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Preface

Many math and some statistics departments offer a one semester graduate
course in statistical inference using texts such as Casella and Berger (2002),
Bickel and Doksum (2007) or Mukhopadhyay (2000, 2006). The course typ-
ically covers minimal and complete sufficient statistics, maximum likelihood
estimators (MLEs), bias and mean square error, uniform minimum variance
estimators (UMVUEs) and the Fréchet-Cramér-Rao lower bound (FCRLB),
an introduction to large sample theory, likelihood ratio tests, and uniformly
most powerful (UMP) tests and the Neyman Pearson Lemma. A major goal
of this text is to make these topics much more accessible to students by using
the theory of exponential families.

This material is essential for Masters and PhD students in biostatistics
and statistics, and the material is often very useful for graduate students in
economics, psychology and electrical engineering (especially communications
and control).

The material is also useful for actuaries. According to (www.casact.org),
topics for the CAS Exam 3 (Statistics and Actuarial Methods) include the
MLE, method of moments, consistency, unbiasedness, mean square error,
testing hypotheses using the Neyman Pearson Lemma and likelihood ratio
tests, and the distribution of the max. These topics make up about 20% of
the exam.

One of the most important uses of exponential families is that the the-
ory often provides two methods for doing inference. For example, minimal
sufficient statistics can be found with either the Lehmann-Scheffé theorem
or by finding T from the exponential family parameterization. Similarly, if
Y1, ..., Yn are iid from a one parameter regular exponential family with com-
plete sufficient statistic T (Y ), then one sided UMP tests can be found by
using the Neyman Pearson lemma or by using exponential family theory.

The prerequisite for this text is a calculus based course in statistics at

v



Preface vi

the level of Hogg and Tanis (2005), Larsen and Marx (2001), Wackerly,
Mendenhall and Scheaffer (2002) or Walpole, Myers, Myers and Ye (2002).
Also see Arnold (1990), Gathwaite, Joliffe and Jones (2002), Spanos (1999),
Wasserman (2004) and Welsh (1996).

The following intermediate texts are especially recommended: DeGroot
and Schervish (2001), Hogg, Craig and McKean (2004), Rice (2006) and
Rohatgi (1984).

A less satisfactory alternative prerequisite is a calculus based course in
probability at the level of Hoel, Port and Stone (1971), Parzen (1960) or Ross
(1984).

A course in Real Analysis at the level of Bartle (1964), Gaughan (1993),
Rosenlicht (1985), Ross (1980) or Rudin (1964) would be useful for the large
sample theory chapters.

The following texts are at a similar to higher level than this text: Azzalini
(1996), Bain and Engelhardt (1992), Berry and Lindgren (1995), Cox and
Hinckley (1974), Ferguson (1967), Knight (2000), Lindgren (1993), Lindsey
(1996), Mood, Graybill and Boes (1974), Roussas (1997) and Silvey (1970).

The texts Bickel and Doksum (2007), Lehmann and Casella (2003) and
Rohatgi (1976) are at a higher level as are Poor (1994) and Zacks (1971).
The texts Bierens (2004), Cramér (1946), Lehmann and Romano (2005), Rao
(1965), Schervish (1995) and Shao (2003) are at a much higher level. Cox
(2006) would be hard to use as a text, but is a useful monograph.

Some other useful references include a good low level probability text
Ash (1993) and a good introduction to probability and statistics Dekking,
Kraaikamp, Lopuhaä and Meester (2005). Also see Spiegel (1975), Romano
and Siegel (1986) and see online lecture notes by Ash at (www.math.uiuc.edu/
∼r-ash/).

Many of the most important ideas in statistics are due to R.A. Fisher. See,
for example, David (1995), Fisher (1922), Savage (1976) and Stigler (2008).
The book covers some of these ideas and begins by reviewing probability,
counting, conditional probability, independence of events, the expected value
and the variance. Chapter 1 also covers mixture distributions and shows how
to use the kernel method to find E(g(Y )). Chapter 2 reviews joint, marginal,
and conditional distributions; expectation; independence of random variables
and covariance; conditional expectation and variance; location–scale families;
univariate and multivariate transformations; sums of random variables; ran-
dom vectors; the multinomial, multivariate normal and elliptically contoured
distributions. Chapter 3 introduces exponential families while Chapter 4
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covers sufficient statistics. Chapter 5 covers maximum likelihood estimators
and method of moments estimators. Chapter 6 examines the mean square
error and bias as well as uniformly minimum variance unbiased estimators,
Fisher information and the Fréchet-Cramér-Rao lower bound. Chapter 7
covers uniformly most powerful and likelihood ratio tests. Chapter 8 gives
an introduction to large sample theory while Chapter 9 covers confidence
intervals. Chapter 10 gives some of the properties of 44 univariate distri-
butions, many of which are exponential families. The MLEs and UMVUEs
for the parameters are derived for several of these distributions. Chapter 11
gives some hints for the problems.

Some highlights of this text follow.

• Exponential families, indicator functions and the support of the distri-
bution are used throughout the text to simplify the theory.

• Section 1.5 describes the kernel method, a technique for computing
E(g(Y )), in detail rarely given in texts.

• Theorem 2.2 shows the essential relationship between the independence
of random variables Y1, ..., Yn and the support in that the random vari-
ables are dependent if the support is not a cross product. If the support
is a cross product and if the joint pdf or pmf factors on the support,
then Y1, ..., Yn are independent.

• Theorems 2.17 and 2.18 give the distribution of
∑
Yi when Y1, ..., Yn

are iid for a wide variety of distributions.

• Chapter 3 presents exponential families. The theory of these distribu-
tions greatly simplifies many of the most important results in mathe-
matical statistics.

• Corollary 4.6 presents a simple method for finding sufficient, minimal
sufficient and complete statistics for k-parameter exponential families.

• Section 5.4.1 compares the “proofs” of the MLE invariance principle
due to Zehna (1966) and Berk (1967). Although Zehna (1966) is cited
by most texts, Berk (1967) gives a correct elementary proof.

• Theorem 7.3 provides a simple method for finding uniformly most pow-
erful tests for a large class on 1–parameter exponential families.
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• Theorem 8.4 gives a simple proof of the asymptotic efficiency of the
complete sufficient statistic as an estimator of its expected value for
1–parameter regular exponential families.

• Theorem 8.21 provides a simple limit theorem for the complete suffi-
cient statistic of a k–parameter regular exponential family.

• Chapter 10 gives information on many more “brand name” distribu-
tions than is typical.

Much of the course material is on parametric frequentist methods, but
the most used methods in statistics tend to be semiparametric. Many of the
most used methods originally based on the univariate or multivariate normal
distribution are also semiparametric methods. For example the t-interval
works for a large class of distributions if σ2 is finite and n is large. Similarly,
least squares regression is a semiparametric method. Multivariate analysis
procedures originally based on the multivariate normal distribution tend to
also work well for a large class of elliptically contoured distributions.

Warning: For parametric methods that are not based on the normal
distribution, often the methods work well if the parametric distribution is a
good approximation to the data, but perform very poorly otherwise.

Acknowledgements

Teaching the material to Math 580 students at Southern Illinois Univer-
sity was very useful. Some of the Chapter 8 material came from a reading
course in Large Sample Theory taught to 2 SIU students. Some of the SIU
QUAL problems were written by Bhaskar Bhattacharya, Sakthivel Jeyarat-
nam, and Abdel Mugdadi, who also contributed several solutions.



Chapter 1

Probability and Expectations

1.1 Probability

Definition 1.1. Statistics is the science of extracting useful information
from data.

This chapter reviews some of the tools from probability that are useful for
statistics, and the following terms from set theory should be familiar. A set
consists of distinct elements enclosed by braces, eg {1, 5, 7}. The universal
set S is the set of all elements under consideration while the empty set Ø is
the set that contains no elements. The set A is a subset of B, written A ⊆ B,
if every element in A is in B. The union A ∪B of A with B is the set of all
elements in A or B or in both. The intersection A ∩ B of A with B is the
set of all elements in A and B. The complement of A, written A or Ac, is the
set of all elements in S but not in A.

Theorem 1.1. DeMorgan’s Laws:
a) A ∪B = A ∩ B.
b) A ∩B = A ∪B.

Sets are used in probability, but often different notation is used. For ex-
ample, the universal set is called the sample space S. In the definition of an
event below, the special field of subsets B of the sample space S forming the
class of events will not be formally given. However, B contains all “interest-
ing” subsets of S and every subset that is easy to imagine. The point is that
not necessarily all subsets of S are events, but every event A is a subset of
S.

1



CHAPTER 1. PROBABILITY AND EXPECTATIONS 2

Definition 1.2. The sample space S is the set of all possible outcomes
of an experiment.

Definition 1.3. Let B be a special field of subsets of the sample space
S forming the class of events. Then A is an event if A ∈ B.

Definition 1.4. If A ∩ B = Ø, then A and B are mutually exclusive or
disjoint events. Events A1, A2, ... are pairwise disjoint or mutually exclusive
if Ai ∩ Aj = Ø for i 6= j.

A simple event is a set that contains exactly one element si of S, eg
A = {s3}. A sample point si is a possible outcome.

Definition 1.5. A discrete sample space consists of a finite or count-
able number of outcomes.

Notation. Generally we will assume that all events under consideration
belong to the same sample space S.

The relative frequency interpretation of probability says that the proba-
bility of an event A is the proportion of times that event A would occur if
the experiment was repeated again and again infinitely often.

Definition 1.6: Kolmogorov’s Definition of a Probability Func-
tion. Let B be the class of events of the sample space S. A probability
function P : B → [0, 1] is a set function satisfying the following three prop-
erties:
P1) P (A) ≥ 0 for all events A,
P2) P (S) = 1, and
P3) if A1, A2, ... are pairwise disjoint events, then P (∪∞

i=1Ai) =
∑∞

i=1 P (Ai).

Example 1.1. Flip a coin and observe the outcome. Then the sample
space S = {H, T}. If P ({H}) = 1/3, then P ({T}) = 2/3. Often the notation
P (H) = 1/3 will be used.

Theorem 1.2. Let A and B be any two events of S. Then
i) 0 ≤ P (A) ≤ 1.
ii) P (Ø) = 0 where Ø is the empty set.
iii) Complement Rule: P (A) = 1 − P (A).
iv) General Addition Rule: P (A ∪B) = P (A) + P (B) − P (A ∩B).
v) If A ⊆ B, then P (A) ≤ P (B).
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vi) Boole’s Inequality: P (∪∞
i=1Ai) ≤

∑∞
i=1 P (Ai) for any events A1, A2, ....

vii) Bonferroni’s Inequality: P (∩ni=1Ai) ≥
∑n

i=1 P (Ai) − (n − 1) for any
events A1, A2, ..., An.

The general addition rule for two events is very useful. Given three of the
4 probabilities in iv), the 4th can be found. P (A ∪ B) can be found given
P (A), P (B) and that A and B are disjoint or independent. The addition
rule can also be used to determine whether A and B are independent (see
Section 1.3) or disjoint.

1.2 Counting

The sample point method for finding the probability for event A says that
if S = {s1, ..., sk} then 0 ≤ P (si) ≤ 1,

∑k
i=1 P (si) = 1, and P (A) =

∑

i:si∈A P (si). That is, P (A) is the sum of the probabilities of the sample
points in A. If all of the outcomes si are equally likely, then P (si) = 1/k and
P (A) = (number of outcomes in A)/k if S contains k outcomes.

Counting or combinatorics is useful for determining the number of ele-
ments in S. The multiplication rule says that if there are n1 ways to do a
first task, n2 ways to do a 2nd task, ..., and nk ways to do a kth task, then
the number of ways to perform the total act of performing the 1st task, then
the 2nd task, ..., then the kth task is

∏k
i=1 ni = n1 · n2 · n3 · · ·nk.

Techniques for the multiplication principle:
a) use a slot for each task and write ni above the ith task. There will be k
slots, one for each task.
b) Use a tree diagram.

Definition 1.7. A permutation is an ordered arrangements using r of
n distinct objects and the number of permutations = P n

r . A special case of
permutation formula is

P n
n = n! = n · (n− 1) · (n− 2) · (n− 3) · · · 4 · 3 · 2 · 1 =

n ·(n−1)! = n ·(n−1) ·(n−2)! = n ·(n−1) ·(n−2) ·(n−3)! = · · · . Generally
n is a positive integer, but define 0! = 1. An application of the multiplication

rule can be used to show that P n
r = n·(n−1)·(n−2) · · · (n−r+1) =

n!

(n − r)!
.
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The quantity n! is read “n factorial.” Typical problems using n! include
the number of ways to arrange n books, to arrange the letters in the word
CLIPS (5!), et cetera.

Recognizing when a story problem is asking for the permutation formula:
The story problem has r slots and order is important. No object is allowed to
be repeated in the arrangement. Typical questions include how many ways
are there to “to choose r people from n and arrange in a line,” “to make
r letter words with no letter repeated” or “to make 7 digit phone numbers
with no digit repeated.” Key words include order, no repeated and different.

Notation. The symbol ≡ below means the first three symbols are equiv-
alent and equal, but the fourth term is the formula used to compute the
symbol. This notation will often be used when there are several equivalent
symbols that mean the same thing. The notation will also be used for func-
tions with subscripts if the subscript is usually omitted, eg gX(x) ≡ g(x).
The symbol

(
n
r

)
is read “n choose r,” and is called a binomial coefficient.

Definition 1.8. A combination is an unordered selection using r of n
distinct objects. The number of combinations is

C(n, r) ≡ Cn
r ≡

(
n

r

)

=
n!

r!(n− r)!
.

Combinations are used in story problems where order is not important.
Key words include committees, selecting (eg 4 people from 10), choose, ran-
dom sample and unordered.

1.3 Conditional Probability and Independence

Definition 1.9. The conditional probability of A given B is

P (A|B) =
P (A ∩B)

P (B)

if P (B) > 0.

It is often useful to think of this probability as an experiment with sample
space B instead of S.
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Definition 1.10. Two eventsA and B are independent, written A B,
if

P (A ∩B) = P (A)P (B).

If A and B are not independent, then A and B are dependent.

Definition 1.11. A collection of events A1, ..., An are mutually indepen-
dent if for any subcollection Ai1, ..., Aik,

P (∩kj=1Aij) =
k∏

j=1

P (Aij).

