) theory, the SVD of W is W = UΛV T where
the positive singular values σi are square roots of the positive eigenvalues of
both W T W and of WW T . Also V = (ê1 ê2 · · · êp), and W T Wêi = σ2

i êi.
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Hence λ̂i = σ2
i where λ̂i = λ̂i(W

T W ) is the ith eigenvalue of W T W , and êi

is the ith orthonormal eigenvector of Ru and of W T W . The SVD of W T is
W T = V ΛT UT , and the Gram matrix

WW T =




wT
1 w1 wT

1 w2 . . . w
T
1 wn

...
...

. . .
...

wT
nw1 wT

n w2 . . . w
T
nwn




which is the matrix of scalar products. Warning: Note that σi is the ith
singular value of W , not the standard deviation of wi.

Following Hastie et al. (2009, p. 68), if λ̂i = λ̂i(W
T W ) is the ith eigenvalue

of W T W where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p−1, then the (effective) degrees of freedom
for the ridge regression of Z on W with known λ1,n is df(λ1,n) =

tr[W (W T W + λ1,nIp−1)
−1W T ] =

p−1∑

i=1

σ2
i

σ2
i + λ1,n

=

p−1∑

i=1

λ̂i

λ̂i + λ1,n

(5.11)

where the trace of a square (p − 1) × (p − 1) matrix A = (aij) is tr(A) =∑p−1
i=1 aii =

∑p−1
i=1 λ̂i(A). Note that the trace of A is the sum of the diagonal

elements of A = the sum of the eigenvalues of A.
Note that 0 ≤ df(λ1,n) ≤ p − 1 where df(λ1,n) = p − 1 if λ1,n = 0 and

df(λ1,n) → 0 as λ1,n → ∞. The R code below illustrates how to compute
ridge regression degrees of freedom.

set.seed(13)

n<-100; q<-3 #q = p-1

b <- 0 * 1:q + 1

u <- matrix(rnorm(n * q), nrow = n, ncol = q)

y <- 1 + u %*% b + rnorm(n) #make MLR model

w1 <- scale(u) #t(w1) %*% w1 = (n-1) R = (n-1)*cor(u)

w <- sqrt(n/(n-1))*w1 #t(w) %*% w = n R = n cor(u)

t(w) %*% w/n

[,1] [,2] [,3]

[1,] 1.00000000 -0.04826094 -0.06726636

[2,] -0.04826094 1.00000000 -0.12426268

[3,] -0.06726636 -0.12426268 1.00000000

cor(u) #same as above

rs <- t(w)%*%w #scaled correlation matrix n R

svs <-svd(w)$d #singular values of w

lambda <- 0

d <- sum(svsˆ2/(svsˆ2+lambda))

#effective df for ridge regression using w

d

[1] 3 #= q = p-1

112.60792 103.88089 83.51119
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svsˆ2 #as above

uu<-scale(u,scale=F) #centered but not scaled

svs <-svd(uu)$d #singular values of uu

svsˆ2

[1] 135.78205 108.85903 85.83395

d <- sum(svsˆ2/(svsˆ2+lambda))

#effective df for ridge regression using uu

#d is again 3 if lambda = 0

In general, if Ẑ = HλZ, then df(Ẑ) = tr(Hλ) where Hλ is a (p − 1) ×
(p− 1) “hat matrix.” For computing Ŷ , df(Ŷ ) = df(Ẑ) + 1 since a constant

β̂1 also needs to be estimated. These formulas for degrees of freedom assume
that λ is known before fitting the model. The formulas do not give the model
degrees of freedom if λ̂ is selected from M values λ1, ..., λM using a criterion
such as k-fold cross validation.

Suppose the ridge regression criterion is written, using a = 2n, as

QR,n(b) =
1

2n
r(b)T r(b) + λ2nbT b, (5.12)

as in Hastie et al. (2015, p. 10). Then λ2n = λ1,n/(2n) using the λ1,n from
(5.9).

The following remark is interesting if λ1,n and p are fixed. However, λ̂1,n is
usually used, for example, after 10-fold cross validation. The fact that η̂R =
An,λη̂OLS appears in Efron and Hastie (2016, p. 98), and Marquardt and
Snee (1975). See Theorem 5.4 for the ridge regression central limit theorem.

Remark 5.11. Ridge regression has a simple relationship with OLS if
n > p and (W T W )−1 exists. Then η̂R = (W T W + λ1,nIp−1)

−1W T Z =

(W T W+λ1,nIp−1)
−1(W T W )(W T W )−1W T Z = An,λη̂OLS where An,λ ≡

An = (W T W + λ1,nIp−1)
−1W T W . By the LS CLT Equation (5.7) with

V̂ /n = (W T W )−1, a normal approximation for OLS is

η̂OLS ∼ ANn−p(η,MSE (W T W )−1).

Hence a normal approximation for ridge regression is

η̂R ∼ ANp−1(Anη,MSE An(W T W )−1AT
n ) ∼

ANp−1[Anη,MSE (W T W + λ1,nIp−1)
−1(W T W )(W T W + λ1,nIp−1)

−1].

If Equation (5.7) holds and λ1,n/n→ 0 as n→ ∞, then An
P→ Ip−1.

Remark 5.12. The ridge regression criterion from Definition 5.5 can also
be defined by

QR(η) = ‖Z − Wη‖2
2 + λ1,nηT η. (5.13)
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Then by Theorem 5.1, the gradient 5QR = −2W T Z +2(W T W )η+2λ1,nη.
Cancelling constants and evaluating the gradient at η̂R gives the score equa-
tions

−W T (Z − Wη̂R) + λ1,nη̂R = 0. (5.14)

Following Efron and Hastie (2016, pp. 381-382, 392), this means η̂R = W T a
for some n× 1 vector a. Hence −W T (Z − WW T a) + λ1,nW T a = 0, or

W T (WW T + λ1,nIn)]a = W T Z

which has solution a = (WW T + λ1,nIn)−1Z. Hence

η̂R = W T a = W T (WW T + λ1,nIn)−1Z = (W T W + λ1,nIp−1)
−1W T Z.

Using the n × n matrix WW T is computationally efficient if p > n while
using the p × p matrix W T W is computationally efficient if n > p. If A is
k × k, then computing A−1 has O(k3) complexity.

The following identity from Gunst and Mason (1980, p. 342) is useful for
ridge regression inference: η̂R =(W T W + λ1,nIp−1)

−1W T Z

= (W T W + λ1,nIp−1)
−1W T W (W T W )−1W T Z

= (W T W + λ1,nIp−1)
−1W T Wη̂OLS = Anη̂OLS =

[Ip−1 − λ1,n(W T W + λ1,nIp−1)
−1]η̂OLS = Bnη̂OLS =

η̂OLS − λ1n

n
n(W T W + λ1,nIp−1)

−1η̂OLS

since An − Bn = 0. See Problem 5.3. Assume Equation (5.6) holds. If
λ1,n/n→ 0 then

W T W + λ1,nIp−1

n

P→ V −1, and n(W TW + λ1,nIp−1)
−1 P→ V .

Note that

An = An,λ =

(
W T W + λ1,nIp−1

n

)−1
W T W

n

P→ V V −1 = Ip−1

if λ1,n/n → 0 since matrix inversion is a continuous function of a positive
definite matrix. See, for example, Bhatia et al. (1990), Stewart (1969), and
Severini (2005, pp. 348-349).

For model selection, the M values of λ = λ1,n are denoted by λ1, λ2, ..., λM

where λi = λ1,n,i depends on n for i = 1, ...,M . If λs corresponds to the model

selected, then λ̂1,n = λs. The following theorem shows that ridge regression
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and the OLS full model are asymptotically equivalent if λ̂1,n = oP (n1/2) so

λ̂1,n/
√
n

P→ 0.

Theorem 5.4, RR CLT (Ridge Regression Central Limit Theo-
rem. Assume p is fixed and that the conditions of the LS CLT Theorem
Equation (5.7) hold for the model Z = Wη + e.

a) If λ̂1,n/
√
n

P→ 0, then

√
n(η̂R − η)

D→ Np−1(0, σ
2V ).

b) If λ̂1,n/
√
n

P→ τ ≥ 0 then

√
n(η̂R − η)

D→ Np−1(−τV η, σ2V ).

Proof: If λ̂1,n/
√
n

P→ τ ≥ 0, then by the above Gunst and Mason (1980)
identity,

η̂R = [Ip−1 − λ̂1,n(W T W + λ̂1,nIp−1)
−1]η̂OLS .

Hence √
n(η̂R − η) =

√
n(η̂R − η̂OLS + η̂OLS − η) =

√
n(η̂OLS − η) −

√
n
λ̂1,n

n
n(W T W + λ̂1,nIp−1)

−1η̂OLS

D→ Np−1(0, σ
2V ) − τV η ∼ Np−1(−τV η, σ2V ). �

For p fixed, Knight and Fu (2000) note i) that η̂R is a consistent estimator
of η if λ1,n = o(n) so λ1,n/n → 0 as n → ∞, ii) OLS and ridge regression
are asymptotically equivalent if λ1,n/

√
n → 0 as n → ∞, iii) ridge regression

is a
√
n consistent estimator of η if λ1,n = O(

√
n) (so λ1,n/

√
n is bounded),

and iv) if λ1,n/
√
n → τ ≥ 0, then

√
n(η̂R − η)

D→ Np−1(−τV η, σ2V ).

Hence the bias can be considerable if τ 6= 0. If τ = 0, then OLS and ridge
regression have the same limiting distribution.

Even if p is fixed, there are several problems with ridge regression infer-
ence if λ̂1,n is selected, e.g. after 10-fold cross validation. For OLS forward
selection, the probability that the model Imin underfits goes to zero, and
each model with S ⊆ I produced a

√
n consistent estimator β̂I,0 of β. Ridge

regression with 10-fold CV often shrinks β̂R too much if both i) the number
of population active predictors kS = aS − 1 in Equation (4.1) and Remark
5.4 is greater than about 20, and ii) the predictors are highly correlated. If
p is fixed and λ1,n = oP (

√
n), then the OLS full model and ridge regression

are asymptotically equivalent, but much larger sample sizes may be needed
for the normal approximation to be good for ridge regression since the ridge
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regression estimator can have large bias for moderate n. Ten fold CV does

not appear to guarantee that λ̂1,n/
√
n

P→ 0 or λ̂1,n/n
P→ 0.

Ridge regression can be a lot better than the OLS full model if i) XT X is
singular or ill conditioned or ii) n/p is small. Ridge regression can be much
faster than forward selection if M = 100 and n and p are large.

Roughly speaking, the biased estimation of the ridge regression estimator
can make the MSE of β̂R or η̂R less than that of β̂OLS or η̂OLS , but the
large sample inference may need larger n for ridge regression than for OLS.
However, the large sample theory has n >> p. We will try to use prediction
intervals to compare OLS, forward selection, ridge regression, and lasso for
data sets where p > n. See Sections 5.9, 5.10, 5.11, and 5.12.

Warning. Although the R functions glmnet and cv.glmnet appear to
do ridge regression, getting the fitted values, λ̂1,n, and degrees of freedom to
match up with the formulas of this section can be difficult.

Example 5.2, continued. The ridge regression output below shows results
for the marry data where 10-fold CV was used. A grid of 100 λ values was
used, and λ0 > 0 was selected. A problem with getting the false degrees of
freedom d for ridge regression is that it is not clear that λ = λ1,n/(2n). We
need to know the relationship between λ and λ1,n in order to compute d. It
seems unlikely that d ≈ 1 if λ0 is selected.

library(glmnet); y <- marry[,3]; x <- marry[,-3]

out<-cv.glmnet(x,y,alpha=0)

lam <- out$lambda.min #value of lambda that minimizes

#the 10-fold CV criterion

yhat <- predict(out,s=lam,newx=x)

res <- y - yhat

n <- length(y)

w1 <- scale(x)

w <- sqrt(n/(n-1))*w1 #t(w) %*% w = n R_u, u = x

diag(t(w)%*%w)

pop mmen mmilmen milwmn

26 26 26 26

#sum w_iˆ2 = n = 26 for i = 1, 2, 3, and 4

svs <- svd(w)$d #singular values of w,

pp <- 1 + sum(svsˆ2/(svsˆ2+2*n*lam)) #approx 1

# d for ridge regression if lam = lam_{1,n}/(2n)

AERplot2(yhat,y,res=res,d=pp)

$respi #90% PI for a future residual

[1] -5482.316 14854.268 #length = 20336.584

#try to reproduce the fitted values

z <- y - mean(y)

q<-dim(w)[2]

I <- diag(q)
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M<- w%*%solve(t(w)%*%w + lam*I/(2*n))%*%t(w)

fit <- M%*%z + mean(y)

plot(fit,yhat) #they are not the same

max(abs(fit-yhat))

[1] 46789.11

M<- w%*%solve(t(w)%*%w + lam*I/(1547.1741))%*%t(w)

fit <- M%*%z + mean(y)

max(abs(fit-yhat)) #close

[1] 8.484979

5.6 Lasso

Consider the MLR model Y = Xβ + e. Lasso uses the centered response
Zi = Yi−Y and standardized nontrivial predictors in the model Z = Wη+e
as described in Remark 5.1. Then Ŷi = Ẑi + Y . The residuals r = r(β̂L) =

Y − Ŷ . Recall that Y = Y 1.

Definition 5.6. Consider fitting the MLR model Y = Xβ + e using
Z = Wη + e. The lasso estimator η̂L minimizes the lasso criterion

QL(η) =
1

a
(Z − Wη)T (Z − Wη) +

λ1,n

a

p−1∑

i=1

|ηi| (5.15)

over all vectors η ∈ R
p−1 where λ1,n ≥ 0 and a > 0 are known constants

with a = 1, 2, n, and 2n are common. The residual sum of squares RSS(η) =
(Z − Wη)T (Z − Wη), and λ1,n = 0 corresponds to the OLS estimator

η̂OLS = (W T W )−1W T Z if W has full rank p−1. The lasso vector of fitted

values is Ẑ = ẐL = Wη̂L, and the lasso vector of residuals r(η̂L) = Z−ẐL.

The estimator is said to be regularized if λ1,n > 0. Obtain Ŷ and β̂L using

η̂L, Ẑ, and Y .

Using a vector of parameters η and a dummy vector η in QL is common
for minimizing a criterion Q(η), often with estimating equations. See the
paragraphs above and below Definition 5.2. We could also write

QL(b) =
1

a
r(b)T r(b) +

λ1,n

a

p−1∑

j=1

|bj|, (5.16)

where the minimization is over all vectors b ∈ R
p−1. The literature often uses

λa = λ = λ1,n/a.

For fixed λ1,n, the lasso optimization problem is convex. Hence fast algo-
rithms exist. As λ1,n increases, some of the η̂i = 0. If λ1,n is large enough,
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then η̂L = 0 and Ŷi = Y for i = 1, ..., n. If none of the elements η̂i of η̂L are
zero, then η̂L can be found, in principle, by setting the partial derivatives of
QL(η) to 0. Potential minimizers also occur at values of η where not all of the
partial derivatives exist. An analogy is finding the minimizer of a real valued
function of one variable h(x). Possible values for the minimizer include values
of xc satisfying h′(xc) = 0, and values xc where the derivative does not exist.
Typically some of the elements η̂i of η̂L that minimizes QL(η) are zero, and
differentiating does not work.

The following identity from Efron and Hastie (2016, p. 308), for example,
is useful for inference for the lasso estimator η̂L:

−1

n
W T (Z − Wη̂L) +

λ1,n

2n
sn = 0 or − W T(Z − Wη̂L) +

λ1,n

2
sn = 0

where sin ∈ [−1, 1] and sin = sign(η̂i,L) if η̂i,L 6= 0. Here sign(ηi) = 1 if ηi > 0
and sign(ηi) = −1 if ηi < 0. Note that sn = sn,η̂L

depends on η̂L. Thus η̂L

= (W T W )−1W T Z− λ1,n

2n
n(W T W )−1 sn = η̂OLS − λ1,n

2n
n(W T W )−1 sn.

If none of the elements of η are zero, and if η̂L is a consistent estimator of η,

then sn
P→ s = sη. If λ1,n/

√
n → 0, then OLS and lasso are asymptotically

equivalent even if sn does not converge to a vector s as n → ∞ since sn is
bounded. For model selection, the M values of λ are denoted by 0 ≤ λ1 <
λ2 < · · · < λM where λi = λ1,n,i depends on n for i = 1, ...,M . Also, λM

is the smallest value of λ such that η̂λM
= 0. Hence η̂λi

6= 0 for i < M . If

λs corresponds to the model selected, then λ̂1,n = λs. The following theorem
shows that lasso and the OLS full model are asymptotically equivalent if

λ̂1,n = oP (n1/2) so λ̂1,n/
√
n

P→ 0: thus
√
n(η̂L − η̂OLS) = op(1).

Theorem 5.5, Lasso CLT. Assume p is fixed and that the conditions of
the LS CLT Theorem Equation (5.7) hold for the model Z = Wη + e.

a) If λ̂1,n/
√
n

P→ 0, then

√
n(η̂L − η)

D→ Np−1(0, σ
2V ).

b) If λ̂1,n/
√
n

P→ τ ≥ 0 and sn
P→ s = sη , then

√
n(η̂L − η)

D→ Np−1

(−τ
2

V s, σ2V

)
.

Proof. If λ̂1,n/
√
n

P→ τ ≥ 0 and sn
P→ s = sη , then

√
n(η̂L − η) =

√
n(η̂L − η̂OLS + η̂OLS − η) =
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√
n(η̂OLS − η) −

√
n
λ1,n

2n
n(W T W )−1sn

D→ Np−1(0, σ
2V ) − τ

2
V s

∼ Np−1

(−τ
2

V s, σ2V

)

since under the LS CLT, n(W T W )−1 P→ V .

Part a) does not need sn
P→ s as n→ ∞, since sn is bounded. �

Suppose p is fixed. Knight and Fu (2000) note i) that η̂L is a consistent
estimator of η if λ1,n = o(n) so λ1,n/n→ 0 as n → ∞, ii) OLS and lasso are
asymptotically equivalent if λ1,n → ∞ too slowly as n → ∞ (e.g. if λ1,n = λ
is fixed), iii) lasso is a

√
n consistent estimator of η if λ1,n = O(

√
n) (so

λ1,n/
√
n is bounded). Note that Theorem 5.5 shows that OLS and lasso are

asymptotically equivalent if λ1,n/
√
n→ 0 as n→ 0.

In the literature, the criterion often uses λa = λ1,n/a:

QL,a(b) =
1

a
r(b)T r(b) + λa

p−1∑

j=1

|bj|.

The values a = 1, 2, and 2n are common. Following Hastie et al. (2015, pp.
9, 17, 19) for the next two paragraphs, it is convenient to use a = 2n:

QL,2n(b) =
1

2n
r(b)T r(b) + λ2n

p−1∑

j=1

|bj|, (5.17)

where the Zi are centered and the wj are standardized using g = 0 so wj = 0
and nσ̂2

j =
∑n

i=1 w
2
i,j = n. Then λ = λ2n = λ1,n/(2n) in Equation (5.15).

For model selection, the M values of λ are denoted by 0 ≤ λ2n,1 < λ2n,2 <
· · ·< λ2n,M where η̂λ = 0 iff λ ≥ λ2n,M and

λ2n,max = λ2n,M = max
j

∣∣∣∣
1

n
sT

j Z

∣∣∣∣

and sj is the jth column of W corresponding to the jth standardized non-
trivial predictor Wj . In terms of the 0 ≤ λ1 < λ2 < · · · < λM , used above
Theorem 5.5, we have λi = λ1,n,i = 2nλ2n,i and

λM = 2nλ2n,M = 2 max
j

∣∣sT
j Z
∣∣ .

For model selection we let I denote the index set of the predictors in the
fitted model including the constant. The set A defined below is the index set
without the constant.
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Definition 5.7. The active set A is the index set of the nontrivial predic-
tors in the fitted model: the predictors with nonzero η̂i.

Suppose that there are k active nontrivial predictors. Then for lasso, k ≤ n.
Let the n × k matrix W A correspond to the standardized active predictors.
If the columns of W A are in general position, then the lasso vector of fitted
values

ẐL = W A(W T
AW A)−1W T

AZ − nλ2nW A(W T
AW A)−1sA

where sA is the vector of signs of the active lasso coefficients. Here we are
using the λ2n of (5.17), and nλ2n = λ1,n/2. We could replace n λ2n by λ2 if
we used a = 2 in the criterion

QL,2(b) =
1

2
r(b)T r(b) + λ2

p−1∑

j=1

|bj|. (5.18)

See, for example, Tibshirani (2015). Note that W A(W T
AW A)−1W T

AZ is the
vector of OLS fitted values from regressing Z on W A without an intercept.

Example 5.2, continued. The lasso output below shows results for the
marry data where 10-fold CV was used. A grid of 38 λ values was used, and
λ0 > 0 was selected.

library(glmnet); y <- marry[,3]; x <- marry[,-3]

out<-cv.glmnet(x,y)

lam <- out$lambda.min #value of lambda that minimizes

#the 10-fold CV criterion

yhat <- predict(out,s=lam,newx=x)

res <- y - yhat

pp <- out$nzero[out$lambda==lam] + 1 #d for lasso

AERplot2(yhat,y,res=res,d=pp)

$respi #90% PI for a future residual

-4102.672 4379.951 #length = 8482.62

There are some problems with lasso. i) Lasso large sample theory is worse
or as good as that of the OLS full model if n/p is large. ii) Ten fold CV does

not appear to guarantee that λ̂1,n/
√
n

P→ 0 or λ̂1,n/n
P→ 0. iii) Lasso often

shrinks β̂ too much if aS ≥ 20 and the predictors are highly correlated. iv)
Ridge regression can be better than lasso if aS > n.

Lasso can be a lot better than the OLS full model if i) XT X is singular
or ill conditioned or ii) n/p is small. iii) For lasso, M = M(lasso) is often
near 100. Let J ≥ 5. If n/J and p are both a lot larger than M(lasso), then
lasso can be considerably faster than forward selection, PLS, and PCR if
M = M(lasso) = 100 and M = M(F ) = min(dn/Je, p) where F stands for
forward selection, PLS, or PCR. iv) The number of nonzero coefficients in
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η̂L ≤ n even if p > n. This property of lasso can be useful if p >> n and the
population model is sparse.

5.7 Lasso Variable Selection

Lasso variable selection applies OLS on a constant and the active predictors
that have nonzero lasso η̂i. The method is called relaxed lasso by Hastie et al.
(2015, p. 12), and the relaxed lasso (φ = 0) estimator by Meinshausen (2007).
The method is also called OLS-post lasso and post model selection OLS.
Let XA denote the matrix with a column of ones and the unstandardized
active nontrivial predictors. Hence the lasso variable selection estimator is
β̂LV S = (XT

AXA)−1XT
AY , and lasso variable selection is an alternative to

forward selection. Let k be the number of active (nontrivial) predictors so

β̂V LS is (k + 1) × 1.

Let Imin correspond to the lasso variable selection estimator and β̂V S =

β̂LV S,0 = β̂Imin,0 to the zero padded lasso variable selection estimator. Then

by Remark 4.5 where p is fixed, β̂LV S,0 is
√
n consistent when lasso is consis-

tent, with the limiting distribution for β̂LV S,0 given by Theorem 4.4. Hence,
relaxed lasso can be bootstrapped with the same methods used for forward
selection in Chapter 4. Lasso variable selection will often be better than lasso
when the model is sparse or if n ≥ 10(k + 1). Lasso can be better than lasso
variable selection if (XT

AXA) is ill conditioned or if n/(k+ 1) < 10. Also see
Pelawa Watagoda and Olive (2020) and Rathnayake and Olive (2020).

Suppose the n × q matrix x has the q = p − 1 nontrivial predictors. The
following R code gives some output for a lasso estimator and then the corre-
sponding relaxed lasso estimator.

library(glmnet)

y <- marry[,3]

x <- marry[,-3]

out<-glmnet(x,y,dfmax=2) #Use 2 for illustration:

#often dfmax approx min(n/J,p) for some J >= 5.

lam<-out$lambda[length(out$lambda)]

yhat <- predict(out,s=lam,newx=x)

#lasso with smallest lambda in grid such that df = 2

lcoef <- predict(out,type="coefficients",s=lam)

as.vector(lcoef) #first term is the intercept

#3.000397e+03 1.800342e-03 9.618035e-01 0.0 0.0

res <- y - yhat

AERplot(yhat,y,res,d=3,alph=1) #lasso response plot

##relaxed lasso =

#OLS on lasso active predictors and a constant

vars <- 1:dim(x)[2]



238 5 Statistical Learning Alternatives to OLS

lcoef<-as.vector(lcoef)[-1] #don’t need an intercept

vin <- vars[lcoef>0] #the lasso active set

vin

#1 2 since predictors 1 and 2 are active

sub <- lsfit(x[,vin],y) #lasso variable selection

sub$coef

# Intercept pop mmen

#2.380912e+02 6.556895e-05 1.000603e+00

# 238.091 6.556895e-05 1.0006

res <- sub$resid

yhat <- y - res

AERplot(yhat,y,res,d=3,alph=1) #response plot

Example 5.2, continued. The lasso variable selection output below shows
results for the marry data where 10-fold CV was used to choose the lasso
estimator. Then lasso variable selection is OLS applied to the active variables
with nonzero lasso coefficients and a constant. A grid of 38 λ values was used,
and λ0 > 0 was selected. The OLS SE, t statistic and pvalue are generally
not valid for relaxed lasso by Remark 4.5 and Theorem 4.4.

library(glmnet); y <- marry[,3]; x <- marry[,-3]

out<-cv.glmnet(x,y)

lam <- out$lambda.min #value of lambda that minimizes

#the 10-fold CV criterion

pp <- out$nzero[out$lambda==lam] + 1

#d for lasso variable selection

#get lasso variable selection

lcoef <- predict(out,type="coefficients",s=lam)

lcoef<-as.vector(lcoef)[-1]

vin <- vars[lcoef!=0]

sub <- lsfit(x[,vin],y)

ls.print(sub)

Residual Standard Error=376.9412

R-Square=0.9999

F-statistic (df=2, 23)=147440.1

Estimate Std.Err t-value Pr(>|t|)58

Intercept 238.0912 248.8616 0.9567 0.3487

pop 0.0001 0.0029 0.0223 0.9824

mmen 1.0006 0.0164 60.9878 0.0000

res <- sub$resid

yhat <- y - res

AERplot2(yhat,y,res=res,d=pp)

$respi #90% PI for a future residual

-822.759 1403.771 #length = 2226.53

To summarize Example 5.2, forward selection selected the model with the
minimum Cp while the other methods used 10-fold CV. PLS and PCR used
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Fig. 5.1 Marry Data Response Plots

the OLS full model with PI length 2395.74, forward selection used a constant
and mmen with PI length 2114.72, ridge regression had PI length 20336.58,
lasso and lasso variable selection used a constant, mmen, and pop with lasso
PI length 8482.62 and relaxed lasso PI length 2226.53. PI (4.14) was used.
Figure 5.1 shows the response plots for forward selection, ridge regression,
lasso, and lasso variable selection. The plots for PLS=PCR=OLS full model
were similar to those of forward selection and lasso variable selection. The
plots suggest that the MLR model is appropriate since the plotted points
scatter about the identity line. The 90% pointwise prediction bands are also
shown, and consist of two lines parallel to the identity line. These bands are
very narrow in Figure 5.1 a) and d).
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5.8 The Elastic Net

Following Hastie et al. (2015, p. 57), let β = (β1 ,β
T
S )T , let λ1,n ≥ 0, and let

α ∈ [0, 1]. Let

RSS(β) = (Y − Xβ)T (Y − Xβ) = ‖Y − Xβ‖2
2.

For a k×1 vector η, the squared (Euclidean) L2 norm ‖η‖2
2 = ηT η =

∑k
i=1 η

2
i

and the L1 norm ‖η‖1 =
∑k

i=1 |ηi|.

Definition 5.8. The elastic net estimator β̂EN minimizes the criterion

QEN(β) =
1

2
RSS(β) + λ1,n

[
1

2
(1 − α)‖βS‖2

2 + α‖βS‖1

]
, or (5.19)

Q2(β) = RSS(β) + λ1‖βS‖2
2 + λ2‖βS‖1 (5.20)

where 0 ≤ α ≤ 1, λ1 = (1 − α)λ1,n and λ2 = 2αλ1,n.

Note that α = 1 corresponds to lasso (using λa=0.5), and α = 0 corresponds
to ridge regression. For α < 1 and λ1,n > 0, the optimization problem is
strictly convex with a unique solution. The elastic net is due to Zou and
Hastie (2005). It has been observed that the elastic net can have much better
prediction accuracy than lasso when the predictors are highly correlated.

As with lasso, it is often convenient to use the centered response Z = Y −Y
where Y = Y 1, and the n×(p−1) matrix of standardized nontrivial predictors
W . Then regression through the origin is used for the model

Z = Wη + e (5.21)

where the vector of fitted values Ŷ = Y + Ẑ.
Ridge regression can be computed using OLS on augmented matrices.

Similarly, the elastic net can be computed using lasso on augmented matrices.
Let the elastic net estimator η̂EN minimize

QEN (η) = RSSW (η) + λ1‖η‖2
2 + λ2‖η‖1 (5.22)

where λ1 = (1 − α)λ1,n and λ2 = 2αλ1,n. Let the (n + p − 1) × (p − 1)
augmented matrix W A and the (n + p − 1) × 1 augmented response vector
ZA be defined by

W A =

(
W√

λ1 Ip−1

)
, and ZA =

(
Z
0

)
,

where 0 is the (p− 1)× 1 zero vector. Let RSSA(η) = ‖ZA −W Aη‖2
2. Then

η̂EN can be obtained from the lasso of ZA on W A: that is, η̂EN minimizes
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QL(η) = RSSA(η) + λ2‖η‖1 = QEN (η). (5.23)

Proof: We need to show that QL(η) = QEN (η). Note that ZT
AZA = ZT Z,

W A η =

(
Wη√
λ1 η

)
,

and ZT
AW A η = ZT Wη. Then

RSSA(η) = ‖ZA − W Aη‖2
2 = (ZA − W Aη)T (ZA − W Aη) =

ZT
AZA − ZT

AW Aη − ηT W T
AZA + ηT W T

AW Aη =

ZT Z − ZT Wη − ηT W T Z +
(
ηT W T

√
λ1 ηT

)( Wη√
λ1 η

)
.

Thus

QL(η) = ZT Z − ZT Wη − ηT W T Z + ηT W T Wη + λ1η
T η + λ2‖η‖1 =

RSS(η) + λ1‖η‖2
2 + λ2‖η‖1 = QEN(η). �

Remark 5.13. i) You could compute the elastic net estimator using a
grid of 100 λ1,n values and a grid of J ≥ 10 α values, which would take
about J ≥ 10 times as long to compute as lasso. The above equivalent lasso
problem (5.23) still needs a grid of λ1 = (1−α)λ1,n and λ2 = 2αλ1,n values.
Often J = 11, 21, 51, or 101. The elastic net estimator tends to be com-
puted with fast methods for optimizing convex problems, such as coordinate
descent. ii) Like lasso and ridge regression, the elastic net estimator is asymp-

totically equivalent to the OLS full model if p is fixed and λ̂1,n = oP (
√
n),

but behaves worse than the OLS full model otherwise. See Theorem 5.6. iii)
For prediction intervals, let d be the number of nonzero coefficients from
the equivalent augmented lasso problem (5.23). Alternatively, use d2 with
d ≈ d2 = tr[WAS(W T

ASW AS + λ2,nIp−1)
−1W T

AS ] where W AS corresponds
to the active set (not the augmented matrix). See Tibshirani and Taylor
(2012, p. 1214). Again λ2,n may not be the λ2 given by the software. iv)
The number of nonzero lasso components (not including the constant) is at
most min(n, p−1). Elastic net tends to do variable selection, but the number
of nonzero components can equal p − 1 (make the elastic net equal to ridge
regression). Note that the number of nonzero components in the augmented
lasso problem (5.23) is at most min(n+ p− 1, p− 1) = p− 1. vi) The elastic
net can be computed with glmnet, and there is an R package elasticnet.
vii) For fixed α > 0, we could get λM for elastic net from the equivalent lasso
problem. For ridge regression, we could use the λM for an α near 0.

Since lasso uses at most min(n, p−1) nontrivial predictors, elastic net and
ridge regression can perform better than lasso if the true number of active
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nontrivial predictors aS > min(n, p − 1). For example, suppose n = 1000,
p = 5000, and aS = 1500.

Following Jia and Yu (2010), by standard Karush-Kuhn-Tucker (KKT)
conditions for convex optimality for Equation (5.20), η̂EN is optimal if

2W T Wη̂EN − 2W T Z + 2λ1η̂EN + λ2sn = 0, or

(W T W + λ1Ip−1)η̂EN = W T Z − λ2

2
sn, or

η̂EN = η̂R − n(W T W + λ1Ip−1)
−1 λ2

2n
sn. (5.24)

Hence

η̂EN = η̂OLS−
λ1

n
n(W T W +λ1Ip−1)

−1 η̂OLS−
λ2

2n
n(W T W+λ1Ip−1)

−1 sn

= η̂OLS − n(W T W + λ1Ip−1)
−1 [

λ1

n
η̂OLS +

λ2

2n
sn].

Note that if λ̂1,n/
√
n

P→ τ and α̂
P→ ψ, then λ̂1/

√
n

P→ (1−ψ)τ and λ̂2/
√
n

P→
2ψτ. The following theorem shows elastic net is asymptotically equivalent to

the OLS full model if λ̂1,n/
√
n

P→ 0. Note that we get the RR CLT if ψ = 0

and the lasso CLT (using 2λ̂1,n/
√
n

P→ 2τ ) if ψ = 1. Under these conditions,

√
n(η̂EN −η) =

√
n(η̂OLS−η)−n(W T W + λ̂1Ip−1)

−1 [
λ̂1√
n

η̂OLS +
λ̂2

2
√
n

sn].

The following theorem is due to Slawski et al. (2010), and summarized in
Pelawa Watagoda and Olive (2020).

Theorem 5.6, Elastic Net CLT. Assume p is fixed and that the condi-
tions of the LS CLT Equation (5.7) hold for the model Z = Wη + e.

a) If λ̂1,n/
√
n

P→ 0, then

√
n(η̂EN − η)

D→ Np−1(0, σ
2V ).

b) If λ̂1,n/
√
n

P→ τ ≥ 0, α̂
P→ ψ ∈ [0, 1], and sn

P→ s = sη, then

√
n(η̂EN − η)

D→ Np−1

(
−V [(1− ψ)τη + ψτs], σ2V

)
.

Proof. By the above remarks and the RR CLT Theorem 5.4,

√
n(η̂EN − η) =

√
n(η̂EN − η̂R + η̂R − η) =

√
n(η̂R − η) +

√
n(η̂EN − η̂R)

D→ Np−1

(
−(1 − ψ)τV η, σ2V

)
− 2ψτ

2
V s
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∼ Np−1

(
−V [(1− ψ)τη + ψτs], σ2V

)
.

The mean of the normal distribution is 0 under a) since α̂ and sn are bounded.
�

Example 5.2, continued. The slpack function enet does elastic net
using 10-fold CV and a grid of α values {0, 1/am, 2/am, ..., am/am= 1}. The
default uses am = 10. The default chose lasso with alph = 1. The function
also makes a response plot, but does not add the lines for the pointwise
prediction intervals since the false degrees of freedom d is not computed.

library(glmnet); y <- marry[,3]; x <- marry[,-3]

tem <- enet(x,y)

tem$alph

[1] 1 #elastic net was lasso

tem<-enet(x,y,am=100)

tem$alph

[1] 0.97 #elastic net was not lasso with a finer grid

The elastic net variable selection estimator applies OLS to a constant
and the active predictors that have nonzero elastic net η̂i. Hence elastic net
is used as a variable selection method. Let XA denote the matrix with a
column of ones and the unstandardized active nontrivial predictors. Hence
the relaxed elastic net estimator is β̂RL = (XT

AXA)−1XT
AY , and relaxed

elastic net is an alternative to forward selection. Let k be the number of
active (nontrivial) predictors so β̂REN is (k+ 1)× 1. Let Imin correspond to

the elastic net variable selection estimator and β̂V S = β̂ENV S,0 = β̂Imin,0

to the zero padded relaxed elastic net estimator. Then by Remark 4.5 where
p is fixed, β̂ENV S,0 is

√
n consistent when elastic net is consistent, with the

limiting distribution for β̂REN,0 given by Theorem 4.4. Hence, relaxed elastic
net can be bootstrapped with the same methods used for forward selection
in Chapter 4. Elastic net variable selection will often be better than elastic
net when the model is sparse or if n ≥ 10(k + 1). The elastic net can be
better than elastic net variable selection if (XT

AXA) is ill conditioned or if
n/(k+ 1) < 10. Also see Olive (2019) and Rathnayake and Olive (2020).

5.9 Prediction Intervals

This section will use the prediction intervals from Section 4.3 applied to the
MLR model with m̂(x) = xT

I β̂I and I corresponds to the predictors used
by the MLR method. We will use the six methods forward selection with
OLS, PCR, PLS, lasso, relaxed lasso, and ridge regression. When p > n,
results from Hastie et al. (2015, pp. 20, 296, ch. 6, ch. 11) and Luo and Chen
(2013) suggest that lasso, relaxed lasso, and forward selection with EBIC can
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perform well for sparse models: the subset S in Equation (4.1) and Remark
5.4 has aS small.

Consider d for the prediction interval (4.14). As in Chapter 4, with the
exception of ridge regression, let d be the number of “variables” used by the
method, including a constant. Hence for lasso, relaxed lasso, and forward
selection, d− 1 is the number of active predictors while d− 1 is the number
of “components” used by PCR and PLS.

Many things can go wrong with prediction. It is assumed that the test
data follows the same MLR model as the training data. Population drift is a
common reason why the above assumption, which assumes that the various
distributions involved do not change over time, is violated. Population drift
occurs when the population distribution does change over time.

A second thing that can go wrong is that the training or test data set is
distorted away from the population distribution. This could occur if outliers
are present or if the training data set and test data set are drawn from
different populations. For example, the training data set could be drawn
from three hospitals, and the test data set could be drawn from two more
hospitals. These two populations of three and two hospitals may differ.

A third thing that can go wrong is extrapolation: if xf is added to
x1, ...,xn, then there is extrapolation if xf is not like the xi, e.g. xf is an
outlier. Predictions based on extrapolation are not reliable. Check whether
the Euclidean distance of xf from the coordinatewise median MED(X) of
the x1, ...,xn satisfies Dxf

(MED(X), Ip) ≤ maxi=1,...,nDi(MED(X), Ip).
Alternatively, use the ddplot5 function, described in Chapter 7, applied to
x1, ...,xn,xf to check whether xf is an outlier.

When n ≥ 10p, let the hat matrix H = X(XT X)−1XT . Let hi = hii

be the ith diagonal element of H for i = 1, ..., n. Then hi is called the
ith leverage and hi = xT

i (XT X)−1xi. Then the leverage of xf is hf =

xT
f (XT X)−1xf . Then a rule of thumb is that extrapolation occurs if hf >

max(h1, ..., hn). This rule works best if the predictors are linearly related in
that a plot of xi versus xj should not have any strong nonlinearities. If there
are strong nonlinearities among the predictors, then xf could be far from the
xi but still have hf < max(h1, ..., hn). If the regression method, such as lasso
or forward selection, uses a set I of a predictors, including a constant, where
n ≥ 10a, the above rule of thumb could be used for extrapolation where xf ,
xi, and X are replaced by xI,f , xI,i, and XI .

For the simulation from Pelawa Watagoda and Olive (2019b), we used
several R functions including forward selection (FS) as computed with the
regsubsets function from the leaps library, principal components regres-
sion (PCR) with the pcr function and partial least squares (PLS) with the
plsr function from the pls library, and ridge regression (RR) and lasso
with the cv.glmnet function from the glmnet library. Relaxed lasso (RL)
was applied to the selected lasso model.

Let x = (1 uT )T where u is the (p− 1)× 1 vector of nontrivial predictors.
In the simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I) where the
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Table 5.1 Simulated Large Sample 95% PI Coverages and Lengths, ei ∼ N(0,1)

n p ψ k FS lasso RL RR PLS PCR
100 20 0 1 cov 0.9644 0.9750 0.9666 0.9560 0.9438 0.9772

len 4.4490 4.8245 4.6873 4.5723 4.4149 5.5647
100 40 0 1 cov 0.9654 0.9774 0.9588 0.9274 0.8810 0.9882

len 4.4294 4.8889 4.6226 4.4291 4.0202 7.3393
100 200 0 1 cov 0.9648 0.9764 0.9268 0.9584 0.6616 0.9922

len 4.4268 4.9762 4.2748 6.1612 2.7695 12.412
100 50 0 49 cov 0.8996 0.9719 0.9736 0.9820 0.8448 1.0000

len 22.067 6.8345 6.8092 7.7234 4.2141 38.904
200 20 0 19 cov 0.9788 0.9766 0.9788 0.9792 0.9550 0.9786

len 4.9613 4.9636 4.9613 5.0458 4.3211 4.9610
200 40 0 19 cov 0.9742 0.9762 0.9740 0.9738 0.9324 0.9792

len 4.9285 5.2205 5.1146 5.2103 4.2152 5.3616
200 200 0 19 cov 0.9728 0.9778 0.9098 0.9956 0.3500 1.0000

len 4.8835 5.7714 4.5465 22.351 2.1451 51.896
400 20 0.9 19 cov 0.9664 0.9748 0.9604 0.9726 0.9554 0.9536

len 4.5121 10.609 4.5619 10.663 4.0017 3.9771
400 40 0.9 19 cov 0.9674 0.9608 0.9518 0.9578 0.9482 0.9646

len 4.5682 14.670 4.8656 14.481 4.0070 4.3797
400 400 0.9 19 cov 0.9348 0.9636 0.9556 0.9632 0.9462 0.9478

len 4.3687 47.361 4.8530 48.021 4.2914 4.4764
400 400 0 399 cov 0.9486 0.8508 0.5704 1.0000 0.0948 1.0000

len 78.411 37.541 20.408 244.28 1.1749 305.93
400 800 0.9 19 cov 0.9268 0.9652 0.9542 0.9672 0.9438 0.9554

len 4.3427 67.294 4.7803 66.577 4.2965 4.6533

m = p − 1 elements of the vector wi are iid N(0,1). Let the m×m matrix
A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j. Then the

vector ui = Awi so that Cov(ui) = Σu = AAT = (σij) where the diagonal
entries σii = [1+(m−1)ψ2 ] and the off diagonal entries σij = [2ψ+(m−2)ψ2 ].
Hence the correlations are cor(xi, xj) = ρ = (2ψ+(m−2)ψ2)/(1+(m−1)ψ2)
for i 6= j where xi and xj are nontrivial predictors. If ψ = 1/

√
cp, then

ρ → 1/(c + 1) as p → ∞ where c > 0. As ψ gets close to 1, the predictor
vectors cluster about the line in the direction of (1, ..., 1)T. Let Yi = 1+1xi,2+
· · ·+ 1xi,k+1 + ei for i = 1, ..., n. Hence β = (1, .., 1, 0, ..., 0)T with k+ 1 ones
and p− k− 1 zeros. The zero mean errors ei were iid from five distributions:
i) N(0,1), ii) t3, iii) EXP(1) - 1, iv) uniform(−1, 1), and v) 0.9 N(0,1) +
0.1 N(0,100). Normal distributions usually appear in simulations, and the
uniform distribution is the distribution where the shorth undercoverage is
maximized by Frey (2013). Distributions ii) and v) have heavy tails, and
distribution iii) is not symmetric.

The population shorth 95% PI lengths estimated by the asymptotically
optimal 95% PIs are i) 3.92 = 2(1.96), ii) 6.365, iii) 2.996, iv) 1.90 = 2(0.95),
and v) 13.490. The split conformal PI (4.16) is not asymptotically optimal
for iii), and for iii) PI (4.16) has asymptotic length 2(1.966) = 3.992. The
simulation used 5000 runs, so an observed coverage in [0.94, 0.96] gives no
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reason to doubt that the PI has the nominal coverage of 0.95. The simulation
used p = 20, 40, 50, n, or 2n; ψ = 0, 1/

√
p, or 0.9; and k = 1, 19, or p−1. The

OLS full model fails when p = n and p = 2n, where regularity conditions
for consistent estimators are strong. The values k = 1 and k = 19 are sparse
models where lasso, relaxed lasso, and forward selection with EBIC can per-
form well when n/p is not large. If k = p − 1 and p ≥ n, then the model
is dense. When ψ = 0, the predictors are uncorrelated, when ψ = 1/

√
p,

the correlation goes to 0.5 as p increases and the predictors are moderately
correlated. For ψ = 0.9, the predictors are highly correlated with 1 dominant
principal component, a setting favorable for PLS and PCR. The simulated
data sets are rather small since the some of the R estimators are rather slow.

The simulations were done in R. See R Core Team (2016). The results
were similar for all five error distributions, and we show some results for
the normal and shifted exponential distributions. Tables 5.1 and 5.2 show
some simulation results for PI (4.14) where forward selection used Cp for
n ≥ 10p and EBIC for n < 10p. The other methods minimized 10-fold CV. For
forward selection, the maximum number of variables used was approximately
min(dn/5e, p). Ridge regression used the same d that was used for lasso.

For n ≥ 5p, coverages tended to be near or higher than the nominal value
of 0.95. The average PI length was often near 1.3 times the asymptotically
optimal length for n = 10p and close to the optimal length for n = 100p. Cp

and EBIC produced good PIs for forward selection, and 10-fold CV produced
good PIs for PCR and PLS. For lasso and ridge regression, 10-fold CV pro-
duced good PIs if ψ = 0 or if k was small, but if both k ≥ 19 and ψ ≥ 0.5,
then 10-fold CV tended to shrink too much and the PI lengths were often
too long. Lasso did appear to select S ⊆ Imin since relaxed lasso was good.

For n/p not large, good performance needed stronger regularity conditions,
and all six methods can have problems. PLS tended to have severe undercov-
erage with small average length, but sometimes performed well for ψ = 0.9.
The PCR length was often too long for ψ = 0. If there was k = 1 active
population predictor, then forward selection with EBIC, lasso, and relaxed
lasso often performed well. For k = 19, forward selection with EBIC often
performed well, as did lasso and relaxed lasso for ψ = 0. For dense models
with k = p − 1 and n/p not large, there was often undercoverage. Here for-
ward selection would use about n/5 variables. Let d − 1 be the number of
active nontrivial predictors in the selected model. For N(0, 1) errors, ψ = 0,
and d < k, an asymptotic population 95% PI has length 3.92

√
k − d+ 1.

Note that when the (Yi,u
T
i )T follow a multivariate normal distribution, ev-

ery subset follows a multiple linear regression model. EBIC occasionally had
undercoverage, especially for k = 19 or p− 1, which was usually more severe
for ψ = 0.9 or 1/

√
p.

Tables 5.3 and 5.4 show some results for PIs (4.15) and (4.16). Here forward
selection using the minimum Cp model if nH > 10p and EBIC otherwise. The
coverage was very good. Labels such as CFS and CRL used PI (4.16). For
relaxed lasso, the program sometimes failed to run for 5000 runs, e.g., if the
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Table 5.2 Simulated Large Sample 95% PI Coverages and Lengths, ei ∼ EXP (1)−1

n p ψ k FS lasso RL RR PLS PCR
100 20 0 1 cov 0.9622 0.9728 0.9648 0.9544 0.9460 0.9724

len 3.7909 4.4344 4.3865 4.4375 4.2818 5.5065
2000 20 0 1 cov 0.9506 0.9502 0.9500 0.9488 0.9486 0.9542

len 3.1631 3.1199 3.1444 3.2380 3.1960 3.3220
200 20 0.9 1 cov 0.9588 0.9666 0.9664 0.9666 0.9556 0.9612

len 3.7985 3.6785 3.7002 3.7491 3.5049 3.7844
200 20 0.9 19 cov 0.9704 0.9760 0.9706 0.9784 0.9578 0.9592

len 4.6128 12.1188 4.8732 12.0363 3.3929 3.7374
200 200 0.9 19 cov 0.9338 0.9750 0.9564 0.9740 0.9440 0.9596

len 4.6271 37.3888 5.1167 56.2609 4.0550 4.6994
400 40 0.9 19 cov 0.9678 0.9654 0.9492 0.9624 0.9426 0.9574

len 4.3433 14.7390 4.7625 14.6602 3.6229 4.1045

Table 5.3 Validation Residuals: Simulated Large Sample 95% PI Coverages and
Lengths, ei ∼ N(0,1)

n,p,ψ,k FS CFS RL CRL Lasso CL RR CRR
200,20, 0,19 cov 0.9574 0.9446 0.9522 0.9420 0.9538 0.9382 0.9542 0.9430

len 4.6519 4.3003 4.6375 4.2888 4.6547 4.2964 4.7215 4.3569
200,40,0,19 cov 0.9564 0.9412 0.9524 0.9440 0.9550 0.9406 0.9548 0.9404

len 4.9188 4.5426 5.2665 4.8637 5.1073 4.7193 5.3481 4.9348
200,200, 0,19 cov 0.9488 0.9320 0.9548 0.9392 0.9480 0.9380 0.9536 0.9394

len 7.0096 6.4739 5.1671 4.7698 31.1417 28.7921 47.9315 44.3321
400,20,0.9,19 cov 0.9498 0.9406 0.9488 0.9438 0.9524 0.9426 0.9550 0.9426

len 4.4153 4.1981 4.5849 4.3591 9.4405 8.9728 9.2546 8.8054
400,40,0.9,19 cov 0.9504 0.9404 0.9476 0.9388 0.9496 0.9400 0.9470 0.9410

len 4.7796 4.5423 4.9704 4.7292 13.3756 12.7209 12.9560 12.3118
400,400,0.9,19 cov 0.9480 0.9398 0.9554 0.9444 0.9506 0.9422 0.9506 0.9408

len 5.2736 5.0131 4.9764 4.7296 43.5032 41.3620 42.6686 40.5578
400,800,0.9,19 cov 0.9550 0.9474 0.9522 0.9412 0.9550 0.9450 0.9550 0.9446

len 5.3626 5.0943 4.9382 4.6904 60.9247 57.8783 60.3589 57.3323

number of variables selected d = nH . In Table 5.3, PIs (4.15) and (4.16) are
asymptotically equivalent, but PI (4.16) had shorter lengths for moderate
n. In Table 5.4, PI (4.15) is shorter than PI (4.16) asymptotically, but for
moderate n, PI (4.16) was often shorter.

Table 5.5 shows some results for PIs (4.14) and (4.15) for lasso and ridge
regression. The header lasso indicates PI (4.14) was used while vlasso indi-
cates that PI (4.15) was used. PI (4.15) tended to work better when the fit
was poor while PI (4.14) was better for n = 2p and k = p − 1. The PIs are
asymptotically equivalent for consistent estimators.
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Table 5.4 Validation Residuals: Simulated Large Sample 95% PI Coverages and
Lengths, ei ∼ EXP (1)− 1

n,p,ψ,k FS CFS RL CRL Lasso CL RR CRR
200,20,0,1 cov 0.9596 0.9504 0.9588 0.9374 0.9604 0.9432 0.9574 0.9438

len 4.6055 4.2617 4.5984 4.2302 4.5899 4.2301 4.6807 4.2863
2000,20,0,1 cov 0.9560 0.9508 0.9530 0.9464 0.9544 0.9462 0.9530 0.9462

len 3.3469 3.9899 3.3240 3.9849 3.2709 3.9786 3.4307 3.9943
200,20,0.9,1 cov 0.9564 0.9402 0.9584 0.9362 0.9634 0.9412 0.9638 0.9418

len 3.9184 3.8957 3.8765 3.8660 3.8406 3.8483 3.8467 3.8509
200,20,0.9,19 cov 0.9630 0.9448 0.9510 0.9368 0.9554 0.9430 0.9572 0.9420

len 5.0543 4.6022 4.8139 4.3841 9.8640 9.0748 9.5218 8.7366
200,200,0.9,19 cov 0.9570 0.9434 0.9588 0.9418 0.9552 0.9392 0.9544 0.9394

len 5.8095 5.2561 5.2366 4.7292 31.1920 28.8602 47.9229 44.3251
400,40,0.9,19 cov 0.9476 0.9402 0.9494 0.9416 0.9584 0.9496 0.9562 0.9466

len 4.6992 4.4750 4.9314 4.6703 13.4070 12.7442 13.0579 12.4015

Table 5.5 PIs (4.14) and (4.15): Simulated Large Sample 95% PI Coverages and
Lengths

n p ψ k dist lasso vlasso RR vRR
100 20 0 1 cov N(0,1) 0.9750 0.9632 0.9564 0.9606

len 4.8245 4.7831 4.5741 5.3277
100 20 0 1 cov EXP(1)−1 0.9728 0.9582 0.9546 0.9612

len 4.4345 5.0089 4.4384 5.6692
100 50 0 49 cov N(0,1) 0.9714 0.9606 0.9822 0.9618

len 6.8345 22.3265 7.7229 27.7275
100 50 0 49 cov EXP(1)−1 0.9716 0.9618 0.9814 0.9608

len 6.9460 22.4097 7.8316 27.8306
400 400 0 399 cov N(0,1) 0.8508 0.9518 1.0000 0.9548

len 37.5418 78.0652 244.1004 69.5812
400 400 0 399 cov EXP(1)−1 0.8446 0.9586 1.0000 0.9558

len 37.5185 78.0564 243.7929 69.5474

5.10 Cross Validation

For MLR variable selection there are many methods for choosing the final
submodel, including AIC, BIC, Cp, and EBIC. See Section 4.1. Variable se-
lection is a special case of model selection where there are M models a a final
model needs to be chosen. Cross validation is a common criterion for model
selection.

Definition 5.9. For k-fold cross validation (k-fold CV), randomly divide
the training data into k groups or folds of approximately equal size nj ≈ n/k
for j = 1, ..., k. Leave out the first fold, fit the statistical method to the k− 1
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remaining folds, and then compute some criterion for the first fold. Repeat
for folds 2, ..., k.

Following James et al. (2013, p. 181), if the statistical method is an MLR
method, we often compute Ŷi(j) for each Yi in the fold j left out. Then

MSEj =
1

nj

nj∑

i=1

(Yi − Ŷi(j))
2 ,

and the overall criterion is

CV(k) =
1

k

k∑

j=1

MSEj .

Note that if each nj = n/k, then

CV(k) =
1

n

n∑

i=1

(Yi − Ŷi(j))
2.

Then CV(k) ≡ CV(k)(Ii) is computed for i = 1, ...,M , and the model Ic with
the smallest CV(k)(Ii) is selected.

Assume that model (4.1) holds: Y = xT β +e = xT
SβS +e where βS is an

aS × 1 vector. Suppose p is fixed and n → ∞. If β̂I is a × 1, form the p × 1

vector β̂I,0 from β̂I by adding 0s corresponding to the omitted variables. If
P (S ⊆ Imin) → 1 as n→ ∞, then Theorem 4.4 and Remark 4.5 showed that

β̂Imin,0 is a
√
n consistent estimator of β under mild regularity conditions.

Note that if aS = p, then β̂Imin,0 is asymptotically equivalent to the OLS full

model β̂ (since S is equal to the full model).

Choosing folds for k-fold cross validation is similar to randomly allocating
cases to treatment groups. The following code is useful for a simulation. It
makes copies of 1 to k in a vector of length n called tfolds. The sample
command makes a permutation of tfolds to get the folds. The lengths of the
k folds differ by at most 1.

n<-26

k<-5

J<-as.integer(n/k)+1

tfolds<-rep(1:k,J)

tfolds<-tfolds[1:n] #can pass tfolds to a loop

folds<-sample(tfolds)

folds

4 2 3 5 3 3 1 5 2 2 5 1 2 1 3 4 2 1 5 5 1 4 1 4 4 3

Example 5.2, continued. The linmodpack function pifold uses k-fold
CV to get the coverage and average PI lengths. We used 5-fold CV with
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coverage and average 95% PI length to compare the forward selection models.
All 4 models had coverage 1, but the average 95% PI lengths were 2591.243,
2741.154, 2902.628, and 2972.963 for the models with 2 to 5 predictors. See
the following R code.

y <- marry[,3]; x <- marry[,-3]

x1 <- x[,2]

x2 <- x[,c(2,3)]

x3 <- x[,c(1,2,3)]

pifold(x1,y) #nominal 95% PI

$cov

[1] 1

$alen

[1] 2591.243

pifold(x2,y)

$cov

[1] 1

$alen

[1] 2741.154

pifold(x3,y)

$cov

[1] 1

$alen

[1] 2902.628

pifold(x,y)

$cov

[1] 1

$alen

[1] 2972.963

#Validation PIs for submodels: the sample size is

#likely too small and the validation PI is formed

#from the validation set.

n<-dim(x)[1]

nH <- ceiling(n/2)

indx<-1:n

perm <- sample(indx,n)

H <- perm[1:nH]

vpilen(x1,y,H) #13/13 were in the validation PI

$cov

[1] 1.0

$len

[1] 116675.4

vpilen(x2,y,H)

$cov

[1] 1.0

$len
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[1] 116679.8

vpilen(x3,y,H)

$cov

[1] 1.0

$len

[1] 116312.5

vpilen(x,y,H)

$cov

[1] 1.0

$len #shortest length

[1] 116270.7

Some more code is below.

n <- 100

p <- 4

k <- 1

q <- p-1

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

b <- 0 * 1:q

b[1:k] <- 1

y <- 1 + x %*% b + rnorm(n)

x1 <- x[,1]

x2 <- x[,c(1,2)]

x3 <- x[,c(1,2,3)]

pifold(x1,y)

$cov

[1] 0.96

$alen

[1] 4.2884

pifold(x2,y)

$cov

[1] 0.98

$alen

[1] 4.625284

pifold(x3,y)

$cov

[1] 0.98

$alen

[1] 4.783187

pifold(x,y)

$cov

[1] 0.98

$alen

[1] 4.713151
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n <- 10000

p <- 4

k <- 1

q <- p-1

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

b <- 0 * 1:q

b[1:k] <- 1

y <- 1 + x %*% b + rnorm(n)

x1 <- x[,1]

x2 <- x[,c(1,2)]

x3 <- x[,c(1,2,3)]

pifold(x1,y)

$cov

[1] 0.9491

$alen

[1] 3.96021

pifold(x2,y)

$cov

[1] 0.9501

$alen

[1] 3.962338

pifold(x3,y)

$cov

[1] 0.9492

$alen

[1] 3.963305

pifold(x,y)

$cov

[1] 0.9498

$alen

[1] 3.96203

5.11 Hypothesis Testing After Model Selection, n/p
Large

Section 4.6 showed how to use the bootstrap for hypothesis test H0 : θ =
Aβ = θ0 versus H1 : θ = Aβ 6= θ0 with the statistic Tn = Aβ̂Imin,0

where β̂Imin,0 is the zero padded OLS estimator computed from the variables
corresponding to Imin. The theory needs P (S ⊆ Imin) → 1 as n → ∞, and
hence applies to OLS variable selection with AIC, BIC, and Cp, and to relaxed
lasso and relaxed elastic net if lasso and elastic net are consistent.

Assume n ≥ 20p and that the error distribution is unimodal and not highly
skewed. The response plot and residual plot are plots with Ŷ = xT β̂ on the
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horizontal axis and Y or r on the vertical axis, respectively. Then the plotted
points in these plots should scatter in roughly even bands about the identity
line (with unit slope and zero intercept) and the r = 0 line, respectively.
See Figure 1.1. If the plots for the OLS full model suggest that the error
distribution is skewed or multimodal, then much larger sample sizes may be
needed.

Let p be fixed. Then lasso is asymptotically equivalent to OLS if λ̂1n/
√
n →

0, and hence should not have any β̂i = 0, asymptotically. If aS < p, then lasso
tends not be

√
n consistent if lasso selects S with high probability by Ewald

and Schneider (2018), but then relaxed lasso tends to be
√
n consistent. If

λ̂1n/n→ 0, then lasso is consistent so P (S ⊆ I) → 1 as n → ∞. Hence often

if lasso has more than one β̂i = 0, then lasso is not
√
n consistent.

Suppose we use the residual bootstrap where Y ∗ = Xβ̂OLS +rW follows a
standard linear model where the elements rW

i of rW are iid from the empirical
distribution of the OLS full model residuals ri. In Section 4.6 we used forward
selection when regressing Y ∗ on X , but we could use lasso or ridge regression
instead. Since these estimators are consistent if λ̂1n/n → 0 as n → ∞, we

expect β̂
∗
L and β̂

∗
R to be centered at β̂OLS . If the variabliity of the β̂

∗
is similar

to or greater than that of β̂OLS , then by the geometric argument Theorem
4.5, we might get simulated coverage close to or higher than the nominal.

If lasso or ridge regression shrink β̂
∗

too much, then the coverage could be
bad. In limited simulations, the prediction region method only simulated well
for ridge regression with ψ = 0. Results from Ewald and Schneider (2018, p.
1365) suggest that the lasso confidence region volume is greater than OLS
confidence region volume when lasso uses λ1n =

√
n/2.

A small simulation was done for confidence intervals and confidence re-
gions, using the same type of data as for the variable selection simula-
tion in Section 4.6 and the prediction interval simulation in Section 5.9,
with B = max(1000, n, 20p) and 5000 runs. The regression model used
β = (1, 1, 0, 0)T with n = 100 and p = 4. When ψ = 0, the design matrix
X consisted of iid N(0,1) random variables. See Table 5.6 which was taken
from Pelawa Watagoda (2017). The residual bootstrap was used. Types 1)–
5) correspond to types i)–v), and the ε value only applies to the type 5)
error distribution. The function lassobootsim3 uses the prediction region
method for lasso and ridge regression. The function lassobootsim4 can
be used to simulate confidence intervals for the βi is S∗

T is singular for lasso.
The test was for H0 : (β3, β4)

T = (0, 0)T .

5.12 Data Splitting

A common method for data splitting randomly divides the data set into two
half sets. On the first half set, fit the model selection method, e.g. forward
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Table 5.6 Bootstrapping Lasso, ψ = 0

n ε type β1 β2 β3 β4 test
100 1 cov 0.9440 0.9376 0.9910 0.9946 0.9790

len 0.4143 0.4470 0.3759 0.3763 2.6444
2 cov 0.9468 0.9428 0.9946 0.9944 0.9816

len 0.6870 0.7565 0.6238 0.6226 2.6832
3 cov 0.9418 0.9408 0.9930 0.9948 0.9840

len 0.4110 0.4506 0.3743 0.3746 2.6684
4 cov 0.9468 0.9370 0.9938 0.9948 0.9838

len 0.2392 0.2578 0.2151 0.2153 2.6454
0.5 5 cov 0.9438 0.9344 0.9988 0.9970 0.9924

len 2.9380 2.5042 2.4912 2.4715 2.8536
0.9 5 cov 0.9506 0.9290 0.9974 0.9976 0.9956

len 3.9180 3.2760 3.7356 3.2739 2.8836

selection or lasso, to get the a predictors. Use this model as the full model
for the second half set: use the standard OLS inference from regressing the
response on the predictors found from the first half set. This method can
be inefficient if n ≥ 10p, but is useful for a sparse model if n ≤ 5p, if the
probability that the model underfits goes to zero, and if n ≥ 20a. A model is
sparse if the number of predictors with nonzero coefficients is small.

For lasso, the active set I from the first half set (training data) is found,

and data splitting estimator is the OLS estimator β̂I,D computed from the
second half set (test data). This estimator is not the relaxed lasso estimator.

The estimator β̂I,D has the same large sample theory as if I was chosen
before obtaining the data.

5.13 Summary

1) The MLR model is Yi = β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei for

i = 1, ..., n. This model is also called the full model. In matrix notation,
these n equations become Y = Xβ + e. Note that xi,1 ≡ 1.

2) The ordinary least squares OLS full model estimator β̂OLS minimizes
QOLS(β) =

∑n
i=1 r

2
i (β) = RSS(β) = (Y −Xβ)T (Y −Xβ). In the estimat-

ing equations QOLS(β), the vector β is a dummy variable. The minimizer

β̂OLS estimates the parameter vector β for the MLR model Y = Xβ + e.

Note that β̂OLS ∼ ANp(β,MSE(XT X)−1).
3) Given an estimate b of β, the corresponding vector of predicted values

or fitted values is Ŷ ≡ Ŷ (b) = Xb. Thus the ith fitted value

Ŷi ≡ Ŷi(b) = xT
i b = xi,1b1 + · · ·+ xi,pbp.
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The vector of residuals is r ≡ r(b) = Y − Ŷ (b). Thus ith residual ri ≡
ri(b) = Yi − Ŷi(b) = Yi − xi,1b1 − · · · − xi,pbp. A response plot for MLR is a

plot of Ŷi versus Yi. A residual plot is a plot of Ŷi versus ri. If the ei are iid
from a unimodal distribution that is not highly skewed, the plotted points
should scatter about the identity line and the r = 0 line.

4)

Label coef SE shorth 95% CI for βi

Constant=intercept= x1 β̂1 SE(β̂1) [L̂1, Û1]

x2 β̂2 SE(β̂2) [L̂2, Û2]
...

xp β̂p SE(β̂p) [L̂p, Ûp]

The classical OLS large sample 95% CI for βi is β̂i ±1.96SE(β̂i). Consider
testing H0 : βi = 0 versus HA : βi 6= 0. If 0 ∈ CI for βi, then fail to reject H0,
and conclude xi is not needed in the MLR model given the other predictors
are in the model. If 0 6∈ CI for βi, then reject H0, and conclude xi is needed
in the MLR model.

5) Let xT
i = (1 uT

i ). It is often convenient to use the centered response
Z = Y − Y where Y = Y 1, and the n × (p − 1) matrix of standardized
nontrivial predictors W = (Wij). For j = 1, ..., p− 1, let Wij denote the
(j + 1)th variable standardized so that

∑n
i=1Wij = 0 and

∑n
i=1W

2
ij = n.

Then the sample correlation matrix of the nontrivial predictors ui is

Ru =
W T W

n
.

Then regression through the origin is used for the model Z = Wη + e
where the vector of fitted values Ŷ = Y + Ẑ. Thus the centered response
Zi = Yi − Y and Ŷi = Ẑi + Y . Then η̂ does not depend on the units of
measurement of the predictors. Linear combinations of the ui can be written
as linear combinations of the xi, hence β̂ can be found from η̂.

6) A model for variable selection is xT β = xT
SβS + xT

EβE = xT
SβS where

x = (xT
S ,x

T
E)T , xS is an aS × 1 vector, and xE is a (p − aS) × 1 vector. Let

xI be the vector of a terms from a candidate subset indexed by I, and let xO

be the vector of the remaining predictors (out of the candidate submodel). If
S ⊆ I, then xT β = xT

SβS = xT
SβS + xT

I/Sβ(I/S) + xT
O0 = xT

I βI where xI/S

denotes the predictors in I that are not in S. Since this is true regardless
of the values of the predictors, βO = 0 if S ⊆ I. Note that βE = 0. Let
kS = aS − 1 = the number of population active nontrivial predictors. Then
k = a− 1 is the number of active predictors in the candidate submodel I.

7) Let Q(η) be a real valued function of the k × 1 vector η. The gradient
of Q(η) is the k × 1 vector
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5Q = 5Q(η) =
∂Q

∂η
=
∂Q(η)

∂η
=




∂
∂η1

Q(η)
∂

∂η2
Q(η)
...

∂
∂ηk

Q(η)



.

Suppose there is a model with unknown parameter vector η. A set of estimat-
ing equations f(η) is minimized or maximized where η is a dummy variable
vector in the function f : R

k → R
k.

8) As a mnemonic (memory aid) for the following results, note that the

derivative
d

dx
ax =

d

dx
xa = a and

d

dx
ax2 =

d

dx
xax = 2ax.

a) If Q(η) = aT η = ηT a for some k× 1 constant vector a, then 5Q = a.
b) If Q(η) = ηT Aη for some k × k constant matrix A, then 5Q = 2Aη.

c) If Q(η) =
∑k

i=1 |ηi| = ‖η‖1, then 5Q = s = sη where si = sign(ηi)
where sign(ηi) = 1 if ηi > 0 and sign(ηi) = −1 if ηi < 0. This gradient is only
defined for η where none of the k values of ηi are equal to 0.

9) Forward selection with OLS generates a sequence of M models I1, ..., IM
where Ij uses j predictors x∗1 ≡ 1, x∗2, ..., x

∗
M. Often M = min(dn/Je, p) where

J is a positive integer such as J = 5.
10) For the model Y = Xβ +e, methods such as forward selection, PCR,

PLS, ridge regression, relaxed lasso, and lasso each generate M fitted mod-
els I1, ..., IM, where M depends on the method. For forward selection the
simulation used Cp for n ≥ 10p and EBIC for n < 10p. The other meth-
ods minimized 10-fold CV. For forward selection, the maximum number of
variables used was approximately min(dn/5e, p).

11) Consider choosing η̂ to minimize the criterion

Q(η) =
1

a
(Z − Wη)T (Z − Wη) +

λ1,n

a

p−1∑

i=1

|ηi|j (5.25)

where λ1,n ≥ 0, a > 0, and j > 0 are known constants. Then j = 2
corresponds to ridge regression η̂R, j = 1 corresponds to lasso η̂L, and
a = 1, 2, n, and 2n are common. The residual sum of squares RSSW (η) =
(Z − Wη)T (Z − Wη), and λ1,n = 0 corresponds to the OLS estimator

η̂OLS = (W T W )−1W T Z. Note that for a k × 1 vector η, the squared (Eu-

clidean) L2 norm ‖η‖2
2 = ηT η =

∑k
i=1 η

2
i and the L1 norm ‖η‖1 =

∑k
i=1 |ηi|.

Lasso and ridge regression have a parameter λ. When λ = 0, the OLS
full model is used. Otherwise, the centered response and scaled nontrivial
predictors are used with Z = Wη + e. See 5). These methods also use a
maximum value λM of λ and a grid of M λ values 0 ≤ λ1 < λ2 < · · · <
λM−1 < λM where often λ1 = 0. For lasso, λM is the smallest value of λ such
that η̂λM

= 0. Hence η̂λi
6= 0 for i < M .

12) The elastic net estimator η̂EN minimizes
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QEN(η) = RSS(η) + λ1‖η‖2
2 + λ2‖η‖1 (5.26)

where λ1 = (1 − α)λ1,n and λ2 = 2αλ1,n with 0 ≤ α ≤ 1.
13) Use Zn ∼ ANg (µn,Σn) to indicate that a normal approximation is

used: Zn ≈ Ng(µn,Σn). Let a be a constant, let A be a k × g constant

matrix, and let c be a k×1 constant vector. If
√
n(θ̂n−θ)

D→ Ng(0,V ), then
aZn = aIgZn with A = aIg,

aZn ∼ ANg

(
aµn, a

2Σn

)
, and AZn + c ∼ ANk

(
Aµn + c,AΣnAT

)
,

θ̂n ∼ ANg

(
θ,

V

n

)
, and Aθ̂n + c ∼ ANk

(
Aθ + c,

AV AT

n

)
.

14) Assume η̂OLS = (W T W )−1W T Z. Let sn = (s1n, ..., sp−1,n)T where
sin ∈ [−1, 1] and sin = sign(η̂i) if η̂i 6= 0. Here sign(ηi) = 1 if ηi > 1 and
sign(ηi) = −1 if ηi < 1. Then

i) η̂R = η̂OLS − λ1n

n
n(W T W + λ1,nIp−1)

−1η̂OLS .

ii) η̂L = η̂OLS − λ1,n

2n
n(W T W )−1 sn.

iii) η̂EN = η̂OLS − n(W T W + λ1Ip−1)
−1

[
λ1

n
η̂OLS +

λ2

2n
sn

]
.

15) Assume that the sample correlation matrix Ru =
W T W

n

P→ V −1.

Let H = W (W T W )−1W T = (hij), and assume that maxi=1,...,n hii
P→ 0 as

n→ ∞. Let η̂A be η̂EN , η̂L, or η̂R. Let p be fixed.

i) LS CLT:
√
n(η̂OLS − η)

D→ Np−1(0, σ
2V ).

ii) If λ̂1,n/
√
n

P→ 0, then

√
n(η̂A − η)

D→ Np−1(0, σ
2V ).

iii) If λ̂1,n/
√
n

P→ τ ≥ 0, α̂
P→ ψ ∈ [0, 1], and sn

P→ s = sη, then

√
n(η̂EN − η)

D→ Np−1

(
−V [(1− ψ)τη + ψτs], σ2V

)
.

iv) If λ̂1,n/
√
n

P→ τ ≥ 0, then

√
n(η̂R − η)

D→ Np−1(−τV η, σ2V ).

v) If λ̂1,n/
√
n

P→ τ ≥ 0 and sn
P→ s = sη, then

√
n(η̂L − η)

D→ Np−1

(−τ
2

V s, σ2V

)
.
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ii) and v) are the Lasso CLT, ii) and iv) are the RR CLT, and ii) and iii)
are the EN CLT.

16) Under the conditions of 15), relaxed lasso = VS-lasso and relaxed
elastic net = VS-elastic net are

√
n consistent under much milder conditions

than lasso and elastic net, since the relaxed estimators are
√
n consistent when

lasso and elastic net are consistent. Let Imin correspond to the predictors
chosen by lasso, elastic net, or forward selection, including a constant. Let
β̂Imin

be the OLS estimator applied to these predictors, let β̂Imin,0 be the

zero padded estimator. The large sample theory for β̂Imin,0 (from forward
selection, relaxed lasso, and relaxed elastic net) is given by Theorem 4.4.

Note that the large sample theory for the estimators β̂ is given for p × 1
vectors. The theory for η̂ is given for (p − 1) × 1 vectors In particular, the
theory for lasso and elastic net does not cast away the η̂i = 0.

17) Under Equation (4.1) with p fixed, if lasso or elastic net are consistent,
then P (S ⊆ Imin) → 1 as n → ∞. Hence when lasso and elastic net do
variable selection, they are often not

√
n consistent.

18) Refer to 6). a) The OLS full model tends to be useful if n ≥ 10p with
large sample theory better than that of lasso, ridge regression, and elastic
net. Testing is easier and the Olive (2007) PI tailored to the OLS full model
will work better for smaller sample sizes than PI (4.14) if n ≥ 10p. If n ≥ 10p
but XT X is singular or ill conditioned, other methods can perform better.

Forward selection, relaxed lasso, and relaxed elastic net are competitive
with the OLS full model even when n ≥ 10p and XT X is well conditioned.
If n ≤ p then OLS interpolates the data and is a poor method. If n = Jp,
then as J decreases from 10 to 1, other methods become competitive.

b) If n ≥ 10p and kS < p− 1, then forward selection can give more precise
inference than the OLS full model. When n/p is small, the PI (4.14) for
forward selection can perform well if n/kS is large. Forward selection can
be worse than ridge regression or elastic net if kS > min(n/J, p). Forward
selection can be too slow if both n and p are large. Forward selection, relaxed
lasso, and relaxed elastic net tend to be bad if (XT

AXA)−1 is ill conditioned
where A = Imin.

c) If n ≥ 10p, lasso can be better than the OLS full model if XT X is ill
conditioned. Lasso seems to perform best if kS is not much larger than 10
or if the nontrivial predictors are orthogonal or uncorrelated. Lasso can be
outperformed by ridge regression or elastic net if kS > min(n, p− 1).

d) If n ≥ 10p ridge regression and elastic net can be better than the OLS
full model if XT X is ill conditioned. Ridge regression (and likely elastic net)
seems to perform best if kS is not much larger than 10 or if the nontrivial
predictors are orthogonal or uncorrelated. Ridge regression and elastic net
can outperform lasso if kS > min(n, p− 1).

e) The PLS PI (4.14) can perform well if n ≥ 10p if some of the other five
methods used in the simulations start to perform well when n ≥ 5p. PLS may
or may not be inconsistent if n/p is not large. Ridge regression tends to be
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inconsistent unless P (d → p) → 1 so that ridge regression is asymptotically
equivalent to the OLS full model.

19) Under strong regularity conditions, lasso and relaxed lasso with k–fold
CV, and forward selection with EBIC can perform well even if n/p is small.
So PI (4.14) can be useful when n/p is small.

5.14 Complements

Good references for forward selection, PCR, PLS, ridge regression, and lasso
are Hastie et al. (2009, 2015), James et al. (2013), Olive (2019), Pelawa
Watagoda (2017) and Pelawa Watagoda and Olive (2019b). Also see Efron
and Hastie (2016). An early reference for forward selection is Efroymson
(1960). Under strong regularity conditions, Gunst and Mason (1980, ch. 10)
covers inference for ridge regression (and a modified version of PCR) when
the iid errors ei ∼ N(0, σ2).

Xu et al. (2011) notes that sparse algorithms are not stable. Belsley (1984)
shows that centering can mask ill conditioning of X .

Classical principal component analysis based on the correlation matrix can
be done using the singular value decomposition (SVD) of the scaled matrix

W S = W g/
√
n− 1 using êi and λ̂i = σ2

i where λ̂i = λ̂i(W
T
SW S) is the ith

eigenvalue of W T
SW S . Here the scaling is using g = 1. For more information

about the SVD, see Datta (1995, pp. 552-556) and Fogel et al. (2013).
There is massive literature on variable selection and a fairly large literature

for inference after variable selection. See, for example, Bertsimas et al. (2016),
Fan and Lv (2010), Ferrari and Yang (2015), Fithian et al. (2014), Hjort and
Claeskins (2003), Knight and Fu (2000), Lee et al. (2016), Leeb and Pötscher
(2005, 2006), Lockhart et al. (2014), Qi et al. (2015), and Tibshirani et al.
(2016).

For post-selection inference, the methods in the literature are often for mul-
tiple linear regression assuming normality, or are asymptotically equivalent
to using the full model, or find a quantity to test that is not Aβ. Typically
the methods have not been shown to perform better than data splitting. See
Ewald and Schneider (2018). When n/p is not large, inference is currently
much more difficult. Under strong regularity conditions, lasso and forward
selection with EBIC can work well. Leeb et al. (2015) suggests that the Berk
et al. (2013) method does not really work. Also see Dezeure et al. (2015),
Javanmard and Montanari (2014), Lu et al. (2017), Tibshirani et al. (2016),
van de Geer et al. (2014), and Zhang and Cheng (2017). Fan and Lv (2010)
gave large sample theory for some methods if p = o(n1/5). See Tibshirani et
al. (2016) for an R package.

Warning: For n < 5p, every estimator is unreliable, to my knowledge.
Regularity conditions for consistency are strong if they exist. For example,
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PLS is sometimes inconsistent and sometimes
√
n consistent. Validating the

MLR estimator with PIs can help. Also make response and residual plots.
Full OLS Model: A sufficient condition for β̂OLS to be a consistent

estimator of β is Cov(β̂OLS) = σ2(XT X)−1 → 0 as n → ∞. See Lai et al.
(1979).

Forward Selection: See Olive and Hawkins (2005), Pelawa Watagoda
and Olive (2019ab), and Rathnayake and Olive (2019).

Principal Components Regression: Principal components are Karhunen
Loeve directions of centered X. See Hastie et al. (2009, p. 66). A useful PCR
paper is Cook and Forzani (2008).

Partial Least Squares: PLS was introduced by Wold (1975). Also see
Wold (1985, 2006). Two useful papers are Cook et al. (2013) and Cook and
Su (2016). PLS tends to be

√
n consistent if p is fixed and n→ ∞. If p > n,

under two sets of strong regularity conditions, PLS can be
√
n consistent

or inconsistent. See Chun and Keleş (2010), Cook (2018), Cook and Forzani
(2018, 2019), and Cook et al. (2013). Denham (1997) suggested a PI for PLS
that assumes the number of components is selected in advance.

Ridge Regression: An important ridge regression paper is Hoerl and
Kennard (1970). Also see Gruber (1998). Ridge regression is known as
Tikhonov regularization in the numerical analysis literature.

Lasso: Lasso was introduced by Tibshirani (1996). Efron et al. (2004)
and Tibshirani et al. (2012) are important papers. Su et al. (2017) note some
problems with lasso. If n/p is large, see Knight and Fu (2000) for the residual
bootstrap with OLS full model residuals. Camponovo (2015) suggested that
the nonparametric bootstrap does not work for lasso. Chatterjee and Lahiri
(2011) stated that the residual bootstrap with lasso does not work. Hall et
al. (2009) stated that the residual bootstrap with OLS full model residuals
does not work, but the m out of n residual bootstrap with OLS full model
residuals does work. Rejchel (2016) gave a good review of lasso theory. Fan
and Lv (2010) reviewed large sample theory for some alternative methods.
See Lockhart et al. (2014) for a partial remedy for hypothesis testing with
lasso. The Ning and Liu (2017) method needs a log likelihood. Knight and
Fu (2000) gave theory for fixed p.

Regularity conditions for testing are strong. Often lasso tests assume that
Y and the nontrivial predictors follow a multivariate normal (MVN) distri-
bution. For the MVN distribution, the MLR model tends to be dense not
sparse if n/p is small.

Lasso Variable Selection:
Applying OLS on a constant and the k nontrivial predictors that have

nonzero lasso η̂i is called lasso variable selection. We want n ≥ 10(k + 1).
If λ1 = 0, a variant of lasso variable selection computes the OLS submodel
for the subset corresponding to λi for i = 1, ...,M . If Cp is used, then this
variant has large sample theory given by Theorem 2.4.

Lasso can also be used for other estimators, such as generalized linear
models (GLMs). Then lasso variable selection is the “classical estimator,”
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such as a GLM, applied to the lasso active set. In other words, use lasso
variable selection as a variable selection method. For prediction, lasso variable
selection is often better than lasso, but sometimes lasso is better.

See Meinshausen (2007) for the relaxed lasso method with R package
relaxo for MLR: apply lasso with penalty λ to get a subset of variables
with nonzero coefficients. Then reduce the shrinkage of the nonzero elements
by applying lasso again to the nonzero coefficients but with a smaller penalty
φ. This two stage estimator could be used for other estimators. Lasso variable
selection corresponds to the limit as φ → 0.

Dense Regression or Abundant Regression: occurs when most of the
predictors contribute to the regression. Hence the regression is not sparse. See
Cook et al. (2013).

Other Methods: Consider the MLR model Z = Wη + e. Let λ ≥ 0 be
a constant and let q ≥ 0. The estimator η̂q minimizes the criterion

Qq(b) = r(b)T r(b) + λ

p−1∑

j=1

|bi|q, (5.27)

over all vectors b ∈ R
p−1 where we take 00 = 0. Then q = 1 corresponds

to lasso and q = 2 corresponds to ridge regression. If q = 0, the penalty
λ
∑p−1

j=1 |bi|0 = λk where k is the number of nonzero components of b. Hence
the q = 0 estimator is often called the “best subset” estimator. See Frank
and Friedman (1993). For fixed p, large sample theory is given by Knight and
Fu (2000). Following Hastie et al. (2009, p. 72), the optimization problem is
convex if q ≥ 1 and λ is fixed.

If n ≤ 400 and p ≤ 3000, Bertsimas et al. (2016) give a fast “all subsets”
variable selection method. Lin et al. (2012) claim to have a very fast method
for variable selection. Lee and Taylor (2014) suggest the marginal screening
algorithm: let W be the matrix of standardized nontrivial predictors. Com-
pute W T Y = (c1, ..., cp−1)

T and select the J variables corresponding to the
J largest |ci|. These are the J standardized variables with the largest absolute
correlations with Y . Then do an OLS regression of Y on these J variables
and a constant. A slower algorithm somewhat similar but much slower than
the Lin et al. (2012) algorithm follows. Let a constant x1 be in the model, and
let W = [a1, ...,ap−1] and r = Y −Y . Compute W T r and let x∗2 correspond
to the variable with the largest absolute entry. Remove the corresponding
aj from W to get W 1. Let r1 be the OLS residuals from regressing Y on

x1 and x∗2. Compute W T r1 and let x∗3 correspond to the variable with the
largest absolute entry. Continue in this manner to get x1, x

∗
2, ..., x

∗
J where

J = min(p, dn/5e). Like forward selection, evaluate the J − 1 models Ij con-
taining the first j predictors x1, x

∗
2, ..., x

∗
J for j = 2, ..., J with a criterion such

as Cp.
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Following Sun and Zhang (2012), let (5.6) hold and let

Q(η) =
1

2n
(Z − Wη)T (Z − Wη) + λ2

p−1∑

i=1

ρ

( |ηi|
λ

)
where ρ is scaled such

that the derivative ρ′(0+) = 1. As for lasso and elastic net, let sj = sgn(η̂j)
where sj ∈ [−1, 1] if η̂j = 0. Let ρ′j = ρ′(|η̂j|/λ) if η̂j 6= 0, and ρ′j = 1 if

η̂j = 0. Then η̂ is a critical point of Q(η) iff wT
j (Z − Wη̂) = nλsjρ

′
j for

j = 1, ..., n. If ρ is convex, then these conditions are the KKT conditions. Let
dj = sjρ

′
j . Then W T Z − W T Wη̂ = nλd, and η̂ = η̂OLS − nλ(W T W )−1d.