Otherwise the n events are dependent.

Theorem 1.3. Assume that P (A) > 0 and P (B) > 0. Then the two
events A and B are independent if any of the following three conditions hold:
i) P (A ∩ B) = P (A)P (B),
ii) P (A|B) = P (A), or
iii) P (B|A) = P (B).
If any of these conditions fails to hold, then A and B are dependent.

The above theorem is useful because only one of the conditions needs to
be checked, and often one of the conditions is easier to verify than the other
two conditions.

Theorem 1.4. a) Multiplication rule: If A1, ..., Ak are events and if the
relevant conditional probabilities are defined, then P (∩ki=1Ai) =
P (A1)P (A2|A1)P (A3|A1 ∩A2) · · ·P (Ak|A1 ∩A2 ∩ · · · ∩Ak−1). In particular,
P (A ∩B) = P (A)P (B|A) = P (B)P (A|B).

b) Multiplication rule for independent events: If A1, A2, ..., Ak are inde-
pendent, then P (A1 ∩ A2 ∩ · · · ∩ Ak) = P (A1) · · ·P (Ak). If A and B are
independent (k = 2), then P (A ∩B) = P (A)P (B).

c) Addition rule for disjoint events: If A and B are disjoint, then P (A ∪
B) = P (A) + P (B). If A1, ..., Ak are pairwise disjoint, then P (∪ki=1Ai) =
P (A1 ∪ A2 ∪ · · · ∪Ak) = P (A1) + · · · + P (Ak) =

∑k
i=1 P (Ai).

Example 1.2. The above rules can be used to find the probabilities of
more complicated events. The following probabilities are closed related to
Binomial experiments. Suppose that there are n independent identical trials,
that Y counts the number of successes and that ρ = probability of success
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for any given trial. Let Di denote a success in the ith trial. Then
i) P(none of the n trials were successes) = (1 − ρ)n = P (Y = 0) =
P (D1 ∩D2 ∩ · · · ∩Dn).
ii) P(at least one of the trials was a success) = 1 − (1 − ρ)n = P (Y ≥ 1) =

1 − P (Y = 0) = 1 − P (none) = P (D1 ∩D2 ∩ · · · ∩Dn).
iii) P(all n trials were successes) = ρn = P (Y = n) = P (D1 ∩D2 ∩ · · · ∩Dn).
iv) P(not all n trials were successes) = 1−ρn = P (Y < n) = 1−P (Y = n) =
1 − P(all).
v) P(Y was at least k ) = P (Y ≥ k).
vi) P(Y was at most k) = P (Y ≤ k).

If A1, A2, ... are pairwise disjoint and if ∪∞
i=1Ai = S, then the collection of

sets A1, A2, ... is a partition of S. By taking Aj = Ø for j > k, the collection
of pairwise disjoint sets A1, A2, ..., Ak is a partition of S if ∪ki=1Ai = S.

Theorem 1.5: Law of Total Probability. If A1, A2, ..., Ak form a
partition of S such that P (Ai) > 0 for i = 1, ..., k, then

P (B) =

k∑

j=1

P (B ∩Ai) =

k∑

j=1

P (B|Aj)P (Aj).

Theorem 1.6: Bayes’ Theorem. Let A1, A2, ..., Ak be a partition of
S such that P (Ai) > 0 for i = 1, ..., k, and let B be an event such that
P (B) > 0. Then

P (Ai|B) =
P (B|Ai)P (Ai)

∑k
j=1 P (B|Aj)P (Aj)

.

Proof. Notice that P (Ai|B) = P (Ai ∩ B)/P (B) and P (Ai ∩ B) =
P (B|Ai)P (Ai). Since B = (B ∩ A1) ∪ · · · ∪ (B ∩ Ak) and the Ai are dis-
joint, P (B) =

∑k
j=1 P (B ∩Aj) =

∑k
j=1 P (B|Aj)P (Aj). QED

Example 1.3. There are many medical tests for rare diseases and a
positive result means that the test suggests (perhaps incorrectly) that the
person has the disease. Suppose that a test for disease is such that if the
person has the disease, then a positive result occurs 99% of the time. Suppose
that a person without the disease tests positive 2% of the time. Also assume
that 1 in 1000 people screened have the disease. If a randomly selected person
tests positive, what is the probability that the person has the disease?
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Solution: Let A1 denote the event that the randomly selected person has
the disease and A2 denote the event that the randomly selected person does
not have the disease. If B is the event that the test gives a positive result,
then we want P (A1|B). By Bayes’ theorem,

P (A1|B) =
P (B|A1)P (A1)

P (B|A1)P (A1) + P (B|A2)P (A2)
=

0.99(0.001)

0.99(0.001) + 0.02(0.999)

≈ 0.047. Hence instead of telling the patient that she has the rare disease,
the doctor should inform the patient that she is in a high risk group and
needs further testing.

1.4 The Expected Value and Variance

Definition 1.12. A random variable (RV) Y is a real valued function with
a sample space as a domain: Y : S → < where the set of real numbers
< = (−∞,∞).

Definition 1.13. Let S be the sample space and let Y be a random
variable. Then the (induced) probability function for Y is PY (Y = yi) ≡
P (Y = yi) = PS({s ∈ S : Y (s) = yi}). The sample space of Y is
SY = {yi ∈ < : there exists an s ∈ S with Y (s) = yi}.

Definition 1.14. The population is the entire group of objects from
which we want information. The sample is the part of the population actually
examined.

Example 1.4. Suppose that 5 year survival rates of 100 lung cancer
patients are examined. Let a 1 denote the event that the ith patient died
within 5 years of being diagnosed with lung cancer, and a 0 if the patient
lived. Then outcomes in the sample space S are 100-tuples (sequences of 100
digits) of the form s = 1010111 · · · 0111. Let the random variable X(s) = the
number of 1’s in the 100-tuple = the sum of the 0’s and 1’s = the number of
the 100 lung cancer patients who died within 5 years of being diagnosed with
lung cancer. Notice that X(s) = 82 is easier to understand than a 100-tuple
with 82 ones and 18 zeroes.

For the following definition, F is a right continuous function if for ev-
ery real number x, limy↓x F (y) = F (x). Also, F (∞) = limy→∞ F (y) and
F (−∞) = limy→−∞ F (y).
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Definition 1.15. The cumulative distribution function (cdf) of any
RV Y is F (y) = P (Y ≤ y) for all y ∈ <. If F (y) is a cumulative distribution
function, then F (−∞) = 0, F (∞) = 1, F is a nondecreasing function and F
is right continuous.

Definition 1.16. A RV is discrete if it can assume only a finite or
countable number of distinct values. The collection of these probabilities
is the probability distribution of the discrete RV. The probability mass
function (pmf) of a discrete RV Y is f(y) = P (Y = y) for all y ∈ < where
0 ≤ f(y) ≤ 1 and

∑

y:f(y)>0 f(y) = 1.

Remark 1.1. The cdf F of a discrete RV is a step function.

Example 1.5: Common low level problem. The sample space of
Y is SY = {y1, y2, ..., yk} and a table of yj and f(yj) is given with one

f(yj) omitted. Find the omitted f(yj) by using the fact that
∑k

i=1 f(yi) =
f(y1) + f(y2) + · · · + f(yk) = 1.

Definition 1.17. A RV Y is continuous if its distribution function F (y)
is continuous.

The notation ∀y means “for all y.”

Definition 1.18. If Y is a continuous RV, then the probability density
function (pdf) f(y) of Y is a function such that

F (y) =

∫ y

−∞
f(t)dt (1.1)

for all y ∈ <. If f(y) is a pdf, then f(y) ≥ 0 ∀y and
∫∞
−∞ f(t)dt = 1.

Theorem 1.7. If Y has pdf f(y), then f(y) = d
dy
F (y) ≡ F ′(y) wherever

the derivative exists (in this text the derivative will exist everywhere except
possibly for a finite number of points).

Theorem 1.8. i) P (a < Y ≤ b) = F (b) − F (a).
ii) If Y has pdf f(y), then P (a < Y < b) = P (a < Y ≤ b) = P (a ≤ Y <

b) = P (a ≤ Y ≤ b) =
∫ b

a
f(y)dy = F (b)− F (a).

iii) If Y has a probability mass function f(y), then Y is discrete and P (a <
Y ≤ b) = F (b)− F (a), but P (a ≤ Y ≤ b) 6= F (b)− F (a) if f(a) > 0.

Definition 1.19. Let Y be a discrete RV with probability mass function
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f(y). Then the mean or expected value of Y is

EY ≡ µ ≡ E(Y ) =
∑

y:f(y)>0

y f(y) (1.2)

if the sum exists when y is replaced by |y|. If g(Y ) is a real valued function
of Y, then g(Y ) is a random variable and

E[g(Y )] =
∑

y:f(y)>0

g(y) f(y) (1.3)

if the sum exists when g(y) is replaced by |g(y)|. If the sums are not abso-
lutely convergent, then E(Y ) and E[g(Y )] do not exist.

Definition 1.20. If Y has pdf f(y), then the mean or expected value
of Y is

EY ≡ E(Y ) =

∫ ∞

−∞
yf(y)dy (1.4)

and

E[g(Y )] =

∫ ∞

−∞
g(y)f(y)dy (1.5)

provided the integrals exist when y and g(y) are replaced by |y| and |g(y)|.
If the modified integrals do not exist, then E(Y ) and E[g(Y )] do not exist.

Definition 1.21. If E(Y 2) exists, then the variance of a RV Y is

VAR(Y ) ≡ Var(Y) ≡ V Y ≡ V(Y) = E[(Y − E(Y))2]

and the standard deviation of Y is SD(Y ) =
√

V (Y ). If E(Y 2) does not
exist, then V (Y ) does not exist.

The following theorem is used over and over again, especially to find
E(Y 2) = V (Y )+(E(Y ))2. The theorem is valid for all random variables that
have a variance, including continuous and discrete RVs. If Y is a Cauchy
(µ, σ) RV (see Chapter 10), then neither E(Y ) nor V (Y ) exist.

Theorem 1.9: Short cut formula for variance.

V (Y ) = E(Y 2) − (E(Y ))2. (1.6)
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If Y is a discrete RV with sample space SY = {y1, y2, ..., yk} then

E(Y ) =
k∑

i=1

yif(yi) = y1f(y1) + y2f(y2) + · · · + ykf(yk)

and E[g(Y )] =
k∑

i=1

g(yi)f(yi) = g(y1)f(y1) + g(y2)f(y2) + · · · + g(yk)f(yk).

In particular,

E(Y 2) = y2
1f(y1) + y2

2f(y2) + · · · + y2
kf(yk).

Also

V (Y ) =
k∑

i=1

(yi − E(Y ))2f(yi) =

(y1 − E(Y ))2f(y1) + (y2 − E(Y ))2f(y2) + · · · + (yk − E(Y ))2f(yk).

For a continuous RV Y with pdf f(y), V (Y ) =
∫∞
−∞(y−E[Y ])2f(y)dy. Often

using V (Y ) = E(Y 2) − (E(Y ))2 is simpler.

Example 1.6: Common low level problem. i) Given a table of y
and f(y), find E[g(Y )] and the standard deviation σ = SD(Y ). ii) Find f(y)
from F (y). iii) Find F (y) from f(y). iv) Given that f(y) = c g(y), find c.
v) Given the pdf f(y), find P (a < Y < b), et cetera. vi) Given the pmf
or pdf f(y) find E[Y ], V (Y ), SD(Y ), and E[g(Y )]. The functions g(y) = y,
g(y) = y2, and g(y) = ety are especially common.

Theorem 1.10. Let a and b be any constants and assume all relevant
expectations exist.
i) E(a) = a.
ii) E(aY + b) = aE(Y ) + b.
iii) E(aX + bY ) = aE(X) + bE(Y ).
iv) V (aY + b) = a2V (Y ).

Definition 1.22. The moment generating function (mgf) of a ran-
dom variable Y is

m(t) = E[etY ] (1.7)

if the expectation exists for t in some neighborhood of 0. Otherwise, the
mgf does not exist. If Y is discrete, then m(t) =

∑

y e
tyf(y), and if Y is

continuous, then m(t) =
∫∞
−∞ etyf(y)dy.
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Definition 1.23. The characteristic function (cf) of a random vari-
able Y is c(t) = E[eitY ] where the complex number i =

√
−1.

This text does not require much knowledge of theory of complex variables,
but know that i2 = −1, i3 = −i and i4 = 1. Hence i4k−3 = i, i4k−2 = −1,
i4k−1 = −i and i4k = 1 for k = 1, 2, 3, .... To compute the cf, the following
result will be used. Moment generating functions do not necessarily exist in
a neighborhood of zero, but a characteristic function always exists.

Proposition 1.11. Suppose that Y is a RV with an mgf m(t) that exists
for |t| < b for some constant b > 0. Then the cf of Y is c(t) = m(it).

Definition 1.24. Random variables X and Y are identically distributed,
written X ∼ Y or Y ∼ FX, if FX(y) = FY (y) for all real y.

Proposition 1.12. Let X and Y be random variables. Then X and Y
are identically distributed, X ∼ Y , if any of the following conditions hold.
a) FX(y) = FY (y) for all y,
b) fX(y) = fY (y) for all y,
c) cX(t) = cY (t) for all t or
d) mX(t) = mY (t) for all t in a neighborhood of zero.

Definition 1.25. The kth moment of Y is E[Y k] while the kth central
moment is E[(Y −E[Y ])k].

Theorem 1.13. Suppose that the mgf m(t) exists for |t| < b for some
constant b > 0, and suppose that the kth derivative m(k)(t) exists for |t| < b.
Then E[Y k] = m(k)(0). In particular, E[Y ] = m′(0) and E[Y 2] = m

′′

(0).

Notation. The natural logarithm of y is log(y) = ln(y). If another base
is wanted, it will be given, eg log10(y).

Example 1.7: Common problem. Let h(y), g(y), n(y) and d(y) be
functions. Review how to find the derivative g′(y) of g(y) and how to find
kth derivative

g(k)(y) =
dk

dyk
g(y)

for k ≥ 2. Recall that the product rule is

(h(y)g(y))′ = h′(y)g(y) + h(y)g′(y).
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The quotient rule is

(
n(y)

d(y)

)′
=
d(y)n′(y) − n(y)d′(y)

[d(y)]2
.