If the dj are bounded, then η̂ is consistent if λ → 0 as n → ∞, and η̂ is
asymptotically equivalent to η̂OLS if n1/2λ→ 0. Note that ρ(t) = t for t > 0
gives lasso with λ = λ1,n/(2n).

Gao and Huang (2010) give theory for a LAD–lasso estimator, and Qi et
al. (2015) is an interesting lasso competitor.

Multivariate linear regression has m ≥ 2 response variables. See Olive
(2017ab: ch. 12). PLS also works if m ≥ 1, and methods like ridge regression
and lasso can also be extended to multivariate linear regression. See, for ex-
ample, Haitovsky (1987) and Obozinski et al. (2011). Sparse envelope models
are given in Su et al. (2016).

AIC and BIC Type Criterion:
Olive and Hawkins (2005) and Burnham and Anderson (2004) are useful

reference when p is fixed. Some interesting theory for AIC appears in Zhang
(1992ab). Zheng and Loh (1995) show that BICS can work if p = pn =
o(log(n)) and there is a consistent estimator of σ2. For the Cp criterion, see
Jones (1946) and Mallows (1973).

AIC and BIC type criterion and variable selection for high dimensional re-
gression are discussed in Chen and Chen (2008), Fan and Lv (2010), Fujikoshi
et al. (2014), and Luo and Chen (2013). Wang (2009) suggests using

WBIC(I) = log[SSE(I)/n] + n−1|I|[log(n) + 2 log(p)].

See Bogdan et al. (2004), Cho and Fryzlewicz (2012), and Kim et al. (2012).
Luo and Chen (2013) state that WBIC(I) needs p/na < 1 for some 0 < a <
1.

If n/p is large and one of the models being considered is the true model
S (shown to occur with probability going to one only under very strong
assumptions by Wieczorek and Lei (2021)), then BIC tends to outperform
AIC. If none of the models being considered is the true model, then AIC
tends to outperform BIC. See Yang (2003).

Robust Versions: Hastie et al. (2015, pp. 26-27) discuss some modifica-
tions of lasso that are robust to certain types of outliers. Robust methods
for forward selection and LARS are given by Uraibi et al. (2017, 2019) that
need n >> p. If n is not much larger than p, then Hoffman et al. (2015)
have a robust Partial Least Squares–Lasso type estimator that uses a clever
weighting scheme.
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A simple method to make an MLR method robust to certain types of
outliers is to find the covmb2 set B of Chapter 7 applied to the quantitative
predictors. Then use the MLR method (such as elastic net, lasso, PLS, PCR,
ridge regression, or forward selection) applied to the cases corresponding to
the xj in B. Make a response and residual plot, based on the robust estimator

β̂B , using all n cases.
Prediction Intervals:
Lei et al. (2018) and Wasserman (2014) suggested prediction intervals for

estimators such as lasso. The method has interesting theory if the (xi, Yi) are
iid from some population. Also see Butler and Rothman (1980). Steinberger
and Leeb (2016) used leave-one-out residuals, but delete the upper and lower
2.5% of the residuals to make a 95% PI. Hence the PI will have undercoverage
and the shorth PI will tend to be shorter when the error distribution is not
symmetric.

Let p be fixed, d be for PI (4.14), and n → ∞. For elastic net, forward
selection, PCR, PLS, ridge regression, relaxed lasso, and lasso, if P (d→ p) →
1 as n → ∞ then the seven methods are asymptotically equivalent to the
OLS full model, and the PI (4.14) is asymptotically optimal on a large class
of iid unimodal zero mean error distributions. The asymptotic optimality
holds since the sample quantile of the OLS full model residuals are consistent
estimators of the population quantiles of the unimodal error distribution for

a large class of distributions. Note that d
P→ p if P (λ̂1n → 0) → 1 for elastic

net, lasso, and ridge regression, and d
P→ p if the number d−1 of components

(γT
j x or γT

j w) used by the method satisfies P (d−1 → p−1) → 1. Consistent

estimators β̂ of β also produce residuals such that the sample quantiles of the
residuals are consistent estimators of quantiles of the error distribution. See
Remark 4.21, Olive and Hawkins (2003), and Rousseeuw and Leroy (1987, p.
128).

Degrees of Freedom:
A formula for the model degrees of freedom df tend to be given for a model

when there is no model selection or variable selection. For many estimators,
the degrees of freedom is not known if model selection is used. A d for PI
(4.15) is often obtained by plugging in the degrees of freedom formula as if
model selection did not occur. Then the resulting d is rarely an actual degrees
of freedom. As an example, if Ŷ = HλY , then often df = trace(Hλ) if λ is

selected before examining the data. If model selection is used to pick λ̂, then
d = trace(H λ̂) is not the model degrees of freedom.
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5.15 Problems

5.1. For ridge regression, suppose V = ρ−1
u . Show that if p/n and λ/n =

λ1,n/n are both small, then

η̂R ≈ η̂OLS − λ

n
V η̂OLS .

5.2. Consider choosing η̂ to minimize the criterion

Q(η) =
1

a
(Z − Wη)T (Z − Wη) +

λ1,n

a

p−1∑

i=1

|ηi|j

where λ1,n ≥ 0, a > 0, and j > 0 are known constants. Consider the regres-
sion methods OLS, forward selection, lasso, PLS, PCR, ridge regression, and
relaxed lasso.
a) Which method corresponds to j = 1?
b) Which method corresponds to j = 2?
c) Which method corresponds to λ1,n = 0?

5.3. For ridge regression, let An = (W T W + λ1,nIp−1)
−1W T W and

Bn = [Ip−1 − λ1,n(W T W + λ1,nIp−1)
−1]. Show An − Bn = 0.

5.4. Suppose Ŷ = HY where H is an n × n hat matrix. Then the de-
grees of freedom df(Ŷ ) = tr(H) = sum of the diagonal elements of H. An
estimator with low degrees of freedom is inflexible while an estimator with
high degrees of freedom is flexible. If the degrees of freedom is too low, the
estimator tends to underfit while if the degrees of freedom is to high, the
estimator tends to overfit.

a) Find df(Ŷ ) if Ŷ = Y 1 which uses H = (hij) where hij ≡ 1/n for all
i and j. This inflexible estimator uses the sample mean Y of the response
variable as Ŷi for i = 1, ..., n.

b) Find df(Ŷ ) if Ŷ = Y = InY which uses H = In where hii = 1. This
bad flexible estimator interpolates the response variable.

5.5. Suppose Y = Xβ + e, Z = Wη + e, Ẑ = Wη̂, Z = Y − Y , and
Ŷ = Ẑ + Y . Let the n × p matrix W 1 = [1 W ] and the p × 1 vector
η̂1 = (Y η̂T )T where the scalar Y is the sample mean of the response

variable. Show Ŷ = W 1η̂1.

5.6. Let Z = Y − Y where Y = Y 1, and the n× (p− 1) matrix of stan-
dardized nontrivial predictors G = (Gij). For j = 1, ..., p− 1, let Gij denote
the (j + 1)th variable standardized so that

∑n
i=1Gij = 0 and

∑n
i=1G

2
ij = 1.

Note that the sample correlation matrix of the nontrivial predictors ui is



5.15 Problems 265

Ru = GT G. Then regression through the origin is used for the model

Z = Gη + e (5.28)

where the vector of fitted values Ŷ = Y +Ẑ . The standardization differs from
that used for earlier regression models (see Remark 5.1), since

∑n
i=1G

2
ij =

1 6= n =
∑n

i=1W
2
ij . Note that

G =
1√
n

W .

Following Zou and Hastie (2005), the naive elastic net η̂N estimator is the
minimizer of

QN(η) = RSS(η) + λ∗2‖η‖2
2 + λ∗1‖η‖1 (5.29)

where λ∗i ≥ 0. The term “naive” is used because the elastic net estimator

is better. Let τ =
λ∗2

λ∗1 + λ∗2
, γ =

λ∗1√
1 + λ∗2

, and ηA =
√

1 + λ∗2 η. Let the

(n+p−1)×(p−1) augmented matrix GA and the (n+p−1)×1 augmented
response vector ZA be defined by

GA =

(
G√

λ∗2 Ip−1

)
, and ZA =

(
Z
0

)
,

where 0 is the (p−1)×1 zero vector. Let η̂A =
√

1 + λ∗2 η̂ be obtained from
the lasso of ZA on GA: that is η̂A minimizes

QN(ηA) = ‖ZA − GAηA‖2
2 + γ‖ηA‖1 = QN(η).

Prove QN (ηA) = QN(η).
(Then

η̂N =
1√

1 + λ∗2
η̂A and η̂EN =

√
1 + λ∗2 η̂A = (1 + λ∗2)η̂N .

The above elastic net estimator minimizes the criterion

QG(η) =
ηT GT Gη

1 + λ∗2
− 2ZT Gη +

λ∗2
1 + λ∗2

‖η‖2
2 + λ∗1‖η‖1,

and hence is not the elastic net estimator corresponding to Equation (5.22).)

5.7. Let β = (β1,β
T
S )T . Consider choosing β̂ to minimize the criterion

Q(β) = RSS(β) + λ1‖βS‖2
2 + λ2‖βS‖1
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where λi ≥ 0 for i = 1, 2.
a) Which values of λ1 and λ2 correspond to ridge regression?
b) Which values of λ1 and λ2 correspond to lasso?
c) Which values of λ1 and λ2 correspond to elastic net?
d) Which values of λ1 and λ2 correspond to the OLS full model?

5.8. For the output below, an asterisk means the variable is in the model.
All models have a constant, so model 1 contains a constant and mmen.

a) List the variables, including a constant, that models 2, 3, and 4 contain.
b) The term out$cp lists the Cp criterion. Which model (1, 2, 3, or 4) is

the minimum Cp model Imin?

c) Suppose β̂Imin
= (241.5445, 1.001)T . What is β̂Imin,0?

Selection Algorithm: forward #output for Problem 5.8

pop mmen mmilmen milwmn

1 ( 1 ) " " "*" " " " "

2 ( 1 ) " " "*" "*" " "

3 ( 1 ) "*" "*" "*" " "

4 ( 1 ) "*" "*" "*" "*"

out$cp

[1] -0.8268967 1.0151462 3.0029429 5.0000000

5.9. Consider the output for Example 4.7 for the OLS full model. The
column resboot gives the large sample 95% CI for βi using the shorth applied
to the β̂∗

ij for j = 1, ..., B using the residual bootstrap. The standard large

sample 95% CI for βi is β̂i±1.96SE(β̂i). Hence for β2 corresponding to L, the
standard large sample 95% CI is −0.001± 1.96(0.002) = −0.001± 0.00392 =
[−0.00492, 0.00292] while the shorth 95% CI is [−0.005, 0.004].

a) Compute the standard 95% CIs for βi corresponding to W, H, and S.
Also write down the shorth 95% CI. Are the standard and shorth 95% CIs
fairly close?

b) Consider testing H0 : βi = 0 versus HA : βi 6= 0. If the corresponding
95% CI for βi does not contain 0, then reject H0 and conclude that the
predictor variable Xi is needed in the MLR model. If 0 is in the CI then fail
to reject H0 and conclude that the predictor variable Xi is not needed in the
MLR model given that the other predictors are in the MLR model.

Which variables, if any, are needed in the MLR model? Use the standard
CI if the shorth CI gives a different result. The nontrivial predictor variables
are L, W, H, and S.

5.10. Tremearne (1911) presents a data set of about 17 measurements on
112 people of Hausa nationality. We used Y = height. Along with a constant
xi,1 ≡ 1, the five additional predictor variables used were xi,2 = height when
sitting, xi,3 = height when kneeling, xi,4 = head length, xi,5 = nasal breadth,
and xi,6 = span (perhaps from left hand to right hand). The output below is
for the OLS full model.
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Estimate Std.Err 95% shorth CI

Intercept -77.0042 65.2956 [-208.864,55.051]

X2 0.0156 0.0992 [-0.177, 0.217]

X3 1.1553 0.0832 [ 0.983, 1.312]

X4 0.2186 0.3180 [-0.378, 0.805]

X5 0.2660 0.6615 [-1.038, 1.637]

X6 0.1396 0.0385 [0.0575, 0.217]

a) Give the shorth 95% CI for β2 .
b) Compute the standard 95% CI for β2.
c) Which variables, if any, are needed in the MLR model given that the

other variables are in the model?

Now we use forward selection and Imin is the minimum Cp model.

Estimate Std.Err 95% shorth CI

Intercept -42.4846 51.2863 [-192.281, 52.492]

X2 0 [ 0.000, 0.268]

X3 1.1707 0.0598 [ 0.992, 1.289]

X4 0 [ 0.000, 0.840]

X5 0 [ 0.000, 1.916]

X6 0.1467 0.0368 [ 0.0747, 0.215]

(Intercept) a b c d e

1 TRUE FALSE TRUE FALSE FALSE FALSE

2 TRUE FALSE TRUE FALSE FALSE TRUE

3 TRUE FALSE TRUE TRUE FALSE TRUE

4 TRUE FALSE TRUE TRUE TRUE TRUE

5 TRUE TRUE TRUE TRUE TRUE TRUE

> tem2$cp

[1] 14.389492 0.792566 2.189839 4.024738 6.000000

d) What is the value of Cp(Imin) and what is β̂Imin,0?
e) Which variables, if any, are needed in the MLR model given that the

other variables are in the model?
f) List the variables, including a constant, that model 3 contains.

5.11. Table 5.7 below shows simulation results for bootstrapping OLS (reg)
and forward selection (vs) with Cp when β = (1, 1, 0, 0, 0)T . The βi columns
give coverage = the proportion of CIs that contained βi and the average
length of the CI. The test is for H0 : (β3, β4, β5)

T = 0 and H0 is true. The
“coverage” is the proportion of times the prediction region method bootstrap
test failed to reject H0. Since 1000 runs were used, a cov in [0.93,0.97] is
reasonable for a nominal value of 0.95. Output is given for three different
error distributions. If the coverage for both methods ≥ 0.93, the method
with the shorter average CI length was more precise. (If one method had
coverage ≥ 0.93 and the other had coverage < 0.93, we will say the method
with coverage ≥ 0.93 was more precise.)
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a) For β3 , β4 , and β5, which method, forward selection or the OLS full
model, was more precise?

Table 5.7 Bootstrapping Forward Selection, n = 100, p = 5, ψ = 0, B = 1000

β1 β2 β3 β4 β5 test
reg cov 0.95 0.93 0.93 0.93 0.94 0.93

len 0.658 0.672 0.673 0.674 0.674 2.861
vs cov 0.95 0.94 0.998 0.998 0.999 0.993

len 0.661 0.679 0.546 0.548 0.544 3.11
reg cov 0.96 0.93 0.94 0.96 0.93 0.94

len 0.229 0.230 0.229 0.231 0.230 2.787
vs cov 0.95 0.94 0.999 0.997 0.999 0.995

len 0.228 0.229 0.185 0.187 0.186 3.056
reg cov 0.94 0.94 0.95 0.94 0.94 0.93

len 0.393 0.398 0.399 0.399 0.398 2.839
vs cov 0.94 0.95 0.997 0.997 0.996 0.990

len 0.392 0.400 0.320 0.322 0.321 3.077

b) The test “length” is the average length of the interval [0, D(UB)] = D(UB)

where the test fails to reject H0 if D0 ≤ D(UB). The OLS full model is
asymptotically normal, and hence for large enough n and B the reg len row

for the test column should be near
√
χ2

3,0.95 = 2.795.

Were the three values in the test column for reg within 0.1 of 2.795?

5.12. Suppose the MLR model Y = Xβ + e, and the regression method
fits Z = Wη + e. Suppose Ẑ = 245.63 and Y = 105.37. What is Ŷ ?

5.13. To get a large sample 90% PI for a future value Yf of the response

variable, find a large sample 90% PI for a future residual and add Ŷf to the
endpoints of the of that PI. Suppose forward selection is used and the large
sample 90% PI for a future residual is [−778.28, 1336.44]. What is the large

sample 90% PI for Yf if β̂Imin
= (241.545, 1.001)T used a constant and the

predictor mmen with corresponding xImin,f = (1, 75000)T?

5.14. Table 5.8 below shows simulation results for bootstrapping OLS
(reg), lasso, and ridge regression (RR) with 10-fold CV when β = (1, 1, 0, 0)T .
The βi columns give coverage = the proportion of CIs that contained βi and
the average length of the CI. The test is for H0 : (β3 , β4)

T = 0 and H0 is
true. The “coverage” is the proportion of times the prediction region method
bootstrap test failed to reject H0. OLS used 1000 runs while 100 runs were
used for lasso and ridge regression. Since 100 runs were used, a cov in [0.89,
1] is reasonable for a nominal value of 0.95. If the coverage for both methods
≥ 0.89, the method with the shorter average CI length was more precise.
(If one method had coverage ≥ 0.89 and the other had coverage < 0.89, we
will say the method with coverage ≥ 0.89 was more precise.) The results
for the lasso test were omitted since sometimes S∗

T was singular. (Lengths
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for the test column are not comparable unless the statistics have the same
asymptotic distribution.)

Table 5.8 Bootstrapping lasso and RR, n = 100, ψ = 0.9, p = 4, B = 250

β1 β2 β3 β4 test
reg cov 0.942 0.951 0.949 0.943 0.943

len 0.658 5.447 5.444 5.438 2.490
RR cov 0.97 0.02 0.11 0.10 0.05

len 0.681 0.329 0.334 0.334 2.546
reg cov 0.947 0.955 0.950 0.951 0.952

len 0.658 5.511 5.497 5.500 2.491
lasso cov 0.93 0.91 0.92 0.99

len 0.698 3.765 3.922 3.803

a) For β3 and β4 which method, ridge regression or the OLS full model,
was better?

b) For β3 and β4 which method, lasso or the OLS full model, was more
precise?

5.15. Suppose n = 15 and 5-fold CV is used. Suppose observations are
measured for the following people. Use the output below to determine which
people are in the first fold.

folds: 4 3 4 2 1 4 3 5 2 2 3 1 5 5 1

1) Athapattu, 2) Azizi, 3) Cralley 4) Gallage, 5) Godbold, 6) Gunawar-
dana, 7) Houmadi, 8) Mahappu, 9) Pathiravasan, 10) Rajapaksha, 11)
Ranaweera, 12) Safari, 13) Senarathna, 14) Thakur, 15) Ziedzor

5.16. Table 5.9 below shows simulation results for a large sample 95% pre-
diction interval. Since 5000 runs were used, a cov in [0.94, 0.96] is reasonable
for a nominal value of 0.95. If the coverage for a method ≥ 0.94, the method
with the shorter average PI length was more precise. Ignore methods with
cov < 0.94. The MLR model had β = (1, 1, ..., 1, 0, ..., 0)T where the first
k+1 coefficients were equal to 1. If ψ = 0 then the nontrivial predictors were
uncorrelated, but highly correlated if ψ = 0.9.

Table 5.9 Simulated Large Sample 95% PI Coverages and Lengths, ei ∼ N(0,1)

n p ψ k FS lasso RL RR PLS PCR
100 40 0 1 cov 0.9654 0.9774 0.9588 0.9274 0.8810 0.9882

len 4.4294 4.8889 4.6226 4.4291 4.0202 7.3393
400 400 0.9 19 cov 0.9348 0.9636 0.9556 0.9632 0.9462 0.9478

len 4.3687 47.361 4.8530 48.021 4.2914 4.4764

a) Which method was most precise, given cov ≥ 0.94, when n = 100?
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b) Which method was most precise, given cov ≥ 0.94, when n = 400?

5.17. When doing a PI or CI simulation for a nominal 100(1− δ)% = 95%
interval, there are m runs. For each run, a data set and interval are generated,
and for the ith run Yi = 1 if µ or Yf is in the interval, and Yi = 0, otherwise.
Hence the Yi are iid Bernoulli(1 − δn) random variables where 1 − δn is
the true probability (true coverage) that the interval will contain µ or Yf .
The observed coverage (= coverage) in the simulation is Y =

∑
i Yi/m. The

variance V (Y ) = σ2/m where σ2 = (1 − δn)δn ≈ (1 − δ)δ ≈ (0.95)0.05 if
δn ≈ δ = 0.05. Hence

SD(Y ) ≈
√

0.95(0.05)

m
.

If the (observed) coverage is within 0.95 ± kSD(Y ) the integer k is near 3,
then there is no reason to doubt that the actual coverage 1− δn differs from
the nominal coverage 1−δ = 0.95 if m ≥ 1000 (and as a crude benchmark, for
m ≥ 100). In the simulation, the length of each interval is computed, and the
average length is computed. For intervals with coverage ≥ 0.95 − kSD(Y ),
intervals with shorter average length are better (have more precision).

a) If m = 5000 what is 3 SD(Y ), using the above approximation? Your
answer should be close to 0.01.

b) If m = 1000 what is 3 SD(Y ), using the above approximation?
5.18. Let Yi = β1 +β2xi2 + · · ·+βpxip + εi for i = 1, ..., n where the εi are

independent and identically distributed (iid) with expected value E(εi) = 0
and variance V (εi) = σ2. in matrix form, this model is Y = Xβ + ε. As-

sume X has full rank p where p < n. Let β̂R = (XT X + λnIp)
−1XT Y =

(XT X + λnIp)
−1(XT X)(XT X)−1XT Y where λn ≥ 0 is a constant that

may depend on n and Ip is the p× p identity matrix. Let β̂ = β̂OLS be the
ordinary least squares estimator. Let Cov(Z) = V ar(Z) be the covariance
matrix of random vector Z.
a) Find E(β̂).

b) Find E(β̂R).

c) Find Cov(β̂).

d) Find Cov(β̂R). Simplify.
e) Suppose (XT X)/n → V −1 as n → ∞. Then n(XT X)−1 → V as
n → ∞ and if λn/n → 0 as n → ∞, then (XT X + λnIp)/n → V −1 and

n(XT X + λnIp)
−1 → V as n → ∞. If λn/n → 0, show nCov(β̂R) → σ2V

as n → ∞. Hint: nA−1BA−1 = nA−1(B/n)nA−1.
5.19.
5.20.

R Problem

Use the command source(“G:/linmodpack.txt”) to download the
functions and the command source(“G:/linmoddata.txt”) to download the
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data. See Preface or Section 11.1. Typing the name of the slpack func-
tion, e.g. vsbootsim3, will display the code for the function. Use the args com-
mand, e.g. args(vsbootsim3), to display the needed arguments for the function.
For the following problem, the R command can be copied and pasted from
(http://parker.ad.siu.edu/Olive/linmodrhw.txt) into R.

5.21. The R program generates data satisfying the MLR model

Y = β1 + β2x2 + β3x3 + β4x4 + e

where β = (β1, β2, β3, β4)
T = (1, 1, 0, 0).

a) Copy and paste the commands for this part into R. The output gives

β̂OLS for the OLS full model. Give β̂OLS . Is β̂OLS close to β = 1, 1, 0, 0)T?
b) The commands for this part bootstrap the OLS full model using the

residual bootstrap. Copy and paste the output into Word. The output shows

T ∗
j = β̂

∗
j for j = 1, ..., 5.

c) B = 1000 T ∗
j were generated. The commands for this part compute the

sample mean T
∗

of the T ∗
j . Copy and paste the output into Word. Is T

∗
close

to β̂OLS found in a)?
d) The commands for this part bootstrap the forward selection using the

residual bootstrap. Copy and paste the output into Word. The output shows

T ∗
j = β̂

∗
Imin,0,j for j = 1, ..., 5. The last two variables may have a few 0s.

e) B = 1000 T ∗
j were generated. The commands for this part compute the

sample mean T
∗

of the T ∗
j where T ∗

j is as in d). Copy and paste the output

into Word. Is T
∗

close to β = (1, 1, 0, 0)?

5.22. This simulation is similar to that used to form Table 4.2, but 1000
runs are used so coverage in [0.93,0.97] suggests that the actual coverage is
close to the nominal coverage of 0.95.

The model is Y = xT β + e = xT
SβS + e where βS = (β1, β2, ..., βk+1)

T =
(β1, β2)

T and k = 1 is the number of active nontrivial predictors in the popu-
lation model. The output for test tests H0 : (βk+2, ..., βp)

T = (β3 , ..., βp)
T = 0

andH0 is true. The output gives the proportion of times the prediction region
method bootstrap test fails to reject H0. The nominal proportion is 0.95.

After getting your output, make a table similar to Table 4.2 with 4 lines.
If your p = 5 then you need to add a column for β5 . Two lines are for reg
(the OLS full model) and two lines are for vs (forward selection with Imin).
The βi columns give the coverage and lengths of the 95% CIs for βi. If the
coverage ≥ 0.93, then the shorter CI length is more precise. Were the CIs
for forward selection more precise than the CIs for the OLS full model for β3

and β4?
To get the output, copy and paste the source commands from

(http://parker.ad.siu.edu/Olive/linmodrhw.txt) into R. Copy and past the
library command for this problem into R.

If you are person j then copy and paste the R code for person j for this
problem into R.
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5.23. This problem is like Problem 5.19, but ridge regression is used in-
stead of forward selection. This simulation is similar to that used to form
Table 4.2, but 100 runs are used so coverage in [0.89,1.0] suggests that the
actual coverage is close to the nominal coverage of 0.95.

The model is Y = xT β + e = xT
SβS + e where βS = (β1, β2, ..., βk+1)

T =
(β1, β2)

T and k = 1 is the number of active nontrivial predictors in the popu-
lation model. The output for test tests H0 : (βk+2, ..., βp)

T = (β3 , ..., βp)
T = 0

andH0 is true. The output gives the proportion of times the prediction region
method bootstrap test fails to reject H0. The nominal proportion is 0.95.

After getting your output, make a table similar to Table 4.2 with 4 lines.
If your p = 5 then you need to add a column for β5 . Two lines are for reg
(the OLS full model) and two lines are for ridge regression (with 10 fold CV).
The βi columns give the coverage and lengths of the 95% CIs for βi. If the
coverage ≥ 0.89, then the shorter CI length is more precise. Were the CIs for
ridge regression more precise than the CIs for the OLS full model for β3 and
β4?

To get the output, copy and paste the source commands from
(http://parker.ad.siu.edu/Olive/linmodrhw.txt) into R. Copy and past the
library command for this problem into R.

If you are person j then copy and paste the R code for person j for this
problem into R.

5.21. This is like Problem 5.20, except lasso is used. If you are person j in
Problem 5.20, then copy and paste the R code for person j for this problem
into R. Make a table with 4 lines: two for OLS and 2 for lasso. Were the CIs
for lasso more precise than the CIs for the OLS full model for β3 and β4?



Chapter 6

What if n is not >> p?

When p > n, the fitted model should do better than i) interpolating the data
or ii) discarding all of the predictors and using the location model of Section
1.3.5 for inference. If p > n, forward selection, lasso, relaxed lasso, elastic
net, and relaxed elastic net can be useful for several regression models. Ridge
regression, partial least squares, and principal components regression can also
be computed for multiple linear regression. Sections 4.3, 5.9, and 10.7 give
prediction intervals.

One of the biggest errors in regression is to use the response variable
to build the regression model using all n cases, and then do inference as if
the built model was selected without using the response, e.g., selected before
gathering data. Using the response variable to build the model is called data
snooping, then inference is generally no longer valid, and the model built from
data snooping tends to fit the data too well. In particular, do not use data
snooping and then use variable selection or cross validation. See Hastie et al
(2009, p. 245) and Olive (2017a, pp. 85-89).

Building a regression model from data is one of the most challenging regres-
sion problems. The “final full model” will have response variable Y = t(Z), a
constant x1, and predictor variables x2 = t2(w2, ..., wr), ..., xp = tp(w2, ..., wr)
where the initial data consists of Z, w2, ..., wr. Choosing t, t2, ..., tp so that
the final full model is a useful regression approximation to the data can be
difficult.

As a rule of thumb, if strong nonlinearities are apparent in the predictors
w2, ..., wp, it is often useful to remove the nonlinearities by transforming the
predictors using power transformations. When p is large, a scatterplot matrix
of w2, ..., wp can not be made, but the log rule of Section 1.2 can be useful.
Plots from Chapter 7, such as the DD plot, can also be useful. A scatterplot
matrix of the wi is an array of scatterplots of wi versus wj . A scatterplot is
a plot of wi versus wj.

In the literature, it is sometimes stated that predictor transformations
that are made without looking at the response are “free.” The reasoning

273
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is that the conditional distribution of Y |(x2 = a2, ..., xp = ap) is the same
as the conditional distribution of Y |[t2(x2) = t2(a2), ..., tp(xp) = tp(ap)]:
there is simply a change of labelling. Certainly if Y |x = 9 ∼ N(0, 1), then
Y |√x = 3 ∼ N(0, 1). To see that the above rule of thumb does not always
work, suppose that Y = β1 + β2x2 + · · · + βpxp + e where the xi are iid
lognormal(0,1) random variables. Then wi = log(xi) ∼ N(0, 1) for i = 2, ..., p
and the scatterplot matrix of the wi will be linear while the scatterplot matrix
of the xi will show strong nonlinearities if the sample size is large. However,
there is an MLR relationship between Y and the xi while the relationship
between Y and the wi is nonlinear: Y = β1+β2e

w2+· · ·+βpe
wp +e 6= βT w+e.

Given Y and the wi with no information of the relationship, it would be
difficult to find the exponential transformation and to estimate the βi. The
moral is that predictor transformations, especially the log transformation, can
and often do greatly simplify the MLR analysis, but predictor transformations
can turn a simple MLR analysis into a very complex nonlinear analysis.

Recall the 1D regression model from Definition 1.2 with

Y x|SP or Y x|h(x),

where the real valued function h : R
p → R. An important special case is a

model with a linear predictor h(x) = xT β.
For the 1D regression model, let the ith case be (Yi,xi) for i = 1, ..., n

where the n cases are independent. Variable selection is the search for a
subset of predictor variables that can be deleted with little loss of information
if n/p is large, and so that the model with the remaining predictors is useful
for prediction even if n/p is not large. The model for variable selection given
by Equation (4.1) can be useful even if n/p is not large:

xT β = xT
SβS + xT

EβE = xT
SβS (6.1)

where x = (xT
S ,x

T
E)T , xS is an aS ×1 vector, and xE is a (p−aS)×1 vector.

Given that xS is in the model, βE = 0 and E denotes the subset of terms
that can be eliminated given that the subset S is in the model. Let xI be the
vector of a terms from a candidate subset indexed by I, and let xO be the
vector of the remaining predictors (out of the candidate submodel). Suppose
that S is a subset of I and that model (6.1) holds. Then

xT β = xT
SβS = xT

S βS + xT
I/Sβ(I/S) + xT

O0 = xT
I βI

where xI/S denotes the predictors in I that are not in S. Since this is true
regardless of the values of the predictors, βO = 0 if S ⊆ I.
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6.1 Sparse Models

When n/p → 0 as n → ∞, consistent estimators generally cannot be found
unless the model has a simplifying structure. A sparse model is one such
structure. For Equation (6.1), a population regression model is sparse if aS

is small. We want n ≥ 10aS.
For multiple linear regression with p > n, results from Hastie et al. (2015,

pp. 20, 296, ch. 6, ch. 11) and Luo and Chen (2013) suggest that lasso, relaxed
lasso, and forward selection with EBIC can perform well for sparse models.
Least angle regression, elastic net, and relaxed elastic net can also be useful.

Suppose the selected model is Id, and βId
is ad × 1. For multiple linear

regression, forward selection with Cp and AIC often gives useful results if
n ≥ 5p and if the final model I has n ≥ 10ad. For p < n < 5p, forward
selection with Cp and AIC tends to pick the full model (which overfits since
n < 5p) too often, especially if σ̂2 = MSE. The Hurvich and Tsai (1989)
AICC criterion can be useful for MLR and time series if n ≥ max(2p, 10ad).
If n ≥ 5p, AIC and BIC are useful for many regression models, and forward
selection with EBIC can be used for some models if n/p is small. See Section
4.1 and Chen and Chen (2008).

6.2 Data Splitting

Data splitting is useful for many regression models when the n cases are in-
dependent, including multiple linear regression, multivariate linear regression
where there are m ≥ 2 response variables, generalized linear models (GLMs),
the Cox (1972) proportional hazards regression model, and parametric sur-
vival regression models.

Consider a regression model with response variable Y and a p × 1 vector
of predictors x. This model is the full model. Suppose the n cases are inde-
pendent. To perform data splitting, randomly divide the data into two sets
H and V where H has nH of the cases and V has the remaining nV = n−nH

cases i1, ..., inV . Find a model I, possibly with data snooping or model se-
lection, using the data in the training set H . Use the model I as the full
model to perform inference using the data in the validation set V . That is,
regress YV on XV,I and perform the usual inference for the model using the
j = 1, ..., nV cases in the validation set V . If βI uses a predictors, we want
nV ≥ 10a and we want P (S ⊆ I) → 1 as n → ∞ or for (YV ,XV,I) to follow
the regression model.

In the literature, often nH ≈ dn/2e. For model selection, use the training
data set to fit the model selection method, e.g. forward selection or lasso, to
get the a predictors. On the test set, use the standard regression inference
from regressing the response on the predictors found from the training set.
This method can be inefficient if n ≥ 10p, but is useful for a sparse model
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if n ≤ 5p, if the probability that the model underfits goes to zero, and if
n ≥ 20a.

The method is simple, use one half set to get the predictors, then fit
the regression model, such as a GLM or OLS, to the validation half set
(Y V ,XV,I). The regression model needs to hold for (Y V ,XV,I) and we want
nV ≥ 10a if I uses a predictors. The regression model can hold if S ⊆ I
and the model is sparse. Let x = (x1, ...,xp)

T where x1 is a constant. If
(Y,x2, ...,xp)T follows a multivariate normal distribution, then (Y,xI ) follows
a multiple linear regression model for every I. Hence the full model need not
be sparse, although the selected model may be suboptimal.

Of course other sample sizes than half sets could be used. For example if
n = 1000p, use n = 10p for the training set and n = 990p for the validation
set.

Remark 6.1. i) One use of data splitting is to try to transform the
p ≥ n problem into an n ≥ 10k problem. This method can work if
the model is sparse. For multiple linear regression, this method can work
if Y ∼ Nn(Xβ, σ2I), since then all subsets I satisfy the MLR model:
Yi = xT

I,iβI + eI,i. See Remark 1.5. If βI is k × 1, we want n ≥ 10k and

V (eI,i) = σ2
I to be small. For binary logistic regression, the discriminant

function model of Definition 10.7 can be useful if xI |Y = j ∼ Nk(µj ,Σ)
for j = 0, 1. Of course, the models may not be sparse, and the multivariate
normal assumptions for MLR and binary logistic regression rarely hold.

ii) Data splitting can be tricky for lasso, ridge regression, and elastic net
if the sample sizes of the training and validation sets differ. Roughly set
λ1,n1

/(2n1) = λ2,n2
/(2n2). Data splitting is much easier for variable selection

methods such as forward selection, relaxed lasso, and relaxed elastic net. Find
the variables x∗1, ..., x

∗
k indexed by I from the training set, and use model I

as the full model for the validation set.
iii) Another use of data splitting is that data snooping can be used on the

training set: use the model as the full model for the validation set.

6.3 Summary

1) Using the response variable to build a model is known as data snooping,
and invalidates inference if data snooping is used on the entire data set of n
cases.

2) Suppose xT β = xT
S βS + xT

EβE = xT
SβS where βS is an aS × 1 vector.

A regression model is sparse if aS is small. We want n ≥ 10aS.
3) Assume the cases are independent. To perform data splitting, randomly

divide the data into two half sets H and V where H has nH of the cases and
V has the remaining nV = n−nH cases i1, ..., inV . Build the model, possibly
with data snooping, or perform variable selection to Find a model I, possibly
with data snooping or model selection, using the data in the training set H .
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Use the model I as the full model to perform inference using the data in the
validation set V .

6.4 Complements

Suppose model Ik contains k predictors including a constant. For multiple
linear regression, the forward selection algorithm in Chapter 4 adds a pre-
dictor x∗k+1 that minimizes the residual sum of squares, while the Pati et al.
(1993) “orthogonal matching pursuit algorithm” uses predictors (scaled to
have unit norm: xT

i xi = 1 for the nontrivial predictors), and adds the scaled
predictor x∗k+1 that maximizes |x∗T

k+1rk| where the maximization is over vari-
ables not yet selected and the rk are the OLS residuals from regressing Y
on X∗

Ik
. Fan and Li (2001) and Candes and Tao (2007) gave competitors to

lasso. Some fast methods seem similar to the first PLS component. A useful
reference for data splitting is Rinaldo et al (2019).

Fan and Li (2002) give a method of variable selection for the Cox (1972)
proportional hazards regression model. Using AIC is also useful if p is fixed.

For a time series Y1, ..., Yn, we could use Y1, ..., Ym as one set and Ym+1 , ..., Yn

as the other set. Three set inference may be needed. Use Y1, ..., Ym as the first
set (trianing data), Ym+1 , ..., Ym+k as a burn in set, and Ym+k+1, ..., Yn as the
third set for inference.

When the entire data set is used to build a model with the response vari-
able, the inference tends to be invalid, and cross validation should not be used
to check the model. See Hastie et al. (2009, p. 245). In order for the inference
and cross validation to be useful, the response variable and the predictors
for the regression should be chosen before looking at the response variable.
Predictor transformations can be done as long as the response variable is not
used to choose the transformation. You can do model building on the test
set, and then inference for the chosen (built) model as the full model with
the validation set, provided this model follows the regression model used for
inference (e.g. multiple linear regression or a GLM). This process is difficult
to simulate.

6.5 Problems





Chapter 7

Robust Regression

This chapter considers outlier detection and then develops robust regression
estimators. Robust estimators of multivariate location and dispersion are
useful for outlier detection and for developing robust regression estimators.
Outliers and dot plots were discussed in Chapter 3.

Definition 7.1 An outlier corresponds to a case that is far from the bulk
of the data.

Definition 7.2. A dot plot of Z1, ..., Zm consists of an axis and m points
each corresponding to the value of Zi.

The following plots and techniques will be developed in this chapter. For
the location model, use a dot plot to detect outliers. For the multivariate
location model with p = 2 make a scatterplot. For multiple linear regression
with one nontrivial predictor x, plot x versus Y . For the multiple linear
regression model, make the residual and response plots. For the multivariate
location model, make the DD plot if n ≥ 5p, and use ddplot5 if p > n. If p
is not much larger than 5, elemental sets are useful for outlier detection for
multiple linear regression and multivariate location and dispersion.

7.1 The Location Model

The location model is

Yi = µ+ ei, i = 1, . . . , n (7.1)

where e1, ..., en are error random variables, often iid with zero mean. The
location model is used when there is one variable Y , such as height, of interest.
The location model is a special case of the multiple linear regression model
and of the multivariate location and dispersion model, where there are p
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variables x1, ..., xp of interest, such as height and weight if p = 2. The dot
plot of Definition 7.2 is useful for detecting outliers in the location model.

The location model is often summarized by obtaining point estimates and
confidence intervals for a location parameter and a scale parameter. Assume
that there is a sample Y1, . . . , Yn of size n where the Yi are iid from a distri-
bution with median MED(Y ), mean E(Y ), and variance V (Y ) if they exist.
The location parameter µ is often the population mean or median while the
scale parameter is often the population standard deviation

√
V (Y ). The ith

case is Yi.
Point estimation is one of the oldest problems in statistics and four impor-

tant statistics for the location model are the sample mean, median, variance,
and the median absolute deviation (MAD). Let Y1, . . . , Yn be the random
sample; i.e., assume that Y1, ..., Yn are iid. The sample mean is a measure of
location and estimates the population mean (expected value) µ = E(Y ). The

sample mean Y =

∑n
i=1 Yi

n
. The sample variance S2

n =

∑n
i=1(Yi − Y )2

n − 1
=

∑n
i=1 Y

2
i − n(Y )2

n− 1
, and the sample standard deviation Sn =

√
S2

n.

If the data set Y1, ..., Yn is arranged in ascending order from smallest to
largest and written as Y(1) ≤ · · · ≤ Y(n), then Y(i) is the ith order statistic
and the Y(i)’s are called the order statistics. If the data Y1 = 1, Y2 = 4, Y3 =

2, Y4 = 5, and Y5 = 3, then Y = 3, Y(i) = i for i = 1, ..., 5 and MED(n) = 3
where the sample size n = 5. The sample median is a measure of location
while the sample standard deviation is a measure of spread. The sample mean
and standard deviation are vulnerable to outliers, while the sample median
and MAD, defined below, are outlier resistant.

Definition 7.3. The sample median

MED(n) = Y((n+1)/2) if n is odd, (7.2)

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(Y1, ..., Yn) will also be used.

Definition 7.4. The sample median absolute deviation is

MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n). (7.3)

Since MAD(n) is the median of n distances, at least half of the observations
are within a distance MAD(n) of MED(n) and at least half of the observations
are a distance of MAD(n) or more away from MED(n). Like the standard
deviation, MAD(n) is a measure of spread.

Example 7.1. Let the data be 1, 2, 3, 4, 5, 6, 7, 8, 9. Then MED(n) = 5
and MAD(n) = 2 = MED{0, 1, 1, 2, 2, 3, 3, 4, 4}.
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The trimmed mean is used in Chapter 9. We recommend the 25% trimmed
mean. Let bxc denote the “greatest integer function” (e.g., b7.7c = 7).

Definition 7.5. The symmetrically trimmed mean or the δ trimmed mean

Tn = Tn(Ln, Un) =
1

Un − Ln

Un∑

i=Ln+1

Y(i) (7.4)

where Ln = bnδc and Un = n − Ln. If δ = 0.25, say, then the δ trimmed
mean is called the 25% trimmed mean.

The (δ, 1 − γ) trimmed mean uses Ln = bnδc and Un = bnγc.

Estimators that use order statistics are common. Theory for the MAD,
median, and trimmed mean is given, for example, in Olive (2008), which
also gives confidence intervals based on the median and trimmed mean. The
shorth estimator of Section 4.3 was used for prediction intervals.

7.2 The Multivariate Location and Dispersion Model

The multivariate location and dispersion (MLD) model is a special case of the
multivariate linear model, just like the location model is a special case of the
multiple linear regression model. Robust estimators of multivariate location
and dispersion are useful for detecting outliers in the predictor variables and
for developing an outlier resistant multiple linear regression estimator.

The practical, highly outlier resistant,
√
n consistent FCH, RFCH, and

RMVN estimators of (µ, cΣ) are developed along with proofs. The RFCH
and RMVN estimators are reweighted versions of the FCH estimator. It is
shown why competing “robust estimators” fail to work, are impractical, or are
not yet backed by theory. The RMVN and RFCH sets are defined and will be
used for outlier detection and to create practical robust methods of multiple
linear regression and multivariate linear regression. Many more applications
are given in Olive (2017b).

Warning: This section contains many acronyms, abbreviations, and es-
timator names such as FCH, RFCH, and RMVN. Often the acronyms start
with the added letter A, C, F, or R: A stands for algorithm, C for con-
centration, F for estimators that use a fixed number of trial fits, and R for
reweighted.

Definition 7.6. The multivariate location and dispersion model is

Y i = µ + ei, i = 1, . . . , n (7.5)

where e1, ..., en are p× 1 error random vectors, often iid with zero mean and
covariance matrix Cov(e) = Cov(Y ) = ΣY = Σe.
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Note that the location model is a special case of the MLD model with
p = 1. If E(e) = 0, then E(Y ) = µ. A p×p dispersion matrix is a symmetric
matrix that measures the spread of a random vector. Covariance and corre-
lation matrices are dispersion matrices. One way to get a robust estimator
of multivariate location is to stack the marginal estimators of location into
a vector. The coordinatewise median MED(W ) is an example. The sample
mean x also stacks the marginal estimators into a vector, but is not outlier
resistant.

Let µ be a p × 1 location vector and Σ a p × p symmetric dispersion
matrix. Because of symmetry, the first row of Σ has p distinct unknown
parameters, the second row has p−1 distinct unknown parameters, the third
row has p − 2 distinct unknown parameters, ..., and the pth row has one
distinct unknown parameter for a total of 1 + 2 + · · · + p = p(p + 1)/2
unknown parameters. Since µ has p unknown parameters, an estimator (T,C)
of multivariate location and dispersion, needs to estimate p(p+3)/2 unknown
parameters when there are p random variables. If the p variables can be
transformed into an uncorrelated set then there are only 2p parameters, the
means and variances, while if the dimension can be reduced from p to p− 1,
the number of parameters is reduced by p(p+3)/2− (p−1)(p+2)/2 = p+1.

The sample covariance or sample correlation matrices estimate these pa-
rameters very efficiently since Σ = (σij) where σij is a population covariance
or correlation. These quantities can be estimated with the sample covariance
or correlation taking two variables Xi and Xj at a time. Note that there are
p(p+ 1)/2 pairs that can be chosen from p random variables X1, ..., Xp.

Rule of thumb 7.1. For the classical estimators of multivariate location
and dispersion, (x,S) or (z = 0,R), we want n ≥ 10p. We want n ≥ 20p for
the robust MLD estimators (FCH, RFCH, or RMVN) described later in this
section.

7.2.1 Affine Equivariance

Before defining an important equivariance property, some notation is needed.
Assume that the data is collected in an n× p data matrix W . Let B = 1bT

where 1 is an n × 1 vector of ones and b is a p × 1 constant vector. Hence
the ith row of B is bT

i ≡ bT for i = 1, ..., n. For such a matrix B, consider
the affine transformation Z = WAT + B where A is any nonsingular p× p
matrix. An affine transformation changes xi to zi = Axi + b for i = 1, ..., n,
and affine equivariant multivariate location and dispersion estimators change
in natural ways.

Definition 7.7. The multivariate location and dispersion estimator (T,C)
is affine equivariant if
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T (Z) = T (WAT + B) = AT (W ) + b, (7.6)

and C(Z) = C(WAT + B) = AC(W )AT . (7.7)

The following theorem shows that the Mahalanobis distances are invariant
under affine transformations. See Rousseeuw and Leroy (1987, pp. 252-262)
for similar results. Thus if (T,C) is affine equivariant, so is
(T,D2

(cn)(T,C) C) where D2
(j)(T,C) is the jth order statistic of the D2

i .

Theorem 7.1. If (T,C) is affine equivariant, then

D2
i (W ) ≡ D2

i (T (W ),C(W )) = D2
i (T (Z),C(Z)) ≡ D2

i (Z). (7.8)

Proof. Since Z = WAT + B has ith row zT
i = xT

i AT + bT ,

D2
i (Z) = [zi − T (Z)]T C−1(Z)[zi − T (Z)]

= [A(xi − T (W ))]T [AC(W )AT ]−1[A(xi − T (W ))]

= [xi − T (W )]T C−1(W )[xi − T (W )] = D2
i (W ). �

Definition 7.8. For MLD, an elemental set J = {m1, ..., mp+1} is a set of
p+ 1 cases drawn without replacement from the data set of n cases. The ele-
mental fit (TJ ,CJ ) = (xJ ,SJ) is the sample mean and the sample covariance
matrix computed from the cases in the elemental set.

If the data are iid, then the elemental fit gives an unbiased but inconsistent
estimator of (E(x),Cov(x)). Note that the elemental fit uses the smallest
sample size p + 1 such that SJ is nonsingular if the data are in “general
position” defined in Definition 7.10. See Definition 4.7 for the sample mean
and sample covariance matrix.

7.2.2 Breakdown

This subsection gives a standard definition of breakdown for estimators of
multivariate location and dispersion. The following notation will be useful.
Let W denote the n × p data matrix with ith row xT

i corresponding to the
ith case. Let w1, ...wn be the contaminated data after dn of the xi have been
replaced by arbitrarily bad contaminated cases. Let W n

d denote the n×p data
matrix with ith row wT

i . Then the contamination fraction is γn = dn/n. Let
(T (W ),C(W )) denote an estimator of multivariate location and dispersion
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where the p × 1 vector T (W ) is an estimator of location and the p × p
symmetric positive semidefinite matrix C(W ) is an estimator of dispersion.

Theorem 7.2. Let B > 0 be a p × p symmetric matrix with eigenvalue
eigenvector pairs (λ1, e1), ..., (λp, ep) where λ1 ≥ λ2 · · · ≥ λp > 0 and the
orthonormal eigenvectors satisfy eT

i ei = 1 while eT
i ej = 0 for i 6= j. Let d

be a given p× 1 vector and let a be an arbitrary nonzero p× 1 vector.

a) max
a6=0

aT ddT a

aT Ba
= dT B−1d where the max is attained for a = cB−1d

for any constant c 6= 0. Note that the numerator = (aT d)2.

b) max
a6=0

aT Ba

aT a
= max

‖a‖=1
aT Ba = λ1 where the max is attained for a = e1.

c) min
a6=0

aT Ba

aT a
= min

‖a‖=1
aT Ba = λp where the min is attained for a = ep.

d) max
a⊥e1,...,ek

aT Ba

aT a
= max

‖a‖=1,a⊥e1,...,ek

aT Ba = λk+1 where the max is

attained for a = ek+1 for k = 1, 2, ..., p− 1.
e) Let (x,S) be the observed sample mean and sample covariance matrix

where S > 0.Then max
a6=0

naT (x − µ)(x − µ)T a

aT Sa
= n(x−µ)T S−1(x−µ) = T 2

where the max is attained for a = cS−1(x − µ) for any constant c 6= 0.
f) Let A be a p × p symmetric matrix. Let C > 0 be a p × p symmetric

matrix. Then max
a6=0

aT Aa

aT Ca
= λ1(C

−1A), the largest eigenvalue of C−1A. The

value of a that achieves the max is the eigenvector g1 of C−1A corresponding

to λ1(C
−1A). Similarly min

a 6=0

aT Aa

aT Ca
= λp(C

−1A), the smallest eigenvalue of

C−1A. The value of a that achieves the min is the eigenvector gp of C−1A

corresponding to λp(C
−1A).

Proof Sketch. See Johnson and Wichern (1988, pp. 64-65, 184). For a),
note that rank(C−1A) = 1, where C = B and A = ddT , since rank(C−1A)
= rank(A) = rank(d) = 1. Hence C−1A has one nonzero eigenvalue eigen-
vector pair (λ1, g1). Since

(λ1 = dT B−1d, g1 = B−1d)

is a nonzero eigenvalue eigenvector pair for C−1A, and λ1 > 0, the result
follows by f).

Note that b) and c) are special cases of f) with A = B and C = I .
Note that e) is a special case of a) with d = (x− µ) and B = S.
(Also note that (λ1 = (x−µ)T S−1(x−µ), g1 = S−1(x−µ)) is a nonzero

eigenvalue eigenvector pair for the rank 1 matrix C−1A where C = S and
A = (x − µ)(x− µ)T .)
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For f), see Mardia et al. (1979, p. 480). �

From Theorem 7.2, if C(W n
d) > 0, then max

‖a‖=1
aT C(W n

d)a = λ1 and

min
‖a‖=1

aT C(W n
d )a = λp. A high breakdown dispersion estimator C is positive

definite if the amount of contamination is less than the breakdown value.
Since aT Ca =

∑p
i=1

∑p
j=1 cijaiaj, the largest eigenvalue λ1 is bounded as

W n
d varies iff C(W n

d ) is bounded as W n
d varies.

Definition 7.9. The breakdown value of the multivariate location estima-
tor T at W is

B(T,W ) = min

{
dn

n
: sup
W n

d

‖T (W n
d)‖ = ∞

}

where the supremum is over all possible corrupted samples W n
d and 1 ≤

dn ≤ n. Let λ1(C(W )) ≥ · · · ≥ λp(C(W )) ≥ 0 denote the eigenvalues of the
dispersion estimator applied to data W . The estimator C breaks down if the
smallest eigenvalue can be driven to zero or if the largest eigenvalue can be
driven to ∞. Hence the breakdown value of the dispersion estimator is

B(C,W ) = min

{
dn

n
: sup
W n

d

max

[
1

λp(C(W n
d ))

, λ1(C(W n
d))

]
= ∞

}
.

Definition 7.10. Let γn be the breakdown value of (T,C). High break-
down (HB) statistics have γn → 0.5 as n→ ∞ if the (uncontaminated) clean
data are in general position: no more than p points of the clean data lie on
any (p−1)-dimensional hyperplane. Estimators are zero breakdown if γn → 0
and positive breakdown if γn → γ > 0 as n → ∞.

Note that if the number of outliers is less than the number needed to cause
breakdown, then ‖T‖ is bounded and the eigenvalues are bounded away from
0 and ∞. Also, the bounds do not depend on the outliers but do depend on
the estimator (T,C) and on the clean data W .

The following result shows that a multivariate location estimator T basi-
cally “breaks down” if the d outliers can make the median Euclidean distance
MED(‖wi−T (W n

d )‖) arbitrarily large where wT
i is the ith row of W n

d . Thus
a multivariate location estimator T will not break down if T can not be driven
out of some ball of (possibly huge) radius r about the origin. For an affine
equivariant estimator, the largest possible breakdown value is n/2 or (n+1)/2
for n even or odd, respectively. Hence in the proof of the following result, we
could replace dn < dT by dn < min(n/2, dT).

Theorem 7.3. Fix n. If nonequivariant estimators (that may have a break-
down value of greater than 1/2) are excluded, then a multivariate location
estimator has a breakdown value of dT /n iff dT = dT,n is the smallest num-
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ber of arbitrarily bad cases that can make the median Euclidean distance
MED(‖wi − T (W n

d)‖) arbitrarily large.

Proof. Suppose the multivariate location estimator T satisfies ‖T (W n
d )‖ ≤

M for some constant M if dn < dT . Note that for a fixed data set W n
d

with ith row wi, the median Euclidean distance MED(‖wi − T (W n
d)‖) ≤

maxi=1,...,n ‖xi − T (W n
d )‖ ≤ maxi=1,...,n ‖xi‖ + M if dn < dT . Similarly,

suppose MED(‖wi − T (W n
d)‖) ≤ M for some constant M if dn < dT , then

‖T (Wn
d )‖ is bounded if dn < dT . �

Since the coordinatewise median MED(W ) is a HB estimator of multi-
variate location, it is also true that a multivariate location estimator T will
not break down if T can not be driven out of some ball of radius r about
MED(W ). Hence (MED(W ), Ip) is a HB estimator of MLD.

If a high breakdown estimator (T,C) ≡ (T (W n
d ),C(W n

d )) is evaluated
on the contaminated data W n

d , then the location estimator T is contained in
some ball about the origin of radius r, and 0 < a < λp ≤ λ1 < b where the
constants a, r, and b depend on the clean data and (T,C), but not on W n

d if
the number of outliers dn satisfies 0 ≤ dn < nγn < n/2 where the breakdown
value γn → 0.5 as n → ∞.

The following theorem will be used to show that if the classical estimator
(XB ,SB) is applied to cn ≈ n/2 cases contained in a ball about the origin of
radius r where r depends on the clean data but not on W n

d , then (XB,SB)
is a high breakdown estimator.

Theorem 7.4. If the classical estimator (XB,SB) is applied to cn cases
that are contained in some bounded region where p + 1 ≤ cn ≤ n, then the
maximum eigenvalue λ1 of SB is bounded.

Proof. The largest eigenvalue of a p × p matrix A is bounded above by
pmax |ai,j| where ai,j is the (i, j) entry of A. See Datta (1995, p. 403). Denote
the cn cases by z1, ..., zcn . Then the (i, j)th element ai,j of A = SB is

ai,j =
1

cn − 1

cn∑

m=1

(zi,m − zi)(zj,m − zj).

Hence the maximum eigenvalue λ1 is bounded. �

The determinant det(S) = |S| of S is known as the generalized sample
variance. Consider the hyperellipsoid

{z : (z − T )T C−1(z − T ) ≤ D2
(cn)} (7.9)

where D2
(cn) is the cnth smallest squared Mahalanobis distance based on

(T,C). This hyperellipsoid contains the cn cases with the smallest D2
i . Sup-

pose (T,C) = (xM , b SM ) is the sample mean and scaled sample covariance
matrix applied to some subset of the data where b > 0. The classical, RFCH,
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and RMVN estimators satisfy this assumption. For h > 0, the hyperellipsoid

{z : (z − T )T C−1(z − T ) ≤ h2} = {z : D2
z ≤ h2} = {z : Dz ≤ h}

has volume equal to

2πp/2

pΓ (p/2)
hp
√
det(C) =

2πp/2

pΓ (p/2)
hpbp/2

√
det(SM).

If h2 = D2
(cn), then the volume is proportional to the square root of the deter-

minant |SM |1/2, and this volume will be positive unless extreme degeneracy
is present among the cn cases. See Johnson and Wichern (1988, pp. 103-104).

7.2.3 The Concentration Algorithm

Concentration algorithms are widely used since impractical brand name es-
timators, such as the MCD estimator given in Definition 7.11, take too long
to compute. The concentration algorithm, defined in Definition 7.12, use K
starts and attractors. A start is an initial estimator, and an attractor is an
estimator obtained by refining the start. For example, let the start be the
classical estimator (x,S). Then the attractor could be the classical estima-
tor (T1,C1) applied to the half set of cases with the smallest Mahalanobis
distances. This concentration algorithm uses one concentration step, but the
process could be iterated for k concentration steps, producing an estimator
(Tk,Ck)

If more than one attractor is used, then some criterion is needed to select
which of the K attractors is to be used in the final estimator. If each attractor
(Tk,j,Ck,j) is the classical estimator applied to cn ≈ n/2 cases, then the
minimum covariance determinant (MCD) criterion is often used: choose the
attractor that has the minimum value of det(Ck,j) where j = 1, ..., K.

The remainder of this section will explain the concentration algorithm,
explain why the MCD criterion is useful but can be improved, provide some
theory for practical robust multivariate location and dispersion estimators,
and show how the set of cases used to compute the recommended RMVN or
RFCH estimator can be used to create outlier resistant regression estimators.
The RMVN and RFCH estimators are reweighted versions of the practical
FCH estimator, given in Definition 7.15.

Definition 7.11. Consider the subset Jo of cn ≈ n/2 observations whose
sample covariance matrix has the lowest determinant among all C(n, cn) sub-
sets of size cn. Let TMCD and CMCD denote the sample mean and sample
covariance matrix of the cn cases in Jo. Then the minimum covariance de-
terminant MCD(cn) estimator is (TMCD(W ),CMCD(W )).
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Here

C(n, i) =

(
n

i

)
=

n!

i! (n− i)!

is the binomial coefficient.
The MCD estimator is a high breakdown (HB) estimator, and the value

cn = b(n + p+ 1)/2c is often used as the default. The MCD estimator is the
pair

(β̂LTS , QLTS(β̂LTS)/(cn − 1))

in the location model where LTS stands for the least trimmed sum of squares
estimator. See Section 7.6. The population analog of the MCD estimator is
closely related to the hyperellipsoid of highest concentration that contains
cn/n ≈ half of the mass. The MCD estimator is a

√
n consistent HB asymp-

totically normal estimator for (µ, aMCDΣ) where aMCD is some positive
constant when the data xi are iid from a large class of distributions. See
Cator and Lopuhaä (2010, 2012) who extended some results of Butler et al.
(1993).

Computing robust covariance estimators can be very expensive. For exam-
ple, to compute the exact MCD(cn) estimator (TMCD, CMCD), we need to
consider the C(n, cn) subsets of size cn. Woodruff and Rocke (1994, p. 893)
noted that if 1 billion subsets of size 101 could be evaluated per second, it
would require 1033 millenia to search through all C(200, 101) subsets if the
sample size n = 200. See Section 7.8 for the MCD complexity.

Hence algorithm estimators will be used to approximate the robust esti-
mators. Elemental sets are the key ingredient for both basic resampling and
concentration algorithms.

Definition 7.12. Suppose that x1, ...,xn are p × 1 vectors of observed
data. For the multivariate location and dispersion model, an elemental set J
is a set of p + 1 cases. An elemental start is the sample mean and sample
covariance matrix of the data corresponding to J. In a concentration algo-
rithm, let (T−1,j ,C−1,j) be the jth start (not necessarily elemental) and
compute all n Mahalanobis distances Di(T−1,j,C−1,j). At the next iter-
ation, the classical estimator (T0,j ,C0,j) = (x0,j,S0,j) is computed from
the cn ≈ n/2 cases corresponding to the smallest distances. This itera-
tion can be continued for k concentration steps resulting in the sequence
of estimators (T−1,j,C−1,j), (T0,j,C0,j), ..., (Tk,j,Ck,j). The result of the it-
eration (Tk,j,Ck,j) is called the jth attractor. If Kn starts are used, then
j = 1, ..., Kn. The concentration attractor, (TA,CA), is the attractor chosen
by the algorithm. The attractor is used to obtain the final estimator. A com-
mon choice is the attractor that has the smallest determinant det(Ck,j). The
basic resampling algorithm estimator is a special case where k = −1 so that
the attractor is the start: (xk,j,Sk,j) = (x−1,j,S−1,j).

This concentration algorithm is a simplified version of the algorithms given
by Rousseeuw and Van Driessen (1999) and Hawkins and Olive (1999a). Using
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k = 10 concentration steps often works well. The following proposition is
useful and shows that det(S0,j) tends to be greater than the determinant of
the attractor det(Sk,j).

Theorem 7.5: Rousseeuw and Van Driessen (1999, p. 214). Sup-
pose that the classical estimator (xt,j,St,j) is computed from cn cases and
that the n Mahalanobis distances Di ≡ Di(xt,j,St,j) are computed. If
(xt+1,j,St+1,j) is the classical estimator computed from the cn cases with
the smallest Mahalanobis distances Di, then det(St+1,j) ≤ det(St,j) with
equality iff (xt+1,j,St+1,j) = (xt,j,St,j).

Starts that use a consistent initial estimator could be used. Kn is the
number of starts and k is the number of concentration steps used in the
algorithm. Suppose the algorithm estimator uses some criterion to choose an
attractor as the final estimator where there are K attractors and K is fixed,
e.g. K = 500, so K does not depend on n. A crucial observation is that the
theory of the algorithm estimator depends on the theory of the attractors,
not on the estimator corresponding to the criterion.

For example, let (0, Ip) and (1, diag(1, 3, ..., p)) be the high breakdown
attractors where 0 and 1 are the p × 1 vectors of zeroes and ones. If the
minimum determinant criterion is used, then the final estimator is (0, Ip).
Although the MCD criterion is used, the algorithm estimator does not have
the same properties as the MCD estimator.

Hawkins and Olive (2002) showed that if K randomly selected elemental
starts are used with concentration to produce the attractors, then the result-
ing estimator is inconsistent and zero breakdown if K and k are fixed and free
of n. Note that each elemental start can be made to breakdown by changing
one case. Hence the breakdown value of the final estimator is bounded by
K/n → 0 as n → ∞. Note that the classical estimator computed from hn

randomly drawn cases is an inconsistent estimator unless hn → ∞ as n→ ∞.
Thus the classical estimator applied to a randomly drawn elemental set of
hn ≡ p + 1 cases is an inconsistent estimator, so the K starts and the K
attractors are inconsistent.

This theory shows that the Maronna et al. (2006, pp. 198-199) estimators
that use K = 500 and one concentration step (k = 0) are inconsistent and
zero breakdown. The following theorem is useful because it does not depend
on the criterion used to choose the attractor.

Suppose there are K consistent estimators (Tj ,Cj) of (µ, a Σ) for some
constant a > 0, each with the same rate nδ. If (TA,CA) is an estimator
obtained by choosing one of the K estimators, then (TA,CA) is a consistent
estimator of (µ, a Σ) with rate nδ by Pratt (1959). See Theorem 1.21.

Theorem 7.6. Suppose the algorithm estimator chooses an attractor as
the final estimator where there are K attractors and K is fixed.

i) If all of the attractors are consistent estimators of (µ, a Σ), then the
algorithm estimator is a consistent estimator of (µ, a Σ).
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ii) If all of the attractors are consistent estimators of (µ, a Σ) with the
same rate, e.g. nδ where 0 < δ ≤ 0.5, then the algorithm estimator is a
consistent estimator of (µ, a Σ) with the same rate as the attractors.

iii) If all of the attractors are high breakdown, then the algorithm estimator
is high breakdown.

iv) Suppose the data x1, ...,xn are iid and P (xi = µ) < 1. The elemental
basic resampling algorithm estimator (k = −1) is inconsistent.

v) The elemental concentration algorithm is zero breakdown.

Proof. i) Choosing from K consistent estimators for (µ, a Σ) results in a
consistent estimator for of (µ, aΣ), and ii) follows from Pratt (1959). iii) Let
γn,i be the breakdown value of the ith attractor if the clean data x1, ...,xn are
in general position. The breakdown value γn of the algorithm estimator can
be no lower than that of the worst attractor: γn ≥ min(γn,1, ..., γn,K) → 0.5
as n → ∞.

iv) Let (x−1,j,S−1,j) be the classical estimator applied to a randomly
drawn elemental set. Then x−1,j is the sample mean applied to p + 1 iid
cases. Hence E(Sj) = Σx, E[x−1,j] = E(x) = µ, and Cov(x−1,j) =
Cov(x)/(p+1) = Σx/(p+1) assuming second moments. So the (x−1,j,S−1,j)
are identically distributed and inconsistent estimators of (µ,Σx). Even with-
out second moments, there exists ε > 0 such that P (‖x−1,j−µ‖ > ε) = δε > 0
where the probability, ε, and δε do not depend on n since the distribution
of x−1,j only depends on the distribution of the iid xi, not on n. Then
P (minj ‖x−1,j − µ‖ > ε) = P (all ‖x−1,j − µ‖ > ε) → δKε > 0 as n → ∞
where equality would hold if the x−1,j were iid. Hence the “best start” that
minimizes ‖x−1,j − µ‖ is inconsistent.

v) The classical estimator with breakdown 1/n is applied to each elemental
start. Hence γn ≤ K/n→ 0 as n → ∞. �

Since the FMCD estimator is a zero breakdown elemental concentration
algorithm, the Hubert et al. (2008) claim that “MCD can be efficiently com-
puted with the FAST-MCD estimator” is false. Suppose K is fixed, but at
least one randomly drawn start is iterated to convergence so that k is not
fixed. Then it is not known whether the attractors are inconsistent or consis-
tent estimators, so it is not known whether FMCD is consistent. It is possible
to produce consistent estimators if K ≡ Kn is allowed to increase to ∞.

Remark 7.1. Let γo be the highest percentage of large outliers that an
elemental concentration algorithm can detect reliably. For many data sets,

γo ≈ min

(
n− cn
n

, 1 − [1 − (0.2)1/K]1/h

)
100% (7.10)

if n is large, cn ≥ n/2 and h = p+ 1.

Proof. Suppose that the data set contains n cases with d outliers and
n − d clean cases. Suppose K elemental sets are chosen with replacement.



7.2 The Multivariate Location and Dispersion Model 291

If Wi is the number of outliers in the ith elemental set, then the Wi are
iid hypergeometric(d, n − d, h) random variables. Suppose that it is desired
to find K such that the probability P(that at least one of the elemental
sets is clean) ≡ P1 ≈ 1 − α where 0 < α < 1. Then P1 = 1− P(none of
the K elemental sets is clean) ≈ 1 − [1− (1 − γ)h]K by independence. If the
contamination proportion γ is fixed, then the probability of obtaining at least
one clean subset of size h with high probability (say 1− α = 0.8) is given by
0.8 = 1− [1− (1−γ)h ]K . Fix the number of starts K and solve this equation
for γ. �

7.2.4 Theory for Practical Estimators

It is convenient to let the xi be random vectors for large sample theory,
but the xi are fixed clean observed data vectors when discussing breakdown.
This subsection presents the FCH estimator to be used along with the classi-
cal estimator. Recall from Definition 7.12 that a concentration algorithm uses
Kn starts (T−1,j ,C−1,j). After finding (T0,j,C0,j), each start is refined with
k concentration steps, resulting in Kn attractors (Tk,j,Ck,j), and the con-
centration attractor (TA,CA) is the attractor that optimizes the criterion.

Concentration algorithms include the basic resampling algorithm as a spe-
cial case with k = −1. Using k = 10 concentration steps works well, and
iterating until convergence is usually fast. The DGK estimator (Devlin et
al. 1975, 1981) defined below is one example. The DGK estimator is affine
equivariant since the classical estimator is affine equivariant and Mahalanobis
distances are invariant under affine transformations by Theorem 7.1. This
subsection will show that the Olive (2004a) MB estimator is a high break-
down estimator and that the DGK estimator is a

√
n consistent estimator

of (µ, aMCDΣ), the same quantity estimated by the MCD estimator. Both
estimators use the classical estimator computed from cn ≈ n/2 cases. The
breakdown point of the DGK estimator has been conjectured to be “at most
1/p.” See Rousseeuw and Leroy (1987, p. 254).

Definition 7.13. The DGK estimator (Tk,D,Ck,D) = (TDGK ,CDGK)
uses the classical estimator (T−1,D,C−1,D) = (x,S) as the only start.

Definition 7.14. The median ball (MB) estimator (Tk,M ,Ck,M) =
(TMB,CMB) uses (T−1,M ,C−1,M) = (MED(W ), Ip) as the only start where
MED(W ) is the coordinatewise median. So (T0,M ,C0,M) is the classical es-
timator applied to the “half set” of data closest to MED(W ) in Euclidean
distance.

The proof of the following theorem implies that a high breakdown estima-
tor (T,C) has MED(D2

i ) ≤ V and that the hyperellipsoid {x|D2
x ≤ D2

(cn)}
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that contains cn ≈ n/2 of the cases is in some ball about the origin of ra-
dius r, where V and r do not depend on the outliers even if the number of
outliers is close to n/2. Also the attractor of a high breakdown estimator is
a high breakdown estimator if the number of concentration steps k is fixed,
e.g. k = 10. The theorem implies that the MB estimator (TMB ,CMB) is high
breakdown.

Theorem 7.7. Suppose (T,C) is a high breakdown estimator where C is
a symmetric, positive definite p × p matrix if the contamination proportion
dn/n is less than the breakdown value. Then the concentration attractor
(Tk,Ck) is a high breakdown estimator if the coverage cn ≈ n/2 and the
data are in general position.

Proof. Following Leon (1986, p. 280), if A is a symmetric positive definite
matrix with eigenvalues τ1 ≥ · · · ≥ τp, then for any nonzero vector x,

0 < ‖x‖2 τp ≤ xT Ax ≤ ‖x‖2 τ1. (7.11)

Let λ1 ≥ · · · ≥ λp be the eigenvalues of C. By (7.11),

1

λ1
‖x− T‖2 ≤ (x − T )T C−1(x − T ) ≤ 1

λp
‖x − T‖2. (7.12)

By (7.12), if the D2
(i) are the order statistics of the D2

i (T,C), then D2
(i) < V

for some constant V that depends on the clean data but not on the outliers
even if i and dn are near n/2. (Note that 1/λp and MED(‖xi−T‖2) are both
bounded for high breakdown estimators even for dn near n/2.)

Following Johnson and Wichern (1988, pp. 50, 103), the boundary of
the set {x|D2

x ≤ h2} = {x|(x − T )T C−1(x − T ) ≤ h2} is a hyperellip-
soid centered at T with axes of length 2h

√
λi. Hence {x|D2

x ≤ D2
(cn)} is

contained in some ball about the origin of radius r where r does not de-
pend on the number of outliers even for dn near n/2. This is the set con-
taining the cases used to compute (T0,C0). Since the set is bounded, T0

is bounded and the largest eigenvalue λ1,0 of C0 is bounded by Theorem
7.4. The determinant det(CMCD) of the HB minimum covariance deter-
minant estimator satisfies 0 < det(CMCD) ≤ det(C0) = λ1,0 · · ·λp,0, and

λp,0 > inf det(CMCD)/λp−1
1,0 > 0 where the infimum is over all possible data

sets with n−dn clean cases and dn outliers. Since these bounds do not depend
on the outliers even for dn near n/2, (T0,C0) is a high breakdown estimator.
Now repeat the argument with (T0,C0) in place of (T,C) and (T1,C1) in
place of (T0,C0). Then (T1,C1) is high breakdown. Repeating the argument
iteratively shows (Tk,Ck) is high breakdown. �

The following corollary shows that it is easy to find a subset J of cn ≈ n/2
cases such that the classical estimator (xJ ,SJ ) applied to J is a HB estimator
of MLD.
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Theorem 7.8. Let J consist of the cn cases xi such that
‖xi − MED(W )‖ ≤ MED(‖xi − MED(W )‖). Then the classical estimator
(xJ ,SJ) applied to J is a HB estimator of MLD.

To investigate the consistency and rate of robust estimators of multivariate
location and dispersion, review Definitions 1.34 and 1.35.

The following assumption (E1) gives a class of distributions where we can
prove that the new robust estimators are

√
n consistent. Cator and Lop-

uhaä (2010, 2012) showed that MCD is consistent provided that the MCD
functional is unique. Distributions where the functional is unique are called
“unimodal,” and rule out, for example, a spherically symmetric uniform dis-
tribution. Theorem 7.9 is crucial for theory and Theorem 7.10 shows that
under (E1), both MCD and DGK are estimating (µ, aMCDΣ).

Assumption (E1): The x1, ...,xn are iid from a “unimodal” ellipti-
cally contoured ECp(µ,Σ, g) distribution with nonsingular covariance ma-
trix Cov(xi) where g is continuously differentiable with finite 4th moment:∫
(xT x)2g(xT x)dx <∞.

Lopuhaä (1999) showed that if a start (T,C) is a consistent affine equiv-
ariant estimator of (µ, sΣ), then the classical estimator applied to the cases
with D2

i (T,C) ≤ h2 is a consistent estimator of (µ, aΣ) where a, s > 0 are
some constants. Affine equivariance is not used for Σ = Ip. Also, the attrac-
tor and the start have the same rate. If the start is inconsistent, then so is
the attractor. The weight function I(D2

i (T,C) ≤ h2) is an indicator that is
1 if D2

i (T,C) ≤ h2 and 0 otherwise.

Theorem 7.9, Lopuhaä (1999). Assume the number of concentration
steps k is fixed. a) If the start (T,C) is inconsistent, then so is the attractor.

b) Suppose (T,C) is a consistent estimator of (µ, sIp) with rate nδ where
s > 0 and 0 < δ ≤ 0.5. Assume (E1) holds and Σ = Ip. Then the classical
estimator (T0,C0) applied to the cases with D2

i (T,C) ≤ h2 is a consistent
estimator of (µ, aIp) with the same rate nδ where a > 0.

c) Suppose (T,C) is a consistent affine equivariant estimator of (µ, sΣ)
with rate nδ where s > 0 and 0 < δ ≤ 0.5. Assume (E1) holds. Then the
classical estimator (T0,C0) applied to the cases with D2

i (T,C) ≤ h2 is a
consistent affine equivariant estimator of (µ, aΣ) with the same rate nδ where
a > 0. The constant a depends on the positive constants s, h, p, and the
elliptically contoured distribution, but does not otherwise depend on the
consistent start (T,C).

Let δ = 0.5. Applying Theorem 7.9c) iteratively for a fixed number k of
steps produces a sequence of estimators (T0,C0), ..., (Tk,Ck) where (Tj ,Cj)
is a

√
n consistent affine equivariant estimator of (µ, ajΣ) where the con-

stants aj > 0 depend on s, h, p, and the elliptically contoured distribution,
but do not otherwise depend on the consistent start (T,C) ≡ (T−1,C−1).
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The 4th moment assumption was used to simplify theory, but likely holds
under 2nd moments. Affine equivariance is needed so that the attractor is
affine equivariant, but probably is not needed to prove consistency.

Conjecture 7.1. Change the finite 4th moments assumption to a finite
2nd moments in assumption E1). Suppose (T,C) is a consistent estimator
of (µ, sΣ) with rate nδ where s > 0 and 0 < δ ≤ 0.5. Then the classical
estimator applied to the cases with D2

i (T,C) ≤ h2 is a consistent estimator
of (µ, aΣ) with the same rate nδ where a > 0.

Remark 7.2. To see that the Lopuhaä (1999) theory extends to con-
centration where the weight function uses h2 = D2

(cn)(T,C), note that

(T, C̃) ≡ (T,D2
(cn)(T,C) C) is a consistent estimator of (µ, bΣ) where b > 0

is derived in (7.14), and weight function I(D2
i (T, C̃) ≤ 1) is equivalent to the

concentration weight function I(D2
i (T,C) ≤ D2

(cn)(T,C)). As noted above

Theorem 7.1, (T, C̃) is affine equivariant if (T,C) is affine equivariant. Hence
Lopuhaä (1999) theory applied to (T, C̃) with h = 1 is equivalent to theory
applied to affine equivariant (T,C) with h2 = D2

(cn)(T,C).

If (T,C) is a consistent estimator of (µ, s Σ) with rate nδ where 0 < δ ≤
0.5, then D2(T,C) = (x − T )T C−1(x − T ) =

(x − µ + µ− T )T [C−1 − s−1Σ−1 + s−1Σ−1](x− µ + µ − T )

= s−1D2(µ,Σ) +OP (n−δ). (7.13)

Thus the sample percentiles of D2
i (T,C) are consistent estimators of the per-

centiles of s−1D2(µ,Σ). Suppose cn/n → ξ ∈ (0, 1) as n → ∞, and let
D2

ξ (µ,Σ) be the 100ξth percentile of the population squared distances. Then

D2
(cn)(T,C)

P→ s−1D2
ξ (µ,Σ) and bΣ = s−1D2

ξ (µ,Σ)sΣ = D2
ξ (µ,Σ)Σ.

Thus
b = D2

ξ (µ,Σ) (7.14)

does not depend on s > 0 or δ ∈ (0, 0.5]. �

Concentration applies the classical estimator to cases with D2
i (T,C) ≤

D2
(cn)(T,C). Let cn ≈ n/2 and

b = D2
0.5(µ,Σ)

be the population median of the population squared distances. By Remark
7.2, if (T,C) is a

√
n consistent affine equivariant estimator of (µ, sΣ) then

(T, C̃) ≡ (T,D2
(cn)(T,C) C) is a

√
n consistent affine equivariant estimator

of (µ, bΣ), and D2
i (T, C̃) ≤ 1 is equivalent to D2

i (T,C) ≤ D2
(cn)(T,C)).

Hence Lopuhaä (1999) theory applied to (T, C̃) with h = 1 is equivalent
to theory applied to the concentration estimator using the affine equivariant
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estimator (T,C) ≡ (T−1,C−1) as the start. Since b does not depend on s,
concentration produces a sequence of estimators (T0,C0), ..., (Tk,Ck) where
(Tj,Cj) is a

√
n consistent affine equivariant estimator of (µ, aΣ) where the

constant a > 0 is the same for j = 0, 1, ..., k.
Theorem 7.10 shows that a = aMCD where ξ = 0.5. Hence concentration

with a consistent affine equivariant estimator of (µ, sΣ) with rate nδ as a start
results in a consistent affine equivariant estimator of (µ, aMCDΣ) with rate
nδ. This result can be applied iteratively for a finite number of concentration
steps. Hence DGK is a

√
n consistent affine equivariant estimator of the

same quantity that MCD is estimating. It is not known if the results hold
if concentration is iterated to convergence. For multivariate normal data,
D2(µ,Σ) ∼ χ2

p.

Theorem 7.10. Assume that (E1) holds and that (T,C) is a consistent
affine equivariant estimator of (µ, sΣ) with rate nδ where the constants s > 0
and 0 < δ ≤ 0.5. Then the classical estimator (xt,j,St,j) computed from the
cn ≈ n/2 of cases with the smallest distances Di(T,C) is a consistent affine
equivariant estimator of (µ, aMCDΣ) with the same rate nδ.

Proof. By Remark 7.2 the estimator is a consistent affine equivariant esti-
mator of (µ, aΣ) with rate nδ. By the remarks above, a will be the same for
any consistent affine equivariant estimator of (µ, sΣ) and a does not depend
on s > 0 or δ ∈ (0, 0.5]. Hence the result follows if a = aMCD. The MCD
estimator is a

√
n consistent affine equivariant estimator of (µ, aMCDΣ) by

Cator and Lopuhaä (2010, 2012). If the MCD estimator is the start, then it
is also the attractor by Theorem 7.5 which shows that concentration does not
increase the MCD criterion. Hence a = aMCD. �

Next we define the easily computed robust
√
n consistent FCH estima-

tor, so named since it is fast, consistent, and uses a high breakdown attrac-
tor. The FCH and MBA estimators use the

√
n consistent DGK estimator

(TDGK ,CDGK) and the high breakdown MB estimator (TMB ,CMB) as at-
tractors.

Definition 7.15. Let the “median ball” be the hypersphere containing the
“half set” of data closest to MED(W ) in Euclidean distance. The FCH esti-
mator uses the MB attractor if the DGK location estimator TDGK is outside
of the median ball, and the attractor with the smallest determinant, other-
wise. Let (TA,CA) be the attractor used. Then the estimator (TFCH ,CFCH)
takes TFCH = TA and

CFCH =
MED(D2

i (TA,CA))

χ2
p,0.5

CA (7.15)

where χ2
p,0.5 is the 50th percentile of a chi–square distribution with p degrees

of freedom.



296 7 Robust Regression

Remark 7.3. The MBA estimator (TMBA,CMBA) uses the attractor
(TA,CA) with the smallest determinant. Hence the DGK estimator is used
as the attractor if det(CDGK) ≤ det(CMB), and the MB estimator is used
as the attractor, otherwise. Then TMBA = TA and CMBA is computed using
the right hand side of (7.15). The difference between the FCH and MBA
estimators is that the FCH estimator also uses a location criterion to choose
the attractor: if the DGK location estimator TDGK has a greater Euclidean
distance from MED(W ) than half the data, then FCH uses the MB attractor.
The FCH estimator only uses the attractor with the smallest determinant if
‖TDGK − MED(W )‖ ≤ MED(Di(MED(W ), Ip)). Using the location crite-
rion increases the outlier resistance of the FCH estimator for certain types of
outliers, as will be seen in Section 7.2.5.

The following theorem shows the FCH estimator has good statistical prop-
erties. We conjecture that FCH is high breakdown. Note that the location
estimator TFCH is high breakdown and that det(CFCH) is bounded away
from 0 and ∞ if the data is in general position, even if nearly half of the
cases are outliers.

Theorem 7.11. TFCH is high breakdown if the clean data are in gen-
eral position. Suppose (E1) holds. If (TA,CA) is the DGK or MB attractor
with the smallest determinant, then (TA,CA) is a

√
n consistent estimator

of (µ, aMCDΣ). Hence the MBA and FCH estimators are outlier resistant√
n consistent estimators of (µ, cΣ) where c = u0.5/χ

2
p,0.5, and c = 1 for

multivariate normal data.

Proof. TFCH is high breakdown since it is a bounded distance from
MED(W ) even if the number of outliers is close to n/2. Under (E1) the
FCH and MBA estimators are asymptotically equivalent since ‖TDGK −
MED(W )‖ → 0 in probability. The estimator satisfies 0 < det(CMCD) ≤
det(CA) ≤ det(C0,M) <∞ by Theorem 7.7 if up to nearly 50% of the cases
are outliers. If the distribution is spherical about µ, then the result follows
from Pratt (1959) and Theorem 7.5 since both starts are

√
n consistent. Oth-

erwise, the MB estimator CMB is a biased estimator of aMCDΣ. But the
DGK estimator CDGK is a

√
n consistent estimator of aMCDΣ by Theo-

rem 7.10 and ‖CMCD − CDGK‖ = OP (n−1/2). Thus the probability that
the DGK attractor minimizes the determinant goes to one as n → ∞, and
(TA,CA) is asymptotically equivalent to the DGK estimator (TDGK ,CDGK).

Let CF = CFCH or CF = CMBA. Let P (U ≤ uα) = α where U is given
by (1.35). Then the scaling in (7.15) makes CF a consistent estimator of cΣ
where c = u0.5/χ

2
p,0.5, and c = 1 for multivariate normal data. �

A standard method of reweighting can be used to produce the RMBA and
RFCH estimators. RMVN uses a slightly modified method of reweighting so
that RMVN gives good estimates of (µ,Σ) for multivariate normal data,
even when certain types of outliers are present.
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Definition 7.16. The RFCH estimator uses two standard reweighting
steps. Let (µ̂1, Σ̃1) be the classical estimator applied to the n1 cases with
D2

i (TFCH ,CFCH) ≤ χ2
p,0.975, and let

Σ̂1 =
MED(D2

i (µ̂1, Σ̃1))

χ2
p,0.5

Σ̃1.

Then let (TRFCH , Σ̃2) be the classical estimator applied to the cases with

D2
i (µ̂1, Σ̂1) ≤ χ2

p,0.975, and let

CRFCH =
MED(D2

i (TRFCH , Σ̃2))

χ2
p,0.5

Σ̃2.

RMBA and RFCH are
√
n consistent estimators of (µ, cΣ) by Lopuhaä

(1999) where the weight function uses h2 = χ2
p,0.975, but the two estimators

use nearly 97.5% of the cases if the data is multivariate normal.

Definition 7.17. The RMVN estimator uses (µ̂1, Σ̃1) and n1 as above.
Let q1 = min{0.5(0.975)n/n1, 0.995}, and

Σ̂1 =
MED(D2

i (µ̂1, Σ̃1))

χ2
p,q1

Σ̃1.

Then let (TRMV N , Σ̃2) be the classical estimator applied to the n2 cases with

D2
i (µ̂1, Σ̂1)) ≤ χ2

p,0.975. Let q2 = min{0.5(0.975)n/n2, 0.995}, and

CRMV N =
MED(D2

i (TRMV N , Σ̃2))

χ2
p,q2

Σ̃2.

Definition 7.18. Let the n2 cases in Definition 7.17 be known as the
RMVN set U . Hence (TRMV N , Σ̃2) = (xU ,SU ) is the classical estimator
applied to the RMVN set U , which can be regarded as the untrimmed data
(the data not trimmed by ellipsoidal trimming) or the cleaned data. Also
SU is the unscaled estimated dispersion matrix while CRMV N is the scaled
estimated dispersion matrix.

Remark 7.4. Classical methods can be applied to the RMVN subset U to
make robust methods. Under (E1), (xU ,SU ) is a

√
n consistent estimator of

(µ, cUΣ) for some constant cU > 0 that depends on the underlying distribu-
tion of the iid xi. For a general estimator of multivariate location and disper-
sion (TA,CA), typically a reweight for efficiency step is performed, resulting
in a set U such that the classical estimator (xU ,SU) is the classical estima-
tor applied to a set U . For example, use U = {xi|D2

i (TA,CA) ≤ χ2
p,0.975}.

Then the final estimator is (TF ,CF ) = (xU , aSU) where scaling is done as
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in Equation (7.15) in an attempt to make CF a good estimator of Σ if the
iid data are from a Np(µ,Σ) distribution. Then (xU ,SU) can be shown to
be a

√
n consistent estimator of (µ, cUΣ) for a large class of distributions

for the RMVN set, for the RFCH set, or if (TA,CA) is an affine equivariant√
n consistent estimator of (µ, cAΣ) on a large class of distributions. The

necessary theory is not yet available for other practical robust reweighted
estimators such as OGK and Det-MCD.

Table 7.1 Average Dispersion Matrices for Near Point Mass Outliers

RMVN FMCD OGK MB[
1.002 −0.014
−0.014 2.024

] [
0.055 0.685
0.685 122.5

] [
0.185 0.089
0.089 36.24

] [
2.570 −0.082
−0.082 5.241

]

Table 7.2 Average Dispersion Matrices for Mean Shift Outliers

RMVN FMCD OGK MB[
0.990 0.004
0.004 2.014

] [
2.530 0.003
0.003 5.146

] [
19.67 12.88
12.88 39.72

] [
2.552 0.003
0.003 5.118

]

The RMVN estimator is a
√
n consistent estimator of (µ, dΣ) by Lopuhaä

(1999) where the weight function uses h2 = χ2
p,0.975 and d = u0.5/χ

2
p,q where

q2 → q in probability as n → ∞. Here 0.5 ≤ q < 1 depends on the elliptically
contoured distribution, but q = 0.5 and d = 1 for multivariate normal data.

If the bulk of the data is Np(µ,Σ), the RMVN estimator can give useful
estimates of (µ,Σ) for certain types of outliers where FCH and RFCH esti-
mate (µ, dEΣ) for dE > 1. To see this claim, let 0 ≤ γ < 0.5 be the outlier

proportion. If γ = 0, then ni/n
P→ 0.975 and qi

P→ 0.5. If γ > 0, suppose
the outlier configuration is such that the D2

i (TFCH ,CFCH) are roughly χ2
p

for the clean cases, and the outliers have larger D2
i than the clean cases.

Then MED(D2
i ) ≈ χ2

p,q where q = 0.5/(1 − γ). For example, if n = 100 and
γ = 0.4, then there are 60 clean cases, q = 5/6, and the quantile χ2

p,q is
being estimated instead of χ2

p,0.5. Now ni ≈ n(1 − γ)0.975, and qi estimates
q. Thus CRMV N ≈ Σ. Of course consistency cannot generally be claimed
when outliers are present.

Simulations suggested (TRMV N ,CRMV N) gives useful estimates of (µ,Σ)
for a variety of outlier configurations. Using 20 runs and n = 1000, the aver-
ages of the dispersion matrices were computed when the bulk of the data are
iidN2(0,Σ) where Σ = diag(1, 2). For clean data, FCH, RFCH, and RMVN
give

√
n consistent estimators of Σ, while FMCD and the Maronna and Za-

mar (2002) OGK estimator seem to be approximately unbiased for Σ. The
median ball estimator was scaled using (7.15) and estimated diag(1.13, 1.85).

Next the data had γ = 0.4 and the outliers had x ∼ N2((0, 15)T , 0.0001I2),
a near point mass at the major axis. FCH, MB, and RFCH estimated 2.6Σ
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while RMVN estimated Σ. FMCD and OGK failed to estimate d Σ. Note
that χ2

2,5/6/χ
2
2,0.5 = 2.585. See Table 7.1. The following R commands were

used where mldsim is from linmodpack.

qchisq(5/6,2)/qchisq(.5,2) = 2.584963

mldsim(n=1000,p=2,outliers=6,pm=15)

Next the data had γ = 0.4 and the outliers had x ∼ N2((20, 20)T ,Σ), a
mean shift with the same covariance matrix as the clean cases. Rocke and
Woodruff (1996) suggest that outliers with mean shift are hard to detect.
FCH, FMCD, MB, and RFCH estimated 2.6Σ while RMVN estimated Σ,
and OGK failed. See Table 7.2. The R command is shown below.

mldsim(n=1000,p=2,outliers=3,pm=20)

Remark 7.5. The RFCH and RMVN estimators are recommended. If
these estimators are too slow and outlier detection is of interest, try the RMB
estimator, the reweighted MB estimator. If RMB is too slow or if n < 2(p+1),
the Euclidean distances Di(MED(W ), I) of xi from the coordinatewise me-
dian MED(W ) may be useful. A DD plot of Di(x, I) versus Di(MED(W ), I)
is also useful for outlier detection and for whether x and MED(W ) are giving
similar estimates of multivariate location. Also see Section 7.3.

Hubert et al. (2008, 2012) claim that FMCD computes the MCD estimator.
This claim is trivially shown to be false in the following theorem.

Theorem 7.12. Neither FMCD nor Det-MCD compute the MCD esti-
mator.

Proof. A necessary condition for an estimator to be the MCD estimator
is that the determinant of the covariance matrix for the estimator be the
smallest for every run in a simulation. Sometimes FMCD had the smaller
determinant and sometimes Det-MCD had the smaller determinant in the
simulations done by Hubert et al. (2012). �

Example 7.2. Tremearne (1911) recorded height = x[,1] and height while
kneeling = x[,2] of 112 people. Figure 7.1a shows a scatterplot of the data.
Case 3 has the largest Euclidean distance of 214.767 from MED(W ) =
(1680, 1240)T, but if the distances correspond to the contours of a cover-
ing ellipsoid, then case 44 has the largest distance. For k = 0, (T0,M ,C0,M)
is the classical estimator applied to the “half set” of cases closest to MED(W )
in Euclidean distance. The hypersphere (circle) centered at MED(W ) that
covers half the data is small because the data density is high near MED(W ).
The median Euclidean distance is 59.661 and case 44 has Euclidean distance
77.987. Hence the intersection of the sphere and the data is a highly corre-
lated clean ellipsoidal region. Figure 7.1b shows the DD plot of the classical
distances versus the MB distances. Notice that both the classical and MB
estimators give the largest distances to cases 3 and 44. Notice that case 44
could not be detected using marginal methods.
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Fig. 7.1 Plots for Major Data

As the dimension p gets larger, outliers that can not be detected by
marginal methods (case 44 in Example 7.2) become harder to detect. When
p = 3 imagine that the clean data is a baseball bat or stick with one end
at the SW corner of the bottom of the box (corresponding to the coordinate
axes) and one end at the NE corner of the top of the box. If the outliers are
a ball, there is much more room to hide them in the box than in a covering
rectangle when p = 2.

Example 7.3. The estimators can be useful when the data is not ellipti-
cally contoured. The Gladstone (1905) data has 11 variables on 267 persons
after death. Head measurements were breadth, circumference, head height,
length, and size as well as cephalic index and brain weight. Age, height, and
two categorical variables ageclass (0: under 20, 1: 20-45, 2: over 45) and
sex were also given. Figure 7.2 shows the DD plots for the FCH, RMVN,
cov.mcd, and MB estimators. The DD plots from the DGK, MBA, and
RFCH estimators were similar, and the six outliers in Figure 7.2 correspond
to the six infants in the data set.

Section 7.3 shows that if a consistent robust estimator is scaled as in
(7.15), then the plotted points in the DD plot will cluster about the identity
line with unit slope and zero intercept if the data is multivariate normal,
and about some other line through the origin if the data is from some other
elliptically contoured distribution with a nonsingular covariance matrix. Since
multivariate procedures tend to perform well for elliptically contoured data,
the DD plot is useful even if outliers are not present.
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Fig. 7.2 DD Plots for Gladstone Data

7.2.5 Outlier Resistance and Simulations

RMVN FMCD

0.996 0.014 0.002 -0.001 0.931 0.017 0.011 0.000

0.014 2.012 -0.001 0.029 0.017 1.885 -0.003 0.022

0.002 -0.001 2.984 0.003 0.011 -0.003 2.803 0.010

-0.001 0.029 0.003 3.994 0.000 0.022 0.010 3.752

Simulations were used to compare (TFCH ,CFCH), (TRFCH ,CRFCH),
(TRMV N ,CRMV N ), and (TFMCD ,CFMCD). Shown above are the averages,
using 20 runs and n = 1000, of the dispersion matrices when the bulk of the
data are iid N4(0,Σ) where Σ = diag(1, 2, 3, 4). The first pair of matrices
used γ = 0. Here the FCH, RFCH, and RMVN estimators are

√
n consis-

tent estimators of Σ, while CFMCD seems to be approximately unbiased for
0.94Σ.

Next the data had γ = 0.4 and the outliers had x ∼ N4((0, 0, 0, 15)T ,
0.0001 I4), a near point mass at the major axis. FCH and RFCH estimated
1.93Σ while RMVN estimated Σ. The FMCD estimator failed to estimate
d Σ. Note that χ2

4,5/6/χ
2
4,0.5 = 1.9276.

RMVN FMCD

0.988 -0.023 -0.007 0.021 0.227 -0.016 0.002 0.049

-0.023 1.964 -0.022 -0.002 -0.016 0.435 -0.014 0.013

-0.007 -0.022 3.053 0.007 0.002 -0.014 0.673 0.179

0.021 -0.002 0.007 3.870 0.049 0.013 0.179 55.65
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Next the data had γ = 0.4 and the outliers had x ∼ N4(15 1,Σ), a mean
shift with the same covariance matrix as the clean cases. Again FCH and
RFCH estimated 1.93Σ while RMVN and FMCD estimated Σ.

RMVN FMCD

1.013 0.008 0.006 -0.026 1.024 0.002 0.003 -0.025

0.008 1.975 -0.022 -0.016 0.002 2.000 -0.034 -0.017

0.006 -0.022 2.870 0.004 0.003 -0.034 2.931 0.005

-0.026 -0.016 0.004 3.976 -0.025 -0.017 0.005 4.046

Geometrical arguments suggest that the MB estimator has considerable
outlier resistance. Suppose the outliers are far from the bulk of the data. Let
the “median ball” correspond to the half set of data closest to MED(W ) in
Euclidean distance. If the outliers are outside of the median ball, then the
initial half set in the iteration leading to the MB estimator will be clean. Thus
the MB estimator will tend to give the outliers the largest MB distances unless
the initial clean half set has very high correlation in a direction about which
the outliers lie. This property holds for very general outlier configurations.
The FCH estimator tries to use the DGK attractor if the det(CDGK) is small
and the DGK location estimator TDGK is in the median ball. Distant outliers
that make det(CDGK) small also drag TDGK outside of the median ball. Then
FCH uses the MB attractor.

Compared to OGK and FMCD, the MB estimator is vulnerable to outliers
that lie within the median ball. If the bulk of the data is highly correlated
with the major axis of a hyperellipsoidal region, then the distances based on
the clean data can be very large for outliers that fall within the median ball.
The outlier resistance of the MB estimator decreases as p increases since the
volume of the median ball rapidly increases with p.

A simple simulation for outlier resistance is to count the number of times
the minimum distance of the outliers is larger than the maximum distance of
the clean cases. The simulation used 100 runs. If the count was 97, then in 97
data sets the outliers can be separated from the clean cases with a horizontal
line in the DD plot, but in 3 data sets the robust distances did not achieve
complete separation. In Spring 2015, Det-MCD simulated much like FMCD,
but was more likely to cause an error in R.

The clean cases had x ∼ Np(0, diag(1, 2, ..., p)). Outlier types were the
mean shift x ∼ Np(pm1, diag(1, 2, ..., p)) where 1 = (1, ..., 1)T and x ∼
Np((0, ..., 0, pm)T, 0.0001Ip), a near point mass at the major axis. Notice that
the clean data can be transformed to a Np(0, Ip) distribution by multiplying
xi by diag(1, 1/

√
2, ..., 1/

√
p), and this transformation changes the location

of the near point mass to (0, ..., 0, pm/
√
p)T .

Suppose the attractor is (xk,j,Sk,j) computed from a subset of cn cases.
The MCD(cn) criterion is the determinant det(Sk,j). The volume of the hy-
perellipsoid {z : (z − xk,j)

T S−1
k,j(z − xk,j) ≤ h2} is equal to
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Table 7.3 Number of Times Mean Shift Outliers had the Largest Distances

p γ n pm MBA FCH RFCH RMVN OGK FMCD MB
10 .1 100 4 49 49 85 84 38 76 57
10 .1 100 5 91 91 99 99 93 98 91
10 .4 100 7 90 90 90 90 0 48 100
40 .1 100 5 3 3 3 3 76 3 17
40 .1 100 8 36 36 37 37 100 49 86
40 .25 100 20 62 62 62 62 100 0 100
40 .4 100 20 20 20 20 20 0 0 100
40 .4 100 35 44 98 98 98 95 0 100
60 .1 200 10 49 49 49 52 100 30 100
60 .1 200 20 97 97 97 97 100 35 100
60 .25 200 25 60 60 60 60 100 0 100
60 .4 200 30 11 21 21 21 17 0 100
60 .4 200 40 21 100 100 100 100 0 100

2πp/2

pΓ (p/2)
hp
√
det(Sk,j), (7.16)

see Johnson and Wichern (1988, pp. 103-104).
For near point mass outliers, a hyperellipsoid with very small volume can

cover half of the data if the outliers are at one end of the hyperellipsoid and
some of the clean data are at the other end. This half set will produce a
classical estimator with very small determinant by (7.16). In the simulations
for large γ, as the near point mass is moved very far away from the bulk
of the data, only the classical, MB, and OGK estimators did not have nu-
merical difficulties. Since the MCD estimator has smaller determinant than
DGK, estimators like FMCD and MBA that use the MCD criterion without
using location information will be vulnerable to these outliers. FMCD is also
vulnerable to outliers if γ is slightly larger than γo given by (7.10).

Table 7.4 Number of Times Near Point Mass Outliers had the Largest Distances

p γ n pm MBA FCH RFCH RMVN OGK FMCD MB
10 .1 100 40 73 92 92 92 100 95 100
10 .25 100 25 0 99 99 90 0 0 99
10 .4 100 25 0 100 100 100 0 0 100
40 .1 100 80 0 0 0 0 79 0 80
40 .1 100 150 0 65 65 65 100 0 99
40 .25 100 90 0 88 87 87 0 0 88
40 .4 100 90 0 91 91 91 0 0 91
60 .1 200 100 0 0 0 0 13 0 91
60 .25 200 150 0 100 100 100 0 0 100
60 .4 200 150 0 100 100 100 0 0 100
60 .4 200 20000 0 100 100 100 64 0 100

Tables 7.3 and 7.4 help illustrate the results for the simulation. Large
counts and small pm for fixed γ suggest greater ability to detect outliers.
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Values of p were 5, 10, 15, ..., 60. First consider the mean shift outliers and
Table 7.3. For γ = 0.25 and 0.4, MB usually had the highest counts. For
5 ≤ p ≤ 20 and the mean shift, the OGK estimator often had the smallest
counts, and FMCD could not handle 40% outliers for p = 20. For 25 ≤ p ≤ 60,
OGK usually had the highest counts for γ = 0.05 and 0.1. For p ≥ 30, FMCD
could not handle 25% outliers even for enormous values of pm.

In Table 7.4, FCH greatly outperformed MBA although the only difference
between the two estimators is that FCH uses a location criterion as well as
the MCD criterion. OGK performed well for γ = 0.05 and 20 ≤ p ≤ 60 (not
tabled). For large γ, OGK often has large bias for cΣ. Then the outliers may
need to be enormous before OGK can detect them. Also see Table 7.2, where
OGK gave the outliers the largest distances for all runs, but COGK does not
give a good estimate of cΣ = c diag(1, 2).
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Fig. 7.3 The FMCD Estimator Failed

The DD plot of MDi versus RDi is useful for detecting outliers. The
resistant estimator will be useful if (T,C) ≈ (µ, cΣ) where c > 0 since scaling
by c affects the vertical labels of the RDi but not the shape of the DD plot.
For the outlier data, the MBA estimator is biased, but the mean shift outliers
in the MBA DD plot will have large RDi since CMBA ≈ 2CFMCD ≈ 2Σ.

In an older mean shift simulation, when p was 8 or larger, the cov.mcd
estimator was usually not useful for detecting the mean shift outliers. Figure
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Fig. 7.4 The Outliers are Large in the MBA DD Plot

7.3 shows that now the FMCD RDi are highly correlated with the MDi. The
DD plot based on the MBA estimator detects the outliers. See Figure 7.4.

For many data sets, Equation (7.10) gives a rough approximation for the
number of large outliers that concentration algorithms using K starts each
consisting of h cases can handle. However, if the data set is multivariate and
the bulk of the data falls in one compact hyperellipsoid while the outliers
fall in another hugely distant compact hyperellipsoid, then a concentration
algorithm using a single start can sometimes tolerate nearly 25% outliers.
For example, suppose that all p+ 1 cases in the elemental start are outliers
but the covariance matrix is nonsingular so that the Mahalanobis distances
can be computed. Then the classical estimator is applied to the cn ≈ n/2
cases with the smallest distances. Suppose the percentage of outliers is less
than 25% and that all of the outliers are in this “half set.” Then the sample
mean applied to the cn cases should be closer to the bulk of the data than
to the cluster of outliers. Hence after a concentration step, the percentage
of outliers will be reduced if the outliers are very far away. After the next
concentration step the percentage of outliers will be further reduced and after
several iterations, all cn cases will be clean.

In a small simulation study, 20% outliers were planted for various values of
p. If the outliers were distant enough, then the minimum DGK distance for
the outliers was larger than the maximum DGK distance for the nonoutliers.
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Hence the outliers would be separated from the bulk of the data in a DD plot
of classical versus robust distances. For example, when the clean data comes
from theNp(0, Ip) distribution and the outliers come from the Np(2000 1, Ip)
distribution, the DGK estimator with 10 concentration steps was able to
separate the outliers in 17 out of 20 runs when n = 9000 and p = 30. With
10% outliers, a shift of 40, n = 600, and p = 50, 18 out of 20 runs worked.
Olive (2004a) showed similar results for the Rousseeuw and Van Driessen
(1999) FMCD algorithm and that the MBA estimator could often correctly
classify up to 49% distant outliers. The following theorem shows that it is
very difficult to drive the determinant of the dispersion estimator from a
concentration algorithm to zero.

Theorem 7.13. Consider the concentration and MCD estimators that
both cover cn cases. For multivariate data, if at least one of the starts is
nonsingular, then the concentration attractor CA is less likely to be singular
than the high breakdown MCD estimator CMCD.

Proof. If all of the starts are singular, then the Mahalanobis distances
cannot be computed and the classical estimator can not be applied to cn
cases. Suppose that at least one start was nonsingular. Then CA and CMCD

are both sample covariance matrices applied to cn cases, but by definition
CMCD minimizes the determinant of such matrices. Hence 0 ≤ det(CMCD) ≤
det(CA). �

Software

The robustbase library was downloaded from (www.r-project.org/#doc).∮
11.1 explains how to use the source command to get the linmodpack

functions in R and how to download a library from R. Type the commands
library(MASS) and library(robustbase) to compute the FMCD and
OGK estimators with the cov.mcd and covOGK functions. To use Det-MCD
instead of FMCD, change

out <- covMcd(x) to out <- covMcd(x,nsamp="deterministic"),

but in Spring 2015 this change was more likely to cause errors.
The linmodpack function

mldsim(n=200,p=5,gam=.2,runs=100,outliers=1,pm=15)
can be used to produce Tables 7.1–7.4. Change outliers to 0 to examine the
average of µ̂ and Σ̂. The function mldsim6 is similar but does not need the
library command since it compares the FCH, RFCH, MB estimators, and
the covmb2 estimator of Section 7.3.

The function function covfch computes FCH and RFCH, while covrmvn
computes the RMVN and MB estimators. The function covrmb computes MB
and RMB where RMB is like RMVN except the MB estimator is reweighted
instead of FCH. Functions covdgk, covmba, and rmba compute the scaled
DGK, MBA, and RMBA estimators. Better programs would use MB if
DGK causes an error.
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Fig. 7.6 highlighted cases = half set with smallest RD = (T1,C1)
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The concmv function described in Problem 7.6 illustrates concentration
where the start is (MED(W ), diag([MAD(Xi)]

2)). In Figures 7.5, 7.6, and
7.7, the highlighted cases are the half set with the smallest distances, and
the initial half set shown in Figure 7.5 is not clean, where n = 100 and there
are 40 outliers. The attractor shown in Figure 7.7 is clean. This type of data
set has too many outliers for DGK while the MB starts and attractors are
almost always clean.

The ddmv function in Problem 7.7 illustrates concentration for the DGK
estimator where the start is the classical estimator. Now n = 100, p = 4,
and there are 25 outliers. A DD plot of classical distances MD versus robust
distances RD is shown. See Figures 7.8, 7.9, 7.10, and 7.11. The half set of
cases with the smallest RDs is used, and the initial half set shown in Figure
7.8 is not clean. The attractor in Figure 7.11 is the DGK estimator which
uses a clean half set. The clean cases xi ∼ N4(0, diag(1, 2, 3, 4)) while the
outliers xi ∼ N4((10, 10

√
2, 10

√
3, 20)T , diag(1, 2, 3, 4)).

7.2.6 The RMVN and RFCH Sets

Both the RMVN and RFCH estimators compute the classical estimator
(xU ,SU ) on some set U containing nU ≥ n/2 of the cases. Referring to Defi-
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nition 7.16, for the RFCH estimator, (xU ,SU ) = (TRFCH , Σ̃2), and then SU

is scaled to form CRFCH . Referring to Definition 7.17, for the RMVN esti-
mator, (xU ,SU ) = (TRMV N , Σ̃2), and then SU is scaled to form CRMV N .
See Definition 7.18.

The two main ways to handle outliers are i) apply the multivariate method
to the cleaned data, and ii) plug in robust estimators for classical estimators.
Subjectively cleaned data may work well for a single data set, but we can’t
get large sample theory since sometimes too many cases are deleted (delete
outliers and some nonoutliers) and sometimes too few (do not get all of the
outliers). Practical plug in robust estimators have rarely been shown to be√
n consistent and highly outlier resistant.
Using the RMVN or RFCH set U is simultaneously a plug in method and

an objective way to clean the data such that the resulting robust method is
often backed by theory. This result is extremely useful computationally: find
the RMVN set or RFCH set U , then apply the classical method to the cases
in the set U . This procedure is often equivalent to using (xU ,SU ) as plug
in estimators. The method can be applied if n > 2(p+ 1) but may not work
well unless n > 20p. The linmodpack function getu gets the RMVN set U as
well as the case numbers corresponding to the cases in U .

The set U is a small volume hyperellipsoid containing at least half of the
cases since concentration is used. The set U can also be regarded as the
“untrimmed data”: the data that was not trimmed by ellipsoidal trimming.
Theory has been proved for a large class of elliptically contoured distributions,
but it is conjectured that theory holds for a much wider class of distributions.
See Olive (2017b, pp. 127-128).

In simulations RFCH and RMVN seem to estimate cΣx if x = Az + µ
where z = (z1, ..., zp)

T and the zi are iid from a continuous distribution with

variance σ2. Here Σx = Cov(x) = σ2AAT . The bias for the MB estimator
seemed to be small. It is known that affine equivariant estimators give unbi-
ased estimators of cΣx if the distribution of zi is also symmetric. DGK is
affine equivariant and RFCH and RMVN are asymptotically equivalent to a
scaled DGK estimator. But in the simulations the results also held for skewed
distributions.

Several illustrative applications of the RMVN set U are given next, where
the theory usually assumes that the cases are iid from a large class of ellip-
tically contoured distributions.

i) The classical estimator of multivariate location and dispersion applied
to the cases in U gives (xU ,SU), a

√
n consistent estimator of (µ, cΣ) for

some constant c > 0. See Remark 7.4.
ii) The classical estimator of the correlation matrix applied to the cases in

U gives RU , a consistent estimator of the population correlation matrix ρx.
iii) For multiple linear regression, let Y be the response variable, x1 = 1

and x2, ..., xp be the predictor variables. Let zi = (Yi, xi2, ..., xip)
T . Let U

be the RMVN or RFCH set formed using the zi. Then a classical regression
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estimator applied to the set U results in a robust regression estimator. For
least squares, this is implemented with the linmodpack function rmreg3.

iv) For multivariate linear regression, let Y1, ..., Ym be the response vari-
ables, x1 = 1 and x2, ..., xp be the predictor variables. Let

zi = (Yi1, ...Yim, xi2, ..., xip)
T .

Let U be the RMVN or RFCH set formed using the zi. Then a classical least
squares multivariate linear regression estimator applied to the set U results
in a robust multivariate linear regression estimator. For least squares, this is
implemented with the linmodpack function rmreg2. The method for multiple
linear regression in iii) corresponds to m = 1. See Section 8.6.

There are also several variants on the method. Suppose there are tentative
predictors Z1, ..., ZJ. After transformations assume that predictors X1, ..., Xk

are linearly related. Assume the set U used cases i1, i2, ..., inU. To add vari-
ables like Xk+1 = X2

1 , Xk+2 = X3X4 , Xk+3 = gender, ..., Xp, augment
U with the variables Xk+1, ..., Xp corresponding to cases i1, ..., inU . Adding
variables results in cleaned data that is more likely to contain outliers.

If there are g groups (g = G for discriminant analysis, g = 2 for binary
regression, and g = p for one way MANOVA), the function getubig gets
the RMVN set Ui for each group and combines the g RMVN sets into one
large set Ubig = U1∪U2∪· · ·∪Ug . Olive (2017b) has many more applications.

7.3 Outlier Detection for the MLD Model

Now suppose the multivariate data has been collected into an n× p matrix

W = X =




xT
1
...

xT
n


 =




x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p


 =

[
v1 v2 . . . vp

]

where the ith row of W is the ith case xT
i and the jth column vj of W

corresponds to n measurements of the jth random variableXj for j = 1, ..., p.
Hence the n rows of the data matrix W correspond to the n cases, while the
p columns correspond to measurements on the p random variables X1, ..., Xp.
For example, the data may consist of n visitors to a hospital where the p = 2
variables height and weight of each individual were measured.

Definition 7.19. The coordinatewise median MED(W ) = (MED(X1), ...,
MED(Xp))

T where MED(Xi) is the sample median of the data in column i
corresponding to variable Xi and vi.
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Example 7.4. Let the data forX1 be 1, 2, 3, 4, 5, 6, 7, 8, 9while the data for
X2 is 7, 17, 3, 8, 6, 13, 4, 2, 1. Then MED(W ) = (MED(X1),MED(X2))

T =
(5, 6)T .

Definition 7.20: Rousseeuw and Van Driessen (1999). The DD plot
is a plot of the classical Mahalanobis distances MDi versus robust Maha-
lanobis distances RDi.

The DD plot is used as a diagnostic for multivariate normality, elliptical
symmetry, and for outliers. Assume that the data set consists of iid vectors
from an ECp(µ,Σ, g) distribution with second moments. See Section 1.7 for
notation. Then the classical sample mean and covariance matrix (TM ,CM) =
(x,S) is a consistent estimator for (µ, cxΣ) = (E(x),Cov(x)). Assume that
an alternative algorithm estimator (TA,CA) is a consistent estimator for
(µ, aAΣ) for some constant aA > 0. By scaling the algorithm estimator,
the DD plot can be constructed to follow the identity line with unit slope
and zero intercept. Let (TR,CR) = (TA,CA/τ

2) denote the scaled algorithm
estimator where τ > 0 is a constant to be determined. Notice that (TR,CR)
is a valid estimator of location and dispersion. Hence the robust distances
used in the DD plot are given by

RDi = RDi(TR,CR) =
√

(xi − TR(W ))T [CR(W )]−1(xi − TR(W ))

= τ Di(TA,CA) for i = 1, ..., n.
The following theorem shows that if consistent estimators are used to

construct the distances, then the DD plot will tend to cluster tightly about the
line segment through (0, 0) and (MDn,α,RDn,α) where 0 < α < 1 and MDn,α

is the 100αth sample percentile of the MDi. Nevertheless, the variability in
the DD plot may increase with the distances. Let K > 0 be a constant, e.g.
the 99th percentile of the χ2

p distribution.

Theorem 7.14. Assume that x1, ...,xn are iid observations from a dis-
tribution with parameters (µ,Σ) where Σ is a symmetric positive definite

matrix. Let aj > 0 and assume that (µ̂j,n, Σ̂j,n) are consistent estimators of
(µ, ajΣ) for j = 1, 2.

a) D2
x(µ̂j , Σ̂j) − 1

aj
D2

x(µ,Σ) = oP (1).

b) Let 0 < δ ≤ 0.5. If (µ̂j , Σ̂j)−(µ, ajΣ) = Op(n
−δ) and ajΣ̂

−1

j −Σ−1 =

OP (n−δ), then

D2
x(µ̂j, Σ̂j) −

1

aj
D2

x(µ,Σ) = OP (n−δ).

c) Let Di,j ≡ Di(µ̂j,n, Σ̂j,n) be the ith Mahalanobis distance computed

from (µ̂j,n, Σ̂j,n). Consider the cases in the region R = {i|0 ≤ Di,j ≤ K, j =
1, 2}. Let rn denote the correlation between Di,1 and Di,2 for the cases in R
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(thus rn is the correlation of the distances in the “lower left corner” of the
DD plot). Then rn → 1 in probability as n → ∞.

Proof. Let Bn denote the subset of the sample space on which both Σ̂1,n

and Σ̂2,n have inverses. Then P (Bn) → 1 as n→ ∞.

a) and b): D2
x(µ̂j, Σ̂j) = (x− µ̂j)

T Σ̂
−1

j (x− µ̂j) =

(x− µ̂j)
T

(
Σ−1

aj
− Σ−1

aj
+ Σ̂

−1

j

)
(x − µ̂j)

= (x− µ̂j)
T

(−Σ−1

aj
+ Σ̂

−1

j

)
(x − µ̂j) + (x − µ̂j)

T

(
Σ−1

aj

)
(x − µ̂j)

=
1

aj
(x − µ̂j)

T (−Σ−1 + aj Σ̂
−1

j )(x − µ̂j) +

(x− µ + µ − µ̂j)
T

(
Σ−1

aj

)
(x − µ + µ − µ̂j)

=
1

aj
(x − µ)T Σ−1(x − µ)

+
2

aj
(x− µ)T Σ−1(µ − µ̂j) +

1

aj
(µ− µ̂j)

T Σ−1(µ− µ̂j)

+
1

aj
(x − µ̂j)

T [ajΣ̂
−1

j − Σ−1](x− µ̂j) (7.17)

on Bn, and the last three terms are oP (1) under a) and OP (n−δ) under b).

c) Following the proof of a), D2
j ≡ D2

x(µ̂j, Σ̂j)
P→ (x−µ)T Σ−1(x−µ)/aj

for fixed x, and the result follows. �

The above result implies that a plot of the MDi versus the Di(TA,CA) ≡
Di(A) will follow a line through the origin with some positive slope since if
x = µ, then both the classical and the algorithm distances should be close to
zero. We want to find τ such that RDi = τ Di(TA,CA) and the DD plot of
MDi versus RDi follows the identity line. By Theorem 7.14, the plot of MDi

versus Di(A) will follow the line segment defined by the origin (0, 0) and the
point of observed median Mahalanobis distances, (med(MDi),med(Di(A))).
This line segment has slope

med(Di(A))/med(MDi)

which is generally not one. By taking τ = med(MDi)/med(Di(A)), the plot
will follow the identity line if (x,S) is a consistent estimator of (µ, cxΣ)
and if (TA,CA) is a consistent estimator of (µ, aAΣ). (Using the notation
from Theorem 7.14, let (a1, a2) = (cx, aA).) The classical estimator is con-
sistent if the population has a nonsingular covariance matrix. The algorithm
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estimators (TA,CA) from Theorem 7.11 are consistent on a large class of
EC distributions that have a nonsingular covariance matrix, but tend to be
biased for non–EC distributions. We recommend using RFCH or RMVN as
the robust estimators in DD plots.

By replacing the observed median med(MDi) of the classical Mahalanobis
distances with the target population analog, say MED, τ can be chosen so
that the DD plot is simultaneously a diagnostic for elliptical symmetry and a
diagnostic for the target EC distribution. That is, the plotted points follow
the identity line if the data arise from a target EC distribution such as the
multivariate normal distribution, but the points follow a line with non-unit
slope if the data arise from an alternative EC distribution. In addition the DD
plot can often detect departures from elliptical symmetry such as outliers,
the presence of two groups, or the presence of a mixture distribution.

Example 7.5. We will use the multivariate normal Np(µ,Σ) distribution
as the target. If the data are indeed iid MVN vectors, then the (MDi)

2 are

asymptotically χ2
p random variables, and MED =

√
χ2

p,0.5 where χ2
p,0.5 is the

median of the χ2
p distribution. Since the target distribution is Gaussian, let

RDi =

√
χ2

p,0.5

med(Di(A))
Di(A) so that τ =

√
χ2

p,0.5

med(Di(A))
. (7.18)

Since every nonsingular estimator of multivariate location and dispersion
defines a hyperellipsoid, the DD plot can be used to examine which points
are in the robust hyperellipsoid

{x : (x − TR)T C−1
R (x− TR) ≤ RD2

(h)} (7.19)

where RD2
(h) is the hth smallest squared robust Mahalanobis distance, and

which points are in a classical hyperellipsoid

{x : (x − x)T S−1(x− x) ≤MD2
(h)}. (7.20)

In the DD plot, points below RD(h) correspond to cases that are in the
hyperellipsoid given by Equation (7.19) while points to the left of MD(h) are
in a hyperellipsoid determined by Equation (7.20). In particular, we can use
the DD plot to examine which points are in the nonparametric prediction
region (4.24).

Application 7.1. Consider the DD plot with RFCH or RMVN. The DD
plot can be used simultaneously as a diagnostic for whether the data arise from
a multivariate normal distribution or from another EC distribution with non-
singular covariance matrix. EC data will cluster about a straight line through
the origin; MVN data in particular will cluster about the identity line. Thus
the DD plot can be used to assess the success of numerical transformations
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towards elliptical symmetry. The DD plot can be used to detect multivariate
outliers. Use the DD plot to detect outliers and leverage groups if n ≥ 10p
for the predictor variables in regression.
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Fig. 7.12 4 DD Plots

For this application, the RFCH and RMVN estimators may be best. For
MVN data, the RDi from the RFCH estimator tend to have a higher correla-
tion with the MDi from the classical estimator than the RDi from the FCH
estimator, and the cov.mcd estimator may be inconsistent.

Figure 7.12 shows the DD plots for 3 artificial data sets using cov.mcd.
The DD plot for 200 N3(0, I3) points shown in Figure 7.12a resembles the
identity line. The DD plot for 200 points from the elliptically contoured
distribution 0.6N3(0, I3) + 0.4N3(0, 25 I3) in Figure 7.12b clusters about a
line through the origin with a slope close to 2.0.

A weighted DD plot magnifies the lower left corner of the DD plot by

omitting the cases with RDi ≥
√
χ2

p,.975. This technique can magnify features

that are obscured when large RDi’s are present. If the distribution of x is EC
with nonsingular Σ, Theorem 7.14 implies that the correlation of the points
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in the weighted DD plot will tend to one and that the points will cluster
about a line passing through the origin. For example, the plotted points in
the weighted DD plot (not shown) for the non-MVN EC data of Figure 7.12b
are highly correlated and still follow a line through the origin with a slope
close to 2.0.

Figures 7.12c and 7.12d illustrate how to use the weighted DD plot. The
ith case in Figure 7.12c is (exp(xi,1), exp(xi,2), exp(xi,3))

T where xi is the
ith case in Figure 7.12a; i.e. the marginals follow a lognormal distribution.
The plot does not resemble the identity line, correctly suggesting that the
distribution of the data is not MVN; however, the correlation of the plotted
points is rather high. Figure 7.12d is the weighted DD plot where cases with

RDi ≥
√
χ2

3,.975 ≈ 3.06 have been removed. Notice that the correlation of the

plotted points is not close to one and that the best fitting line in Figure 7.12d
may not pass through the origin. These results suggest that the distribution
of x is not EC.
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Fig. 7.13 DD Plots for the Buxton Data

Example 7.6. Buxton (1920, pp. 232-5) gave 20 measurements of 88 men.
We will examine whether the multivariate normal distribution is a reasonable
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model for the measurements head length, nasal height, bigonal breadth, and
cephalic index where one case has been deleted due to missing values. Figure
7.13a shows the DD plot. Five head lengths were recorded to be around 5
feet and are massive outliers. Figure 7.13b is the DD plot computed after
deleting these points and suggests that the multivariate normal distribution
is reasonable. (The recomputation of the DD plot means that the plot is not
a weighted DD plot which would simply omit the outliers and then rescale
the vertical axis.)

library(MASS)

x <- cbind(buxy,buxx)

ddplot(x,type=3) #Figure 7.13a), right click Stop

zx <- x[-c(61:65),]

ddplot(zx,type=3) #Figure 7.13b), right click Stop

7.3.1 MLD Outlier Detection if p > n

Most outlier detection methods work best if n ≥ 20p, but often data sets have
p > n, and outliers are a major problem. One of the simplest outlier detection
methods uses the Euclidean distances of the xi from the coordinatewise me-
dianDi = Di(MED(W ), Ip). Concentration type steps compute the weighted
median MEDj : the coordinatewise median computed from the “half set” of
cases xi with D2

i ≤ MED(D2
i (MEDj−1, Ip)) where MED0 = MED(W ).

We often used j = 0 (no concentration type steps) or j = 9. Let Di =
Di(MEDj, Ip). Let Wi = 1 if Di ≤ MED(D1, ..., Dn) + kMAD(D1, ..., Dn)
where k ≥ 0 and k = 5 is the default choice. Let Wi = 0, otherwise. Using
k ≥ 0 insures that at least half of the cases get weight 1. This weighting
corresponds to the weighting that would be used in a one sided metrically
trimmed mean (Huber type skipped mean) of the distances.

Application 7.2. This outlier resistant regression method uses terms from
the following definition. Let the ith case wi = (Yi,x

T
i )T where the continuous

predictors from xi are denoted by ui for i = 1, ..., n. Apply the covmb2

estimator to the ui, and then run the regression method on the m cases wi

corresponding to the covmb2 set B indices i1, ...im, where m ≥ n/2.

Definition 7.21. Let the covmb2 set B of at least n/2 cases correspond
to the cases with weight Wi = 1. The cases not in set B get weight Wi = 0.
Then the covmb2 estimator (T,C) is the sample mean and sample covariance
matrix applied to the cases in set B. Hence

T =

∑n
i=1Wixi∑n

i=1Wi
and C =

∑n
i=1Wi(xi − T )(xi − T )T

∑n
i=1Wi − 1

.
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Example 7.7. Let the clean data (nonoutliers) be i 1 for i = 1, 2, 3, 4, and
5 while the outliers are j 1 for j = 16, 17, 18, and 19. Here n = 9 and 1 is p×1.
Making a plot of the data for p = 2 may be useful. Then the coordinatewise
median MED0 = MED(W ) = 5 1. The median Euclidean distance of the data
is the Euclidean distance of 5 1 from 1 1 = the Euclidean distance of 5 1 from
9 1. The median ball is the hypersphere centered at the coordinatewise median
with radius r = MED(Di(MED(W ), Ip), i = 1, ..., n) that tends to contain
(n+1)/2 of the cases if n is odd. Hence the clean data are in the median ball
and the outliers are outside of the median ball. The coordinatewise median
of the cases with the 5 smallest distances is the coordinatewise median of
the clean data: MED1 = 3 1. Then the median Euclidean distance of the
data from MED1 is the Euclidean distance of 3 1 from 1 1 = the Euclidean
distance of 3 1 from 5 1. Again the clean cases are the cases with the 5 smallest
Euclidean distances. Hence MEDj = 3 1 for j ≥ 1. For j ≥ 1, if xi = j 1, then
Di = |j − 3|√p. Thus D(1) = 0, D(2) = D(3) =

√
p, and D(4) = D(5) = 2

√
p.

Hence MED(D1, ..., Dn) = D(5) = 2
√
p = MAD(D1, ..., Dn) since the median

distance of the Di from D(5) is 2
√
p − 0 = 2

√
p. Note that the 5 smallest

absolute distances |Di − D(5)| are 0, 0,
√
p,
√
p, and 2

√
p. Hence Wi = 1 if

Di ≤ 2
√
p + 10

√
p = 12

√
p. The clean data get weight 1 while the outliers

get weight 0 since the smallest distance Di for the outliers is the Euclidean
distance of 3 1 from 16 1 with a Di = ‖16 1 − 3 1‖ = 13

√
p. Hence the

covmb2 estimator (T,C) is the sample mean and sample covariance matrix
of the clean data. Note that the distance for the outliers to get zero
weight is proportional to the square root of the dimension

√
p.

The covmb2 estimator can also be used for n > p. The covmb2 estimator
attempts to give a robust dispersion estimator that reduces the bias by using
a big ball about MEDj instead of a ball that contains half of the cases. The
linmodpack function getB gives the set B of cases that got weight 1 along
with the index indx of the case numbers that got weight 1. The function
ddplot5 plots the Euclidean distances from the coordinatewise median ver-
sus the Euclidean distances from the covmb2 location estimator. Typically
the plotted points in this DD plot cluster about the identity line, and outliers
appear in the upper right corner of the plot with a gap between the bulk of
the data and the outliers. An alternative for outlier detection is to replace C
by Cd = diag(σ̂11, ..., σ̂pp). For example, use σ̂ii = Cii. See Ro et al. (2015)
and Tarr et al. (2016) for references.

Example 7.8. For the Buxton (1920) data with multiple linear regression,
height was the response variable while an intercept, head length, nasal height,
bigonal breadth, and cephalic index were used as predictors in the multiple
linear regression model. Observation 9 was deleted since it had missing values.
Five individuals, cases 61–65, were reported to be about 0.75 inches tall with
head lengths well over five feet! See Problem 7.11 to reproduce the following
plots.
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Fig. 7.14 Response plot for lasso and lasso applied to the covmb2 set B.

Figure 7.14a) shows the response plot for lasso. The identity line passes
right through the outliers which are obvious because of the large gap. Figure
7.14b) shows the response plot from lasso for the cases in the covmb2 set
B applied to the predictors, and the set B included all of the clean cases
and omitted the 5 outliers. The response plot was made for all of the data,
including the outliers. Prediction interval (PI) bands are also included for
both plots. Both plots are useful for outlier detection, but the method for
plot 7.14b) is better for data analysis: impossible outliers should be deleted
or given 0 weight, we do not want to predict that some people are about 0.75
inches tall, and we do want to predict that the people were about 1.6 to 1.8
meters tall. Figure 7.15 shows the DD plot made using ddplot5. The five
outliers are in the upper right corner.

Also see Problem 7.12 b) for the Gladstone (1905) data where the covmb2
set B deleted the 8 cases with the largest Di, including 5 outliers and 3 clean
cases.
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Fig. 7.15 DD plot with ddplot5.

7.4 Outlier Detection for the MLR Model

For multiple linear regression, the OLS response and residual plots are very
useful for detecting outliers. The DD plot of the continuous predictors is also
useful. Use the linmodpack functions MLRplot and ddplot4. Response and
residual plots from outlier resistant methods are also useful. See Figure 7.14.

Huber and Ronchetti (2009, p. 154) noted that efficient methods for iden-
tifying leverage groups are needed. Such groups are often difficult to detect
with regression diagnostics and residuals, but often have outlying fitted val-
ues and responses that can be detected with response and residual plots. The
following rules of thumb are useful for finding influential cases and outliers.
Look for points with large absolute residuals and for points far away from
Y . Also look for gaps separating the data into clusters. The OLS fit often
passes through a cluster of outliers, causing a large gap between a cluster
corresponding to the bulk of the data and the cluster of outliers. When such
a gap appears, it is possible that the smaller cluster corresponds to good
leverage points: the cases follow the same model as the bulk of the data. To
determine whether small clusters are outliers or good leverage points, give
zero weight to the clusters, and fit an MLR estimator such as OLS to the
bulk of the data. Denote the weighted estimator by β̂w. Then plot Ŷw versus
Y using the entire data set. If the identity line passes through the cluster,
then the cases in the cluster may be good leverage points, otherwise they
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may be outliers. The trimmed views estimator of Section 7.5 is also useful.
Dragging the plots, so that they are roughly square, can be useful.

Definition 7.22. Suppose that some analysis to detect outliers is per-
formed. Masking occurs if the analysis suggests that one or more outliers are
in fact good cases. Swamping occurs if the analysis suggests that one or more
good cases are outliers. Suppose that a subset of h cases is selected from the
n cases making up the data set. Then the subset is clean if none of the h
cases are outliers.

Influence diagnostics such as Cook’s distances CDi from Cook (1977) and
the weighted Cook’s distances WCDi from Peña (2005) are sometimes useful.
Although an index plot of Cook’s distance CDi may be useful for flagging
influential cases, the index plot provides no direct way of judging the model
against the data. As a remedy, cases in the response and residual plots with
CDi > min(0.5, 2p/n) are highlighted with open squares, and cases with
|WCDi − median(WCDi)| > 4.5MAD(WCDi) are highlighted with crosses,
where the median absolute deviation MAD(wi) = median(|wi−median(wi)|).

Example 7.9. Figure 7.16 shows the response plot and residual plot for
the Buxton (1920) data. Notice that the OLS fit passes through the outliers,
but the response plot is resistant to Y –outliers since Y is on the vertical
axis. Also notice that although the outlying cluster is far from Y , only two of
the outliers had large Cook’s distance and only one case had a large WCDi.
Hence masking occurred for the Cook’s distances, the WCDi, and for the
OLS residuals, but not for the OLS fitted values. Figure 7.16 was made with
the following R commands.

source("G:/linmodpack.txt"); source("G:/linmoddata.txt")

mlrplot4(buxx,buxy) #right click Stop twice

High leverage outliers are a particular challenge to conventional numerical
MLR diagnostics such as Cook’s distance, but can often be visualized using
the response and residual plots. (Using the trimmed views of Section 7.5
is also effective for detecting outliers and other departures from the MLR
model.)

Example 7.10. Hawkins et al. (1984) gave a well known artificial data
set where the first 10 cases are outliers while cases 11-14 are good leverage
points. Figure 7.17 shows the residual and response plots based on the OLS
estimator. The highlighted cases have Cook’s distance > min(0.5, 2p/n), and
the identity line is shown in the response plot. Since the good cases 11-14
have the largest Cook’s distances and absolute OLS residuals, swamping has
occurred. (Masking has also occurred since the outliers have small Cook’s
distances, and some of the outliers have smaller OLS residuals than clean
cases.) To determine whether both clusters are outliers or if one cluster con-
sists of good leverage points, cases in both clusters could be given weight
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zero and the resulting response plot created. (Alternatively, response plots
based on the tvreg estimator of Section 7.5 could be made where the cases
with weight one are highlighted. For high levels of trimming, the identity line
often passes through the good leverage points.)

The above example is typical of many “benchmark” outlier data sets for
MLR. In these data sets traditional OLS diagnostics such as Cook’s distance
and the residuals often fail to detect the outliers, but the combination of the
response plot and residual plot is usually able to detect the outliers. The CDi

and WCDi are the most effective when there is a single cluster about the
identity line. If there is a second cluster of outliers or good leverage points
or if there is nonconstant variance, then these numerical diagnostics tend to
fail.

7.5 Resistant Multiple Linear Regression

Consider the multiple linear regression model, written in matrix form as
Y = Xβ + e. The OLS response and residual plots are very useful for de-
tecting outliers and checking the model. Resistant estimators are useful for
detecting certain types of outliers. Some good resistant regression estimators
are rmreg2 from Section 8.6, the hbreg estimator from Section 7.7, and the
Olive (2005) MBA and trimmed views estimators described below. Also apply
a multiple linear regression method such as OLS or lasso to the cases cor-
responding to the RFCH, RMVN, or covmb2 set applied to the continuous
predictors. See Sections 7.2.6 and 7.3.1.

The L1 estimator or least absolute deviations estimator is a competitor for
OLS. The L1 estimator β̂L1

minimizes the criterion QL1
(b) =

∑n
i=1 |ri(b)|

where ri(b) = Yi − xT
i b is the ith residual corresponding to b. Response and

residual plots from these two estimators are useful for detecting outliers.
Resistant estimators are often created by computing several trial fits bi

that are estimators of β. Then a criterion is used to select the trial fit to be
used in the resistant estimator. Suppose c ≈ n/2. The LMS(c) criterion is
QLMS(b) = r2(c)(b) where r2(1) ≤ · · · ≤ r2(n) are the ordered squared residu-

als, and the LTS(c) criterion is QLTS(b) =
∑c

i=1 r
2
(i)(b). The LTA(c) crite-

rion is QLTA(b) =
∑c

i=1 |r(b)|(i) where |r(b)|(i) is the ith ordered absolute
residual. Three impractical high breakdown robust estimators are the Ham-
pel (1975) least median of squares (LMS) estimator, the Rousseeuw (1984)
least trimmed sum of squares (LTS) estimator, and the Hössjer (1991) least
trimmed sum of absolute deviations (LTA) estimator. Also see Hawkins and

Olive (1999ab). These estimators correspond to the β̂L ∈ R
p that minimizes

the corresponding criterion. LMS, LTA, and LTS have O(np) or O(np+1)
complexity. See Bernholt (2005), Hawkins and Olive (1999b), Klouda (2015),
and Mount et al. (2014). Estimators with O(n4) or higher complexity take
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too long to compute. LTS and LTA are
√
n consistent while LMS has the

lower n1/3 rate. See Kim and Pollard (1990), Č́ıžek (2006, 2008), and Maš̈ıček
(2004). If c = n, the LTS and LTA criteria are the OLS and L1 criteria. See
Olive (2008, 2017b: ch. 14) for more on these estimators.

A good resistant estimator is the Olive (2005) median ball algorithm (MBA
or mbareg). The Euclidean distance of the ith vector of predictors xi from
the jth vector of predictors xj is

Di(xj) = Di(xj , Ip) =
√

(xi − xj)T (xi − xj).

For a fixed xj consider the ordered distances D(1)(xj), ..., D(n)(xj). Next,

let β̂j(α) denote the OLS fit to the min(p + 3 + bαn/100c, n) cases with
the smallest distances where the approximate percentage of cases used is
α ∈ {1, 2.5, 5, 10, 20, 33, 50}. (Here bxc is the greatest integer function so
b7.7c = 7. The extra p+3 cases are added so that OLS can be computed for
small n and α.) This yields seven OLS fits corresponding to the cases with
predictors closest to xj. A fixed number of K cases are selected at random
without replacement to use as the xj . Hence 7K OLS fits are generated. We
use K = 7 as the default. A robust criterion Q is used to evaluate the 7K
fits and the OLS fit to all of the data. Hence 7K + 1 OLS fits are generated
and the MBA estimator is the fit that minimizes the criterion. The median
squared residual is a good choice for Q.

Three ideas motivate this estimator. First, x-outliers, which are outliers in
the predictor space, tend to be much more destructive than Y -outliers which
are outliers in the response variable. Suppose that the proportion of outliers
is γ and that γ < 0.5. We would like the algorithm to have at least one
“center” xj that is not an outlier. The probability of drawing a center that is
not an outlier is approximately 1−γK > 0.99 for K ≥ 7 and this result is free
of p. Secondly, by using the different percentages of coverages, for many data
sets there will be a center and a coverage that contains no outliers. Third, by
Theorem 1.21, the MBA estimator is a

√
n consistent estimator of the same

parameter vector β estimated by OLS under mild conditions.

Ellipsoidal trimming can be used to create resistant multiple linear regres-
sion (MLR) estimators. To perform ellipsoidal trimming, an estimator (T,C)
is computed and used to create the squared Mahalanobis distances D2

i for
each vector of observed predictors xi. If the ordered distance D(j) is unique,
then j of the xi’s are in the ellipsoid

{x : (x − T )T C−1(x − T ) ≤ D2
(j)}. (7.21)

The ith case (Yi,x
T
i )T is trimmed if Di > D(j). Then an estimator of β is

computed from the remaining cases. For example, if j ≈ 0.9n, then about
10% of the cases are trimmed, and OLS or L1 could be used on the cases
that remain. Ellipsoidal trimming differs from using the RFCH, RMVN, or
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covmb2 set since these sets use a random amount of trimming. (The ellip-
soidal trimming technique can also be used for other regression models, and
the theory of the regression method tends to apply to the method applied to
the cleaned data that was not trimmed since the response variables were not
used to select the cases. See Chapter 10.)

Use ellipsoidal trimming on the RFCH, RMVN, or covmb2 set applied to
the continuous predictors to get a fit β̂C . Then make a response and residual
plot using all of the data, not just the cleaned data that was not trimmed.

The resistant trimmed views estimator combines ellipsoidal trimming and
the response plot. First compute (T,C) on the xi, perhaps using the RMVN
estimator. Trim the M% of the cases with the largest Mahalanobis distances,
and then compute the MLR estimator β̂M from the remaining cases. Use
M = 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90 to generate ten response plots

of the fitted values β̂
T

Mxi versus Yi using all n cases. (Fewer plots are used

for small data sets if β̂M can not be computed for large M .) These plots are
called “trimmed views.”

Definition 7.23. The trimmed views (TV) estimator β̂T,n corresponds
to the trimmed view where the bulk of the plotted points follow the identity
line with smallest variance function, ignoring any outliers.

Example 7.11. For the Buxton (1920) data, height was the response
variable while an intercept, head length, nasal height, bigonal breadth, and
cephalic index were used as predictors in the multiple linear regression model.
Observation 9 was deleted since it had missing values. Five individuals, cases
61–65, were reported to be about 0.75 inches tall with head lengths well
over five feet! OLS was used on the cases remaining after trimming, and
Figure 7.18 shows four trimmed views corresponding to 90%, 70%, 40%,
and 0% trimming. The OLS TV estimator used 70% trimming since this
trimmed view was best. Since the vertical distance from a plotted point to the
identity line is equal to the case’s residual, the outliers had massive residuals
for 90%, 70%, and 40% trimming. Notice that the OLS trimmed view with
0% trimming “passed through the outliers” since the cluster of outliers is
scattered about the identity line.

The TV estimator β̂T,n has good statistical properties if an estimator with
good statistical properties is applied to the cases (XM,n,Y M,n) that remain
after trimming. Candidates include OLS, L1, Huber’s M–estimator, Mallows’
GM–estimator, or the Wilcoxon rank estimator. See Rousseeuw and Leroy
(1987, pp. 12-13, 150). The basic idea is that if an estimator with OP (n−1/2)
convergence rate is applied to a set of nM ∝ n cases, then the resulting
estimator β̂M,n also has OP (n−1/2) rate provided that the response Y was

not used to select the nM cases in the set. If ‖β̂M,n − β‖ = OP (n−1/2) for

M = 0, ..., 90 then ‖β̂T,n − β‖ = OP (n−1/2) by Theorem 1.21.
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Fig. 7.18 4 Trimmed Views for the Buxton Data

Let Xn = X0,n denote the full design matrix. Often when proving asymp-

totic normality of an MLR estimator β̂0,n, it is assumed that

XT
nXn

n
→ W−1.

If β̂0,n has OP (n−1/2) rate and if for big enough n all of the diagonal elements
of (

XT
M,nXM,n

n

)−1

are all contained in an interval [0, B) for some B > 0, then ‖β̂M,n − β‖ =

OP (n−1/2).

The distribution of the estimator β̂M,n is especially simple when OLS is
used and the errors are iid N(0, σ2). Then

β̂M,n = (XT
M,nXM,n)−1XT

M,nY M,n ∼ Np(β, σ2(XT
M,nXM,n)−1)

and
√
n(β̂M,n−β) ∼ Np(0, σ

2(XT
M,nXM,n/n)−1). This result does not imply

that β̂T,n is asymptotically normal. See the following paragraph for the large
sample theory of a modified trimmed views estimator.
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Warning: When Yi = xT
i β + e, MLR estimators tend to estimate the

same slopes β2, ..., βp, but the constant β1 tends to depend on the estimator
unless the errors are symmetric. The MBA and trimmed views estimators
do estimate the same β as OLS asymptotically, but samples may need to
be huge before the MBA and trimmed views estimates of the constant are
close to the OLS estimate of the constant. If the trimmed views estimator
is modified so that the LTS, LTA, or LMS criterion is used to select the
final estimator, then a conjecture is that the limiting distribution is similar

to that of the variable selection estimator:
√
n(β̂MTV − β)

D→
∑k

i=1 πiwi

where 0 ≤ πi ≤ 1 and
∑k

i=1 πi = 1. The index i corresponds to the fits
considered by the modified trimmed views estimator with k = 10. For the
MBA estimator and the modified trimmed views estimator, the prediction
region method, described in Section 4.5, may be useful for testing hypotheses.
Large sample sizes may be needed if the error distribution is not symmetric
since the constant β̂1 needs large samples. See Olive (2017b, p. 444) for
an explanation for why large sample sizes may be needed to estimate the
constant.

The conditions under which the rmreg2 estimator of Section 8.6 has been
shown to be

√
n consistent are quite strong, but it seems likely that the es-

timator is a
√
n consistent estimator of β under mild conditions where the

parameter vector β is not, in general, the parameter vector estimated by OLS.
For MLR, the linmodpack function rmregboot bootstraps the rmreg2 es-
timator, and the function rmregbootsim can be used to simulate rmreg2.
Both functions use the residual bootstrap where the residuals come from
OLS. See the R code below.

out<-rmregboot(belx,bely)

plot(out$betas)

ddplot4(out$betas) #right click Stop

out<-rmregboot(cbrainx,cbrainy)

ddplot4(out$betas) #right click Stop

Often practical “robust estimators” generate a sequence of K trial fits
called attractors: b1, ..., bK . Then some criterion is evaluated and the attractor
bA that minimizes the criterion is used in the final estimator.

Definition 7.24. For MLR, an elemental set J is a set of p cases drawn
with replacement from the data set of n cases. The elemental fit is the OLS
estimator β̂Ji

= (XT
Ji

XJi)
−1XT

Ji
Y Ji = X−1

Ji
Y Ji applied to the cases corre-

sponding to the elemental set provided that the inverse of XJi exists. In a
concentration algorithm, let b0,j be the jth start, not necessarily elemental,
and compute all n residuals ri(b0,j) = Yi −xT

i b0,j. At the next iteration, the
OLS estimator b1,j is computed from the cn ≈ n/2 cases corresponding to
the smallest squared residuals r2i (b0,j). This iteration can be continued for
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Fig. 7.19 The Highlighted Points are More Concentrated about the Attractor

k steps resulting in the sequence of estimators b0,j, b1,j, ..., bk,j. Then bk,j is
the jth attractor for j = 1, ..., K. Then the attractor bA that minimizes the
LTS criterion is used in the final estimator. Using k = 10 concentration steps
often works well, and the basic resampling algorithm is a special case with
k = 0, i.e., the attractors are the starts. Such an algorithm is called a CLTS
concentration algorithm or CLTS.

A CLTA concentration algorithm would replace the OLS estimator by
the L1 estimator, and the smallest cn squared residuals by the smallest cn
absolute residuals. Many other variants are possible, but obtaining theoretical
results may be difficult.

Example 7.12. As an illustration of the CLTA concentration algorithm,
consider the animal data from Rousseeuw and Leroy (1987, p. 57). The re-
sponse Y is the log brain weight and the predictor x is the log body weight
for 25 mammals and 3 dinosaurs (outliers with the highest body weight).
Suppose that the first elemental start uses cases 20 and 14, corresponding to
mouse and man. Then the start bs,1 = b0,1 = (2.952, 1.025)T and the sum of

the c = 14 smallest absolute residuals

14∑

i=1

|r|(i)(b0,1) = 12.101. Figure 7.19a

shows the scatterplot of x and y. The start is also shown and the 14 cases
corresponding to the smallest absolute residuals are highlighted. The L1 fit to
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Fig. 7.20 Starts and Attractors for the Animal Data

these c highlighted cases is b1,1 = (2.076, 0.979)T and

14∑

i=1

|r|(i)(b1,1) = 6.990.

The iteration consists of finding the cases corresponding to the c smallest
absolute residuals, obtaining the corresponding L1 fit and repeating. The
attractor ba,1 = b7,1 = (1.741, 0.821)T and the LTA(c) criterion evaluated

at the attractor is

14∑

i=1

|r|(i)(ba,1) = 2.172. Figure 7.19b shows the attractor

and that the c highlighted cases corresponding to the smallest absolute resid-
uals are much more concentrated than those in Figure 7.19a. Figure 7.20a
shows 5 randomly selected starts while Figure 7.20b shows the corresponding
attractors. Notice that the elemental starts have more variability than the
attractors, but if the start passes through an outlier, so does the attractor.

Remark 7.6. Consider drawing K elemental sets J1, ..., JK with replace-
ment to use as starts. For multivariate location and dispersion, use the attrac-
tor with the smallest MCD criterion to get the final estimator. For multiple
linear regression, use the attractor with the smallest LMS, LTA, or LTS cri-
terion to get the final estimator. For 500 ≤ K ≤ 3000 and p not much larger
than 5, the elemental set algorithm is very good for detecting certain “outlier
configurations,” including i) a mixture of two regression hyperplanes that
cross in the center of the data cloud for MLR (not an outlier configuration
since outliers are far from the bulk of the data) and ii) a cluster of outliers
that can often be placed close enough to the bulk of the data so that an MB,
RFCH, or RMVN DD plot can not detect the outliers. However, the outlier
resistance of elemental algorithms decreases rapidly as p increases.
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Suppose the data set has n cases where d are outliers and n−d are “clean”
(not outliers). The the outlier proportion γ = d/n. Suppose that K elemental
sets are chosen with replacement and that it is desired to find K such that
the probability P(that at least one of the elemental sets is clean) ≡ P1 ≈ 1−α
where α = 0.05 is a common choice. Then P1 = 1− P(none of theK elemental
sets is clean) ≈ 1− [1−(1−γ)p]K by independence. Hence α ≈ [1−(1−γ)p]K

or

K ≈ log(α)

log([1 − (1 − γ)p])
≈ log(α)

−(1 − γ)p
(7.22)

using the approximation log(1 − x) ≈ −x for small x. Since log(0.05) ≈ −3,

if α = 0.05, then K ≈ 3

(1 − γ)p
. Frequently a clean subset is wanted even if

the contamination proportion γ ≈ 0.5. Then for a 95% chance of obtaining at
least one clean elemental set, K ≈ 3 (2p) elemental sets need to be drawn. If
the start passes through an outlier, so does the attractor. For concentration
algorithms for multivariate location and dispersion, if the start passes through
a cluster of outliers, sometimes the attractor would be clean. See Figure 7.5–
7.11.

Table 7.5 Largest p for a 95% Chance of a Clean Subsample.

K
γ 500 3000 10000 105 106 107 108 109

0.01 509 687 807 1036 1265 1494 1723 1952
0.05 99 134 158 203 247 292 337 382
0.10 48 65 76 98 120 142 164 186
0.15 31 42 49 64 78 92 106 120
0.20 22 30 36 46 56 67 77 87
0.25 17 24 28 36 44 52 60 68
0.30 14 19 22 29 35 42 48 55
0.35 11 16 18 24 29 34 40 45
0.40 10 13 15 20 24 29 33 38
0.45 8 11 13 17 21 25 28 32
0.50 7 9 11 15 18 21 24 28

Notice that the number of subsets K needed to obtain a clean elemental set
with high probability is an exponential function of the number of predictors
p but is free of n. Hawkins and Olive (2002) showed that if K is fixed and
free of n, then the resulting elemental or concentration algorithm (that uses k
concentration steps), is inconsistent and zero breakdown. See Theorem 7.21.
Nevertheless, many practical estimators tend to use a value of K that is free
of both n and p (e.g. K = 500 or K = 3000). Such algorithms include ALMS
= FLMS = lmsreg and ALTS = FLTS = ltsreg. The “A” denotes that
an algorithm was used. The “F” means that a fixed number of trial fits (K
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elemental fits) was used and the criterion (LMS or LTS) was used to select
the trial fit used in the final estimator.

To examine the outlier resistance of such inconsistent zero breakdown es-
timators, fix both K and the contamination proportion γ and then find the
largest number of predictors p that can be in the model such that the proba-
bility of finding at least one clean elemental set is high. Given K and γ, P (at
least one of K subsamples is clean) = 0.95 ≈
1− [1 − (1 − γ)p]K. Thus the largest value of p satisfies

3

(1 − γ)p
≈ K, or

p ≈
⌊

log(3/K)

log(1 − γ)

⌋
(7.23)

if the sample size n is very large. Again bxc is the greatest integer function:
b7.7c = 7.

Table 7.5 shows the largest value of p such that there is a 95% chance
that at least one of K subsamples is clean using the approximation given by
Equation (7.23). Hence if p = 28, even with one billion subsamples, there
is a 5% chance that none of the subsamples will be clean if the contami-
nation proportion γ = 0.5. Since clean elemental fits have great variability,
an algorithm needs to produce many clean fits in order for the best fit to
be good. When contamination is present, all K elemental sets could contain
outliers. Hence basic resampling and concentration algorithms that only use
K elemental starts are doomed to fail if γ and p are large.

The outlier resistance of elemental algorithms that use K elemental sets
decreases rapidly as p increases. However, for p < 10, such elemental algo-
rithms are often useful for outlier detection. They can perform better than
MBA, trimmed views, and rmreg2 if p is small and the outliers are close
to the bulk of the data or if p is small and there is a mixture distribution:
the bulk of the data follows one MLR model, but “outliers” and some of the
clean data are fit well by another MLR model. For example, if there is one
nontrivial predictor, suppose the plot of x versus Y looks like the letter X.
Such a mixture distribution is not really an outlier configuration since out-
liers lie far from the bulk of the data. All practical estimators have outlier
configurations where they perform poorly. If p is small, elemental algorithms
tend to have trouble when there is a weak regression relationship for the bulk
of the data and a cluster of outliers that are not good leverage points (do
not fall near the hyperplane followed by the bulk of the data). The Buxton
(1920) data set is an example.

Theorem 7.15. Let h = p be the number of randomly selected cases in
an elemental set, and let γo be the highest percentage of massive outliers that
a resampling algorithm can detect reliably. If n is large, then

γo ≈ min

(
n − c

n
, 1 − [1 − (0.2)1/K]1/h

)
100%. (7.24)
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Proof. As in Remark 7.1, if the contamination proportion γ is fixed, then
the probability of obtaining at least one clean subset of size h with high
probability (say 1 − α = 0.8) is given by 0.8 = 1 − [1 − (1 − γ)h]K . Fix the
number of starts K and solve this equation for γ. �

The value of γo depends on c ≥ n/2 and h. To maximize γo, take c ≈ n/2
and h = p. For example, with K = 500 starts, n > 100, and h = p ≤ 20 the
resampling algorithm should be able to detect up to 24% outliers provided
every clean start is able to at least partially separate inliers (clean cases)
from outliers. However, if h = p = 50, this proportion drops to 11%.

Definition 7.25. Let b1, ..., bJ be J estimators of β. Assume that J ≥ 2
and that OLS is included. A fit-fit (FF) plot is a scatterplot matrix of the

fitted values Ŷ (b1), ..., Ŷ (bJ). Often Y is also included in the top or bottom
row of the FF plot to see the response plots. A residual-residual (RR) plot is
a scatterplot matrix of the residuals r(b1), ..., r(bJ). Often Ŷ is also included
in the top or bottom row of the RR plot to see the residual plots.

If the multiple linear regression model holds, if the predictors are bounded,
and if all J regression estimators are consistent estimators of β, then the
subplots in the FF and RR plots should be linear with a correlation tending
to one as the sample size n increases. To prove this claim, let the ith residual
from the jth fit bj be ri(bj) = Yi−xT

i bj where (Yi,x
T
i ) is the ith observation.

Similarly, let the ith fitted value from the jth fit be Ŷi(bj) = xT
i bj . Then

‖ri(b1) − ri(b2)‖ = ‖Ŷi(b1) − Ŷi(b2)‖ = ‖xT
i (b1 − b2)‖

≤ ‖xi‖ (‖b1 − β‖ + ‖b2 − β‖). (7.25)

The FF plot is a powerful way for comparing fits. The commonly suggested
alternative is to look at a table of the estimated coefficients, but coefficients
can differ greatly while yielding similar fits if some of the predictors are highly
correlated or if several of the predictors are independent of the response. See
Olive (2017b, pp. 408-412).

Table 7.6 compares the TV, MBA (for MLR), lmsreg, ltsreg, L1, and
OLS estimators on 7 data sets available from the text’s website. The column
headers give the file name while the remaining rows of the table give the
sample size n, the number of predictors p, the amount of trimming M used
by the TV estimator, the correlation of the residuals from the TV estimator
with the corresponding alternative estimator, and the cases that were out-
liers. If the correlation was greater than 0.9, then the method was effective
in detecting the outliers, and the method failed, otherwise. Sometimes the
trimming percentage M for the TV estimator was picked after fitting the
bulk of the data in order to find the good leverage points and outliers. Each
model included a constant.
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Table 7.6 Summaries for Seven Data Sets, the Correlations of the Residuals from
TV(M) and the Alternative Method are Given in the 1st 5 Rows

Method Buxton Gladstone glado hbk major nasty wood
MBA 0.997 1.0 0.455 0.960 1.0 -0.004 0.9997

LMSREG -0.114 0.671 0.938 0.977 0.981 0.9999 0.9995
LTSREG -0.048 0.973 0.468 0.272 0.941 0.028 0.214

L1 -0.016 0.983 0.459 0.316 0.979 0.007 0.178
OLS 0.011 1.0 0.459 0.780 1.0 0.009 0.227

outliers 61-65 none 115 1-10 3,44 2,6,...,30 4,6,8,19
n 87 267 267 75 112 32 20
p 5 7 7 4 6 5 6
M 70 0 30 90 0 90 20

Notice that the TV, MBA, and OLS estimators were the same for the
Gladstone (1905) data and for the Tremearne (1911) major data which had
two small Y –outliers. For the Gladstone data, there is a cluster of infants
that are good leverage points, and we attempt to predict brain weight with
the head measurements height, length, breadth, size, and cephalic index. Orig-
inally, the variable length was incorrectly entered as 109 instead of 199 for
case 115, and the glado data contains this outlier. In 1997, lmsreg was not
able to detect the outlier while ltsreg did. Due to changes in the Splus 2000
code, lmsreg detected the outlier but ltsreg did not. These two functions
change often, not always for the better.

To end this section, we describe resistant regression with the RMVN set
U or covmb2 set B in more detail. Assume that predictor transformations
have been performed to make a p × 1 vector of predictors x, and that w
consists of k ≤ p continuous predictor variables that are linearly related. Find
the RMVN set based on the w to obtain nu cases (yci,xci), and then run
the regression method on the cleaned data. Often the theory of the method
applies to the cleaned data set since y was not used to pick the subset of
the data. Efficiency can be much lower since nu cases are used where n/2 ≤
nu ≤ n, and the trimmed cases tend to be the “farthest” from the center of
w. The method will have the most outlier resistance if k = p− 1 if there is a
trivial predictor X1 ≡ 1.

In R, assume Y is the vector of response variables, x is the data matrix of
the predictors (often not including the trivial predictor), and w is the data
matrix of the wi. Then the following R commands can be used to get the
cleaned data set. We could use the covmb2 set B instead of the RMVN set
U computed from the w by replacing the command getu(w) by getB(w).

indx <- getu(w)$indx #often w = x

Yc <- Y[indx]

Xc <- x[indx,]

#example
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indx <- getu(buxx)$indx

Yc <- buxy[indx]

Xc <- buxx[indx,]

outr <- lsfit(Xc,Yc)

MLRplot(Xc,Yc) #right click Stop twice

7.6 Robust Regression

This section will consider the breakdown of a regression estimator and then
develop the practical high breakdown hbreg estimator.

7.6.1 MLR Breakdown and Equivariance

Breakdown and equivariance properties have received considerable attention
in the literature. Several of these properties involve transformations of the
data, and are discussed below. If X and Y are the original data, then the
vector of the coefficient estimates is

β̂ = β̂(X,Y ) = T (X ,Y ), (7.26)

the vector of predicted values is

Ŷ = Ŷ (X,Y ) = Xβ̂(X ,Y ), (7.27)

and the vector of residuals is

r = r(X ,Y ) = Y − Ŷ . (7.28)

If the design matrix X is transformed into W and the vector of dependent
variables Y is transformed into Z, then (W ,Z) is the new data set.

Definition 7.26. Regression Equivariance: Let u be any p×1 vector.
Then β̂ is regression equivariant if

β̂(X ,Y + Xu) = T (X ,Y + Xu) = T (X ,Y ) + u = β̂(X ,Y ) + u. (7.29)

Hence if W = X and Z = Y + Xu, then Ẑ = Ŷ + Xu and r(W ,Z) =

Z − Ẑ = r(X ,Y ). Note that the residuals are invariant under this type of

transformation, and note that if u = −β̂, then regression equivariance implies
that we should not find any linear structure if we regress the residuals on X .
Also see Problem 7.2.
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Definition 7.27. Scale Equivariance: Let c be any scalar. Then β̂ is
scale equivariant if

β̂(X , cY ) = T (X , cY ) = cT (X ,Y ) = cβ̂(X ,Y ). (7.30)

Hence if W = X and Z = cY , then Ẑ = cŶ and r(X, cY ) = c r(X ,Y ).
Scale equivariance implies that if the Yi’s are stretched, then the fits and the
residuals should be stretched by the same factor.

Definition 7.28. Affine Equivariance: Let A be any p× p nonsingular
matrix. Then β̂ is affine equivariant if

β̂(XA,Y ) = T (XA,Y ) = A−1T (X ,Y ) = A−1β̂(X ,Y ). (7.31)

Hence if W = XA and Z = Y , then Ẑ = Wβ̂(XA,Y ) =

XAA−1β̂(X,Y ) = Ŷ , and r(XA,Y ) = Z − Ẑ = Y − Ŷ = r(X,Y ). Note
that both the predicted values and the residuals are invariant under an affine
transformation of the predictor variables.

Definition 7.29. Permutation Invariance: Let P be an n × n per-
mutation matrix. Then P T P = P P T = In where In is an n × n identity
matrix and the superscript T denotes the transpose of a matrix. Then β̂ is
permutation invariant if

β̂(PX ,PY ) = T (P X,P Y ) = T (X,Y ) = β̂(X,Y ). (7.32)

Hence if W = PX and Z = P Y , then Ẑ = P Ŷ and r(P X ,PY ) =
P r(X ,Y ). If an estimator is not permutation invariant, then swapping
rows of the n× (p+ 1) augmented matrix (X ,Y ) will change the estimator.
Hence the case number is important. If the estimator is permutation invariant,
then the position of the case in the data cloud is of primary importance.
Resampling algorithms are not permutation invariant because permuting the
data causes different subsamples to be drawn.

Remark 7.7. OLS has the above invariance properties, but most Statis-
tical Learning alternatives such as lasso and ridge regression do not have all
four properties. Hence Remark 5.1 is used to fit the data with Z = Wη + e.
Then obtain β̂ from η̂.

The remainder of this subsection gives a standard definition of breakdown
and then shows that if the median absolute residual is bounded in the presence
of high contamination, then the regression estimator has a high breakdown
value. The following notation will be useful. Let W denote the data matrix
where the ith row corresponds to the ith case. For regression, W is the
n × (p + 1) matrix with ith row (xT

i , Yi). Let W n
d denote the data matrix

where any dn of the cases have been replaced by arbitrarily bad contaminated



7.6 Robust Regression 337

cases. Then the contamination fraction is γ ≡ γn = dn/n, and the breakdown

value of β̂ is the smallest value of γn needed to make ‖β̂‖ arbitrarily large.

Definition 7.30. Let 1 ≤ dn ≤ n. If T (W ) is a p× 1 vector of regression
coefficients, then the breakdown value of T is

B(T,W ) = min

{
dn

n
: sup
W n

d

‖T (W n
d)‖ = ∞

}

where the supremum is over all possible corrupted samples W n
d .

Definition 7.31. High breakdown regression estimators have γn → 0.5
as n → ∞ if the clean (uncontaminated) data are in general position: any
p clean cases give a unique estimate of β. Estimators are zero breakdown if
γn → 0 and positive breakdown if γn → γ > 0 as n → ∞.

The following result greatly simplifies some breakdown proofs and shows
that a regression estimator basically breaks down if the median absolute
residual MED(|ri|) can be made arbitrarily large. The result implies that if
the breakdown value ≤ 0.5, breakdown can be computed using the median
absolute residual MED(|ri|(Wn

d )) instead of ‖T (W n
d )‖. Similarly β̂ is high

breakdown if the median squared residual or the cnth largest absolute resid-
ual |ri|(cn) or squared residual r2(cn) stay bounded under high contamination

where cn ≈ n/2. Note that ‖β̂‖ ≡ ‖β̂(W n
d)‖ ≤M for some constant M that

depends on T and W but not on the outliers if the number of outliers dn is
less than the smallest number of outliers needed to cause breakdown.

Theorem 7.16. If the breakdown value ≤ 0.5, computing the break-
down value using the median absolute residual MED(|ri|(W n

d)) instead of
‖T (Wn

d )‖ is asymptotically equivalent to using Definition 7.30.

Proof. Consider any contaminated data set W n
d with ith row (wT

i , Zi)
T .

If the regression estimator T (W n
d ) = β̂ satisfies ‖β̂‖ ≤M for some constant

M if d < dn, then the median absolute residual MED(|Zi−β̂
T
wi|) is bounded

by maxi=1,...,n |Yi − β̂
T
xi| ≤ maxi=1,...,n[|Yi| +

∑p
j=1M |xi,j|] if dn < n/2.

If the median absolute residual is bounded by M when d < dn, then ‖β̂‖
is bounded provided fewer than half of the cases line on the hyperplane (and

so have absolute residual of 0), as shown next. Now suppose that ‖β̂‖ = ∞.
Since the absolute residual is the vertical distance of the observation from the
hyperplane, the absolute residual |ri| = 0 if the ith case lies on the regression
hyperplane, but |ri| = ∞ otherwise. Hence MED(|ri|) = ∞ if fewer than
half of the cases lie on the regression hyperplane. This will occur unless the
proportion of outliers dn/n > (n/2 − q)/n → 0.5 as n → ∞ where q is the
number of “good” cases that lie on a hyperplane of lower dimension than p.
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In the literature it is usually assumed that the original data are in general
position: q = p− 1. �

Suppose that the clean data are in general position and that the number of
outliers is less than the number needed to make the median absolute residual
and ‖β̂‖ arbitrarily large. If the xi are fixed, and the outliers are moved up
and down by adding a large positive or negative constant to the Y values
of the outliers, then for high breakdown (HB) estimators, β̂ and MED(|ri|)
stay bounded where the bounds depend on the clean data W but not on the
outliers even if the number of outliers is nearly as large as n/2. Thus if the
|Yi| values of the outliers are large enough, the |ri| values of the outliers will
be large.

If the Yi’s are fixed, arbitrarily large x-outliers tend to drive the slope
estimates to 0, not ∞. If both x and Y can be varied, then a cluster of
outliers can be moved arbitrarily far from the bulk of the data but may still
have small residuals. For example, move the outliers along the regression
hyperplane formed by the clean cases.

If the (xT
i , Yi) are in general position, then the contamination could be

such that β̂ passes exactly through p − 1 “clean” cases and dn “contam-
inated” cases. Hence dn + p − 1 cases could have absolute residuals equal
to zero with ‖β̂‖ arbitrarily large (but finite). Nevertheless, if T possesses
reasonable equivariant properties and ‖T (W n

d )‖ is replaced by the median
absolute residual in the definition of breakdown, then the two breakdown val-
ues are asymptotically equivalent. (If T (W ) ≡ 0, then T is neither regression
nor affine equivariant. The breakdown value of T is one, but the median ab-
solute residual can be made arbitrarily large if the contamination proportion
is greater than n/2.)

If the Yi’s are fixed, arbitrarily large x-outliers will rarely drive ‖β̂‖ to

∞. The x-outliers can drive ‖β̂‖ to ∞ if they can be constructed so that
the estimator is no longer defined, e.g. so that XT X is nearly singular. The
examples following some results on norms may help illustrate these points.

Definition 7.32. Let y be an n× 1 vector. Then ‖y‖ is a vector norm if
vn1) ‖y‖ ≥ 0 for every y ∈ R

n with equality iff y is the zero vector,
vn2) ‖ay‖ = |a| ‖y‖ for all y ∈ R

n and for all scalars a, and
vn3) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x and y in R

n.

Definition 7.33. Let G be an n× p matrix. Then ‖G‖ is a matrix norm if
mn1) ‖G‖ ≥ 0 for every n×p matrix G with equality iff G is the zero matrix,
mn2) ‖aG‖ = |a| ‖G‖ for all scalars a, and
mn3) ‖G + H‖ ≤ ‖G‖ + ‖H‖ for all n× p matrices G and H .

Example 7.13. The q-norm of a vector y is ‖y‖q = (|y1|q + · · ·+ |yn|q)1/q.
In particular, ‖y‖1 = |y1|+ · · ·+ |yn|, the Euclidean norm
‖y‖2 =

√
y2
1 + · · ·+ y2

n, and ‖y‖∞ = maxi |yi|. Given a matrix G and
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a vector norm ‖y‖q the q-norm or subordinate matrix norm of matrix G is

‖G‖q = max
y 6=0

‖Gy‖q

‖y‖q
. It can be shown that the maximum column sum norm

‖G‖1 = max
1≤j≤p

n∑

i=1

|gij|, the maximum row sum norm ‖G‖∞ = max
1≤i≤n

p∑

j=1

|gij|,

and the spectral norm ‖G‖2 =

√
maximum eigenvalue of GT G. The

Frobenius norm

‖G‖F =

√√√√
p∑

j=1

n∑

i=1

|gij|2 =

√
trace(GTG).