The chain rule is
[h(g(y))]′ = [h′(g(y))][g′(y)].

Know the derivative of log(y) and ey and know the chain rule with these
functions. Know the derivative of yk.

Then given the mgf m(t), find E[Y ] = m′(0), E[Y 2] = m
′′

(0) and V (Y ) =
E[Y 2] − (E[Y ])2.

Definition 1.26. Let f(y) ≡ fY (y|θ) be the pdf or pmf of a random
variable Y . Then the set Yθ = {y|fY (y|θ) > 0} is called the support of
Y . Let the set Θ be the set of parameter values θ of interest. Then Θ is
the parameter space of Y . Use the notation Y = {y|f(y|θ) > 0} if the
support does not depend on θ. So Y is the support of Y if Yθ ≡ Y ∀θ ∈ Θ.

Definition 1.27. The indicator function IA(x) ≡ I(x ∈ A) = 1 if
x ∈ A and 0, otherwise. Sometimes an indicator function such as I(0,∞)(y)
will be denoted by I(y > 0).

Example 1.8. Often equations for functions such as the pmf, pdf or cdf
are given only on the support (or on the support plus points on the boundary
of the support). For example, suppose

f(y) = P (Y = y) =

(
k

y

)

ρy(1 − ρ)k−y

for y = 0, 1, . . . , k where 0 < ρ < 1. Then the support of Y is Y =
{0, 1, ..., k}, the parameter space is Θ = (0, 1) and f(y) = 0 for y not ∈ Y.
Similarly, if f(y) = 1 and F (y) = y for 0 ≤ y ≤ 1, then the support Y = [0, 1],
f(y) = 0 for y < 0 and y > 1, F (y) = 0 for y < 0 and F (y) = 1 for y > 1.

Since the pmf and cdf are defined for all y ∈ < = (−∞,∞) and the pdf is
defined for all but finitely many y, it may be better to use indicator functions
when giving the formula for f(y). For example,

f(y) = 1I(0 ≤ y ≤ 1)

is defined for all y ∈ <.
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1.5 The Kernel Method

Notation. Notation such as E(Y |θ) ≡ Eθ(Y ) or fY (y|θ) is used to indicate
that the formula for the expected value or pdf are for a family of distributions
indexed by θ ∈ Θ. A major goal of parametric inference is to collect data
and estimate θ from the data.

Example 1.9. If Y ∼ N(µ, σ2), then Y is a member of the normal
family of distributions with θ = {(µ, σ)| − ∞ < µ < ∞ and σ > 0}. Then
E[Y |(µ, σ)] = µ and V (Y |(µ, σ)) = σ2. This family has uncountably many
members.

The kernel method is a widely used technique for finding E[g(Y )].

Definition 1.28. Let fY (y) be the pdf or pmf of a random variable Y
and suppose that fY (y|θ) = c(θ)k(y|θ). Then k(y|θ) ≥ 0 is the kernel of
fY and c(θ) > 0 is the constant term that makes fY sum or integrate to one.
Thus

∫∞
−∞ k(y|θ)dy = 1/c(θ) or

∑

y∈Y k(y|θ) = 1/c(θ).

Often E[g(Y )] is found using “tricks” tailored for a specific distribution.
The word “kernel” means “essential part.” Notice that if fY (y) is a pdf, then
E[g(Y )] =

∫∞
−∞ g(y)f(y|θ)dy =

∫

Y g(y)f(y|θ)dy. Suppose that after algebra,
it is found that

E[g(Y )] = a c(θ)

∫ ∞

−∞
k(y|τ )dy

for some constant a where τ ∈ Θ and Θ is the parameter space. Then the
kernel method says that

E[g(Y )] = a c(θ)

∫ ∞

−∞

c(τ )

c(τ )
k(y|τ )dy =

a c(θ)

c(τ )

∫ ∞

−∞
c(τ )k(y|τ )dy

︸ ︷︷ ︸

1

=
a c(θ)

c(τ )
.

Similarly, if fY (y) is a pmf, then

E[g(Y )] =
∑

y:f(y)>0

g(y)f(y|θ) =
∑

y∈Y
g(y)f(y|θ)

where Y = {y : fY (y) > 0} is the support of Y . Suppose that after algebra,
it is found that

E[g(Y )] = a c(θ)
∑

y∈Y
k(y|τ )
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for some constant a where τ ∈ Θ. Then the kernel method says that

E[g(Y )] = a c(θ)
∑

y∈Y

c(τ )

c(τ )
k(y|τ ) =

a c(θ)

c(τ )

∑

y∈Y
c(τ )k(y|τ )

︸ ︷︷ ︸

1

=
a c(θ)

c(τ )
.

The kernel method is often useful for finding E[g(Y )], especially if g(y) =
y, g(y) = y2 or g(y) = ety. The kernel method is often easier than memorizing
a trick specific to a distribution because the kernel method uses the same
trick for every distribution:

∑

y∈Y f(y) = 1 and
∫

y∈Y f(y)dy = 1. Of course

sometimes tricks are needed to get the kernel f(y|τ ) from g(y)f(y|θ). For
example, complete the square for the normal (Gaussian) kernel.

Example 1.10. To use the kernel method to find the mgf of a gamma
(ν, λ) distribution, refer to Section 10.13 and note that

m(t) = E(etY ) =

∫ ∞

0

ety
yν−1e−y/λ

λνΓ(ν)
dy =

1

λνΓ(ν)

∫ ∞

0

yν−1 exp[−y( 1

λ
− t)]dy.

The integrand is the kernel of a gamma (ν, η) distribution with

1

η
=

1

λ
− t =

1 − λt

λ
so η =

λ

1 − λt
.

Now ∫ ∞

0

yν−1e−y/λdy =
1

c(ν, λ)
= λνΓ(ν).

Hence

m(t) =
1

λνΓ(ν)

∫ ∞

0

yν−1 exp[−y/η]dy = c(ν, λ)
1

c(ν, η)
=

1

λνΓ(ν)
ηνΓ(ν) =

(η

λ

)ν

=

(
1

1 − λt

)ν

for t < 1/λ.

Example 1.11. The zeta(ν) distribution has probability mass function

f(y) = P (Y = y) =
1

ζ(ν)yν
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where ν > 1 and y = 1, 2, 3, .... Here the zeta function

ζ(ν) =
∞∑

y=1

1

yν

for ν > 1. Hence

E(Y ) =
∞∑

y=1

y
1

ζ(ν)

1

yν

=
1

ζ(ν)
ζ(ν − 1)

∞∑

y=1

1

ζ(ν − 1)

1

yν−1

︸ ︷︷ ︸

1=sum of zeta(ν−1) pmf

=
ζ(ν − 1)

ζ(ν)

if ν > 2. Similarly

E(Y k) =

∞∑

y=1

yk
1

ζ(ν)

1

yν

=
1

ζ(ν)
ζ(ν − k)

∞∑

y=1

1

ζ(ν − k)

1

yν−k

︸ ︷︷ ︸

1=sum of zeta(ν−k) pmf

=
ζ(ν − k)

ζ(ν)

if ν − k > 1 or ν > k + 1. Thus if ν > 3, then

V (Y ) = E(Y 2) − [E(Y )]2 =
ζ(ν − 2)

ζ(ν)
−
[
ζ(ν − 1)

ζ(ν)

]2

.

Example 1.12. The generalized gamma distribution has pdf

f(y) =
φyφν−1

λφνΓ(ν)
exp(−yφ/λφ)

where ν, λ, φ and y are positive, and

E(Y k) =
λkΓ(ν + k

φ
)

Γ(ν)
if k > −φν.

To prove this result using the kernel method, note that

E(Y k) =

∫ ∞

0

yk
φyφν−1

λφνΓ(ν)
exp(−yφ/λφ)dy =

∫ ∞

0

φyφν+k−1

λφνΓ(ν)
exp(−yφ/λφ)dy.
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This integrand looks much like a generalized gamma pdf with parameters νk,
λ and φ where νk = ν + (k/φ) since

E(Y k) =

∫ ∞

0

φyφ(ν+k/φ)−1

λφνΓ(ν)
exp(−yφ/λφ)dy.

Multiply the integrand by

1 =
λkΓ(ν + k

φ
)

λkΓ(ν + k
φ
)

to get

E(Y k) =
λkΓ(ν + k

φ
)

Γ(ν)

∫ ∞

0

φyφ(ν+k/φ)−1

λφ(ν+k/φ)Γ(ν + k
φ
)
exp(−yφ/λφ)dy.

Then the result follows since the integral of a generalized gamma pdf with
parameters νk, λ and φ over its support is 1. Notice that νk > 0 implies
k > −φν.

1.6 Mixture Distributions

Mixture distributions are often used as outlier models. The following two
definitions and proposition are useful for finding the mean and variance of a
mixture distribution. Parts a) and b) of Proposition 1.14 below show that
the definition of expectation given in Definition 1.30 is the same as the usual
definition for expectation if Y is a discrete or continuous random variable.

Definition 1.29. The distribution of a random variable Y is a mixture
distribution if the cdf of Y has the form

FY (y) =
k∑

i=1

αiFWi(y) (1.8)

where 0 < αi < 1,
∑k

i=1 αi = 1, k ≥ 2, and FWi(y) is the cdf of a continuous
or discrete random variable Wi, i = 1, ..., k.

Definition 1.30. Let Y be a random variable with cdf F (y). Let h be a
function such that the expected value E[h(Y )] exists. Then

E[h(Y )] =

∫ ∞

−∞
h(y)dF (y). (1.9)
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Proposition 1.14. a) If Y is a discrete random variable that has a pmf
f(y) with support Y, then

E[h(Y )] =

∫ ∞

−∞
h(y)dF (y) =

∑

y∈Y
h(y)f(y).

b) If Y is a continuous random variable that has a pdf f(y), then

E[h(Y )] =

∫ ∞

−∞
h(y)dF (y) =

∫ ∞

−∞
h(y)f(y)dy.

c) If Y is a random variable that has a mixture distribution with cdf FY (y) =
∑k

i=1 αiFWi(y), then

E[h(Y )] =

∫ ∞

−∞
h(y)dF (y) =

k∑

i=1

αiEWi [h(Wi)]

where EWi[h(Wi)] =
∫∞
−∞ h(y)dFWi(y).

Example 1.13. Proposition 1.14c implies that the pmf or pdf of Wi

is used to compute EWi [h(Wi)]. As an example, suppose the cdf of Y is
F (y) = (1 − ε)Φ(y) + εΦ(y/k) where 0 < ε < 1 and Φ(y) is the cdf of
W1 ∼ N(0, 1). Then Φ(x/k) is the cdf of W2 ∼ N(0, k2). To find E[Y ], use
h(y) = y. Then

E[Y ] = (1 − ε)E[W1] + εE[W2] = (1 − ε)0 + ε0 = 0.

To find E[Y 2], use h(y) = y2. Then

E[Y 2] = (1 − ε)E[W 2
1 ] + εE[W 2

2 ] = (1 − ε)1 + εk2 = 1 − ε+ εk2.

Thus VAR(Y ) = E[Y 2] − (E[Y ])2 = 1 − ε+ εk2. If ε = 0.1 and k = 10, then
EY = 0, and VAR(Y ) = 10.9.

Remark 1.2. Warning: Mixture distributions and linear combinations
of random variables are very different quantities. As an example, let

W = (1 − ε)W1 + εW2

where ε, W1 and W2 are as in the previous example and suppose that W1

and W2 are independent. Then W , a linear combination of W1 and W2, has
a normal distribution with mean

E[W ] = (1 − ε)E[W1] + εE[W2] = 0
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and variance

VAR(W ) = (1 − ε)2VAR(W1) + ε2VAR(W2) = (1 − ε)2 + ε2k2 < VAR(Y )

where Y is given in the example above. Moreover, W has a unimodal nor-
mal distribution while Y does not follow a normal distribution. In fact,
if W1 ∼ N(0, 1), W2 ∼ N(10, 1), and W1 and W2 are independent, then
(W1 +W2)/2 ∼ N(5, 0.5); however, if Y has a mixture distribution with cdf

FY (y) = 0.5FW1(y) + 0.5FW2(y) = 0.5Φ(y) + 0.5Φ(y − 10),

then the pdf of Y is bimodal. See Figure 1.1.

1.7 Complements

Kolmogorov’s definition of a probability function makes a probability func-
tion a normed measure. Hence many of the tools of measure theory can be
used for probability theory. See, for example, Ash and Doleans-Dade (1999),
Billingsley (1995), Dudley (2002), Durrett (1995), Feller (1971) and Resnick
(1999). Feller (1957) and Tucker (1984) are good references for combina-
torics.

Referring to Chapter 10, memorize the pmf or pdf f , E(Y ) and V (Y )
for the following 10 RVs. You should recognize the mgf of the bi-
nomial, χ2

p, exponential, gamma, normal and Poisson distributions.
You should recognize the cdf of the exponential and of the normal
distribution.

1) beta(δ, ν)

f(y) =
Γ(δ + ν)

Γ(δ)Γ(ν)
yδ−1(1 − y)ν−1

where δ > 0, ν > 0 and 0 ≤ y ≤ 1.

E(Y ) =
δ

δ + ν
.

VAR(Y ) =
δν

(δ + ν)2(δ + ν + 1)
.
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2) Bernoulli(ρ) = binomial(k = 1, ρ) f(y) = ρ(1 − ρ)1−y for y = 0, 1.
E(Y ) = ρ.
VAR(Y ) = ρ(1 − ρ).

m(t) = [(1 − ρ) + ρet].

3) binomial(k, ρ)

f(y) =

(
k

y

)

ρy(1 − ρ)k−y

for y = 0, 1, . . . , k where 0 < ρ < 1.
E(Y ) = kρ.
VAR(Y ) = kρ(1 − ρ).

m(t) = [(1 − ρ) + ρet]k.

4) Cauchy(µ, σ)

f(y) =
1

πσ[1 + (y−µ
σ

)2]

where y and µ are real numbers and σ > 0.
E(Y ) = ∞ = VAR(Y ).