Several useful results involving matrix norms will be used. First, for any
subordinate matrix norm, ‖Gy‖q ≤ ‖G‖q ‖y‖q. Let J = Jm = {m1, ..., mp}
denote the p cases in the mth elemental fit bJ = X−1

J Y J . Then for any
elemental fit bJ (suppressing q = 2),

‖bJ − β‖ = ‖X−1
J (XJβ + eJ) − β‖ = ‖X−1

J eJ‖ ≤ ‖X−1
J ‖ ‖eJ‖. (7.33)

The following results (Golub and Van Loan 1989, pp. 57, 80) on the Euclidean
norm are useful. Let 0 ≤ σp ≤ σp−1 ≤ · · · ≤ σ1 denote the singular values of
XJ = (xmi,j). Then

‖X−1
J ‖ =

σ1

σp‖XJ‖
, (7.34)

max
i,j

|xmi,j| ≤ ‖XJ‖ ≤ p max
i,j

|xmi,j|, and (7.35)

1

p maxi,j |xmi,j|
≤ 1

‖XJ‖
≤ ‖X−1

J ‖. (7.36)

From now on, unless otherwise stated, we will use the spectral norm as the
matrix norm and the Euclidean norm as the vector norm.

Example 7.14. Suppose the response values Y are near 0. Consider the fit
from an elemental set: bJ = X−1

J Y J and examine Equations (7.34), (7.35),
and (7.36). Now ‖bJ‖ ≤ ‖X−1

J ‖ ‖Y J‖, and since x-outliers make ‖XJ‖
large, x-outliers tend to drive ‖X−1

J ‖ and ‖bJ‖ towards zero not towards ∞.
The x-outliers may make ‖bJ‖ large if they can make the trial design ‖XJ‖
nearly singular. Notice that Euclidean norm ‖bJ‖ can easily be made large if
one or more of the elemental response variables is driven far away from zero.

Example 7.15. Without loss of generality, assume that the clean Y ’s are
contained in an interval [a, f ] for some a and f . Assume that the regression
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model contains an intercept β1. Then there exists an estimator β̂M of β such

that ‖β̂M‖ ≤ max(|a|, |f |) if dn < n/2.

Proof. Let MED(n) = MED(Y1, ..., Yn) and MAD(n) = MAD(Y1, ..., Yn).

Take β̂M = (MED(n), 0, ..., 0)T. Then ‖β̂M‖ = |MED(n)| ≤ max(|a|, |f |).
Note that the median absolute residual for the fit β̂M is equal to the median
absolute deviation MAD(n) = MED(|Yi − MED(n)|, i = 1, ..., n) ≤ f − a if
dn < b(n + 1)/2c. �

Note that β̂M is a poor high breakdown estimator of β and Ŷi(β̂M ) tracks
the Yi very poorly. If the data are in general position, a high breakdown
regression estimator is an estimator which has a bounded median absolute
residual even when close to half of the observations are arbitrary. Rousseeuw
and Leroy (1987, pp. 29, 206) conjectured that high breakdown regression
estimators can not be computed cheaply, and that if the algorithm is also
affine equivariant, then the complexity of the algorithm must be at least
O(np). The following theorem shows that these two conjectures are false.

Theorem 7.17. If the clean data are in general position and the model has
an intercept, then a scale and affine equivariant high breakdown estimator
β̂w can be found by computing OLS on the set of cases that have Yi ∈
[MED(Y1, ..., Yn) ± w MAD(Y1, ..., Yn)] where w ≥ 1 (so at least half of the
cases are used).

Proof. Note that β̂w is obtained by computing OLS on the set J of the
nj cases which have

Yi ∈ [MED(Y1, ..., Yn) ± wMAD(Y1, ..., Yn)] ≡ [MED(n) ± wMAD(n)]

where w ≥ 1 (to guarantee that nj ≥ n/2). Consider the estimator β̂M =

(MED(n), 0, ..., 0)T which yields the predicted values Ŷi ≡ MED(n). The

squared residual r2i (β̂M ) ≤ (w MAD(n))2 if the ith case is in J . Hence the

weighted LS fit β̂w is the OLS fit to the cases in J and has

∑

i∈J

r2i (β̂w) ≤ nj(w MAD(n))2.

Thus

MED(|r1(β̂w)|, ..., |rn(β̂w)|) ≤ √
nj w MAD(n) <

√
n w MAD(n) <∞.

Thus the estimator β̂w has a median absolute residual bounded by√
n w MAD(Y1, ..., Yn). Hence β̂w is high breakdown, and it is affine equiv-

ariant since the design is not used to choose the observations. It is scale
equivariant since for constant c = 0, β̂w = 0, and for c 6= 0 the set of
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cases used remains the same under scale transformations and OLS is scale
equivariant. �

Note that if w is huge and MAD(n) 6= 0, then the high breakdown estima-

tor β̂w and β̂OLS will be the same for most data sets. Thus high breakdown

estimators can be very nonrobust. Even if w = 1, the HB estimator β̂w only
resists large Y outliers.

An ALTA concentration algorithm uses the L1 estimator instead of OLS
in the concentration step and uses the LTA criterion. Similarly an ALMS
concentration algorithm uses the L∞ estimator and the LMS criterion.

Theorem 7.18. If the clean data are in general position and if a high
breakdown start is added to an ALTA, ALTS, or ALMS concentration algo-
rithm, then the resulting estimator is HB.

Proof. Concentration reduces (or does not increase) the corresponding HB
criterion that is based on cn ≥ n/2 absolute residuals, so the median absolute
residual of the resulting estimator is bounded as long as the criterion applied
to the HB estimator is bounded. �

For example, consider the LTS(cn) criterion. Suppose the ordered squared
residuals from the high breakdown mth start b0m are obtained. If the data
are in general position, then QLTS(b0m) is bounded even if the number of
outliers dn is nearly as large as n/2. Then b1m is simply the OLS fit to
the cases corresponding to the cn smallest squared residuals r2(i)(b0m) for

i = 1, ..., cn. Denote these cases by i1, ..., icn. Then QLTS(b1m) =

cn∑

i=1

r2(i)(b1m) ≤
cn∑

j=1

r2ij
(b1m) ≤

cn∑

j=1

r2ij
(b0m) =

cn∑

j=1

r2(i)(b0m) = QLTS(b0m)

where the second inequality follows from the definition of the OLS estimator.
Hence concentration steps reduce or at least do not increase the LTS criterion.
If cn = (n+1)/2 for n odd and cn = 1+n/2 for n even, then the LTS criterion
is bounded iff the median squared residual is bounded.

Theorem 7.18 can be used to show that the following two estimators are
high breakdown. The estimator β̂B is the high breakdown attractor used by
the

√
n consistent high breakdown hbreg estimator of Definition 7.35.

Definition 7.34. Make an OLS fit to the cn ≈ n/2 cases whose Y values
are closest to the MED(Y1, ..., Yn) ≡ MED(n) and use this fit as the start

for concentration. Define β̂B to be the attractor after k concentration steps.

Define bk,B = 0.9999β̂B .

Theorem 7.19. If the clean data are in general position, then β̂B and
bk,B are high breakdown regression estimators.
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Proof. The start can be taken to be β̂w with w = 1 from Theorem 7.17.

Since the start is high breakdown, so is the attractor β̂B by Theorem 7.18.
Multiplying a HB estimator by a positive constant does not change the break-
down value, so bk,B is HB. �

The following result shows that it is easy to make a HB estimator that is
asymptotically equivalent to a consistent estimator on a large class of iid zero
mean symmetric error distributions, although the outlier resistance of the HB
estimator is poor. The following result may not hold if β̂C estimates βC and

β̂LMS estimates βLMS where βC 6= βLMS . Then bk,B could have a smaller

median squared residual than β̂C even if there are no outliers. The two param-
eter vectors could differ because the constant term is different if the error dis-
tribution is not symmetric. For a large class of symmetric error distributions,
βLMS = βOLS = βC ≡ β, then the ratio MED(r2i (β̂))/MED(r2i (β)) → 1 as
n→ ∞ for any consistent estimator of β. The estimator below has two attrac-
tors, β̂C and bk,B, and the probability that the final estimator β̂D is equal

to β̂C goes to one under the strong assumption that the error distribution is

such that both β̂C and β̂LMS are consistent estimators of β.

Theorem 7.20. Assume the clean data are in general position, and that
the LMS estimator is a consistent estimator of β. Let β̂C be any practical con-

sistent estimator of β, and let β̂D = β̂C if MED(r2i (β̂C)) ≤ MED(r2i (bk,B)).

Let β̂D = bk,B, otherwise. Then β̂D is a HB estimator that is asymptotically

equivalent to β̂C .

Proof. The estimator is HB since the median squared residual of β̂D

is no larger than that of the HB estimator bk,B. Since β̂C is consistent,

MED(r2i (β̂C)) → MED(e2) in probability where MED(e2) is the population
median of the squared error e2. Since the LMS estimator is consistent, the
probability that β̂C has a smaller median squared residual than the biased

estimator β̂k,B goes to 1 as n → ∞. Hence β̂D is asymptotically equivalent

to β̂C . �

The elemental concentration and elemental resampling algorithms use K
elemental fits where K is a fixed number that does not depend on the sample
size n, e.g.K = 500. See Definitions 7.12 and 7.24. Note that an estimator can
not be consistent for θ unless the number of randomly selected cases goes to
∞, except in degenerate situations. The following theorem shows the widely
used elemental estimators are zero breakdown estimators. (If K = Kn → ∞,
then the elemental estimator is zero breakdown if Kn = o(n). A necessary
condition for the elemental basic resampling estimator to be consistent is
Kn → ∞.)
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Theorem 7.21: a) The elemental basic resampling algorithm estimators
are inconsistent. b) The elemental concentration and elemental basic resam-
pling algorithm estimators are zero breakdown.

Proof: a) Note that you can not get a consistent estimator by using Kh
randomly selected cases since the number of cases Kh needs to go to ∞ for
consistency except in degenerate situations.

b) Contaminating all Kh cases in the K elemental sets shows that the
breakdown value is bounded by Kh/n → 0, so the estimator is zero break-
down. �

7.6.2 A Practical High Breakdown Consistent Estimator

Olive and Hawkins (2011) showed that the practical hbreg estimator is a
high breakdown

√
n consistent robust estimator that is asymptotically equiv-

alent to the least squares estimator for many error distributions. This sub-
section follows Olive (2017b, pp. 420-423).

The outlier resistance of the hbreg estimator is not very good, but roughly
comparable to the best of the practical “robust regression” estimators avail-
able in R packages as of 2019. The estimator is of some interest since it proved
that practical high breakdown consistent estimators are possible. Other prac-
tical regression estimators that claim to be high breakdown and consistent
appear to be zero breakdown because they use the zero breakdown elemental
concentration algorithm. See Theorem 7.21.

The following theorem is powerful because it does not depend on the crite-
rion used to choose the attractor. Suppose there are K consistent estimators
β̂j of β, each with the same rate nδ. If β̂A is an estimator obtained by choos-

ing one of the K estimators, then β̂A is a consistent estimator of β with rate
nδ by Pratt (1959). See Theorem 1.21.

Theorem 7.22. Suppose the algorithm estimator chooses an attractor as
the final estimator where there are K attractors and K is fixed.

i) If all of the attractors are consistent, then the algorithm estimator is
consistent.

ii) If all of the attractors are consistent with the same rate, e.g., nδ where
0 < δ ≤ 0.5, then the algorithm estimator is consistent with the same rate as
the attractors.

iii) If all of the attractors are high breakdown, then the algorithm estimator
is high breakdown.

Proof. i) Choosing from K consistent estimators results in a consistent
estimator, and ii) follows from Pratt (1959). iii) Let γn,i be the breakdown
value of the ith attractor if the clean data are in general position. The break-
down value γn of the algorithm estimator can be no lower than that of the
worst attractor: γn ≥ min(γn,1, ..., γn,K) → 0.5 as n→ ∞. �
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The consistency of the algorithm estimator changes dramatically if K is
fixed but the start size h = hn = g(n) where g(n) → ∞. In particular, if
K starts with rate n1/2 are used, the final estimator also has rate n1/2. The
drawback to these algorithms is that they may not have enough outlier resis-
tance. Notice that the basic resampling result below is free of the criterion.

Theorem 7.23. Suppose Kn ≡ K starts are used and that all starts have
subset size hn = g(n) ↑ ∞ as n → ∞. Assume that the estimator applied to
the subset has rate nδ.
i) For the hn-set basic resampling algorithm, the algorithm estimator has
rate [g(n)]δ.
ii) Under regularity conditions (e.g. given by He and Portnoy 1992), the k–
step CLTS estimator has rate [g(n)]δ.

Proof. i) The hn = g(n) cases are randomly sampled without replacement.
Hence the classical estimator applied to these g(n) cases has rate [g(n)]δ. Thus
all K starts have rate [g(n)]δ, and the result follows by Pratt (1959). ii) By
He and Portnoy (1992), all K attractors have [g(n)]δ rate, and the result
follows by Pratt (1959). �

Remark 7.8. Theorem 7.16 shows that β̂ is HB if the median absolute or
squared residual (or |r(β̂)|(cn) or r2(cn) where cn ≈ n/2) stays bounded under

high contamination. Let QL(β̂H) denote the LMS, LTS, or LTA criterion for

an estimator β̂H ; therefore, the estimator β̂H is high breakdown if and only

if QL(β̂H) is bounded for dn near n/2 where dn < n/2 is the number of out-
liers. The concentration operator refines an initial estimator by successively
reducing the LTS criterion. If β̂F refers to the final estimator (attractor) ob-

tained by applying concentration to some starting estimator β̂H that is high

breakdown, then since QLTS(β̂F ) ≤ QLTS(β̂H), applying concentration to
a high breakdown start results in a high breakdown attractor. See Theorem
7.18.

High breakdown estimators are, however, not necessarily useful for detect-
ing outliers. Suppose γn < 0.5. On the one hand, if the xi are fixed, and the
outliers are moved up and down parallel to the Y axis, then for high break-
down estimators, β̂ and MED(|ri|) will be bounded. Thus if the |Yi| values of
the outliers are large enough, the |ri| values of the outliers will be large, sug-
gesting that the high breakdown estimator is useful for outlier detection. On
the other hand, if the Yi’s are fixed at any values and the x values perturbed,
sufficiently large x-outliers tend to drive the slope estimates to 0, not ∞. For
many estimators, including LTS, LMS, and LTA, a cluster of Y outliers can
be moved arbitrarily far from the bulk of the data but still, by perturbing
their x values, have arbitrarily small residuals. See Example 7.16.
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Our practical high breakdown procedure is made up of three components.
1) A practical estimator β̂C that is consistent for clean data. Suitable choices
would include the full-sample OLS and L1 estimators.
2) A practical estimator β̂A that is effective for outlier identification. Suitable
choices include the mbareg, rmreg2, lmsreg, or FLTS estimators.
3) A practical high-breakdown estimator such as β̂B from Definition 7.34
with k = 10.

By selecting one of these three estimators according to the features each
of them uncovers in the data, we may inherit some of the good properties of
each of them.

Definition 7.35. The hbreg estimator β̂H is defined as follows. Pick a

constant a > 1 and set β̂H = β̂C . If aQL(β̂A) < QL(β̂C), set β̂H = β̂A. If

aQL(β̂B) < min[QL(β̂C), aQL(β̂A)], set β̂H = β̂B.

That is, find the smallest of the three scaled criterion values QL(β̂C),

aQL(β̂A), aQL(β̂B). According to which of the three estimators attains this

minimum, set β̂H to β̂C , β̂A, or β̂B respectively.
Large sample theory for hbreg is simple and given in the following theo-

rem. Let β̂L be the LMS, LTS, or LTA estimator that minimizes the criterion

QL. Note that the impractical estimator β̂L is never computed. The following

theorem shows that β̂H is asymptotically equivalent to β̂C on a large class

of zero mean finite variance symmetric error distributions. Thus if β̂C is
√
n

consistent or asymptotically efficient, so is β̂H . Notice that β̂A does not need
to be consistent. This point is crucial since lmsreg is not consistent and it is
not known whether FLTS is consistent. The clean data are in general position
if any p clean cases give a unique estimate of β̂.

Theorem 7.24. Assume the clean data are in general position, and sup-
pose that both β̂L and β̂C are consistent estimators of β where the regression

model contains a constant. Then the hbreg estimator β̂H is high breakdown

and asymptotically equivalent to β̂C .

Proof. Since the clean data are in general position and QL(β̂H) ≤
aQL(β̂B) is bounded for γn near 0.5, the hbreg estimator is high break-
down. Let Q∗

L = QL for LMS and Q∗
L = QL/n for LTS and LTA. As n→ ∞,

consistent estimators β̂ satisfy Q∗
L(β̂) − Q∗

L(β) → 0 in probability. Since

LMS, LTS, and LTA are consistent and the minimum value is Q∗
L(β̂L), it

follows that Q∗
L(β̂C) −Q∗

L(β̂L) → 0 in probability, while Q∗
L(β̂L) < aQ∗

L(β̂)

for any estimator β̂. Thus with probability tending to one as n → ∞,
QL(β̂C) < amin(QL(β̂A), QL(β̂B)). Hence β̂H is asymptotically equivalent

to β̂C . �
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Remark 7.9. i) Let β̂C = β̂OLS . Then hbreg is asymptotically equiva-
lent to OLS when the errors ei are iid from a large class of zero mean finite
variance symmetric distributions, including the N(0, σ2) distribution, since

the probability that hbreg uses OLS instead of β̂A or β̂B goes to one as
n→ ∞.

ii) The above theorem proves that practical high breakdown estimators
with 100% asymptotic Gaussian efficiency exist; however, such estimators
are not necessarily good.

iii) The theorem holds when both β̂L and β̂C are consistent estimators of
β, for example, when the iid errors come from a large class or zero mean finite
variance symmetric distributions. For asymmetric distributions, β̂C estimates

βC and β̂L estimates βL where the constants usually differ. The theorem
holds for some distributions that are not symmetric because of the penalty
a. As a → ∞, the class of asymmetric distributions where the theorem holds
greatly increases, but the outlier resistance decreases rapidly as a increases
for a > 1.4.

iv) The default hbreg estimator used OLS, mbareg, and β̂B with a = 1.4
and the LTA criterion. For the simulated data with symmetric error distri-
butions, β̂B appeared to give biased estimates of the slopes. However, for the

simulated data with right skewed error distributions, β̂B appeared to give
good estimates of the slopes but not the constant estimated by OLS, and the
probability that the hbreg estimator selected β̂B appeared to go to one.

v) Both MBA and OLS are
√
n consistent estimators of β, even for a large

class of skewed distributions. Using β̂A = β̂MBA and removing β̂B from the

hbreg estimator results in a
√
n consistent estimator of β when β̂C = OLS is

a
√
n consistent estimator of β, but massive sample sizes were still needed to

get good estimates of the constant for skewed error distributions. For skewed
distributions, if OLS needed n = 1000 to estimate the constant well, mbareg
might need n > one million to estimate the constant well.

The situation is worse for multivariate linear regression when hbreg is
used instead of OLS, since there are m constants to be estimated. If the
distribution of the iid error vectors ei is not elliptically contoured, getting
all m mbareg estimators to estimate all m constants well needs even larger
sample sizes.

vi) The outlier resistance of hbreg is not especially good.
The family of hbreg estimators is enormous and depends on i) the prac-

tical high breakdown estimator β̂B, ii) β̂C , iii) β̂A, iv) a, and v) the criterion
QL. Note that the theory needs the error distribution to be such that both
β̂C and β̂L are consistent. Sufficient conditions for LMS, LTS, and LTA to be
consistent are rather strong. To have reasonable sufficient conditions for the
hbreg estimator to be consistent, β̂C should be consistent under weak condi-
tions. Hence OLS is a good choice that results in 100% asymptotic Gaussian
efficiency.
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We suggest using the LTA criterion since in simulations, hbreg behaved
like β̂C for smaller sample sizes than those needed by the LTS and LMS

criteria. We want a near 1 so that hbreg has outlier resistance similar to β̂A,

but we want a large enough so that hbreg performs like β̂C for moderate
n on clean data. Simulations suggest that a = 1.4 is a reasonable choice.
The default hbreg program from linmodpack uses the

√
n consistent outlier

resistant estimator mbareg as β̂A.

There are at least three reasons for using β̂B as the high breakdown es-

timator. First, β̂B is high breakdown and simple to compute. Second, the

fitted values roughly track the bulk of the data. Lastly, although β̂B has

rather poor outlier resistance, β̂B does perform well on several outlier con-
figurations where some common alternatives fail.

Next we will show that the hbreg estimator implemented with a = 1.4
using QLTA, β̂C = OLS, and β̂B can greatly improve the estimator β̂A. We

will use β̂A = ltsreg in R and Splus 2000. Depending on the implemen-
tation, the ltsreg estimators use the elemental resampling algorithm, the
elemental concentration algorithm, or a genetic algorithm. Coverage is 50%,
75%, or 90%. The Splus 2000 implementation is an unusually poor genetic
algorithm with 90% coverage. The R implementation appears to be the zero
breakdown inconsistent elemental basic resampling algorithm that uses 50%
coverage. The ltsreg function changes often.

Simulations were run in R with the xij (for j > 1) and ei iid N(0, σ2)

and β = 1, the p× 1 vector of ones. Then β̂ was recorded for 100 runs. The
mean and standard deviation of the β̂j were recorded for j = 1, ..., p. For
n ≥ 10p and OLS, the vector of means should be close to 1 and the vector
of standard deviations should be close to 1/

√
n. The

√
n consistent high

breakdown hbreg estimator performed like OLS if n ≈ 35p and 2 ≤ p ≤ 6,
if n ≈ 20p and 7 ≤ p ≤ 14, or if n ≈ 15p and 15 ≤ p ≤ 40. See Table 7.7
for p = 5 and 100 runs. ALTS denotes ltsreg, HB denotes hbreg, and
BB denotes β̂B. In the simulations, hbreg estimated the slopes well for the
highly skewed lognormal data, but not the OLS constant. Use the linmodpack
function hbregsim.

As implemented in linmodpack, the hbreg estimator is a practical
√
n

consistent high breakdown estimator that appears to perform like OLS for
moderate n if the errors are unimodal and symmetric, and to have outlier
resistance comparable to competing practical “outlier resistant” estimators.

The hbreg, lmsreg, ltsreg, OLS, and β̂B estimators were compared
on the same 25 benchmark data sets. Also see Park et al. (2012). The HB

estimator β̂B was surprisingly good in that the response plots showed that it
was the best estimator for 2 data sets and that it usually tracked the data, but
it performed poorly in 7 of the 25 data sets. The hbreg estimator performed
well, but for a few data sets hbreg did not pick the attractor with the best
response plot, as illustrated in the following example.
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Table 7.7 MEAN β̂i and SD(β̂i)

n method mn or sd β̂1 β̂2 β̂3 β̂4 β̂5

25 HB mn 0.9921 0.9825 0.9989 0.9680 1.0231
sd 0.4821 0.5142 0.5590 0.4537 0.5461

OLS mn 1.0113 1.0116 0.9564 0.9867 1.0019
sd 0.2308 0.2378 0.2126 0.2071 0.2441

ALTS mn 1.0028 1.0065 1.0198 1.0092 1.0374
sd 0.5028 0.5319 0.5467 0.4828 0.5614

BB mn 1.0278 0.5314 0.5182 0.5134 0.5752
sd 0.4960 0.3960 0.3612 0.4250 0.3940

400 HB mn 1.0023 0.9943 1.0028 1.0103 1.0076
sd 0.0529 0.0496 0.0514 0.0459 0.0527

OLS mn 1.0023 0.9943 1.0028 1.0103 1.0076
sd 0.0529 0.0496 0.0514 0.0459 0.0527

ALTS mn 1.0077 0.9823 1.0068 1.0069 1.0214
sd 0.1655 0.1542 0.1609 0.1629 0.1679

BB mn 1.0184 0.8744 0.8764 0.8679 0.8794
sd 0.1273 0.1084 0.1215 0.1206 0.1269
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Fig. 7.21 Response Plots Comparing Robust Regression Estimators

Example 7.16. The LMS, LTA, and LTS estimators are determined by a
“narrowest band” covering half of the cases. Hawkins and Olive (2002) sug-
gested that the fit will pass through outliers if the band through the outliers
is narrower than the band through the clean cases. This behavior tends to
occur if the regression relationship is weak, and if there is a tight cluster
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of outliers where |Y | is not too large. As an illustration, Buxton (1920, pp.
232-5) gave 20 measurements of 88 men. Consider predicting stature using an
intercept, head length, nasal height, bigonal breadth, and cephalic index. One
case was deleted since it had missing values. Five individuals, numbers 61-65,
were reported to be about 0.75 inches tall with head lengths well over five
feet! Figure 7.21 shows the response plots for hbreg, OLS, ltsreg, and β̂B .

Notice that only the fit from β̂B (BBFIT) did not pass through the outliers,
but hbreg selected the OLS attractor. There are always outlier configura-
tions where an estimator will fail, and hbreg should fail on configurations
where LTA, LTS, and LMS would fail.

7.7 Summary

1) For the location model, the sample mean Y =

∑n
i=1 Yi

n
, the sample vari-

ance S2
n =

∑n
i=1(Yi − Y )2

n− 1
, and the sample standard deviation Sn =

√
S2

n.

If the data Y1, ..., Yn is arranged in ascending order from smallest to largest
and written as Y(1) ≤ · · · ≤ Y(n), then Y(i) is the ith order statistic and the
Y(i)’s are called the order statistics. The sample median

MED(n) = Y((n+1)/2) if n is odd,

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(Y1, ..., Yn) will also be used. The sample me-
dian absolute deviation is MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n).

2) Suppose the multivariate data has been collected into an n × p matrix

W = X =




xT
1
...

xT
n


 .

The coordinatewise median MED(W ) = (MED(X1), ...,MED(Xp))T where
MED(Xi) is the sample median of the data in column i corresponding to

variable Xi. The sample mean x =
1

n

n∑

i=1

xi = (X1, ..., Xp)
T where Xi is

the sample mean of the data in column i corresponding to variable Xi. The
sample covariance matrix

S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T = (Sij).
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That is, the ij entry of S is the sample covariance Sij . The classical estimator
of multivariate location and dispersion is (T,C) = (x,S).

3) Let (T,C) = (T (W ),C(W )) be an estimator of multivariate location
and dispersion. The ith Mahalanobis distance Di =

√
D2

i where the ith
squared Mahalanobis distance is D2

i = D2
i (T (W ),C(W )) =

(xi − T (W ))T C−1(W )(xi − T (W )).
4) The squared Euclidean distances of the xi from the coordinatewise

median is D2
i = D2

i (MED(W ), Ip). Concentration type steps compute the
weighted median MEDj: the coordinatewise median computed from the cases
xi withD2

i ≤ MED(D2
i (MEDj−1, Ip)) where MED0 = MED(W ). Often used

j = 0 (no concentration type steps) or j = 9. Let Di = Di(MEDj , Ip). Let
Wi = 1 if Di ≤ MED(D1, ..., Dn)+kMAD(D1, ..., Dn) where k ≥ 0 and k = 5
is the default choice. Let Wi = 0, otherwise.

5) Let the covmb2 set B of at least n/2 cases correspond to the cases with
weight Wi = 1. Then the covmb2 estimator (T,C) is the sample mean and
sample covariance matrix applied to the cases in set B. Hence

T =

∑n
i=1Wixi∑n

i=1Wi
and C =

∑n
i=1Wi(xi − T )(xi − T )T

∑n
i=1Wi − 1

.

The function ddplot5 plots the Euclidean distances from the coordinatewise
median versus the Euclidean distances from the covmb2 location estimator.
Typically the plotted points in this DD plot cluster about the identity line,
and outliers appear in the upper right corner of the plot with a gap between
the bulk of the data and the outliers.

7.8 Complements

Most of this chapter was taken from Olive (2017b). See that text for references
to concepts such as breakdown. The fact that response plots are extremely
useful for model assessment and for detecting influential cases and outliers
for an enormous variety of statistical models does not seem to be well known.
Certainly in any multiple linear regression analysis, the response plot and the
residual plot of Ŷ versus r should always be made. Cook and Olive (2001)
used response plots to select a response transformation graphically. Olive
(2005) suggested using residual, response, RR, and FF plots to detect outliers
while Hawkins and Olive (2002, pp. 141, 158) suggested using the RR and
FF plots. The four plots are best for n ≥ 5p. Olive (2008:

∮
6.4, 2017a: ch.

5-9) showed that the residual and response plots are useful for experimental
design models. Park et al. (2012) showed response plots are competitive with
the best robust regression methods for outlier detection on some outlier data
sets that have appeared in the literature.
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Olive (2002) found applications for the DD plot. The TV estimator was
proposed by Olive (2002, 2005a). Although both the TV and MBA estimators
have the good OP (n−1/2) convergence rate, their efficiency under normality
may be very low. Chang and Olive (2010) suggested a method of adaptive
trimming such that the resulting estimator is asymptotically equivalent to
the OLS estimator.

If n is not much larger than p, then Hoffman et al. (2015) gave a ro-
bust Partial Least Squares–Lasso type estimator that uses a clever weighting
scheme. See Uraibi et al. (2017, 2019) for robust methods of forward selection
and least angle regression.

Robust MLD
For the FCH, RFCH, and RMVN estimators, see Olive and Hawkins

(2010), Olive (2017b, ch. 4), and Zhang et al. (2012). See Olive (2017b, p.
120) for the covmb2 estimator.

The fastest estimators of multivariate location and dispersion that have
been shown to be both consistent and high breakdown are the minimum
covariance determinant (MCD) estimator with O(nv) complexity where
v = 1 + p(p + 3)/2 and possibly an all elemental subset estimator of He
and Wang (1997). See Bernholt and Fischer (2004). The minimum volume
ellipsoid (MVE) complexity is far higher, and for p > 2 there may be no
known method for computing S, τ , projection based, and constrained M
estimators. For some depth estimators, like the Stahel-Donoho estimator, the
exact algorithm of Liu and Zuo (2014) appears to take too long if p ≥ 6 and
n ≥ 100, and simulations may need p ≤ 3. It is possible to compute the MCD
and MVE estimators for p = 4 and n = 100 in a few hours using branch
and bound algorithms (like estimators with O(1004) complexity). See Agulló
(1996, 1998) and Pesch (1999). These algorithms take too long if both p ≥ 5
and n ≥ 100. Simulations may need p ≤ 2. Two stage estimators such as
the MM estimator, that need an initial high breakdown consistent estimator,
take longer to compute than the initial estimator. Rousseeuw (1984) intro-
duced the MCD and MVE estimators. See Maronna et al. (2006, ch. 6) for
descriptions and references.

Estimators with complexity higher than O[(n3+n2p+np2+p3) log(n)] take
too long to compute and will rarely be used. Reyen et al. (2009) simulated
the OGK and the Olive (2004a) median ball algorithm (MBA) estimators for
p = 100 and n up to 50000, and noted that the OGK complexity is O[p3 +
np2 log(n)] while that of MBA is O[p3 + np2 + np log(n)]. FCH, RMBA, and
RMVN have the same complexity as MBA. FMCD has the same complexity
as FCH, but FCH is roughly 100 to 200 times faster.

Robust Regression
For the hbreg estimator, see Olive and Hawkins (2011) and Olive (2017b,

ch. 14). Robust regression estimators have unsatisfactory outlier resistance
and large sample theory. The hbreg estimator is fast and high breakdown,
but does not provide an adequate remedy for outliers, and the symmetry
condition for consistency is too strong. OLS response and residual plots, and
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RMVN or RFCH DD plots are useful for detecting multiple linear regression
outliers.

Many of the robust statistics for the location model are practical to com-
pute, outlier resistant, and backed by theory. See Huber and Ronchetti (2009).
A few estimators of multivariate location and dispersion, such as the coordi-
natewise median, are practical to compute, outlier resistant, and backed by
theory.

For practical estimators for MLR and MCD, hbreg and FCH appear to
be the only estimators proven to be consistent (for a large class of symmetric
error distributions and for a large class of EC distributions, respectively) with
some breakdown theory (TFCH is HB). Perhaps all other “robust statistics”
for MLR and MLD that have been shown to be both consistent and high
breakdown are impractical to compute for p > 4: the impractical “brand
name” estimators have at least O(np) complexity, while the practical esti-
mators used in the software for the “brand name estimators” have not been
shown to be both high breakdown and consistent. See Theorems 7.12 and
7.21, Hawkins and Olive (2002), Olive (2008, 2017b), Hubert et al. (2002),
and Maronna and Yohai (2002). Huber and Ronchetti (2009, pp. xiii, 8-9,
152-154, 196-197) suggested that high breakdown regression estimators do
not provide an adequate remedy for the ill effects of outliers, that their sta-
tistical and computational properties are not adequately understood, that
high breakdown estimators “break down for all except the smallest regres-
sion problems by failing to provide a timely answer!” and that “there are no
known high breakdown point estimators of regression that are demonstrably
stable.”

A large number of impractical high breakdown regression estimators have
been proposed, including LTS, LMS, LTA, S, LQD, τ , constrained M, re-
peated median, cross checking, one step GM, one step GR, t-type, and re-
gression depth estimators. See Rousseeuw and Leroy (1987) and Maronna et
al. (2006). The practical algorithms used in the software use a brand name
criterion to evaluate a fixed number of trial fits and should be denoted as
an F-brand name estimator such as FLTS. Two stage estimators, such as
the MM estimator, that need an initial consistent high breakdown estima-
tor often have the same breakdown value and consistency rate as the initial
estimator. These estimators are typically implemented with a zero break-
down inconsistent initial estimator and hence are zero breakdown with zero
efficiency.

Maronna and Yohai (2015) used OLS and 500 elemental sets as the 501
trial fits to produce an FS estimator used as the initial estimator for an
FMM estimator. Since the 501 trial fits are zero breakdown, so is the FS
estimator. Since the FMM estimator has the same breakdown as the initial
estimator, the FMM estimator is zero breakdown. For regression, they show
that the FS estimator is consistent on a large class of zero mean finite variance
symmetric distributions. Consistency follows since the elemental fits and OLS
are unbiased estimators of βOLS but an elemental fit is an OLS fit to p cases.
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Hence the elemental fits are very variable, and the probability that the OLS
fit has a smaller S-estimator criterion than a randomly chosen elemental
fit (or K randomly chosen elemental fits) goes to one as n → ∞. (OLS
and the S-estimator are both

√
n consistent estimators of β, so the ratio of

their criterion values goes to one, and the S-estimator minimizes the criterion
value.) Hence the FMM estimator is asymptotically equivalent to the MM
estimator that has the smallest criterion value for a large class of iid zero
mean finite variance symmetric error distributions. This FMM estimator is
asymptotically equivalent to the FMM estimator that uses OLS as the initial
estimator. When the error distribution is skewed the S-estimator and OLS
population constant are not the same, and the probability that an elemental
fit is selected is close to one for a skewed error distribution as n→ ∞. (The

OLS estimator β̂ gets very close to βOLS while the elemental fits are highly
variable unbiased estimators of βOLS , so one of the elemental fits is likely to
have a constant that is closer to the S-estimator constant while still having
good slope estimators.) Hence the FS estimator is inconsistent, and the FMM
estimator is likely inconsistent for skewed distributions. No practical method
is known for computing a

√
n consistent FS or FMM estimator that has the

same breakdown and maximum bias function as the S or MM estimator that
has the smallest S or MM criterion value.

The L1 CLT is

√
n(β̂L1

− β)
D→ Np

(
0,

1

4[f(0)]2
W

)
(7.37)

when XT X/n→ W−1, and when the errors ei are iid with a cdf F and a pdf
f such that the unique population median is 0 with f(0) > 0. If a constant β1

is in the model or if the column space of X contains 1, then this assumption
is mild, but if the pdf is not symmetric about 0, then the L1 β1 tends to differ
from the OLS β1. See Bassett and Koenker (1978). Estimating f(0) can be
difficult, so the residual bootstrap using OLS residuals or using êi = ri − r
where the ri are the L1 residuals with the prediction region method may be
useful.

7.9 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

7.1. Referring to Definition 7.25, let Ŷi,j = xT
i β̂j = Ŷi(β̂j) and let ri,j =

ri(β̂j). Show that ‖ri,1 − ri,2‖ = ‖Ŷi,1 − Ŷi,2‖.
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7.2. Assume that the model has a constant β1 so that the first column of
X is 1. Show that if the regression estimator is regression equivariant, then
adding 1 to Y changes β̂1 but does not change the slopes β̂2, ..., β̂p.

R Problems

Use the command source(“G:/linmodpack.txt”) to download the
functions and the command source(“G:/linmoddata.txt”) to download the
data. See Preface or Section 11.1. Typing the name of the linmodpack
function, e.g. trviews, will display the code for the function. Use the args

command, e.g. args(trviews), to display the needed arguments for the func-
tion. For some of the following problems, the R commands can be copied and
pasted from (http://parker.ad.siu.edu/Olive/mrsashw.txt) into R.

7.3. Paste the command for this problem into R to produce the second
column of Table 7.5. Include the output in Word.

7.4. a) To get an idea for the amount of contamination a basic resam-
pling or concentration algorithm for MLR can tolerate, enter or download
the gamper function (with the source(“G:/linmodpack.txt”) command) that
evaluates Equation (7.24) at different values of h = p.

b) Next enter the following commands and include the output in Word.

zh <- c(10,20,30,40,50,60,70,80,90,100)

for(i in 1:10) gamper(zh[i])

7.5∗. a) Assuming that you have done the two source commands above
Problem 7.3 (and the R command library(MASS)), type the command
ddcomp(buxx). This will make 4 DD plots based on the DGK, FCH, FMCD,
and median ball estimators. The DGK and median ball estimators are the
two attractors used by the FCH estimator. With the leftmost mouse button,
move the cursor to an outlier and click. This data is the Buxton (1920) data
and cases with numbers 61, 62, 63, 64, and 65 were the outliers with head
lengths near 5 feet. After identifying at least three outliers in each plot, hold
the rightmost mouse button down (and in R click on Stop) to advance to the
next plot. When done, hold down the Ctrl and c keys to make a copy of the
plot. Then paste the plot in Word.

b) Repeat a) but use the command ddcomp(cbrainx). This data is the
Gladstone (1905) data and some infants are multivariate outliers.

c) Repeat a) but use the command ddcomp(museum[,-1]). This data is the
Schaaffhausen (1878) skull measurements and cases 48–60 were apes while
the first 47 cases were humans.

7.6∗. (Perform the source(“G:/linmodpack.txt”) command if you have not
already done so.) The concmv function illustrates concentration with p = 2
and a scatterplot of X1 versus X2. The outliers are such that the robust
estimators can not always detect them. Type the command concmv(). Hold
the rightmost mouse button down (and in R click on Stop) to see the DD
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plot after one concentration step. The start uses the coordinatewise median
and diag([MAD(Xi)]

2). Repeat 4 more times to see the DD plot based on
the attractor. The outliers have large values of X2 and the highlighted cases
have the smallest distances. Repeat the command concmv() several times.
Sometimes the start will contain outliers but the attractor will be clean (none
of the highlighted cases will be outliers), but sometimes concentration causes
more and more of the highlighted cases to be outliers, so that the attractor
is worse than the start. Copy one of the DD plots where none of the outliers
are highlighted into Word.

7.7∗. (Perform the source(“G:/linmodpack.txt”) command if you have not
already done so.) The ddmv function illustrates concentration with the DD
plot. The outliers are highlighted. The first graph is the DD plot after one
concentration step. Hold the rightmost mouse button down (and in R click
on Stop) to see the DD plot after two concentration steps. Repeat 4 more
times to see the DD plot based on the attractor. In this problem, try to
determine the proportion of outliers gam that the DGK estimator can detect
for p = 2, 4, 10, and 20. Make a table of p and gam. For example the command
ddmv(p=2,gam=.4) suggests that the DGK estimator can tolerate nearly 40%
outliers with p = 2, but the command ddmv(p=4,gam=.4) suggest that gam
needs to be lowered (perhaps by 0.1 or 0.05). Try to make 0 < gam < 0.5 as
large as possible.

7.8∗. a) If necessary, use the commands source(“G:/linmodpack.txt”) and
source(“G:/linmoddata.txt”).

b) Enter the command mbamv(belx,bely) in R. Click on the rightmost
mouse button (and in R, click on Stop). You need to do this 7 times be-
fore the program ends. There is one predictor x and one response Y . The
function makes a scatterplot of x and Y and cases that get weight one are
shown as highlighted squares. Each MBA sphere covers half of the data.
When you find a good fit to the bulk of the data, hold down the Ctrl and c
keys to make a copy of the plot. Then paste the plot in Word.

c) Enter the command mbamv2(buxx,buxy) in R. Click on the rightmost
mouse button (and in R, click on Stop). You need to do this 14 times before
the program ends. There are four predictors x1, ..., x4 and one response Y .
The function makes the response and residual plots based on the OLS fit to
the highlighted cases. Each MBA sphere covers half of the data. When you
find a good fit to the bulk of the data, hold down the Ctrl and c keys to make
a copy of the two plots. Then paste the plots in Word.

7.9. This problem compares the MBA estimator that uses the median
squared residual MED(r2i ) criterion with the MBA estimator that uses the
LATA criterion. On clean data, both estimators are

√
n consistent since both

use 50
√
n consistent OLS estimators. The MED(r2i ) criterion has trouble

with data sets where the multiple linear regression relationship is weak and



356 7 Robust Regression

there is a cluster of outliers. The LATA criterion tries to give all x–outliers,
including good leverage points, zero weight.

a) If necessary, use the commands source(“G:/linmodpack.txt”) and
source(“G:/linmoddata.txt”). The mlrplot2 function is used to compute
both MBA estimators. Use the rightmost mouse button to advance the plot
(and in R, highlight stop).

b) Use the command mlrplot2(belx,bely) and include the resulting plot in
Word. Is one estimator better than the other, or are they about the same?

c) Use the command mlrplot2(cbrainx,cbrainy) and include the resulting
plot in Word. Is one estimator better than the other, or are they about the
same? (The infants are likely good leverage cases instead of outliers.)

d) Use the command mlrplot2(museum[,3:11],museum[,2]) and include the
resulting plot in Word. For this data set, most of the cases are based on
humans but a few are based on apes. The MBA LATA estimator will often
give the cases corresponding to apes larger absolute residuals than the MBA
estimator based on MED(r2i ), but the apes appear to be good leverage cases.

e) Use the command mlrplot2(buxx,buxy) until the outliers are clustered
about the identity line in one of the two response plots. (This will usually
happen within 10 or fewer runs. Pressing the “up arrow” will bring the pre-
vious command to the screen and save typing.) Then include the resulting
plot in Word. Which estimator went through the outliers and which one gave
zero weight to the outliers?

f) Use the command mlrplot2(hx,hy) several times. Usually both MBA
estimators fail to find the outliers for this artificial Hawkins data set that is
also analyzed by Atkinson and Riani (2000, section 3.1). The lmsreg estimator
can be used to find the outliers. In R use the commands library(MASS) and
ffplot2(hx,hy). Include the resulting plot in Word.

7.10. a) After entering the two source commands above Problem 7.3, enter
the following command.

MLRplot(buxx,buxy)

Click the rightmost mouse button (and in R click on Stop). The response
plot should appear. Again, click the rightmost mouse button (and in R click
on Stop). The residual plot should appear. Hold down the Ctrl and c keys to
make a copy of the two plots. Then paste the plots in Word.

b) The response variable is height, but 5 cases were recorded with heights
about 0.75 inches tall. The highlighted squares in the two plots correspond
to cases with large Cook’s distances. With respect to the Cook’s distances,
what is happening, swamping or masking?

7.11. For the Buxton (1920) data with multiple linear regression, height
was the response variable while an intercept, head length, nasal height, bigonal
breadth, and cephalic index were used as predictors in the multiple linear
regression model. Observation 9 was deleted since it had missing values. Five
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individuals, cases 61–65, were reported to be about 0.75 inches tall with head
lengths well over five feet!

a) Copy and paste the commands for this problem into R. Include the lasso
response plot in Word. The identity line passes right through the outliers
which are obvious because of the large gap. Prediction interval (PI) bands
are also included in the plot.

b) Copy and paste the commands for this problem into R. Include the
lasso response plot in Word. This did lasso for the cases in the covmb2 set
B applied to the predictors which included all of the clean cases and omitted
the 5 outliers. The response plot was made for all of the data, including the
outliers.

c) Copy and paste the commands for this problem into R. Include the DD
plot in Word. The outliers are in the upper right corner of the plot.

7.12. Consider the Gladstone (1905) data set that has 12 variables on
267 persons after death. There are 5 infants in the data set. The response
variable was brain weight. Head measurements were breadth, circumference,
head height, length, and size as well as cephalic index and brain weight. Age,
height, and three categorical variables cause, ageclass (0: under 20, 1: 20-45,
2: over 45) and sex were also given. The constant x1 was the first variable.
The variables cause and ageclass were not coded as factors. Coding as factors
might improve the fit.

a) Copy and paste the commands for this problem into R. Include the
lasso response plot in Word. The identity line passes right through the infants
which are obvious because of the large gap. Prediction interval (PI) bands
are also included in the plot.

b) Copy and paste the commands for this problem into R. Include the
lasso response plot in Word. This did lasso for the cases in the covmb2 set
B applied to the nontrivial predictors which are not categorical (omit the
constant, cause, ageclass and sex) which omitted 8 cases, including the 5
infants. The response plot was made for all of the data.

c) Copy and paste the commands for this problem into R. Include the DD
plot in Word. The infants are in the upper right corner of the plot.

7.13. The linmodpack function mldsim6 compares 7 estimators: FCH,
RFCH, CMVE, RCMVE, RMVN, covmb2, and MB described in Olive
(2017b, ch. 4). Most of these estimators need n > 2p, need a nonsingu-
lar dispersion matrix, and work best with n > 10p. The function generates
data sets and counts how many times the minimum Mahalanobis distance
Di(T,C) of the outliers is larger than the maximum distance of the clean
data. The value pm controls how far the outliers need to be from the bulk of
the data, and pm roughly needs to increase with

√
p.

For data sets with p > n possible, the function mldsim7 used the Eu-
clidean distances Di(T, Ip) and the Mahalanobis distances Di(T,Cd) where
Cd is the diagonal matrix with the same diagonal entries as C where (T,C)
is the covmb2 estimator using j concentration type steps. Dispersion ma-



358 7 Robust Regression

trices are effected more by outliers than good robust location estimators,
so when the outlier proportion is high, it is expected that the Euclidean
distances Di(T, Ip) will outperform the Mahalanobis distance Di(T,Cd) for
many outlier configurations. Again the function counts the number of times
the minimum outlier distance is larger than the maximum distance of the
clean data.

Both functions used several outlier types. The simulations generated 100
data sets. The clean data had xi ∼ Np(0, diag(1, ..., p)). Type 1 had outliers
in a tight cluster (near point mass) at the major axis (0, ..., 0, pm)T . Type 2
had outliers in a tight cluster at the minor axis (pm, 0, ..., 0)T. Type 3 had
mean shift outliers xi ∼ Np((pm, ..., pm)T , diag(1, ..., p)). Type 4 changed
the pth coordinate of the outliers to pm. Type 5 changed the 1st coordinate
of the outliers to pm. (If the outlier xi = (x1i, ..., xpi)

T , then xi1 = pm.)

Table 7.8 Number of Times All Outlier Distances > Clean Distances, otype=1

n p γ osteps pm FCH RFCH CMVE RCMVE RMVN covmb2 MB
100 10 0.25 0 20 85 85 85 85 86 67 89

a) Table 7.8 suggests with osteps = 0, covmb2 had the worst count. When
pm is increased to 25, all counts become 100. Copy and paste the commands
for this part into R and make a table similar to Table 7.8, but now osteps=9
and p = 45 is close to n/2 for the second line where pm = 60. Your table
should have 2 lines from output.

Table 7.9 Number of Times All Outlier Distances > Clean Distances, otype=1

n p γ osteps pm covmb2 diag
100 1000 0.4 0 1000 100 41
100 1000 0.4 9 600 100 42

b) Copy and paste the commands for this part into R and make a table
similar to Table 7.9, but type 2 outliers are used.

c) When you have two reasonable outlier detectors, there are outlier con-
figurations where one will beat the other. Simulations suggest that “covmb2”
using Di(T, Ip) outperforms “diag” using Di(T,Cd) for many outlier config-
urations, but there are some exceptions. Copy and paste the commands for
this part into R and make a table similar to Table 7.9, but type 3 outliers
are used.

7.14. a) In addition to the source(“G:/linmodpack.txt”) command, also
use the source(“G:/linmoddata.txt”) command, and type the library(MASS)
command).
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b) Type the command tvreg(buxx,buxy,ii=1). Click the rightmost mouse
button and highlight Stop. The response plot should appear. Repeat 10 times
and remember which plot percentage M (say M = 0) had the best response
plot. Then type the command tvreg2(buxx,buxy, M = 0) (except use your
value of M, not 0). Again, click the rightmost mouse button (and in R, high-
light Stop). The response plot should appear. Hold down the Ctrl and c keys
to make a copy of the plot. Then paste the plot in Word.

c) The estimated coefficients β̂TV from the best plot should have appeared
on the screen. Copy and paste these coefficients into Word.

7.15. This problem is like Problem 7.11, except elastic net is used instead
of lasso.

a) Copy and paste the commands for this problem into R. Include the
elastic net response plot in Word. The identity line passes right through the
outliers which are obvious because of the large gap. Prediction interval (PI)
bands are also included in the plot.

b) Copy and paste the commands for this problem into R. Include the
elastic net response plot in Word. This did elastic net for the cases in the
covmb2 set B applied to the predictors which included all of the clean cases
and omitted the 5 outliers. The response plot was made for all of the data,
including the outliers. (Problem 7.11 c) shows the DD plot for the data.)





Chapter 8

Multivariate Linear Regression

This chapter will show that multivariate linear regression with m ≥ 2 re-
sponse variables is nearly as easy to use, at least if m is small, as multiple
linear regression which has 1 response variable. For multivariate linear re-
gression, at least one predictor variable is quantitative. Plots for checking
the model, including outlier detection, are given. Prediction regions that are
robust to nonnormality are developed. For hypothesis testing, it is shown
that the Wilks’ lambda statistic, Hotelling Lawley trace statistic, and Pillai’s
trace statistic are robust to nonnormality.

8.1 Introduction

Definition 8.1. The response variables are the variables that you want
to predict. The predictor variables are the variables used to predict the
response variables.

Definition 8.2. The multivariate linear regression model

yi = BT xi + εi

for i = 1, ..., n has m ≥ 2 response variables Y1, ..., Ym and p predictor
variables x1, x2, ..., xp where x1 ≡ 1 is the trivial predictor. The ith case
is (xT

i , y
T
i ) = (1, xi2, ..., xip, Yi1, ..., Yim) where the 1 could be omitted. The

model is written in matrix form as Z = XB + E where the matrices are
defined below. The model has E(εk) = 0 and Cov(εk) = Σε = (σij) for
k = 1, ..., n. Then the p × m coefficient matrix B =

[
β1 β2 . . . βm

]
and

the m × m covariance matrix Σε are to be estimated, and E(Z) = XB
while E(Yij) = xT

i βj . The εi are assumed to be iid. Multiple linear regres-
sion corresponds to m = 1 response variable, and is written in matrix form
as Y = Xβ + e. Subscripts are needed for the m multiple linear regression

361
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models Y j = Xβj +ej for j = 1, ..., mwhere E(ej) = 0. For the multivariate
linear regression model, Cov(ei, ej) = σij In for i, j = 1, ..., m where In is
the n× n identity matrix.

Notation. The multiple linear regression model uses m = 1. See Def-
inition 1.9. The multivariate linear model yi = BT xi + εi for i = 1, ..., n
has m ≥ 2, and multivariate linear regression and MANOVA models are
special cases. See Definition 9.2. This chapter will use x1 ≡ 1 for the multi-
variate linear regression model. The multivariate location and dispersion
model is the special case where X = 1 and p = 1.

The data matrix W = [X Z] except usually the first column 1 of X is
omitted for software. The n×m matrix

Z =




Y1,1 Y1,2 . . . Y1,m

Y2,1 Y2,2 . . . Y2,m

...
...

. . .
...

Yn,1 Yn,2 . . . Yn,m


 =

[
Y 1 Y 2 . . . Y m

]
=




yT
1
...

yT
n


 .

The n× p design matrix of predictor variables is

X =




x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p


 =

[
v1 v2 . . . vp

]
=




xT
1
...

xT
n




where v1 = 1.
The p×m matrix

B =




β1,1 β1,2 . . . β1,m

β2,1 β2,2 . . . β2,m

...
...

. . .
...

βp,1 βp,2 . . . βp,m


 =

[
β1 β2 . . . βm

]
.

The n×m matrix

E =




ε1,1 ε1,2 . . . ε1,m

ε2,1 ε2,2 . . . ε2,m

...
...

. . .
...

εn,1 εn,2 . . . εn,m


 =

[
e1 e2 . . . em

]
=




εT
1
...

εT
n


 .

Considering the ith row of Z,X, and E shows that yT
i = xT

i B + εT
i .

Each response variable in a multivariate linear regression model follows a
multiple linear regression model Y j = Xβj + ej for j = 1, ..., m where it
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is assumed that E(ej) = 0 and Cov(ej) = σjjIn. Hence the errors corre-
sponding to the jth response are uncorrelated with variance σ2

j = σjj. Notice
that the same design matrix X of predictors is used for each of the m
models, but the jth response variable vector Y j, coefficient vector βj , and
error vector ej change and thus depend on j.

Now consider the ith case (xT
i , y

T
i ) which corresponds to the ith row of Z

and the ith row of X . Then



Yi1 = β11xi1 + · · ·+ βp1xip + εi1 = xT
i β1 + εi1

Yi2 = β12xi1 + · · ·+ βp2xip + εi2 = xT
i β2 + εi2

...
Yim = β1mxi1 + · · ·+ βpmxip + εim = xT

i βm + εim




or yi = µxi
+ εi = E(yi) + εi where

E(yi) = µxi
= BT xi =




xT
i β1

xT
i β2
...

xT
i βm


 .

The notation yi|xi and E(yi|xi) is more accurate, but usually the condi-
tioning is suppressed. Taking µxi

to be a constant (or condition on xi if the
predictor variables are random variables), yi and εi have the same covariance
matrix. In the multivariate regression model, this covariance matrix Σε does
not depend on i. Observations from different cases are uncorrelated (often
independent), but the m errors for the m different response variables for the
same case are correlated. If X is a random matrix, then assume X and E
are independent and that expectations are conditional on X .

Example 8.1. Suppose it is desired to predict the response variables Y1 =
height and Y2 = height at shoulder of a person from partial skeletal remains.
A model for prediction can be built from nearly complete skeletons or from
living humans, depending on the population of interest (e.g. ancient Egyp-
tians or modern US citizens). The predictor variables might be x1 ≡ 1, x2 =
femur length, and x3 = ulna length. The two heights of individuals with
x2 = 200mm and x3 = 140mm should be shorter on average than the two
heights of individuals with x2 = 500mm and x3 = 350mm. In this example
Y1, Y2, x2, and x3 are quantitative variables. If x4 = gender is a predictor
variable, then gender (coded as male = 1 and female = 0) is qualitative.

Definition 8.3. Least squares is the classical method for fitting multivari-
ate linear regression. The least squares estimators are

B̂ = (XT X)−1XT Z =
[
β̂1 β̂2 . . . β̂m

]
.

The predicted values or fitted values
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Ẑ = XB̂ =
[
Ŷ 1 Ŷ 2 . . . Ŷ m

]
=




Ŷ1,1 Ŷ1,2 . . . Ŷ1,m

Ŷ2,1 Ŷ2,2 . . . Ŷ2,m

...
...

. . .
...

Ŷn,1 Ŷn,2 . . . Ŷn,m


 .

The residuals Ê = Z − Ẑ = Z − XB̂ =




ε̂T
1

ε̂T
2
...

ε̂T
n


 =

[
r1 r2 . . . rm

]
=




ε̂1,1 ε̂1,2 . . . ε̂1,m

ε̂2,1 ε̂2,2 . . . ε̂2,m

...
...

. . .
...

ε̂n,1 ε̂n,2 . . . ε̂n,m


 .

These quantities can be found from the m multiple linear regressions of Y j

on the predictors: β̂j = (XT X)−1XT Y j, Ŷ j = Xβ̂j, and rj = Y j − Ŷ j

for j = 1, ..., m. Hence ε̂i,j = Yi,j − Ŷi,j where Ŷ j = (Ŷ1,j, ..., Ŷn,j)
T . Finally,

Σ̂ε,d =

(Z − Ẑ)T (Z − Ẑ)

n− d
=

(Z − XB̂)T (Z − XB̂)

n− d
=

Ê
T
Ê

n − d
=

1

n− d

n∑

i=1

ε̂iε̂
T
i .

The choices d = 0 and d = p are common. If d = 1, then Σ̂ε,d=1 = Sr, the
sample covariance matrix of the residual vectors ε̂i, since the sample mean
of the ε̂i is 0. Let Σ̂ε = Σ̂ε,p be the unbiased estimator of Σε. Also,

Σ̂ε,d = (n− d)−1ZT [I − X(XT X)−1X ]Z,

and
Ê = [I − X(XT X)−1X ]Z.

The following two theorems show that the least squares estimators are
fairly good. Also see Theorem 8.7 in Section 8.4. Theorem 8.2 can also be

used for Σ̂ε,d =
n− 1

n − d
Sr.

Theorem 8.1, Johnson and Wichern (1988, p. 304): Suppose X has
full rank p < n and the covariance structure of Definition 8.2 holds. Then
E(B̂) = B so E(β̂j) = βj , Cov(β̂j, β̂k) = σjk(X

T X)−1 for j, k = 1, ..., p.

Also Ê and B̂ are uncorrelated, E(Ê) = 0, and

E(Σ̂ε) = E

(
Ê

T
Ê

n− p

)
= Σε.
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Theorem 8.2. Sr = Σε+OP (n−1/2) and 1
n

∑n
i=1 εiε

T
i = Σε+OP (n−1/2)

if the following three conditions hold: B − B̂ = OP (n−1/2), 1
n

∑n
i=1 εix

T
i =

OP (1), and 1
n

∑n
i=1 xix

T
i = OP (n1/2).

Proof. Note that yi = BT xi+εi = B̂
T
xi+ε̂i. Hence ε̂i = (B−B̂)T xi+εi.

Thus

n∑

i=1

ε̂iε̂
T
i =

n∑

i=1

(εi−εi+ε̂i)(εi−εi+ε̂i)
T =

n∑

i=1

[εiε
T
i +εi(ε̂i−εi)

T +(ε̂i−εi)ε̂
T
i ]

=

n∑

i=1

εiε
T
i + (

n∑

i=1

εix
T
i )(B − B̂) + (B − B̂)T (

n∑

i=1

xiε
T
i )+

(B − B̂)T (

n∑

i=1

xix
T
i )(B − B̂).

Thus 1
n

∑n
i=1 ε̂iε̂

T
i = 1

n

∑n
i=1 εiε

T
i +

OP (1)OP (n−1/2) + OP (n−1/2)OP (1) +OP (n−1/2)OP (n1/2)OP (n−1/2),

and the result follows since 1
n

∑n
i=1 εiε

T
i = Σε + OP (n−1/2) and

Sr =
n

n − 1

1

n

n∑

i=1

ε̂iε̂
T
i . �

Sr and Σ̂ε are also
√
n consistent estimators of Σε by Su and Cook (2012,

p. 692). See Theorem 8.7.

8.2 Plots for the Multivariate Linear Regression Model

This section suggests using residual plots, response plots, and the DD plot to
examine the multivariate linear model. The DD plot is used to examine the
distribution of the iid error vectors. The residual plots are often used to check
for lack of fit of the multivariate linear model. The response plots are used
to check linearity and to detect influential cases for the linearity assumption.
The response and residual plots are used exactly as in the m = 1 case corre-
sponding to multiple linear regression and experimental design models. See
Olive (2010, 2017a), Olive et al. (2015), Olive and Hawkins (2005), and Cook
and Weisberg (1999, p. 432).

Notation. Plots will be used to simplify the regression analysis, and in
this text a plot of W versus Z uses W on the horizontal axis and Z on the
vertical axis.
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Definition 8.4. A response plot for the jth response variable is a plot
of the fitted values Ŷij versus the response Yij. The identity line with slope
one and zero intercept is added to the plot as a visual aid. A residual plot
corresponding to the jth response variable is a plot of Ŷij versus rij.

Remark 8.1. Make the m response and residual plots for any multivariate
linear regression. In a response plot, the vertical deviations from the identity
line are the residuals rij = Yij− Ŷij . Suppose the model is good, the jth error
distribution is unimodal and not highly skewed for j = 1, ..., m, and n ≥ 10p.
Then the plotted points should cluster about the identity line in each of the
m response plots. If outliers are present or if the plot is not linear, then the
current model or data need to be transformed or corrected. If the model is
good, then each of the m residual plots should be ellipsoidal with no trend
and should be centered about the r = 0 line. There should not be any pattern
in the residual plot: as a narrow vertical strip is moved from left to right, the
behavior of the residuals within the strip should show little change. Outliers
and patterns such as curvature or a fan shaped plot are bad.

Rule of thumb 8.1. Use multivariate linear regression if

n ≥ max((m+ p)2, mp+ 30, 10p))

provided that the m response and residual plots all look good. Make the DD
plot of the ε̂i. If a residual plot would look good after several points have
been deleted, and if these deleted points were not gross outliers (points far
from the point cloud formed by the bulk of the data), then the residual plot
is probably good. Beginners often find too many things wrong with a good
model. For practice, use the computer to generate several multivariate linear
regression data sets, and make the m response and residual plots for these
data sets. This exercise will help show that the plots can have considerable
variability even when the multivariate linear regression model is good. The
linmodpack function MLRsim simulates response and residual plots for various
distributions when m = 1.

Rule of thumb 8.2. If the plotted points in the residual plot look like
a left or right opening megaphone, the first model violation to check is the
assumption of nonconstant variance. (This is a rule of thumb because it is
possible that such a residual plot results from another model violation such
as nonlinearity, but nonconstant variance is much more common.)

Remark 8.2. Residual plots magnify departures from the model while the
response plots emphasize how well the multivariate linear regression model
fits the data.

Definition 8.5. An RR plot is a scatterplot matrix of the m sets of
residuals r1, ..., rm.
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Definition 8.6. An FF plot is a scatterplot matrix of the m sets of fitted
values of response variables Ŷ 1, ..., Ŷ m. The m response variables Y 1, ...,Y m

can be added to the plot.

Remark 8.3. Some applications for multivariate linear regression need the
m error vectors to be linearly related, and larger sample sizes may be needed
if the error vectors are not linearly related. For example, the asymptotic
optimality of the prediction regions of Section 8.3 needs the error vectors to
be iid from an elliptically contoured distribution. Make the RR plot and a
DD plot of the residual vectors ε̂i to check that the error vectors are linearly
related. Make a DD plot of the continuous predictor variables to check for
x-outliers. Make a DD plot of Y1, ...., Ym to check for outliers, especially if
it is assumed that the response variables come from an elliptically contoured
distribution.

The RMVN DD plot of the residual vectors ε̂i is used to check the error
vector distribution, to detect outliers, and to display the nonparametric pre-
diction region developed in Section 8.3. The DD plot suggests that the error
vector distribution is elliptically contoured if the plotted points cluster tightly
about a line through the origin as n → ∞. The plot suggests that the error
vector distribution is multivariate normal if the line is the identity line. If n
is large and the plotted points do not cluster tightly about a line through the
origin, then the error vector distribution may not be elliptically contoured.
These applications of the DD plot for iid multivariate data are discussed in
Olive (2002, 2008, 2013a, 2017b) and Chapter 7. The RMVN estimator has
not yet been proven to be a consistent estimator when computed from resid-
ual vectors, but simulations suggest that the RMVN DD plot of the residual
vectors is a useful diagnostic plot. The linmodpack function mregddsim can
be used to simulate the DD plots for various distributions.

Predictor transformations for the continuous predictors can be made ex-
actly as in Section 1.2.

Warning: The log rule and other transformations do not always work. For
example, the log rule may fail. If the relationships in the scatterplot matrix are
already linear or if taking the transformation does not increase the linearity,
then no transformation may be better than taking a transformation. For
the Cook and Weisberg (1999) data set evaporat.lsp with m = 1, the log
rule suggests transforming the response variable Evap, but no transformation
works better.

Response transformations can also be made as in Section 1.2, but also
make the response plot of Ŷ j versus Y j , and use the rules of Section 1.2
on Yj to linearize the response plot for each of the m response variables
Y1, ..., Ym.
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8.3 Asymptotically Optimal Prediction Regions

In this section, we will consider a more general multivariate regression model,
and then consider the multivariate linear model as a special case. Given n
cases of training or past data (x1, y1), ..., (xn, yn) and a vector of predictors
xf , suppose it is desired to predict a future test vector yf .

Definition 8.7. A large sample 100(1− δ)% prediction region is a set An

such that P (yf ∈ An) → 1−δ as n→ ∞, and is asymptotically optimal if the
volume of the region converges in probability to the volume of the population
minimum volume covering region.

The classical large sample 100(1− δ)% prediction region for a future value
xf given iid data x1, ..., ,xn is {x : D2

x(x,S) ≤ χ2
p,1−δ}, while for multi-

variate linear regression, the classical large sample 100(1 − δ)% prediction
region for a future value yf given xf and past data (x1, yi), ..., (xn, yn) is

{y : D2
y(ŷf , Σ̂ε) ≤ χ2

m,1−δ}. See Johnson and Wichern (1988, pp. 134, 151,
312). By Equation (1.36), these regions may work for multivariate normal xi

or εi, but otherwise tend to have undercoverage. Section 4.4 and Olive (2013a)
replaced χ2

p,1−δ by the order statistic D2
(Un) where Un decreases to dn(1−δ)e.

This section will use a similar technique from Olive (2018) to develop possibly
the first practical large sample prediction region for the multivariate linear
model with unknown error distribution. The following technical theorem will
be needed to prove Theorem 8.4.

Theorem 8.3. Let a > 0 and assume that (µ̂n, Σ̂n) is a consistent esti-
mator of (µ, aΣ).

a) D2
x(µ̂n, Σ̂n) − 1

a
D2

x(µ,Σ) = oP (1).

b) Let 0 < δ ≤ 0.5. If (µ̂n, Σ̂n)− (µ, aΣ) = Op(n
−δ) and aΣ̂

−1

n −Σ−1 =
OP (n−δ), then

D2
x(µ̂n, Σ̂n) − 1

a
D2

x(µ,Σ) = OP (n−δ).

Proof. Let Bn denote the subset of the sample space on which Σ̂n has an
inverse. Then P (Bn) → 1 as n→ ∞. Now

D2
x(µ̂n, Σ̂n) = (x − µ̂n)T Σ̂

−1

n (x − µ̂n) =

(x− µ̂n)T

(
Σ−1

a
− Σ−1

a
+ Σ̂

−1

n

)
(x − µ̂n) =

(x− µ̂n)T

(−Σ−1

a
+ Σ̂

−1

n

)
(x − µ̂n) + (x − µ̂n)T

(
Σ−1

a

)
(x − µ̂n) =
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1

a
(x − µ̂n)T (−Σ−1 + a Σ̂

−1

n )(x − µ̂n) +

(x− µ + µ − µ̂n)T

(
Σ−1

a

)
(x − µ + µ − µ̂n)

=
1

a
(x − µ)T Σ−1(x − µ) +

2

a
(x − µ)T Σ−1(µ− µ̂n)+

1

a
(µ − µ̂n)T Σ−1(µ − µ̂n) +

1

a
(x − µ̂n)T [aΣ̂

−1

n − Σ−1](x− µ̂n)

on Bn, and the last three terms are oP (1) under a) and OP (n−δ) under b).
�

Now suppose a prediction region for an m× 1 random vector yf given a
vector of predictors xf is desired for the multivariate linear model. If we had

many cases zi = BT xf + εi, then we could use the multivariate prediction
region for m variables from Section 4.4. Instead, Theorem 8.4 will use the

prediction region from Section 4.4 on the pseudodata ẑi = B̂
T
xf + ε̂i =

ŷf + ε̂i for i = 1, ..., n. This takes the data cloud of the n residual vectors ε̂i

and centers the cloud at ŷf . Note that ẑi = (B−B +B̂)T xf +(εi−εi+ε̂i) =

zi+(B̂−B)T xf +ε̂i−εi = zi+(B̂−B)T xf −(B̂−B)T xi = zi+OP (n−1/2).
Hence the distances based on the zi and the distances based on the ẑi have
the same quantiles, asymptotically (for quantiles that are continuity points
of the distribution of zi).

If the εi are iid from an ECm(0,Σ, g) distribution with continuous de-
creasing g and nonsingular covariance matrix Σε = cΣ for some con-
stant c > 0, then the population asymptotically optimal prediction region
is {y : Dy(BT xf ,Σε) ≤ D1−δ} where P (Dy(BT xf ,Σε) ≤ D1−δ) = 1 − δ.

For example, if the iid εi ∼ Nm(0,Σε), then D1−δ =
√
χ2

m,1−δ. If the er-

ror distribution is not elliptically contoured, then the above region still has
100(1− δ)% coverage, but prediction regions with smaller volume may exist.

A natural way to make a large sample prediction region is to estimate the
target population minimum volume covering region, but for moderate sam-
ples and many error distributions, the natural estimator that covers dn(1−δ)e
of the cases tends to have undercoverage as high as min(0.05, δ/2). This em-
pirical result is not too surprising since it is well known that the performance
of a prediction region on the training data is superior to the performance on
future test data, due in part to the unknown variability of the estimator. To
compensate for the undercoverage, let qn be as in Theorem 8.4.

Theorem 8.4. Suppose yi = E(yi|xi) + εi = ŷi + ε̂i where Cov(εi) =
Σε > 0, and where the zero mean εf and the εi are iid for i = 1, ..., n.

Given xf , suppose the fitted model produces ŷf and nonsingular Σ̂ε. Let
ẑi = ŷf + ε̂i and
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D2
i ≡ D2

i (ŷf , Σ̂ε) = (ẑi − ŷf )T Σ̂
−1

ε (ẑi − ŷf )

for i = 1, ..., n. Let qn = min(1 − δ + 0.05, 1− δ +m/n) for δ > 0.1 and

qn = min(1 − δ/2, 1− δ + 10δm/n), otherwise.

If qn < 1 − δ + 0.001, set qn = 1 − δ. Let 0 < δ < 1 and h = D(Un) where
D(Un) is the 100 qnth sample quantile of the Mahalanobis distances Di. Let
the nominal 100(1 − δ)% prediction region for yf be given by

{z : (z − ŷf )T Σ̂
−1

ε (z − ŷf ) ≤ D2
(Un)} =

{z : D2
z(ŷf , Σ̂ε) ≤ D2

(Un)} = {z : Dz(ŷf , Σ̂ε) ≤ D(Un)}. (8.1)

a) Consider the n prediction regions for the data where (yf,i,xf,i) =
(yi,xi) for i = 1, ..., n. If the order statistic D(Un) is unique, then Un of the
n prediction regions contain yi where Un/n→ 1 − δ as n → ∞.

b) If (ŷf , Σ̂ε) is a consistent estimator of (E(yf),Σε), then (8.1) is a
large sample 100(1− δ)% prediction region for yf .

c) If (ŷf , Σ̂ε) is a consistent estimator of (E(yf ),Σε), and the εi come
from an elliptically contoured distribution such that the unique highest den-
sity region is {z : Dz(0,Σε) ≤ D1−δ}, then the prediction region (8.1) is
asymptotically optimal.

Proof. a) Suppose (xf , yf ) = (xi, yi). Then

D2
yi

(ŷi, Σ̂ε) = (yi − ŷi)
T Σ̂

−1

ε (yi − ŷi) = ε̂T
i Σ̂

−1

ε ε̂i = D2
ε̂i

(0, Σ̂ε).

Hence yi is in the ith prediction region {z : Dz(ŷi, Σ̂ε) ≤ D(Un)(ŷi, Σ̂ε)}
iff ε̂i is in prediction region {z : Dz(0, Σ̂ε) ≤ D(Un)(0, Σ̂ε)}, but exactly Un

of the ε̂i are in the latter region by construction, if D(Un) is unique. Since
D(Un) is the 100(1− δ)th percentile of the Di asymptotically, Un/n→ 1− δ.

b) Let P [Dz(E(yf ),Σε) ≤ D1−δ(E(yf),Σε)] = 1 − δ. Since Σε > 0,

Theorem 8.3 shows that if (ŷf , Σ̂ε)
P→ (E(yf),Σε) then D(ŷf , Σ̂ε)

D→
Dz(E(yf ),Σε). Hence the percentiles of the distances converge in distri-

bution, and the probability that yf is in {z : Dz(ŷf , Σ̂ε) ≤ D1−δ(ŷf , Σ̂ε)}
converges to 1 − δ = the probability that yf is in {z : Dz(E(yf ),Σε) ≤
D1−δ(E(yf),Σε)} at continuity points D1−δ of the distribution ofD(E(yf ),
Σε).

c) The asymptotically optimal prediction region is the region with the
smallest volume (hence highest density) such that the coverage is 1 − δ, as
n → ∞. This region is {z : Dz(E(yf),Σε) ≤ D1−δ(E(yf ),Σε)} if the
asymptotically optimal region for the εi is {z : Dz(0,Σε) ≤ D1−δ(0,Σε)}.
Hence the result follows by b). �
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Notice that if Σ̂
−1

ε exists, then 100qn% of the n training data yi are in their
corresponding prediction region with xf = xi, and qn → 1−δ even if (ŷi, Σ̂ε)
is not a good estimator or if the regression model is misspecified. Hence the
coverage qn of the training data is robust to model assumptions. Of course the
volume of the prediction region could be large if a poor estimator (ŷi, Σ̂ε) is
used or if the εi do not come from an elliptically contoured distribution. The
response, residual, and DD plots can be used to check model assumptions.
If the plotted points in the RMVN DD plot cluster tightly about some line
through the origin and if n ≥ max[3(m+p)2, mp+30], we expect the volume
of the prediction region may be fairly low for the least squares estimators.

If n is too small, then multivariate data is sparse and the covering ellipsoid
for the training data may be far too small for future data, resulting in severe
undercoverage. Also notice that qn = 1−δ/2 or qn = 1−δ+0.05 for n ≤ 20p.
At the training data, the coverage qn ≥ 1 − δ, and qn converges to the
nominal coverage 1− δ as n → ∞. Suppose n ≤ 20p. Then the nominal 95%
prediction region uses qn = 0.975 while the nominal 50% prediction region
uses qn = 0.55.Prediction distributions depend both on the error distribution
and on the variability of the estimator (ŷf , Σ̂ε). This variability is typically
unknown but converges to 0 as n→ ∞. Also, residuals tend to underestimate
errors for small n. For moderate n, ignoring estimator variability and using
qn = 1 − δ resulted in undercoverage as high as min(0.05, δ/2). Letting the
“coverage” qn decrease to the nominal coverage 1 − δ inflates the volume of
the prediction region for small n, compensating for the unknown variability
of (ŷf , Σ̂ε).

Consider the multivariate linear regression model. Let Σ̂ε = Σ̂ε,d=p, ẑi =
ŷf + ε̂i, and D2

i (ŷf ,Sr) = (ẑi − ŷf )T S−1
r (ẑi − ŷf ) for i = 1, ..., n. Then the

large sample nonparametric 100(1− δ)% prediction region is

{z : D2
z(ŷf ,Sr) ≤ D2

(Un)} = {z : Dz(ŷf ,Sr) ≤ D(Un)}. (8.2)

Theorem 8.5 will show that this prediction region (8.2) can also be found
by applying the nonparametric prediction region (4.24) on the ẑi. Recall that
Sr defined in Definition 8.3 is the sample covariance matrix of the residual
vectors ε̂i. For the multivariate linear regression model, ifD1−δ is a continuity
point of the distribution of D, Assumption D1 above Theorem 8.7 holds, and
the εi have a nonsingular covariance matrix, then (8.2) is a large sample
100(1− δ)% prediction region for yf .

Theorem 8.5. For multivariate linear regression, when least squares is
used to compute ŷf , Sr , and the pseudodata ẑi, prediction region (8.2) is
the nonparametric prediction region (4.24) applied to the ẑi.

Proof. Multivariate linear regression with least squares satisfies Theorem
8.4 by Su and Cook (2012). (See Theorem 8.7.) Let (T,C) be the sample
mean and sample covariance matrix (see Definition 4.7) applied to the ẑi.
The sample mean and sample covariance matrix of the residual vectors is
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(0,Sr) since least squares was used. Hence the ẑi = ŷf + ε̂i have sample
covariance matrix Sr, and sample mean ŷf . Hence (T,C) = (ŷf ,Sr), and
the Di(ŷf ,Sr) are used to compute D(Un). �

The RMVN DD plot of the residual vectors will be used to display the
prediction regions for multivariate linear regression. See Example 8.3. The
nonparametric prediction region for multivariate linear regression of Theorem
8.5 uses (T,C) = (ŷf ,Sr) in (8.1), and has simple geometry. Let Rr be the
nonparametric prediction region (8.2) applied to the residuals ε̂i with ŷf = 0.
Then Rr is a hyperellipsoid with center 0, and the nonparametric prediction
region is the hyperellipsoid Rr translated to have center ŷf . Hence in a DD
plot, all points to the left of the line MD = D(Un) correspond to yi that are
in their prediction region, while points to the right of the line are not in their
prediction region.

The nonparametric prediction region has some interesting properties. This
prediction region is asymptotically optimal if the εi are iid for a large class
of elliptically contoured ECm(0,Σ, g) distributions. Also, if there are 100
different values (xjf , yjf) to be predicted, we only need to update ŷjf for
j = 1, ..., 100, we do not need to update the covariance matrix Sr .

It is common practice to examine how well the prediction regions work
on the training data. That is, for i = 1, ..., n, set xf = xi and see if yi is
in the region with probability near to 1 − δ with a simulation study. Note
that ŷf = ŷi if xf = xi. Simulation is not needed for the nonparametric
prediction region (8.2) for the data since the prediction region (8.2) centered
at ŷi contains yi iff Rr, the prediction region centered at 0, contains ε̂i since
ε̂i = yi − ŷi. Thus 100qn% of prediction regions corresponding to the data
(yi,xi) contain yi, and 100qn% → 100(1−δ)%. Hence the prediction regions
work well on the training data and should work well on (xf , yf) similar to
the training data. Of course simulation should be done for test data (xf , yf)
that are not equal to training data cases. See Problem 8.11.

This training data result holds provided that the multivariate linear regres-
sion using least squares is such that the sample covariance matrix Sr of the
residual vectors is nonsingular, the multivariate regression model need
not be correct. Hence the coverage at the n training data cases (xi, yi)
is robust to model misspecification. Of course, the prediction regions may
be very large if the model is severely misspecified, but severity of misspec-
ification can be checked with the response and residual plots. Coverage for
a future value yf can also be arbitrarily bad if there is extrapolation or if
(xf , yf ) comes from a different population than that of the data.
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8.4 Testing Hypotheses

This section considers testing a linear hypothesis H0 : LB = 0 versus
H1 : LB 6= 0 where L is a full rank r × p matrix.

Definition 8.8. Assume rank(X) = p. The total corrected (for the mean)
sum of squares and cross products matrix is

T = R + W e = ZT

(
In − 1

n
11T

)
Z.

Note that T /(n− 1) is the usual sample covariance matrix Σ̂y if all n of the
yi are iid, e.g. if B = 0. The regression sum of squares and cross products
matrix is

R = ZT

[
X(XT X)−1XT − 1

n
11T

]
Z = ZT XB̂ − 1

n
ZT11T Z.

Let H = B̂
T
LT [L(XT X)−1LT ]−1LB̂. The error or residual sum of squares

and cross products matrix is

W e = (Z − Ẑ)T (Z − Ẑ) = ZT Z − ZT XB̂ = ZT [In − X(XT X)−1XT ]Z.

Note that W e = Ê
T
Ê and W e/(n− p) = Σ̂ε.

Warning: SAS output uses E instead of W e.

The MANOVA table is shown below.

Summary MANOVA Table

Source matrix df

Regression or Treatment R p− 1
Error or Residual W e n− p

Total (corrected) T n− 1

Definition 8.9. Let λ1 ≥ λ2 ≥ · · · ≥ λm be the ordered eigenvalues of
W−1

e H. Then there are four commonly used test statistics.
The Roy’s maximum root statistic is λmax(L) = λ1.
The Wilks’ Λ statistic is Λ(L) = |(H + W e)

−1W e| = |W−1
e H + I|−1 =

m∏

i=1

(1 + λi)
−1.

The Pillai’s trace statistic is V (L) = tr[(H + W e)
−1H] =

m∑

i=1

λi

1 + λi
.



374 8 Multivariate Linear Regression

The Hotelling-Lawley trace statistic is U(L) = tr[W−1
e H ] =

m∑

i=1

λi.

Typically some function of one of the four above statistics is used to get
pval, the estimated pvalue. Output often gives the pvals for all four test
statistics. Be cautious about inference if the last three test statistics do not
lead to the same conclusions (Roy’s test may not be trustworthy for r > 1).
Theory and simulations developed below for the four statistics will provide
more information about the sample sizes needed to use the four test statistics.
See the paragraphs after the following theorem for the notation used in that
theorem.

Theorem 8.6. The Hotelling-Lawley trace statistic

U(L) =
1

n − p
[vec(LB̂)]T [Σ̂

−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)]. (8.3)

Proof. Using the Searle (1982, p. 333) identity
tr(AGT DGC) = [vec(G)]T [CA ⊗ DT ][vec(G)], it follows that

(n− p)U(L) = tr[Σ̂
−1

ε B̂
T
LT [L(XT X)−1LT ]−1LB̂]

= [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)] = T where A = Σ̂
−1

ε ,

G = LB̂,D = [L(XT X)−1LT ]−1, and C = I. Hence (8.3) holds. �

Some notation is useful to show (8.3) and to show that (n−p)U(L)
D→ χ2

rm

under mild conditions if H0 is true. Following Henderson and Searle (1979),
let matrix A = [a1 a2 . . . ap]. Then the vec operator stacks the columns
of A on top of one another so

vec(A) =




a1

a2

...
ap


 .

Let A = (aij) be an m × n matrix and B a p × q matrix. Then the
Kronecker product of A and B is the mp× nq matrix

A ⊗ B =




a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
... · · ·

...
am1B am2B · · · amnB


 .

An important fact is that if A and B are nonsingular square matrices, then
[A⊗ B]−1 = A−1 ⊗ B−1. The following assumption is important.
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Assumption D1: Let hi be the ith diagonal element of X(XT X)−1XT .

Assume max1≤i≤n hi
P→ 0 as n → ∞, assume that the zero mean iid error

vectors have finite fourth moments, and assume that
1

n
XT X

P→ W−1.

Su and Cook (2012) proved a central limit type theorem for Σ̂ε and B̂ for
the partial envelopes estimator, and the least squares estimator is a special
case. These results prove the following theorem. Their theorem also shows
that for multiple linear regression (m = 1), σ̂2 = MSE is a

√
n consistent

estimator of σ2.

Theorem 8.7: Multivariate Least Squares Central Limit Theorem
(MLS CLT). For the least squares estimator, if assumption D1 holds, then

Σ̂ε is a
√
n consistent estimator of Σε and

√
n vec(B̂ − B)

D→ Npm(0,Σε ⊗ W ).

Theorem 8.8. If assumption D1 holds and if H0 is true, then

(n− p)U(L)
D→ χ2

rm.

Proof. By Theorem 8.7,
√
n vec(B̂ −B)

D→ Npm(0,Σε ⊗W ). Then un-

der H0,
√
n vec(LB̂)

D→ Nrm(0,Σε ⊗LWLT ), and n [vec(LB̂)]T [Σ−1
ε ⊗

(LWLT )−1][vec(LB̂)]
D→ χ2

rm. This result also holds if W and Σε are re-

placed by Ŵ = n(XT X)−1 and Σ̂ε. Hence under H0 and using the proof of
Theorem 8.6,

T = (n−p)U(L) = [vec(LB̂)]T [Σ̂
−1

ε ⊗(L(XT X)−1LT )−1][vec(LB̂)]
D→ χ2

rm.

�

Some more details on the above results may be useful. Consider testing a
linear hypothesis H0 : LB = 0 versus H1 : LB 6= 0 where L is a full rank
r × p matrix. For now assume the error distribution is multivariate normal
Nm(0,Σε). Then

vec(B̂ − B) =




β̂1 − β1

β̂2 − β2
...

β̂m − βm


 ∼ Npm(0,Σε ⊗ (XT X)−1)

where
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C = Σε⊗(XT X)−1 =




σ11(X
T X)−1 σ12(X

T X)−1 · · · σ1m(XT X)−1

σ21(X
T X)−1 σ22(X

T X)−1 · · · σ2m(XT X)−1

...
... · · ·

...