5) chi-square(p) = gamma(ν = p/2, λ = 2)

f(y) =
y

p
2
−1e−

y
2

2
p
2 Γ(p

2
)

E(Y ) = p.
VAR(Y ) = 2p.

m(t) =

(
1

1 − 2t

)p/2

= (1 − 2t)−p/2

for t < 1/2.
6) exponential(λ)= gamma(ν = 1, λ)

f(y) =
1

λ
exp (−y

λ
) I(y ≥ 0)

where λ > 0.
E(Y ) = λ,
VAR(Y ) = λ2.

m(t) = 1/(1 − λt)
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for t < 1/λ.
F (y) = 1 − exp(−y/λ), y ≥ 0.

7) gamma(ν, λ)

f(y) =
yν−1e−y/λ

λνΓ(ν)

where ν, λ, and y are positive.
E(Y ) = νλ.
VAR(Y ) = νλ2.

m(t) =

(
1

1 − λt

)ν

for t < 1/λ.
8) N(µ, σ2)

f(y) =
1√

2πσ2
exp

(−(y − µ)2

2σ2

)

where σ > 0 and µ and y are real.
E(Y ) = µ. VAR(Y ) = σ2.

m(t) = exp(tµ+ t2σ2/2).

F (y) = Φ

(
y − µ

σ

)

.

9) Poisson(θ)

f(y) =
e−θθy

y!

for y = 0, 1, . . . , where θ > 0.
E(Y ) = θ = VAR(Y ).

m(t) = exp(θ(et − 1)).

10) uniform(θ1, θ2)

f(y) =
1

θ2 − θ1
I(θ1 ≤ y ≤ θ2).

E(Y ) = (θ1 + θ2)/2.
VAR(Y ) = (θ2 − θ1)

2/12.
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The terms sample space S, events, disjoint, partition, probability func-
tion, sampling with and without replacement, conditional probability, Bayes’
theorem, mutually independent events, random variable, cdf, continuous RV,
discrete RV, identically distributed, pmf and pdf are important.

1.8 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL. Refer to Chapter 10 for the pdf or pmf of the distributions
in the problems below.

1.1∗. For the Binomial(k, ρ) distribution,
a) find E Y .
b) Find Var Y .
c) Find the mgf m(t).

1.2∗. For the Poisson(θ) distribution,
a) find E Y .
b) Find Var Y . (Hint: Use the kernel method to find E Y (Y − 1).)
c) Find the mgf m(t).

1.3∗. For the Gamma(ν, λ) distribution,
a) find E Y .
b) Find Var Y .
c) Find the mgf m(t).

1.4∗. For the Normal(µ, σ2) (or Gaussian) distribution,
a) find the mgf m(t). (Hint: complete the square to get a Gaussian kernel.)
b) Use the mgf to find E Y .
c) Use the mgf to find Var Y .

1.5∗. For the Uniform(θ1, θ2) distribution
a) find E Y .
b) Find Var Y .
c) Find the mgf m(t).

1.6∗. For the Beta(δ, ν) distribution,
a) find E Y .
b) Find Var Y .



CHAPTER 1. PROBABILITY AND EXPECTATIONS 23

1.7∗. See Mukhopadhyay (2000, p. 39). Recall integrals by u-substitution:

I =

∫ b

a

f(g(x))g′(x)dx =

∫ g(b)

g(a)

f(u)du =

∫ d

c

f(u)du =

F (u)|dc = F (d) − F (c) = F (u)|g(b)g(a) = F (g(x))|ba = F (g(b)) − F (g(a))

where F ′(x) = f(x), u = g(x), du = g′(x)dx, d = g(b), and c = g(a).

This problem uses the Gamma function and u-substitution to show that
the normal density integrates to 1 (usually shown with polar coordinates).
When you perform the u-substitution, make sure you say what u = g(x),
du = g′(x)dx, d = g(b), and c = g(a) are.

a) Let f(x) be the pdf of a N(µ, σ2) random variable. Perform u-
substitution on

I =

∫ ∞

−∞
f(x)dx

with u = (x− µ)/σ.

b) Break the result into two parts,

I =
1√
2π

∫ 0

−∞
e−u

2/2du+
1√
2π

∫ ∞

0

e−u
2/2du.

Then perform u-substitution on the first integral with v = −u.
c) Since the two integrals are now equal,

I =
2√
2π

∫ ∞

0

e−v
2/2dv =

2√
2π

∫ ∞

0

e−v
2/2 1

v
vdv.

Perform u-substitution with w = v2/2.

d) Using the Gamma function, show that I = Γ(1/2)/
√
π = 1.

1.8. Let X be a N(0, 1) (standard normal) random variable. Use inte-
gration by parts to show that EX2 = 1. Recall that integration by parts
is used to evaluate

∫
f(x)g′(x)dx =

∫
udv = uv −

∫
vdu where u = f(x),

dv = g′(x)dx, du = f ′(x)dx and v = g(x). When you do the integration,
clearly state what these 4 terms are (eg u = x).



CHAPTER 1. PROBABILITY AND EXPECTATIONS 24

1.9. Verify the formula for the cdf F for the following distributions. That
is, either show that F ′(y) = f(y) or show that

∫ y

−∞ f(t)dt = F (y) ∀y ∈ <.
a) Cauchy (µ, σ).
b) Double exponential (θ, λ).
c) Exponential (λ).
d) Logistic (µ, σ).
e) Pareto (σ, λ).
f) Power (λ).
g) Uniform (θ1, θ2).
h) Weibull W (φ, λ).

1.10. Verify the formula for the expected value E(Y ) for the following
distributions. a) Double exponential (θ, λ).
b) Exponential (λ).
c) Logistic (µ, σ). (Hint from deCani and Stine (1986): Let Y = [µ+σW ] so
E(Y ) = µ+ σE(W ) where W ∼ L(0, 1). Hence

E(W ) =

∫ ∞

−∞
y

ey

[1 + ey]2
dy.

Use substitution with

u =
ey

1 + ey
.

Then

E(W k) =

∫ 1

0

[log(u)− log(1 − u)]kdu.

Also use the fact that
lim
v→0

v log(v) = 0

to show E(W ) = 0.)
d) Lognormal (µ, σ2).
e) Pareto (σ, λ).
f) Weibull (φ, λ).
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1.11. Verify the formula for the variance VAR(Y ) for the following dis-
tributions.
a) Double exponential (θ, λ).
b) Exponential (λ).
c) Logistic (µ, σ). (Hint from deCani and Stine (1986): Let Y = [µ+ σX] so
V (Y ) = σ2V (X) = σ2E(X2) where X ∼ L(0, 1). Hence

E(X2) =

∫ ∞

−∞
y2 ey

[1 + ey]2
dy.

Use substitution with

v =
ey

1 + ey
.

Then

E(X2) =

∫ 1

0

[log(v)− log(1 − v)]2dv.

Let w = log(v)− log(1 − v) and du = [log(v) − log(1 − v)]dv. Then

E(X2) =

∫ 1

0

wdu = uw|10 −
∫ 1

0

udw.

Now
uw|10 = [v log(v) + (1 − v) log(1 − v)] w|10 = 0

since
lim
v→0

v log(v) = 0.

Now

−
∫ 1

0

udw = −
∫ 1

0

log(v)

1 − v
dv −

∫ 1

0

log(1 − v)

v
dv = 2π2/6 = π2/3

using
∫ 1

0

log(v)

1 − v
dv =

∫ 1

0

log(1 − v)

v
dv = −π2/6.)

d) Lognormal (µ, σ2).
e) Pareto (σ, λ).
f) Weibull (φ, λ).
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Problems from old quizzes and exams.

1.12. Suppose the random variable X has cdf FX(x) = 0.9 Φ(x− 10) +
0.1 FW (x) where Φ(x − 10) is the cdf of a normal N(10, 1) random variable
with mean 10 and variance 1 and FW (x) is the cdf of the random variable
W that satisfies P (W = 200) = 1.
a) Find E W.
b) Find E X.

1.13. Suppose the random variable X has cdf FX(x) = 0.9 FZ(x) +
0.1 FW (x) where FZ is the cdf of a gamma(α = 10, β = 1) random variable
with mean 10 and variance 10 and FW (x) is the cdf of the random variable
W that satisfies P (W = 400) = 1.
a) Find E W.
b) Find E X.

1.14. Suppose the cdf FX(x) = (1 − ε)FZ(x) + εFW (x) where 0 ≤ ε ≤ 1,
FZ is the cdf of a random variable Z, and FW is the cdf of a random variable
W. Then E g(X) = (1− ε)EZ g(X)+ εEW g(X) where EZ g(X) means that
the expectation should be computed using the pmf or pdf of Z. Suppose the
random variable X has cdf FX(x) = 0.9 FZ(x) + 0.1 FW (x) where FZ is the
cdf of a gamma(α = 10, β = 1) random variable with mean 10 and variance
10 and FW (x) is the cdf of the RV W that satisfies P (W = 400) = 1.

a) Find E W.
b) Find E X.

1.15. Let A and B be positive integers. A hypergeometric random
variable X = W1 +W2 + · · · +Wn where the random variables Wi are iden-
tically distributed random variables with P (Wi = 1) = A/(A + B) and
P (Wi = 0) = B/(A+B).

a) Find E(W1).
b) Find E(X).

1.16. Suppose P (X = xo) = 1 for some constant xo.

a) Find E g(X) in terms of xo.
b) Find the moment generating function m(t) of X.

c) Find m(n)(t) =
dn

dtn
m(t). (Hint: find m(n)(t) for n = 1, 2, and 3. Then

the pattern should be apparent.)
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1.17. Suppose P (X = 1) = 0.5 and P (X = −1) = 0.5. Find the moment
generating function of X.

1.18. Suppose that X is a discrete random variable with pmf f(x) =
P (X = x) for x = 0, 1, ..., n so that the moment generating function of X is

m(t) =
n∑

x=0

etxf(x).

a) Find
d

dt
m(t) = m′(t).

b) Find m′(0).

c) Find m′′(t) =
d2

dt2
m(t).

d) Find m′′(0).

e) Find m(k)(t) =
dk

dtk
m(t). (Hint: you found m(k)(t) for k = 1, 2, and the

pattern should be apparent.)

1.19. Suppose that the random variable W = eX where X ∼ N(µ, σ2).
Find E(W r) = E[(eX)r] by recognizing the relationship of E[(eX)r] with the
moment generating function of a normal(µ, σ2) random variable.

1.20. Let X ∼ N(µ, σ2) so that EX = µ and Var X = σ2.

a) Find E(X2).
b) If k ≥ 2 is an integer, then E(Xk) = (k − 1)σ2E(Xk−2) + µE(Xk−1).

Use this recursion relationship to find E(X3).

1.21∗. Let X ∼ gamma(ν, λ). Using the kernel method, find EXr where
r > −ν.

1.22. Find

∫ ∞

−∞
exp(−1

2
y2)dy.

(Hint: the integrand is a Gaussian kernel.)

1.23. Let X have a Pareto (σ, λ = 1/θ) pdf

f(x) =
θσθ

xθ+1

where x > σ, σ > 0 and θ > 0. Using the kernel method, find EXr where
θ > r.
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1.24. Let Y ∼ beta (δ, ν). Using the kernel method, find EY r where
r > −δ.

1.25. Use the kernel method to find the mgf of the logarithmic (θ)
distribution.

1.26. Suppose that X has pdf

f(x) =
h(x)eθx

λ(θ)

for x ∈ X and for −∞ < θ < ∞ where λ(θ) is some positive function of θ
and h(x) is some nonnegative function of x. Find the moment generating
function of X using the kernel method. Your final answer should be written
in terms of λ, θ and t.

1.27. Use the kernel method to find E(Y r) for the chi (p, σ) distribution.
(See Section 10.6.)

1.28. Suppose the cdf FX(x) = (1 − ε)FZ(x) + εFW (x) where 0 ≤ ε ≤ 1,
FZ is the cdf of a random variable Z, and FW is the cdf of a random variable
W. Then E g(X) = (1− ε)EZ g(X)+ εEW g(X) where EZ g(X) means that
the expectation should be computed using the pmf or pdf of Z.

Suppose the random variable X has cdf FX(x) = 0.9 FZ(x) + 0.1 FW (x)
where FZ is the cdf of a gamma(ν = 3, λ = 4) random variable and FW (x)
is the cdf of a Poisson(10) random variable.

a) Find E X.

b) Find E X2.

1.29. If Y has an exponential distribution truncated at 1, Y ∼ TEXP (θ, 1),
then the pdf of Y is

f(y) =
θ

1 − e−θ
e−θy

for 0 < y < 1 where θ > 0. Find the mgf of Y using the kernel method.



Chapter 2

Multivariate Distributions

and Transformations

2.1 Joint, Marginal and Conditional Distri-

butions

Often there are n random variables Y1, ..., Yn that are of interest. For exam-
ple, age, blood pressure, weight, gender and cholesterol level might be some
of the random variables of interest for patients suffering from heart disease.

Notation. Let <n be the n–dimensional Euclidean space. Then the
vector y = (y1, ..., yn) ∈ <n if yi is an arbitrary real number for i = 1, ..., n.

Definition 2.1. If Y1, ..., Yn are discrete random variables, then the joint
pmf (probability mass function) of Y1, ..., Yn is

f(y1, ..., yn) = P (Y1 = y1, ..., Yn = yn) (2.1)

for any (y1, ..., yn) ∈ <n. A joint pmf f satisfies f(y) ≡ f(y1, ..., yn) ≥ 0
∀y ∈ <n and

∑ · · ·∑ f(y1, ..., yn) = 1.
y : f(y) > 0

For any event A ∈ <n,

P [(Y1, ..., Yn) ∈ A] =
∑

· · ·
∑

f(y1, ..., yn).
y : y ∈ A and f(y) > 0

29
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Definition 2.2. The joint cdf (cumulative distribution function) of
Y1, ..., Yn is F (y1, ..., yn) = P (Y1 ≤ y1, ..., Yn ≤ yn) for any (y1, ..., yn) ∈ <n.