σm1(X
T X)−1 σm2(X

T X)−1 · · · σmm(XT X)−1


 .

Now let A be an rm×pm block diagonal matrix: A = diag(L, ...,L). Then

A vec(B̂ − B) = vec(L(B̂ − B)) =




L(β̂1 − β1)

L(β̂2 − β2)
...

L(β̂m − βm)


 ∼ Nrm(0,Σε ⊗ L(XT X)−1LT )

where D = Σε ⊗ L(XT X)−1LT = ACAT =




σ11L(XT X)−1LT σ12L(XT X)−1LT · · · σ1mL(XT X)−1LT

σ21L(XT X)−1LT σ22L(XT X)−1LT · · · σ2mL(XT X)−1LT

...
... · · ·

...

σm1L(XT X)−1LT σm2L(XT X)−1LT · · · σmmL(XT X)−1LT


 .

Under H0, vec(LB) = A vec(B) = 0, and

vec(LB̂) =




Lβ̂1

Lβ̂2
...

Lβ̂m


 ∼ Nrm(0,Σε ⊗ L(XT X)−1LT ).

Hence under H0,

[vec(LB̂)]T [Σ−1
ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)] ∼ χ2

rm,

and

T = [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)]
D→ χ2

rm. (8.4)

A large sample level δ test will reject H0 if pval ≤ δ where

pval = P

(
T

rm
< Frm,n−mp

)
. (8.5)

Since least squares estimators are asymptotically normal, if the εi are iid
for a large class of distributions,
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√
n vec(B̂ − B) =

√
n




β̂1 − β1

β̂2 − β2
...

β̂m − βm




D→ Npm(0,Σε ⊗ W )

where
XT X

n

P→ W−1.

Then under H0,

√
n vec(LB̂) =

√
n




Lβ̂1

Lβ̂2
...

Lβ̂m




D→ Nrm(0,Σε ⊗ LWLT ),

and
n [vec(LB̂)]T [Σ−1

ε ⊗ (LWLT )−1][vec(LB̂)]
D→ χ2

rm.

Hence (8.4) holds, and (8.5) gives a large sample level δ test if the least
squares estimators are asymptotically normal.

Kakizawa (2009) showed, under stronger assumptions than Theorem 8.8,
that for a large class of iid error distributions, the following test statistics
have the same χ2

rm limiting distribution when H0 is true, and the same non-
central χ2

rm(ω2) limiting distribution with noncentrality parameter ω2 when
H0 is false under a local alternative. Hence the three tests are robust to the
assumption of normality. The limiting null distribution is well known when
the zero mean errors are iid from a multivariate normal distribution. See
Khattree and Naik (1999, p. 68): (n− p)U(L)

D→ χ2
rm, (n− p)V (L)

D→ χ2
rm,

and −[n − p − 0.5(m − r + 3)] log(Λ(L))
D→ χ2

rm. Results from Kshirsagar
(1972, p. 301) suggest that the third chi-square approximation is very good
if n ≥ 3(m+ p)2 for multivariate normal error vectors.

Theorems 8.6 and 8.8 are useful for relating multivariate tests with the
partial F test for multiple linear regression that tests whether a reduced
model that omits some of the predictors can be used instead of the full model
that uses all p predictors. The partial F test statistic is

FR =

[
SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F )

where the residual sums of squares SSE(F ) and SSE(R) and degrees of
freedom dfF and dfr are for the full and reduced model while the mean
square error MSE(F ) is for the full model. Let the null hypothesis for the
partial F test be H0 : Lβ = 0 where L sets the coefficients of the predictors
in the full model but not in the reduced model to 0. Seber and Lee (2003, p.
100) shows that
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FR =
[Lβ̂]T (L(XT X)−1LT )−1[Lβ̂]

rσ̂2

is distributed as Fr,n−p if H0 is true and the errors are iid N(0, σ2). Note
that for multiple linear regression with m = 1, FR = (n − p)U(L)/r since

Σ̂
−1

ε = 1/σ̂2. Hence the scaled Hotelling Lawley test statistic is the partial
F test statistic extended to m > 1 predictor variables by Theorem 8.6.

By Theorem 8.8, for example, rFR
D→ χ2

r for a large class of nonnormal

error distributions. If Zn ∼ Fk,dn , then Zn
D→ χ2

k/k as dn → ∞. Hence using
the Fr,n−p approximation gives a large sample test with correct asymptotic
level, and the partial F test is robust to nonnormality.

Similarly, using an Frm,n−pm approximation for the following test statistics
gives large sample tests with correct asymptotic level by Kakizawa (2009) and
similar power for large n. The large sample test will have correct asymptotic
level as long as the denominator degrees of freedom dn → ∞ as n→ ∞, and
dn = n− pm reduces to the partial F test if m = 1 and U(L) is used. Then
the three test statistics are

−[n− p− 0.5(m− r + 3)]

rm
log(Λ(L)),

n− p

rm
V (L), and

n − p

rm
U(L).

By Berndt and Savin (1977) and Anderson (1984, pp. 333, 371),

V (L) ≤ − log(Λ(L)) ≤ U(L).

Hence the Hotelling Lawley test will have the most power and Pillai’s test
will have the least power.

Following Khattree and Naik (1999, pp. 67-68), there are several ap-
proximations used by the SAS software. For the Roy’s largest root test, if
h = max(r,m), use

n− p− h+ r

h
λmax(L) ≈ F (h, n− p− h+ r).

The simulations in Section 8.5 suggest that this approximation is good for
r = 1 but poor for r > 1. Anderson (1984, p. 333) stated that Roy’s largest
root test has the greatest power if r = 1 but is an inferior test for r > 1. Let
g = n−p−(m−r+1)/2, u = (rm−2)/4 and t =

√
r2m2 − 4/

√
m2 + r2 − 5 for

m2+r2−5 > 0 and t = 1, otherwise. Assume H0 is true. Thus U
P→ 0, V

P→ 0,

and Λ
P→ 1 as n → ∞. Then

gt− 2u

rm

1 − Λ1/t

Λ1/t
≈ F (rm, gt− 2u) or (n − p)t

1 − Λ1/t

Λ1/t
≈ χ2

rm.

For large n and t > 0, − log(Λ) = −t log(Λ1/t) = −t log(1 + Λ1/t − 1) ≈
t(1 − Λ1/t) ≈ t(1 − Λ1/t)/Λ1/t. If it can not be shown that
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(n− p)[− log(Λ) − t(1 − Λ1/t)/Λ1/t]
P→ 0 as n → ∞,

then it is possible that the approximate χ2
rm distribution may be the limiting

distribution for only a small class of iid error distributions. When the εi are
iid Nm(0,Σε), there are some exact results. For r = 1,

n− p−m+ 1

m

1 − Λ

Λ
∼ F (m, n− p−m+ 1).

For r = 2,

2(n− p−m+ 1)

2m

1 − Λ1/2

Λ1/2
∼ F (2m, 2(n− p−m+ 1)).

For m = 2,
2(n− p)

2r

1 − Λ1/2

Λ1/2
∼ F (2r, 2(n− p)).

Let s = min(r,m), m1 = (|r −m| − 1)/2 and m2 = (n− p−m− 1)/2. Note
that s(|r −m| + s) = min(r,m)max(r,m) = rm. Then

n − p

rm

V

1 − V/s
=

n− p

s(|r −m| + s)

V

1 − V/s
≈ 2m2 + s+ 1

2m1 + s+ 1

V

s− V
≈

F (s(2m1+s+1), s(2m2+s+1)) ≈ F (s(|r−m|+s), s(n−p)) = F (rm, s(n−p)).
This approximation is asymptotically correct by Slutsky’s theorem since

1− V/s
P→ 1. Finally,

n− p

rm
U =

n− p

s(|r −m| + s)
U ≈ 2(sm2 + 1)

s2(2m1 + s+ 1)
U ≈ F (s(2m1 + s+ 1), 2(sm2 + 1))

≈ F (s(|r −m| + s), s(n − p)) = F (rm, s(n− p)).

This approximation is asymptotically correct for a wide range of iid error
distributions.

Multivariate analogs of tests for multiple linear regression can be derived
with appropriate choice of L. Assume a constant x1 = 1 is in the model. As
a textbook convention, use δ = 0.05 if δ is not given.

The four step MANOVA test of linear hypotheses is useful.
i) State the hypotheses H0 : LB = 0 and H1 : LB 6= 0.
ii) Get test statistic from output.
iii) Get pval from output.
iv) State whether you reject H0 or fail to reject H0. If pval ≤ δ, reject H0

and conclude that LB 6= 0. If pval > δ, fail to reject H0 and conclude that
LB = 0 or that there is not enough evidence to conclude that LB 6= 0.



380 8 Multivariate Linear Regression

The MANOVA test of H0 : B = 0 versus H1 : B 6= 0 is the special case

corresponding to L = I and H = B̂
T
XT XB̂ = Ẑ

T
Ẑ, but is usually not a

test of interest.

The analog of the ANOVA F test for multiple linear regression is the
MANOVA F test that uses L = [0 Ip−1] to test whether the nontrivial
predictors are needed in the model. This test should reject H0 if the response
and residual plots look good, n is large enough, and at least one response
plot does not look like the corresponding residual plot. A response plot for
Yj will look like a residual plot if the identity line appears almost horizontal,

hence the range of Ŷj is small. Response and residual plots are often useful
for n ≥ 10p.

The 4 step MANOVA F test of hypotheses uses L = [0 Ip−1].
i) State the hypotheses H0: the nontrivial predictors are not needed in the
mreg model H1: at least one of the nontrivial predictors is needed.
ii) Find the test statistic F0 from output.
iii) Find the pval from output.
iv) If pval ≤ δ, reject H0. If pval > δ, fail to reject H0. If H0 is rejected,
conclude that there is a mreg relationship between the response variables
Y1, ..., Ym and the predictors x2, ..., xp. If you fail to reject H0, conclude
that there is a not a mreg relationship between Y1, ..., Ym and the predictors
x2, ..., xp. (Or there is not enough evidence to conclude that there is a
mreg relationship between the response variables and the predictors. Get the
variable names from the story problem.)

The Fj test of hypotheses uses Lj = [0, ..., 0, 1, 0, ..., 0], where the 1 is in
the jth position, to test whether the jth predictor xj is needed in the model
given that the other p− 1 predictors are in the model. This test is an analog
of the t tests for multiple linear regression. Note that xj is not needed in the
model corresponds to H0 : Bj = 0 while xj needed in the model corresponds

to H1 : Bj 6= 0 where BT
j is the jth row of B.

The 4 step Fj test of hypotheses uses Lj = [0, ..., 0, 1, 0, ..., 0] where the 1
is in the jth position.
i) State the hypotheses H0 : xj is not needed in the model
H1 : xj is needed.
ii) Find the test statistic Fj from output.
iii) Find pval from output.
iv) If pval ≤ δ, reject H0. If pval > δ, fail to reject H0. Give a nontechnical
sentence restating your conclusion in terms of the story problem. If H0 is
rejected, then conclude that xj is needed in the mreg model for Y1, ..., Ym

given that the other predictors are in the model. If you fail to reject H0, then
conclude that xj is not needed in the mreg model for Y1, ..., Ym given that
the other predictors are in the model. (Or there is not enough evidence to
conclude that xj is needed in the model. Get the variable names from the
story problem.)
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The Hotelling Lawley statistic

Fj =
1

dj
B̂

T

j Σ̂
−1

ε B̂j =
1

dj
(β̂j1, β̂j2, ..., β̂jm)Σ̂

−1

ε




β̂j1

β̂j2

...

β̂jm




where B̂
T

j is the jth row of B̂ and dj = (XT X)−1
jj , the jth diagonal entry of

(XT X)−1. The statistic Fj could be used for forward selection and backward
elimination in variable selection.

The 4 step MANOVA partial F test of hypotheses has a full model
using all of the variables and a reduced model where r of the variables are
deleted. The ith row of L has a 1 in the position corresponding to the ith
variable to be deleted. Omitting the jth variable corresponds to the Fj test
while omitting variables x2, ..., xp corresponds to the MANOVA F test. Using
L = [0 Ik] tests whether the last k predictors are needed in the multivariate
linear regression model given that the remaining predictors are in the model.
i) State the hypotheses H0: the reduced model is good H1: use the full
model.
ii) Find the test statistic FR from output.
iii) Find the pval from output.
iv) If pval ≤ δ, reject H0 and conclude that the full model should be used.
If pval > δ, fail to reject H0 and conclude that the reduced model is good.

The linmodpack function mltreg produces the m response and residual
plots, gives B̂, Σ̂ε, the MANOVA partial F test statistic and pval corre-
sponding to the reduced model that leaves out the variables given by indices
(so x2 and x4 in the output below with F = 0.77 and pval = 0.614), Fj and
the pval for the Fj test for variables 1, 2, ..., p (where p = 4 in the output
below so F2 = 1.51 with pval = 0.284), and F0 and pval for the MANOVA
F test (in the output below F0 = 3.15 and pval= 0.06). Right click Stop

on the plots m times to advance the plots and to get the cursor back on the
command line in R.

The command out <- mltreg(x,y,indices=c(2)) would produce
a MANOVA partial F test corresponding to the F2 test while the command
out <- mltreg(x,y,indices=c(2,3,4)) would produce a MANOVA
partial F test corresponding to the MANOVA F test for a data set with
p = 4 predictor variables. The Hotelling Lawley trace statistic is used in the
tests.

out <- mltreg(x,y,indices=c(2,4))

$Bhat

[,1] [,2] [,3]

[1,] 47.96841291 623.2817463 179.8867890
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[2,] 0.07884384 0.7276600 -0.5378649

[3,] -1.45584256 -17.3872206 0.2337900

[4,] -0.01895002 0.1393189 -0.3885967

$Covhat

[,1] [,2] [,3]

[1,] 21.91591 123.2557 132.339

[2,] 123.25566 2619.4996 2145.780

[3,] 132.33902 2145.7797 2954.082

$partial

partialF Pval

[1,] 0.7703294 0.6141573

$Ftable

Fj pvals

[1,] 6.30355375 0.01677169

[2,] 1.51013090 0.28449166

[3,] 5.61329324 0.02279833

[4,] 0.06482555 0.97701447

$MANOVA

MANOVAF pval

[1,] 3.150118 0.06038742

#Output for Example 8.2

y<-marry[,c(2,3)]; x<-marry[,-c(2,3)];

mltreg(x,y,indices=c(3,4))

$partial

partialF Pval

[1,] 0.2001622 0.9349877

$Ftable

Fj pvals

[1,] 4.35326807 0.02870083

[2,] 600.57002201 0.00000000

[3,] 0.08819810 0.91597268

[4,] 0.06531531 0.93699302

$MANOVA

MANOVAF pval

[1,] 295.071 1.110223e-16

Example 8.2. The above output is for the Hebbler (1847) data from
the 1843 Prussia census. Sometimes if the wife or husband was not at the
household, then s/he would not be counted. Y1 = number of married civilian
men in the district, Y2 = number of women married to civilians in the district,
x2 = population of the district in 1843, x3 = number of married military men
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in the district, and x4 = number of women married to military men in the
district. The reduced model deletes x3 and x4. The constant uses x1 = 1.

a) Do the MANOVA F test.
b) Do the F2 test.
c) Do the F4 test.
d) Do an appropriate 4 step test for the reduced model that deletes x3

and x4.
e) The output for the reduced model that deletes x1 and x2 is shown below.

Do an appropriate 4 step test.

$partial

partialF Pval

[1,] 569.6429 0

Solution:
a) i) H0: the nontrivial predictors are not needed in the mreg model

H1: at least one of the nontrivial predictors is needed
ii) F0 = 295.071
iii) pval = 0
iv) Reject H0, the nontrivial predictors are needed in the mreg model.

b) i) H0: x2 is not needed in the model H1: x2 is needed
ii) F2 = 600.57
iii) pval = 0
iv) Reject H0, population of the district is needed in the model.

c) i) H0: x4 is not needed in the model H1: x4 is needed
ii) F4 = 0.065
iii) pval = 0.937
iv) Fail to reject H0, number of women married to military men is not

needed in the model given that the other predictors are in the model.

d) i) H0: the reduced model is good H1: use the full model.
ii) FR = 0.200
iii) pval = 0.935
iv) Fail to reject H0, so the reduced model is good.
e) i) H0: the reduced model is good H1: use the full model.
ii) FR = 569.6
iii) pval = 0.00
iv) Reject H0, so use the full model.

8.5 An Example and Simulations

In the DD plot, cases to the left of the vertical line are in their nonparametric
prediction region. The long horizontal line corresponds to a similar cutoff
based on the RD. The shorter horizontal line that ends at the identity line
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is the parametric MVN prediction region from Section 4.4 applied to the
ẑi. Points below these two lines are only conjectured to be large sample
prediction regions, but are added to the DD plot as visual aids. Note that
ẑi = ŷf + ε̂i, and adding a constant ŷf to all of the residual vectors does not
change the Mahalanobis distances, so the DD plot of the residual vectors can
be used to display the prediction regions.
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Fig. 8.1 Plots for Y1 = log(S).

Example 8.3. Cook and Weisberg (1999, pp. 351, 433, 447) gave a data
set on 82 mussels sampled off the coast of New Zealand. Let Y1 = log(S)
and Y2 = log(M) where S is the shell mass and M is the muscle mass.
The predictors are X2 = L, X3 = log(W ), and X4 = H : the shell length,
log(width), and height. To check linearity of the multivariate linear regression
model, Figures 8.1 and 8.2 give the response and residual plots for Y1 and
Y2. The response plots show strong linear relationships. For Y1, case 79 sticks
out while for Y2, cases 8, 25, and 48 are not fit well. Highlighted cases had
Cook’s distance > min(0.5, 2p/n). See Cook (1977).

To check the error vector distribution, the DD plot should be used instead
of univariate residual plots, which do not take into account the correlations
of the random variables ε1, ..., εm in the error vector ε. A residual vector
ε̂ = (ε̂ − ε) + ε is a combination of ε and a discrepancy ε̂ − ε that tends
to have an approximate multivariate normal distribution. The ε̂ − ε term
can dominate for small to moderate n when ε is not multivariate normal,
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Fig. 8.2 Plots for Y2 = log(M).
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Fig. 8.3 DD Plot of the Residual Vectors for the Mussels Data.
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incorrectly suggesting that the distribution of the error vector ε is closer to a
multivariate normal distribution than is actually the case. Figure 8.3 shows
the DD plot of the residual vectors. The plotted points are highly correlated
but do not cover the identity line, suggesting an elliptically contoured error
distribution that is not multivariate normal. The nonparametric 90% predic-
tion region for the residuals consists of the points to the left of the vertical
line MD = 2.60. Cases 8, 48, and 79 have especially large distances.

The four Hotelling Lawley Fj statistics were greater than 5.77 with pvalues
less than 0.005, and the MANOVA F statistic was 337.8 with pvalue ≈ 0.

The response, residual, and DD plots are effective for finding influential
cases, for checking linearity, for checking whether the error distribution is
multivariate normal or some other elliptically contoured distribution, and
for displaying the nonparametric prediction region. Note that cases to the
right of the vertical line correspond to cases with yi that are not in their
prediction region. These are the cases corresponding to residual vectors with
large Mahalanobis distances. Adding a constant does not change the distance,
so the DD plot for the residual vectors is the same as the DD plot for the ẑi.
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Fig. 8.4 Plots for Y2 = M .

c) Now suppose the same model is used except Y2 = M . Then the response
and residual plots for Y1 remain the same, but the plots shown in Figure 8.4
show curvature about the identity and r = 0 lines. Hence the linearity condi-
tion is violated. Figure 8.5 shows that the plotted points in the DD plot have
correlation well less than one, suggesting that the error vector distribution
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Fig. 8.5 DD Plot When Y2 = M .

is no longer elliptically contoured. The nonparametric 90% prediction region
for the residual vectors consists of the points to the left of the vertical line
MD = 2.52, and contains 95% of the training data. Note that the plots can
be used to quickly assess whether power transformations have resulted in a
linear model, and whether influential cases are present. R code for producing
the five figures is shown below.

y <- log(mussels)[,4:5]

x <- mussels[,1:3]

x[,2] <- log(x[,2])

z<-cbind(x,y) #scatterplot matrix

pairs(z, labels=c("L","log(W)","H","log(S)","log(M)"))

ddplot4(z) #right click Stop, DD plot of MLD model

out <- mltreg(x,y) #right click Stop 4 times, Fig. 8.1, 8.2

ddplot4(out$res) #right click Stop, Fig. 8.3

y[,2] <- mussels[,5]

tem <- mltreg(x,y) #right click Stop 4 times, Fig. 8.4

ddplot4(tem$res) #right click Stop, Fig. 8.5
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8.5.1 Simulations for Testing

A small simulation was used to study the Wilks’ Λ test, the Pillai’s trace
test, the Hotelling Lawley trace test, and the Roy’s largest root test for the
Fj tests and the MANOVA F test for multivariate linear regression. The first
row of B was always 1T and the last row of B was always 0T . When the null
hypothesis for the MANOVA F test is true, all but the first row corresponding
to the constant are equal to 0T . When p ≥ 3 and the null hypothesis for the
MANOVA F test is false, then the second to last row of B is (1, 0, ..., 0),
the third to last row is (1, 1, 0, ..., 0) et cetera as long as the first row is
not changed from 1T . First m× 1 error vectors wi were generated such that
the m random variables in the vector wi are iid with variance σ2. Let the
m×m matrix A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j.

Then εi = Awi so that Σε = σ2AAT = (σij) where the diagonal entries
σii = σ2[1+(m−1)ψ2 ] and the off diagonal entries σij = σ2[2ψ+(m−2)ψ2 ]
where ψ = 0.10. Hence the correlations are (2ψ+(m−2)ψ2)/(1+(m−1)ψ2 ).
As ψ gets close to 1, the error vectors cluster about the line in the direction
of (1, ..., 1)T. We used wi ∼ Nm(0, I),wi ∼ (1 − τ )Nm(0, I) + τNm(0, 25I)
with 0 < τ < 1 and τ = 0.25 in the simulation, wi ∼ multivariate td with
d = 7 degrees of freedom, or wi ∼ lognormal - E(lognormal): where the m
components of wi were iid with distribution ez − E(ez) where z ∼ N(0, 1).
Only the lognormal distribution is not elliptically contoured.

Table 8.1 Test Coverages: MANOVA F H0 is True.

w dist n test F1 F2 Fp−1 Fp FM

MVN 300 W 1 0.043 0.042 0.041 0.018
MVN 300 P 1 0.040 0.038 0.038 0.007
MVN 300 HL 1 0.059 0.058 0.057 0.045
MVN 300 R 1 0.051 0.049 0.048 0.993
MVN 600 W 1 0.048 0.043 0.043 0.034
MVN 600 P 1 0.046 0.042 0.041 0.026
MVN 600 HL 1 0.055 0.052 0.050 0.052
MVN 600 R 1 0.052 0.048 0.047 0.994
MIX 300 W 1 0.042 0.043 0.044 0.017
MIX 300 P 1 0.039 0.040 0.042 0.008
MIX 300 HL 1 0.057 0.059 0.058 0.039
MIX 300 R 1 0.050 0.050 0.051 0.993

MVT(7) 300 W 1 0.048 0.036 0.045 0.020
MVT(7) 300 P 1 0.046 0.032 0.042 0.011
MVT(7) 300 HL 1 0.064 0.049 0.058 0.045
MVT(7) 300 R 1 0.055 0.043 0.051 0.993

LN 300 W 1 0.043 0.047 0.040 0.020
LN 300 P 1 0.039 0.045 0.037 0.009
LN 300 HL 1 0.057 0.061 0.058 0.041
LN 300 R 1 0.049 0.055 0.050 0.994
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Table 8.2 Test Coverages: MANOVA F H0 is False.

n m = p test F1 F2 Fp−1 Fp FM

30 5 W 0.012 0.222 0.058 0.000 0.006
30 5 P 0.000 0.000 0.000 0.000 0.000
30 5 HL 0.382 0.694 0.322 0.007 0.579
30 5 R 0.799 0.871 0.549 0.047 0.997
50 5 W 0.984 0.955 0.644 0.017 0.963
50 5 P 0.971 0.940 0.598 0.012 0.871
50 5 HL 0.997 0.979 0.756 0.053 0.991
50 5 R 0.996 0.978 0.744 0.049 1

105 10 W 0.650 0.970 0.191 0.000 0.633
105 10 P 0.109 0.812 0.050 0.000 0.000
105 10 HL 0.964 0.997 0.428 0.000 1
105 10 R 1 1 0.892 0.052 1
150 10 W 1 1 0.948 0.032 1
150 10 P 1 1 0.941 0.025 1
150 10 HL 1 1 0.966 0.060 1
150 10 R 1 1 0.965 0.057 1
450 20 W 1 1 0.999 0.020 1
450 20 P 1 1 0.999 0.016 1
450 20 HL 1 1 0.999 0.035 1
450 20 R 1 1 0.999 0.056 1

The simulation used 5000 runs, and H0 was rejected if the F statistic
was greater than Fd1,d2

(0.95) where P (Fd1,d2
< Fd1,d2

(0.95)) = 0.95 with
d1 = rm and d2 = n−mp for the test statistics

−[n− p− 0.5(m− r + 3)]

rm
log(Λ(L)),

n− p

rm
V (L), and

n − p

rm
U(L),

while d1 = h = max(r,m) and d2 = n− p− h+ r for the test statistic

n− p− h+ r

h
λmax(L).

Denote these statistics by W , P , HL, and R. Let the coverage be the propor-
tion of times that H0 is rejected. We want coverage near 0.05 when H0 is true
and coverage close to 1 for good power when H0 is false. With 5000 runs,
coverage outside of (0.04,0.06) suggests that the true coverage is not 0.05.
Coverages are tabled for the F1, F2, Fp−1, and Fp test and for the MANOVA
F test denoted by FM . The null hypothesis H0 was always true for the Fp

test and always false for the F1 test. When the MANOVA F test was true,
H0 was true for the Fj tests with j 6= 1. When the MANOVA F test was
false, H0 was false for the Fj tests with j 6= p, but the Fp−1 test should be
hardest to reject for j 6= p by construction of B and the error vectors.

When the null hypothesisH0 was true, simulated values started to get close
to nominal levels for n ≥ 0.8(m+p)2, and were fairly good for n ≥ 1.5(m+p)2.
The exception was Roy’s test which rejects H0 far too often if r > 1. See Table
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8.1 where we want values for the F1 test to be close to 1 since H0 is false
for the F1 test, and we want values close to 0.05, otherwise. Roy’s test was
very good for the Fj tests but very poor for the MANOVA F test. Results
are shown for m = p = 10. As expected from Berndt and Savin (1977),
Pillai’s test rejected H0 less often than Wilks’ test which rejected H0 less
often than the Hotelling Lawley test. Based on a much larger simulation
study, using the four types of error vector distributions and m = p, the tests
had approximately correct level if n ≥ 0.83(m+ p)2 for the Hotelling Lawley
test, if n ≥ 2.80(m+ p)2 for the Wilks’ test (agreeing with Kshirsagar (1972)
n ≥ 3(m + p)2 for multivariate normal data), and if n ≥ 4.2(m + p)2 for
Pillai’s test.

In Table 8.2, H0 is only true for the Fp test where p = m, and we want
values in the Fp column near 0.05. We want values near 1 for high power
otherwise. If H0 is false, often H0 will be rejected for small n. For example,
if n ≥ 10p, then the m residual plots should start to look good, and the
MANOVA F test should be rejected. For the simulated data, the test had
fair power for n not much larger thanmp. Results are shown for the lognormal
distribution.

Some R output for reproducing the simulation is shown below. The linmod-
pack function is mregsim and etype = 1 uses data from a MVN distribution.
The fcov line computed the Hotelling Lawley statistic using Equation (8.3)
while the hotlawcov line used Definition 8.9. The mnull=T part of the com-
mand means we want the first value near 1 for high power and the next three
numbers near the nominal level 0.05 except for mancv where we want all
of the MANOVA F test statistics to be near the nominal level of 0.05. The
mnull=F part of the command means want all values near 1 for high power
except for the last column (for the terms other than mancv) corresponding to
the Fp test where H0 is true so we want values near the nominal level of 0.05.
The “coverage” is the proportion of times that H0 is rejected, so “coverage”
is short for “power” and “level”: we want the coverage near 1 for high power
when H0 is false and we want the coverage near the nominal level 0.05 when
H0 is true. Also see Problem 8.10.

mregsim(nruns=5000,etype=1,mnull=T)

$wilkcov

[1] 1.0000 0.0450 0.0462 0.0430

$pilcov

[1] 1.0000 0.0414 0.0432 0.0400

$hotlawcov

[1] 1.0000 0.0522 0.0516 0.0490

$roycov

[1] 1.0000 0.0512 0.0500 0.0480

$fcov

[1] 1.0000 0.0522 0.0516 0.0490

$mancv

wcv pcv hlcv rcv fcv
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[1,] 0.0406 0.0332 0.049 0.1526 0.049

mregsim(nruns=5000,etype=2,mnull=F)

$wilkcov

[1] 0.9834 0.9814 0.9104 0.0408

$pilcov

[1] 0.9824 0.9804 0.9064 0.0372

$hotlawcov

[1] 0.9856 0.9838 0.9162 0.0480

$roycov

[1] 0.9848 0.9834 0.9156 0.0462

$fcov

[1] 0.9856 0.9838 0.9162 0.0480

$mancv

wcv pcv hlcv rcv fcv

[1,] 0.993 0.9918 0.9942 0.9978 0.9942

See Olive (2017b,
∮

12.5.2) for simulations for the prediction region. Also
see Problem 8.11.

8.6 The Robust rmreg2 Estimator

The robust multivariate linear regression estimator rmreg2 is the classi-
cal multivariate linear regression estimator applied to the RMVN set when
RMVN is computed from the vectors ui = (xi2, ..., xip, Yi1, ..., Yim)T for
i = 1, ..., n. Hence ui is the ith case with xi1 = 1 deleted. This regression
estimator has considerable outlier resistance, and is one of the most outlier
resistant practical robust regression estimator for the m = 1 multiple linear
regression case. See Chapter 7. The rmreg2 estimator has been shown to be
consistent if the ui are iid from a large class of elliptically contoured distri-
butions, which is a much stronger assumption than having iid error vectors
εi.

Theorem 2.20 gave a second way to compute β̂, and there is a similar result
for multivariate linear regression. Let x = (1,uT )T and let β = (β1,β

T
2 )T =

(α,ηT )T . Now for multivariate linear regression, β̂j = (α̂j, η̂
T
j )T where α̂j =

Y j−η̂T
j u and η̂j = Σ̂

−1

u Σ̂uYj by Theorem 2.20. Let Σ̂uy = 1
n−1

∑n
i=1(wi−

w)(yi − y)T which has jth column Σ̂wYj for j = 1, ..., m. Let

v =

(
u
y

)
, E(v) = µv =

(
E(u)
E(y)

)
=

(
µu
µy

)
, and Cov(v) = Σv =
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(
Σuu Σuy
Σyu Σyy

)
.

Let the vector of constants be αT = (α1, ..., αm) and the matrix of slope
vectors BS =

[
η1 η2 . . . ηm

]
. Then the population least squares coefficient

matrix is

B =

(
αT

BS

)

where α = µy − BT
Sµu and BS = Σ−1

u Σuy where Σu = Σuu.
If the ui are iid with nonsingular covariance matrix Cov(u), the least

squares estimator

B̂ =

(
α̂T

B̂S

)

where α̂ = y − B̂
T

Su and B̂S = Σ̂
−1

u Σ̂uy . The least squares multivariate
linear regression estimator can be calculated by computing the classical esti-
mator (v,Sv) = (v, Σ̂v) of multivariate location and dispersion on the vi,

and then plug in the results into the formulas for α̂ and B̂S .
Let (T,C) = (µ̃v , Σ̃v) be a robust estimator of multivariate location and

dispersion. If µ̃v is a consistent estimator of µv and Σ̃v is a consistent
estimator of c Σv for some constant c > 0, then a robust estimator of mul-

tivariate linear regression is the plug in estimator α̃ = µ̃y − B̃
T

S µ̃u and

B̃S = Σ̃
−1

u Σ̃uy .
For the rmreg2 estimator, (T,C) is the classical estimator applied to

the RMVN set when RMVN is applied to vectors vi for i = 1, ..., n (could
use (T,C) = RMVN estimator since the scaling does not matter for this
application). Then (T,C) is a

√
n consistent estimator of (µv , cΣv) if the vi

are iid from a large class of ECd(µv ,Σv , g) distributions where d = m+p−1.
Thus the classical and robust estimators of multivariate linear regression are
both

√
n consistent estimators of B if the vi are iid from a large class of

elliptically contoured distributions. This assumption is quite strong, but the
robust estimator is useful for detecting outliers. When there are categorical
predictors or the joint distribution of v is not elliptically contoured, it is
possible that the robust estimator is bad and very different from the good
classical least squares estimator. The linmodpack function rmreg2 computes
the rmreg2 estimator and produces the response and residual plots.

Example 8.4. Buxton (1920) gave various measurements of 88 men. Let
Y1 = nasal height and Y2 = height with x2 = head length, x3 = bigonal breadth,
and x4 = cephalic index. Five individuals, numbers 62–66, were reported to
be about 0.75 inches tall with head lengths well over five feet! Thus Y2 and
x2 have massive outliers. Figures 8.6 and 8.7 show that the response and
residual plots corresponding to rmreg2 do not have fits that pass through
the outliers.

These figures can be made with the following R commands.



8.6 The Robust rmreg2 Estimator 393

35 40 45 50
4

5
5

0
5

5
6

0

fit[, 1]

y
[,

 1
]

Response Plot

35 40 45 50

−
5

0
5

1
0

1
5

2
0

fit[, 1]

re
s
[,

 1
]

Residual Plot

Fig. 8.6 Plots for Y1 = nasal height using rmreg2.
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Fig. 8.7 Plots for Y2 = height using rmreg2.
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ht <- buxy; z <- cbind(buxx,ht);

y <- z[,c(2,5)]; x <- z[,c(1,3,4)]

# compare mltreg(x,y) #right click Stop 4 times

out <- rmreg2(x,y) #right click Stop 4 times

# try ddplot4(out$res) #right click Stop

The residual bootstrap for the test H0 : LB = 0 may be useful. Take a
sample of size n with replacement from the residual vectors to form Z∗

1 with
ith row y∗T

i where y∗
i = ŷi + ε∗i . The function rmreg3 gets the rmreg2

estimator without the plots. Using rmreg3, regress Z on X to get vec(LB̂
∗
1).

Repeat B times to get a bootstrap sample w1, ...,wB where wi = vec(LB̂
∗
i ).

The nonparametric bootstrap uses n cases drawn with replacement, and may
also be useful. Apply the nonparametric prediction region to the wi and see
if 0 is in the region. If L is r × p, then w is rp × 1, and we likely need
n ≥ max[50rp, 3(m+ p)2].

8.7 Bootstrap

8.7.1 Parametric Bootstrap

The parametric bootstrap for the multivariate linear regression model uses

y∗
i ∼ Nm(B̂

T
xi, Σ̂ε) for i = 1, ..., n where we are not assuming that the

εi ∼ Nm(0,Σε). Let Z∗
j have ith row y∗T

i and regress Z∗
j on X to obtain

B̂
∗
j for j = 1, ..., B. Let S ⊆ I, let B̂I = (XT

I XI)
−1XT

I Z∗, and assume

n(XT
I XI)

−1 P→ W I for any I such that S ⊆ I. Then with calculations
similar to those for the multiple linear regression model parametric bootstrap

of Section 4.6.1, E(B̂
∗
I) = B̂I ,

√
n vec(B̂I − BI)

D→ NaIm(0,Σε ⊗ W I),

and
√

n vec(B̂
∗
I − B̂I) ∼ NaIm(0, Σ̂ε ⊗ n(XT

I X I)
−1)

D→ NaIm(0,Σε ⊗W I)

as n, B → ∞ if S ⊆ I. Let B̂
∗
I,0 be formed from B̂

∗
I by adding rows of zeros

corresponding to omitted variables.

8.7.2 Residual Bootstrap

The residual bootstrap uses the multivariate linear regression model

Z∗ = XB̂ + Ê
W



8.9 Summary 395

where the rows of Ê
W

are sampled with replacement from the rows of Ê
W

.

Regress Z∗ of X and repeat to get the bootstrap sample B̂
∗
1, ..., B̂

∗
B .

8.7.3 Nonparametric Bootstrap

The nonparametric bootstrap samples cases (yT
i ,x

T
i )T with replacement to

form (Z∗
j ,X

∗
j ), and regresses Z∗

j on X∗
j to get B̂

∗
j for j = 1, ..., B. The

nonparametric bootstrap can be useful even if heteroscedasticity or overdis-
persion is present, if the cases are an iid sample from some population, a
very strong assumption. See Eck (2018) for using the residual bootstrap and
nonparametric bootstrap to bootstrap multivariate linear regression.

8.8 Data Splitting

The theory for multivariate linear regression assumes that the model is known
before gathering data. If variable selection and response transformations are
performed to build a model, then the estimators are biased and results for
inference fail to hold in that pvalues and coverage of confidence and prediction
regions will be wrong.

Data splitting can be used in a manner similar to how data splitting is
used for MLR and other regression models. A pilot study is an alternative to
data splitting.

8.9 Summary

1) The multivariate linear regression model is a special case of the multi-
variate linear model where at least one predictor variable xj is continuous.
The MANOVA model in Chapter 9 is a multivariate linear model where all
of the predictors are categorical variables so the xj are coded and are often
indicator variables.

2) The multivariate linear regression model yi = BT xi + εi for
i = 1, ..., n has m ≥ 2 response variables Y1, ..., Ym and p predictor variables
x1, x2, ..., xp. The ith case is (xT

i , y
T
i ) = (xi1, xi2, ..., xip, Yi1, ..., Yim). The

constant xi1 = 1 is in the model, and is often omitted from the case and
the data matrix. The model is written in matrix form as Z = XB + E.
The model has E(εk) = 0 and Cov(εk) = Σε = (σij) for k = 1, ..., n. Also
E(ei) = 0 while Cov(ei, ej) = σijIn for i, j = 1, ..., m. Then B and Σε are
unknown matrices of parameters to be estimated, and E(Z) = XB while
E(Yij) = xT

i βj.
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3) Each response variable in a multivariate linear regression model follows
a multiple linear regression model Y j = Xβj + ej for j = 1, ..., m where it
is assumed that E(ej) = 0 and Cov(ej) = σjjIn.

4) For each variable Yk make a response plot of Ŷik versus Yik and a residual
plot of Ŷik versus rik = Yik − Ŷik. If the multivariate linear regression model
is appropriate, then the plotted points should cluster about the identity line
in each of the m response plots. If outliers are present or if the plot is not
linear, then the current model or data need to be transformed or corrected.
If the model is good, then each of the m residual plots should be ellipsoidal
with no trend and should be centered about the r = 0 line. There should not
be any pattern in the residual plot: as a narrow vertical strip is moved from
left to right, the behavior of the residuals within the strip should show little
change. Outliers and patterns such as curvature or a fan shaped plot are bad.

5) Make a scatterplot matrix of Y1, ..., Ym and of the continuous predictors.
Use power transformations to remove strong nonlinearities.

6) Consider testing LB = 0 where L is an r × p full rank matrix. Let

W e = Ê
T
Ê and W e/(n−p) = Σ̂ε. Let H = B̂

T
LT [L(XT X)−1LT ]−1LB̂.

Let λ1 ≥ λ2 ≥ · · · ≥ λm be the ordered eigenvalues of W−1
e H. Then there

are four commonly used test statistics.
The Wilks’ Λ statistic is Λ(L) = |(H + W e)

−1W e| = |W−1
e H + I|−1 =

m∏

i=1

(1 + λi)
−1.

The Pillai’s trace statistic is V (L) = tr[(H + W e)
−1H] =

m∑

i=1

λi

1 + λi
.

The Hotelling-Lawley trace statistic is U(L) = tr[W−1
e H ] =

m∑

i=1

λi.

The Roy’s maximum root statistic is λmax(L) = λ1.
7) Theorem: The Hotelling-Lawley trace statistic

U(L) =
1

n− p
[vec(LB̂)]T [Σ̂

−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)].

8) Assumption D1: Let hi be the ith diagonal element of X(XT X)−1XT .

Assume max(h1, ..., hn)
P→ 0 as n→ ∞, assume that the zero mean iid error

vectors have finite fourth moments, and assume that
1

n
XT X

P→ W−1.

9) Multivariate Least Squares Central Limit Theorem (MLS

CLT): For the least squares estimator, if assumption D1 holds, then Σ̂ε is

a
√
n consistent estimator of Σε, and

√
n vec(B̂ −B)

D→ Npm(0,Σε ⊗W ).
10) Theorem: If assumption D1 holds and if H0 is true, then

(n− p)U(L)
D→ χ2

rm.
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11) Under regularity conditions, −[n−p+1−0.5(m− r+3)] log(Λ(L))
D→

χ2
rm, (n − p)V (L)

D→ χ2
rm, and (n − p)U(L)

D→ χ2
rm.

These statistics are robust against nonnormality.
12) For the Wilks’ Lambda test,

pval = P

(−[n− p+ 1 − 0.5(m− r + 3)]

rm
log(Λ(L)) < Frm,n−rm

)
.

For the Pillai’s trace test, pval = P

(
n − p

rm
V (L) < Frm,n−rm

)
.

For the Hotelling Lawley trace test, pval = P

(
n− p

rm
U(L) < Frm,n−rm

)
.

The above three tests are large sample tests, P(reject H0|H0 is true) → δ
as n → ∞, under regularity conditions.

13) The 4 step MANOVA F test of hypotheses uses L = [0 Ip−1].
i) State the hypotheses H0: the nontrivial predictors are not needed in the
mreg model H1: at least one of the nontrivial predictors is needed.
ii) Find the test statistic Fo from output.
iii) Find the pval from output.
iv) If pval ≤ δ, reject H0. If pval > δ, fail to reject H0. If H0 is rejected,
conclude that there is a mreg relationship between the response variables
Y1, ..., Ym and the predictors x2, ..., xp. If you fail to reject H0, conclude that
there is a not a mreg relationship between Y1, ..., Ym and the predictors x2,
..., xp. (Get the variable names from the story problem.)

14) The 4 step Fj test of hypotheses uses Lj = [0, ..., 0, 1, 0, ..., 0] where

the 1 is in the jth position. Let BT
j be the jth row of B. The hypotheses are

equivalent to H0 : BT
j = 0 H1 : BT

j 6= 0. i) State the hypotheses
H0: xj is not needed in the model H1: xj is needed in the model.
ii) Find the test statistic Fj from output.
iii) Find pval from output.
iv) If pval ≤ δ, reject H0. If pval > δ, fail to reject H0. Give a nontechnical
sentence restating your conclusion in terms of the story problem. If H0 is
rejected, then conclude that xj is needed in the mreg model for Y1, ..., Ym. If
you fail to reject H0, then conclude that xj is not needed in the mreg model
for Y1, ..., Ym given that the other predictors are in the model.

15) The 4 step MANOVA partial F test of hypotheses has a full model
using all of the variables and a reduced model where r of the variables are
deleted. The ith row of L has a 1 in the position corresponding to the ith
variable to be deleted. Omitting the jth variable corresponds to the Fj test
while omitting variables x2, ..., xp corresponds to the MANOVA F test.
i) State the hypotheses H0: the reduced model is good
H1: use the full model.
ii) Find the test statistic FR from output.
iii) Find the pval from output.
iv) If pval ≤ δ, reject H0 and conclude that the full model should be used.
If pval > δ, fail to reject H0 and conclude that the reduced model is good.
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16) The 4 step MANOVA F test should reject H0 if the response and
residual plots look good, n is large enough, and at least one response plot
does not look like the corresponding residual plot. A response plot for Yj will
look like a residual plot if the identity line appears almost horizontal, hence
the range of Ŷj is small.

17) The linmodpack function mltreg produces the m response and resid-

ual plots, gives B̂, Σ̂ε, the MANOVA partial F test statistic and pval cor-
responding to the reduced model that leaves out the variables given by in-
dices (so x2 and x4 in the output below with F = 0.77 and pval = 0.614),
Fj and the pval for the Fj test for variables 1, 2, ..., p (where p = 4 in
the output below so F2 = 1.51 with pval = 0.284), and F0 and pval for
the MANOVA F test (in the output below F0 = 3.15 and pval= 0.06).
The command out <- mltreg(x,y,indices=c(2)) would produce a
MANOVA partial F test corresponding to the F2 test while the command
out <- mltreg(x,y,indices=c(2,3,4)) would produce a MANOVA
partial F test corresponding to the MANOVA F test for a data set with
p = 4 predictor variables. The Hotelling Lawley trace statistic is used in the
tests.

out <- mltreg(x,y,indices=c(2,4))

$Bhat [,1] [,2] [,3]

[1,] 47.96841291 623.2817463 179.8867890

[2,] 0.07884384 0.7276600 -0.5378649

[3,] -1.45584256 -17.3872206 0.2337900

[4,] -0.01895002 0.1393189 -0.3885967

$Covhat

[,1] [,2] [,3]

[1,] 21.91591 123.2557 132.339

[2,] 123.25566 2619.4996 2145.780

[3,] 132.33902 2145.7797 2954.082

$partial

partialF Pval

[1,] 0.7703294 0.6141573

$Ftable

Fj pvals

[1,] 6.30355375 0.01677169

[2,] 1.51013090 0.28449166

[3,] 5.61329324 0.02279833

[4,] 0.06482555 0.97701447

$MANOVA

MANOVAF pval

[1,] 3.150118 0.06038742

18) Given B̂ = [β̂1 β̂2 · · · β̂m] and xf , find ŷf = (ŷ1, ..., ŷm)T where

ŷi = β̂
T

i xf .
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19) Σ̂ε =
Ê

T
Ê

n− p
=

1

n− p

n∑

i=1

ε̂iε̂
T
i while the sample covariance matrix of

the residuals is Sr =
n − p

n − 1
Σ̂ε =

Ê
T
Ê

n− 1
. Both Σ̂ε and Sr are

√
n consistent

estimators of Σε for a large class of distributions for the error vectors εi.
20) The 100(1 − δ)% nonparametric prediction region for yf given xf is

the nonparametric prediction region from
∮

4.4 applied to ẑi = ŷf + ε̂i =

B̂
T
xf + ε̂i for i = 1, ..., n. This takes the data cloud of the n residual vectors

ε̂i and centers the cloud at ŷf . Let

D2
i (ŷf ,Sr) = (ẑi − ŷf)T S−1

r (ẑi − ŷf )

for i = 1, ..., n. Let qn = min(1 − δ + 0.05, 1− δ +m/n) for δ > 0.1 and

qn = min(1 − δ/2, 1− δ + 10δm/n), otherwise.

If qn < 1 − δ + 0.001, set qn = 1 − δ. Let 0 < δ < 1 and h = D(Un) where
D(Un) is the qnth sample quantile of the Di. The 100(1− δ)% nonparametric
prediction region for yf is

{y : (y − ŷf)T S−1
r (y − ŷf ) ≤ D2

(Un)} = {y : Dy(ŷf ,Sr) ≤ D(Un)}.

a) Consider the n prediction regions for the data where (yf,i,xf,i) =
(yi,xi) for i = 1, ..., n. If the order statistic D(Un) is unique, then Un of the
n prediction regions contain yi where Un/n→ 1 − δ as n → ∞.

b) If (ŷf ,Sr) is a consistent estimator of (E(yf ),Σε) then the nonpara-
metric prediction region is a large sample 100(1 − δ)% prediction region for
yf .

c) If (ŷf ,Sr) is a consistent estimator of (E(yf ),Σε), and the εi come
from an elliptically contoured distribution such that the unique highest den-
sity region is {y : Dy(0,Σε) ≤ D1−δ}, then the nonparametric prediction
region is asymptotically optimal.

21) On the DD plot for the residual vectors, the cases to the left of the
vertical line correspond to cases that would have yf = yi in the nonpara-
metric prediction region if xf = xi, while the cases to the right of the line
would not have yf = yi in the nonparametric prediction region.

22) The DD plot for the residual vectors is interpreted almost exactly as
a DD plot for iid multivariate data is interpreted. Plotted points clustering
about the identity line suggests that the εi may be iid from a multivariate
normal distribution, while plotted points that cluster about a line through
the origin with slope greater than 1 suggests that the εi may be iid from an
elliptically contoured distribution that is not MVN. Points to the left of the
vertical line corresponds to the cases that are in their nonparamtric prediction
region. Robust distances have not been shown to be consistent estimators of
the population distances, but are useful for a graphical diagnostic.



400 8 Multivariate Linear Regression

23) Multiple Linear Regression Multivariate Linear Regression
Y = Xβ + e Z = XB + E

1) E(Y ) = Xβ E[Z] = XB

2) Yi = xT
i β + ei yi = BT xi + εi

3) E(e) = 0 E[E] = 0

4) H = P = X(XT X)−1XT H = P = X(XT X)−1XT

5) β̂ = (XT X)−1XT Y B̂ = (XT X)−1XT Z

6) Ŷ = P Y Ẑ = P Z

7) r = ê = (I − P )Y Ê = (I − P )Z

8) E[β̂] = β E[B̂] = B

9) E(Ŷ ) = E(Y ) = Xβ E[Ẑ] = XB

10) σ̂2 = rT r
n−p Σ̂ε =

Ê
T
Ê

n− p

11) V (ei) = σ2 Cov(εi) = Σε

12) E(Yi) = βT xi E[yi] = BT xi

H0 : Lβ = 0 H0 : LB = 0

13) rFR
D→ χ2

r (n− p)U(L)
D→ χ2

rm

14) LS CLT MLS CLT
√
n(β̂ − β)

D→ Np(0, σ2W )
√
n vec(B̂ − B)

D→ Npm(0,Σε ⊗ W ).
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23) The table on the previous page compares MLR and MREG.
24) The robust multivariate linear regression method rmreg2 computes

the classical estimator on the RMVN set where RMVN is computed from
the n cases vi = (xi2, ..., xpi, Yi1, ..., Yim)T . This estimator has considerable
outlier resistance but theory currently needs very strong assumptions. The
response and residual plots and DD plot of the residuals from this estimator
are useful for outlier detection. The rmreg2 estimator is superior to the
rmreg estimator for outlier detection.

8.10 Complements

This chapter followed Olive (2017b, ch. 12) closely. Multivariate linear re-
gression is a semiparametric method that is nearly as easy to use as multiple
linear regression if m is small. Section 8.3 followed Olive (2018) closely. The
material on plots and testing followed Olive et al. (2015) closely. The m re-
sponse and residual plots should be made as well as the DD plot, and the
response and residual plots are very useful for the m = 1 case of multiple
linear regression and experimental design. These plots speed up the model
building process for multivariate linear models since the success of power
transformations achieving linearity can be quickly assessed, and influential
cases can be quickly detected. See Cook and Olive (2001).

Work is needed on variable selection and on determining the sample sizes
for when the tests and prediction regions start to work well. Response and
residual plots can look good for n ≥ 10p, but for testing and prediction
regions, we may need n ≥ a(m+p)2 where 0.8 ≤ a ≤ 5 even for well behaved
elliptically contoured error distributions. Variable selection for multivariate
linear regression is discussed in Fujikoshi et al. (2014). R programs are needed
to make variable selection easy. Forward selection would be especially useful.

Often observations (Y1, ..., Ym, x2, ..., xp) are collected on the same person
or thing and hence are correlated. If transformations can be found such that
the DD plot and the m response plots and residual plots look good, and
n is large (n ≥ max[(m + p)2, mp + 30)] starts to give good results), then
multivariate linear regression can be used to efficiently analyze the data.
Examiningm multiple linear regressions is an incorrect method for analyzing
the data.

In addition to robust estimators and seemingly unrelated regressions, en-
velope estimators and partial least squares (PLS) are competing methods for
multivariate linear regression. See recent work by Cook such as Cook (2018),
Cook and Su (2013), Cook et al. (2013), and Su and Cook (2012). Methods
like ridge regression and lasso can also be extended to multivariate linear re-
gression. See, for example, Obozinski et al. (2011). Relaxed lasso extensions
are likely useful. Prediction regions for alternative methods with n >> p
could be made following Section 8.3.
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Plugging in robust dispersion estimators in place of the covariance matri-
ces, as done in Section 8.6, is not a new idea. Maronna and Morgenthaler
(1986) used M–estimators when m = 1. Problems can occur if the error
distribution is not elliptically contoured. See Nordhausen and Tyler (2015).

Khattree and Naik (1999, pp. 91-98) discussed testing H0 : LBM = 0
versus H1 : LBM 6= 0 where M = I gives a linear test of hypotheses.
Johnstone and Nadler (2017) gave useful approximations for Roy’s largest
root test when the error vector distribution is multivariate normal.

8.11 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

8.1∗. Consider the Hotelling Lawley test statistic. Let

T (W ) = n [vec(LB̂)]T [Σ̂
−1

ε ⊗ (LWLT )−1][vec(LB̂)].

Let
XT X

n
= Ŵ

−1
.

Show T (Ŵ ) = [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)].

8.2. Consider the Hotelling Lawley test statistic. Let T =

[vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)].

Let L = Lj = [0, ..., 0, 1, 0, ..., 0] have a 1 in the jth position. Let b̂
T

j = LB̂ be

the jth row of B̂. Let dj = Lj(X
T X)−1LT

j = (XT X)−1
jj , the jth diagonal

entry of (XT X)−1. Then Tj = 1
dj

b̂
T

j Σ̂
−1

ε b̂j. The Hotelling Lawley statistic

U = tr([(n− p)Σ̂ε]−1B̂
T
LT [L(XT X)−1LT ]−1LB̂]).

Hence if L = Lj , then Uj = 1
dj(n−p) tr(Σ̂

−1

ε b̂j b̂
T

j ).

Using tr(ABC) = tr(CAB) and tr(a) = a for scalar a, show that
(n− p)Uj = Tj.

8.3. Consider the Hotelling Lawley test statistic. Using the Searle (1982,
p. 333) identity

tr(AGT DGC) = [vec(G)]T [CA ⊗ DT ][vec(G)],
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show (n − p)U(L) = tr[Σ̂
−1

ε B̂
T
LT[L(XTX)−1LT]−1LB̂]

= [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)] by identifying A,G,D,
and C.

$Ftable Fj pvals #Output for problem 8.4.

[1,] 82.147221 0.000000e+00

[2,] 58.448961 0.000000e+00

[3,] 15.700326 4.258563e-09

[4,] 9.072358 1.281220e-05

[5,] 45.364862 0.000000e+00

$MANOVA

MANOVAF pval

[1,] 67.80145 0

8.4. The output above is for the R Seatbelts data set where Y1 = drivers =
number of drivers killed or seriously injured, Y2 = front = number of front
seat passengers killed or seriously injured, and Y3 = back = number of back
seat passengers killed or seriously injured. The predictors were x2 = kms =
distance driven, x3 = price = petrol price, x4 = van = number of van drivers
killed, and x5 = law = 0 if the law was in effect that month and 1 otherwise.
The data consists of 192 monthly totals in Great Britain from January 1969 to
December 1984, and the compulsory wearing of seat belts law was introduced
in February 1983.

a) Do the MANOVA F test.

b) Do the F4 test.

8.5. a) Sketch a DD plot of the residual vectors ε̂i for the multivariate
linear regression model if the error vectors εi are iid from a multivariate
normal distribution. b) Does the DD plot change if the one way MANOVA
model is used instead of the multivariate linear regression model?

8.6. The output below is for the R judge ratings data set consisting of
lawyer ratings for n = 43 judges. Y1 = oral = sound oral rulings, Y2 = writ =
sound written rulings, and Y3 = rten = worthy of retention. The predictors
were x2 = cont = number of contacts of lawyer with judge, x3 = intg =
judicial integrity, x4 = dmnr = demeanor, x5 = dilg = diligence, x6 =
cfmg = case flow managing, x7 = deci = prompt decisions, x8 = prep =
preparation for trial, x9 = fami = familiarity with law, and x10 = phys =
physical ability.

a) Do the MANOVA F test.

b) Do the MANOVA partial F test for the reduced model that deletes
x2, x5, x6, x7, and x8.

y<-USJudgeRatings[,c(9,10,12)] #See problem 8.6.
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x<-USJudgeRatings[,-c(9,10,12)]

mltreg(x,y,indices=c(2,5,6,7,8))

$partial

partialF Pval

[1,] 1.649415 0.1855314

$MANOVA

MANOVAF pval

[1,] 340.1018 1.121325e-14

8.7. Let βi be p× 1 and suppose

(
β̂1 − β1

β̂2 − β2

)
∼ N2p

((
0
0

)
,

[
σ11(X

T X)−1 σ12(X
T X)−1

σ21(X
T X)−1 σ22(X

T X)−1

])
.

Find the distribution of

[L 0]

(
β̂1 − β1

β̂2 − β2

)
= Lβ̂1

where Lβ1 = 0 and L is r × p with r ≤ p. Simplify.

8.8. Let y = BT x + ε. Suppose x = (1, x2, ..., xp)
T = (1 wT )T where

w = (x2, ..., xp)
T . Let

B =

(
αT

BS

)
.

Suppose (
y
w

)
∼ Nm+p−1

[(
µy
µw

)
,

(
Σyy Σyw
Σwy Σww

)]
.

Then y|w ∼ Nm(µy + ΣywΣ−1
ww(w−µw),Σyy −ΣywΣ−1

wwΣww),

and ε ∼ Nm(0,Σyy − ΣywΣ−1
wwΣww) = Nm(0,Σε).

Now

y|x = y|
(

1
w

)
= BT x + ε,

and

y|w = BT x+ε =

(
αT

BS

)T (
1
w

)
+ε = (α BT

S )

(
1
w

)
+ε = α+BT

Sw +ε.

Hence E(y|w) = µy + ΣywΣ−1
ww(w − µw) = α + BT

Sw.

a) Show α = µy − BT
Sµw .

b) Show BS = Σ−1
w Σwy where Σw = Σww .

(Hence BT
S = ΣywΣ−1

w .)

R Problems
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Warning: Use the command source(“G:/linmodpack.txt”) to down-
load the programs. See Preface or Section 11.1. Typing the name of
the mpack function, e.g. ddplot, will display the code for the function. Use
the args command, e.g. args(ddplot), to display the needed arguments for
the function. For some of the following problems, the R commands can be
copied and pasted from (http://parker.ad.siu.edu/Olive/linmodrhw.txt) into
R.

8.9. This problem examines multivariate linear regression on the Cook
and Weisberg (1999) mussels data with Y1 = log(S) and Y2 = log(M) where
S is the shell mass and M is the muscle mass. The predictors are X2 = L,
X3 = log(W ), and X4 = H : the shell length, log(width), and height.

a) The R command for this part makes the response and residual plots
for each of the two response variables. Click the rightmost mouse button and
highlight Stop to advance the plot. When you have the response and residual
plots for one variable on the screen, copy and paste the two plots into Word.
Do this two times, once for each response variable. The plotted points fall in
roughly evenly populated bands about the identity or r = 0 line.

b) Copy and paste the output produced from the R command for this part
from $partial on. This gives the output needed to do the MANOVA F test,
MANOVA partial F test, and the Fj tests.

c) The R command for this part makes a DD plot of the residual vectors
and adds the lines corresponding to those in Figure 8.3. Place the plot in
Word. Do the residual vectors appear to follow a multivariate normal distri-
bution? (Right click Stop once.)

d) Do the MANOVA partial F test where the reduced model deletes X3

and X4.
e) Do the F2 test.
f) Do the MANOVA F test.

8.10. This problem examines multivariate linear regression on the SAS
Institute (1985, p. 146) Fitness Club Data with Y1 = chinups, Y2 = situps,
and Y3 = jumps. The predictors are X2 = weight, X3 = waist, and X4 =
pulse.

a) The R command for this part makes the response and residual plots for
each of the three variables. Click the rightmost mouse button and highlight
Stop to advance the plot. When you have the response and residual plots for
one variable on the screen, copy and paste the three plots into Word. Do this
three times, once for each response variable. Are there any outliers?

b) The R command for this part makes a DD plot of the residual vectors
and adds the lines corresponding to those in Figure 8.3. Place the plot in
Word. Are there any outliers? (Right click Stop once.)

8.11. This problem uses the linmodpack function mregsim to simulate the
Wilks’Λ test, Pillai’s trace test, Hotelling Lawley trace test, and Roy’s largest
root test for the Fj tests and the MANOVA F test for multivariate linear
regression. When mnull = T the first row of B is 1T while the remaining
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rows are equal to 0T . Hence the null hypothesis for the MANOVA F test is
true. When mnull = F the null hypothesis is true for p = 2, but false for
p > 2. Now the first row of B is 1T and the last row of B is 0T . If p > 2,
then the second to last row of B is (1, 0, ..., 0), the third to last row is (1,
1, 0, ..., 0) et cetera as long as the first row is not changed from 1T . First
m iid errors zi are generated such that the m errors are iid with variance
σ2. Then εi = Azi so that Σ̂ε = σ2AAT = (σij) where the diagonal entries
σii = σ2[1+(m−1)ψ2 ] and the off diagonal entries σij = σ2[2ψ+(m−2)ψ2 ]
where ψ = 0.10. Terms like Wilkcov give the percentage of times the Wilks’
test rejected the F1, F2, ..., Fp tests. The $mancv wcv pcv hlcv rcv fcv output
gives the percentage of times the 4 test statistics reject the MANOVA F test.
Here hlcov and fcov both correspond to the Hotelling Lawley test using the
formulas in Problem 8.3.

5000 runs will be used so the simulation may take several minutes. Sample
sizes n = (m + p)2, n = 3(m + p)2, and n = 4(m+ p)2 were interesting. We
want coverage near 0.05 when H0 is true and coverage close to 1 for good
power when H0 is false. Multivariate normal errors were used in a) and b)
below.

a) Copy the coverage parts of the output produced by the R commands
for this part where n = 20, m = 2, and p = 4. Here H0 is true except for
the F1 test. Wilks’ and Pillai’s tests had low coverage < 0.05 when H0 was
false. Roy’s test was good for the Fj tests, but why was Roy’s test bad for
the MANOVA F test?

b) Copy the coverage parts of the output produced by the R commands
for this part where n = 20, m= 2, and p = 4. Here H0 is false except for the
F4 test. Which two tests seem to be the best for this part?

8.12. This problem uses the linmodpack function mpredsim to simulate
the prediction regions for yf given xf for multivariate regression. With 5000
runs this simulation may take several minutes. The R command for this
problem generates iid lognormal errors then subtracts the mean, producing
zi. Then the εi = Azi are generated as in Problem 8.11 with n=100, m=2,
and p=4. The nominal coverage of the prediction region is 90%, and 92%
of the training data is covered. The ncvr output gives the coverage of the
nonparametric region. What was ncvr?



Chapter 9

One Way MANOVA Type Models

Multivariate regression is the study of the conditional distribution y|x of the
m× 1 vector of response variables y given the p× 1 vector of nontrivial pre-
dictors x. The multivariate linear model includes the following two models. i)
The multivariate linear regression model of Chapter 8 has at least one quan-
titative predictor variable. ii) For the MANOVA model, the predictors are
indicator variables. Often observations (Y1, ..., Ym, x1, x2, ..., xp) are collected
on the same person or thing and hence are correlated. If transformations can
be found such that the m response plots and residual plots of Section 9.2
look good, and n ≥ (m+ p)2 (and ni ≥ 10m if there are p treatment groups
and n =

∑p
i=1 ni), then the MANOVA model can often be used to efficiently

analyze the data. These two plots and the DD plot of the residuals are useful
for checking the model and for outlier detection.

9.1 Introduction

Definition 9.1. The response variables are the variables that you want
to predict. The predictor variables are the variables used to predict the
response variables.

Notation. A multivariate linear model has m ≥ 2 response variables. A
multiple linear model = univariate linear model has m = 1 response variable,
but at least two nontrivial predictors, and usually a constant (so p ≥ 3).
A simple linear model has m = 1, one nontrivial predictor, and usually a
constant (so p = 2). Multiple linear regression models and ANOVA models
are special cases of multiple linear models.

Definition 9.2. The multivariate linear model

yi = BT xi + εi

407
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for i = 1, ..., n has m ≥ 2 response variables Y1, ..., Ym and p predictor vari-
ables x1, x2, ..., xp. The ith case is (xT

i , y
T
i ) = (xi1, xi2, ..., xip, Yi1, ..., Yim). If

a constant xi1 = 1 is in the model, then xi1 could be omitted from the case.
The model is written in matrix form as Z = XB +E where the matrices are
the same as those between Definitions 8.2 and 8.3. The model has E(εk) = 0
and Cov(εk) = Σε = (σij) for k = 1, ..., n. Then the p×m coefficient matrix
B =

[
β1 β2 . . . βm

]
and the m ×m covariance matrix Σε are to be esti-

mated, and E(Z) = XB while E(Yij) = xT
i βj. The εi are assumed to be

iid. The univariate linear model corresponds to m = 1 response variable, and
is written in matrix form as Y = Xβ + e. Subscripts are needed for the m
univariate linear models Y j = Xβj + ej for j = 1, ..., m where E(ej) = 0.
For the multivariate linear model, Cov(ei, ej) = σij In for i, j = 1, ..., m
where In is the n× n identity matrix.

Definition 9.3. The multivariate analysis of variance (MANOVA model)
yi = BT xi + εi for i = 1, ..., n has m ≥ 2 response variables Y1, ..., Ym

and p predictor variables X1, X2, ..., Xp. The MANOVA model is a special
case of the multivariate linear model. For the MANOVA model, the predic-
tors are not quantitative variables, so the predictors are indicator variables.
Sometimes the trivial predictor 1 is also in the model. In matrix form, the
MANOVA model is Z = XB +E. The model has E(εk) = 0 and Cov(εk) =
Σε = (σij) for k = 1, ..., n. Also E(ei) = 0 while Cov(ei, ej) = σijIn for
i, j = 1, ..., m. Then B and Σε are unknown matrices of parameters to be
estimated, and E(Z) = XB while E(Yij) = xT

i βj.

The data matrix W d = [X Z]. If the model contains a constant, then
usually the first column of ones 1 of X is omitted from the data matrix for
software such as R and SAS.

Each response variable in a MANOVA model follows an ANOVA model
Y j = Xβj + ej for j = 1, ..., m where it is assumed that E(ej) = 0 and
Cov(ej) = σjjIn. Hence the errors corresponding to the jth response are
uncorrelated with variance σ2

j = σjj. Notice that the same design matrix
X of predictors is used for each of the mmodels, but the jth response variable
vector Y j, coefficient vector βj, and error vector ej change and thus depend
on j. Hence for a one way MANOVA model, each response variable follows a
one way ANOVA model, while for a two way MANOVA model, each response
variable follows a two way ANOVA model for j = 1, ..., m.

Once the ANOVA model is fixed, e.g. a one way ANOVA model, the design
matrix X depends on the parameterization of the ANOVA model. See Chap-
ter 3. The fitted values and residuals are the same for each parameterization,
but the interpretation of the parameters depends on the parameterization.

Now consider the ith case (xT
i , y

T
i ) which corresponds to the ith row of

X and the ith row of Z. Then yi = E(yi) + εi where
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E(yi) = BT xi =




xT
i β1

xT
i β2
...

xT
i βm


 .

The notation yi|xi and E(yi|xi) is more accurate, but usually the con-
ditioning is suppressed. Taking E(yi|xi) to be a constant, yi and εi have
the same covariance matrix. In the MANOVA model, this covariance matrix
Σε does not depend on i. Observations from different cases are uncorrelated
(often independent), but the m errors for the m different response variables
for the same case are correlated.

Let B̂ be the MANOVA estimator of B. MANOVA models are often fit
by least squares. Then the least squares estimators are

B̂ = B̂g = (XT X)−XT Z =
[
β̂1 β̂2 . . . β̂m

]

where (XT X)− is a generalized inverse of XT X. Here B̂g depends on the

generalized inverse. If X has full rank p then (XT X)− = (XT X)−1 and B̂
is unique.

Definition 9.4. The predicted values or fitted values

Ẑ = XB̂ =
[
Ŷ 1 Ŷ 2 . . . Ŷ m

]
=




Ŷ1,1 Ŷ1,2 . . . Ŷ1,m

Ŷ2,1 Ŷ2,2 . . . Ŷ2,m

...
...

. . .
...

Ŷn,1 Ŷn,2 . . . Ŷn,m


 .

The residuals Ê = Z − Ẑ = Z − XB̂ =




ε̂T
1

ε̂T
2
...

ε̂T
n


 =

[
r̂1 r̂2 . . . r̂m

]
=




ε̂1,1 ε̂1,2 . . . ε̂1,m

ε̂2,1 ε̂2,2 . . . ε̂2,m

...
...

. . .
...

ε̂n,1 ε̂n,2 . . . ε̂n,m


 .

These quantities can be found by fittingm ANOVA models Y j = Xβj+ej to

get β̂j, Ŷ j = Xβ̂j, and r̂j = Y j−Ŷ j for j = 1, ..., m. Hence ε̂i,j = Yi,j− Ŷi,j

where Ŷ j = (Ŷ1,j, ..., Ŷn,j)
T . Finally, Σ̂ε,d =

(Z − Ẑ)T (Z − Ẑ)

n− d
=

(Z − XB̂)T (Z − XB̂)

n− d
=

Ê
T
Ê

n − d
=

1

n− d

n∑

i=1

ε̂iε̂
T
i .
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The choices d = 0 and d = p are common. Let Σ̂ε be the usual estimator
of Σε for the MANOVA model. If least squares is used with a full rank X ,
then Σ̂ε = Σ̂ε,d=p.

9.2 Plots for MANOVA Models

As in Chapter 8, this section suggests using residual plots, response plots,
and the DD plot to examine the multivariate linear model. The residual plots
are often used to check for lack of fit of the multivariate linear model. The
response plots are used to check linearity (and to detect influential cases and
outliers for linearity). The response and residual plots are used exactly as in
the m = 1 case corresponding to multiple linear regression and experimental
design models. See Olive (2010, 2017a), Olive and Hawkins (2005), and Cook
and Weisberg (1999, p. 432). Chapter 8 used the response and residual plots
for MLR for each response variable Yj . The one way MANOVA model will
use the response and residual plots for the one way ANOVA model for each
response variable Yj . See Chapter 3.

Definition 9.5. A response plot for the jth response variable is a plot
of the fitted values Ŷij versus the response Yij. The identity line with slope
one and zero intercept is added to the plot as a visual aid. A residual plot
corresponding to the jth response variable is a plot of Ŷij versus rij.

Remark 9.1. Make the m response and residual plots for any MANOVA
model. In a response plot, the vertical deviations from the identity line are the
residuals rij = Yij − Ŷij. Suppose the model is good, the error distribution is
not highly skewed, and n ≥ 10p. Then the plotted points should cluster about
the identity line in each of the m response plots. If outliers are present or if
the plot is not linear, then the current model or data need to be transformed
or corrected. If the model is good, then the each of the m residual plots
should be ellipsoidal with no trend and should be centered about the r = 0
line. There should not be any pattern in the residual plot: as a narrow vertical
strip is moved from left to right, the behavior of the residuals within the strip
should show little change. Outliers and patterns such as curvature or a fan
shaped plot are bad.

For some MANOVA models that do not use replication, the response and
residual plots look much like those for multivariate linear regression in Section
8.2. The response and residual plots for the one way MANOVA model need
some notation, and it is useful to use three subscripts. Suppose there are inde-
pendent random samples of size ni from p different populations (treatments),
or ni cases are randomly assigned to p treatment groups with n =

∑p
i=1 ni.

Assume thatm response variables yij = (Yij1, ..., Yijm)T are measured for the
ith treatment. Hence i = 1, ..., p and j = 1, ..., ni. The Yijk follow different one
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way ANOVA models for k = 1, ..., m. Assume E(yij) = µi = (µi1, ..., µim)T

and Cov(yij) = Σε. Hence the p treatments have possibly different mean
vectors µi, but common covariance matrix Σε.

Then for the kth response variable, the response plot is a plot of Ŷijk ≡ µ̂ik

versus Yijk and the residual plot is a plot of Ŷijk ≡ µ̂ik versus rijk where µ̂ik is
the sample mean of the ni responses Yijk corresponding to the ith treatment
for the kth response variable. Add the identity line to the response plot and
r = 0 line to the residual plot as visual aids. The points in the response
plot scatter about the identity line and the points in the residual plot scatter
about the r = 0 line, but the scatter need not be in an evenly populated band.
A dot plot of Z1, ..., Zn consists of an axis and n points each corresponding to
the value of Zi. The response plot for the kth response variable consists of p
dot plots, one for each value of µ̂ik. The dot plot corresponding to µ̂ik is the
dot plot of Yi,1,k, ..., Yi,ni,k. Similarly, the residual plot for the kth response
variable consists of p dot plots, and the plot corresponding to µ̂ik is the dot
plot of ri,1,k, ..., ri,ni,k. Assuming the ni ≥ 10, the p dot plots for the kth
response variable should have roughly the same shape and spread in both

the response and residual plots. Note that µ̂ik = Y iok =
1

ni

ni∑

j=1

Yijk.

Assume that each ni ≥ 10. It is easier to check shape and spread in the
residual plot. If the response plot looks like the residual plot, then a horizontal
line fits the p dot plots about as well as the identity line, and there may not
be much difference in the µik. In the response plot, if the identity line fits
the plotted points better than any horizontal line, then conclude that at least
some of the means µik differ.

Definition 9.6. An outlier corresponds to a case that is far from the
bulk of the data. Look for a large vertical distance of the plotted point from
the identity line or the r = 0 line.

Rule of thumb 9.1. Mentally add 2 lines parallel to the identity line and
2 lines parallel to the r = 0 line that cover most of the cases. Then a case is
an outlier if it is well beyond these 2 lines.

This rule often fails for large outliers since often the identity line goes
through or near a large outlier so its residual is near zero. A response that is
far from the bulk of the data in the response plot is a “large outlier” (large
in magnitude). Look for a large gap between the bulk of the data and the
large outlier.

Suppose there is a dot plot of ni cases corresponding to treatment i with
mean µik that is far from the bulk of the data. This dot plot is probably not
a cluster of “bad outliers” if ni ≥ 4 and n ≥ 5p. If ni = 1, such a case may
be a large outlier.

Rule of thumb 9.2. Often an outlier is very good, but more often an
outlier is due to a measurement error and is very bad.



412 9 One Way MANOVA Type Models

Remark 9.2. Rule of thumb 3.2 for the one way ANOVA F test may also
be useful for the one way MANOVA model tests of hypotheses.

Remark 9.3. The above rules are mainly for linearity and tend to use
marginal models. The marginal models are useful for checking linearity, but
are not very useful for checking other model violations such as outliers in the
error vector distribution. The RMVN DD plot of the residual vectors is a
global method (takes into account the correlations of Y1, ..., Ym) for checking
the error vector distribution, but is not real effective for detecting outliers
since OLS is used to find the residual vectors. A DD plot of residual vectors
from a robust MANOVA method might be more effective for detecting out-
liers. This remark also applies to the plots used in Section 8.2 for multivariate
linear regression.

The RMVN DD plot of the residual vectors ε̂i is used to check the er-
ror vector distribution, to detect outliers, and to display the nonparametric
prediction region developed in Section 8.3. The DD plot suggests that the
error vector distribution is elliptically contoured if the plotted points cluster
tightly about a line through the origin as n → ∞. The plot suggests that
the error vector distribution is multivariate normal if the line is the identity
line. If n is large and the plotted points do not cluster tightly about a line
through the origin, then the error vector distribution may not be elliptically
contoured. These applications of the DD plot for iid multivariate data are
discussed in Olive (2002, 2008, 2013a) and Chapter 7. The RMVN estimator
has not yet been proven to be a consistent estimator for residual vectors,
but simulations suggest that the RMVN DD plot of the residual vectors is a
useful diagnostic plot.

Response transformations can also be made as in Section 1.2, but also make
the response plot of Ŷ j versus Y j and use the rules of Section 1.2 on Yj to
linearize the response plot for each of the m response variables Y1, ..., Ym.

Example 9.1. Consider the one way MANOVA model on the famous
iris data set with n = 150 and p = 3 species of iris: setosa, versicolor, and
virginica. The m = 4 variables are Y1 = sepal length, Y2 = sepal width, Y3 =
petal length, and Y4 = petal width. See Becker et al. (1988). The plots for the
m = 4 response variables look similar, and Figure 9.1 shows the response and
residual plots for Y4. Note that the spread of the three dot plots is similar.
The dot plot intersects the identity line at the sample mean of the cases in
the dot plot. The setosa cases in lowest dot plot have a sample mean of 0.246
and the horizontal line Y4 = 0.246 is below the dot plots for versicolor and
virginica which have means of 1.326 and 2.026. Hence the mean petal widths
differ for the three species, and it is easier to see this difference in the response
plot than the residual plot. The plots for the other three variables are similar.
Figure 9.2 shows that the DD plot of the residual vectors suggests that the
error vector distribution is elliptically contoured but not multivariate normal.
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The DD plot also shows the prediction regions of Section 8.3 computed
using the residual vectors ε̂i. From Section 8.3, if {ε̂|Dε̂(0,Sr) ≤ h} is a
prediction region for the residual vectors, then {y|Dy(ŷf ,Sr) ≤ h} is a
prediction region for yf . For the one way MANOVA model, a prediction
region for yf would only be valid for an xf which was observed, i.e., for
xf = xj, since only observed values of the categorical predictor variables
make sense. The 90% nonparametric prediction region corresponds to y with
distances to the left of the vertical line MD = 3.2.
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Fig. 9.1 Plots for Y4 = Petal Width.

R commands for these two figures are shown below, and will also show
the plots for Y1, Y2, and Y3. The linmodpack function manova1w makes the
response and residual plots while ddplot4 makes the DD plot. The last
command shows that the pvalue = 0 for the one way MANOVA test discussed
in the following section.

library(MASS)

y <- iris[,1:4] #m = 4 = number of response variables

group <- iris[,5]

#p = number of groups = number of dot plots

out<- manova1w(y,p=3,group=group) #right click

#Stop 8 times

ddplot4(out$res) #right click Stop

summary(out$out) #default is Pillai’s test
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Fig. 9.2 DD Plot of the Residual Vectors for Iris Data.

9.3 One Way MANOVA

Using double subscripts will be useful for describing the one way MANOVA
model. Suppose there are independent random samples of size ni from p
different populations (treatments), or ni cases are randomly assigned to p
treatment groups. Then n =

∑p
i=1 ni and the group sample sizes are ni for

i = 1, ..., p. Assume that m response variables yij = (Yij1, ..., Yijm)T are
measured for the ith treatment group and the jth case (often an individual
or thing) in the group. Hence i = 1, ..., p and j = 1, ..., ni. The Yijk follow
different one way ANOVA models for k = 1, ..., m. Assume E(yij) = µi and
Cov(yij) = Σε. Hence the p treatments have different mean vectors µi, but
common covariance matrix Σε. (The common covariance matrix assumption
can be relaxed for p = 2 with the appropriate 2 sample Hotelling’s T 2 test.)

The one way MANOVA is used to test H0 : µ1 = µ2 = · · · = µp. Often
µi = µ + τ i, so H0 becomes H0 : τ 1 = · · · = τ p. If m = 1, the one
way MANOVA model is the one way ANOVA model. MANOVA is useful
since it takes into account the correlations between the m response variables.
Performing m ANOVA tests fails to account for these correlations, but can
be a useful diagnostic. The Hotelling’s T 2 test that uses a common covariance
matrix is a special case of the one way MANOVA model with p = 2.

Let µi = µ+τ i where
∑p

i=1 niτ i = 0. The jth case from the ith population
or treatment group is yij = µ+τ i+εij where εij is an error vector, i = 1, ..., p
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and j = 1, ..., ni. Let y = µ̂ =
∑p

i=1

∑ni

j=1 yij/n be the overall mean. Let

yi =
∑ni

j=1 yij/ni so τ̂ i = yi − y. Let the residual vector ε̂ij = yij − yi =
yij − µ̂− τ̂ i. Then yij = y + (yi − y) + (yij − yi) = µ̂ + τ̂ i + ε̂ij.

Several m×m matrices will be useful. Let Si be the sample covariance ma-
trix corresponding to the ith treatment group. Then the within sum of squares
and cross products matrix is W = W e = (n1 − 1)S1 + · · ·+ (np − 1)Sp =∑p

i=1

∑ni

j=1(yij − yi)(yij − yi)
T . Then Σ̂ε = W /(n− p). The treatment or

between sum of squares and cross products matrix is

BT =

p∑

i=1

ni(yi − y)(yi − y)T .

The total corrected (for the mean) sum of squares and cross products matrix
is T = BT + W =

∑p
i=1

∑ni

j=1(yij −y)(yij −y)T . Note that S = T /(n− 1)
is the usual sample covariance matrix of the yij if it is assumed that all n of
the yij are iid so that the µi ≡ µ for i = 1, ..., p.

The one way MANOVA model is yij = µ + τ i + εij where the εij are iid
with E(εij) = 0 and Cov(εij) = Σε. The MANOVA table is shown below.

Summary One Way MANOVA Table

Source matrix df

Treatment or Between BT p− 1
Residual or Error or Within W n− p

Total (corrected) T n− 1

If all n of the yij are iid with E(yij) = µ and Cov(yij) = Σε, it can

be shown that A/df
P→ Σε where A = W ,BT , or T , and df is the corre-

sponding degrees of freedom. Let t0 be the test statistic. Often Pillai’s trace
statistic, the Hotelling Lawley trace statistic, or Wilks’ lambda are used.
Wilks’ lambda

Λ =
|W |

|BT + W | =
|W |
|T | =

|∑p
i=1(ni − 1)Si|
|(n− 1)S| =

|∑p
i=1

∑ni

j=1(yij − yi)(yij − yi)
T |

|∑p
i=1

∑ni

j=1(yij − y)(yij − y)T | .

Then to = −[n− 0.5(m+ p − 2)] log(Λ) and pval = P (χ2
m(p−1) > t0). Hence

reject H0 if t0 > χ2
m(p−1)(1 − α). See Johnson and Wichern (1988, p. 238).

The four steps of the one way MANOVA test follow.
i) State the hypotheses H0 : µ1 = · · · = µp and H1 : not H0.
ii) Get t0 from output.
iii) Get pval from output.
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iv) State whether you reject H0 or fail to reject H0. If pval ≤ α, reject H0

and conclude that not all of the p treatment means are equal. If pval > α, fail
to reject H0 and conclude that all p treatment means are equal or that there
is not enough evidence to conclude that not all of the p treatment means are
equal. As a textbook convention, use α = 0.05 if α is not given.

Another way to perform the one way MANOVA test is to get R output.
The default test is Pillai’s test, but other tests can be obtained with the R
output shown below.

summary(out$out) #default is Pillai’s test

summary(out$out, test = "Wilks")

summary(out$out, test = "Hotelling-Lawley")

summary(out$out, test = "Roy")

Example 9.1, continued. The R output for the iris data gives a Pillai’s
F statistic of 53.466 and pval = 0.
i) H0 : µ1 = · · · = µ4 H1 : not H0

ii) F = 53.466
iii) pval = 0
iv) Reject H0. The means for the three varieties of iris do differ.

Following Mardia et al. (1979, p. 335), let λ1 ≥ λ2 · · · ≥ λm be the eigen-
values of W−1BT . Then 1 +λi for i = 1, ..., m are the eigenvalues of W−1T
and Λ =

∏m
i=1(1 + λi)

−1.
Following Fujikoshi (2002), let the Hotelling Lawley trace statistic U =

tr(BT W−1) = tr(W−1BT ) =
∑m

i=1 λi, and let Pillai’s trace statistic V =

tr(BT T−1) = tr(T−1BT ) =
m∑

i=1

λi

1 + λi
. If the yij −µj are iid with common

covariance matrix Σε, and if H0 is true, then under regularity conditions

−[n− 0.5(m+ p − 2)] log(Λ)
D→ χ2

m(p−1), (n−m− p − 1)U
D→ χ2

m(p−1), and

(n − 1)V
D→ χ2

m(p−1). Note that the common covariance matrix assumption
implies that each of the p treatment groups or populations has the same
covariance matrix Σi = Σε for i = 1, ..., p, an extremely strong assumption.

Remark 9.4. Another method for one way MANOVA is to use the model
Z = XB + E or
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Y111 Y112 · · · Y11m

...
... · · ·

...
Y1,n1,1 Y1,n1,2 · · · Y1,n1,m

Y211 Y211 · · · Y21m

...
... · · ·

...
Y2,n2,1 Y2,n2,2 · · · Y2,n2,m

...
... · · ·

...
Yp,11 Yp,1m · · · Yp,1m

...
... · · ·

...
Yp,np,1 Yp,np,2 · · · Yp,np,m




=




1 1 0 . . . 0
...

...
...

...
1 1 0 . . . 0
1 0 1 . . . 0
...

...
...

...
1 0 1 . . . 0
...

...
...

...
1 0 0 . . . 1
...

...
...

...
1 0 0 . . . 1
1 0 0 . . . 0
...

...
...

...
1 0 0 . . . 0







β1,1 β1,2 . . . β1,m

β2,1 β2,2 . . . β2,m

...
...

. . .
...

βp,1 βp,2 . . . βp,m


+ E.

Then X is full rank where the ith column of X is an indicator for group i−1
for i = 2, ..., p, β̂1k = Y pok = µ̂pk for k = 1, ..., m, and

β̂ik = Y i−1,ok − Y pok = µ̂i−1,k − µ̂pk

for k = 1, ..., m and i = 2, ..., p. Thus testing H0 : µ1 = · · · = µp is equivalent
to testing H0 : LB = 0 where L = [0 Ip−1]. Such tests are discussed in
Section 8.4. Then yij = µi + εij and

BT = B =




µT
p

µT
1 − µT

p

µT
2 − µT

p
...

µT
p−2 − µT

p

µT
p−1 − µT

p



. (9.1)

Equation (3.5) used the same X for one way ANOVA model with m = 1
as the X used in the above one way MANOVA model. Then the MLR F test
was the same as the one way ANOVA F test. Similarly, if L = (0 Ip−1) then
the multivariate linear regression Hotelling Lawley test statistic for testing
H0 : LB = 0 versus H1 : LB 6= 0 is U = tr(W−1H) while the Hotelling
Lawley test statistic for the one way MANOVA test with H0 : µ1 = µ2 =
· · · = µp is U = tr(W−1BT ). Rupasinghe Arachchige Don (2018) showed
that these two test statistics are the the same for the above X by showing
that BT = H. Here H is given in Section 8.4 and is not the hat matrix.
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9.4 An Alternative Test Based on Large Sample Theory

Large sample theory can be also be used to derive a competing test. Let Σi

be the nonsingular population covariance matrix of the ith treatment group
or population. To simplify the large sample theory, assume ni = πin where
0 < πi < 1 and

∑p
i=1 πi = 1. Let Ti be a multivariate location estimator

such that
√
ni(Ti −µi)

D→ Nm(0,Σi), and
√
n(Ti −µi)

D→ Nm

(
0,

Σi

πi

)
. Let

T = (TT
1 , T

T
2 , ..., T

T
p )T , ν = (µT

1 ,µ
T
2 , ...,µ

T
p )T , and A be a full rank r ×mp

matrix with rank r, then a large sample test of the form H0 : Aν = θ0 versus
H1 : Aν 6= θ0 uses

A
√
n(T − ν)

D→ u ∼ Nr

(
0,A diag

(
Σ1

π1
,
Σ2

π2
, ...,

Σp

πp

)
AT

)
. (9.2)

Let the Wald-type statistic

t0 = [AT − θ0]
T

[
A diag

(
Σ̂1

n1
,
Σ̂2

n2
, ...,

Σ̂p

np

)
AT

]−1

[AT − θ0]. (9.3)

These results prove the following theorem.

Theorem 9.1. Under the above conditions, t0
D→ χ2

r if H0 is true.

This test is due to Rupasinghe Arachchige Don and Olive (2019), and a
special case was used by Zhang and Liu (2013) and Konietschke et al. (2015)

with Ti = yi and Σ̂i = Si. The p = 2 case gives analogs to the two sample
Hotelling’s T 2 test. See Rupasinghe Arachchige Don and Pelawa Watagoda
(2018). The m = 1 case gives analogs of the one way ANOVA test. If m = 1,
see competing tests in Brown and Forsythe (1974a,b), Olive (2017a, pp. 200-
202), and Welch (1947, 1951).

For the one way MANOVA type test, let A be the block matrix

A =




I 0 0 . . . -I
0 I 0 . . . -I
...

...
...

...
0 0 . . . I -I


 .

Let µi ≡ µ, let H0 : µ1 = · · · = µp or, equivalently, H0 : Aν = 0, and let
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w = AT =




T1 − Tp

T2 − Tp

...
Tp−2 − Tp

Tp−1 − Tp



. (9.4)

Then
√
nw

D→ Nm(p−1)(0,Σw) if H0 is true with Σw = (Σij) where Σij =
Σp

πp
for i 6= j, and Σii =

Σi

πi
+

Σp

πp
for i = j. Hence

t0 = nwT Σ̂
−1

w w = wT

(
Σ̂w
n

)−1

w
D→ χ2

m(p−1)

as the ni → ∞ if H0 is true. Here

Σ̂w
n

=




ˆΣ1

n1
+

ˆΣp

np

ˆΣp

np

ˆΣp

np
. . .

ˆΣp

np
ˆΣp

np

ˆΣ2

n2
+

ˆΣp

np

ˆΣp

np
. . .

ˆΣp

np

...
...

...
...

ˆΣp

np

ˆΣp

np

ˆΣp

np
. . .

ˆΣp−1

np−1
+

ˆΣp

np




(9.5)

is a block matrix where the off diagonal block entries equal Σ̂p/np and the

ith diagonal block entry is
Σ̂i

ni
+

Σ̂p

np
for i = 1, ..., (p− 1).

Reject H0 if
t0 > m(p − 1)Fm(p−1),dn

(1 − δ) (9.6)

where dn = min(n1, ..., np). See Theorem 2.25. It may make sense to relabel

the groups so that np is the largest ni or Σ̂p/np has the smallest general-

ized variance of the Σ̂i/ni. This test may start to outperform the one way
MANOVA test if n ≥ (m+ p)2 and ni ≥ 40m for i = 1, ..., p.

If Σi ≡ Σ and Σ̂i is replaced by Σ̂, we will show that for the one way
MANOVA test that t0 = (n− p)U where U is the Hotelling Lawley statistic.
For the proof, some results on the vec and Kronecker product will be useful.
Following Henderson and Searle (1979), vec(G) and vec(GT ) contain the
same elements in different sequences. Define the permutation matrix P r,m

such that
vec(G) = P r,mvec(G

T ) (9.7)

where G is r ×m. Then P T
r,m = P m,r, and P r,mP m,r = P m,rP r,m = Irm.

If C is s×m and D is p × r, then

C ⊗ D = P p,s(D ⊗ C)P m,q. (9.8)
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Also
(C ⊗ D)vec(G) = vec(DGCT ) = P p,s(D ⊗ C)vec(GT ). (9.9)

If C is m×mand D is r × r, then C ⊗ D = P r,m(D ⊗ C)P m,r , and

[vec(G)]T (C ⊗ D)vec(G) = [vec(GT )]T (D ⊗ C)vec(GT ). (9.10)

Theorem 9.2. For the one way MANOVA test using A as defined below
Theorem 9.1, let the Hotelling Lawley trace statistic U = tr(W−1BT ). Then

(n− p)U = t0 = [AT − θ0]
T

[
A diag

(
Σ̂

n1
,
Σ̂

n2
, ...,

Σ̂

np

)
AT

]−1

[AT − θ0].

Hence if the Σi ≡ Σ and H0 : µ1 = · · · = µp is true, then (n − p)U = t0
D→

χ2
m(p−1).

Proof. Let B and X be as in Remark 9.4. Let L = [0 Ip−1] be an s× p
matrix with s = p− 1. For this choice of X , U = tr(W−1BT ) = tr(W −1H)
by Remark 9.4. Hence by Theorem 8.6,

(n− p)U = [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XT X)−1LT )−1][vec(LB̂)]. (9.11)

Now vec([LB̂]T ) = w = AT of Equation (9.4) with Ti = yi. Then

t0 = wT

(
Σ̂w
n

)−1

w

where
Σ̂w
n

= L(XT X)−1LT ⊗ Σ̂

is given by Equation (9.5) with each Σ̂i replaced by Σ̂. Thus t0 =

[vec([LB̂]T )]T [(L(XT X)−1LT )−1 ⊗ Σ̂
−1

ε ][vec([LB̂]T )]. (9.12)

Then t0 = (n− p)U by Equation (9.10) with G = LB̂. �

Hence the one way MANOVA test is a special case of Equation (9.3) where

θ0 = 0 and Σ̂i ≡ Σ̂, but then Theorem 9.1 only holds if H0 is true and
Σi ≡ Σ. Note that the large sample theory of Theorem 9.1 is trivial compared
to the large sample theory of (n−p)U given in Theorem 9.2. Fujikoshi (2002)

showed (n−m− p− 1)U
D→ χ2

m(p−1) while (n− p)U
D→ χ2

m(p−1) by Theorem
9.2 ifH0 is true under the common covariance matrix assumption. There is no

contradiction since (m+1)U
P→ 0 as the ni → ∞. Note the A ism(p−1)×mp.
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For tests corresponding to Theorem 9.1, we will use bootstrap with the
prediction region method of Chapter 4 to test H0 when Σ̂w or the Σ̂i are
unknown or difficult to estimate. To bootstrap the test H0 : Aν = θ0 versus
H1 : Aν 6= θ0, use Zn = AT . Take a sample of size nj with replacement from
the nj cases for each group for j = 1, 2, ..., p to obtain T ∗

j and T ∗
1. Repeat B

times to obtain T ∗
1, ...,T

∗
B . Then Z∗

i = AT ∗
i for i = 1, ..., B. We will illustrate

this method with the analog for the one way MANOVA test for H0 : Aθ = 0
which is equivalent to H0 : µ1 = · · · = µp, where 0 is an r × 1 vector of
zeroes with r = m(p − 1). Then Zn = AT = w given by Equation (9.4).
Hence the m(p− 1)× 1 vector Z∗

i = AT ∗
i = ((T ∗

1 − T ∗
p )T , ..., (T ∗

p−1 − T ∗
p )T )T

where Tj is a multivariate location estimator (such as the sample mean,
coordinatewise median, or trimmed mean), applied to the cases in the jth
treatment group. The prediction region method fails to reject H0 if 0 is in
the resulting confidence region.

We may need B ≥ 50m(p−1), n ≥ (m+p)2, and ni ≥ 40m. If the ni are not
large, the one way MANOVA test can be regarded as a regularized estimator,
and can perform better than the tests that do not assume equal population
covariance matrices. See the simulations in Rupasinghe Arachchige Don and
Olive (2019).

If H0 : Aν = θ0 is true and if the Σi ≡ Σ for i = 1, ..., p, then

t0 = [AT − θ0]
T

[
A diag

(
Σ̂

n1
,
Σ̂

n2
, ...,

Σ̂

np

)
AT

]−1

[AT − θ0]
D→ χ2

r.

If H0 is true but the Σi are not equal, we may be able to get a bootstrap
cutoff by using

t∗0i = [AT ∗
i − AT ]T

[
A diag

(
Σ̂

n1
,
Σ̂

n2
, ...,

Σ̂

np

)
AT

]−1

[AT ∗
i − AT ] =

D2
AT ∗

i

(
AT ,A diag

(
Σ̂

n1
,
Σ̂

n2
, ...,

Σ̂

np

)
AT

)
.

9.5 Summary

1) The multivariate linear model yi = BT xi+εi for i = 1, ..., n has m ≥ 2
response variables Y1, ..., Ym and p predictor variables x1, x2, ..., xp. The ith
case is (xT

i , y
T
i ) = (xi1, xi2, ..., xip, Yi1, ..., Yim). If a constant xi1 = 1 is in

the model, then xi1 could be omitted from the case. The model is written
in matrix form as Z = XB + E. The model has E(εk) = 0 and Cov(εk) =
Σε = (σij) for k = 1, ..., n. Also E(ei) = 0 while Cov(ei, ej) = σijIn for
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i, j = 1, ..., m. Then B and Σε are unknown matrices of parameters to be
estimated, and E(Z) = XB while E(Yij) = xT

i βj.
The data matrix W = [X Z] except usually the first column 1 of X is

omitted if xi,1 ≡ 1. The n×m matrix

Z =




Y1,1 Y1,2 . . . Y1,m

Y2,1 Y2,2 . . . Y2,m

...
...

. . .
...

Yn,1 Yn,2 . . . Yn,m


 =

[
Y 1 Y 2 . . . Y m

]
=




yT
1
...

yT
n


 .

The n× p matrix

X =




x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p


 =

[
v1 v2 . . . vp

]
=




xT
1
...

xT
n




where often v1 = 1.
The p×m matrix

B =




β1,1 β1,2 . . . β1,m

β2,1 β2,2 . . . β2,m

...
...

. . .
...

βp,1 βp,2 . . . βp,m


 =

[
β1 β2 . . . βm

]
.

The n×m matrix

E =




ε1,1 ε1,2 . . . ε1,m

ε2,1 ε2,2 . . . ε2,m

...
...

. . .
...

εn,1 εn,2 . . . εn,m


 =

[
e1 e2 . . . em

]
=




εT
1
...

εT
n


 .

2) The univariate linear model is Yi = xi,1β1 + xi,2β2 + · · ·+xi,pβp + ei =

xT
i β + ei = βT xi + ei for i = 1, . . . , n. In matrix notation, these n equations

become Y = Xβ + e, where Y is an n× 1 vector of response variables, X
is an n× p matrix of predictors, β is a p × 1 vector of unknown coefficients,
and e is an n × 1 vector of unknown errors.

3) Each response variable in a multivariate linear model follows a univari-
ate linear model Y j = Xβj + ej for j = 1, ..., m where it is assumed that
E(ej) = 0 and Cov(ej) = σjjIn.

4) In a MANOVA model, yk = BT xk + εk for k = 1, ..., n is written in
matrix form as Z = XB+E. The model has E(εk) = 0 and Cov(εk) = Σε =
(σij) for k = 1, ..., n. Each response variable in a MANOVA model follows



9.5 Summary 423

an ANOVA model Y j = Xβj + ej for j = 1, ..., m where it is assumed that
E(ej) = 0 and Cov(ej) = σjjIn.

5) The one way MANOVA model is as above where Y j = Xβj + ej

is a one way ANOVA model for j = 1, ..., m. Check the model by making m
response and residual plots and a DD plot of the residual vectors ε̂i.

6) The one way MANOVA model is a generalization of the Hotelling’s
T 2 test from 2 groups to p ≥ 2 groups, assumed to have different means
but a common covariance matrix Σε. Want to test H0 : µ1 = · · · = µp.
This model is a multivariate linear model so there are m response variables
Y1, ..., Ym measured for each group. Each Yi follows a one way ANOVA model
for i = 1, ..., m.

7) For the one way MANOVA model, make a DD plot of the residual
vectors ε̂i where i = 1, ..., n. Use the plot to check whether the εi follow a
multivariate normal distribution or some other elliptically contoured distri-
bution. We want n ≥ (m+ p)2 and ni ≥ 10m.

8) For the one way MANOVA model, write the data as Yijk where i =
1, ..., p and j = 1, ..., ni. So k corresponds to the kth variable Yk for k =
1, ..., m. Then Ŷijk = µ̂ik = Y iok for i = 1, ..., p. So for the kth variable, the

means µ1k, ..., µpk are of interest. The residuals are rijk = Yijk − Ŷijk. For
each variable Yk make a response plot of Y iok versus Yijk and a residual plot
of Y iok versus rijk. Both plots will consist of p dot plots of ni cases located
at the Y iok. The dot plots should follow the identity line in the response plot
and the horizontal r = 0 line in the residual plot for each of the m response
variables Y1, ..., Ym. For each variable Yk, let Rik be the range of the ith dot
plot. If each ni ≥ 5, we want max(R1k, ..., Rpk) ≤ 2 min(R1k, ..., Rpk). The
one way MANOVA model may be reasonable for the test in point 9) if the
m response and residual plots satisfy the above graphical checks.

9) The four steps of the one way MANOVA test follow.
i) State the hypotheses H0 : µ1 = · · · = µp and H1 : not H0.
ii) Get t0 from output.
iii) Get pval from output.
iv) State whether you reject H0 or fail to reject H0. If pval ≤ α, reject H0

and conclude that not all of the p treatment means are equal. If pval > α, fail
to reject H0 and conclude that all p treatment means are equal or that there
is not enough evidence to conclude that not all of the p treatment means
are equal. Give a nontechnical sentence as the conclusion, if possible. As a
textbook convention, use α = 0.05 if α is not given.

10) The one way MANOVA test assumes that the p treatment groups or
populations have the same covariance matrix: Σ1 = · · · = Σp, but the test
has some resistance to this assumption. See points 6) and 8).
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9.6 Complements

The linmodpack function manbtsim2 simulates the bootstrap tests corre-
sponding to Theorem 9.1 using the sample mean, coordinatewise median, and
coordinatewise 25% trimmed mean. The function manbtsim4 adds the test
corresponding to Equation (9.6). The function manbtsim is like manbtsim2,
but adds TRMV N from Definition 7.17 to the simulation, making the simu-
lation very slow. The prediction region method was proven to work for the
sample mean, coordinatwise median, and coordinatwise trimmed means in
Rupasinghe Arachchige Don and Olive (2019). We only conjecture that the
prediction region method works for TRMV N .

9.7 Problems

9.1∗. If X is of full rank and least squares is used to fit the MANOVA
model, then β̂i = (XT X)−1XT Y i, and Y i = Xβi + ei. Treating Xβi as a
constant, Cov(Y i,Y j) = Cov(ei, ej) = σijIn. Using this information, show

Cov(β̂i, β̂j) = σij(X
T X)−1.



Chapter 10

1D Regression Models Such as GLMs

... estimates of the linear regression coefficients are relevant to the linear
parameters of a broader class of models than might have been suspected.

Brillinger (1977, p. 509)

After computing β̂, one may go on to prepare a scatter plot of the points
(β̂xj, yj), j = 1, ..., n and look for a functional form for g(·).

Brillinger (1983, p. 98)

This chapter considers 1D regression models including additive error re-
gression (AER), generalized linear models (GLMs), and generalized additive
models (GAMs). Multiple linear regression is a special case of these four
models.

See Definition 1.2 for the 1D regression model, sufficient predictor (SP =

h(x)), estimated sufficient predictor (ESP = ĥ(x)), generalized linear model
(GLM), and the generalized additive model (GAM). When using a GAM to
check a GLM, the notation ESP may be used for the GLM, and EAP (esti-
mated additive predictor) may be used for the ESP of the GAM. Definition
1.3 defines the response plot of ESP versus Y .

Suppose the sufficient predictor SP = h(x). Often SP = xT β. If u only
contains the nontrivial predictors, then SP = β1 + uT β2 = α+ uT η is often
used where β = (β1 ,β

T
2 )T = (α,ηT )T and x = (1,uT )T .

10.1 Introduction

First we describe some regression models in the following three definitions.
The most general model uses SP = h(x) as defined in Definition 1.2. The
GAM with SP = AP will be useful for checking the model (often a GLM)
with SP = xT β. Thus the additive error regression model with SP = AP
is useful for checking the multiple linear regression model. The model with
SP = βT x = xT β tends to have the most theory for inference and variable

425
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selection. For the models below, the model estimated mean function and
often a nonparametric estimator of the mean function, such as lowess, will
be added to the response plot as a visual aid. For all of the models in the
following three definitions, Y1, ..., Yn are independent, but often the subscripts
are suppressed. For example, Y = SP + e is used instead of Yi = Yi|xi =
Yi|SPi = SPi + ei = h(xi) + ei for i = 1, ..., n.

Definition 10.1. i) The additive error regression (AER) model
Y = SP + e has conditional mean function E(Y |SP ) = SP and conditional
variance function V (Y |SP ) = σ2 = V (e). See Section 10.2. The response
plot of ESP versus Y and the residual plot of ESP versus r = Y − Ŷ are
used just as for multiple linear regression. The estimated model (conditional)
mean function is the identity line Y = ESP . The response transformation
model is Y = t(Z) = SP + e where the response transformation t(Z) can be
found using a graphical method similar to Section 1.2.

ii) The binary regression model is Y ∼ binomial

(
1, ρ =

eSP

1 + eSP

)
.

This model has E(Y |SP ) = ρ = ρ(SP ) and V (Y |SP ) = ρ(SP )(1 − ρ(SP )).

Then ρ̂ =
eESP

1 + eESP
is the estimated mean function. See Section 10.3.

iii) The binomial regression model is Yi ∼ binomial

(
mi, ρ =

eSP

1 + eSP

)
.

Then E(Yi|SPi) = miρ(SPi) and V (Yi|SPi) = miρ(SPi)(1 − ρ(SPi)), and

Ê(Yi|xi) = miρ̂ =
mie

ESP

1 + eESP
is the estimated mean function. See Section

10.3.

iv) The Poisson regression (PR) model Y ∼ Poisson
(
eSP
)

has
E(Y |SP ) = V (Y |SP ) = exp(SP ). The estimated mean and variance func-
tions are Ê(Y |x) = eESP . See Section 10.4.

v) Suppose Y has a gamma G(ν, λ) distribution so that E(Y ) = νλ and
V (Y ) = νλ2. The Gamma regression model Y ∼ G (ν, λ = µ(SP )/ν)
has E(Y |SP ) = µ(SP ) and V (Y |SP ) = [µ(SP )]2/ν. The estimated mean
function is Ê(Y |x) = µ(ESP ). The choices µ(SP ) = SP , µ(SP ) = exp(SP )
and µ(SP ) = 1/SP are common. Since µ(SP ) > 0, Gamma regression mod-
els that use the identity or reciprocal link run into problems if µ(ESP ) is
negative for some of the cases.

Alternatives to the binomial and Poisson regression models are needed
because often the mean function for the model is good, but the variance
function is not: there is overdispersion. See Section 10.8.

A useful alternative to the binomial regression model is a beta–binomial
regression (BBR) model. Following Simonoff (2003, pp. 93-94) and Agresti
(2002, pp. 554-555), let δ = ρ/θ and ν = (1 − ρ)/θ, so ρ = δ/(δ + ν) and



10.1 Introduction 427

θ = 1/(δ+ν). Let B(δ, ν) =
Γ (δ)Γ (ν)

Γ (δ + ν)
. If Y has a beta–binomial distribution,

Y ∼ BB(m, ρ, θ), then the probability mass function of Y is P (Y = y) =(
m

y

)
B(δ + y, ν +m− y)

B(δ, ν)
for y = 0, 1, 2, ..., m where 0 < ρ < 1 and θ > 0.

Hence δ > 0 and ν > 0. Then E(Y ) = mδ/(δ + ν) = mρ and V(Y ) =
mρ(1− ρ)[1 + (m− 1)θ/(1 + θ)]. If Y |π ∼ binomial(m, π) and π ∼ beta(δ, ν),
then Y ∼ BB(m, ρ, θ). As θ → 0, it can be shown that V (π) → 0, and the
beta–binomial distribution converges to the binomial distribution.

Definition 10.2. The BBR model states that Y1, ..., Yn are independent
random variables where Yi|SPi ∼ BB(mi, ρ(SPi), θ). Hence E(Yi|SPi) =
miρ(SPi) and

V (Yi|SPi) = miρ(SPi)(1 − ρ(SPi))[1 + (mi − 1)θ/(1 + θ)].

The BBR model has the same mean function as the binomial regression
model, but allows for overdispersion. As θ → 0, it can be shown that the
BBR model converges to the binomial regression model.

A useful alternative to the PR model is a negative binomial regression
(NBR) model. If Y has a (generalized) negative binomial distribution, Y ∼
NB(µ, κ), then the probability mass function of Y is

P (Y = y) =
Γ (y+ κ)

Γ (κ)Γ (y+ 1)

(
κ

µ + κ

)κ (
1 − κ

µ+ κ

)y

for y = 0, 1, 2, ... where µ > 0 and κ > 0. Then E(Y ) = µ and V(Y ) =
µ+µ2/κ. (This distribution is a generalization of the negative binomial (κ, ρ)
distribution where ρ = κ/(µ + κ) and κ > 0 is an unknown real parameter
rather than a known integer.)

Definition 10.3. The negative binomial regression (NBR) model
is Y |SP ∼ NB(exp(SP), κ). Thus E(Y |SP ) = exp(SP ) and

V (Y |SP ) = exp(SP )

(
1 +

exp(SP )

κ

)
= exp(SP ) + τ exp(2 SP ).

The NBR model has the same mean function as the PR model but allows
for overdispersion. Following Agresti (2002, p. 560), as τ ≡ 1/κ → 0, it can
be shown that the NBR model converges to the PR model.

Several important survival regression models are 1D regression models
with SP = xT β, including the Cox (1972) proportional hazards regression
model. The following survival regression models are parametric. The accel-
erated failure time model has log(Y ) = α + SPA + σe where SPA = uT βA,
V (e) = 1, and the ei are iid from a location scale family. If the Yi are log-
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normal, the ei are normal. If the Yi are loglogistic, the ei are logistic. If the
Yi are Weibull, the ei are from a smallest extreme value distribution. The
Weibull regression model is a proportional hazards model using Yi and an
accelerated failure time model using log(Yi) with βP = βA/σ. Let Y hav a
Weibull W (γ, λ) distribution if the pdf of Y is

f(y) = λγyγ−1 exp[−λyγ ]

for y > 0. Prediction intervals for parametric survival regression models are
for survival times Y , not censored survival times. See Section 10.10.

Definition 10.4. The Weibull proportional hazards regression model is

Y |SP ∼W (γ = 1/σ, λ0 exp(SP )),

where λ0 = exp(−α/σ).

Generalized linear models are an important class of parametric 1D regres-
sion models that include multiple linear regression, logistic regression, and
Poisson regression. Assume that there is a response variable Y and a q × 1
vector of nontrivial predictors x. Before defining a generalized linear model,
the definition of a one parameter exponential family is needed. Let f(y) be
a probability density function (pdf) if Y is a continuous random variable,
and let f(y) be a probability mass function (pmf) if Y is a discrete random
variable. Assume that the support of the distribution of Y is Y and that the
parameter space of θ is Θ.

Definition 10.5. A family of pdfs or pmfs {f(y|θ) : θ ∈ Θ} is a
1-parameter exponential family if

f(y|θ) = k(θ)h(y) exp[w(θ)t(y)] (10.1)

where k(θ) ≥ 0 and h(y) ≥ 0. The functions h, k, t, and w are real valued
functions.

In the definition, it is crucial that k and w do not depend on y and that
h and t do not depend on θ. The parameterization is not unique since, for
example, w could be multiplied by a nonzero constant m if t is divided by m.
Many other parameterizations are possible. If h(y) = g(y)IY (y), then usually
k(θ) and g(y) are positive, so another parameterization is

f(y|θ) = exp[w(θ)t(y) + d(θ) + S(y)]IY (y) (10.2)

where S(y) = log(g(y)), d(θ) = log(k(θ)), and the support Y does not depend
on θ. Here the indicator function IY(y) = 1 if y ∈ Y and IY(y) = 0, otherwise.
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Definition 10.6. Assume that the data is (Yi,xi) for i = 1, ..., n. An
important type of generalized linear model (GLM) for the data states
that the Y1, ..., Yn are independent random variables from a 1-parameter ex-
ponential family with pdf or pmf

f(yi|θ(xi)) = k(θ(xi))h(yi) exp

[
c(θ(xi))

a(φ)
yi

]
. (10.3)

Here φ is a known constant (often a dispersion parameter), a(·) is a known
function, and θ(xi) = η(xT

i β). Let E(Yi) ≡ E(Yi|xi) = µ(xi). The GLM
also states that g(µ(xi)) = xT

i β where the link function g is a differen-
tiable monotone function. Then the canonical link function is g(µ(xi)) =
c(µ(xi)) = βT xi, and the quantity βT x is called the linear predictor.

The GLM parameterization (10.3) can be written in several ways. By
Equation (10.2), f(yi|θ(xi)) = exp[w(θ(xi))yi + d(θ(xi)) + S(y)]IY (y) =

exp

[
c(θ(xi))

a(φ)
yi −

b(c(θ(xi))

a(φ)
+ S(y)

]
IY(y)

= exp

[
νi

a(φ)
yi −

b(νi)

a(φ)
+ S(y)

]
IY(y)

where νi = c(θ(xi)) is called the natural parameter, and b(·) is some known
function.

Notice that a GLM is a parametric model determined by the 1-parameter
exponential family, the link function, and the linear predictor. Since the link
function is monotone, the inverse link function g−1(·) exists and satisfies

µ(xi) = g−1(xT
i β). (10.4)

Also notice that the Yi follow a 1-parameter exponential family where

t(yi) = yi and w(θ) =
c(θ)

a(φ)
,

and notice that the value of the parameter θ(xi) = η(xT
i β) depends on the

value of xi. Since the model depends on x only through the linear predictor
xT β, a GLM is a 1D regression model. Thus the linear predictor is also a
sufficient predictor.

The following three sections illustrate three of the most important gen-
eralized linear models. Inference and variable selection for these GLMs are
discussed in Sections 10.5 and 10.6. Their generalized additive model analogs
are discussed in Section 10.7.
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10.2 Additive Error Regression

The linear regression model Y = SP + e = xT β + e includes multiple linear
regression (MLR) and many experimental design models as special cases. See
Chapters 1–4.

If Y is quantitative, a useful extension is the additive error regression
(AER) model Y = SP + e where SP = h(x). See Definition 10.1 i). If
e ∼ N(0, σ2), then Y ∼ N(SP, σ2). If e ∼ N(0, σ2) and SP = xT β, then the
resulting multiple linear regression model is also a GLM and an additive error
regression model. The normality assumption is too restrictive since the error
distribution is rarely normal. If m is a smooth function, the additive error
single index model, where SP = h(x) = m(xT β), is an important special
case.

Response plots, residual plots, and response transformations for the addi-
tive error regression model are very similar to those for the multiple linear
regression model. See Olive (2004b). To avoid overfitting, assume n ≥ 10d
where d is the model degrees of freedom, possibly estimated. Hence d = p for
multiple linear regression with OLS. Prediction intervals are given in Section
4.3.

The GAM additive error regression model is useful for checking the mul-
tiple linear regression (MLR) model. Let ESP = xT β̂ be the ESP for MLR
where x = (1, x2, ..., xp)

T . Let ESP = EAP = α̂+
∑p

j=2 Ŝj(xj) be the ESP
for the GAM additive error regression model.

After making the usual checks on the MLR model, there are two useful
plots that use the GAM. If the plotted points of the EE plot of EAP versus
ESP cluster tightly about the identity line, then the MLR and the GAM
produce similar fitted values. A plot of xj versus Ŝj(xj) can be useful for
visualizing whether a predictor transformation tj(xj) is needed for the jth
predictor xj. If the plot is linear then no transformation may be needed. If the
plot is nonlinear, the shape of the plot, along with the graphical methods of
Section 1.2, may be useful for suggesting the transformation tj. The additive
error regression GAM can be fit with all p of the Sj unspecified, or fit p GAMs
where Si is linear except for unspecified Sj where j = 2, ..., p. Some of these
applications for checking GLMs with GAMs will be discussed in Section 10.7.

Suppose n/p is large and SP = m(xT β). Olive (2008: ch. 12, 2010: ch.
15), Olive and Hawkins (2005), and Chang and Olive (2010) show that vari-
able selection methods using Cp and the partial F test, originally meant for
multiple linear regression, can be used (under regularity conditions) for the
additive error single index model. See Section 10.11.
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10.3 Binary, Binomial, and Logistic Regression

Multiple linear regression is used when the response variable is quantitative,
but for many data sets the response variable is categorical and takes on two
values: 0 or 1. The occurrence of the category that is counted is labelled as a
1 or a “success,” while the nonoccurrence of the category that is counted is
labelled as a 0 or a “failure.” For example, a “success” = “occurrence” could
be a person who contracted lung cancer and died within 5 years of detection.
Often the labelling is arbitrary, e.g., if the response variable is gender taking
on the two categories female and male. If males are counted then Y = 1 if the
subject is male and Y = 0 if the subject is female. If females are counted then
this labelling is reversed. For a binary response variable, a binary regression
model is often appropriate.

Definition 10.7. The binomial regression model states that Y1, ..., Yn

are independent random variables with Yi ∼ binomial(mi, ρ(xi)). The binary
regression model is the special case where mi ≡ 1 for i = 1, ..., n while the
logistic regression (LR) model is the special case of binomial regression
where

P (success|xi) = ρ(xi) =
exp(h(xi))

1 + exp(h(xi))
. (10.5)

If the sufficient predictor SP = h(x) = xT β, then the most used binomial
regression models are such that Y1, ..., Yn are independent random variables
with Yi ∼ binomial(mi, ρ(x

Tβ)), or

Yi|SPi ∼ binomial(mi, ρ(SPi)). (10.6)

Note that the conditional mean function E(Yi|SPi) = miρ(SPi) and the
conditional variance function V (Yi|SPi) = miρ(SPi)(1 − ρ(SPi)).

Thus the binary logistic regression model says that

Y |SP ∼ binomial(1, ρ(SP))

where

ρ(SP ) =
exp(SP )

1 + exp(SP )

for the LR model. Note that the conditional mean function E(Y |SP ) =
ρ(SP ) and the conditional variance function V (Y |SP ) = ρ(SP )(1 − ρ(SP )).
For the LR model, the Y are independent and

Y |x ≈ binomial

(
1,

exp(ESP)

1 + exp(ESP)

)
,

or Y |SP ≈ Y |ESP ≈ binomial(1, ρ(ESP)).
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Although the logistic regression model is the most important model for
binary regression, several other models are also used. Notice that ρ(x) =
P (S|x) is the population probability of success S given x, while 1 − ρ(x) =
P (F |x) is the probability of failure F given x. In particular, for binary re-
gression, ρ(x) = P (Y = 1|x) = 1−P (Y = 0|x). If this population proportion
ρ = ρ(h(x)), then the model is a 1D regression model. The model is a GLM if
the link function g is differentiable and monotone so that g(ρ(xT β)) = xT β
and g−1(xT β) = ρ(xT β). Usually the inverse link function corresponds to
the cumulative distribution function of a location scale family. For example,
for logistic regression, g−1(x) = exp(x)/(1 + exp(x)) which is the cdf of the
logistic L(0, 1) distribution. For probit regression, g−1(x) = Φ(x) which is the
cdf of the normal N(0, 1) distribution. For the complementary log-log link,
g−1(x) = 1 − exp[− exp(x)] which is the cdf for the smallest extreme value
distribution. For this model, g(ρ(x)) = log[− log(1 − ρ(x))] = xT β.

Another important binary regression model is the discriminant function
model. See Hosmer and Lemeshow (2000, pp. 43–44). Assume that πj =
P (Y = j) and that x|Y = j ∼ Nk(µj,Σ) for j = 0, 1. That is, the conditional
distribution of x given Y = j follows a multivariate normal distribution with
mean vector µj and covariance matrix Σ which does not depend on j. Notice
that Σ = Cov(x|Y ) 6= Cov(x). Then as for the binary logistic regression
model with x = (1,uT )T and β = (α,ηT )T ,

P (Y = 1|x) = ρ(x) =
exp(α+ uT η)

1 + exp(α+ uT η)
=

exp(xT β)

1 + exp(xT β)
.

Definition 10.8. Under the conditions above, the discriminant func-
tion parameters are given by

η = Σ−1(µ1 − µ0) (10.7)

and α = log

(
π1

π0

)
− 0.5(µ1 − µ0)

T Σ−1(µ1 + µ0).

The logistic regression (maximum likelihood) estimator also tends to per-
form well for this type of data. An exception is when the Y = 0 cases and
Y = 1 cases can be perfectly or nearly perfectly classified by the ESP. Let
the logistic regression ESP = xT β̂. Consider the response plot of the ESP
versus Y . If the Y = 0 values can be separated from the Y = 1 values by
the vertical line ESP = 0, then there is perfect classification. See Figure 10.1
b). In this case the maximum likelihood estimator for the logistic regression
parameters β does not exist because the logistic curve can not approximate
a step function perfectly. See Atkinson and Riani (2000, pp. 251-254). If only
a few cases need to be deleted in order for the data set to have perfect clas-
sification, then the amount of “overlap” is small and there is nearly “perfect
classification.”
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Ordinary least squares (OLS) can also be useful for logistic regression. The
ANOVA F test, partial F test, and OLS t tests are often asymptotically valid
when the conditions in Definition 10.8 are met, and the OLS ESP and LR
ESP are often highly correlated. See Haggstrom (1983). For binary data the
Yi only take two values, 0 and 1, and the residuals do not behave very well.
Hence the response plot will be used both as a goodness of fit plot and as a
lack of fit plot.

Definition 10.9. For binary logistic regression, the response plot or esti-
mated sufficient summary plot is the plot of the ESP = ĥ(xi) versus Yi with
the estimated mean function

ρ̂(ESP ) =
exp(ESP )

1 + exp(ESP )

added as a visual aid.

A scatterplot smoother such as lowess is also added as a visual aid. Alter-
natively, divide the ESP into J slices with approximately the same number
of cases in each slice. Then compute the sample mean = sample proportion
in slice s: ρ̂s = Y s =

∑
s Yi/

∑
s mi where mi ≡ 1 and the sum is over the

cases in slice s. Then plot the resulting step function.
Suppose that x = (1,uT )T is a p × 1 vector of predictors where q =

p − 1, N1 =
∑
Yi = the number of 1s and N0 = n − N1 = the number of

0s. Also assume that q ≤ min(N0, N1)/5. Then if the parametric estimated
mean function ρ̂(ESP ) looks like a smoothed version of the step function,
then the LR model is likely to be useful. In other words, the observed slice
proportions should scatter fairly closely about the logistic curve ρ̂(ESP ) =
exp(ESP )/[1 + exp(ESP )].

The response plot is a powerful method for assessing the adequacy of the
binary LR regression model. Suppose that both the number of 0s and the
number of 1s is large compared to the number of predictors q, that the ESP
takes on many values and that the binary LR model is a good approximation
to the data. Then Y |ESP ≈ binomial(1, ρ̂(ESP ). Unlike the response plot
for multiple linear regression where the mean function is always the identity
line, the mean function in the response plot for LR can take a variety of
shapes depending on the range of the ESP. For LR, the (estimated) mean
function is

ρ̂(ESP ) =
exp(ESP )

1 + exp(ESP )
.

If the ESP = 0 then Y |SP ≈ binomial(1,0.5). If the ESP = −5, then Y |SP ≈
binomial(1,ρ ≈ 0.007) while if the ESP = 5, then Y |SP ≈ binomial(1,ρ ≈
0.993). Hence if the range of the ESP is in the interval (−∞,−5) then the
mean function is flat and ρ̂(ESP ) ≈ 0. If the range of the ESP is in the
interval (5,∞) then the mean function is again flat but ρ̂(ESP ) ≈ 1. If
−5 < ESP < 0 then the mean function looks like a slide. If −1 < ESP < 1
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then the mean function looks linear. If 0 < ESP < 5 then the mean function
first increases rapidly and then less and less rapidly. Finally, if −5 < ESP < 5
then the mean function has the characteristic “ESS” shape shown in Figure
10.1 c).

This plot is very useful as a goodness of fit diagnostic. Divide the ESP into
J “slices” each containing approximately n/J cases. Compute the sample
mean = sample proportion of the Y s in each slice and add the resulting step
function to the response plot. This is done in Figure 10.1 c) with J = 4
slices. This step function is a simple nonparametric estimator of the mean
function ρ(SP ). If the step function follows the estimated LR mean function
(the logistic curve) closely, then the LR model fits the data well. The plot
of these two curves is a graphical approximation of the goodness of fit tests
described in Hosmer and Lemeshow (2000, pp. 147–156).

The deviance test described in Section 10.5 is used to test whether β = 0,
and is the analog of the ANOVA F test for multiple linear regression. If the
binary LR model is a good approximation to the data but β = 0, then the
predictors x are not needed in the model and ρ̂(xi) ≡ ρ̂ = Y (the usual
univariate estimator of the success proportion) should be used instead of the
LR estimator

ρ̂(xi) =
exp(xT

i β̂)

1 + exp(xT
i β̂)

.

If the logistic curve clearly fits the step function better than the line Y = Y ,
then H0 will be rejected, but if the line Y = Y fits the step function about
as well as the logistic curve (which should only happen if the logistic curve
is linear with a small slope), then Y may be independent of the predictors.
See Figure 10.1 a).

For binomial logistic regression, the response plot needs to be modified
and a check for overdispersion is needed.

Definition 10.10. Let Zi = Yi/mi. Then the conditional distribution
Zi|xi of the LR binomial regression model can be visualized with a response

plot of the ESP = β̂
T
xi versus Zi with the estimated mean function

ρ̂(ESP ) =
exp(ESP )

1 + exp(ESP )

added as a visual aid. Divide the ESP into J slices with approximately the
same number of cases in each slice. Then compute ρ̂s =

∑
s Yi/

∑
smi where

the sum is over the cases in slice s. Then plot the resulting step function
or the lowess curve. For binary data the step function is simply the sample
proportion in each slice.

Both the lowess curve and step function are simple nonparametric estima-
tors of the mean function ρ(SP ). If the lowess curve or step function tracks
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the logistic curve (the estimated mean) closely, then the LR mean function
is a reasonable approximation to the data.

Checking the LR model in the nonbinary case is more difficult because
the binomial distribution is not the only distribution appropriate for data
that takes on values 0, 1, ...,m if m ≥ 2. Hence both the mean and variance
functions need to be checked. Often the LR mean function is a good approx-
imation to the data, the LR MLE is a consistent estimator of β, but the
LR model is not appropriate. The problem is that for many data sets where
E(Yi|xi) = miρ(SPi), it turns out that V (Yi|xi) > miρ(SPi)(1 − ρ(SPi)).
This phenomenon is called overdispersion. The BBR model of Definition 10.2
is a useful alternative to LR.

For both the LR and BBR models, the conditional distribution of Y |x can
still be visualized with a response plot of the ESP versus Zi = Yi/mi with the
estimated mean function Ê(Zi|xi) = ρ̂(SP ) = ρ(ESP ) and a step function
or lowess curve added as visual aids.

Since the binomial regression model is simpler than the BBR model, graph-
ical diagnostics for the goodness of fit of the LR model would be useful. The
following plot was suggested by Olive (2013b) to check for overdispersion.

Definition 10.11. To check for overdispersion, use the OD plot of the
estimated model variance V̂M ≡ V̂ (Y |SP ) versus the squared residuals V̂ =
[Y − Ê(Y |SP )]2. For the LR model, V̂ (Yi|SP ) = miρ(ESPi)(1 − ρ(ESPi))
and Ê(Yi|SP ) = miρ(ESPi).

Numerical summaries are also available. The deviance G2 is a statistic
used to assess the goodness of fit of the logistic regression model much as R2

is used for multiple linear regression. When the mi are small, G2 may not be
reliable but the response plot is still useful. If the Yi are not too close to 0
or mi, if the response and OD plots look good, and the deviance G2 satisfies
G2/(n−p) ≈ 1, then the LR model is likely useful. If G2 > (n−p)+3

√
n− p,

then a more complicated count model may be needed.
Combining the response plot with the OD plot is a powerful method for

assessing the adequacy of the LR model. To motivate the OD plot, recall that
if a count Y is not too close to 0 or m, then a normal approximation is good
for the binomial distribution. Notice that if Yi = E(Y |SP ) + 2

√
V (Y |SP ),

then [Yi − E(Y |SP )]2 = 4V (Y |SP ). Hence if both the estimated mean and
estimated variance functions are good approximations, and if the counts are
not too close to 0 or mi, then the plotted points in the OD plot will scatter
about a wedge formed by the V̂ = 0 line and the line through the origin
with slope 4: V̂ = 4V̂ (Y |SP ). Only about 5% of the plotted points should
be above this line.

When the counts are small, the OD plot is not wedge shaped, but if the LR
model is correct, the least squares (OLS) line should be close to the identity
line through the origin with unit slope. If the data are binary, the response
plot is enough to check the binomial regression assumption.
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Suppose the bulk of the plotted points in the OD plot fall in a wedge.
Then the identity line, slope 4 line, and OLS line will be added to the plot
as visual aids. It is easier to use the OD plot to check the variance function
than the response plot since judging the variance function with the straight
lines of the OD plot is simpler than judging the variability about the logistic
curve. Also outliers are often easier to spot with the OD plot. For the LR
model, V̂ (Yi|SP ) = miρ(ESPi)(1 − ρ(ESPi)) and Ê(Yi|SP ) = miρ(ESPi).
The evidence of overdispersion increases from slight to high as the scale of the
vertical axis increases from 4 to 10 times that of the horizontal axis. There is
considerable evidence of overdispersion if the scale of the vertical axis is more
than 10 times that of the horizontal, or if the percentage of points above the
slope 4 line through the origin is much larger than 5%.

If the binomial LR OD plot is used but the data follows a beta–binomial re-
gression model, then V̂mod = V̂ (Yi|SP ) ≈ miρ(ESP )(1−ρ(ESP )) while V̂ =
[Yi −miρ(ESP )]2 ≈ (Yi − E(Yi))

2. Hence E(V̂ ) ≈ V (Yi) ≈ miρ(ESP )(1 −
ρ(ESP ))[1 + (mi − 1)θ/(1 + θ)], so the plotted points with mi = m should

scatter about a line with slope ≈ 1 + (m− 1)
θ

1 + θ
=

1 +mθ

1 + θ
.

−1.6 −1.2 −0.8

0
.0

0
.6

ESP

Y

a)

−50 0 50

0
.0

0
.6

ESP

Y

b)

−10 0 5 10

0
.0

0
.6

ESP

Y

c) ESSP

0.00 0.10 0.20

0
.0

0
.4

0
.8

Vmodhat

V
h
a
t

d) OD Plot

Fig. 10.1 Response Plots for Museum Data

The first example is for binary data. For binary data, G2 is not approxi-
mately χ2 and some plots of residuals have a pattern whether the model is
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correct or not. For binary data the OD plot is not needed, and the plotted
points follow a curve rather than falling in a wedge. The response plot is
very useful if the logistic curve and step function of observed proportions are
added as visual aids. The logistic curve gives the estimated LR probability of
success. For example, when ESP = 0, the estimated probability is 0.5. The
following three examples used SP = xT β.

Example 10.1. Schaaffhausen (1878) gives data on skulls at a museum.
The 1st 47 skulls are humans while the remaining 13 are apes. The response
variable ape is 1 for an ape skull. The response plot in Figure 10.1a) uses
the predictor face length. The model fits very poorly since the probability
of a 1 decreases then increases. The response plot in Figure 10.1b) uses the
predictor head height and perfectly classifies the data since the ape skulls can
be separated from the human skulls with a vertical line at ESP = 0. The
response plot in Figure 10.1c uses predictors lower jaw length, face length,
and upper jaw length. None of the predictors is good individually, but together
provide a good LR model since the observed proportions (the step function)
track the model proportions (logistic curve) closely. The OD plot in Figure
10.1d) is curved and is not needed for a binary response.
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Fig. 10.2 Visualizing the Death Penalty Data

Example 10.2. Abraham and Ledolter (2006, pp. 360-364) describe death
penalty sentencing in Georgia. The predictors are aggravation level from 1 to
6 (treated as a continuous variable) and race of victim coded as 1 for white
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and 0 for black. There were 362 jury decisions and 12 level race combinations.
The response variable was the number of death sentences in each combination.
The response plot (ESSP) in Figure 10.2a shows that the Yi/mi are close to
the estimated LR mean function (the logistic curve). The step function based
on 5 slices also tracks the logistic curve well. The OD plot is shown in Figure
10.2b with the identity, slope 4, and OLS lines added as visual aids. The
vertical scale is less than the horizontal scale, and there is no evidence of
overdispersion.
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Fig. 10.3 Plots for Rotifer Data

Example 10.3. Collett (1999, pp. 216-219) describes a data set where
the response variable is the number of rotifers that remain in suspension in
a tube. A rotifer is a microscopic invertebrate. The two predictors were the
density of a stock solution of Ficolli and the species of rotifer coded as 1
for polyarthra major and 0 for keratella cochlearis. Figure 10.3a shows the
response plot (ESSP). Both the observed proportions and the step function
track the logistic curve well, suggesting that the LR mean function is a good
approximation to the data. The OD plot suggests that there is overdispersion
since the vertical scale is about 30 times the horizontal scale. The OLS line
has slope much larger than 4 and two outliers seem to be present.
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10.4 Poisson Regression

If the response variable Y is a count, then the Poisson regression model is
often useful. For example, counts often occur in wildlife studies where a region
is divided into subregions and Yi is the number of a specified type of animal
found in the subregion.

Definition 10.12. The Poisson regression (PR) model states that
Y1, ..., Yn are independent random variables with Yi ∼ Poisson(µ(xi)) where
µ(xi) = exp(h(xi)). Thus Y |SP ∼ Poisson(exp(SP)). Notice that Y |SP =
0 ∼ Poisson(1). Note that the conditional mean and variance functions are
equal: E(Y |SP ) = V (Y |SP ) = exp(SP ).

In the response plot for Poisson regression, the shape of the estimated
mean function µ̂(ESP ) = exp(ESP ) depends strongly on the range of the
ESP. The variety of shapes occurs because the plotting software attempts
to fill the vertical axis. Hence if the range of the ESP is narrow, then the
exponential function will be rather flat. If the range of the ESP is wide, then
the exponential curve will look flat in the left of the plot but will increase
sharply in the right of the plot.

Definition 10.13. The estimated sufficient summary plot (ESSP) or re-

sponse plot, is a plot of the ESP = ĥ(xi) versus Yi with the estimated mean
function

µ̂(ESP ) = exp(ESP )

added as a visual aid. A scatterplot smoother such as lowess is also added as
a visual aid.

This plot is very useful as a goodness of fit diagnostic. The lowess curve
is a nonparametric estimator of the mean function and is represented as a
jagged curve to distinguish it from the estimated PR mean function (the
exponential curve). See Figure 10.4 a). If the number of nontrivial predictors
q < n/10, if there is no overdispersion, and if the lowess curve follows the
exponential curve closely (except possibly for the largest values of the ESP),
then the PR mean function may be a useful approximation for E(Y |x). A
useful lack of fit plot is a plot of the ESP versus the deviance residuals
that are often available from the software.

The deviance test described in Section 10.5 is used to test whether β = 0,
and is the analog of the ANOVA F test for multiple linear regression. If the
PR model is a good approximation to the data but β = 0, then the predictors
x are not needed in the model and µ̂(xi) ≡ µ̂ = Y (the sample mean) should
be used instead of the PR estimator

µ̂(xi) = exp(xT
i β̂).
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If the exponential curve clearly fits the lowess curve better than the line
Y = Y , then H0 should be rejected, but if the line Y = Y fits the lowess
curve about as well as the exponential curve (which should only happen if
the exponential curve is approximately linear with a small slope), then Y
may be independent of the predictors. See Figure 10.6 a).

Warning: For many count data sets where the PR mean function is
good, the PR model is not appropriate but the PR MLE is still a con-
sistent estimator of β. The problem is that for many data sets where
E(Y |x) = µ(x) = exp(SP ), it turns out that V (Y |x) > exp(SP ). This
phenomenon is called overdispersion. Adding parametric and nonparamet-
ric estimators of the standard deviation function to the response plot can
be useful. See Cook and Weisberg (1999, pp. 401-403). The NBR model of
Definition 10.3 is a useful alternative to PR.

Since the Poisson regression model is simpler than the NBR model, graph-
ical diagnostics for the goodness of fit of the PR model would be useful. The
following plot was suggested by Winkelmann (2000, p. 110).

Definition 10.14. To check for overdispersion, use the OD plot of the
estimated model variance V̂M ≡ V̂ (Y |SP ) versus the squared residuals V̂ =
[Y − Ê(Y |SP )]2. For the PR model, V̂ (Y |SP ) = exp(ESP ) = Ê(Y |SP ) and
V̂ = [Y − exp(ESP )]2.

Numerical summaries are also available. The deviance G2, described in
Section 10.5, is a statistic used to assess the goodness of fit of the Poisson
regression model much asR2 is used for multiple linear regression. For Poisson
regression, G2 is approximately chi-square with n − p degrees of freedom.
Since a χ2

d random variable has mean d and standard deviation
√

2d, the 98th

percentile of the χ2
d distribution is approximately d+3

√
d ≈ d+2.121

√
2d. If

the response and OD plots look good, and G2/(n−p) ≈ 1, then the PR model
is likely useful. If G2 > (n − p) + 3

√
n− p, then a more complicated count

model than PR may be needed. A good discussion of such count models is in
Simonoff (2003).

For PR, Winkelmann (2000, p. 110) suggested that the plotted points in
the OD plot should scatter about the identity line through the origin with unit
slope and that the OLS line should be approximately equal to the identity
line if the PR model is appropriate. But in simulations, it was found that the
following two observations make the OD plot much easier to use for Poisson
regression.

First, recall that a normal approximation is good for both the Poisson
and negative binomial distributions if the count Y is not too small. Notice
that if Y = E(Y |SP ) + 2

√
V (Y |SP ), then [Y − E(Y |SP )]2 = 4V (Y |SP ).

Hence if both the estimated mean and estimated variance functions are good
approximations, the plotted points in the OD plot for Poisson regression will
scatter about a wedge formed by the V̂ = 0 line and the line through the
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origin with slope 4: V̂ = 4V̂ (Y |SP ). If the normal approximation is good,
only about 5% of the plotted points should be above this line.

Second, the evidence of overdispersion increases from slight to high as the
scale of the vertical axis increases from 4 to 10 times that of the horizontal
axis. (The scale of the vertical axis tends to depend on the few cases with
the largest V̂ (Y |SP ), and P [(Y − Ê(Y |SP ))2 > 10V̂ (Y |SP )] can be ap-
proximated with a normal approximation or Chebyshev’s inequality.) There
is considerable evidence of overdispersion if the scale of the vertical axis is
more than 10 times that of the horizontal, or if the percentage of points above
the slope 4 line through the origin is much larger than 5%. Hence the identity
line and slope 4 line are added to the OD plot as visual aids, and one should
check whether the scale of the vertical axis is more than 10 times that of the
horizontal.

Combining the response plot with the OD plot is a powerful method for
assessing the adequacy of the Poisson regression model. It is easier to use the
OD plot to check the variance function than the response plot since judging
the variance function with the straight lines of the OD plot is simpler than
judging two curves. Also outliers are often easier to spot with the OD plot.

For Poisson regression, judging the mean function from the response plot
may be rather difficult for large counts since the mean function is curved
and lowess does not track the exponential function very well for large counts.
Definition 10.16 will give some useful plots. Since P (Yi = 0) > 0, the estima-
tors given in the following definition are used. Let Zi = Yi if Yi > 0, and let
Zi = 0.5 if Yi = 0. Let x = (1,uT )T .

Definition 10.15. The minimum chi–square estimator of the pa-
rameters β = (α,ηT )T in a Poisson regression model are (α̂M , η̂M ), and are
found from the weighted least squares regression of log(Zi) on ui with weights
wi = Zi. Equivalently, use the ordinary least squares (OLS) regression (with-
out intercept) of

√
Zi log(Zi) on

√
Zi(1,u

T
i )T .

The minimum chi–square estimator tends to be consistent if n is fixed
and all n counts Yi increase to ∞, while the Poisson regression maximum
likelihood estimator β̂ = (α̂, η̂T )T tends to be consistent if the sample size
n → ∞. See Agresti (2002, pp. 611-612). However, the two estimators are
often close for many data sets.

The basic idea of the following two plots for Poisson regression is to trans-
form the data towards a linear model, then make the response plot of Ŵ
versus W and residual plot of the residuals W − Ŵ for the transformed re-
sponse variable W . The mean function is the identity line and the vertical
deviations from the identity line are the WLS residuals. If ESP = xT

i β̂, The
plots are based on weighted least squares (WLS) regression. Use the equiva-
lent OLS regression (without intercept) ofW =

√
Zi log(Zi) on

√
Zi(1,u

T
i )T .

Then the plot of the “fitted values” Ŵ =
√
Zi(α̂M + η̂T

Mui) versus the “re-
sponse”

√
Zi log(Zi) should have points that scatter about the identity line.
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These results and the equivalence of the minimum chi–square estimator to
an OLS estimator suggest the following diagnostic plots.

Definition 10.16. For a Poisson regression model, a weighted fit re-
sponse plot is a plot of

√
ZiESP versus

√
Zi log(Zi). The weighted

residual plot is a plot of
√
ZiESP versus the “WLS” residuals rWi =√

Zi log(Zi) −
√
ZiESP .

If the Poisson regression model is appropriate and the PR estimator is
good, then the plotted points in the weighted fit response plot should follow
the identity line. When the counts Yi are small, the “WLS” residuals can
not be expected to be approximately normal. Often the larger counts are fit
better than the smaller counts and hence the residual plots have a “left open-
ing megaphone” shape. This fact makes residual plots for Poisson regression
rather hard to use, but cases with large “WLS” residuals may not be fit very
well by the model. Both the weighted fit response and residual plots perform
better for simulated PR data with many large counts than for data where all
of the counts are less than 10. The following three examples use SP = xT β.

Example 10.4. For the Ceriodaphnia data of Myers et al. (2002, pp.
136-139), the response variable Y is the number of Ceriodaphnia organisms
counted in a container. The sample size was n = 70, and the predictors were
a constant (x1), seven concentrations of jet fuel (x2), and an indicator for
two strains of organism (x3). The jet fuel was believed to impair reproduction
so high concentrations should have smaller counts. Figure 10.4 shows the 4
plots for this data. In the response plot of Figure 10.4a, the lowess curve
is represented as a jagged curve to distinguish it from the estimated PR
mean function (the exponential curve). The horizontal line corresponds to
the sample mean Y . The OD plot in Figure 10.4b suggests that there is little
evidence of overdispersion. These two plots as well as Figures 10.4c and 10.4d
suggest that the Poisson regression model is a useful approximation to the
data.

Example 10.5. For the crab data, the response Y is the number of satel-
lites (male crabs) near a female crab. The sample size n = 173 and the pre-
dictor variables were the color, spine condition, caparice width, and weight
of the female crab. Agresti (2002, pp. 126-131) first uses Poisson regression,
and then uses the NBR model with κ̂ = 0.98 ≈ 1. Figure 4.5a suggests that
there is one case with an unusually large value of the ESP. The lowess curve
does not track the exponential curve all that well. Figure 4.5b suggests that
overdispersion is present since the vertical scale is about 10 times that of
the horizontal scale and too many of the plotted points are large and greater
than the slope 4 line. Figure 4.5c also suggests that the Poisson regression
mean function is a rather poor fit since the plotted points fail to cover the
identity line. Although the exponential mean function fits the lowess curve
better than the line Y = Y , an alternative model to the NBR model may fit
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Fig. 10.4 Plots for Ceriodaphnia Data
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Fig. 10.6 Plots for Popcorn Data

the data better. In later chapters, Agresti uses binomial regression models
for this data.

Example 10.6. For the popcorn data of Myers et al. (2002, p. 154), the
response variable Y is the number of inedible popcorn kernels. The sample
size was n = 15 and the predictor variables were temperature (coded as 5,
6, or 7), amount of oil (coded as 2, 3, or 4), and popping time (75, 90, or
105). One batch of popcorn had more than twice as many inedible kernels
as any other batch and is an outlier. Ignoring the outlier in Figure 10.6a
suggests that the line Y = Y will fit the data and lowess curve better than
the exponential curve. Hence Y seems to be independent of the predictors.
Notice that the outlier sticks out in Figure 10.6b and that the vertical scale is
well over 10 times that of the horizontal scale. If the outlier was not detected,
then the Poisson regression model would suggest that temperature and time
are important predictors, and overdispersion diagnostics such as the deviance
would be greatly inflated. However, we probably need to delete the high
temperature, low oil, and long popping time combination, to conclude that
the response is independent of the predictors.
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10.5 GLM Inference, n/p Large

This section gives a very brief discussion of inference for the logistic regression
(LR) and Poisson regression (PR) models. Inference for these two models is
very similar to inference for the multiple linear regression (MLR) model. For
all three of these models, Y is independent of the p × 1 vector of predictors
x = (x1, x2, ..., xp)

T given the sufficient predictor xT β where the constant
x1 ≡ 1.

To perform inference for LR and PR, computer output is needed. Shown
below is output using symbols and output from a real data set with p = 3
nontrivial predictors. This data set is the banknote data set described in Cook
and Weisberg (1999, p. 524). There were 200 Swiss bank notes of which 100
were genuine (Y = 0) and 100 counterfeit (Y = 1). The goal of the analysis
was to determine whether a selected bill was genuine or counterfeit from
physical measurements of the bill.

Label Estimate Std. Error Est/SE p-value

Constant β̂1 se(β̂1) zo,1 for H0 : β1 = 0

x2 β̂2 se(β̂2) zo,2 = β̂2/se(β̂2) for H0 : β2 = 0
...

...
...

...
...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) for H0 : βp = 0

Number of cases: n

Degrees of freedom: n - p

Pearson X2:

Deviance: D = Gˆ2

Binomial Regression

Kernel mean function = Logistic

Response = Status

Terms = (Bottom Left)

Trials = Ones

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -389.806 104.224 -3.740 0.0002

Bottom 2.26423 0.333233 6.795 0.0000

Left 2.83356 0.795601 3.562 0.0004

Scale factor: 1.

Number of cases: 200

Degrees of freedom: 197

Pearson X2: 179.809

Deviance: 99.169
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Point estimators for the mean function are important. Given values of
x = (x1, ..., xp)

T , a major goal of binary logistic regression is to estimate the
success probability P (Y = 1|x) = ρ(x) with the estimator

ρ̂(x) =
exp(xT β̂)

1 + exp(xT β̂)
. (10.8)

Similarly, a major goal of Poisson regression is to estimate the mean
E(Y |x) = µ(x) with the estimator

µ̂(x) = exp(xT β̂). (10.9)

For tests, pval, the estimated p–value, is an important quantity. Again
what output labels as p–value is typically pval. Recall that H0 is rejected if
the pval ≤ δ. A pval between 0.07 and 1.0 provides little evidence that H0

should be rejected, a pval between 0.01 and 0.07 provides moderate evidence
and a pval less than 0.01 provides strong statistical evidence that H0 should
be rejected. Statistical evidence is not necessarily practical evidence, and
reporting the pval along with a statement of the strength of the evidence is
more informative than stating that the pval is less than some chosen value
such as δ = 0.05. Nevertheless, as a homework convention, use δ = 0.05 if
δ is not given.

Investigators also sometimes test whether a predictor xj is needed in the
model given that the other p−1 predictors are in the model with the following
4 step Wald test of hypotheses.
i) State the hypotheses H0 : βj = 0 HA : βj 6= 0.

ii) Find the test statistic zo,j = β̂j/se(β̂j ) or obtain it from output.
iii) The pval = 2P (Z < −|zoj |) = 2P (Z > |zoj |). Find the pval from output
or use the standard normal table.
iv) State whether you reject H0 or fail to reject H0 and give a nontechnical
sentence restating your conclusion in terms of the story problem.

If H0 is rejected, then conclude that xj is needed in the GLM model for
Y given that the other p− 1 predictors are in the model. If you fail to reject
H0, then conclude that xj is not needed in the GLM model for Y given that
the other p− 1 predictors are in the model. (Or there is not enough evidence
to conclude that xj is needed in the model.) Note that xj could be a very
useful GLM predictor, but may not be needed if other predictors are added
to the model.

The Wald confidence interval (CI) for βj can also be obtained using the

output: the large sample 100 (1 − δ) % CI for βj is β̂j ± z1−δ/2 se(β̂j ).
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The Wald test and CI tend to give good results if the sample size n is large.
Here 1 − δ refers to the coverage of the CI. A 90% CI uses z1−δ/2 = 1.645, a
95% CI uses z1−δ/2 = 1.96, and a 99% CI uses z1−δ/2 = 2.576.

For a GLM, often 3 models are of interest: the full model that uses all
p of the predictors xT = (xT

R,x
T
O), the reduced model that uses the r

predictors xR, and the saturated model that uses n parameters θ1, ..., θn

where n is the sample size. For the full model the p parameters β1, ..., βp are
estimated while the reduced model has r+1 parameters. Let lSAT (θ1 , ..., θn)
be the likelihood function for the saturated model and let lFULL(β) be the

likelihood function for the full model. Let LSAT = log lSAT (θ̂1 , ..., θ̂n) be the
log likelihood function for the saturated model evaluated at the maximum
likelihood estimator (MLE) (θ̂1, ..., θ̂n) and let LFULL = log lFULL(β̂) be the

log likelihood function for the full model evaluated at the MLE (β̂). Then
the deviance D = G2 = −2(LFULL − LSAT ). The degrees of freedom for
the deviance = dfFULL = n− p where n is the number of parameters for the
saturated model and p is the number of parameters for the full model.

The saturated model for logistic regression states that for i = 1, ..., n, the
Yi|xi are independent binomial(mi, ρi) random variables where ρ̂i = Yi/mi.
The saturated model is usually not very good for binary data (all mi = 1)
or if the mi are small. The saturated model can be good if all of the mi are
large or if ρi is very close to 0 or 1 whenever mi is not large.

The saturated model for Poisson regression states that for i = 1, ..., n,
the Yi|xi are independent Poisson(µi) random variables where µ̂i = Yi. The
saturated model is usually not very good for Poisson data, but the saturated
model may be good if n is fixed and all of the counts Yi are large.

If X ∼ χ2
d then E(X) = d and VAR(X) = 2d. An observed value of

X > d + 3
√
d is unusually large and an observed value of X < d − 3

√
d is

unusually small.

When the saturated model is good, a rule of thumb is that the logistic or
Poisson regression model is ok if G2 ≤ n − p (or if G2 ≤ n − p+ 3

√
n− p).

For binary LR, the χ2
n−p approximation for G2 is rarely good even for large

sample sizes n. For LR, the response plot is often a much better diagnostic
for goodness of fit, especially when ESP = xT

i β takes on many values and
when p << n. For PR, both the response plot and G2 ≤ n − p + 3

√
n− p

should be checked.

Response = Y
Terms = (x1, ..., xp)
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Sequential Analysis of Deviance

Total Change
Predictor df Deviance df Deviance

Ones n− 1 = dfo G2
o

x2 n− 2 1
x3 n− 3 1
...

...
...

...
xp n− p = dfFULL G2

FULL 1

-----------------------------------------

Data set = cbrain, Name of Fit = B1

Response = sex

Terms = (cephalic size log[size])

Sequential Analysis of Deviance

Total Change

Predictor df Deviance | df Deviance

Ones 266 363.820 |

cephalic 265 363.605 | 1 0.214643

size 264 315.793 | 1 47.8121

log[size] 263 305.045 | 1 10.7484

The above output, shown in symbols and for a real data set, is used for the
deviance test described below. Assume that the response plot has been made
and that the logistic or Poisson regression model fits the data well in that the
nonparametric step or lowess estimated mean function follows the estimated
model mean function closely and there is no evidence of overdispersion. The
deviance test is used to test whether β2 = 0 where β = (β1 ,β

T
2 )T = (α,ηT )T .

If this is the case, then the nontrivial predictors are not needed in the GLM
model. IfH0 : β2 = 0 is not rejected, then for Poisson regression the estimator

µ̂ = Y should be used while for logistic regression ρ̂ =

n∑

i=1

Yi/

n∑

i=1

mi should

be used. Note that ρ̂ = Y for binary logistic regression since mi ≡ 1 for
i = 1, ..., n. This test is similar to the ANOVA F test for multiple liner
regression.

The 4 step deviance test is
i) H0 : β2 = 0 HA : β2 6= 0,
ii) test statistic G2(o|F ) = G2

o −G2
FULL.

iii) The pval = P (χ2 > G2(o|F )) where χ2 ∼ χ2
q has a chi–square dis-

tribution with q = p − 1 degrees of freedom. Note that q = q + 1 − 1 =
dfo − dfFULL = n− 1 − (n− q − 1).

iv) Reject H0 if the pval ≤ δ and conclude that there is a GLM relationship
between Y and the predictors X2, ..., Xp. If pval> δ, then fail to reject H0 and
conclude that there is not a GLM relationship between Y and the predictors
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X2, ..., Xp. (Or there is not enough evidence to conclude that there is a GLM
relationship between Y and the predictors.)

This test can be performed in R by obtaining output from the full and
null model.

outf <- glm(Y˜x2 + x3 + ... + xp, family = binomial)

outn <- glm(Y˜1,family = binomial)

anova(outn,outf,test="Chi")

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 *** ****
2 *** **** k Gˆ2(0|F) pvalue

The output below, shown both in symbols and for a real data set, can be
used to perform the change in deviance test. If the reduced model leaves out
a single variable xi, then the change in deviance test becomes H0 : βi = 0
versus HA : βi 6= 0. This test is a competitor of the Wald test. This change in
deviance test is usually better than the Wald test if the sample size n is not
large, but the Wald test is often easier for software to produce. For large n
the test statistics from the two tests tend to be very similar (asymptotically
equivalent tests).

If the reduced model is good, then the EE plot of ESP (R) = xT
Riβ̂R

versus ESP = xT
i β̂ should be highly correlated with the identity line with

unit slope and zero intercept.

Response = Y Terms = (x1, ..., xp) (Full Model)

Label Estimate Std. Error Est/SE p-value

Constant β̂1 se(β̂1) zo,1 for H0 : β1 = 0

x2 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) for H0 : β1 = 0
...

...
...

...
...

xp β̂q se(β̂p) zo,p = β̂p/se(β̂p) for H0 : βp = 0
Degrees of freedom: n− p = dfFULL

Deviance: D = G2
FULL

Response = Y Terms = (x1, ..., xr) (Reduced Model)

Label Estimate Std. Error Est/SE p-value

Constant β̂1 se(β̂1) zo,1 for H0 : β1 = 0

x2 β̂2 se(β̂2) zo,2 = β̂2/se(β̂2) for H0 : β1 = 0
...

...
...

...
...

xr β̂r se(β̂r) zo,r = β̂k/se(β̂r) for H0 : βr = 0
Degrees of freedom: n− r = dfRED

Deviance: D = G2
RED

(Full Model) Response = Status,
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Terms = (Diagonal Bottom Top)

Label Estimate Std. Error Est/SE p-value

Constant 2360.49 5064.42 0.466 0.6411

Diagonal -19.8874 37.2830 -0.533 0.5937

Bottom 23.6950 45.5271 0.520 0.6027

Top 19.6464 60.6512 0.324 0.7460

Degrees of freedom: 196

Deviance: 0.009

(Reduced Model) Response = Status, Terms = (Diagonal)

Label Estimate Std. Error Est/SE p-value

Constant 989.545 219.032 4.518 0.0000

Diagonal -7.04376 1.55940 -4.517 0.0000

Degrees of freedom: 198

Deviance: 21.109

After obtaining an acceptable full model where

SP = β1 + β2x2 + · · ·+ βpxp = xT β = xT
RβR + xT

OβO

try to obtain a reduced model

SP (red) = β1 + βR2xR2 + · · ·+ βRrxRr = xT
RβR

where the reduced model uses r of the predictors used by the full model and
xO denotes the vector of p − r predictors that are in the full model but not
the reduced model. For logistic regression, the reduced model is Yi|xRi ∼
independent Binomial(mi, ρ(xRi)) while for Poisson regression the reduced
model is Yi|xRi ∼ independent Poisson(µ(xRi)) for i = 1, ..., n.

Assume that the response plot looks good. Then we want to test H0: the
reduced model is good (can be used instead of the full model) versus HA:
use the full model (the full model is significantly better than the reduced
model). Fit the full model and the reduced model to get the deviances G2

FULL

and G2
RED. The next test is similar to the partial F test for multiple linear

regression.

The 4 step change in deviance test is
i) H0: the reduced model is good HA: use the full model,
ii) test statistic G2(R|F ) = G2

RED −G2
FULL.

iii) The pval = P (χ2 > G2(R|F )) where χ2 ∼ χ2
p−r has a chi–square

distribution with p− r degrees of freedom. Note that p− 1 is the number of
nontrivial predictors in the full model while r− 1 is the number of nontrivial
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predictors in the reduced model. Also notice that p− r = dfRED − dfFULL =
n− r − (n− p) = (p− 1) − (r − 1).

iv) Reject H0 if the pval ≤ δ and conclude that the full model should be
used. If pval > δ, then fail to reject H0 and conclude that the reduced model
is good.

This test can be performed in R by obtaining output from the full and
reduced model.

outf <- glm(Y˜x2 + x3 + ... + xp, family = binomial)

outr <- glm(Y˜ x4 + x6 + x8,family = binomial)

anova(outr,outf,test="Chi")

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 *** ****
2 *** **** p-r Gˆ2(R|F) pvalue

Interpretation of coefficients: if x2, ..., xi−1, xi+1, ..., xp can be held fixed,
then increasing xi by 1 unit increases the sufficient predictor SP by βi units.
As a special case, consider logistic regression. Let ρ(x) = P (success|x) = 1−
P(failure|x) where a “success” is what is counted and a “failure” is what is not
counted (so if the Yi are binary, ρ(x) = P (Yi = 1|x)). Then the estimated

odds of success is Ω̂(x) =
ρ̂(x)

1 − ρ̂(x)
= exp(xT β̂). In logistic regression,

increasing a predictor xi by 1 unit (while holding all other predictors fixed)

multiplies the estimated odds of success by a factor of exp(β̂i).

Output for Full Model, Response = gender, Terms =

(age log[age] breadth circum headht

height length size log[size])

Number of cases: 267, Degrees of freedom: 257,

Deviance: 234.792

Logistic Regression Output for Reduced Model,

Response = gender, Terms = (height size)

Label Estimate Std. Error Est/SE p-value

Constant -6.26111 1.34466 -4.656 0.0000

height -0.0536078 0.0239044 -2.243 0.0249

size 0.0028215 0.000507935 5.555 0.0000

Number of cases: 267, Degrees of freedom: 264

Deviance: 313.457

Example 10.7. Let the response variable Y = gender = 0 for F and 1
for M. Let x2 = height (in inches) and x3 = size of head (in mm3). Logistic
regression is used, and data is from Gladstone (1905). There is output above.

a) Predict ρ̂(x) if height = x2 = 65 and size = x3 = 3500.
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b) The full model uses the predictors listed above to the right of Terms.
Perform a 4 step change in deviance test to see if the reduced model can be
used. Both models contain a constant.

Solution: a) ESP = β̂1 + β̂2x2 + β̂3x3 = −6.26111 − 0.0536078(65) +
0.0028215(3500) = 0.1296. So

ρ̂(x) =
eESP

1 + eESP
=

1.1384

1 + 1.1384
= 0.5324.

b) i) H0: the reduced model is good HA: use the full model
ii) G2(R|F ) = 313.457− 234.792 = 78.665
iii) Now df = 264 − 257 = 7, and comparing 78.665 with χ2

7,0.999 = 24.32
shows that the pval = 0 < 1 − 0.999 = 0.001.

iv) Reject H0, use the full model.

Example 10.8. Suppose that Y is a 1 or 0 depending on whether the
person is or is not credit worthy. Let x2 through x7 be the predictors and
use the following output to perform a 4 step deviance test. The credit data is
available from the text’s website as file credit.lsp, and is from Fahrmeir and
Tutz (2001).

Response = y

Sequential Analysis of Deviance

All fits include an intercept.

Total Change

Predictor df Deviance | df Deviance

Ones 999 1221.73 |

x2 998 1177.11 | 1 44.6148

x3 997 1176.55 | 1 0.561629

x4 996 1168.33 | 1 8.21723

x5 995 1168.20 | 1 0.137583

x6 994 1163.44 | 1 4.75625

x7 993 1158.22 | 1 5.21846

Solution: i) H0 : β2 = · · · = β7 HA: not H0

ii) G2(0|F ) = 1221.73− 1158.22 = 63.51
iii) Now df = 999 − 993 = 6, and comparing 63.51 with χ2

6,0.999 = 22.46
shows that the pval = 0 < 1 − 0.999 = 0.001.

iv) Reject H0, there is a LR relationship between Y = credit worthiness
and the predictors x2, ..., x7.

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -5.84211 1.74259 -3.353 0.0008

jaw ht 0.103606 0.0383650 ? ??
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Example 10.9. A museum has 60 skulls, some of which are human and
some of which are from apes. Consider trying to estimate whether the skull
type is human or ape from the height of the lower jaw. Use the above logistic
regression output to answer the following problems. The museum data is
available from the text’s website as file museum.lsp, and is from Schaaffhausen
(1878). Here x = x2.

a) Predict ρ̂(x) if x = 40.0.
b) Find a 95% CI for β2.
c) Perform the 4 step Wald test for H0 : β2 = 0.

Solution: a) exp[ESP ] = exp[β̂1+β̂2(40)] = exp[−5.84211+0.103606(40)] =
exp[−1.69787] = 0.1830731. So

ρ̂(x) =
eESP

1 + eESP
=

0.1830731

1 + 0.1830731
= 0.1547.

b) β̂2 ± 1.96SE(β̂2) = 0.103606± 1.96(0.03865) = 0.103606± 0.0751954 =
[0.02841, 0.1788].

c) i) H0 : β2 = 0 HA : β2 6= 0

ii) Z0 =
β̂2

SE(β̂2)
=

0.103606

0.038365
= 2.7005.

iii) Using a standard normal table, pval = 2P (Z < −2.70) = 2(0.0035) =
0.0070.

iv) Reject H0, jaw height is a useful LR predictor for whether the skull is
human or ape (so is needed in the LR model).

Label Estimate Std. Error Est/SE p-value

Constant -0.406023 0.877382 -0.463 0.6435

bombload 0.165425 0.0675296 2.450 0.0143

exper -0.0135223 0.00827920 -1.633 0.1024

type 0.568773 0.504297 1.128 0.2594

Example 10.10. Use the above output to perform inference on the num-
ber of locations where aircraft was damaged. The output is from a Poisson
regression. The variable exper = total months of aircrew experience while
type of aircraft was coded as 0 or 1. There were n = 30 cases. Data is from
Montgomery et al. (2001).

a) Predict µ̂(x) if bombload = x2 = 7.0, exper = x3 = 80.2, and type
= x4 = 1.0.

b) Perform the 4 step Wald test for H0 : β3 = 0.

c) Find a 95% confidence interval for β4.

Solution: a) ESP = β̂1 + β̂2x2 + β̂3x3 + β̂4x4 = −0.406023+0.165426(7)−
0.0135223(80.2)+0.568773(1) = 0.2362. So µ̂(x) = exp(ESP ) = exp(0.2360) =
1.2665.

b) i) H0 : β3 = 0 HA : β3 6= 0
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ii) t03 = −1.633.
iii) pval = 0.1024
iv) Fail to reject H0, exper in not needed in the PR model for number of

locations given that bombload and type are in the model.
c) β̂4 ± 1.96SE(β̂4) = 0.568773 ± 1.96(0.504297) = 0.568773 ± 0.9884 =

[−0.4196, 1.5572].

10.6 Variable and Model Selection

10.6.1 When n/p is Large

This subsection gives some rules of thumb for variable selection for logistic
and Poisson regression when SP = xT β. Before performing variable selection,
a useful full model needs to be found. The process of finding a useful full
model is an iterative process. Given a predictor x, sometimes x is not used
by itself in the full model. Suppose that Y is binary. Then to decide what
functions of x should be in the model, look at the conditional distribution of
x|Y = i for i = 0, 1. The rules shown in Table 10.1 are used if x is an indicator
variable or if x is a continuous variable. Replace normality by “symmetric
with similar spreads” and “symmetric with different spreads” in the second
and third lines of the table. See Cook and Weisberg (1999, p. 501) and Kay
and Little (1987).

The full model will often contain factors and interactions. If w is a nominal
variable with K levels, make w into a factor by using K − 1 (indicator or)
dummy variables x1,w, ..., xK−1,w in the full model. For example, let xi,w = 1
if w is at its ith level, and let xi,w = 0, otherwise. An interaction is a product
of two or more predictor variables. Interactions are difficult to interpret.
Often interactions are included in the full model, and then the reduced model
without any interactions is tested. The investigator is often hoping that the
interactions are not needed.

Table 10.1 Building the Full Logistic Regression Model

distribution of x|y = i variables to include in the model
x|y = i is an indicator x
x|y = i ∼ N(µi, σ2) x
x|y = i ∼ N(µi, σ2

i ) x and x2

x|y = i has a skewed distribution x and log(x)
x|y = i has support on (0,1) log(x) and log(1 − x)
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A scatterplot matrix is used to examine the marginal relationships of
the predictors and response. Place Y on the top or bottom of the scatterplot
matrix. Variables with outliers, missing values, or strong nonlinearities may
be so bad that they should not be included in the full model. Suppose that
all values of the variable x are positive. The log rule says add log(x) to the
full model if max(xi)/min(xi) > 10. For the binary logistic regression model,
it is often useful to mark the plotted points by a 0 if Y = 0 and by a + if
Y = 1.

To make a full model, use the above discussion and then make a response
plot to check that the full model is good. The number of predictors in the
full model should be much smaller than the number of data cases n. Suppose
that the Yi are binary for i = 1, ..., n. Let N1 =

∑
Yi = the number of 1s and

N0 = n−N1 = the number of 0s. A rough rule of thumb is that the full model
should use no more than min(N0, N1)/5 predictors and the final submodel
should have r predictor variables where r is small with r ≤ min(N0, N1)/10.
For Poisson regression, a rough rule of thumb is that the full model should
use no more than n/5 predictors and the final submodel should use no more
than n/10 predictors.

Variable selection is the search for a subset of predictor variables that
can be deleted without important loss of information. A model for variable
selection for many models, including GLMs, is given is Section 4.1. Let ESP
correspond to the full model and let ESP (I) correspond to the submodel I.

Definition 10.17. An EE plot is a plot of ESP (I) versus ESP .

Variable selection is closely related to the change in deviance test for
a reduced model. You are seeking a subset I of the variables to keep in the
model. The AIC(I) statistic is used as an aid in backward elimination and
forward selection. The full model and the model Imin found with the smallest
AIC are always of interest. Burnham and Anderson (2004) suggest that if
∆(I) = AIC(I) − AIC(Imin), then models with ∆(I) ≤ 2 are good, models
with 4 ≤ ∆(I) ≤ 7 are borderline, and models with ∆(I) > 10 should not be
used as the final submodel. Create a full model. The full model has a deviance
at least as small as that of any submodel. The final submodel should have an
EE plot that clusters tightly about the identity line. As a rough rule of thumb,
a good submodel I has corr(ESP (I), ESP ) ≥ 0.95. Find the submodel II
with the smallest number of predictors such that ∆(II) ≤ 2. Then submodel
II is the initial submodel to examine. Also examine submodels I with fewer
predictors than II with ∆(I) ≤ 7. Based on these cutoffs, ∆(I) + 2 seems to
be near a χ2

1 distribution for a model I that leaves one predictor (that has
one degree of freedom) out of Imin. Perhaps ∆(I) + 1.84 would be a better
approximation.
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Backward elimination starts with the full model with q = p − 1 non-
trivial variables, and the predictor that optimizes some criterion is deleted. A
constant x∗1 = x1 ≡ 1 is always in the model. Then there are q− 1 nontrivial
variables left, and the predictor that optimizes some criterion is deleted. This
process continues for models with q − 2, q − 3, ..., 2, and 1 predictors.

Forward selection starts with the model with a constant x∗1 = x1 ≡ 1,
and the predictor that optimizes some criterion is added. Then there are 2
variables in the model, and the predictor that optimizes some criterion is
added. This process continues for models with 2, 3, ..., p−1, and p predictors.
Both forward selection and backward elimination result in a sequence, often
different, of p models {x∗1}, {x∗1, x∗2}, ..., {x∗1, x∗2, ..., x∗p−1}, {x∗1, x∗2, ..., x∗p} =
full model.

All subsets variable selection can be performed with the following pro-
cedure. Compute the ESP of the GLM and compute the OLS ESP found by
the OLS regression of Y on x. Check that |corr(ESP, OLS ESP)| ≥ 0.95.This
high correlation will exist for many data sets. Then perform multiple linear
regression and the corresponding all subsets OLS variable selection with the
Cp(I) criterion. If the sample size n is large and Cp(I) ≤ 2r where the subset
I has r variables including a constant, then corr(OLS ESP, OLS ESP(I))
will be high by Olive and Hawkins (2005), and hence corr(ESP, ESP(I))
will be high. In other words, if the OLS ESP and GLM ESP are highly
correlated, then performing multiple linear regression and the corresponding
MLR variable selection (e.g. forward selection, backward elimination, or all
subsets selection) based on the Cp(I) criterion may provide many interesting
submodels.