Definition 2.3. If Y1, ..., Yn are continuous random variables, then the
joint pdf (probability density function) of Y1, ..., Yn is a function f(y1, ..., yn)
that satisfies F (y1, ..., yn) =

∫ yn

−∞ · · ·
∫ y1
−∞ f(t1, ..., tn)dt1 · · · dtn where the yi

are any real numbers. A joint pdf f satisfies f(y) ≡ f(y1, ..., yn) ≥ 0
∀y ∈ <n and

∫∞
−∞ · · ·

∫∞
−∞ f(t1, ..., tn)dt1 · · · dtn = 1. For any event A ∈ <n,

P [(Y1, ..., Yn) ∈ A] =
∫
· · ·
∫

f(t1, ..., tn)dt1 · · · dtn.
A

Definition 2.4. If Y1, ..., Yn has a joint pdf or pmf f , then the support
of Y1, ..., Yn is

Y = {(y1, ..., yn) ∈ <n : f(y1, ..., yn) > 0}.
If Y comes from a family of distributions f(y|θ) for θ ∈ Θ, then the support
Yθ = {y : f(y|θ) > 0} may depend on θ.

Theorem 2.1. Let Y1, ..., Yn have joint cdf F (y1, ..., yn) and joint pdf
f(y1, ..., yn). Then

f(y1, ..., yn) =
∂n

∂y1 · · · ∂yn
F (y1, ..., yn)

wherever the partial derivative exists.

Definition 2.5. The marginal pmf of any subset Yi1, ..., Yik of the
coordinates (Y1, ..., Yn) is found by summing the joint pmf over all possible
values of the other coordinates where the values yi1, ..., yik are held fixed. For
example,

fY1,...,Yk
(y1, ..., yk) =

∑

yk+1

· · ·
∑

yn

f(y1, ..., yn)

where y1, ..., yk are held fixed. In particular, if Y1 and Y2 are discrete RVs
with joint pmf f(y1, y2), then the marginal pmf for Y1 is

fY1(y1) =
∑

y2

f(y1, y2) (2.2)

where y1 is held fixed. The marginal pmf for Y2 is

fY2(y2) =
∑

y1

f(y1, y2) (2.3)
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where y2 is held fixed.

Example 2.1. For n = 2, double integrals are used to find marginal
pdfs (defined below) and to show that the joint pdf integrates to 1. If the
region of integration Ω is bounded on top by the function y2 = φT (y1), on
the bottom by the function y2 = φB(y1) and to the left and right by the lines
y1 = a and y2 = b then

∫ ∫

Ω
f(y1, y2)dy1dy2 =

∫ ∫

Ω
f(y1, y2)dy2dy2 =

∫ b

a

[
∫ φT (y1)

φB(y1)

f(y1, y2)dy2

]

dy1.

Within the inner integral, treat y2 as the variable, anything else, including
y1, is treated as a constant.

If the region of integration Ω is bounded on the left by the function y1 =
ψL(y2), on the right by the function y1 = ψR(y2) and to the top and bottom by
the lines y2 = c and y2 = d then

∫ ∫

Ω
f(y1, y2)dy1dy2 =

∫ ∫

Ω
f(y1, y2)dy2dy2 =

∫ d

c

[
∫ ψR(y2)

ψL(y2)

f(y1, y2)dy1

]

dy2.

Within the inner integral, treat y1 as the variable, anything else, including
y2, is treated as a constant.

Definition 2.6. The marginal pdf of any subset Yi1, ..., Yik of the co-
ordinates (Y1, ..., Yn) is found by integrating the joint pdf over all possible
values of the other coordinates where the values yi1, ..., yik are held fixed. For
example, f(y1, ..., yk) =

∫∞
−∞ · · ·

∫∞
−∞ f(t1, ..., tn)dtk+1 · · · dtn where y1, ..., yk

are held fixed. In particular, if Y1 and Y2 are continuous RVs with joint pdf
f(y1, y2), then the marginal pdf for Y1 is

fY1(y1) =

∫ ∞

−∞
f(y1, y2)dy2 =

∫ φT (y1)

φB(y1)

f(y1, y2)dy2 (2.4)

where y1 is held fixed (to get the region of integration, draw a line parallel to
the y2 axis and use the functions y2 = φB(y1) and y2 = φT (y1) as the lower
and upper limits of integration). The marginal pdf for Y2 is

fY2(y2) =

∫ ∞

−∞
f(y1, y2)dy1 =

∫ ψR(y2)

ψL(y2)

f(y1, y2)dy1 (2.5)
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where y2 is held fixed (to get the region of integration, draw a line parallel to
the y1 axis and use the functions y1 = ψL(y2) and y1 = ψR(y2) as the lower
and upper limits of integration).

Definition 2.7. The conditional pmf of any subset Yi1, ..., Yik of the
coordinates (Y1, ..., Yn) is found by dividing the joint pmf by the marginal
pmf of the remaining coordinates assuming that the values of the remaining
coordinates are fixed and that the denominator > 0. For example,

f(y1, ..., yk|yk+1, ..., yn) =
f(y1, ..., yn)

f(yk+1, ..., yn)

if f(yk+1, ..., yn) > 0. In particular, the conditional pmf of Y1 given Y2 = y2

is a function of y1 and

fY1|Y2=y2(y1|y2) =
f(y1, y2)

fY2(y2)
(2.6)

if fY2(y2) > 0, and the conditional pmf of Y2 given Y1 = y1 is a function of
y2 and

fY2|Y1=y1(y2|y1) =
f(y1, y2)

fY1(y1)
(2.7)

if fY1(y1) > 0.

Definition 2.8. The conditional pdf of any subset Yi1, ..., Yik of the
coordinates (Y1, ..., Yn) is found by dividing the joint pdf by the marginal
pdf of the remaining coordinates assuming that the values of the remaining
coordinates are fixed and that the denominator > 0. For example,

f(y1, ..., yk|yk+1, ..., yn) =
f(y1, ..., yn)

f(yk+1, ..., yn)

if f(yk+1, ..., yn) > 0. In particular, the conditional pdf of Y1 given Y2 = y2 is
a function of y1 and

fY1|Y2=y2(y1|y2) =
f(y1, y2)

fY2(y2)
(2.8)

if fY2(y2) > 0, and the conditional pdf of Y2 given Y1 = y1 is a function of y2

and

fY2|Y1=y1(y2|y1) =
f(y1, y2)

fY1(y1)
(2.9)
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if fY1(y1) > 0.

Example 2.2: Common Problem. If the joint pmf f(y1, y2) = P (Y1 =
y1, Y2 = y2) is given by a table, then the function f(y1, y2) is a joint pmf if
f(y1, y2) ≥ 0, ∀y1, y2 and if

∑

(y1,y2):f(y1,y2)>0

f(y1, y2) = 1.

The marginal pmfs are found from the row sums and column sums using
Definition 2.5, and the conditional pmfs are found with the formulas given
in Definition 2.7.

Example 2.3: Common Problem. Given the joint pdf f(y1, y2) =
kg(y1, y2) on its support, find k, find the marginal pdfs fY1(y1) and fY2(y2)
and find the conditional pdfs fY1|Y2=y2(y1|y2) and fY2|Y1=y1(y2|y1). Also,

P (a1 < Y1 < b1, a2 < Y2 < b2) =
∫ b2
a2

∫ b1
a1
f(y1, y2)dy1dy2.

Tips: Often using symmetry helps.
The support of the marginal pdf does not depend on the 2nd variable.
The support of the conditional pdf can depend on the 2nd variable. For
example, the support of fY1|Y2=y2(y1|y2) could have the form 0 ≤ y1 ≤ y2.

The support of continuous random variables Y1 and Y2 is the region where
f(y1, y2) > 0. The support is generally given by one to three inequalities such
as 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1, and 0 ≤ y1 ≤ y2 ≤ 1. For each variable, set the
inequalities to equalities to get boundary lines. For example 0 ≤ y1 ≤ y2 ≤ 1
yields 5 lines: y1 = 0, y1 = 1, y2 = 0, y2 = 1, and y2 = y1. Generally y2 is on
the vertical axis and y1 is on the horizontal axis for pdfs.

To determine the limits of integration, examine the dummy variable
used in the inner integral, say dy1. Then within the region of integration,
draw a line parallel to the same (y1) axis as the dummy variable. The limits
of integration will be functions of the other variable (y2), never of the dummy
variable (dy1).

2.2 Expectation, Covariance and Independence

For joint pmfs with n = 2 random variables Y1 and Y2, the marginal pmfs
and conditional pmfs can provide important information about the data.
For joint pdfs the integrals are usually too difficult for the joint, conditional
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and marginal pdfs to be of practical use unless the random variables are
independent. (An exception is the multivariate normal distribution and the
elliptically contoured distributions. See Sections 2.9 and 2.10.)

For independent random variables, the joint cdf is the product of the
marginal cdfs, the joint pmf is the product of the marginal pmfs, and the
joint pdf is the product of the marginal pdfs. Recall that ∀ is read “ for all.”

Definition 2.9. i) The random variables Y1, Y2, ..., Yn are independent
if F (y1, y2, ..., yn) = FY1(y1)FY2(y2) · · ·FYn(yn) ∀y1, y2, ..., yn.
ii) If the random variables have a joint pdf or pmf f then the random variables
Y1, Y2, ..., Yn are independent if f(y1, y2, ..., yn) = fY1(y1)fY2(y2) · · · fYn(yn)
∀y1, y2, ..., yn.
If the random variables are not independent, then they are dependent.
In particular random variables Y1 and Y2 are independent, written Y1 Y2,
if either of the following conditions holds.
i) F (y1, y2) = FY1(y1)FY2(y2) ∀y1, y2.
ii) f(y1, y2) = fY1(y1)fY2(y2) ∀y1, y2.
Otherwise, Y1 and Y2 are dependent.

Definition 2.10. Recall that the support Y of (Y1, Y2, ..., Yn) is
Y = {y : f(y) > 0}. The support is a cross product or Cartesian product
if

Y = Y1 × Y2 × · · · × Yn = {y : yi ∈ Yi for i = 1, ..., n}
where Yi is the support of Yi. If f is a joint pdf then the support is rectan-
gular if Yi is an interval for each i. If f is a joint pmf then the support is
rectangular if the points in Yi are equally spaced for each i.

Example 2.4. In applications the support is usually rectangular. For
n = 2 the support is a cross product if

Y = Y1 ×Y2 = {(y1, y2) : y1 ∈ Y1 and y2 ∈ Y2}

where Yi is the support of Yi. The support is rectangular if Y1 and Y2 are
intervals. For example, if

Y = {(y1, y2) : a < y1 <∞ and c ≤ y2 ≤ d},

then Y1 = (a,∞) and Y2 = [c, d]. For a joint pmf, the support is rectangular
if the grid of points where f(y1, y2) > 0 is rectangular.
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Cross Product of (1,2,3,4,9) with (1,3,4,5,9)

Figure 2.1: Cross Product for a Joint PMF
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Figure 2.1 shows the cross product of Y1 × Y2 where Y1 = {1, 2, 3, 4, 9}
and Y2 = {1, , 3, 4, 5, 9}. Each dot occurs where p(y1, y2) > 0. Notice that
each point occurs with each point. This support would not be a cross product
if any point was deleted, but would be a cross product if any row of dots or
column of dots was deleted.

Theorem 2.2a is useful because it is often immediate from the formula for
the joint pdf or the table for the joint pmf that the support is not a cross
product. Hence Y1 and Y2 are dependent. For example, if the support of Y1

and Y2 is a triangle, then Y1 and Y2 are dependent. A necessary condition
for independence is that the support is a cross product. Theorem
2.2b is useful because factorizing the joint pdf on cross product support
is easier than using integration to find the marginal pdfs. Many texts give
Theorem 2.2c, but 2.2b is easier to use. Recall that that

∏n
i=1 ai = a1a2 · · · an.

For example, let n = 3 and ai = i for i = 1, 2, 3. Then
∏n

i=1 ai = a1a2a3 =
(1)(2)(3) = 6.

Theorem 2.2. a) Random variables Y1, ..., Yn with joint pdf or pmf f
are dependent if their support Y is not a cross product. In particular, Y1 and
Y2 are dependent if Y does not have the form Y = Y1 × Y2.

b) If random variables Y1, ..., Yn with joint pdf or pmf f have support Y
that is a cross product, then Y1, ..., Yn are independent iff f(y1, y2, ..., yn) =
h1(y1)h2(y2) · · · hn(yn) for all y ∈ Y where hi is a positive function of yi alone.
In particular, if Y = Y1 ×Y2, then Y1 Y2 iff f(y1, y2) = h1(y1)h2(y2) for all
(y1, y2) ∈ Y where hi(yi) > 0 for yi ∈ Yi and i = 1, 2.

c) Y1, ..., Yn are independent iff f(y1, y2, ..., yn) = g1(y1)g2(y2) · · · gn(yn)
for all y where gi is a nonnegative function of yi alone.

d) If discrete Y1 and Y2 have cross product support given by a table,
find the row and column sums. If f(y1, y2) 6= fY1(y1)fY2(y2) for some entry
(y1, y2), then Y1 and Y2 are dependent. If f(y1, y2) = fY1(y1)fY2(y2) for all
table entries, then Y1 and Y2 are independent.

Proof. a) If the support is not a cross product, then there is a point y

such that f(y) = 0 but fYi(yi) > 0 for i = 1, ..., n. Hence f(y) 6=
∏n

i=1 fYi(yi)
at the point y and Y1, ..., Yn are dependent.

b) The proof for a joint pdf is given below. For a joint pmf, replace the
integrals by appropriate sums. If Y1, ..., Yn are independent, take hi(yi) =
fYi(yi) > 0 for yi ∈ Yi and i = 1, ..., n.
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If f(y) = h1(y1) · · ·hn(yn) for y ∈ Y = Y1 × · · · × Yn then f(y) = 0 =
fY1(y1) · · · fYn(yn) if y is not in Y. Hence we need to show that f(y) =
fY1(y1) · · · fYn(yn) = h1(y1) · · ·hn(yn) if y ∈ Y. Since f is a joint pdf,

1 =

∫

· · ·
∫

Y
f(y) dy =

n∏

i=1

∫

Yi

hi(yi) dyi =
n∏

i=1

ai

where ai =
∫

Yi
hi(yi) dyi > 0. For yi ∈ Yi, the marginal pdfs fYi(yi) =

∫

Yn

· · ·
∫

Yi+1

∫

Yi−1

· · ·
∫

Y1

h1(y1) · · · hi(yi) · · · h(yn) dy1 · · · dyi−1dyi+1 · · · dyn

= hi(yi)
n∏

j=1,j 6=i

∫

Yj

hj(yj) dyj = hi(yi)
n∏

j=1,j 6=i
aj = hi(yi)

1

ai
.