Know how to find good models from output. The following rules of thumb
(roughly in order of decreasing importance) may be useful. It is often not
possible to have all 12 rules of thumb to hold simultaneously. Let submodel
I have rI predictors, including a constant. Do not use more predictors than
submodel II , which has no more predictors than the minimum AIC model.
It is possible that II = Imin = Ifull . Assume the response plot for the full
model is good. Then the submodel I is good if
i) the response plot for the submodel looks like the response plot for the full
model.
ii) corr(ESP,ESP(I)) ≥ 0.95.
iii) The plotted points in the EE plot cluster tightly about the identity line.
iv) Want the pval ≥ 0.01 for the change in deviance test that uses I as the
reduced model.
v) For binary LR want rI ≤ min(N1 , N0)/10. For PR, want rI ≤ n/10.
vi) Fit OLS to the full and reduced models. The plotted points in the plot of
the OLS residuals from the submodel versus the OLS residuals from the full
model should cluster tightly about the identity line.
vii) Want the deviance G2(I) ≥ G2(full) but close. (G2(I) ≥ G2(full) since
adding predictors to I does not increase the deviance.)
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viii) Want AIC(I) ≤ AIC(Imin) + 7 where Imin is the minimum AIC model
found by the variable selection procedure.
ix) Want hardly any predictors with pvals > 0.05.
x) Want few predictors with pvals between 0.01 and 0.05.
xi) Want G2(I) ≤ n− rI + 3

√
n− rI .

xii) The OD plot should look good.

Heuristically, forward selection tries to add the variable that will decrease
the deviance the most. A decrease in deviance less than 4 (if the predictor
has 1 degree of freedom) may be troubling in that a bad predictor may have
been added. In practice, the forward selection program may add the variable
such that the submodel I with j nontrivial predictors has a) the smallest
AIC(I), b) the smallest deviance G2(I), or c) the smallest pval (preferably
from a change in deviance test but possibly from a Wald test) in the test
H0 : βi = 0 versus HA : βi 6= 0 where the current model with j terms plus
the predictor xi is treated as the full model (for all variables xi not yet in
the model).

Suppose that the full model is good and is stored in M1. Let M2, M3,
M4, and M5 be candidate submodels found after forward selection, backward
elimination, etc. Make a scatterplot matrix of the ESPs for M2, M3, M4,
M5, and M1. Good candidates should have estimated sufficient predictors
that are highly correlated with the full model estimated sufficient predictor
(the correlation should be at least 0.9 and preferably greater than 0.95). For
binary logistic regression, mark the symbols (0 and +) using the response
variable Y .

The final submodel should have few predictors, few variables with large
Wald pvals (0.01 to 0.05 is borderline), a good response plot, and an EE plot
that clusters tightly about the identity line. If a factor has K − 1 dummy
variables, either keep all K − 1 dummy variables or delete all K − 1 dummy
variables, do not delete some of the dummy variables.

Some logistic regression output can be unreliable if ρ̂(x) = 1 or ρ̂(x) = 0
exactly. Then ESP = ∞ or ESP = −∞ respectively. Some binary logistic
regression output can also be unreliable if there is perfect classification of 0s
and 1s so that the 0s are to the left and the 1s to the right of ESP = 0 in
the response plot. Then the logistic regression MLE β̂LR does not exist, and
variable selection rules of thumb may fail. Note that when there is perfect
classification, the logistic regression model is very useful, but the logistic
curve can not approximate a step function rising from 0 to 1 at ESP = 0,
arbitrarily closely.

Example 10.11. The following output is for forward selection. All models
use a constant. For forward selection, the min AIC model uses {F}LOC, TYP,
AGE, CAN, SYS, PCO, and PH. Model II uses {F}LOC, TYP, AGE, CAN,
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and SYS. Let model I use {F}LOC, TYP, AGE, and CAN. This model
may be good, so for forward selection, models II and I are the first models
to examine. {F}LOC is notation used for a factor with K − 1 = 3 dummy
variables, while k is the number of variables in I, including a constant. Output
is from the Cook and Weisberg (1999) Arc software.

Forward Selection comment

Base terms: ({F}LOC TYP)

Deviance Pearson X2 | k AIC > min AIC + 7

Add:AGE 141.873 187.84 | 5 151.873

Base terms: ({F}LOC TYP AGE)

Deviance Pearson X2| k AIC < min AIC + 7

Add:CAN 134.595 170.367 | 6 146.595

({F}LOC TYP AGE CAN) could be a good model

Base terms: ({F}LOC TYP AGE CAN)

Deviance Pearson X2 | k AIC < min AIC + 2

Add:SYS 128.441 179.753 | 7 142.441

({F}LOC TYP AGE CAN SYS) could be a good model

Base terms: ({F}LOC TYP AGE CAN SYS)

Deviance Pearson X2 | k AIC < min AIC + 2

Add:PCO 126.572 186.71 | 8 142.572

PCO not important since AIC < min AIC + 2

Base terms: ({F}LOC TYP AGE CAN SYS PCO)

Deviance Pearson X2 | k AIC

Add:PH 123.285 191.264 | 9 141.285 min AIC

PH not important since AIC < min AIC + 2

B1 B2 B3 B4

df 255 258 259 263
# of predictors 11 8 7 3

# with 0.01 ≤ Wald p-value ≤ 0.05 2 1 0 0
# with Wald p-value > 0.05 4 0 0 0

G2 233.765 237.212 243.482 278.787
AIC 257.765 255.212 259.482 286.787

corr(ESP,ESP(I)) 1.0 0.99 0.97 0.80
p-value for change in deviance test 1.0 0.328 0.045 0.000

Example 10.12. The above table gives summary statistics for 4 models
considered as final submodels after performing variable selection. One pre-
dictor was a factor, and a factor was considered to have a bad Wald p-value
> 0.05 if all of the dummy variables corresponding to the factor had p-values
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> 0.05. Similarly the factor was considered to have a borderline p-value with
0.01 ≤ p-value ≤ 0.05 if none of the dummy variables corresponding to the
factor had a p-value < 0.01 but at least one dummy variable had a p-value
between 0.01 and 0.05. The response was binary and logistic regression was
used. The response plot for the full model B1 was good. Model B2 was the
minimum AIC model found. There were 267 cases: for the response, 113 were
0’s and 154 were 1’s.

Which two models are the best candidates for the final submodel? Explain
briefly why each of the other 2 submodels should not be used.

Solution: B2 and B3 are best. B1 has too many predictors with rather
large p-values. For B4, the AIC is too high and the corr and p-value are too
low.
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Fig. 10.7 Visualizing the ICU Data

Example 10.13. The ICU data is available from the text’s website and
from STATLIB (http://lib.stat.cmu.edu/DASL/Datafiles/ICU.html). Also
see Hosmer and Lemeshow (2000, pp. 23-25). The survival of 200 patients
following admission to an intensive care unit was studied with logistic regres-
sion. The response variable was STA (0 = Lived, 1 = Died). Predictors were
AGE, SEX (0 = Male, 1 = Female), RACE (1 = White, 2 = Black, 3 =
Other), SER= Service at ICU admission (0 = Medical, 1 = Surgical), CAN=
Is cancer part of the present problem? (0 = No, 1 = Yes), CRN= History
of chronic renal failure (0 = No, 1 = Yes), INF= Infection probable at ICU
admission (0 = No, 1 = Yes), CPR= CPR prior to ICU admission (0 = No, 1
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Fig. 10.8 EE Plot Suggests Race is an Important Predictor

= Yes), SYS= Systolic blood pressure at ICU admission (in mm Hg), HRA=
Heart rate at ICU admission (beats/min), PRE= Previous admission to an
ICU within 6 months (0 = No, 1 = Yes), TYP= Type of admission (0 =
Elective, 1 = Emergency), FRA= Long bone, multiple, neck, single area, or
hip fracture (0 = No, 1 = Yes), PO2= PO2 from initial blood gases (0 if >60,
1 if ≤ 60), PH= PH from initial blood gases (0 if ≥ 7.25, 1 if <7.25), PCO=
PCO2 from initial blood gases (0 if ≤ 45, 1 if >45), Bic= Bicarbonate from
initial blood gases (0 if ≥ 18, 1 if <18), CRE= Creatinine from initial blood
gases (0 if ≤ 2.0, 1 if >2.0), and LOC= Level of consciousness at admission
(0 = no coma or stupor, 1= deep stupor, 2 = coma).

Factors LOC and RACE had two indicator variables to model the three
levels. The response plot in Figure 10.7 shows that the logistic regression
model using the 19 predictors is useful for predicting survival, although the
output has ρ̂(x) = 1 or ρ̂(x) = 0 exactly for some cases. Note that the
step function of slice proportions tracks the model logistic curve fairly well.
Variable selection, using forward selection and backward elimination with
the AIC criterion, suggested the submodel using AGE, CAN, SYS, TYP, and
LOC. The EE plot of ESP(sub) versus ESP(full) is shown in Figure 10.8.
The plotted points in the EE plot should cluster tightly about the identity
line if the full model and the submodel are good. Since this clustering did
not occur, the submodel seems to be poor. The lowest cluster of points and
the case on the right nearest to the identity line correspond to black patients.
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Fig. 10.9 EE Plot Suggests Race is an Important Predictor

The main cluster and upper right cluster correspond to patients who are not
black.

Figure 10.9 shows the EE plot when RACE is added to the submodel.
Then all of the points cluster about the identity line. Although numerical
variable selection did not suggest that RACE is important, perhaps since
output had ρ̂(x) = 1 or ρ̂(x) = 0 exactly for some cases, the two EE plots
suggest that RACE is important. Also the RACE variable could be replaced
by an indicator for black. This example illustrates how the plots can be
used to quickly improve and check the models obtained by following logistic
regression with variable selection even if the MLE β̂LR does not exist.

P1 P2 P3 P4

df 144 147 148 149
# of predictors 6 3 2 1

# with 0.01 ≤ Wald p-value ≤ 0.05 1 0 0 0
# with Wald p-value > 0.05 3 0 1 0

G2 127.506 131.644 147.151 149.861
AIC 141.506 139.604 153.151 153.861

corr(ESP,ESP(I)) 1.0 0.954 0.810 0.792
p-value for change in deviance test 1.0 0.247 0.0006 0.0

Example 10.14. The above table gives summary statistics for 4 models
considered as final submodels after performing variable selection. Poisson
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regression was used. The response plot for the full model P1 was good. Model
P2 was the minimum AIC model found.

Which model is the best candidate for the final submodel? Explain briefly
why each of the other 3 submodels should not be used.

Solution: P2 is best. P1 has too many predictors with large pvalues and
more predictors than the minimum AIC model. P3 and P4 have corr and
pvalue too low and AIC too high.

Warning. Variable selection for GLMs is very similar to that for multiple
linear regression. Finding a model II from variable selection, and using GLM
output for model II does not give valid tests and confidence intervals. If there
is a good full model that was found before examining the response, and if II
is the minimum AIC model, then Section 10.9 describes how to do inference
after variable selection. If the model needs to be built using the response, use
data splitting. A pilot study can also be useful.

10.6.2 When n/p is Not Necessarily Large

Forward selection with EBIC, lasso, and/or elastic net can be used for the
Cox proportional hazards regression model and for some GLMs, including
binomial and Poisson regression. The relaxed lasso = VS-lasso and relaxed
elastic net = VS-elastic net estimators apply the GLM or Cox regression
model to the predictors with nonzero lasso or elastic net coefficients. As
with multiple linear regression, the population number of active nontrivial
predictors = kS, but for a GLM, model I with SP = xT

I βI has k active
nontrivial predictors. See Section 4.1.

Remark 10.1. Most of the plots in this chapter that use ESP = xT β̂,
and can also be made using ESP (I) = xT

I β̂I . Obtaining a good ESP becomes
more difficult as n/p becomes smaller.

Remark 10.2. Suppose the 1D regression model, such as a GLM, has
SP = xT β. If n > 10p, then fit the model using Chapter 5 MLR type
methods, such as relaxed lasso and forward selection (using Cp), to find a
subset of predictors I. If n < 10p, fit the model with MLR lasso. (Limited
experience suggests that MLR with EBIC leads to severe underfitting if n <
10p if the 1D regression model is not MLR.) Then fit the 1D regression
with Y and xI . Check the model with the response plot and the EE plot
of the MLR ESP versus the 1D regression ESP. High correlation in the EE
plot suggests MLR model selection may be useful for the 1D regression model
selection. For some GLMs, make the OD plot. If xI is an a×1 vector, we want
n ≥ Ja where J ≥ 5 and preferably J ≥ 10. For binary logistic regression, we
want a ≥ J min(N0, N1). Note that if n < 5p, the EE plot of the submodel
ESP versus the full model ESP should not be used since the full model is
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overfitting. This method should be best when the predictors are linearly
related: there should be no strong nonlinear relationships. See Olive and
Hawkins (2005) for this method when n > 10p.

Some R commands for GLM lasso and Remark 10.2 are shown below. Note
that the family command indicates whether a binomial regression (including
binary regression) or a Poisson regression is being fit. The default for GLM
lasso uses 10-fold CV with a deviance criterion.

set.seed(1976) #Binary regression

library(glmnet)

n<-100

m<-1 #binary regression

q <- 100 #100 nontrivial predictors, 95 inactive

k <- 5 #k_S = 5 population active predictors

y <- 1:n

mv <- m + 0 * y

vars <- 1:q

beta <- 0 * 1:q

beta[1:k] <- beta[1:k] + 1

beta

alpha <- 0

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

SP <- alpha + x[,1:k] %*% beta[1:k]

pv <- exp(SP)/(1 + exp(SP))

y <- rbinom(n,size=m,prob=pv)

y

out<-cv.glmnet(x,y,family="binomial")

lam <- out$lambda.min

bhat <- as.vector(predict(out,type="coefficients",s=lam))

ahat <- bhat[1] #alphahat

bhat<-bhat[-1]

vin <- vars[bhat!=0] #want 1-5, overfit

[1] 1 2 3 4 5 6 16 59 61 74 75 76 96

ind <- as.data.frame(cbind(y,x[,vin])) #relaxed lasso GLM

tem <- glm(y˜.,family="binomial",data=ind)

tem$coef

(Inter) V2 V3 V4 V5 V6

0.2103 1.0037 1.4304 0.6208 1.8805 0.3831

V7 V8 V9 V10 V11 V12

0.8971 0.4716 0.5196 0.8900 0.6673 -0.7611

V13 V14

-0.5918 0.6926

lrplot3(tem=tem,x=x[,vin]) #binary response plot

#now use MLR lasso

outm<-cv.glmnet(x,y)
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lamm <- outm$lambda.min

bm <- as.vector(predict(outm,type="coefficients",s=lamm))

am <- bm[1] #alphahat

bm<-bm[-1]

vm <- vars[bm!=0] #1 more variable than GLM lasso

vm

[1] 1 2 3 4 5 6 16 35 59 61 74 75 76 96

vin

[1] 1 2 3 4 5 6 16 59 61 74 75 76 96

inm <- as.data.frame(cbind(y,x[,vm])) #relaxed lasso GLM

tm <- glm(y˜.,family="binomial",data=inm)

lrplot3(tem=tm,x=x[,vm]) #binary response plot

#Now use MLR forward selection with EBIC since n < 10p.

library(leaps)

out<-fsel(x,y)

vin<-out$vin

vin #severe underfit

[1] 4

inm <- as.data.frame(cbind(y,x[,vin]))

tm <- glm(y˜.,family="binomial",data=inm)

lrplot3(tem=tm,x=x[,vin]) #binary response plot

#Poisson regression, using same x and beta as above

y <- rpois(n,lambda=exp(SP))

out<-cv.glmnet(x,y,family="poisson")

lam <- out$lambda.min

bhat <- as.vector(predict(out,type="coefficients",s=lam))

ahat <- bhat[1] #alphahat

bhat<-bhat[-1]

vin <- vars[bhat!=0] #want 1-5, overfit

vin

[1] 1 2 3 4 5 7 9 10 13 16 17 18 21 23 25

26 27 30 37 39 40 42 44 46 51 53 57 59 62 71 74 84 85 93 95 97 99

ind <- as.data.frame(cbind(y,x[,vin])) #relaxed lasso GLM

out <- glm(y˜.,family="poisson",data=ind)

ESP <- predict(out)

prplot2(ESP,x=x[,vin],y) #response and OD plots

#now use MLR lasso

outm<-cv.glmnet(x,y)

lamm <- outm$lambda.min

bm <- as.vector(predict(outm,type="coefficients",s=lamm))

am <- bm[1] #alphahat

bm<-bm[-1]

vm <- vars[bm!=0]

vm #much less overfit than GLM lasso

[1] 1 2 3 4 5 9 17 21 22 27 29 60 75 95



10.7 Generalized Additive Models 465

inm <- as.data.frame(cbind(y,x[,vm])) #relaxed lasso GLM

out <- glm(y˜.,family="poisson",data=inm)

ESP <- predict(out)

prplot2(ESP,x=x[,vm],y) #response and OD plots

#Now use MLR forward selection with EBIC since n < 10p.

library(leaps)

out<-fsel(x,y)

vin<-out$vin

vin #severe underfit causes poor fit and overdispersion

[1] 5

inm <- as.data.frame(cbind(y,x[,vin]))

out <- glm(y˜.,family="poisson",data=inm)

ESP <- predict(out)

prplot2(ESP,x=x[,vin],y) #response and OD plots

10.7 Generalized Additive Models

There are many alternatives to the binomial and Poisson regression GLMs.
Alternatives to the binomial GLM of Definition 10.7 include the discriminant
function model of Definition 10.8, the quasi-binomial model, the binomial
generalized additive model (GAM), and the beta-binomial model of Definition
10.2.

Alternatives to the Poisson GLM of Definition 10.12 include the quasi-
Poisson model, the Poisson GAM, and the negative binomial regression model
of Definition 10.3. Other alternatives include the zero truncated Poisson
model, the zero truncated negative binomial model, the hurdle or zero in-
flated Poisson model, the hurdle or zero inflated negative binomial model,
the hurdle or zero inflated additive Poisson model, and the hurdle or zero
inflated additive negative binomial model. See Zuur et al. (2009), Simonoff
(2003), and Hilbe (2011).

Many of these models can be visualized with response plots. An interesting
research project would be to make response plots for these models, adding
the conditional mean function and lowess to the plot. Also make OD plots to
check whether the model handled overdispersion. This section will examine
several of the above models, especially GAMs. A GAM is a 1D regression
model with SP=AP and ESP=EAP. We may use ESP for a GLM and EAP
for a GAM.

Definition 10.18. In a 1D regression, Y is independent of x given the
sufficient predictor SP = h(x) where SP = xT β for a GLM. In a general-
ized additive model, Y is independent of x = (x1, ..., xp)

T given the additive
predictor AP = α +

∑p
j=2 Sj(xj) for some (usually unknown) functions Sj .
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The estimated sufficient predictor ESP = ĥ(x) and ESP = xT β̂ for a GLM.
The estimated additive predictor EAP = α̂+

∑p
j=2 Ŝj(xj). An ESP–response

plot is a plot of ESP versus Y while an EAP–response plot is a plot of EAP
versus Y .

Note that a GLM is a special case of the GAM using Sj(xj) = βjxj for j =
2, ..., p with α = β1. A GLM with SP = α+β2x2 +β3x3 +β4x1x2 is a special
case of a GAM with x4 ≡ x1x2. A GLM with SP = α+ β2x2 + β3x

2
2 + β4x3

is a special case of a GAM with S2(x2) = β2x2 + β3x
2
2 and S3(x3) = β4x3.

A GLM with p terms may be equivalent to a GAM with k terms w1, ..., wk

where k < p.
The plotted points in the EE plot defined below should scatter tightly

about the identity line if the GLM is appropriate and if the sample size is
large enough so that the ESP is a good estimator of the SP and the EAP is a
good estimator of the AP. If the clustering is not tight but the GAM gives a
reasonable approximation to the data, as judged by the EAP–response plot,
then examine the Ŝj of the GAM to see if some simple terms such as x2

i can
be added to the GLM so that the modified GLM has a good ESP–response
plot. (This technique is easiest if the GLM and GAM have the same p terms
x1, ..., xp. The technique is more difficult, for example, if the GLM has terms
x1, x2, x

2
2, and x3 while the GAM has terms x1, x2 and x3.)

Definition 10.19. An EE plot is a plot of EAP versus ESP.

Definition 10.20. Recall the binomial GLM

Yi|SPi ∼ binomial

(
mi,

exp(SPi)

1 + exp(SPi)

)
.

Let ρ(w) = exp(w)/[1 + exp(w)].

i) The binomial GAM is Yi|APi ∼ binomial

(
mi,

exp(APi)

1 + exp(APi)

)
. The

EAP–response plot adds the estimated mean function ρ(EAP ) and a step
function to the plot as done for the ESP–response plot of Section 10.3.

ii) The quasi-binomial model is a 1D regression model with E(Yi|xi) =
miρ(SPi) and V (Yi|xi) = φ mi ρ(SPi)(1 − ρ(SPi)) where the dispersion
parameter φ > 0. Note that this model and the binomial GLM have the
same conditional mean function, and the conditional variance functions are
the same if φ = 1.

Definition 10.21. Recall the Poisson GLM Y |SP ∼ Poisson(exp(SP )).
i) The Poisson GAM is Y |AP ∼ Poisson(exp(AP )). The EAP–response

plot adds the estimated mean function exp(EAP ) and lowess to the plot as
done for the ESP–response plot of Section 10.4.

ii) The quasi-Poisson model is a 1D regression model with E(Y |x) =
exp(SP ) and V (Y |x) = φ exp(SP ) where the dispersion parameter φ > 0.
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Note that this model and the Poisson GLM have the same conditional mean
function, and the conditional variance functions are the same if φ = 1.

For the quasi-binomial model, the conditional mean and variance functions
are similar to those of the binomial distribution, but it is not assumed that
Y |SP has a binomial distribution. Similarly, it is not assumed that Y |SP
has a Poisson distribution for the quasi-Poisson model.

Next, some notation is needed to derive the zero truncated Poisson re-
gression model. Y has a zero truncated Poisson distribution, Y ∼ ZTP (µ),

if the probability mass function (pmf) of Y is f(y) =
e−µ µy

(1 − eµ) y!
for

y = 1, 2, 3, ... where µ > 0. The ZTP pmf is obtained from a Poisson distri-
bution where y = 0 values are truncated, so not allowed. If W ∼ Poisson(µ)
with pmf fW (y), then P (W = 0) = e−µ, so

∑∞
y=1 fW (y) = 1 − e−µ =∑∞

y=0 fW (y) −∑∞
y=1 fW (y). So the ZTP pmf f(y) = fW (y)/(1 − eµ) for

y 6= 0.
Now E(Y ) =

∑∞
y=1 yf(y) =

∑∞
y=0 yf(y) =

∑∞
y=0 yfW (y)/(1 − e−µ) =

E(W )/(1 − e−µ) = µ/(1 − e−µ).
Similarly, E(Y 2) =

∑∞
y=1 y

2f(y) =
∑∞

y=0 y
2f(y) =

∑∞
y=0 y

2fW (y)/(1 −
e−µ) = E(W 2)/(1 − e−µ) = [µ2 + µ]/(1− e−µ). So

V (Y ) = E(Y 2) − (E(Y ))2 =
µ2 + µ

1 − e−µ
−
(

µ

1 − e−µ

)2

.

Definition 10.22. The zero truncated Poisson regression model has
Y |SP ∼ ZTP (exp(SP )). Hence the parameter µ(SP ) = exp(SP ),

E(Y |x) =
exp(SP )

1 − exp(− exp(SP ))
and

V (Y |SP ) =
[exp(SP )]2 + exp(SP )

1 − exp(− exp(SP ))
−
(

exp(SP )

1 − exp(− exp(SP ))

)2

.

The quasi-binomial, quasi-Poisson, and zero truncated Poisson regression
models have GAM analogs that replace SP by AP. Definitions 10.1, 10.2, and
10.3 give important GAM models where SP = AP. Several of these models
are GAM analogs of models discussed in Sections 10.2, 10.3, and 10.4.

10.7.1 Response Plots

For a 1D regression model, there are several useful plots using the ESP. A
GAM is a 1D regression model with ESP = EAP . It is well known that the
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residual plot of ESP or EAP versus the residuals (on the vertical axis) is
useful for checking the model. Similarly, the response plot of ESP or EAP
versus the response Y is useful. Assume that the ESP or EAP takes on many
values. For a GAM, substitute EAP for ESP for the plots in Definitions 10.9,
10.10, 10.11, 10.13, 10.14, and 10.16.

The response plot for the beta-binomial GAM is similar to that for the
binomial GAM. The plots for the negative binomial GAM are similar to those
of the Poisson regression GAM, including the plots in Definition 10.16. See
Examples 10.4, 10.5, and 10.6.

10.7.2 The EE Plot for Variable Selection

Variable selection is the search for a subset of variables that can be deleted
without important loss of information. Olive and Hawkins (2005) make an
EE plot of ESP (I) versus ESP where ESP (I) is for a submodel I and ESP
is for the full model. This plot can also be used to complement the hypothesis
test that the reduced model I (which is selected before gathering data) can
be used instead of the full model. The obvious extension to GAMs is to make
the EE plot of EAP (I) versus EAP . If the fitted full model and submodel
I are good, then the plotted points should follow the identity line with high
correlation (use correlation ≥ 0.95 as a benchmark).

To justify this claim, assume that there exists a subset S of predictor
variables such that if xS is in the model, then none of the other predictors
is needed in the model. Write E for these (‘extraneous’) variables not in S,
partitioning x = (xT

S ,x
T
E)T . Then

AP = α+

p∑

j=2

Sj(xj) = α+
∑

j∈S

Sj(xj)+
∑

k∈E

Sk(xk) = α+
∑

j∈S

Sj(xj). (10.10)

The extraneous terms that can be eliminated given that the subset S is in
the model have Sk(xk) = 0 for k ∈ E.

Now suppose that I is a candidate subset of predictors and that S ⊆ I.
Then

AP = α+

p∑

j=2

Sj(xj) = α+
∑

j∈S

Sj(xj) = α+
∑

k∈I

Sk(xk) = AP (I),

(if I includes predictors from E, these will have Sk(xk) = 0). For any subset
I that includes all relevant predictors, the correlation corr(AP,AP(I)) = 1.
Hence if the full model and submodel are reasonable and if EAP and EAP(I)
are good estimators of AP and AP(I), then the plotted points in the EE plot
of EAP(I) versus EAP will follow the identity line with high correlation.
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10.7.3 An EE Plot for Checking the GLM

One useful application of a GAM is for checking whether the corresponding
GLM has the correct form of the predictors xj in the model. Suppose a GLM
and the corresponding GAM are both fit with the same link function where
at least one general Sj(xj) was used. Since the GLM is a special case of the
GAM, the plotted points in the EE plot of EAP versus ESP should follow
the identity line with very high correlation if the fitted GLM and GAM are
roughly equivalent. If the correlation is not very high and the GAM has some
nonlinear Ŝj(xj), update the GLM, and remake the EE plot. For example,
update the GLM by adding terms such as x2

j and possibly x3
j , or add log(xj)

if xj is highly skewed. Then remake the EAP versus ESP plot.

10.7.4 Examples

For the binary logistic GAM, the EAP will not be a consistent estimator
of the AP if the estimated probability ρ̂(AP ) = ρ(EAP ) is exactly zero or
one. The following example will show that GAM output and plots can still
be used for exploratory data analysis. The example also illustrates that EE
plots are useful for detecting cases with high leverage and clusters of cases.
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Fig. 10.10 Visualizing the ICU GAM
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Fig. 10.11 GAM and GLM give Similar Success Probabilities

Example 10.15. For the ICU data of Example 10.13, a binary general-
ized additive model was fit with unspecified functions for AGE, SYS, and
HRA, and linear functions for the remaining 16 variables. Output suggested
that functions for SYS and HRA are linear but the function for AGE may
be slightly curved. Several cases had ρ̂(AP ) equal to zero or one, but the
response plot in Figure 10.10 suggests that the full model is useful for pre-
dicting survival. Note that the ten slice step function closely tracks the logistic
curve. To visualize the model with the response plot, use Y |x ≈ binomial[1,
ρ(EAP ) = eEAP /(1+eEAP )]. When x is such that EAP < −5, ρ(EAP ) ≈ 0.
If EAP > 5, ρ(EAP ) ≈ 1, and if EAP = 0, then ρ(EAP ) = 0.5. The logistic
curve gives ρ(EAP ) ≈ P (Y = 1|x) = ρ(AP ). The different estimated bi-
nomial distributions have ρ̂(AP ) = ρ(EAP ) that increases according to the
logistic curve as EAP increases. If the step function tracks the logistic curve
closely, the binary GAM gives useful smoothed estimates of ρ(AP ) provided
that the number of 0s and 1s are both much larger than the model degrees
of freedom so that the GAM is not overfitting.

A binary logistic regression was also fit, and Figure 10.11 shows the plot of
EAP versus ESP. The plot shows that the near zero and near one probabilities
are handled differently by the GAM and GLM, but the estimated success
probabilities for the two models are similar: ρ̂(ESP ) ≈ ρ̂(EAP ). Hence we
used the GLM and perform variable selection as in Example 10.13. Some R
code is below.

##ICU data from Statlib or URL
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#http://parker.ad.siu.edu/Olive/ICU.lsp

#delete header of ICU.lsp and delete last parentheses

#at the end of the file. Save the file on F drive as

#icu.txt.

icu <- read.table("F:\\icu.txt")

names(icu) <- c("ID", "STA", "AGE", "SEX", "RACE",

"SER", "CAN", "CRN", "INF", "CPR", "SYS", "HRA",

"PRE", "TYP", "FRA", "PO2", "PH", "PCO", "Bic",

"CRE", "LOC")

icu[,5] <- as.factor(icu[,5])

icu[,21] <- as.factor(icu[,21])

icu2<-icu[,-1]

outf <- glm(formula=STA˜.,family=binomial,data=icu2)

ESP <- predict(outf)

library(mgcv)

outgam <- gam(STA ˜ s(AGE)+SEX+RACE+SER+CAN+CRN+INF+

CPR+s(SYS)+s(HRA)+PRE+TYP+FRA+PO2+PH+PCO+Bic+CRE+LOC,

family=binomial,data=icu2)

EAP <- predict.gam(outgam)

plot(EAP,ESP)

abline(0,1)

#Figure 10.11

Y <- icu2[,1]

lrplot3(ESP=EAP,Y,slices=18)

#Figure 10.10

lrplot3(ESP,Y,slices=18)

#Figure 10.7

Example 10.16. For binary data, Kay and Little (1987) suggest exam-
ining the two distributions x|Y = 0 and x|Y = 1. Use predictor x if the two
distributions are roughly symmetric with similar spread. Use x and x2 if the
distributions are roughly symmetric with different spread. Use x and log(x)
if one or both of the distributions are skewed. The log rule says add log(x)
to the model if min(x) > 0 and max(x)/min(x) > 10. The Gladstone (1905)
data is useful for illustrating these suggestions. The response was gender with
Y = 1 for male and Y = 0 for female. The predictors were age, height, and
the head measurements circumference, length, and size. When the GAM was
fit without log(age) or log(size), the Ŝj for age, height, and circumference
were nonlinear. The log rule suggested adding log(age), and log(size) was
added because size is skewed. The GAM for this model had plots of Ŝj(xj)
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that were fairly linear. The response plot is not shown but was similar to
Figure 10.10, and the step function tracked the logistic curve closely. When
EAP = 0, the estimated probability of Y = 1 (male) is 0.5. When EAP > 5
the estimated probability is near 1, but near 0 for EAP < −5. The response
plot for the binomial GLM, not shown, is similar.
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Fig. 10.12 EE plot for cubic GLM for Heart Attack Data

Example 10.17. Wood (2017, pp. 125-130) describes heart attack data
where the response Y is the number of heart attacks for mi patients suspected
of suffering a heart attack. The enzyme ck (creatine kinase) was measured for
the patients and it was determined whether the patient had a heart attack
or not. A binomial GLM with predictors x1 = ck, x2 = [ck]2, and x3 = [ck]3

was fit and had AIC = 33.66. The binomial GAM with predictor x1 was fit in
R, and Figure 10.12 shows that the EE plot for the GLM was not too good.
The log rule suggests using ck and log(ck), but ck was not significant. Hence
a GLM with the single predictor log(ck) was fit. Figure 10.13 shows the EE
plot, and Figure 10.14 shows the response plot where the Zi = Yi/mi track
the logistic curve closely. There was no evidence of overdispersion and the
model had AIC = 33.45. The GAM using log(ck) had a linear Ŝ, and the
correlation of the plotted points in the EE plot, not shown, was one.
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Fig. 10.13 EE plot with log(ck) in the GLM
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Fig. 10.14 Response Plot for Heart Attack Data
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10.8 Overdispersion

Definition 10.23. Overdispersion occurs when the actual conditional vari-
ance function V (Y |x) is larger than the model conditional variance function
VM (Y |x).

Overdispersion can occur if the model underfits, if the response variables
are correlated, if the population follows a mixture distribution, or if outliers
are present. Typically it is assumed that the model is correct so V (Y |x) =
VM (Y |x). Hence the subscript M is usually suppressed. A GAM has condi-
tional mean and variance functions EM(Y |AP ) and VM (Y |AP ) where the
subscript M indicates that the function depends on the model. Then overdis-
persion occurs if V (Y |x) > VM (Y |AP ) where E(Y |x) and V (Y |x) denote
the actual conditional mean and variance functions. Then the assumptions
that E(Y |x) = EM(Y |x) ≡ m(AP ) and V (Y |x) = VM (Y |AP ) ≡ v(AP )
need to be checked.

First check that the assumption E(Y |x) = m(SP ) is a reasonable approx-
imation to the data using the response plot with lowess and the estimated
conditional mean function ÊM(Y |x) = m̂(SP ) added as visual aids. Overdis-
persion can occur even if the model conditional mean function E(Y |SP )
is a good approximation to the data. For example, for many data sets
where E(Yi|xi) = miρ(SPi), the binomial regression model is inappropriate
since V (Yi|xi) > miρ(SPi)(1 − ρ(SPi)). Similarly, for many data sets where
E(Y |x) = µ(x) = exp(SP ), the Poisson regression model is inappropriate
since V (Y |x) > exp(SP ). If the conditional mean function is adequate, then
we suggest checking for overdispersion using the OD plot.

Definition 10.24. For 1D regression, the OD plot is a plot of the estimated
model variance V̂M (Y |SP ) versus the squared residuals
V̂ = [Y − ÊM(Y |SP )]2. Replace SP by AP for a GAM.

The OD plot has been used by Winkelmann (2000, p. 110) for the Poisson
regression model where V̂M (Y |SP ) = ÊM(Y |SP ) = exp(ESP ). For binomial
and Poisson regression, the OD plot can be used to complement tests and
diagnostics for overdispersion such as those given in Cameron and Trivedi
(2013), Collett (1999, ch. 6), and Winkelmann (2000). See discussion below
Definitions 10.11 and 10.14 for how to interpret the OD plot with the identity
line, OLS line, and slope 4 line added as visual aids, and for discussion of the
numerical summaries G2 and X2 for GLMs.

Definition 10.1, with SP = AP, givesEM (Y |AP ) = m(AP ) and VM (Y |AP )
= v(AP ) for several models. Often m̂(AP ) = m(EAP ) and v̂(AP ) =
v(EAP ), but additional parameters sometimes need to be estimated. Hence

v̂(AP ) = miρ(EAPi)(1−ρ(EAPi))[1+(mi−1)θ̂/(1+θ̂)], v̂(AP ) = exp(EAP )+
τ̂ exp(2 EAP ), and v̂(AP ) = [m(EAP )]2/ν̂ for the beta-binomial, nega-
tive binomial, and gamma GAMs, respectively. The beta-binomial regres-
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sion model is often used if the binomial regression is inadequate because of
overdispersion, and the negative binomial GAM is often used if the Poisson
GAM is inadequate.

Since the Poisson regression (PR) model is simpler than the negative bi-
nomial regression (NBR) model, and the binomial logistic regression (LR)
model is simpler beta-binomial regression (BBR) model, the graphical di-
agnostics for the goodness of fit of the PR and LR models are very useful.
Combining the response plot with the OD plot is a powerful method for as-
sessing the adequacy of the Poisson and logistic regression models. NBR and
BBR models should also be checked with response and OD plots. See Exam-
ples 10.2–10.6 and the R code at the end of Section 10.6 (where q = p − 1).

Example 10.18. The species data is from Cook and Weisberg (1999,
pp. 285-286) and Johnson and Raven (1973). The response variable is the
total number of species recorded on each of 29 islands in the Galápagos
Archipelago. Predictors include area of island, areanear = the area of the
closest island, the distance to the closest island, the elevation, and endem =
the number of endemic species (those that were not introduced from else-
where). A scatterplot matrix of the predictors suggested that log transfor-
mations should be taken. Poisson regression suggested that log(endem) and
log(areanear) were the important predictors, but the deviance and Pear-
son X2 statistics suggested overdispersion was present since both statistics
were near 71.4 with 26 degrees of freedom. The residual plot also suggested
increasing variance with increasing fitted value. A negative binomial regres-
sion suggested that only log(endem) was needed in the model, and had a
deviance of 26.12 on 27 degrees of freedom. The residual plot for this model
was roughly ellipsoidal. The negative binomial GAM with log(endem) had
an Ŝ that was linear and the plotted points in the EE plot had correlation
near 1.

The response plot with the exponential and lowess curves added as visual
aids is shown in Figure 10.15. The interpretation is that Y |x ≈ negative
binomial with E(Y |x) ≈ exp(EAP ). Hence if EAP = 0, E(Y |x) ≈ 1. The
negative binomial and Poisson GAM have the same conditional mean func-
tion. If the plot was for a Poisson GAM, the interpretation would be that
Y |x ≈ Poisson(exp(EAP )). Hence if EAP = 0, Y |x ≈ Poisson(1).

Figure 10.16 shows the OD plot for the negative binomial GAM with the
identity line and slope 4 line through the origin added as visual aids. The
plotted points fall within the “slope 4 wedge,” suggesting that the negative
binomial regression model has successfully dealt with overdispersion. Here
Ê(Y |AP ) = exp(EAP ) and V̂ (Y |AP ) = exp(EAP ) + τ̂ exp(2EAP ) where
τ̂ = 1/37.
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10.9 Inference After Variable Selection for GLMs

Inference after variable selection for GLMs is very similar to inference after
variable selection for multiple linear regression. AIC, BIC, EBIC, lasso, and
elastic net can be used for variable selection. Read Section 4.2 for the large
sample theory for β̂Imin,0. We assume that n >> p. Theorem 4.4, the Vari-
able Selection CLT, still applies, as does Remark 4.4. Hence if lasso or elastic
net is consistent, then relaxed lasso or relaxed elastic net is

√
n consistent.

The geometric argument of Theorem 4.5 also applies. We follow Rathnayake
and Olive (2019) closely. Read Sections 4.2, 4.5, and 4.6 before reading this
section. We will describe the parametric bootstrap, and then consider boot-
strapping variable selection.

10.9.1 The Parametric and Nonparametric Bootstrap

Consider a parametric 1D regression model Y |x ∼ D(xT β, γ) where D is a
parametric distribution that depends on the p×1 vector of predictors x only
through SP = xT β, and γ is a q × 1 vector of parameters.

Suppose Yi|xi ∼ D(xT
i β, γ),

√
n(β̂ − β)

D→ Np(0,V (β)), and that

V (β̂)
P→ V (β) as n → ∞. These assumptions tend to be mild for a parametric

regression model where the maximum likelihood estimator (MLE) β̂ is used.
Then V (β) = I−1(β), the inverse Fisher information matrix. If In(β) is the

Fisher information matrix based on a sample of size n, then In(β)/n
P→ I(β).

For GLMs, see, for example, Sen and Singer (1993, p. 309). For the paramet-

ric regression model, we regress Y on X to obtain (β̂, γ̂) where the n × 1
vector Y = (Yi) and the ith row of the n× p design matrix X is xT

i .

The parametric bootstrap uses Y ∗
j = (Y ∗

i ) where Y ∗
i |xi ∼ D(xT

i β̂, γ̂)

for i = 1, ...., n. Regress Y ∗
j on X to get β̂

∗
j for j = 1, ..., B. The large

sample theory for β̂
∗

is simple. Note that if Y ∗
i |xi ∼ D(xT

i b, γ̂) where b
does not depend on n, then (Y ∗,X) follows the parametric regression model

with parameters (b, γ̂). Hence
√
n(β̂

∗ − b)
D→ Np(0,V (b)). Now fix large

integer n0, and let b = β̂no
. Then

√
n(β̂

∗ − β̂no
)

D→ Np(0,V (β̂no
)). Since

Np(0,V (β̂))
D→ Np(0,V (β)), we have

√
n(β̂

∗ − β̂)
D→ Np(0,V (β)) (10.11)

as n → ∞.
Now suppose S ⊆ I. Without loss of generality, let β = (βT

I ,β
T
O)T and β̂ =

(β̂(I)T , β̂(O)T )T . Then (Y ,XI) follows the parametric regression model with

parameters (βI , γ). Hence
√
n(β̂I − βI)

D→ NaI (0,V (βI)). Now (Y ∗,XI)
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only follows the parametric regression model asymptotically, since β̂(O) 6= 0.

However, under regularity conditions, E(β̂
∗
I) ≈ β̂I and Cov(β̂

∗
I)− Cov(β̂I) →

0 as n, B → ∞.
To see the above claim for GLMs, consider a GLM with ηi = SPi = xT

i β =
g(µi) where µi = E(Yi|xi) = g−1(ηi). Let Vi = V (Yi|xi). Let

zi = g(µi) + g′(µi)(Yi − µi) = ηi +
∂ηi

∂µi
(Yi − µi), Z = (zi),

wi =

(
∂µi

∂ηi

)2
1

Vi
, W = diag(wi), Ŵ = W | ˆβ , and Ẑ = Z| ˆβ .

Then

β̂ = (XT ŴX)−1XT Ŵ Ẑ and β̂I = (XT
I Ŵ IXI)

−1XT
I Ŵ IẐI

while
β̂
∗
I = (XT

I Ŵ
∗
IXI)

−1XT
I Ŵ

∗
IẐ

∗
I (10.12)

where β̂
∗
I is fit as if (Y ∗,XI) follows the GLM with parameters (β̂(I), γ̂).

If S ⊆ I, then this approximation is correct asymptotically since
√
nβ̂(O) =

OP (1). Hence η∗iI = xT
iI β̂(I) = g(µ∗

iI), and V ∗
iI = VM (Y ∗

i |xiI) where VM

is the model variance from the GLM with parameters (β̂(I), γ̂). Also, the
estimated asymptotic covariance matrices are

Ĉov(β̂) = (XT ŴX)−1 and Ĉov(β̂I) = (XT
I Ŵ IX I)

−1.

See, for example, Agresti (2002, pp. 138, 147), Hillis and Davis (1994),
and McCullagh and Nelder (1989). From Sen and Singer (1994, p. 307),

n(XT
I Ŵ IXI)

−1 P→ I−1(βI) as n → ∞ if S ⊆ I.
Let β̃ = (XT WX)−1XT WZ. Then E(β̃) = β since E(Z) = Xβ, and

Cov(Y ) = Cov(Y |X) = diag(Vi). Since

∂µi

∂ηi
=

1

g′(µi)
and

∂ηi

∂µi
= g′(µi),

Cov(Z) = Cov(Z|X) = W−1. Thus Cov(β̃) = (XWX)−1. Although

β̂ − β = OP (n−1/2), we have n(XT ŴX)−1 − n(XT WX)−1 P→ I−1(β) −
I−1(β) = 0 as n→ ∞.

Let β̃
∗
I = (XT

I W ∗
IXI)

−1XT
I W ∗

IZ
∗
I where W ∗

i and Z∗
I are evaluated using

β̂(I). Then Cov(Y ∗) = diag(V ∗
i ) → diag(V ∗

iI). Hence Cov(Z∗
I) → W ∗−1

I and

Cov(β̃
∗
I) → (XT

I W ∗
IXI)

−1 as n, B → ∞. Hence Cov(β̂
∗
I)− Cov(β̂I) → 0 as

n, B → ∞ if S ⊆ I.
As an example, consider the Poisson regression model from Section 10.4.

Then µ∗
iI = exp(xT

iI β̂(I)) = exp(η∗iI) = V ∗
iI . Hence
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∂µ∗
iI

∂η∗iI
= exp(η∗iI) = µ∗

iI = V ∗
iI ,

w∗
iI = exp(xT

iI β̂(I)), and ŵ∗
iI = exp(xT

iIβ̂
∗
I). Similarly, η∗iI = log(µ∗

iI),

z∗iI = η∗iI +
∂η∗iI
∂µ∗

iI

(Y ∗
i − µ∗

iI) = η∗iI +
1

µ∗
iI

(Y ∗
i − µ∗

iI), and

ẑ∗iI = xT
iI β̂

∗
I +

1

exp(xT
iI β̂

∗
I)

(Y ∗
i − exp(xT

iI β̂
∗
I)).

Note that for (Y ,XI ), the formulas are the same with the asterisks removed
and µiI = exp(xT

iIβI).
The nonparametric bootstrap samples cases (Yi,xi) with replacement to

form (Y ∗
j ,X

∗
j ), and regresses Y ∗

j on X∗
j to get β̂

∗
j for j = 1, ..., B. The

nonparametric bootstrap can be useful even if heteroscedasticity or overdis-
persion is present, if the cases are an iid sample from some population, a very
strong assumption.

10.9.2 Bootstrapping Variable Selection

Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ is g × 1. Let the
variable selection estimator Tn = Aβ̂Imin,0 with θ = Aβ. Recall Tn is equal
to the estimator Tjn with probability πjn for j = 1, ..., J . Here A is a known

full rank g × p matrix with 1 ≤ g ≤ p. We have
√
n(Tn − θ)

D→ v by (4.6)
where E(v) = 0, and Σv =

∑
j πjAV j,0A

T . Hence geometric argument
Theorem 4.5 holds: if we had iid data T1, ..., TB, then the prediction region
applied to the iid data and centered at a randomly chosen Tn would be a
large sample confidence region for θ.

Next use the argument for multiple linear regression in Section 4.6.4. For
the bootstrap, suppose that T ∗

i is equal to T ∗
ij with probability ρjn for j =

1, ..., J where
∑

j ρjn = 1, and ρjn → πj as n → ∞. Let Bjn count the
number of times T ∗

i = T ∗
ij in the bootstrap sample. Then the bootstrap

sample T ∗
1 , ..., T

∗
B can be written as

T ∗
1,1, ..., T

∗
B1n,1, ..., T

∗
1,J, ..., T

∗
BJn,J

where the Bjn follow a multinomial distribution and Bjn/B
P→ ρjn as B →

∞. Denote T ∗
1j , ..., T

∗
Bjn,j as the jth bootstrap component of the bootstrap

sample with sample mean T
∗
j and sample covariance matrix S∗

T,j. Then
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T
∗

=
1

B

B∑

i=1

T ∗
i =

∑

j

Bjn

B

1

Bjn

Bjn∑

i=1

T ∗
ij =

∑

j

ρ̂jnT
∗
j .

Similarly, we can define the jth component of the iid sample T1, ..., TB to
have sample mean T j and sample covariance matrix ST,j.

Suppose the jth component of an iid sample T1, ..., TB and the jth compo-
nent of the bootstrap sample T ∗

1 , ..., T
∗
B have the same variability asymptot-

ically. Since E(Tjn) ≈ θ, each component of the iid sample is approximately
centered at θ. The bootstrap components are centered at E(T ∗

jn), and often
E(T ∗

jn) = Tjn. Geometrically, separating the component clouds so that they
are no longer centered at one value makes the overall data cloud larger. Thus
the variability of T ∗

n is larger than that of Tn for a mixture distribution,
asymptotically. Hence the prediction region applied to the bootstrap sample
is slightly larger than the prediction region applied to the iid sample, asymp-
totically (we want n ≥ 20p). Hence cutoff D̂2

1,1−δ = D2
(UB) gives coverage

close to or higher than the nominal coverage for confidence regions (4.32)
and (4.34), using the geometric argument. The deviation T ∗

i − Tn tends to

be larger in magnitude than the deviation and T ∗
i − T

∗
. Hence the cutoff

D̂2
2,1−δ = D2

(UB,T ) tends to be larger than D2
(UB), and region (4.33) tends to

have higher coverage than region (4.34) for a mixture distribution.
The full model should be checked with the response plot before do-

ing variable selection inference. Assume p is fixed and n ≥ 20p. Assume
P (S ⊆ Imin) → 1 as n → ∞, and that S ⊆ Ij . For multiple linear re-
gression with the residual bootstrap that uses residuals from the full OLS
model, Chapter 4 showed that the components of the iid sample and boot-
strap sample have the same variability asymptotically. The components of the
iid sample are centered at Aβ while the components of the bootstrap sample
are centered at Aβ̂Ij ,0. Now consider regression models with Y x|xT β.

Assume
√
nA(β̂Ij,0 −β)

D→ Naj (0,Σj) where Σj = AV j,0A
T . For the non-

parametric bootstrap, assume
√
n(Aβ̂

∗
Ij ,0−Aβ̂Ij,0)

D→ Naj (0,Σj). Then the
components of the iid sample and bootstrap sample have the same variability
asymptotically. The components of iid sample are centered at Aβ while the
components of the bootstrap sample are centered at Aβ̂Ij ,0. For the nonpara-

metric bootstrap, the above results tend to hold if
√
n(β̂ − β)

D→ Np(0,V )

and if
√
n(β̂

∗ − β̂)
D→ Np(0,V ). Assumptions for the nonparametric boot-

strap tend to be rather strong: often one assumption is that the n cases
(Yi,x

T
i )T are iid from some population. See Shao and Tu (1995, pp. 335-349)

for the nonparametric bootstrap for GLMs, nonlinear regression, and Cox’s
proportional hazards regression. Also see Burr (1994), Efron and Tibshirani
(1993), Freedman (1981), and Tibshirani (1997).

For the parametric bootstrap, Section 10.9.1 showed that under regular-

ity conditions, Cov(β̂
∗
I)− Cov(β̂I) → 0 as n, B → ∞ if S ⊆ I. Hence
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Cov(Tjn) − Cov(T ∗
jn) → 0 as n, B → ∞ if S ⊆ I. Here Tn = Aβ̂Imin,0,

Tjn = Aβ̂Ij,0, T
∗
n = Aβ̂

∗
Imin,0, and T ∗

jn = Aβ̂
∗
Ij ,0. Then E(Tjn) ≈ Aβ = θ

while the E(T ∗
jn) are more variable than the E(Tjn) with E(T ∗

jn) ≈ Aβ̂(Ij , 0),

roughly, where β̂(Ij , 0) is formed from β̂(Ij) by adding zeros corresponding
to variables not in Ij . Hence the jth component of an iid sample T1, ..., TB

and the jth component of the bootstrap sample T ∗
1 , ..., T

∗
B have the same

variability asymptotically.
In simulations for n ≥ 20p for H0 : AβS = θ0, the coverage tended to

get close to 1 − δ for B ≥ max(200, 50p) so that S∗
T is a good estimator of

Cov(T ∗). In the simulations where S is not the full model, inference with
backward elimination with Imin using AIC was often more precise than in-
ference with the full model if n ≥ 20p and B ≥ 50p. It is possible that S∗

T is
singular if a column of the bootstrap sample is equal to 0. If the regression
model has a q× 1 vector of parameters γ , we may need to replace p by p+ q.

Undercoverage can occur if bootstrap sample data cloud is less variable
than the iid data cloud, e.g., if (n−p)/n is not close to one. Coverage can be
higher than the nominal coverage for two reasons: i) the bootstrap data cloud
is more variable than the iid data cloud of T1, ..., TB, and ii) zero padding.

To see the effect of zero padding, consider H0 : Aβ = βO = 0 where
βO = (βi1 , ...., βig)

T and O ⊆ E in (4.1) so that H0 is true. Suppose a
nominal 95% confidence region is used and UB is the 96th percentile. Hence
the confidence region (4.32) or (4.33) covers at least 96% of the bootstrap

sample. If β̂
∗
O,j = 0 for more than 4% of the β̂

∗
O,1, ..., β̂

∗
O,B, then 0 is in the

confidence region and the bootstrap test fails to reject H0. If this occurs for
each run in the simulation, then the observed coverage will be 100%.

Now suppose β̂
∗
O,j = 0 for j = 1, ..., B. Then S∗

T is singular, but the
singleton set {0} is the large sample 100(1 − δ)% confidence region (4.32),
(4.33), or (4.34) for βO and δ ∈ (0, 1), and the pvalue for H0 : βO = 0 is

one. (This result holds since {0} contains 100% of the β̂
∗
O,j in the bootstrap

sample.) For large sample theory tests, the pvalue estimates the population
pvalue. Let I denote the other predictors in the model so β = (βT

I ,β
T
O)T . For

the Imin model from variable selection, there may be strong evidence that xO

is not needed in the model given xI is in the model if the “100%” confidence
region is {0}, n ≥ 20p, and B ≥ 50p. (Since the pvalue is one, this technique
may be useful for data snooping: applying MLE theory to submodel I may
have negligible selection bias.)

Remark 10.3. As in Chapter 4, another way to look at the bootstrap con-
fidence region for variable selection estimators is to consider the estimator
T2,n that chooses Ij with probability equal to the observed bootstrap propor-
tion ρ̂jn. The bootstrap sample T ∗

1 , ..., T
∗
B tends to be slightly more variable

than an iid sample T2,1, ..., T2,B, and the geometric argument suggests that
the large sample coverage of the nominal 100(1− δ)% confidence region will
be at least as large as the nominal coverage 100(1 − δ)%.
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10.9.3 Examples and Simulations

Pelawa Watagoda and Olive (2019a) have an example and simulations for
multiple linear regression using the residual bootstrap. See Chapter 4. We
will use Poisson and binomial regression.

Example 10.19. Lindenmayer et al. (1991) and Cook and Weisberg (1999,
p. 533) give a data set with 151 cases where Y is the number of possum
species found in a tract of land in Australia. The predictors are acacia=basal
area of acacia + 1, bark=bark index, habitat=habitat score, shrubs=number
of shrubs + 1, stags= number of hollow trees + 1, stumps=indicator for
presence of stumps, and a constant. Inference for the full Poisson regression
model is shown along with the shorth(c) nominal 95% confidence intervals for
βi computed using the parametric bootstrap with B = 1000. As expected, the
bootstrap intervals are close to the large sample GLM confidence intervals
≈ β̂i ± 2SE(β̂i).

The minimum AIC model from backward elimination used a constant,
bark, habitat, and stags. The shorth(c) nominal 95% confidence intervals for
βi using the parametric bootstrap are shown. Note that most of the confidence
intervals contain 0 when closed intervals are used instead of open intervals.
The Poisson regression output is also shown, but should only be used for
inference if the model was selected before looking at the data.

large sample full model inference

Est. SE z Pr(>|z|) 95% shorth CI

int -1.0428 0.2480 -4.205 0.0000 [-1.562,-0.538]

acacia 0.0166 0.0103 1.612 0.1070 [-0.004, 0.035]

bark 0.0361 0.0140 2.579 0.0099 [ 0.007, 0.065]

habitat 0.0762 0.0375 2.032 0.0422 [-0.003, 0.144]

shrubs 0.0145 0.0205 0.707 0.4798 [-0.028, 0.056]

stags 0.0325 0.0103 3.161 0.0016 [ 0.013, 0.054]

stumps -0.3907 0.2866 -1.364 0.1727 [-1.010, 0.171]

output and shorth intervals for the min AIC submodel

Est. SE z Pr(>|z|) 95% shorth CI

int -0.8994 0.2135 -4.212 0.0000 [-1.438,-0.428]

acacia 0 [ 0.000, 0.037]

bark 0.0336 0.0121 2.773 0.0056 [ 0.000, 0.060]

habitat 0.1069 0.0297 3.603 0.0003 [ 0.000, 0.156]

shrubs 0 [ 0.000, 0.060]

stags 0.0302 0.0094 3.210 0.0013 [ 0.000, 0.054]

stumps 0 [-0.970, 0.000]

We tested H0 : β2 = β5 = β7 = 0 with the Imin model selected by
backward elimination. (Of course this test would be easy to do with the
full model using GLM theory.) Then H0 : Aβ = (β2 , β5, β7)

T = 0. Using
the prediction region method with the full model had [0, D(UB)] = [0, 2.836]
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with D0 = 2.135. Note that
√
χ2

3,0.95 = 2.795. So fail to reject H0. Using

the prediction region method with the Imin backward elimination model had
[0, D(UB)] = [0, 2.804] while D0 = 1.269. So fail to reject H0. The ratio of
the volumes of the bootstrap confidence regions for this test was 0.322. (Use
(3.35) with S∗

T and D from backward elimination for the numerator, and
from the full model for the denominator.) Hence the backward elimination
bootstrap test was more precise than the full model bootstrap test.

Example 10.20. For binary logistic regression, the MLE tends to converge
if max(|xT

i β̂|) ≤ 7 and if the Y values of 0 and 1 are not nearly perfectly

classified by the rule Ŷ = 1 if xT
i β̂ > 0.5 and Ŷ = 0, otherwise. If there

is perfect classification, the MLE does not exist. Let ρ̂(x) = P̂ (Y = 1|x)

under the binary logistic regression. If |xT
i β̂|) ≥ 10, some of the ρ̂(xi) tend

to be estimated to be exactly equal to 0 or 1, which causes problems for
the MLE. The Flury and Riedwyl (1988, pp. 5-6) banknote data consists of
100 counterfeit and 100 genuine Swiss banknote. The response variable is
an indicator for whether the banknote is counterfeit. The six predictors are
measurements on the banknote: bottom, diagonal, left, length, right, and top.
When the logistic regression model is fit with these predictors and a constant,
there is almost perfect classification and backward elimination had problems.
We deleted diagonal, which is likely an important predictor, so backward
elimination would run. For this full model, classification is very good, but
the xT

i β̂ run from −20 to 20. In a plot of xT
i β̂ versus Y on the vertical axis

(not shown), the logistic regression mean function is tracked closely by the
lowess scatterplot smoother. The full model and backward elimination output
is below. Inference using the logistic regression normal approximation appears
to greatly underestimate the variability of β̂ compared to the parametric full
model bootstrap variability. We tested H0 : β2 = β3 = β4 = 0 with the Imin

model selected by backward elimination. Using the prediction region method
with the full model had [0, D(UB)] = [0, 1.763] with D0 = 0.2046. Note that√
χ2

3,0.95 = 2.795. So fail to reject H0. Using the prediction region method

with the Imin backward elimination model had [0, D(UB)] = [0, 1.511] while
D0 = 0.2297. So fail to reject H0. The ratio of the volumes of the bootstrap
confidence regions for this test was 16.2747. Hence the full model bootstrap
inference was much more precise. Backward elimination produced many zeros,
but also produced many estimates that were very large in magnitude.

large sample full model inference

Est. SE z Pr(>|z|) 95% shorth CI

int -475.581 404.913 -1.175 0.240 [-83274.99,1939.72]

length 0.375 1.418 0.265 0.791 [ -98.902,137.589]

left -1.531 4.080 -0.375 0.708 [ -364.814,611.688]

right 3.628 3.285 1.104 0.270 [ -261.034,465.675]

bottom 5.239 1.872 2.798 0.005 [ 3.159,567.427]

top 6.996 2.181 3.207 0.001 [ 4.137,666.010]
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output and shorth intervals for the min AIC submodel

Est. SE z Pr(>|z|) 95% shorth CI

int -472.999 269.271 -1.757 0.079 [-168131.6,35623.9]

length 0 [ -110.850,286.265]

left 0 [ -752.695,724.702]

right 2.725 2.050 1.329 0.184 [-656.1549,906.136]

bottom 5.005 1.657 3.020 0.003 [ 2.985,1428.346]

top 6.821 2.071 3.294 0.001 [ 4.333,1957.107]

Binary regression data sets like the one in Example 10.20 are common:
the response plot of xT

i β̂ versus Y suggests that the logistic regression mean

function is good, but the range of xT
i β̂ is such that the GLM normal ap-

proximation to the MLE β̂ is likely invalid. Since the parametric bootstrap
produces datasets very similar to the actual dataset, the bootstrap distri-
bution of the logistic regression MLE may be superior to the GLM normal
approximation. For Example 10.20, the GLM and bootstrap inference for the
full model both suggest that bottom and top are important predictors.

The results of the following simulation are similar to those of Chapter 4
for multiple linear regression using the residual bootstrap with residuals from
the OLS full model. This simulation was for Poisson regression and binomial
regression, using B = max(200, n/10, 50p) and 5000 runs. The simulation
used p = 4, 6, 7, 8, and 10; n = 25p, n = 50p; ψ = 0, 1/

√
p, and 0.9; and

k = 1 and p − 2 where k and ψ are defined in the following paragraph. A
larger simulation study is in Rathnayake (2019). In the simulations, we used
θ = Aβ = βi, θ = Aβ = βS = (β1, 1, ..., 1)T and θ = Aβ = βE = 0.

Let x = (1,uT )T where u is the (p−1)×1 vector of nontrivial predictors.
In the simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I) where the
q = p − 1 elements of the vector wi are iid N(0,1). Let the q × q matrix
A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j. Then the

vector zi = Awi so that Cov(zi) = Σz = AAT = (σij) where the diagonal
entries σii = [1+(q−1)ψ2] and the off diagonal entries σij = [2ψ+(q−2)ψ2].
Hence the correlations are cor(zi, zj) = ρ = (2ψ+ (q− 2)ψ2)/(1 + (q− 1)ψ2)

for i 6= j. Then
∑k

j=1 zj ∼ N(0, kσii+k(k−1)σij) = N(0, v2). Let u = az/v.
Then cor(xi, xj) = ρ for i 6= j where xi and xj are nontrivial predictors. If
ψ = 1/

√
cp, then ρ→ 1/(c+ 1) as p→ ∞ where c > 0. As ψ gets close to 1,

the predictor vectors ui cluster about the line in the direction of (1, ..., 1)T .
Let SP = xT β = β1 +1xi,2 + · · ·+1xi,k+1 ∼ N(β1, a

2) for i = 1, ..., n. Hence
β = (β1 , 1, ..., 1, 0, ..., 0)

T with β1, k ones, and p − k − 1 zeros. Binomial
regression used β1 = 0, a = 5/3, and mi = m with m = 1 or 20. Poisson
regression used β1 = 1 = a and β1 = 5 with a = 2.

The simulation computed the Frey shorth(c) interval for each βi and used
bootstrap confidence regions to test H0 : βS = (β1, 1, ..., 1)T where β2 =
· · · = βk+1 = 1, and H0 : βE = 0 (whether the last p − k − 1 βi = 0). The
nominal coverage was 0.95 with δ = 0.05. Observed coverage between 0.94
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and 0.96 would suggest coverage is close to the nominal value. The parametric
bootstrap was used with AIC.

In the tables, there are two rows for each model giving the observed confi-
dence interval coverages and average lengths of the confidence intervals. The
term “reg” is for the full model regression, and the term “vs” is for backward
elimination. The last six columns give results for the tests. The terms pr,
hyb, and br are for the prediction region method (4.32), hybrid region (4.34),
and Bickel and Ren region (4.33). The 0 indicates the test was H0 : βE = 0,
while the 1 indicates that the test was H0 : βS = (β1, 1..., 1)T. The length
and coverage = P(fail to reject H0) for the interval [0, D(UB)] or [0, D(UB,T )]
where D(UB) or D(UB ,T ) is the cutoff for the confidence region. The cutoff

will often be near
√
χ2

g,0.95 if the statistic T is asymptotically normal. Note

that
√
χ2

2,0.95 = 2.448 is close to 2.45 for the full model regression bootstrap

tests for βS if k = 1.
Volume ratios of the three confidence regions can be compared using (4.35),

but there is not enough information in the tables to compare the volume of
the confidence region for the full model regression versus that for the variable
selection regression since the two methods have different determinants |S∗

T |.
The inference for backward elimination was often as precise or more precise

than the inference for the full model. The coverages tended to be near 0.95
for the parametric bootstrap on the full model. Variable selection coverage
tended to be near 0.95 unless the β̂i could equal 0. An exception was binary
logistic regression with m = 1 where variable selection and the full model
often had higher coverage than the nominal 0.95 for the hypothesis tests,
especially for n = 25p. Compare Tables 10.2 and 10.3. For binary regression,
the bootstrap confidence regions using smaller a and larger n resulted in
coverages closer to 0.95 for the full model, and convergence problems caused
the programs to fail for a > 4. The Bickel and Ren (4.33) average cutoffs
were at least as high as those of the hybrid region (4.34).

If βi was a component of βE , then the backward elimination confidence
intervals had higher coverage but were shorter than those of the full model
due to zero padding. The zeros in β̂E tend to result in higher than nominal
coverage for the variable selection estimator, but can greatly decrease the
volume of the confidence region compared to that of the full model.

For the simulated data, when ψ = 0, the asymptotic covariance matrix
I−1(β) is diagonal. Hence β̂S has the same multivariate normal limiting
distribution for Imin and the full model by Remark 4.4. For Tables 10.2-
10.5, βS = (β1, β2)

T , and βp−1 and βp are components of βE . For Table
10.6, βS = (β1 , ..., β9)

T . Hence β1, β2, and βp−1 are components of βS , while
βE = β10. For the n in the tables and ψ = 0, the coverages and “lengths”
did tend to be close for the βi that are components of βS , and for pr1, hyb1,
and br1.
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Table 10.2 Bootstrapping Binomial Logistic Regression,Backward Elimination with
AIC, B = 200, n = 100, p = 4, k = 1, and m = 1

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1
reg,0 0.9516 0.9328 0.9524 0.9504 0.9724 0.9872 0.9920 0.9802 0.9838 0.9888
len 1.1605 1.0953 0.7171 0.7151 2.5225 2.5225 2.5476 2.5173 2.5173 2.6893
vs,0 0.9564 0.9322 0.9976 0.9976 0.9960 0.9964 0.9988 0.9774 0.9794 0.9948
len 1.1483 1.0798 0.6143 0.6204 2.7329 2.7329 3.0386 2.5160 2.5160 2.6899

reg,0.5 0.9538 0.9428 0.9440 0.9544 0.9680 0.9854 0.9896 0.9724 0.9828 0.9858
len 1.1622 1.6737 1.4547 1.4588 2.5221 2.5221 2.5475 2.5165 2.5165 2.6037

vs,0.5 0.9528 0.9662 0.9978 0.9982 0.9948 0.9918 0.9978 0.9760 0.9756 0.9872
len 1.1462 1.6714 1.2879 1.2883 2.7230 2.7230 3.0170 2.5379 2.5379 2.6860

reg,0.9 0.9662 0.9578 0.9520 0.9500 0.9690 0.9846 0.9884 0.9724 0.9848 0.9876
len 1.1606 9.4523 9.4241 9.4379 2.5220 2.5220 2.5454 2.5142 2.5142 2.5389

vs,0.9 0.9566 0.9422 0.9960 0.9974 0.9958 0.9972 0.9982 0.9866 0.9932 0.9956
len 1.1502 8.4654 8.4806 8.4951 2.7700 2.7700 3.0182 2.6176 2.6176 2.7644

Table 10.3 Bootstrapping Binomial Logistic Regression,Backward Elimination with
AIC, B = 200, n = 200, p = 4, k = 1, and m = 1

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1
reg,0 0.9504 0.9440 0.9552 0.9544 0.9584 0.9662 0.9674 0.9580 0.9662 0.9728
len 0.7539 0.6771 0.4583 0.4587 2.4884 2.4884 2.4992 2.4846 2.4846 2.5745
vs,0 0.9552 0.9490 0.9986 0.9978 0.9954 0.9908 0.9968 0.9600 0.9698 0.9762
len 0.7510 0.6736 0.3909 0.3926 2.7226 2.7226 3.0310 2.4814 2.4814 2.5740

reg,0.5 0.9538 0.9508 0.9550 0.9578 0.9590 0.9686 0.9690 0.9578 0.9658 0.9714
len 0.7548 1.0543 0.9337 0.9309 2.4858 2.4858 2.4958 2.4828 2.4828 2.5266

vs,0.5 0.9538 0.9602 0.9984 0.9974 0.9930 0.9922 0.9958 0.9708 0.9786 0.9828
len 0.7501 1.0607 0.8064 0.8047 2.7022 2.7023 2.9948 2.5004 2.5004 2.6164

reg,0.9 0.9462 0.9536 0.9522 0.9496 0.9548 0.9642 0.9658 0.9496 0.9610 0.9626
len 0.7546 6.0844 6.0691 6.0800 2.4888 2.4888 2.4990 2.4860 2.4860 2.4967

vs,0.9 0.9562 0.9520 0.9958 0.9954 0.9936 0.9922 0.9968 0.9822 0.9870 0.9896
len 0.7502 5.3338 5.3737 5.3847 2.7934 2.7934 3.0392 2.5873 2.5873 2.7225

Table 10.4 Bootstrapping Binomial Logistic Regression,Backward Elimination with
AIC, B = 500, n = 250, p = 10, k = 1, and m = 20

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1
reg,0 0.9576 0.9502 0.9520 0.9548 0.9500 0.9528 0.9530 0.9480 0.9496 0.9502
len 0.1428 0.1232 0.0860 0.0860 3.9837 3.9837 3.9876 2.4538 2.4538 2.4653
vs,0 0.9510 0.9510 0.9992 0.9978 0.9980 0.9982 0.9998 0.9412 0.9458 0.9478
len 0.1424 0.1229 0.0706 0.0707 4.3081 4.3081 4.7454 2.4531 2.4531 2.4747

reg,0.32 0.9536 0.9534 0.9514 0.9548 0.9496 0.9524 0.9530 0.9474 0.9490 0.9506
len 0.1426 0.1833 0.1609 0.1610 3.9840 3.9840 3.9884 2.4528 2.4528 2.4589

vs,0.32 0.9534 0.9620 0.9966 0.9976 0.9968 0.9976 0.9988 0.9534 0.9544 0.9582
len 0.1424 0.1837 0.1347 0.1352 4.2607 4.2607 4.6891 2.4527 2.4527 2.5042

reg,0.9 0.9514 0.9432 0.9552 0.9498 0.9434 0.9448 0.9446 0.9430 0.9440 0.9450
len 0.1427 2.2178 2.2170 2.2175 3.9846 3.9846 3.9887 2.4530 2.4530 2.4553

vs,0.9 0.9590 0.9656 0.9982 0.9986 0.9982 0.9978 0.9996 0.9532 0.9478 0.9654
len 0.1425 2.0342 1.8778 1.8862 4.2368 4.2368 4.6742 2.4449 2.4449 2.5661
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Table 10.5 Bootstrapping Poisson Regression, Backward Elimination with AIC,
B = 500, n = 250, p = 10, k = 1, a = 1, β1 = 1

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1
reg,0 0.9480 0.9526 0.9526 0.9520 0.9502 0.9512 0.9524 0.9432 0.9454 0.9472
len 0.1752 0.1325 0.1275 0.1276 3.9859 3.9859 3.9901 2.4528 2.4528 2.4740
vs,0 0.9552 0.9574 0.9982 0.9982 0.9984 0.9982 0.9998 0.9524 0.9574 0.9628
len 0.1752 0.1323 0.1051 0.1047 4.3004 4.3004 4.7408 2.4543 2.4543 2.5009

reg,0.32 0.9552 0.9518 0.9520 0.9536 0.9538 0.9536 0.9538 0.9510 0.9532 0.9552
len 0.1752 0.2419 0.2390 0.2386 3.9852 3.9852 3.9894 2.4518 2.4518 2.4689

vs,0.32 0.9562 0.9632 0.9986 0.9992 0.9980 0.9982 0.9992 0.9630 0.9644 0.9712
len 0.1750 0.2419 0.2005 0.2004 4.2618 4.2618 4.6811 2.4520 2.4520 2.5384

reg,0.9 0.9478 0.9530 0.9570 0.9554 0.9458 0.9478 0.9484 0.9448 0.9448 0.9476
len 0.1754 3.2873 3.2859 3.2912 3.9831 3.9831 3.9872 2.4536 2.4536 2.4691

vs,0.9 0.9500 0.9574 0.9984 0.9994 0.9970 0.9966 0.9984 0.9638 0.9626 0.9742
len 0.1752 2.8710 2.7922 2.7879 4.2597 4.2597 4.6886 2.4809 2.4809 2.6402

Table 10.6 Bootstrapping Poisson Regression, Backward Elimination with AIC,
B = 500, n = 250, p = 10, k = 8, a = 2, β1 = 5

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1
reg,0 0.9522 0.9468 0.9540 0.9518 0.9496 0.9492 0.9488 0.9474 0.9464 0.9478
len 0.0210 0.0146 0.0146 0.0142 1.9593 1.9593 1.9609 4.1633 4.1633 4.1675
vs,0 0.9544 0.9546 0.9518 0.9980 0.9966 0.9374 0.9966 0.9534 0.9524 0.9552
len 0.0210 0.0146 0.0146 0.0117 2.1470 2.1470 2.3955 4.1655 4.1655 4.1880

reg,0.32 0.9522 0.9510 0.9486 0.9540 0.9494 0.9504 0.9516 0.9460 0.9468 0.9472
len 0.0210 0.0664 0.0664 0.0663 1.9595 1.9595 1.9614 4.1636 4.1636 4.1684

vs,0.32 0.9508 0.9596 0.9496 0.9992 0.9986 0.9434 0.9986 0.9634 0.9646 0.9696
len 0.0210 0.0663 0.0662 0.0541 2.1434 2.1434 2.3960 4.1970 4.1970 4.2703

reg,0.9 0.9536 0.9580 0.9550 0.9584 0.9538 0.9538 0.9548 0.9496 0.9512 0.9524
len 0.0210 1.0357 1.0361 1.0336 1.9585 1.9585 1.9605 4.1603 4.1603 4.1643

vs,0.9 0.9486 0.9484 0.9492 0.9988 0.9982 0.9492 0.9982 0.9688 0.9546 0.9676
len 0.0212 1.0742 1.0745 0.8793 2.1387 2.1387 2.3860 4.2883 4.2883 4.3818

10.10 Prediction Intervals

We use two prediction intervals from Olive et al. (2019). The first predic-
tion interval for Yf applies the shorth prediction interval of Section 4.3 to
the parametric bootstrap sample Y ∗

1 , ..., Y
∗
B where the Y ∗

i are iid from the

distribution D(ĥ(xf ), γ̂). If the regression method produces a consistent es-

timator (ĥ(x), γ̂) of (h(x), γ), then this new prediction interval is a large
sample 100(1− δ)% PI that is a consistent estimator of the shortest popula-
tion interval [L, U ] that contains at least 1− δ of the mass as B, n → ∞. The
new large sample 100(1− δ)% PI using Y ∗

1 , ..., Y
∗
B uses the shorth(c) PI with

c = min(B, dB[1 − δ + 1.12
√
δ/B ] e). (10.13)
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For models with a linear predictor xT β, we will want prediction intervals
after variable selection or model selection. Refer to Equation (4.1) and Section
10.6.1. Forward selection or backward elimination with the Akaike (1973) AIC
criterion or Schwarz (1978) BIC criterion are often used for GLM variable
selection. The Chen and Chen (2008) EBIC criterion can be useful, especially
if n/p is not large. GLM model selection with lasso and the elastic net is
also common. See Hastie et al. (2015, ch. 3), Tibshirani (1996), Friedman et
al. (2007), and Friedman et al. (2010). Relaxed lasso applies the regression
method, such as a GLM, to the active predictors with nonzero coefficients
selected by lasso. For n ≥ 10p, Olive and Hawkins (2005) suggested using
multiple linear regression variable selection software with the Mallows (1973)
Cp criterion to get a subset I, then fit the GLM using Y and xI . If the
regression model contains a q × 1 vector of parameters γ , then we may need
n ≥ 10(p+ q).

The prediction interval (10.13) can have undercoverage if n is small com-
pared to the number of estimated parameters. The modified shorth PI (10.14)
inflates PI (10.13) to compensate for parameter estimation and model selec-
tion. Let d be the number of variables x∗1, ..., x

∗
d used by the full model, for-

ward selection, lasso, or relaxed lasso. (We could let d = j if j is the degrees
of freedom of the selected model if that model was chosen in advance without
model or variable selection. Hence d = j is not the model degrees of freedom
if model selection was used. For a GAM full model, suppose the “degrees of
freedom” di for S(xi) is bounded by k. We could let d = 1 +

∑p
i=2 di with

p ≤ d ≤ pk.) We want n ≥ 10d, and the prediction interval length will be
increased (penalized) if n/d is not large. Let qn = min(1−δ+0.05, 1−δ+d/n)
for δ > 0.1 and

qn = min(1 − δ/2, 1− δ + 10δd/n), otherwise.

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Then compute the
shorth PI with

cmod = min(B, dB[qn + 1.12
√
δ/B ] e). (10.14)

Olive (2007, 2018) and Pelawa Watagoda and Olive (2019b) used similar
correction factors since the maximum simulated undercoverage was about
0.05 when n = 20d. If a q × 1 vector of parameters γ is also estimated, we
may need to replace d by dq = d+ q.

If β̂I is a×1, form the p×1 vector β̂I,0 from β̂I by adding 0s corresponding

to the omitted variables. For example, if p = 4 and β̂Imin
= (β̂1, β̂3)

T is the

estimator that minimized the variable selection criterion, then β̂Imin,0 =

(β̂1, 0, β̂3, 0)T .
Hong et al. (2018) explain why classical PIs after AIC variable selection

may not work. Fix p and let Imin correspond to the predictors used after
variable selection, including AIC, BIC, and relaxed lasso. Suppose P (S ⊆
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Imin) → 1 as n → ∞. See Charkhi and Claeskens (2018), Claeskens and
Hjort (2008, pp. 70, 101, 102, 114, 232), Hastie et al. (2015, pp. 295-302)
and Haughton (1988, 1989) for more information and references about this
assumption. For relaxed lasso, the assumption holds if lasso is a consistent
estimator. Suppose model (4.1) holds, and that if S ⊆ Ij , then

√
n(β̂Ij

−
βIj

)
D→ Naj (0,V j). Hence

√
n(β̂Ij,0 − β)

D→ Np(0,V j,0) (10.15)

where V j,0 adds columns and rows of zeros corresponding to the xi not

in Ij . Then β̂Imin,0 is a
√
n consistent estimator of β under model (4.1)

if the variable selection criterion is used with forward selection, backward
elimination, or all subsets. Hence (10.13) and (10.14) are large sample PIs.

Rathnayake and Olive (2019) gave the limiting distribution of
√
n(β̂Imin,0 −

β), generalizing the Pelawa Watagoda and Olive (2019a) result for multiple
linear regression. Regularity conditions for (10.13) and (10.14) to be large
sample PIs when p > n are much stronger.

Prediction intervals (10.13) and (10.14) often have higher than the nominal
coverage if n is large and Yf can only take on a few values. Consider binary
regression where Yf ∈ {0, 1} and the PIs (10.13) and (10.14) are [0,1] with
100% coverage, [0,0], or [1,1]. If [0,0] or [1,1] is the PI, coverage tends to be
higher than nominal coverage unless P (Yf = 1|xf ) is near δ or 1 − δ, e.g., if
P (Yf = 1|xf) = 0.01, then [0,0] has coverage near 99% even if 1− δ < 0.99.

Example 10.21. For the Ceriodaphnia data of Example 10.4, Figure 10.17
shows the response plot of ESP versus Y for this data. In this plot, the lowess
curve is represented as a jagged curve to distinguish it from the estimated
Poisson regression mean function (the exponential curve). The horizontal line
corresponds to the sample mean Y . The circles correspond to the Yi and the
×’s to the PIs (10.13) with d = p = 3. The n large sample 95% PIs contained
97% of the Yi. There was no evidence of overdispersion: see Example 10.4.
There were 5 replications for each of the 14 strain–species combinations,
which helps show the bootstrap PI variability when B = 1000. This example
illustrates a useful goodness of fit diagnostic: if the model D is a useful
approximation for the data and n is large enough, we expect the coverage on
the training data to be close to or higher than the nominal coverage 1 − δ.
For example, there may be undercoverage if a Poisson regression model is
used when a negative binomial regression model is needed.

Example 10.22. For the banknote data of Example 10.20, after variable
selection, we decided to use a constant, right, and bottom as predictors. The
response plot for this submodel is shown in the left plot of Figure 10.18 with
Z = Zi = Yi/mi = Yi and the large sample 95% PIs for Zi = Yi. The circles
correspond to the Yi and the ×’s to the PIs (10.13) with d = 3, and 199 of the
200 PIs contain Yi. The PI [0,0] that did not contain Yi corresponds to the
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Fig. 10.17 Ceriodaphnia Data Response Plot.

circle in the upper left corner. The PIs were [0,0], [0,1], or [1,1] since the data
is binary. The mean function is the smooth curve and the step function gives
the sample proportion of ones in the interval. The step function approximates
the smooth curve closely, hence the binary logistic regression model seems
reasonable. The right plot of Figure 10.18 shows the GAM using right and
bottom with d = 3. The coverage was 100% and the GAM had many [1,1]
intervals.

Example 10.23. For the species data of Examples 10.18, we used a con-
stant and log(endem), log(area), log(distance), and log(areanear). The re-
sponse plot looks good, but the OD plot (not shown) suggests overdispersion.
When the response plot for the Poisson regression model was made, the n
large sample 95% PIs (10.13) contained 89.7% of the Yi.

For the simulations, generating xT β is important. For example, for bino-
mial logistic regression, typically −5 ≤ xT β ≤ 5 or there can be problems
with the MLE. We used the same simulated data as that used for variable
selection in Section 10.9.3. Thus SP = xT β = β1 + 1xi,2 + · · · + 1xi,k+1 ∼
N(β1, a

2) for i = 1, ..., n. Hence β = (β1 , 1, .., 1, 0, ..., 0)T with β1, k ones and
p − k − 1 zeros. The default settings for Poisson regression use β1 = 1 = a.
The default settings for binomial regression use β1 = 0 and a = 5/3.

The simulation used 5000 runs, so an observed coverage in [0.94, 0.96]
gives no reason to doubt that the PI has the nominal coverage of 0.95. The
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Fig. 10.18 Banknote Data GLM and GAM Response Plots.

simulation used B = 1000; p = 4, 50, n, or 2n; ψ = 0, 1/
√
p, or 0.9; and

k = 1, 19, or p − 1. The simulated data sets are rather small since the R
estimators are rather slow. For binomial and Poisson regression, we only
computed the GAM for p = 4 with SP = AP = α+S2(x2)+S2(x3)+S4(x4)
and d = p = 4. We only computed the full model GLM if n ≥ 5p. Lasso and
relaxed lasso were computed for all cases. The regression model was computed
from the training data, and a prediction interval was made for the test case
Yf given xf . The “length” and “coverage” were the average length and the
proportion of the 5000 prediction intervals that contained Yf . Two rows per
table were used to display these quantities.

Tables 10.7 to 10.9 show some simulation results for Poisson regression.
Lasso minimized 10-fold cross validation and relaxed lasso was applied to the
selected lasso model. The full GLM, full GAM and backward elimination (BE
in the tables) used PI (10.13) while lasso, relaxed lasso (RL in the tables),
and forward selection using the Olive and Hawkins (2005) method (OHFS
in the tables) used PI (10.14). For n ≥ 10p, coverages tended to be near
or higher than the nominal value of 0.95, except for lasso and the Olive and
Hawkins (2005) method in Tables 10.8 and 10.9. In Table 10.7, coverages were
high because the Poisson counts were small and the Poisson distribution is
discrete. In Table 10.8, the Poisson counts were not small, so the discreteness
of the distribution did not affect the coverage much. For Table 10.9, p = 50,
and PI (10.13) has slight undercoverage for the full GLM since n = 10p. Table
10.9 helps illustrate the importance of the correction factor: PI (10.14) would
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Table 10.7 Simulated Large Sample 95% PI Coverages and Lengths for Poisson
Regression, p = 4, β1 = 1 = a

n ψ k GLM GAM lasso RL OHFS BE
100 0 1 cov 0.9712 0.9714 0.9810 0.9800 0.9792 0.9734

len 6.6448 6.6118 7.2770 7.2004 7.0680 6.6632
400 0 1 cov 0.9692 0.9694 0.9728 0.9714 0.9722 0.9665

len 6.6392 6.6474 6.7996 6.7722 6.7588 6.6778
100 0.5 1 cov 0.9642 0.9644 0.9796 0.9786 0.9760 0.9689

len 6.6922 6.6806 7.3136 7.2824 7.1160 6.7767
400 0.5 1 cov 0.9668 0.9670 0.9722 0.9716 0.9702 0.9754

len 6.6720 6.6896 6.8342 6.8140 6.7992 6.7802
100 0.9 1 cov 0.9672 0.9674 0.9766 0.9768 0.9738 0.9665

len 6.6038 6.6186 7.1480 7.1214 7.0002 6.5789
400 0.9 1 cov 0.9660 0.9662 0.9734 0.9700 0.9692 0.9798

len 6.5838 6.5746 6.7526 6.7196 6.7004 6.7443
100 0 3 cov 0.9696 0.9698 0.9848 0.9834 0.9818 0.9654

len 6.7080 6.7084 7.5632 7.5442 7.5348 6.7408
400 0 3 cov 0.9728 0.9730 0.9750 0.9746 0.9748 0.9657

len 6.5718 6.5684 6.7690 6.7356 6.7406 6.7063
100 0.5 3 cov 0.9672 0.9674 0.9842 0.9838 0.9736 0.9592

len 6.6992 6.7044 7.5804 7.5494 7.3810 6.7128
400 0.5 3 cov 0.9682 0.9684 0.9730 0.9722 0.9702 0.9772

len 6.6794 6.6890 6.8726 6.8520 6.8466 6.7504
100 0.9 3 cov 0.9664 0.9666 0.9804 0.9810 0.9750 0.9678

len 6.6704 6.6646 7.2880 7.2672 7.0722 6.7635
400 0.9 3 cov 0.9690 0.9692 0.9744 0.9742 0.9736 0.9667

len 6.7960 6.8092 6.9696 6.9682 6.9120 6.6987

have higher coverage and longer average length. Lasso was good at choosing
subsets that contain S since relaxed lasso had good coverage. The Olive and
Hawkins (2005) method is partly graphical, and graphs were not used in the
simulation.