Since
∏n

j=1 aj = 1 and aifYi(yi) = hi(yi) for yi ∈ Yi,

f(y) =

n∏

i=1

hi(yi) =

n∏

i=1

aifYi(yi) = (

n∏

i=1

ai)(

n∏

i=1

fYi(yi)) =

n∏

i=1

fYi(yi)

if y ∈ Y.
c) Take

gi(yi) =

{
hi(yi), if yi ∈ Yi

0, otherwise.

Then the result follows from b).

d) Since f(y1, y2) = 0 = fY1(y1)fY2(y2) if (y1, y2) is not in the support of Y1

and Y2, the result follows by the definition of independent random variables.
QED

The following theorem shows that finding the marginal and conditional
pdfs or pmfs is simple if Y1, ..., Yn are independent. Also subsets of inde-
pendent random variables are independent: if Y1, ..., Yn are indepen-
dent and if {i1, ..., ik} ⊆ {1, ..., n} for k ≥ 2, then Yi1 , ..., Yik are independent.

Theorem 2.3. Suppose that Y1, ..., Yn are independent random variables
with joint pdf or pmf f(y1, ..., yn). Then
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a) the marginal pdf or pmf of any subset Yi1 , ..., Yik is f(yi1, ..., yik) =
∏k

j=1 fYij
(yij). Hence Yi1 , ..., Yik are independent random variables for k ≥ 2.

b) The conditional pdf or pmf of Yi1, ..., Yik given any subset of the re-
maining random variables Yj1 = yj1 , ..., Yjm = yjm is equal to the marginal:

f(yi1, ..., yik|yj1, ..., yjm) = f(yi1, ..., yik) =
∏k

j=1 fYij
(yij) if f(yj1 , ..., yjm) > 0.

Proof. The proof for a joint pdf is given below. For a joint pmf, replace
the integrals by appropriate sums. a) The marginal

f(yi1 , ..., yik) =

∫ ∞

−∞
· · ·
∫ ∞

−∞

[
n∏

j=1

fYij
(yij)

]

dyik+1
· · · dyin

=

[
k∏

j=1

fYij
(yij)

][
n∏

j=k+1

∫ ∞

−∞
fYij

(yij) dyij

]

=

[
k∏

j=1

fYij
(yij)

]

(1)n−k =
k∏

j=1

fYij
(yij).

b) follows from a) and the definition of a conditional pdf assuming that
f(yj1 , ..., yjm) > 0. QED

Definition 2.11. Suppose that random variables Y = (Y1, ..., Yn) have
support Y and joint pdf or pmf f . Then the expected value of h(Y ) =
h(Y1, ..., Yn) is

E[h(Y )] =

∫ ∞

−∞
· · ·
∫ ∞

−∞
h(y)f(y) dy =

∫

· · ·
∫

Y
h(y)f(y) dy (2.10)

if f is a joint pdf and if

∫ ∞

−∞
· · ·
∫ ∞

−∞
|h(y)|f(y) dy

exists. Otherwise the expectation does not exist. The expected value is

E[h(Y )] =
∑

y1

· · ·
∑

yn

h(y)f(y) =
∑

y∈<n

h(y)f(y) =
∑

y∈Y
h(y)f(y) (2.11)
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if f is a joint pmf and if
∑

y∈<n |h(y)|f(y) exists. Otherwise the expectation
does not exist.

The following theorem is useful since multiple integrals with smaller di-
mension are easier to compute than those with higher dimension.

Theorem 2.4. Suppose that Y1, ..., Yn are random variables with joint
pdf or pmf f(y1, ..., yn). Let {i1, ..., ik} ⊂ {1, ..., n}, and let f(yi1, ..., yik) be
the marginal pdf or pmf of Yi1 , ..., Yik with support YYi1 ,...,Yik

. Assume that
E[h(Yi1, ..., Yik)] exists. Then

E[h(Yi1, ..., Yik)] =

∫ ∞

−∞
· · ·
∫ ∞

−∞
h(yi1, ..., yik) f(yi1, ..., yik) dyi1 · · · dyik =

∫

· · ·
∫

YYi1
,...,Yik

h(yi1 , ..., yik) f(yi1 , ..., yik) dyi1 · · · dyik

if f is a pdf, and

E[h(Yi1, ..., Yik)] =
∑

yi1

· · ·
∑

yik

h(yi1, ..., yik) f(yi1, ..., yik)

=
∑

(yi1 ,...,yik
)∈YYi1

,...,Yik

h(yi1, ..., yik) f(yi1 , ..., yik)

if f is a pmf.

Proof. The proof for a joint pdf is given below. For a joint pmf, replace
the integrals by appropriate sums. Let g(Y1, ..., Yn) = h(Yi1 , ..., Yik). Then
E[g(Y )] =

∫ ∞

−∞
· · ·
∫ ∞

−∞
h(yi1, ..., yik)f(y1, ..., yn) dy1 · · · dyn =

∫ ∞

−∞
· · ·
∫ ∞

−∞
h(yi1, ..., yik)

[∫ ∞

−∞
· · ·
∫ ∞

−∞
f(y1, ..., yn) dyik+1

· · · dyin
]

dyi1 · · · dyik

=

∫ ∞

−∞
· · ·
∫ ∞

−∞
h(yi1, ..., yik)f(yi1, ..., yik) dyi1 · · · dyik

since the term in the brackets gives the marginal. QED
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Example 2.5. Typically E(Yi), E(Y 2
i ) and E(YiYj) for i 6= j are of pri-

mary interest. Suppose that (Y1, Y2) has joint pdf f(y1, y2). Then E[h(Y1, Y2)]

=

∫ ∞

−∞

∫ ∞

−∞
h(y1, y2)f(y1, y2)dy2dy1 =

∫ ∞

−∞

∫ ∞

−∞
h(y1, y2)f(y1, y2)dy1dy2

where −∞ to ∞ could be replaced by the limits of integration for dyi. In
particular,

E(Y1Y2) =

∫ ∞

−∞

∫ ∞

−∞
y1y2f(y1, y2)dy2dy1 =

∫ ∞

−∞

∫ ∞

−∞
y1y2f(y1, y2)dy1dy2.

Since finding the marginal pdf is usually easier than doing the double
integral, if h is a function of Yi but not of Yj, find the marginal for Yi :
E[h(Y1)] =

∫∞
−∞
∫∞
−∞ h(y1)f(y1, y2)dy2dy1 =

∫∞
−∞ h(y1)fY1(y1)dy1. Similarly,

E[h(Y2)] =
∫∞
−∞ h(y2)fY2(y2)dy2.

In particular,E(Y1) =
∫∞
−∞ y1fY1(y1)dy1, and E(Y2) =

∫∞
−∞ y2fY2(y2)dy2.

Suppose that (Y1, Y2) have a joint pmf f(y1, y2). Then the expectation
E[h(Y1, Y2)] =

∑

y2

∑

y1
h(y1, y2)f(y1, y2) =

∑

y1

∑

y2
h(y1, y2)f(y1, y2). In

particular,

E[Y1Y2] =
∑

y1

∑

y2

y1y2f(y1, y2).

Since finding the marginal pmf is usually easier than doing the double
summation, if h is a function of Yi but not of Yj , find the marginal for
pmf for Yi: E[h(Y1)] =

∑

y2

∑

y1
h(y1)f(y1, y2) =

∑

y1
h(y1)fY1(y1). Similarly,

E[h(Y2)] =
∑

y2
h(y2)fY2(y2). In particular, E(Y1) =

∑

y1
y1fY1(y1) and

E(Y2) =
∑

y2
y2fY2(y2).

For pdfs it is sometimes possible to find E[h(Yi)] but for k ≥ 2 these
expected values tend to be too difficult to compute unless the problem is
impractical. Independence makes finding some expected values simple.

Theorem 2.5. Let Y1, ..., Yn be independent random variables. If hi(Yi)
is a function of Yi alone and if the relevant expected values exist, then

E[h1(Y1)h2(Y2) · · · hn(Yn)] = E[h1(Y1)] · · ·E[hn(Yn)].

In particular, E[YiYj] = E[Yi]E[Yj] for i 6= j.
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Proof. The result will be shown for the case where Y = (Y1, ..., Yn) has
a joint pdf f . For a joint pmf, replace the integrals by appropriate sums. By
independence, the support of Y is a cross product: Y = Y1 ×· · ·×Yn. Since
f(y) =

∏n
i=1 fYi(yi), the expectation E[h1(Y1)h2(Y2) · · · hn(Yn)] =

∫

· · ·
∫

Y
h1(y1)h2(y2) · · ·hn(yn) f(y1, ..., yn) dy1 · · · dyn

=

∫

Yn

· · ·
∫

Y1

[
n∏

i=1

hi(yi)fYi(yi)

]

dy1 · · · dyn

=
n∏

i=1

[∫

Yi

hi(yi)fYi(yi) dyi

]

=
n∏

i=1

E[hi(Yi)]. QED.

Corollary 2.6. Let Y1, ..., Yn be independent random variables. If hj(Yij )
is a function of Yij alone and if the relevant expected values exist, then

E[h1(Yi1) · · ·hk(Yik)] = E[h1(Yi1)] · · ·E[hk(Yik)].

Proof. Method 1: Take Xj = Yij for j = 1, ..., k. Then X1, ..., Xk are
independent and Theorem 2.5 applies.

Method 2: Take hj(Yij ) ≡ 1 for j = k + 1, ..., n and apply Theorem 2.5.
QED

Theorem 2.7. Let Y1, ..., Yn be independent random variables. If hi(Yi)
is a function of Yi alone andXi = hi(Yi), then the random variablesX1, ..., Xn

are independent.

Definition 2.12. The covariance of Y1 and Y2 is

Cov(Y1, Y2) = E[(Y1 − E(Y1))(Y2 −E(Y2))]

provided the expectation exists. Otherwise the covariance does not exist.

Theorem 2.8: Short cut formula. If Cov(Y1, Y2) exists then
Cov(Y1, Y2) = E(Y1Y2) − E(Y1)E(Y2).

Theorem 2.9. Let Y1 and Y2 be independent random variables.
a) If Cov(Y1, Y2) exists, then Cov(Y1, Y2) = 0.
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b) The converse is false: Cov(Y1, Y2) = 0 does not imply Y1 Y2.

Example 2.6. When f(y1, y2) is given by a table, a common problem
is to determine whether Y1 and Y2 are independent or dependent, find the
marginal pmfs fY1(y1) and fY2(y2) and find the conditional pmfs fY1|Y2=y2(y1|y2)
and fY2|Y1=y1(y2|y1). Also find E(Y1), E(Y2), V (Y1), V (Y2), E(Y1Y2) and
Cov(Y1, Y2).

Example 2.7. Given the joint pdf f(y1, y2) = kg(y1, y2) on its sup-
port, a common problem is to find k, find the marginal pdfs fY1(y1) and
fY2(y2) and find the conditional pdfs fY1|Y2=y2 (y1|y2) and fY2|Y1=y1 (y2|y1).
Also determine whether Y1 and Y2 are independent or dependent, and find
E(Y1), E(Y2), V (Y1), V (Y2), E(Y1Y2) and Cov(Y1, Y2).

Example 2.8. Suppose that the joint probability mass function of Y1

and Y2 is f(y1, y2) is tabled as shown.

y2

f(y1, y2) 0 1 2
0 1/9 2/9 1/9

y1 1 2/9 2/9 0/9
2 1/9 0/9 0/9

a) Are Y1 and Y2 independent? Explain.
b) Find the marginal pmfs.
c) Find E(Y1).
d) Find E(Y2).
e) Find Cov(Y1, Y2).

Solution: a) No, the support is not a cross product. Alternatively,
f(2, 2) = 0 < fY1(2)fY2(2).

b) Find fY1(y1) by finding the row sums. Find fY2(y2) by finding the
column sums. In both cases, fYi(0) = fYi(1) = 4/9 and fYi(2) = 1/9.

c) E(Y1) =
∑
y1fY1(y1) = 04

9
+ 14

9
+ 21

9
= 6

9
≈ 0.6667.

d) E(Y2) ≈ 0.6667 is found as in c) with y2 replacing y1.

e) E(Y1Y2) =
∑∑

y1y2f(y1, y2) =
0 + 0 + 0
+0 + (1)(1)2

9
+ 0

+0 + 0 + 0 = 2
9
. Hence Cov(Y1, Y2) = E(Y1Y2)−E(Y1)E(Y2) = 2

9
− (6

9
)(6

9
) =

−2
9
≈ −0.2222.

Example 2.9. Suppose that the joint pdf of the random variables Y1
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and Y2 is given by

f(y1, y2) = 10y1y
2
2, if 0 < y1 < y2 < 1

and f(y1, y2) = 0, otherwise. Find the marginal pdf of Y1. Include the sup-
port.

Solution: Notice that for a given value of y1, the joint pdf is positive for
y1 < y2 < 1. Thus

fY1(y1) =

∫ 1

y1

10y1y
2
2dy2 = 10y1

y3
2

3

∣
∣
∣
∣

1

y1

=
10y1

3
(1 − y3

1), 0 < y1 < 1.

Example 2.10. Suppose that the joint pdf of the random variables Y1

and Y2 is given by

f(y1, y2) = 4y1(1 − y2), if 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1

and f(y1, y2) = 0, otherwise.
a) Find the marginal pdf of Y1. Include the support.
b) Find E(Y1).
c) Find V (Y1).
d) Are Y1 and Y2 independent? Explain.

Solution: a) fY1(y1) =
∫ 1

0
4y1(1 − y2)dy2 = 4y1(y2 − y22

2
)
∣
∣
∣

1

0
= 4y1(1 − 1

2
) =

2y1, 0 < y1 < 1.

b) E(Y1) =
∫ 1

0
y1fY1(y1)dy1 =

∫ 1

0
y12y1dy1 = 2

∫ 1

0
y2

1dy1 = 2
y31
3

∣
∣
∣

1

0
= 2/3.

c) E(Y 2
1 ) =

∫ 1

0
y2

1fY1(y1)dy1 =
∫ 1

0
y2

12y1dy1 = 2
∫ 1

0
y3

1dy1 = 2
y41
4

∣
∣
∣

1

0
= 1/2.

So V (Y1) = E(Y 2
1 ) − [E(Y1)]

2 = 1
2
− 4

9
= 1

18
≈ 0.0556.

d) Yes, use Theorem 2.2b with f(y1, y2) = (4y1)(1 − y2) = h1(y1)h2(y2)
on cross product support.