Tables 10.10 and 10.11 are for binomial regression where only PI (10.13)
was used. For large n, coverage is likely to be higher than the nominal if the
binomial probability of success can get close to 0 or 1. For binomial regression,
neither lasso nor the Olive and Hawkins (2005) method had undercoverage
in any of the simulations with n ≥ 10p.

For n ≤ p, good performance needed stronger regularity conditions, and
Table 10.12 shows some results with n = 100 and p = 200. For k = 1,
relaxed lasso performed well as did lasso except in the second to last column
of Table 10.12. With k = 19 and ψ = 0, there was undercoverage since
n < 10(k+1). For the dense models with k = 199 and ψ = 0, there was often
severe undercoverage, lasso sometimes picked 100 predictors including the
constant, and then relaxed lasso caused the program to fail with 5000 runs.
Coverage was usually good for ψ > 0 except for the second to last column
and sometimes the last column of Table 10.12. With ψ = 0.9, each predictor
was highly correlated with the one dominant principal component.
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Table 10.8 Simulated Large Sample 95% PI Coverages and Lengths for Poisson
Regression, p = 4, β1 = 5, a = 2

n ψ k GLM GAM lasso RL OHFS BE
100 0 1 cov 0.9500 0.9440 0.7730 0.9664 0.9654 0.9520

len 77.6072 77.6306 84.1066 81.8374 82.4752 84.1432
400 0 1 cov 0.9580 0.9564 0.7566 0.9622 0.9628 0.9534

len 82.0126 82.0212 85.5704 83.2692 83.4374 80.9897
100 0.5 1 cov 0.9456 0.9424 0.7646 0.9634 0.9408 0.9512

len 83.0236 82.9034 90.5822 88.3060 88.6700 79.6887
400 0.5 1 cov 0.9530 0.9500 0.7584 0.9604 0.9566 0.9678

len 83.8588 83.8292 87.4336 85.1042 85.1434 79.9855
100 0.9 1 cov 0.9492 0.9452 0.7688 0.9646 0.7712 0.9654

len 78.3554 78.3798 87.0086 84.6072 83.4980 81.5432
400 0.9 1 cov 0.9550 0.9574 0.7606 0.9606 0.7928 0.9513

len 76.7028 76.7594 80.5070 78.2308 78.2538 80.1298
100 0 3 cov 0.9544 0.9466 0.7798 0.9708 0.9404 0.9487

len 80.1476 80.1362 92.1372 89.8532 90.3456 79.4565
400 0 3 cov 0.9560 0.9548 0.7514 0.9582 0.9566 0.9567

len 80.7868 80.8976 85.0642 82.7982 82.7912 79.4522
100 0.5 3 cov 0.9516 0.9478 0.7848 0.9694 0.3324 0.9515

len 77.1120 77.1130 88.9346 86.4680 85.8634 81.5643
400 0.5 3 cov 0.9568 0.9558 0.7534 0.9636 0.5214 0.9528

len 80.4226 80.4932 84.7646 82.5590 83.7526 79.9786
100 0.9 3 cov 0.9492 0.9456 0.7882 0.9620 0.7510 0.9554

len 79.5374 79.6172 91.2052 89.0692 84.5648 81.8544
400 0.9 3 cov 0.9544 0.9546 0.7638 0.9554 0.7384 0.9586

len 79.7384 79.6906 83.8318 81.6862 81.0882 80.7521

Table 10.9 Simulated Large Sample 95% PI Coverages and Lengths for Poisson
Regression, p = 50, β1 = 5, a = 2

n ψ k GLM lasso RL OHFS BE
500 0 1 cov 0.9352 0.7564 0.9598 0.9640 0.9476

len 81.2668 84.3188 81.8934 85.2922 81.1010
500 0.14 1 cov 0.9370 0.7508 0.9580 0.9628 0.9458

len 81.1820 84.4530 82.1894 85.2304 81.1146
500 0.9 1 cov 0.9368 0.7630 0.9620 0.8994 0.9456

len 80.4568 86.3506 84.4942 84.1448 80.4202
500 0 19 cov 0.9388 0.7592 0.9756 0.3778 0.9472

len 81.6922 96.8546 94.6350 99.7436 81.7218
500 0.14 19 cov 0.9368 0.7556 0.9730 0.2770 0.9438

len 80.0654 95.2964 93.2748 87.3814 80.1276
500 0.9 19 cov 0.9350 0.7544 0.9536 0.9480 0.9352

len 79.7324 86.3448 84.0674 83.2958 79.6172
500 0 49 cov 0.9386 0.7104 0.9666 0.1004 0.9364

len 81.1422 96.4304 94.8818 108.0518 81.2516
500 0.14 49 cov 0.9396 0.7194 0.9558 0.2858 0.9402

len 79.7874 94.8908 93.2538 86.4234 79.8692
500 0.9 49 cov 0.9380 0.7640 0.9480 0.9512 0.9430

len 78.8146 85.5786 83.2812 82.4104 78.8316
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Table 10.10 Simulated Large Sample 95% PI Coverages and Lengths for Binomial
Regression, p = 4, m = 40

n ψ k GLM GAM lasso RL OHFS BE
100 0 1 cov 0.9786 0.9788 0.9774 0.9744 0.9720 0.9726

len 10.7696 10.7656 10.5332 10.4430 10.1990 10.2016
400 0 1 cov 0.9708 0.9700 0.9696 0.9708 0.9702 0.9688

len 9.8374 9.8426 9.8292 9.7866 9.7518 9.7548
100 0.5 1 cov 0.9792 0.9720 0.9742 0.9750 0.9724 0.9708

len 10.6668 10.6426 10.3790 10.3282 10.1060 10.1012
400 0.5 1 cov 0.9678 0.9676 0.9692 0.9670 0.9668 0.9656

len 9.8352 9.8452 9.8196 9.7890 9.7612 9.7590
100 0.9 1 cov 0.9780 0.9766 0.9762 0.9742 0.9704 0.9714

len 10.7324 10.7222 10.3774 10.3186 10.1438 10.1602
400 0.9 1 cov 0.9688 0.9672 0.9680 0.9674 0.9684 0.9672

len 9.7554 9.7646 9.7392 9.7012 9.6778 9.6790
100 0 3 cov 0.9790 0.9750 0.9782 0.9772 0.9780 0.9776

len 10.6974 10.6960 10.7388 10.7030 10.6956 10.7020
400 0 3 cov 0.9652 0.9652 0.9654 0.9656 0.9650 0.9626

len 9.7838 9.7878 9.8244 9.7864 9.7800 9.7722
100 0.5 3 cov 0.9780 0.9734 0.9776 0.9766 0.9770 0.9784

len 10.7224 10.7034 10.7482 10.7042 10.7162 10.7134
400 0.5 3 cov 0.9686 0.9688 0.9726 0.9702 0.9704 0.9706

len 9.7250 9.7170 9.7460 9.7172 9.7152 9.7290
100 0.9 3 cov 0.9800 0.9798 0.9802 0.9786 0.9698 0.9720

len 10.6978 10.6994 10.5820 10.5414 10.0660 10.1802
400 0.9 3 cov 0.9682 0.9684 0.9696 0.9674 0.9678 0.9676

len 9.8146 9.8074 9.8364 9.8190 9.7594 9.7764

Table 10.11 Simulated Large Sample 95% PI Coverages and Lengths for Binomial
Regression, p = 50, m = 7

n ψ k GLM lasso RL OHFS BE
1000 0 1 cov 0.9896 0.9838 0.9802 0.9798 0.9798

len 4.0008 3.6666 3.5744 3.5838 3.5842
1000 0.14 1 cov 0.9868 0.9818 0.9782 0.9774 0.9770

len 4.0422 3.6836 3.6158 3.6226 3.6312
1000 0.9 1 cov 0.9894 0.9794 0.9796 0.9800 0.9798

len 4.0214 3.5994 3.5794 3.6122 3.6114
1000 0 19 cov 0.9888 0.9870 0.9848 0.9814 0.9812

len 4.0294 3.9730 3.8438 3.7110 3.7030
1000 0.14 19 cov 0.9872 0.9846 0.9852 0.9804 0.9806

len 4.0376 3.8350 3.7834 3.7170 3.7066
1000 0.9 19 cov 0.9884 0.9804 0.9808 0.9802 0.9772

len 4.0348 3.6170 3.5948 3.6226 3.6216
1000 0 49 cov 0.990 0.9904 0.9904 0.9900 0.9904

len 4.0428 4.0726 4.0528 4.0490 4.0460
1000 0.14 49 cov 0.9866 0.9866 0.9856 0.9806 0.9796

len 4.0396 3.9044 3.8640 3.7046 3.6988
1000 0.9 49 cov 0.9874 0.9808 0.9792 0.9790 0.9772

len 4.0660 3.6444 3.6230 3.6556 3.6490
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Table 10.12 Simulated Large Sample 95% PI Coverages and Lengths, n = 100,
p = 200

BR m=7 BR m=40 PR,a=1 β1 = 1 PR,a=2 β1 = 5
ψ,k lasso RL lasso RL lasso RL lasso RL
0 cov 0.9912 0.9654 0.9836 0.9602 0.9816 0.9612 0.7620 0.9662
1 len 4.2774 3.8356 11.3482 11.001 7.8350 7.5660 93.7318 91.4898

0.07 cov 0.9904 0.9698 0.9796 0.9644 0.9790 0.9696 0.7652 0.9706
1 len 4.2570 3.9256 11.4018 11.1318 7.8488 7.6680 92.0774 89.7966

0.9 cov 0.9844 0.9832 0.9820 0.9820 0.9880 0.9858 0.7850 0.9628
1 len 3.8242 3.7844 10.9600 10.8716 7.6380 7.5954 98.2158 95.9954
0 cov 0.9146 0.8216 0.8532 0.7874 0.8678 0.8038 0.1610 0.6754
19 len 4.7868 3.8632 12.0152 11.3966 7.8126 7.5188 88.0896 90.6916

0.07 cov 0.9814 0.9568 0.9424 0.9208 0.9620 0.9444 0.3790 0.5832
19 len 4.1992 3.8266 11.3818 11.0382 7.9010 7.7828 92.3918 92.1424
0.9 cov 0.9858 0.9840 0.9812 0.9802 0.9838 0.9848 0.7884 0.9594
19 len 3.8156 3.7810 10.9194 10.8166 7.6900 7.6454 97.744 95.2898

0.07 cov 0.9820 0.9640 0.9604 0.9390 0.9720 0.9548 0.3076 0.4394
199 len 4.1260 3.7730 11.2488 10.9248 8.0784 7.9956 90.4494 88.0354
0.9 cov 0.9886 0.9870 0.9822 0.9804 0.9834 0.9814 0.7888 0.9586
199 len 3.8558 3.8172 10.9714 10.8778 7.6728 7.6602 97.0954 94.7604

10.11 OLS and 1D Regression

For this section let SP = xT β = α + uT η. An important 1D regression
model, introduced by Li and Duan (1989), has the form

Y = g(α+ uT η, e) (10.16)

where g is a bivariate (inverse link) function and e is a zero mean error that
is independent of x. The constant term α may be absorbed by g if desired.
An important special case is the response transformation model where

g(xT β, e) = t−1(xT β + e) (10.17)

and t−1 is a one to one (typically monotone) function. Hence

t(Y ) = xT β + e.

Dimension reduction can greatly simplify our understanding of the con-
ditional distribution Y |x. If a 1D regression model is appropriate, then the
p–dimensional vector x can be replaced by the 1–dimensional scalar xT β
with “no loss of information about the conditional distribution.” Cook and
Weisberg (1999, p. 411) define a sufficient summary plot (SSP) to be a plot
that contains all the sample regression information about the conditional dis-
tribution Y |x of the response given the predictors. The response plot of ESP
versus Y is an estimated sufficient summary plot (ESSP).
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Remark 10.4. Suppose the 1D regression model is Y x|xT β. Then
Y x|(a+cβT x) for any constants a and c 6= 0. Hence a+cxT β is a sufficient
predictor (SP) with ESP = α̃+xT β̃ where β̃ is an estimator of cβ for some
nonzero constant c. Let x = (1,uT )T . We can also use ESP = α̃ + uT η̃
where η̃ is an estimator of c η for some nonzero constant c.

Consider the OLS estimator β̂ = (β̂1, β̂
T

2 )T = (α̂, η̂T )T . Li and Duan
(1989, p. 1031) showed that under regularity conditions, η̂ is a

√
n consistent

estimator of cη for some constant c. If η̂ ≈ cη when Y x|xT β, then the
response plot of

α̂+ uT η̂ versus Y or xTβ̂ versus Y

can be used to visualize the conditional distribution Y |xT β provided that
c 6= 0. Often if no strong nonlinearities are present among the pre-
dictors, uT η̂ is a useful ESP.

Remark 10.5. For OLS, call the plot of xT β̂ versus Y the OLS view.
The fact that the OLS view is frequently a useful response plot was perhaps
first noted by Brillinger (1977, 1983) and called the 1D Estimation Result by
Cook and Weisberg (1999, p. 432).

Olive (2002, 2004b, 2008: ch.12) showed that the trimmed views esti-
mator of Chapter 7 also gives useful response plots for 1D regression. If
Y = m(xT β) + e = m(α + uT η) + e, look for a plot with a smooth mean
function and the smallest variance function. The trimmed view with 0% trim-
ming is the OLS view.

Recall from Definition 2.17 and Theorem 2.20 that if x = (1,uT )T and
β = (α,ηT )T , then ηOLS = Σ−1

u Σu,Y . Let q = p−1. The following notation
will be useful for studying the OLS estimator. Let the sufficient predictor z =
uT η = ηT u and let w = u−E(u). Let r = w−(Σuη)ηT w. The proof of the
next result is outlined in Problem 10.1 using an argument due to Aldrin, et al.
(1993). If the 1D regression model is appropriate, then typically Cov(u, Y ) 6=
0 unless uT β follows a symmetric distribution and m is symmetric about the
median of uT η.

Theorem 10.1. Suppose that (Yi,u
T
i )T are iid observations and that the

positive definite q×q matrix Cov(u) = Σu and the q×1 vector Cov(u, Y ) =
Σu,Y . Assume that Yi = m(uT

i η)+ei where the zero mean constant variance
iid errors ei are independent of the predictors ui. Then

ηOLS = Σ−1
u Σu,Y = cm,uη + bm,u (10.18)

where the scalar
cm,u = E[ηT (u − E(u)) m(uT η)] (10.19)

and the bias vector
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bm,u = Σ−1
u E[m(uT η)r]. (10.20)

Moreover, bm,u = 0 if u is from an elliptically contoured distribution with
nonsingular Σu, and cm,u 6= 0 unless Cov(u, Y ) = 0. If the multiple linear
regression model holds, then cm,u = 1, and bm,u = 0.

Olive and Hawkins (2005) and Olive (2008, ch. 12) suggested using variable
selection methods with Cp, originally meant for multiple linear regression,
for 1D regression models with SP = xT β. In particular, Theorem 4.2 is still
useful.

10.11.1 Inference for 1D Regression With a Linear

Predictor

This section follows Chang and Olive (2010) closely. Theorem 2.20 is useful.
Some notation is needed for the following results. Many 1D regression models
have an error e with

σ2 = Var(e) = E(e2). (10.21)

Let ê be the error residual for e. Let the population OLS residual

v = Y − αOLS − uT ηOLS (10.22)

with
τ2 = E[(Y − αOLS − uT ηOLS)2] = E(v2), (10.23)

and let the OLS residual be

r = Y − α̂OLS − uT η̂OLS . (10.24)

Typically the OLS residual r is not estimating the error e and τ2 6= σ2, but
the following results show that the OLS residual is of great interest for 1D
regression models.

Assume that a 1D model holds, Y u|(α+ uT η), which is equivalent to
Y u|uT η. Then under regularity conditions, results i) – iii) below hold.

i) Li and Duan (1989): ηOLS = cη for some constant c.
ii) Li and Duan (1989) and Chen and Li (1998):

√
n(η̂OLS − cη)

D→ Np−1(0,COLS) (10.25)

where

COLS = Σ−1
u E[(Y −αOLS−uT βT

OLS)2(u−E(u))(u−E(u))T ]Σ−1
u . (10.26)
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iii) Chen and Li (1998): Let A be a known full rank constant k × (p − 1)
matrix. If the null hypothesis H0 : Aη = 0 is true, then

√
n(Aη̂OLS − cAη) =

√
nAη̂OLS

D→ Nk(0,ACOLSAT )

and
ACOLSAT = τ2AΣ−1

u AT . (10.27)

Notice that COLS = τ2Σ−1
u if v = Y −αOLS −uT ηOLS u or if the MLR

model holds. If the MLR model holds, τ2 = σ2.
To create test statistics, the estimator

τ̂2 = MSE =
1

n − p

n∑

i=1

r2i =
1

n − p

n∑

i=1

(Yi − α̂OLS − uT
i β̂OLS)

2

will be useful. The estimator ĈOLS =

Σ̂
−1

u

[
1

n

n∑

i=1

[(Yi − α̂OLS − uT
i β̂OLS)2(ui − u)(ui − u)T ]

]
Σ̂

−1

u (10.28)

can also be useful. Notice that for general 1D regression models, the OLS
MSE estimates τ2 rather than the error variance σ2.

iv) Result iii) suggests that a test statistic for H0 : Aη = 0 is

WOLS = nη̂T
OLSAT [AΣ̂

−1

u AT ]−1Aη̂OLS/τ̂
2 D→ χ2

k, (10.29)

the chi–square distribution with k degrees of freedom.

Before presenting the main theoretical result, some results from OLS MLR
theory are needed. Let the p×1 vector β = (α,ηT )T , the known k×p constant
matrix Ã = [a A] where a is a k×1 vector, and let c be a known k×1 constant
vector. Using Equation (2.6), the usual F statistic for testing H0 : Ãβ = c is

(Ãη̂ − c)T [Ã(XT X)−1Ã
T
]−1(Ãη̂ − c)/(kτ̂2) (10.30)

where MSE = τ̂2. Recall that if H0 is true, the MLR model holds and the
errors ei are iid N(0, σ2), then Fo ∼ Fk,n−p, the F distribution with k and
n− p degrees of freedom. By Theorem 2.25, if Zn ∼ Fk,n−p, then

Zn
D→ χ2

k/k (10.31)

as n → ∞.
The main theoretical result of this section is Theorem 10.2 below. This

theorem and (10.31) suggest that OLS output, originally meant for testing
with the MLR model, can also be used for testing with many 1D regression
data sets. Without loss of generality, let the 1D model Y x|(α + uT η) be
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written as
Y x|(α+ uT

RβR + uT
OβO)

where the reduced model is Y x|(α + uT
RηR) and uO denotes the terms

outside of the reduced model. Notice that OLS ANOVA F test corresponds
to Ho: η = 0 and uses A = Ip−1. The tests for H0 : βi = 0 use A =
(0, ..., 0, 1, 0, ..., 0) where the 1 is in the (i− 1)th position for i = 2, ..., p and
are equivalent to the OLS t tests. The test H0 : ηO = 0 uses A = [0 Ij] if
ηO is a j × 1 vector, and the test statistic (10.30) can be computed with the
OLS partial F test: run OLS on the full model to obtain SSE and on the
reduced model to obtain SSE(R).

In the theorem below, it is crucial that H0 : Aη = 0. Tests for H0 : Aη =
1, say, may not be valid even if the sample size n is large. Also, confidence
intervals corresponding to the t tests are for cβi, and are usually not very
useful when c is unknown.

Theorem 10.2. Assume that a 1D regression model Y x|xT β holds
and that Equation (10.29) holds when Ho : Aβ = 0 is true. Then the test
statistic (10.30) satisfies

F0 =
n− 1

kn
WOLS

D→ χ2
k/k

as n → ∞.
Proof. Notice that by (10.29), the result follows if F0 = (n−1)WOLS/(kn).

Let Ã = [0 A] so that H0 : Ãβ = 0 is equivalent to H0 : Aη = 0. By
Theorem 2.19,

(XT X)−1 =

(
1
n + uT D−1u −uT D−1

−D−1u D−1

)
(10.32)

where the (p− 1) × (p − 1) matrix

D−1 = [(n− 1)Σ̂u]−1 = Σ̂
−1

u /(n− 1). (10.33)

Using Ã and (10.32) in (10.30) shows that F0 =

(Aη̂OLS)T

[
[0 A]

(
1
n

+ uT D−1u −uT D−1

−D−1u D−1

)(
0T

AT

)]−1

Aη̂OLS/(kτ̂
2),

and the result follows from (10.33) after algebra. �

See Chang and Olive (2010) and Olive (2008: ch. 12, 2010: ch. 15) for
simulations and more information.
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10.12 Data Splitting

Data splitting is used for inference after model selection. Use a training set
to select a full model, and a validation set for inference with the selected full
model. Here p >> n is possible. See Hurvich and Tsai (1990, p. 216) and
Rinaldo et al. (2019). Typically when training and validation sets are used,
the training set is bigger than the validation set or half sets are used, often
causing large efficiency loss.

Let J be a positive integer and let bxc be the integer part of x, e.g.,
b7.7c = 7. Initially divide the data into two sets H1 with n1 = bn/(2J)c
cases and V1 with n − n1 cases. If the fitted model from H1 is not good
enough, randomly select n1 cases from V1 to add to H1 to form H2. Let V2

have the remaining cases from V1. Continue in this manner, possibly forming
sets (H1, V1), (H2, V2), ..., (HJ, VJ) where Hi has ni = in1 cases. Stop when
Hd gives a reasonable model Id with ad predictors if d < J . Use d = J ,
otherwise. Use the model Id as the full model for inference with the data in
Vd.

This procedure is simple for a fixed data set, but it would be good to
automate the procedure. For example, if n = 500000 and p = 90, using
n1 = 900 would result in a much smaller loss of efficiency than n1 = 250000.

10.13 Complements

This chapter used material from Chang and Olive (2010), Olive (2013b,
2017a: ch. 13), Olive et al. (2019), and Rathnayake and Olive (2019). GLMs
were introduced by Nelder and Wedderburn (1972). Useful references for
generalized additive models include Hastie and Tibshirani (1986, 1990), and
Wood (2017). Zhou (2001) is useful for simulating the Weibull regression
model. Also see McCullagh and Nelder (1989), Agresti (2013, 2015), and Cook
and Weisberg (1999, ch. 21-23). Collett (2003) and Hosmer and Lemeshow
(2000) are excellent texts on logistic regression while Cameron and Trivedi
(2013) and Winkelmann (2008) cover Poisson regression. Alternatives to Pois-
son regression mentioned in Section 10.7 are covered by Zuur et al. (2009),
Simonoff (2003), and Hilbe (2011). Cook and Zhang (2015) show that enve-
lope methods have the potential to significantly improve GLMs. Some GLM
large sample theory is given by Claeskens and Hjort (2008, p. 27), Cook and
Zhang (2015), and Sen and Singer (1993, p. 309).

An introduction to 1D regression and regression graphics is Cook and
Weisberg (1999a, ch. 18, 19, and 20), while Olive (2010) considers 1D regres-
sion. A more advanced treatment is Cook (1998). Important papers include
Brillinger (1977, 1983) and Li and Duan (1989). Li (1997) shows that OLS F
tests can be asymptotically valid for model (10.18) if u is multivariate nor-
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mal and Σ−1
u ΣuY 6= 0. The scatterplot smoother lowess is due to Cleveland

(1979, 1981).

Suppose n ≥ 10p. Results from Cameron and Trivedi (1998, p. 89) suggest
that if a Poisson regression model is fit using OLS software for MLR, then
a rough approximation is β̂PR ≈ β̂OLS/Y . So a rough approximation is
PR ESP ≈ (OLS ESP)/Y . Results from Haggstrom (1983) suggest that if
a binary regression model is fit using OLS software for MLR, then a rough
approximation is β̂LR ≈ β̂OLS/MSE.

Haughton (1988, 1989) showed P (S ⊆ Imin) → 1 as n → ∞ if BIC is
used. AIC has a smaller penalty than BIC, so often overfits. According to
Claeskens and Hjort (2008, p. xi), inference after variable selection has been
called “the quiet scandal of statistics.”

Plots were made in R and Splus, see R Core Team (2016). The Wood
(2017) library mgcv was used for fitting a GAM, and the Venables and Ripley
(2010) library MASS was used for the negative binomial family. The gam

library is also useful. The Lesnoff and Lancelot (2010) R package aod has
function betabin for beta binomial regression and is also useful for fitting
negative binomial regression. SAS has proc genmod, proc gam, and proc
countreg which are useful for fitting GLMs such as Poisson regression,
GAMs such as the Poisson GAM, and overdispersed count regression models.

In Section 10.9, the functions binregbootsim and pregbootsim are
useful for the full binomial regression and full Poisson regression models. The
functions vsbrbootsim and vsprbootsim were used to bootstrap back-
ward elimination for binomial and Poisson regression. The functions LRboot
and vsLRboot bootstrap the logistic regression full model and backward
elimination. The functions PRboot and vsPRboot bootstrap the Poisson
regression full model and backward elimination.

In Section 10.10, table entries for Poisson regression were made with
prpisim2 while entries for binomial regression were made with brpisim.
The functions prpiplot2 and lrpiplot were used to make Figures 10.17
and 10.18. The function prplot can be used to check the full Poisson regres-
sion model for overdispersion. The function prplot2 can be used to check
other Poisson regression models such as a GAM or lasso.

i) Resistant regression: Suppose the regression model has anm×1 response
vector y, and a p × 1 vector of predictors x. Assume that predictor trans-
formations have been performed to make x, and that w consists of k ≤ p
continuous predictor variables that are linearly related. Find the RMVN set
based on the w to obtain nu cases (yci,xci), and then run the regression
method on the cleaned data. Often the theory of the method applies to the
cleaned data set since y was not used to pick the subset of the data. Effi-
ciency can be much lower since nu cases are used where n/2 ≤ nu ≤ n, and
the trimmed cases tend to be the “farthest” from the center of w.

The method will have the most outlier resistance if k = p (or k = p− 1 if
there is a trivial predictor X1 ≡ 1). If m = 1, make the response plot of Ŷc
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versus Yc with the identity line added as a visual aid, and make the residual
plot of Ŷc versus rc = Yc − Ŷc.

In R, assume Y is the vector of response variables, x is the data matrix of
the predictors (often not including the trivial predictor), and w is the data
matrix of the wi. Then the following R commands can be used to get the
cleaned data set. We could use the covmb2 set B instead of the RMVN set
U computed from the w by replacing the command getu(w) by getB(w).

indx <- getu(w)$indx #often w = x

Yc <- Y[indx]

Xc <- x[indx,]

#example

indx <- getu(buxx)$indx

Yc <- buxy[indx]

Xc <- buxx[indx,]

outr <- lsfit(Xc,Yc)

MLRplot(Xc,Yc) #right click Stop twice

a) Resistant additive error regression: An additive error regression model
has the form Y = h(x)+e where there is m = 1 response variable Y , and the
p× 1 vector of predictors x is assumed to be known and independent of the
additive error e. An enormous variety of regression models have this form,
including multiple linear regression, nonlinear regression, nonparametric re-
gression, partial least squares, lasso, ridge regression, etc. Find the RMVN
set (or covmb2 set) based on the w to obtain nU cases (Yci,xci), and then
run the additive error regression method on the cleaned data.

b) Resistant Additive Error Multivariate Regression
Assume y = g(x)+ε = E(y|x)+ε where g : R

p → R
m, y = (Y1, ..., Ym)T ,

and ε = (ε1, ..., εm)T . Many models have this form, including multivariate
linear regression, seemingly unrelated regressions, partial envelopes, partial
least squares, and the models in a) with m = 1 response variable. Clean the
data as in a) but let the cleaned data be stored in (Zc,Xc). Again, the theory
of the method tends to apply to the method applied to the cleaned data since
the response variables were not used to select the cases, but the efficiency is
often much lower. In the R code below, assume the y are stored in z.

indx <- getu(w)$indx #often w = x

Zc <- z[indx]

Xc <- x[indx,]

#example

ht <- buxy

t <- cbind(buxx,ht);

z <- t[,c(2,5)];

x <- t[,c(1,3,4)]

indx <- getu(x)$indx

Zc <- z[indx,]
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Xc <- x[indx,]

mltreg(Xc,Zc) #right click Stop four times

10.14 Problems

10.1∗. (Aldrin et al. 1993). Suppose

Y = m(uT η) + e (10.34)

where m is a possibly unknown function and the zero mean errors e are inde-
pendent of the predictors. Let z = uT η and let w = u − E(u). Let Σu,Y =
Cov(u, Y ), and let Σu = Cov(u) = Cov(w). Let r = w − (Σuη)ηT w.

a) Recall that Cov(u,Y ) = E[(u − E(u))(Y − E(Y ))T ] and show that
Σu,Y = E(wY ).

b) Show that E(wY ) = Σu,Y = E[(r + (Σuη)ηT w) m(z)] =

E[m(z)r] + E[ηT w m(z)]Σuη.

c) Using ηOLS = Σ−1
u Σu,Y , show that ηOLS = c(u)η + b(u) where the

constant
c(u) = E[ηT (u −E(u))m(uT η)]

and the bias vector b(u) = Σ−1
u E[m(uT η)r].

d) Show that E(wz) = Σuη. (Hint: Use E(wz) = E[(u − E(u))uT η] =
E[(u −E(u))(uT −E(uT ) + E(uT ))η].)

e) Assume m(z) = z. Using d), show that c(u) = 1 if ηT Σuη = 1.

f) Assume that ηT Σuη = 1. Show that E(zr) = E(rz) = 0. (Hint: Find
E(rz) and use d).)

g) Suppose that ηT Σuη = 1 and that the distribution of u is multivariate
normal. Then the joint distribution of z and r is multivariate normal. Using
the fact that E(zr) = 0, show Cov(r, z) = 0 so that z and r are independent.
Then show that b(u) = 0.

(Note: the assumption ηT Σuη = 1 can be made without loss of generality
since if ηT Σuη = d2 > 0 (assuming Σu is positive definite), then y =
m(d(η/d)T u) + e ≡ md(θT u) + e where md(v) = m(dv), θ = η/d and
θT Σuθ = 1.)





Chapter 11

Stuff for Students

11.1 R

R is available from the CRAN website (https://cran.
r-project.org/). As of January 2020, the author’s personal computer has Ver-
sion 3.3.1 (June 21, 2016) of R. R is similar to Splus, but is free. R is very
versatile since many people have contributed useful code, often as packages.

Downloading the book’s files into R
Many of the homework problems use R functions contained in the book’s

website (http://parker.ad.siu.edu/Olive/linmodbk.htm) under the file name
linmodpack.txt. The following two R commands can be copied and pasted into
R from near the top of the file (http://parker.ad.siu.edu/Olive/
linmodrhw.txt).

Downloading the book’s R functions linmodpack.txt and data files
linmoddata.txt into R: the commands

source("http://parker.ad.siu.edu/Olive/linmodpack.txt")

source("http://parker.ad.siu.edu/Olive/linmoddata.txt")

can be used to download the R functions and data sets into R. Type ls().
Nearly 10 R functions from linmodpack.txt should appear. In R, enter the
command q(). A window asking “Save workspace image?” will appear. Click
on No to remove the functions from the computer (clicking on Yes saves the
functions in R, but the functions and data are easily obtained with the source
commands).

Citing packages
We will use R packages often in this book. The following R command is

useful for citing the Mevik et al. (2015) pls package.

citation("pls")

505
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Other packages cited in this book include MASS and class: both from Ven-
ables and Ripley (2010), glmnet: Friedman et al. (2015), and leaps: Lumley
(2009).

This section gives tips on using R, but is no replacement for books such
as Becker et al. (1988), Crawley (2005, 2013), Fox and Weisberg (2010), or
Venables and Ripley (2010). Also see Mathsoft (1999ab) and use the website
(www.google.com) to search for useful websites. For example enter the search
words R documentation.

The command q() gets you out of R.
Least squares regression can be done with the function lsfit or lm.
The commands help(fn) and args(fn) give information about the function

fn, e.g. if fn = lsfit.
Type the following commands.

x <- matrix(rnorm(300),nrow=100,ncol=3)

y <- x%*%1:3 + rnorm(100)

out<- lsfit(x,y)

out$coef

ls.print(out)

The first line makes a 100 by 3 matrix x with N(0,1) entries. The second
line makes y[i] = 0+1∗x[i, 1]+2∗x[i, 2]+3∗x[i, 2]+ewhere e is N(0,1). The
term 1:3 creates the vector (1, 2, 3)T and the matrix multiplication operator is
%∗%. The function lsfit will automatically add the constant to the model.
Typing “out” will give you a lot of irrelevant information, but out$coef and
out$resid give the OLS coefficients and residuals respectively.

To make a residual plot, type the following commands.

fit <- y - out$resid

plot(fit,out$resid)

title("residual plot")

The first term in the plot command is always the horizontal axis while the
second is on the vertical axis.

To put a graph in Word, hold down the Ctrl and c buttons simulta-
neously. Then select “Paste” from the Word menu, or hit Ctrl and v at the
same time.

To enter data, open a data set in Notepad or Word. You need to know
the number of rows and the number of columns. Assume that each case is
entered in a row. For example, assuming that the file cyp.lsp has been saved
on your flash drive from the webpage for this book, open cyp.lsp in Word. It
has 76 rows and 8 columns. In R , write the following command.

cyp <- matrix(scan(),nrow=76,ncol=8,byrow=T)

Then copy the data lines from Word and paste them in R. If a cursor does
not appear, hit enter. The command dim(cyp) will show if you have entered
the data correctly.
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Enter the following commands

cypy <- cyp[,2]

cypx<- cyp[,-c(1,2)]

lsfit(cypx,cypy)$coef

to produce the output below.

Intercept X1 X2 X3

205.40825985 0.94653718 0.17514405 0.23415181

X4 X5 X6

0.75927197 -0.05318671 -0.30944144

Making functions in R is easy.

For example, type the following commands.

mysquare <- function(x){

# this function squares x

r <- xˆ2

r }

The second line in the function shows how to put comments into functions.

Modifying your function is easy.

Use the fix command.
fix(mysquare)

This will open an editor such as Notepad and allow you to make changes. (In
Splus, the command Edit(mysquare) may also be used to modify the function
mysquare.)

To save data or a function in R, when you exit, click on Yes when the
“Save worksheet image?” window appears. When you reenter R, type ls().
This will show you what is saved. You should rarely need to save anything
for this book. To remove unwanted items from the worksheet, e.g. x, type
rm(x),
pairs(x) makes a scatterplot matrix of the columns of x,
hist(y) makes a histogram of y,
boxplot(y) makes a boxplot of y,
stem(y) makes a stem and leaf plot of y,
scan(), source(), and sink() are useful on a Unix workstation.
To type a simple list, use y <− c(1,2,3.5).
The commands mean(y), median(y), var(y) are self explanatory.

The following commands are useful for a scatterplot created by the com-
mand plot(x,y).
lines(x,y), lines(lowess(x,y,f=.2))
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identify(x,y)
abline(out$coef), abline(0,1)

The usual arithmetic operators are 2 + 4, 3 − 7, 8 ∗ 4, 8/4, and

2ˆ{10}.

The ith element of vector y is y[i] while the ij element of matrix x is x[i, j].
The second row of x is x[2, ] while the 4th column of x is x[, 4]. The transpose
of x is t(x).

The command apply(x,1,fn) will compute the row means if fn = mean.
The command apply(x,2,fn) will compute the column variances if fn = var.
The commands cbind and rbind combine column vectors or row vectors with
an existing matrix or vector of the appropriate dimension.

Getting information about a library in R
In R, a library is an add–on package of R code. The command library()

lists all available libraries, and information about a specific library, such as
leaps for variable selection, can be found, e.g., with the command
library(help=leaps).

Downloading a library into R
Many researchers have contributed a library or package of R code that can

be downloaded for use. To see what is available, go to the website
(http://cran.us.r-project.org/) and click on the Packages icon.

Following Crawley (2013, p. 8), you may need to “Run as administrator”
before you can install packages (right click on the R icon to find this). Then
use the following command to install the glmnet package.

install.packages("glmnet")

Open R and type the following command.
library(glmnet)

Next type help(glmnet) to make sure that the library is available for use.

Warning: R is free but not fool proof. If you have an old version of R
and want to download a library, you may need to update your version of
R. The libraries for robust statistics may be useful for outlier detection, but
the methods have not been shown to be consistent or high breakdown. All
software has some bugs. For example, Version 1.1.1 (August 15, 2000) of R
had a random generator for the Poisson distribution that produced variates
with too small of a mean θ for θ ≥ 10. Hence simulated 95% confidence
intervals might contain θ 0% of the time. This bug seems to have been fixed
in Versions 2.4.1 and later. Also, some functions in lregpack may no longer
work in new versions of R.
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11.2 Hints for Selected Problems

Chapter 1

1.1 a) Sort each column, then find the median of each column. Then
MED(W ) = (1430, 180, 120)T.

b) The sample mean of (X1, X2, X3)
T is found by finding the sample mean

of each column. Hence x = (1232.8571, 168.00, 112.00)T .

1.2 a) 7 + βXi

b) β̂ =
∑

(Yi − 7)Xi/
∑
X2

i

1.3 See Section 1.3.5.
1.5 a) β̂3 =

∑
X3i(Yi − 10− 2X2i)/

∑
X2

3i. The second partial derivative
= 2

∑
X2

3i > 0.

1.10 a) X2 ∼ N(100, 6).

b) (
X1

X3

)
∼ N2

((
49
17

)
,

(
3 −1
−1 4

))
.

c) X1 X4 and X3 X4.

d)

ρ(X1 , X2) =
Cov(X1 , X3)√

VAR(X1)VAR(X3)
=

−1√
3
√

4
= −0.2887.

1.11 a) Y |X ∼ N(49, 16) since Y X. (Or use E(Y |X) = µY +
Σ12Σ

−1
22 (X − µx) = 49 + 0(1/25)(X − 100) = 49 and VAR(Y |X) =

Σ11 −Σ12Σ
−1
22 Σ21 = 16− 0(1/25)0 = 16.)

b) E(Y |X) = µY +Σ12Σ
−1
22 (X−µx) = 49+10(1/25)(X−100) = 9+0.4X.

c) VAR(Y |X) = Σ11 −Σ12Σ
−1
22 Σ21 = 16 − 10(1/25)10 = 16 − 4 = 12.

1.13 The proof is identical to that given in Example 3.2. (In addition, it
is fairly simple to show that M1 = M2 ≡M . That is, M depends on Σ but
not on c or g.)

1.19 ΣB = E[E(X|BT X)XT B)] = E(MBBT XXT B) = MBBT ΣB.
Hence MB = ΣB(BT ΣB)−1.

1.26 a)

N2

((
3
2

)
,

(
3 1
1 2

))
.

b) X2 X4 and X3 X4.

c)
σ12√
σ11σ33

=
1√
2
√

3
= 1/

√
6 = 0.4082.
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1.31 See Section 1.3.6.

1.32 a) Model I:

β̂1 =

∑n
i=1(Xi −X)Yi∑n
j=1(xj − x)2

=

n∑

i=1

kiYi with ki =
xi − x∑n

j=1(xj − x)2
.

Model II:

β̂1 =

∑n
i=1 xiYi∑n
j=1 x

2
j

=

n∑

i=1

kiYi with ki =
xi∑n

j=1 x2
j

.

b) Model I:

V (β̂1) =

n∑

i=1

k2
i V (Yi) = σ2

n∑

i=1

k2
i = σ2

∑n
i=1(xi − x)2

[
∑n

j=1(xj − x)2]2
= σ2/

n∑

i=1

(xi − x)2.

Model II:

V (β̂1) =

n∑

i=1

k2
i V (Yi) = σ2

n∑

i=1

k2
i = σ2

∑n
i=1 x

2
i

[
∑n

j=1 x
2
j ]

2
= σ2/

n∑

i=1

x2
i .

The models are full rank, so the estimators are BLUE.
c) The result follows if

∑
i=1 x

2
i ≥ ∑

i=1(xi − x)2, but
∑n

i=1(xi − µ)2 is
the least squares criterion for the model xi = µ + ei, and the criterion is
minimized by the least squares estimator µ̂ = x. Hence using µ̃ = 0 gives a
least squares criterion at least as large as that using µ̂, and the result holds.

1.33 a) E(r) = E[(I − P )Y ] = (I − P )Xβ = 0. Cov(r) = Cov[(I −
P )Y ] = (I − P )Cov(Y )(I − P )T = σ2(I − P ).

b) Cov(r,Y ) = E([r − E(r)][Y − E(Y )]T ) =

E([(I − P )Y − (I − P )E(Y )][Y − E(Y )]T ) =

E[(I−P )[Y −E(Y )][Y −E(Y )]T ] = (I−P )Cov(Y ) = (I−P )σ2I = σ2(I−P ).

c) Cov(r, Ŷ ) = E([r − E(r)][Ŷ − E(Ŷ )]T ) =

E([(I − P )Y − (I − P )E(Y )][PY − PE(Y )]T ) =

E[(I − P )[Y − E(Y )][Y − E(Y )]T P ] = (I − P )σ2IP = σ2(I − P )P = 0.

Chapter 2

2.1 See the proof of Theorem 2.18.

2.14 For fixed σ > 0, L(β, σ2) is maximized by minimizing Q(β) ≥ 0. So

β̂Q maximizes L(β, σ2) regardless of the value of σ2 > 0. So β̂Q is the MLE.
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b) Let Q = Q(β̂Q). Then the MLE σ̂2 is found by maximizing the profile

likelihood, Lp(σ2) = L(β̂Q, σ
2) = cn

1

σn
exp

( −1

2σ2
Q

)
. Let τ = σ2. The

Lp(τ ) = cn
1

τn/2
exp

(−1

2τ
Q

)
, and the log profile likelihood logLp(τ ) =

d− n

2
log(τ ) − Q

2τ
. Thus

d logLp(τ )

dτ
=

−n
2τ

+
Q

2τ2

set
= 0

or −nτ +Q = 0 or τ̂ = σ̂2 = Q/n, unique. Then

d2 logLp(τ )

dτ2
=

n

2τ2
− 2Q

2τ3

∣∣∣∣
τ̂

=
n

2τ2
− 2nτ̂

2τ̂3
=

−n
2τ̂2

< 0

which proves that σ̂2 is the MLE of σ2.

2.32 a) If λ is an eigenvalue of P , then for some x 6= 0, λx = Px =
P 2x = λ2x. So λ(λ − 1) = 0, which only has possible solutions λ = 0 or
λ = 1.

b) Thus rank(P ) = number of nonzero eigenvalues of P = tr(P ) by a).

2.35 a) Note that E(Y Y T ) = Σ + θθT . Since the quadratic form is
a scalar and the trace is a linear operator, E[Y T AY ] = E[tr(Y T AY )] =
E[tr(AY Y T )] = tr(E[AY Y T ]) = tr(AΣ+AθθT ) = tr(AΣ)+tr(AθθT ) =
tr(AΣ) + θT Aθ.

b) Note that
∑

i(Yi − Y )2 is the residual sum of squares for the linear

model Y = 1 + e. Hence
∑

i

(Yi − Y )2 = Y T (I − H)Y = Y T (I − 1

n
11T )Y

where H = 1(1T 1)−11T . Now tr(AΣ) = tr(Σ)− tr(
1

n
11T Σ). Now 1T Σ =

(σ2[1+(n−1)ρ], ..., σ2[1+(n−1)ρ], tr(11T Σ) = 1T Σ1 = n(σ2[1+(n−1)ρ]),
and tr( 1

n11T Σ) = σ2[1 + (n − 1)ρ]. So tr(AΣ) = nσ2 − σ2[1 + (n− 1)ρ] =

σ2[n − 1 − (n − 1)ρ] = σ2(n − 1)(1 − ρ). Now θT Aθ = θ1T (I − 1
n
11T )1 =

θ2(n− n2/n) = 0. Hence the result follows by a).

c) Assume Y ∼ Nn(θ, σ2I). Then Y = BY where B =
1

n
1T . Now

Y T AY = Y T AT AY . Hence the two terms are independent if AY BY

iff ABT = 0, but ABT =
1

n
(I − 1

n
11T )1 =

1

n
(1− 1) = 0.

2.36 a) Q(β) =
∑n

i=1(Yi − βxi)
2. By the chain rule,

dQ(β)

dβ
= −2

n∑

i=1

(Yi − βxi)xi.
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Setting the derivative equal to 0 and calling the unique solution β̂ gives∑n
i=1 xiYi = β̂

∑n
i=1 x

2
i or

β̂ =

∑n
i=1 xiYi∑n
i=1 x

2
i

.

b) β̂ =
∑n

i=1 kiYi where ki = xi/

n∑

j=1

x2
j . Hence E(β̂) =

n∑

i=1

kiE(Yi) =

n∑

i=1

kiβxi = β

n∑

i=1

x2
i /

n∑

j=1

x2
j = β. V (β̂) =

n∑

i=1

k2
i V (Yi) = σ2

n∑

i=1

k2
i using

Yi = Yi|xi has V (Yi) = σ2. Note that
∑n

i=1 k
2
i = 1/

∑n
i=1 x

2
i .

c) E(Ŷi) = βxi = E(Yi) = E(Yi|xi), suppressing the conditioning. V (Ŷi) =

V (β̂xi) = x2
iV (β̂) = σ2x2

i /
∑n

j=1 x
2
j by b).

d) Under this normal model, the MLE of β is β̂ and the MLE of σ2 is

σ̂2 =
1

n

n∑

i=1

r2i =
n− p

n
MSE

with p = 1.

2.37 a) Use either proof of Theorem 2.5. Normality is not necessary.

b) i)

Source df SS MS F p-value

Regression p-1 SSR = Y T (P − 1

n
11T )Y MSR F0 = MSR

MSE for H0:

Residual n-p SSE = Y T (I − P )Y MSE β2 = · · · = βp = 0

ii) E(MSE) = σ2, so E(SSE) = (n − p)σ2. By a)

E(SSR) = βT XT (P−11T

n
)Xβ+tr[σ2(P−11T

n
)] = βT XT (P−11T

n
)Xβ+σ2(p−1).

When H0 is true Xβ = 1β1 and E(SSR) = σ2(p − 1).

iii) By Theorem 2.14 g), if Y ∼ Nn(µ, σ2I) then
Y T AY

σ2
∼ χ2

(
r,

µT Aµ

2σ2

)

iff A is idempotent with rank(A) = tr(A) = r.
This theorem applies to SSE/σ2 with A = I−P , r = n−p, and µ = Xβ.

Then µT (I−P )µ = 0 since PX = X . Hence SSE/σ2 ∼ χ2(n−p, 0) ∼ χ2
n−p.

2.38 a) A− is a generalized inverse of A if AA−A = A.

b) i) P = X(XT X)−X
T

.

ii) C(X) = C(1). Hence P = 1(1T1)−11T =
1

3
11T .
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iii) SSE = Y T (I−P )Y = Y T Y − 1
3 (
∑
Yi)

2 = 1+4+9−(1+2+3)2/3 =
14− 36/3 = 2.

2.39 a)

Source df SS MS E(MS) F

Reduced n− p1 SSE(R) = Y T (I − P 1)Y MSE(R) E(MSE(R)) FR = SSE(R)−SSE
p2MSE =

Full n − p SSE = Y T (I − P )Y MSE σ2 Y T (P − P 1)Y /p2

Y T (I − P )Y /(n− p)

where

E(MSE(R)) =
1

n− p1
[σ2tr(I−P 1)+βT XT (I−P 1)Xβ] =

1

n− p1
[σ2(n−p1)+βT XT (I−P 1)Xβ].

If H0 is true, then Y ∼ Nn(X1β1, σ
2I), and E(MSE(R)) = σ2.

b) Need to show that SSE(R) − SSE = Y T (P − P 1)Y and SSE =
Y T (I − P )Y are independent. This result follows from Craig’s Theorem
since (P − P 1)(I − P ) = P − P 1 − P + P 1 = 0.

c) By Theorem 2.14 g), if Y ∼ Nn(µ, σ2I) then
Y T AY

σ2
∼ χ2

(
r,

µT Aµ

2σ2

)

iff A is idempotent with rank(A) = tr(A) = r.
This theorem applies to SSE/σ2 with A = I−P and r = n−p. Then µ =

Xβ, and µT (I −P )µ = 0 since P X = X . Hence SSE/σ2 ∼ χ2(n− p, 0) ∼
χ2

n−p. Similarly, when H0 is true, the theorem applies to Y T (P − P 1)Y /σ2

with A = P −P 1 and r = p−p1 = p2. Then µ = X1β1, and µT (P −P 1)µ =
0 since PX1 = P 1X1 = X1. Hence Y T (P − P 1)Y /σ2 ∼ χ2(p2, 0) ∼ χ2

p2
.

Thus

FR =
Y T (P − P 1)Y /p2

Y T (I − P )Y /(n− p)
∼ Fp2,n−p.

2.40 a) Y T AY ∼ χ2(rank(A)) iff AΣ is idempotent and µT Aµ = 0 by
Theorem 2.13.

b) This proof similar to the proof of Theorem 2.8. Let u = AY and
w = BY . Then AY BY iff Cov(w,u) = BΣA = 0. Thus AY BY .

Let g(AY ) = Y T AT A−AY = Y T AA−AY = Y T AY . Then g(AY ) =
Y T AY BY since AY BY .

c) Y = 1T Y /n and
∑n

i=1(Yi − Y )2 = Y T (I − P 1)Y where P 1 = 11T /n
is the projection matrix on C(1) since

∑n
i=1(Yi − Y )2 is the residual sum of

squares for the model Y = 1µ+e with least squares estimator µ̂ = Y . Hence
the quantities are independent if BY = 1T Y and Y T AY = Y T (I − P 1)Y
are independent, or if 1T I(I−P 1) = 0 by b). This result holds since 1T P 1 =
1T since P 1 is the projection matrix on C(1) means P 11 = 1.
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2.41 a) β̂ = (XT X)−1XT Y and σ̂2 =
1

n

n∑

i=1

r2i =
1

n
SSE =

1

n
Y T (I −

P )Y .

b) By Theorem 2.14 g), if Y ∼ Nn(µ, σ2I) then
Y T AY

σ2
∼ χ2

(
r,

µT Aµ

2σ2

)

iff A is idempotent with rank(A) = tr(A) = r.
This theorem applies to SSE/σ2 with A = I−P , r = n−p, and µ = Xβ.

Then µT (I−P )µ = 0 since PX = X . Hence SSE/σ2 ∼ χ2(n−p, 0) ∼ χ2
n−p.

Thus

(n− p)σ̂2/σ2 =
n− p

n

SSE

σ2
∼ n− p

n
χ2

n−p.

c) BY Y T AY if BA = 0 by Theorem 2.8 b). Here BA = (XT X)−1XT (I−
P ) = 0 since XT P = XT . Thus the MLEs are independent.

d) The MLE is the generalized least squares estimator β̂ = (XT V −1X)−1XT V −1Y .

2.42 Note that H = P and that Z = Y − µ ∼ Nn(0,Σ).
a) i) E[(Y − µ)T A(Y − µ)] = E[ZT AZ] = tr(AΣ) + 0T A0 = tr(AΣ)

by Theorem 2.5 using E(Z) = 0.
Alternatively, E(ZZT ) = Σ since E(Z) = 0. Since the quadratic form

is a scalar and the trace is a linear operator, E[ZT AZ] = E[tr(ZT AZ)] =
E[tr(AZZT )] = tr(E[AZZT ]) = tr(AΣ).

Normality is not needed for this result.
ii) AΣ is idempotent by Theorem 2.13.
iii) BΣA = 0 (or AΣBT = 0) by Theorem 2.8.

b) i)
1

σ
(I−H)Y ∼ Nn(

1

σ
(I−H)Xβ,

1

σ
(I−H)σ2I

1

σ
(I−H) ∼ Nn(0, I−

H) since HX = X .

ii) By Theorem 2.14 g), if Y ∼ Nn(µ, σ2I) then
Y T AY

σ2
∼ χ2

(
r,

µT Aµ

2σ2

)

iff A is idempotent with rank(A) = tr(A) = r.

This theorem applies to u =
Y T (I − H)Y

σ2
= SSE/σ2 with A = I − H,

r = n − p, and µ = Xβ. Then µT (I − H)µ = 0 since HX = X . Hence
SSE/σ2 ∼ χ2(n− p, 0) ∼ χ2

n−p.
iii) By Theorem 2.8 b), independence follows since H(I − H) = 0.

2.43 a) Q(β) =
∑n

i=1(yi − βxi)
2. By the chain rule,

dQ(β)

dβ
= −2

n∑

i=1

(yi − βxi)xi.

Setting the derivative equal to 0 and calling the unique solution β̂ gives∑n
i=1 xiyi = β̂

∑n
i=1 x

2
i or

β̂ =

∑n
i=1 xiyi∑n
i=1 x

2
i

.
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b) MSE =
1

n − 1

n∑

i=1

r2i since p = 1.

c) Since yi ∼ N(xiβ, σ
2), the likelihood function

L(β, σ2) =

n∏

i=1

fyi(yi) =

n∏

i=1

1√
2π

1

σ
exp[

−1

2σ2
(yi−xiβ)2 ] = cn

1

σn
exp[

−1

2σ2

n∑

i=1

(yi−xiβ)2 ] =

cn
1

σn
exp[

−1

2σ2
Q(β)]

where Q(β) is the least squares criterion. For fixed σ > 0, maiximizingL(β, σ)

is equivalent to minimizing the least squares criterion Q(β). Thus β̂ from a)
is the MLE of β. To find the MLE of σ2, use the profile likelihood function

Lp(σ2) = Lp(τ ) = cn
1

σn
exp[

−1

2σ2
Q] = cn

1

τn/2
exp[

−1

2τ
Q]

where Q = Q(β̂). Then the log profile likelihood function

log(Lp(τ )) = dn − n

2
log(τ ) − Q

2τ
,

and
d

dτ
log(Lp(τ )) =

−n

2τ
+

Q

2τ2

set
= 0.

Thus nτ = Q or τ̂ = σ̂2 = Q/n =
∑

i=1 r
2
i /n, which is a unique solution.

Now
d2

dτ2
log(Lp(τ )) =

n

2τ2
− 2Q

2τ3

∣∣∣∣
τ̂

=
n

2τ̂2
− 2nτ̂

2τ̂3
=

−n
2τ̂2

< 0.

Thus σ̂2 is the MLE of σ2.

2.44 Let Y1 and Y2 be iindependent random variables with mean θ and
2θ respectively. Find the least squares estimate of θ and the residual sum of
squares.

Solution:

Y = Xβ + e =

(
Y1

Y2

)
=

(
1
2

)
θ +

(
e1
e2

)
.

Then

θ̂ = (XT X)−1XT Y =

[
(1 2)

(
1
2

)]−1

(1 2)

(
Y1

Y2

)
=
Y1 + 2Y2

5
.

Now Ŷ = X θ̂ =

(
1
2

)
Y1 + 2Y2

5
=




Y1+2Y2

5

2Y1+4Y2

5


 .
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Thus

RSS =

(
Y1 −

Y1 + 2Y2

5

)2

+

(
Y2 −

2Y1 + 4Y2

5

)2

.

2.45 a)
√
nA(β̂ − β)

D→ Nr(0, σ
2AWAT ).

b) A(Zn − µ)
D→ Nr(0,AAT ).

2.46 a)

L(β, σ2) = f(y1 , . . . , yn|β, σ2) = (2π)−n/2(σ2)−n/2 exp

{
− 1

2σ2

n∑

i=1

(yi − βxi)
2

}
.

Fix σ > 0. Then L(β, σ2) is maximized by minimizing

n∑

i=1

(yi − βxi)
2,

which gives the least squares estimator. Taking derivative with respective to
β and setting it equal to 0, the solution is the MLE if the second derivative
is positive. The solution is:

β̂ =

∑n
i=1 xiYi∑n
i=1 x

2
i

and it is easy to check that the second derivative is positive.

E(β̂) = E

[∑n
i=1 xiYi∑n
i=1 x

2
i

]
=

∑n
i=1 xiE[Yi]∑n

i=1 x
2
i

=

∑n
i=1 xiβxi∑n

i=1 x
2
i

= β

∑n
i=1 x

2
i∑n

i=1 x
2
i

= β.

c) Note that β̂ is a linear combination of independent normal random

variables, so β̂ has a normal distribution with its mean and variance. We
have already computed the mean, so we need only compute the variance:

V ar(β̂) = V ar

[∑n
i=1 xiYi∑n
i=1 x

2
i

]
=

1

(
∑n

i=1 x
2
i )

2
V ar(

n∑

i=1

xiYi),

=
1

(
∑n

i=1 x
2
i )

2

n∑

i=1

x2
i V ar(Yi) =

σ2

∑n
i=1 x

2
i

.

Therefore, β̂ ∼ N(β, σ2∑
n
i=1 x2

i
).

d) For the expectation we have:
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E[U ] = E

[∑
Yi∑
xi

]
=

∑
E[Yi]∑
xi

=

∑
βxi∑
xi

= β,

E[V ] = E

[
1

n

∑ Yi

xi

]
=

1

n

∑ E[Yi]

xi
=

1

n

∑ βxi

xi
= β.

For variance we have

V ar[U ] = V ar

[∑
Yi∑
xi

]
=

∑
V ar[Yi]

(
∑
xi)2

=
nσ2

(
∑
xi)2

=
σ2

nX̄2
,

V ar[V ] = V ar

[
1

n

∑ Yi

xi

]
=

1

n2

∑
V ar

(
Yi

xi

)
=

1

n2

∑ σ2

x2
i

=
σ2

n2

∑ 1

x2
i

.

We do know that if ai > 0 then 1
1
n

∑n
i=1

1
ai

≤ 1
n

∑n
i=1 ai. Now, set ai = 1

x2
i
,

then we have
n∑n

i=1 x
2
i

≤ 1

n

n∑

i=1

1

x2
i

,

therefore V ar(β̂) ≤ V ar(V ).
Moreover, since

∑n
i=1(xi − x̄)2 ≥ 0 therefore

∑n
i=1 x

2
i ≥ nx̄2, hence

V ar(β̂) ≤ V ar(U).
Finally, since f(t) = 1

t2
is convex, then by using Jensen’s inequality we

have
1

x̄2
≤ 1

n

n∑

1

1

x2
i

,

thus
V ar(β̂) ≤ V ar(U) ≤ V ar(V ).

2.47 For symmetry the solutions are obvious, since
(1) the transpose of a difference is the difference of the transpose, and
(2) we know H is symmetric, I is symmetric, and since the constant n−1

does not affect the transpose operation, n−1JT = n−1 is a symmetric matrix.
For idempotent, we need to show that squaring each matrix returns the

original. Recall that H is idempotent, because

H2 = [X(XT X)−1XT ][X(XT X)−1XT ]

= X(XT X)−1(XT X)(XT X)−1XT

= X(XT X)−1XT = H

Now, we can write (a) (I − n−1J)2 = I2 − 2n−1J + n−2J2. But, since
J = 11T , we have J2 = (11T )2 = 11T11T = 1n1T = n11T . Thus,

(I − n−1J)2 = I2 − 2n−1J + n−1J = I − n−1J
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(b) For SSE, we have (IH)2 = I22H+H2. Since I and H are idempotent,
we can see this matrix is idempotent, i.e., (I−n−1J)2 = I−2H+H = I−H.

(c) ) Lastly, for SSRegr take (H − n−1J)2 = H2 − n−1HJ − n−1JH +

n−2J2. We know, i) H2 = H , and ii) n−2J2 = n−1J . therefore
Further, from the hint, let X = [1X∗] so that HX = H [1X∗] =

[H1HX∗]. But HX = X(XT X)1XT X = XI = X . So we have
HX = [H1HX∗] = X = [1X∗]. Since the partitioned components in
this equality have the same orders, we can therefore conclude from the first
partitioned component that H1 = 1. Then, HJ = H11T = 11T = J . A
similar argument applied to XT = [1TX∗T

] and XT H yields 1T H = 1T ,
so that 1T H = 1T and JH = 11T H = 11T = J . Combining these various
results together gives

(H − n−1J)2 = H2 − n−1HJ − n−1JH + n−2J2

= H − n−1J − n−1J + n−1J

= H − n−1J

2.48 a) E(Yi|xi) = ai + βxi.
b) By the chain rule,

dQ(η)

dη
= −2

n∑

i=1

(Yi − ai − ηxi)xi = −2

[
n∑

i=1

xi(Yi − ai) − η
n∑

i=1

x2
i

]

Setting the derivative equal to 0 and calling the unique solution β̂ gives

η
∑n

i=1 x
2
i

set
=
∑n

i=1 xi(Yi − ai) or

β̂ =

∑n
i=1 xi(Yi − ai)∑n

i=1 x
2
i

.

Now
d2Q(η)

dη2
= 2

n∑

i=1

x2
i > 0.

Hence β̂ is the least squares estimator.
c) If xi ≡ 1, then

β̂ =

∑n
i=1(Yi − ai)

n
,
dQ(η)

dη
= 2nη − 2

n∑

i=1

(Yi − ai) and
d2Q(η)

dη2
2

= 2n > 0.

d) For fixed σ2, maximizing the likelihood is equivalent to maximizing

exp

( −1

2σ2
(Yi − ai − βxi)

2

)
,
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which is equivalent to minimizing (Yi − ai − βxi)
2. So β̂ maximizes L(β, σ2)

regardless of the value of σ2 > 0. Hence β̂ is the MLE of β.
e) Let Q =

∑n
i=1(Yi − ai − β̂xi)

2. Then the MLE of σ2 can be found by
maximizing the log profile likelihood log(LP (σ2)) where

LP (σ2) =
1

(2πσ2)n/2
exp

( −1

2σ2
Q

)
.

Let τ = σ2. Then

log(Lp(σ
2)) = c− n

2
log(σ2) − 1

2σ2
Q,

and

log(Lp(τ )) = c − n

2
log(τ ) − 1

2τ
Q.

Hence
d log(LP (τ ))

dτ
=

−n
2τ

+
Q

2τ2

set
= 0

or −nτ +Q = 0 or nτ = Q or

τ̂ =
Q

n
= σ̂2,

which is a unique solution.
Now

d2 log(LP (τ ))

dτ2
=

n

2τ2
− 2Q

2τ3

∣∣∣∣
τ=τ̂

=
n

2τ̂2
− 2nτ̂

2τ̂3
=

−n
2τ̂2

< 0.

Thus σ̂2 is the MLE of σ2.

2.49 a) Use E(Y ′AY ) = tr(AΣ) + E(Y ′)AE(Y ) with A = I, Σ =
Cov(Y ) = σ2I, and E(Y ) = Xβ. Note that Y ∼ Nn(Xβ, σ2I).

Then E(Y ′IY ) = tr(Iσ2I) + β′X′IXβ = σ2n+ β′X ′Xβ.
Alternatively, E(Y ′Y ) =

∑n
i=1 E(Y 2

i ) =
∑n

i=1[V (Yi) + (E[Yi])
2] =∑n

i=1[σ
2 + (x′

iβ)2] = nσ2 + β′X ′Xβ.
b) Note that x ∼ Np(0,Σ). Then E(x′Ax) = tr(ACov(x))+E(x′)AE(x) =

tr(AΣ) + E(x′)AE(x) = tr(AΣ) since E(x) = 0.
2.49 See Example 2.1.

Chapter 3

3.7 Note that ZT
AZA = ZT Z,

GA ηA =

(
Gη√
λ∗2 η

)
,

and ZT
AGAηA = ZT Gη. Then
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RSS(ηA) = ‖ZA − GAηA‖2
2 = (ZA − GAηA)T (ZA − GAηA) =

ZT
AZA − ZT

AGAηA − ηT
AGT

AZA + ηT
AGT

AGAηA =

ZT Z − ZT Gη − ηT GT Z +
(
ηT GT

√
λ2 ηT

)( Gη√
λ∗2 η

)
.

Thus

QN (ηA) = ZT Z − ZT Gη − ηT GT Z + ηT GT Gη + λ∗2η
T η + γ‖ηA‖1 =

‖Z − Gη‖2
2 + λ∗2‖η‖2

2 +
λ∗1√

1 + λ∗2
‖ηA‖1 =

RSS(η) + λ∗2‖η‖2
2 + λ∗1‖η‖1 = Q(η). �

3.12 a) SSE = Y T (I − P )Y and SSR = Y T (P − 1

n
11T )Y = Y T (P −

P 1)Y where P 1 =
1

n
11T = 1(1T1)−11T is the projection matrix on C(1).

b) E(MSE) = σ2, so E(SSE) = (n − r)σ2. By a) and Theorem 2.5,

E(SSR) = βT XT (P−11T

n
)Xβ+tr[σ2(P−11T

n
)] = βT XT (P−11T

n
)Xβ+σ2(r−1).

When H0 is true Xβ = 1β1 and E(SSR) = σ2(r − 1).

c) By Theorem 2.14 g), if Y ∼ Nn(µ, σ2I) then
Y T AY

σ2
∼ χ2

(
a,

µT Aµ

2σ2

)

iff A is idempotent with rank(A) = tr(A) = a.
i) Theorem 2.14 g) applies to SSE/σ2 with A = I − P and a = n − r.

Since µ = Xβ, and µT (I − P )µ = 0 since PX = X . Hence SSE/σ2 ∼
χ2(n − r, 0) ∼ χ2

n−r. Thus SSE ∼ σ2χ2
n−r regardless of whether H0 is true

or false.
ii) Theorem 2.14 g) applies to SSR/σ2 with A = P − P 1 and a = r − 1.

If H0 is true, then µ = 1β1 and and µT (P − P 1)µ = 0 since 1 is the first
column of X and P 1 is the projection matrix on C(1). Thus P1 = P 11 = 1.
Hence SSR/σ2 ∼ χ2(r − 1, 0) ∼ χ2

r−1. Thus SSR ∼ σ2χ2
r−1.

iii) SSE and SSR are independent by Craig’s theorem since (I − P )(P −
P 1) = P − P 1 − P + P 1 = 0. MSE = SSE/(n-r) and MSR = SSR/(r-1).
Thus

MSR/MSE =
SSR/[σ2(r − 1)]

SSE/[σ2(n− r)]
∼ Fr−1,n−r.

3.13 a) i) Let a and b be constant vectors. Then aT β is estimable if there
exists a linear unbiased estimator bT Y so E(bT Y ) = aT β. Also, the quantity
aT β is estimable iff aT = bT X iff a = XT b iff a ∈ C(XT ).

ii) Let a least squares estimator β̂ be any solution to the normal equations

XT Xβ̂ = XT Y . Then the least squares estimator of aT β is aT β̂ = bT Xβ̂ =
bT P Y .
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iii) MSE = Y T (I − P )Y /(n− r) = SSE/(n − r).
b) ii) E(bT P Y ) = bT P Xβ = bT Xβ = aT β.
iii) E(SSE) = E(Y T (I − P )Y ) = tr[σ2(I − P )I ] + µT (I − P )µ by

Theorem 2.5 where µ = Xβ. Hence E(SSE) = σ2(tr(I − P ) = σ2(n − r).
Hence E(MSE) = E(SSE)/(n − r) = σ2.

c) If aT β is estimable and a least squares estimator β̂ is any solution to

the normal equations XT Xβ̂ = XT Y , then aT β̂ is the unique BLUE of
aT β.

d) SSE = Y T (I −P )Y and SSR = Y T (P − 1

n
11T )Y = Y T (P −P 1)Y

where P 1 =
1

n
11T = 1(1T1)−11T is the projection matrix on C(1).

3.14 a) Note that β is estimable for i) since X for i) has full rank 2.
Note that β is not estimable for ii) since X for ii) does not have full rank
(rank(X) = 1).

b)

B = (XT X)−1XT =



[

2 1 0
0 1 2

]


2 0
1 1
0 2






−1

XT =

[
5 1
1 5

]−1

XT .

If

A =

[
a11 a12

a21 a22

]

and d = a11a22 − a21a12 6= 0, then

A−1 =
1

d

[
a22 −a12

−a21 a11

]
.

Thus

B =
1

24

[
5 −1
−1 5

][
2 1 0
0 1 2

]
=

1

24

[
10 4 −2
−2 4 10

]
.

c) Note that bT Y is an unbiased estimator of bT Xβ = aT β with aT =
bT X . If b = 1, then

aT = 1T X = (1 1 1)




3 6
2 4
1 2


 = (6 12).

Thus the estimable function aT β = 6β1+12β2 has unbiased estimator bT Y =
1T Y = Y1 + Y2 + Y3.

Alternatively, let b = 1 and a be as above. Then the unbiased least squares
estimator aT β̂ = bT PY where
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P =




3
2
1




(3 2 1)




3
2
1





−1

(3 2 1) =
1

14




9 6 3
6 4 2
3 2 1


 .

Since b = 1, the unbiased least squares estimator is

1

14
(18 12 6)



Y1

Y2

Y3


 =

18

14
Y1 +

12

14
Y2 +

6

14
Y3.

Since E(Y ) = Xβ, note that E(aT β̂) =

18

14
(3β1+6β2)+

12

14
(2β1+4β2)+

6

14
(β1+2β2) = (84/14)β1+(168/14)β2 = 6β1+12β2.

3.15 (a)
Since y ∼ Np(Aβ, σ2Ip), it follows that ŷ = P Ay ∼ Np(P AAβ,P Aσ2IpP

>

A).
But P AAβ = Aβ, and P Aσ2IpP

>

A = σ2P AP >

A = σ2P AP A = σ2P A.
Hence,

ŷ ∼ Np(Aβ, σ
2P A).

(b)
e = y − ŷ = y − P Ay = (I − P A)y. Therefore, we have
(I − P A)y ∼ Np

(
(I − P A)Aβ, (I − P A)σ2Ip(I − P A)>

)
where

(Ip − P A)Aβ = Aβ − Aβ = 0, and
(Ip −P A)σ2Ip(Ip − P A)> = σ2(Ip − P A). Hence

e ∼ Np

(
0, σ

2
(Ip − P A)

)
.

(c)

Cov(y, e) = Cov
(
y, (I −P A)y

)
= Cov(y)(Ip−P A)> = σ2Ip(Ip−P A) = σ2(Ip−P A) 6= 0.

Hence y and e are not independent.
(d)

Cov(ŷ, e) = Cov (P Ay, (I − P A)y) = P ACov(y)(Ip − P A)
>

= P Aσ
2Ip(Ip −P A) = σ

2P A(Ip −P A) = 0

This proves that ŷ and e are independent by Theorem 2.8a).
3.16 (a) Given that C(Z) ⊂ C(X), let zj be the jth column of Z. Then

zj ∈ C(Z) ⊂ C(X). Thus, zj = Xbj for some bj. Hence

Z = (z1, . . . , zt) = X(b1, . . . , bt) = XB.

(b)
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P XP Z = X(X>X)−X>Z(Z>Z)−Z>

= X(X>X)−X>XB(Z>Z)−Z> since Z = XB

= P XXB(Z>Z)−Z>
= XB(Z>Z)−Z>

= Z(Z>Z)−Z>
= P Z

(c)

(P X −P Z)
2

= P 2

X −P XP Z − P ZP X + P 2

Z

= P X −P Z − (P XP Z )
>

+ P Z = P X − P Z .

(d)

SSE2 − SSE = Y > (P X − P Z) Y

= Y > (P X − P Z) (P X − P Z)Y

= Y > (P X − P Z)
>

(P X − P Z)Y

= {(P X − P Z )Y }> {(P X − P Z)Y } ≥ 0

(e) Use Craig’s Theorem: true since (P X − P Z )(I − P X ) = 0
(f)

SSE

σ2
∼ χ2(df1, ncp1 = 0), df1 = n− rank(X)

SSE2 − SSE

σ2
∼ χ2(df1, ncp2), df2 = rank(X) − rank(Z) > 0

df2 > 0 this is because C(Z) is a proper subset of C(X).

ncp2 =
1

2σ2
(Xβ)> (P X − P Z) Xβ

=
1

2σ2
β>
(
X>P XX − X>P ZX

)
β

=
1

2σ2
β>
(
X>X − X>P ZX

)
β =

1

2σ2
(Xβ)> (I − P Z)Xβ > 0

The last inequality follows from the fact that C(Z) is a proper subset of
C(X).

Under the null hypothesis H0 : Xβ = Zγ, we have ncp2 = 0. Therefore,
F > c will be a test for H0 : E(Y ) ∈ C(Z), where

F =
(SSE2 − SSE)/df2

SSE/df1
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has F distribution under the H0.

3.17 (a)

X =




1 1 0 0 1 0 0 0
1 1 0 0 0 1 0 0
1 1 0 0 0 0 1 0
1 0 1 0 1 0 0 0
1 0 1 0 0 1 0 0
1 0 1 0 0 1 0 0
1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 1
1 0 0 1 0 0 0 1




(b)

X>Y =




∑
i

∑
j

∑
k Yijk∑

j

∑
k Y1jk∑

j

∑
k Y2jk∑

j

∑
k Y3jk∑

i

∑
k Yi1k∑

i

∑
k Yi2k∑

i

∑
k Yi3k∑

j

∑
k Y3jk




(c)
First, note that:

E(Y .j.) =

∑3
i=1

∑nij

k=1 µ+ αi + βj

n.j
=
n.jµ +

∑3
i=1 nijαi + n.jβj

n.j

= µ+ βj +

∑
i nijαi

n.j

Then,

E(Y .1.) = µ + β1 +
1

2
(α1 + α2)

E(Y .3.) = µ + β3 +
1

2
(α1 + α2)

Hence E(Y .1.) − E(Y .3.) = β1 − β3, and it is a LUE for β1 − β3. More work
is needed to show Y .1. − Y .3. is an OLS estimator of β1 − β3.

(d)
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E(Y 1..) = µ+ α1 +
1

3
(β1 + β2 + β3)

E(Y 3..) = µ+ α3 +
1

2
(2β4)

⇒ E(Y 1.. − Y 3..) = α1 − α3 +
1

3
(β1 + β2 + β3 − 3β4) 6= α1 − α3

Therefore, Y 1..−Y 3.. is not an unbiased estimator for α1−α3, hence it cannot
be the OLS estimator of α1 − α3.

3.18

a) X ′ =

[
1 1 2
2 2 4

]
, so C(X ′) = span

{(
1
2

)}
.

For b), c), and d), if a is a 2× 1 constant vector, then a′β is estimable iff
a ∈ C(X′).

b) Yes, estimable since

5β1 + 10β2 = (5 10)β, and

(
5
10

)
= 5

(
1
2

)
∈ C(X ′).

c) No, not estimable since

β1 = (1 0)β, and

(
1
0

)
6∈ C(X′).

d) No, not estimable since

β1 − 2β2 = (1 − 2)β, and

(
1
−2

)
6∈ C(X ′).

3.20 Since aT
i β is estimable, ai ∈ C(XT ). Thus constant vector a =∑k

i=1 ciai ∈ C(XT ). Hence aT β =
∑k

i=1 cia
T
i β is estimable.

There are several other correct solutions, such as there exists constant
vectors bi such that E(bT

i Y ) = aT
i β. Let b =

∑k
i=1 cibi. Then E(bT Y ) =∑k

i=1 ciE(bT
i Y ) =

∑k
i=1 cia

T
i β. Hence

∑k
i=1 cia

T
i β is estimable.

(This problem proves that an arbitrary linear combination of estimable
functions is an estimable function.)

3.21 a) E(XT AX) = tr(AΣ) + [E(X)]T AE(X) with A = Σ−. Hence
E(XT AX) = tr(Σ−Σ) + µT Σ−µ.

b) i) Xβ = (β0 + β1 , β0 + β1 , β0 + β2 , β0 + β2, ..., β0 + βp−1 , β0 +
βp−1, β0, β0)

T .
ii) β1 = β2 = · · · = βp−1 = −β0

3.21 See Example 3.2 with the p− value omitted from the Anova table.

Chapter 4

4.11 a) (XT X)−1XTE(Y ∗) = (XT X)−1XT Xβ̂ = β̂.
b) ACov(Y ∗)AT = (XT X)−1XTdiag(r2i )X(XT X)−1.
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c) We will use Xβ̂ = PY and P XI = XI . Then E(β̂
∗
I) = (XT

I XI)
−1XT

I E(Y ∗) =

(XT
I XI)

−1XT
I Xβ̂ = (XT

I XI)
−1XT

I P Y = (XT
I XI)

−1XT
I Y = β̂I .

d) ACov(Y ∗)AT = (XT
I XI)

−1XT
I diag(r

2
i )XI(X

T
I XI)

−1.
Chapter 10

10.1
a) Since Y is a (random) scalar and E(w) = 0, Σu,Y = E[(u−E(u))(Y −

E(Y ))T ] = E[w(Y −E(Y ))] = E(wY ) − E(w)E(Y ) = E(wY ).

b) Using the definition of z and r, note that Y = m(z) + e and
w = r + (Σuη)ηT w. Hence E(wY ) = E[(r + (Σuη)ηT w)(m(z) + e)] =
E[(r+(Σuη)ηT w)m(z)]+E[r +(Σuη)ηT w]E(e) since e is independent of
x. Since E(e) = 0, the latter term drops out. Since m(z) and ηT wm(z) are
(random) scalars, E(wY ) = E[m(z)r] + E[ηT w m(z)]Σuη.

c) Using result b), Σ−1
u Σu,Y = Σ−1

u E[m(z)r] + Σ−1
u E[ηT w m(z)]Σuη

= E[ηT w m(z)]Σ−1
u Σuη+Σ−1

u E[m(z)r] = E[ηT w m(z)]η+Σ−1
u E[m(z)r]

and the result follows.

d) E(wz) = E[(u−E(u))uT η] = E[(u−E(u))(uT −E(uT ) +E(uT ))η]
= E[(u −E(u))(uT −E(uT ))]η + E[u −E(u)]E(uT )η = Σuη.

e) If m(z) = z, then c(u) = E(ηT wz) = ηTE(wz) = ηT Σuη = 1 by
result d).

f) Since z is a (random) scalar, E(zr) = E(rz) = E[(w−(Σuη)ηT w)z] =
E(wz)− (Σuη)ηTE(wz). Using result d), E(rz) = Σuη −ΣuηηT Σuη =
Σuη − Σuη = 0.

g) Since z and r are linear combinations of u, the joint distribution of z and
r is multivariate normal. Since E(r) = 0, z and r are uncorrelated and thus
independent. Hence m(z) and r are independent and b(u) = Σ−1

u E[m(z)r] =
Σ−1

u E[m(z)]E(r) = 0.
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11.3 Tables

Tabled values are F(k,d, 0.95) where P (F < F (k, d, 0.95)) = 0.95.
00 stands for ∞. Entries were produced with the qf(.95,k,d) command
in R. The numerator degrees of freedom are k while the denominator degrees
of freedom are d.

k 1 2 3 4 5 6 7 8 9 00

d

1 161 200 216 225 230 234 237 239 241 254

2 18.5 19.0 19.2 19.3 19.3 19.3 19.4 19.4 19.4 19.5

3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.53

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.37

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 3.67

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.23

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 2.93

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.41

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.30

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.21

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.13

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.07

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.01

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 1.96

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 1.92

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 1.88

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 1.84

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 1.71

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 1.62

00 3.84 3.00 2.61 2.37 2.21 2.10 2.01 1.94 1.88 1.00
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Tabled values are tα,d where P (t < tα,d) = α where t has a t distribution
with d degrees of freedom. If d > 29 use the N(0, 1) cutoffs d = Z = ∞.

alpha pvalue

d 0.005 0.01 0.025 0.05 0.5 0.95 0.975 0.99 0.995 left tail

1 -63.66 -31.82 -12.71 -6.314 0 6.314 12.71 31.82 63.66

2 -9.925 -6.965 -4.303 -2.920 0 2.920 4.303 6.965 9.925

3 -5.841 -4.541 -3.182 -2.353 0 2.353 3.182 4.541 5.841

4 -4.604 -3.747 -2.776 -2.132 0 2.132 2.776 3.747 4.604

5 -4.032 -3.365 -2.571 -2.015 0 2.015 2.571 3.365 4.032

6 -3.707 -3.143 -2.447 -1.943 0 1.943 2.447 3.143 3.707

7 -3.499 -2.998 -2.365 -1.895 0 1.895 2.365 2.998 3.499

8 -3.355 -2.896 -2.306 -1.860 0 1.860 2.306 2.896 3.355

9 -3.250 -2.821 -2.262 -1.833 0 1.833 2.262 2.821 3.250

10 -3.169 -2.764 -2.228 -1.812 0 1.812 2.228 2.764 3.169

11 -3.106 -2.718 -2.201 -1.796 0 1.796 2.201 2.718 3.106

12 -3.055 -2.681 -2.179 -1.782 0 1.782 2.179 2.681 3.055

13 -3.012 -2.650 -2.160 -1.771 0 1.771 2.160 2.650 3.012

14 -2.977 -2.624 -2.145 -1.761 0 1.761 2.145 2.624 2.977

15 -2.947 -2.602 -2.131 -1.753 0 1.753 2.131 2.602 2.947

16 -2.921 -2.583 -2.120 -1.746 0 1.746 2.120 2.583 2.921

17 -2.898 -2.567 -2.110 -1.740 0 1.740 2.110 2.567 2.898

18 -2.878 -2.552 -2.101 -1.734 0 1.734 2.101 2.552 2.878

19 -2.861 -2.539 -2.093 -1.729 0 1.729 2.093 2.539 2.861

20 -2.845 -2.528 -2.086 -1.725 0 1.725 2.086 2.528 2.845

21 -2.831 -2.518 -2.080 -1.721 0 1.721 2.080 2.518 2.831

22 -2.819 -2.508 -2.074 -1.717 0 1.717 2.074 2.508 2.819

23 -2.807 -2.500 -2.069 -1.714 0 1.714 2.069 2.500 2.807

24 -2.797 -2.492 -2.064 -1.711 0 1.711 2.064 2.492 2.797

25 -2.787 -2.485 -2.060 -1.708 0 1.708 2.060 2.485 2.787

26 -2.779 -2.479 -2.056 -1.706 0 1.706 2.056 2.479 2.779

27 -2.771 -2.473 -2.052 -1.703 0 1.703 2.052 2.473 2.771

28 -2.763 -2.467 -2.048 -1.701 0 1.701 2.048 2.467 2.763

29 -2.756 -2.462 -2.045 -1.699 0 1.699 2.045 2.462 2.756

Z -2.576 -2.326 -1.960 -1.645 0 1.645 1.960 2.326 2.576

CI 90% 95% 99%

0.995 0.99 0.975 0.95 0.5 0.05 0.025 0.01 0.005 right tail

0.01 0.02 0.05 0.10 1 0.10 0.05 0.02 0.01 two tail
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Č́ıžek, P. (2008), “General Trimmed Estimation: Robust Approach to Non-
linear and Limited Dependent Variable Models,” Econometric Theory, 24,
1500-1529.

Claeskens, G., and Hjort, N.L. (2008), Model Selection and Model Averag-
ing, Cambridge University Press, New York, NY.

Clarke, B.R. (1986), “Nonsmooth Analysis and Fréchet Differentiability of
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