2.3 Conditional Expectation and Variance

Notation: Y |X = x is a single conditional distribution while Y |X is a
family of distributions. For example, if Y |X = x ∼ N(c + dx, σ2), then
Y |X ∼ N(c+ dX, σ2) is the family of normal distributions with variance σ2

and mean µY |X=x = c+ dx.
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Definition 2.13. Suppose that f(y|x) is the conditional pmf or pdf of
Y |X = x and that h(Y ) is a function of Y . Then the conditional expected
value E[h(Y )|X = x] of h(Y ) given X = x is

E[h(Y )|X = x] =
∑

y

h(y)f(y|x) (2.12)

if f(y|x) is a pmf and if the sum exists when h(y) is replaced by |h(y)|. In
particular,

E[Y |X = x] =
∑

y

yf(y|x). (2.13)

Similarly,

E[h(Y )|X = x] =

∫ ∞

−∞
h(y)f(y|x)dy (2.14)

if f(y|x) is a pdf and if the integral exists when h(y) is replaced by |h(y)|.
In particular,

E[Y |X = x] =

∫ ∞

−∞
yf(y|x)dy. (2.15)

Definition 2.14. Suppose that f(y|x) is the conditional pmf or pdf of
Y |X = x. Then the conditional variance

VAR(Y |X = x) = E(Y 2|X = x)− [E(Y |X = x)]2

whenever E(Y 2|X = x) exists.

Recall that f(y|x) is a function of y with x fixed, but E(Y |X = x) ≡ m(x)
is a function of x. In the definition below, both E(Y |X) and VAR(Y |X) are
random variables since m(X) and v(X) are random variables.

Definition 2.15. If E(Y |X = x) = m(x), then E(Y |X) = m(X).
Similarly if VAR(Y |X = x) = v(x), then VAR(Y |X) = v(X) = E(Y 2|X) −
[E(Y |X)]2.

Example 2.11. Suppose that Y = weight and X = height of college
students. Then E(Y |X = x) is a function of x. For example, the weight of 5
feet tall students is less than the weight of 6 feet tall students, on average.

Notation: When computing E(h(Y )), the marginal pdf or pmf f(y) is
used. When computing E[h(Y )|X = x], the conditional pdf or pmf f(y|x)
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is used. In a formula such as E[E(Y |X)] the inner expectation uses f(y|x)
but the outer expectation uses f(x) since E(Y |X) is a function of X. In the
formula below, we could write EY (Y ) = EX [EY |X(Y |X)], but such notation
is usually omitted.

Theorem 2.10: Iterated Expectations. Assume the relevant ex-
pected values exist. Then

E(Y ) = E[E(Y |X)].

Proof: The result will be shown for the case where (Y,X) has a joint
pmf f . For a joint pdf, replace the sums by appropriate integrals. Now

E(Y ) =
∑

x

∑

y

yf(x, y) =
∑

x

∑

y

yfY |X(y|x)fX(x)

=
∑

x

[
∑

y

yfY |X(y|x)
]

fX(x) =
∑

x

E(Y |X = x)fX(x) = E[E(Y |X)]

since the term in brackets is E(Y |X = x). QED

Theorem 2.11: Steiner’s Formula or the Conditional Variance
Identity. Assume the relevant expectations exist. Then

VAR(Y ) = E[VAR(Y |X)] + VAR[E(Y |X)].

Proof: Following Rice (1988, p. 132), since VAR(Y |X) = E(Y 2|X) −
[E(Y |X)]2 is a random variable,

E[VAR(Y |X)] = E[E(Y 2|X)] −E([E(Y |X)]2).

If W is a random variable then E(W ) = E[E(W |X)] by Theorem 2.10 and
VAR(W ) = E(W 2) − [E(W )]2 by the short cut formula. Letting W =
E(Y |X) gives

VAR(E(Y |X)) = E([E(Y |X)]2) − (E[E(Y |X)])2.

Since E(Y 2) = E[E(Y 2|X)] and since E(Y ) = E[E(Y |X)],

VAR(Y ) = E(Y 2) − [E(Y )]2 = E[E(Y 2|X)] − (E[E(Y |X)])2.
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Adding 0 to VAR(Y ) gives

VAR(Y ) = E[E(Y 2|X)] −E([E(Y |X)]2) + E([E(Y |X)]2) − (E[E(Y |X)])2

= E[VAR(Y |X)] + VAR[E(Y |X)]. QED

A hierarchical model models a complicated process by a sequence of mod-
els placed in a hierarchy. Interest might be in the marginal expectation
E(Y ) and marginal variance VAR(Y ). One could find the joint pmf from
f(x, y) = f(y|x)f(x), then find the marginal distribution fY (y) and then
find E(Y ) and VAR(Y ). Alternatively, use Theorems 2.10 and 2.11.

Example 2.12. Suppose Y |X ∼ BIN(X, ρ) and X ∼ Poisson (λ). Then
E(Y |X) = Xρ, VAR(Y |X) = Xρ(1 − ρ) and E(X) = VAR(X) = λ.
Hence E(Y ) = E[E(Y |X)] = E(Xρ) = ρE(X) = ρλ and VAR(Y ) =
E[VAR(Y |X)] + VAR[E(Y |X)] = E[Xρ(1 − ρ)] + VAR(Xρ) = λρ(1 − ρ) +
ρ2VAR(X) = λρ(1 − ρ) + ρ2λ = λρ.

2.4 Location–Scale Families

Many univariate distributions are location, scale or location–scale families.
Assume that the random variable Y has a pdf fY (y).

Definition 2.16. Let fY (y) be the pdf of Y. Then the family of pdfs
fW (w) = fY (w − µ) indexed by the location parameter µ, −∞ < µ < ∞, is
the location family for the random variable W = µ + Y with standard pdf
fY (y).

Definition 2.17. Let fY (y) be the pdf of Y. Then the family of pdfs
fW (w) = (1/σ)fY (w/σ) indexed by the scale parameter σ > 0, is the scale
family for the random variable W = σY with standard pdf fY (y).

Definition 2.18. Let fY (y) be the pdf of Y. Then the family of pdfs
fW (w) = (1/σ)fY ((w − µ)/σ) indexed by the location and scale parameters
µ, −∞ < µ < ∞, and σ > 0, is the location–scale family for the random
variable W = µ + σY with standard pdf fY (y).

The most important scale family is the exponential EXP(λ) distribution.
Other scale families from Chapter 10 include the chi (p, σ) distribution if
p is known, the Gamma G(ν, λ) distribution if ν is known, the lognormal
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(µ, σ2) distribution with scale parameter τ = eµ if σ2 is known, the one sided
stable OSS(σ) distribution, the Pareto PAR(σ, λ) distribution if λ is known,
and the Weibull W (φ, λ) distribution with scale parameter σ = λ1/φ if φ is
known.

A location family can be obtained from a location–scale family by fixing
the scale parameter while a scale family can be obtained by fixing the loca-
tion parameter. The most important location–scale families are the Cauchy
C(µ, σ), double exponential DE(θ, λ), logistic L(µ, σ), normal N(µ, σ2) and
uniform U(θ1, θ2) distributions. Other location–scale families from Chapter
10 include the two parameter exponential EXP(θ, λ), half Cauchy HC(µ, σ),
half logistic HL(µ, σ), half normal HN(µ, σ), largest extreme value LEV(θ, σ),
Maxwell Boltzmann MB(µ, σ), Rayleigh R(µ, σ) and smallest extreme value
SEV(θ, σ) distributions.

2.5 Transformations

Transformations for univariate distributions are important because many
“brand name” random variables are transformations of other brand name
distributions. These transformations will also be useful for finding the dis-
tribution of the complete sufficient statistic for a 1 parameter exponential
family. See Chapter 10.

Example 2.13: Common problem. Suppose that Y is a discrete
random variable with pmf fX(x) given by a table. Let the transformation
Y = t(X) for some function t and find the probability function fY (y).
Solution: Step 1) Find t(x) for each value of x.
Step 2) Collect x : t(x) = y, and sum the corresponding probabilities:

fY (y) =
∑

x:t(x)=y

fX(x), and table the resulting pmf fY (y) of Y .

For example, if Y = X2 and fX(−1) = 1/3, fX (0) = 1/3, and fX(1) = 1/3,
then fY (0) = 1/3 and fY (1) = 2/3.

Definition 2.19. Let h : D → < be a real valued function with domain
D. Then h is increasing if f(y1) < f(y2), nondecreasing if f(y1) ≤ f(y2),
decreasing if f(y1) > f(y2) and nonincreasing if f(y1) ≥ f(y2) provided
that y1 and y2 are any two numbers in D with y1 < y2. The function h is a
monotone function if h is either increasing or decreasing.
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Figure 2.2: Increasing and Decreasing t(x)
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Recall that if h is differentiable on an open interval D or continuous on a
closed interval D and differentiable on the interior of D, then h is increasing
if h′(y) > 0 for all y in the interior of D and h is decreasing if h′(y) < 0
for all y in the interior of D. Also if h is increasing then −h is decreasing.
Similarly, if h is decreasing then −h is increasing.

Suppose that X is a continuous random variable with pdf fX(x) on sup-
port X . Let the transformation Y = t(X) for some monotone function t.
Then there are two ways to find the support Y of Y = t(x) if the support X
of X is an interval with endpoints a < b where a = −∞ and b = ∞ are pos-
sible. Let t(a) ≡ limy↓a t(y) and let t(b) ≡ limy↑b t(y). A graph can help. If t
is an increasing function, then Y is an interval with endpoints t(a) < t(b). If
t is an decreasing function, then Y is an interval with endpoints t(b) < t(a).
The second method is to find x = t−1(y). Then if X = [a, b], say, solve
a ≤ t−1(y) ≤ b in terms of y.

If t(x) is increasing then P ({Y ≤ y}) = P ({X ≤ t−1(y)}) while if t(x)
is decreasing P ({Y ≤ y}) = P ({X ≥ t−1(y)}). To see this, look at Figure
2.2. Suppose the support of Y is [0, 9] and the support of X is [0, 3]. Now
the height of the curve is y = t(x). Mentally draw a horizontal line from y
to t(x) and then drop a vertical line to the x-axis. The value on the x-axis
is t−1(y) since t(t−1(y)) = y. Hence in Figure 2.2 a) t−1(4) = 2 and in Figure
2.2 b) t−1(8) = 1. If w < y then t−1(w) < t−1(y) if t(x) is increasing as in
Figure 2.2 a), but t−1(w) > t−1(y) if t(x) is decreasing as in Figure 2.2 b).
Hence P (Y ≤ y) = P (t−1(Y ) ≥ t−1(y)) = P (X ≥ t−1(y)).

Theorem 2.12: the CDF Method or Method of Distributions:
Suppose that the continuous cdf FX(x) is known and that Y = t(X). Find
the support Y of Y .
i) If t is an increasing function then, FY (y) = P (Y ≤ y) = P (t(X) ≤ y) =
P (X ≤ t−1(y)) = FX(t−1(y)).
ii) If t is a decreasing function then, FY (y) = P (Y ≤ y) = P (t(X) ≤ y) =
P (X ≥ t−1(y)) = 1−P (X < t−1(y)) = 1−P (X ≤ t−1(y)) = 1−FX(t−1(x)).
iii) The special case Y = X2 is important. If the support of X is positive,
use i). If the support of X is negative, use ii). If the support of X is (−a, a)
(where a = ∞ is allowed), then FY (y) = P (Y ≤ y) =



CHAPTER 2. MULTIVARIATE DISTRIBUTIONS 50

−3 −2 −1 0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

y

f

Figure 2.3: Pdfs for N(0,1) and HN(0,1) Distributions

P (X2 ≤ y) = P (−√
y ≤ X ≤ √

y) =

∫ √
y

−√
y

fX(x)dx = FX(
√
y) − FX(−√

y), 0 ≤ y < a2.

After finding the cdf FY (y), the pdf of Y is fY (y) =
d

dy
FY (y) for y ∈ Y.

Example 2.14. Suppose X has a pdf with support on the real line
and that the pdf is symmetric about µ so fX(µ − w) = fX(µ + w) for all
real w. It can be shown that X has a symmetric distribution about µ if
Z = X−µ and −Z = µ−X have the same distribution. Several named right
skewed distributions with support y ≥ µ are obtained by the transformation
Y = µ + |X − µ|. Similarly, let U be a U(0,1) random variable that is
independent of Y , then X can be obtained from Y by letting X = Y if
U ≤ 0.5 and X = 2µ − Y if U > 0.5. Pairs of such distributions include the
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exponential and double exponential, normal and half normal, Cauchy and
half Cauchy, and logistic and half logistic distributions. Figure 2.3 shows the
N(0,1) and HN(0,1) pdfs.

Notice that for y ≥ µ,

FY (y) = P (Y ≤ y) = P (µ + |X − µ| ≤ y) = P (|X − µ| ≤ y − µ) =

P (µ − y ≤ X − µ ≤ y − µ) = P (2µ − y ≤ X ≤ y) = FX(y) − FX(2µ − y).

Taking derivatives and using the symmetry of fX gives fY (y) =

fX(y)+ fX(2µ− y) = fX(µ+ (y− µ)) + fX(µ− (y− µ)) = 2fX(µ+ (y− µ))

= 2fX(y) for y ≥ µ. Hence fY (y) = 2fX(y)I(y ≥ µ).
Then X has pdf

fX(x) =
1

2
fY (µ+ |x− µ|)

for all real x, since this pdf is symmetric about µ and fX(x) = 0.5fY (x) if
x ≥ µ.

Example 2.15. Often the rules of differentiation such as the multiplica-
tion, quotient and chain rules are needed. For example if the support of X
is [−a, a] and if Y = X2, then

fY (y) =
1

2
√
y
[fX(

√
y) + fX(−√

y)]

for 0 ≤ y ≤ a2.

Theorem 2.13: the Transformation Method. Assume that X has
pdf fX(x) and support X . Find the support Y of Y = t(X). If t(x) is either
increasing or decreasing on X and if t−1(y) has a continuous derivative on
Y, then Y = t(X) has pdf

fY (y) = fX(t−1(y))

∣
∣
∣
∣

dt−1(y)

dy

∣
∣
∣
∣

(2.16)

for y ∈ Y. As always, fY (y) = 0 for y not in Y.

Proof: Examining Theorem 2.12, if t is increasing then FY (y) = FX(t−1(y))
and

fY (y) =
d

dy
FY (y)
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=
d

dy
FX(t−1(y)) = fX(t−1(y))

d

dy
t−1(y) = fX(t−1(y))

∣
∣
∣
∣

dt−1(y)

dy

∣
∣
∣
∣

for y ∈ Y since the derivative of a differentiable increasing function is positive.
If t is a decreasing function then from Theorem 2.12, FY (y) = 1 −

FX(t−1(x)). Hence

fY (y) =
d

dy
[1 − FX(t−1(y))] = −fX(t−1(y))

d

dy
t−1(y) = fX(t−1(y))

∣
∣
∣
∣

dt−1(y)

dy

∣
∣
∣
∣

for y ∈ Y since the derivative of a differentiable decreasing function is nega-
tive.

Tips: To be useful, formula (2.16) should be simplified as much as possi-
ble.
a) The pdf of Y will often be that of a gamma random variable. In particular,
the pdf of Y is often the pdf of an exponential(λ) random variable.
b) To find the inverse function x = t−1(y), solve the equation y = t(x) for x.
c) The log transformation is often used. Know how to sketch log(x) and ex

for x > 0. Recall that in this text, log(x) is the natural logarithm of x.

Example 2.16. Let X be a random variable with pdf

fX(x) =
1

x
√

2πσ2
exp (

−(log(x)− µ)2

2σ2
)

where x > 0, µ is real and σ > 0. Let Y = log(X) and find the distribution
of Y .

Solution: X = eY = t−1(Y ). So

∣
∣
∣
∣

dt−1(y)

dy

∣
∣
∣
∣
= |ey| = ey,

and

fY (y) = fX(t−1(y))

∣
∣
∣
∣

dt−1(y)

dy

∣
∣
∣
∣
= fX(ey)ey =

1

ey
√

2πσ2
exp (

−(log(ey) − µ)2

2σ2
)ey =

1√
2πσ2

exp

(−(y − µ)2

2σ2

)
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for y ∈ (−∞,∞) since x > 0 implies that y = log(x) ∈ (−∞,∞). Notice
that X is lognormal (µ, σ2) and Y ∼ N(µ, σ2).

Example 2.17. If Y has a Topp–Leone distribution, then pdf of Y is

f(y) = ν(2 − 2y)(2y − y2)ν−1

for ν > 0 and 0 < y < 1. Notice that F (y) = (2y − y2)ν for 0 < y < 1
since F ′(y) = f(y). Then the distribution of W = − log(2Y − Y 2) will be of
interest for later chapters.

Let X = Y − 1. Then the support of X is (−1, 0) and FX(x) =
P (X ≤ x) = P (Y − 1 ≤ x) = P (Y ≤ x+ 1) = FY (x+ 1)

= (2(x+1)−(x+1)2)ν = ((x+1)(2−(x+1)))ν = [(x+1)(x−1)]ν = (1−x2)ν.

So FX(x) = (1 − x2)ν for −1 < x < 0. Now the support of W is w > 0 and
FW (w) = P (W ≤ w) = P (− log(2Y −Y 2) ≤ w) = P (log(2Y −Y 2) ≥ −w) =
P (2Y −Y 2 ≥ e−w) = P (2Y −Y 2−1 ≥ e−w−1) = P (−(Y −1)2 ≥ e−w−1) =
P ((Y − 1)2 ≤ 1 − e−w). So FW (w) = P (X2 ≤ 1 − e−w) =
P (−√

a ≤ X ≤ √
a) where a = 1 − e−w ∈ (0, 1). So FW (w) =

FX(
√
a) − FX(−√

a) = 1 − FX(−√
a) = 1 − FX(−

√
1 − e−w)

= 1 − [1 − (−
√

1 − e−w)2]ν = 1 − [1 − (1 − e−w)]ν = 1 − e−wν

for w > 0. Thus W = − log(2Y − Y 2) ∼ EXP (1/ν).

Transformations for vectors are often less useful in applications because
the transformation formulas tend to be impractical to compute. For the
theorem below, typically n = 2. If Y1 = t1(X1, X2) is of interest, choose Y2 =
t2(X1, X2) such that the determinant J is easy to compute. For example,
Y2 = X2 may work. Finding the support Y can be difficult, but if the joint
pdf of X1, X2 is g(x1, x2) = h(x1, x2) I [(x1, x2) ∈ X ], then the joint pdf of
Y1, Y2 is

f(y1, y2) = h(t−1
1 (y), t−1

2 (y)) I [(t−1
1 (y), t−1

2 (y)) ∈ X ] |J |,

and using I [(t−1
1 (y), t−1

2 (y)) ∈ X ] can be useful for finding Y. Also sketch X
with x1 on the horizontal axis and x2 on the vertical axis, and sketch Y with
y1 on the horizontal axis and y2 on the vertical axis.

Theorem 2.14: the Multivariate Transformation Method. Let
X1, ..., Xn be random variables with joint pdf g(x1, ..., xn) and support X .
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Let Yi = ti(X1, ..., Xn) for i = 1, ..., n. Suppose that f(y1, ..., yn) is the
joint pdf of Y1, ..., Yn and that the multivariate transformation is one to one.
Hence the transformation is invertible and can be solved for the equations
xi = t−1

i (y1, ..., yn) for i = 1, ..., n. Then the Jacobian of this multivariate
transformation is

J = det







∂t−1
1

∂y1
. . .

∂t−1
1

∂yn

...
...

∂t−1
n

∂y1
. . . ∂t−1

n

∂yn






.

Let |J | denote the absolute value of the determinant J . Then the pdf of
Y1, ..., Yn is

f(y1, ..., yn) = g(t−1
1 (y), ..., t−1

n (y)) |J |. (2.17)

Example 2.18. Let X1 and X2 have joint pdf

g(x1, x2) = 2e−(x1+x2)

for 0 < x1 < x2 <∞. Let Y1 = X1 and Y2 = X1 + X2. An important step is
finding the support Y of (Y1, Y2) from the support of (X1, X2)

= X = {(x1, x2)|0 < x1 < x2 <∞}.

Now x1 = y1 = t−1
1 (y1, y2) and x2 = y2 − y1 = t−1

2 (y1, y2). Hence x1 < x2

implies y1 < y2 − y1 or 2y1 < y2, and

Y = {(y1, y2)|0 < 2y1 < y2}.

Now
∂t−1

1

∂y1
= 1,

∂t−1
1

∂y2
= 0,

∂t−1
2

∂y1
= −1,

∂t−1
2

∂y2
= 1,

and the Jacobian

J =

∣
∣
∣
∣

1 0
−1 1

∣
∣
∣
∣
= 1.

Hence |J | = 1. Using indicators,

gX1,X2(x1, x2) = 2e−(x1+x2)I(0 < x1 < x2 <∞),
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and

fY1,Y2(y1, y2) = gX1,X2(y1, y2 − y1)|J | = 2e−(y1+y2−y1)I(0 < y1 < y2 − y1)1 =

2e−y2I(0 < 2y1 < y2).

Notice that Y1 and Y2 are not independent since the support Y is not a
cross product. The marginals

fY1(y1) =

∫ ∞

−∞
2e−y2I(0 < 2y1 < y2)dy2 =

∫ ∞

2y1

2e−y2dy2

= −2e−y2
∣
∣
∣
∣

∞

y2=2y1

= 0 −−2e−2y1 = 2e−2y1

for 0 < y1 <∞, and

fY2(y2) =

∫ ∞

−∞
2e−y2I(0 < 2y1 < y2)dy1 =

∫ y2/2

0

2e−y2dy1

= 2e−y2y1

∣
∣
∣
∣

y1=y2/2

y1=0

= y2e
−y2

for 0 < y2 <∞.

Example 2.19. Following Bickel and Doksum (2007, p. 489-490), let
X1 and X2 be independent gamma (νi, λ) RVs for i = 1, 2. Then X1 and X2

have joint pdf g(x1, x2) = g1(x1)g2(x2) =

xν1−1
1 e−x1/λ

λν1Γ(ν1)

xν2−1
2 e−x2/λ

λν2Γ(ν2)
=

1

λν1+ν2Γ(ν1)Γ(ν2)
xν1−1

1 xν2−1
2 exp[−(x1 + x2)/λ]

for 0 < x1 and 0 < x2. Let Y1 = X1 +X2 and Y2 = X1/(X1 +X2). An impor-
tant step is finding the support Y of (Y1, Y2) from the support of (X1, X2)

= X = {(x1, x2)|0 < x1 and 0 < x2}.

Now y2 = x1/y1, so x1 = y1y2 = t−1
1 (y1, y2) and x2 = y1 − x1 = y1 − y1y2 =

t−1
2 (y1, y2). Notice that 0 < y1 and 0 < x1 < x1 + x2. Thus 0 < y2 < 1, and

Y = {(y1, y2)|0 < y1 and 0 < y2 < 1}.
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Now
∂t−1

1

∂y1
= y2,

∂t−1
1

∂y2
= y1,

∂t−1
2

∂y1
= 1 − y2,

∂t−1
2

∂y2
= −y1,

and the Jacobian

J =

∣
∣
∣
∣

y2 y1

1 − y2 −y1

∣
∣
∣
∣
= −y1y2 − (y1 − y1y2) = −y1,

and |J | = y1. So the joint pdf

f(y1, y2) = g(t−1
1 (y), t−1

2 (y)) |J | = g(y1y2, y1 − y1y2)y1 =

1

λν1+ν2Γ(ν1)Γ(ν2)
yν1−1

1 yν1−1
2 yν2−1

1 (1 − y2)
ν2−1 exp[−(y1y2 + y1 − y1y2)/λ]y1 =

1

λν1+ν2Γ(ν1)Γ(ν2)
yν1+ν2−1

1 yν1−1
2 (1 − y2)

ν2−1e−y1/λ =

1

λν1+ν2Γ(ν1 + ν2)
yν1+ν2−1

1 e−y1/λ
Γ(ν1 + ν2)

Γ(ν1)Γ(ν2)
yν1−1

2 (1 − y2)
ν2−1.

Thus f(y1, y2) = f1(y1)f2(y2) on Y, and Y1 ∼ gamma(ν1 + ν2, λ) Y2 ∼
beta(ν1, ν2) by Theorem 2.2b.

2.6 Sums of Random Variables

An important multivariate transformation of the random variables Y =
(Y1, ...., Yn) is T (Y1, ...., Yn) =

∑n
i=1 Yi. Some properties of sums are given

below.

Theorem 2.15. Assume that all relevant expectations exist. Let a,
a1, ..., an and b1, ..., bm be constants. Let Y1, ..., Yn, and X1, ..., Xm be random
variables. Let g1, ..., gk be functions of Y1, ..., Yn.

i) E(a) = a.
ii) E[aY ] = aE[Y ]
iii) V (aY ) = a2V (Y ).
iv) E[g1(Y1, ..., Yn) + · · · + gk(Y1, ..., Yn)] =

∑k
i=1 E[gi(Y1, ..., Yn)].

Let W1 =
∑n

i=1 aiYi and W2 =
∑m

i=1 biXi.
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v) E(W1) =

n∑

i=1

aiE(Yi).

vi) V (W1) = Cov(W1,W1) =
n∑

i=1

a2
iV (Yi) + 2

n−1∑

i=1

n∑

j=i+1

aiajCov(Yi, Yj).

vii) Cov(W1,W2) =
n∑

i=1

m∑

j=1

aibjCov(Yi, Xj).

viii) E(
∑n

i=1 Yi) =

n∑

i=1

E(Yi).

ix) If Y1, ..., Yn are independent, V (
∑n

i=1 Yi) =
n∑

i=1

V (Yi).

Let Y1, ..., Yn be iid RVs with E(Yi) = µ and V (Yi) = σ2, then the

sample mean Y =
1

n

n∑

i=1

Yi. Then

x) E(Y ) = µ and
xi) V (Y ) = σ2/n.

Definition 2.20. Y1, ..., Yn are a random sample or iid if Y1, ..., Yn are
independent and identically distributed (all of the Yi have the same distri-
bution).

Example 2.20: Common problem. Let Y1, ..., Yn be independent
random variables with E(Yi) = µi and V (Yi) = σ2

i . Let W =
∑n

i=1 Yi. Then
a) E(W ) = E(

∑n
i=1 Yi) =

∑n
i=1 E(Yi) =

∑n
i=1 µi, and

b) V (W ) = V (
∑n

i=1 Yi) =
∑n

i=1 V (Yi) =
∑n

i=1 σ
2
i .

A statistic is a function of the random sample and known constants. A
statistic is a random variable and the sampling distribution of a statistic
is the distribution of the statistic. Important statistics are

∑n
i=1 Yi, Y =

1
n

∑n
i=1 Yi and

∑n
i=1 aiYi where a1, ..., an are constants. The following theorem

shows how to find the mgf and characteristic function of such statistics.

Theorem 2.16. a) The characteristic function uniquely determines the
distribution.

b) If the moment generating function exists, then it uniquely determines
the distribution.

c) Assume that Y1, ..., Yn are independent with characteristic functions
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φYi(t). Then the characteristic function of W =
∑n

i=1 Yi is

φW (t) =
n∏

i=1

φYi(t). (2.18)

d) Assume that Y1, ..., Yn are iid with characteristic functions φY (t). Then
the characteristic function of W =

∑n
i=1 Yi is

φW (t) = [φY (t)]n. (2.19)

e) Assume that Y1, ..., Yn are independent with mgfs mYi(t). Then the
mgf of W =

∑n
i=1 Yi is

mW (t) =

n∏

i=1

mYi(t). (2.20)

f) Assume that Y1, ..., Yn are iid with mgf mY (t). Then the mgf of W =
∑n

i=1 Yi is
mW (t) = [mY (t)]n. (2.21)

g) Assume that Y1, ..., Yn are independent with characteristic functions
φYi(t). Then the characteristic function of W =

∑n
j=1(aj + bjYj) is

φW (t) = exp(it
n∑

j=1

aj)
n∏

j=1

φYj (bjt). (2.22)

h) Assume that Y1, ..., Yn are independent with mgfs mYi(t). Then the
mgf of W =

∑n
i=1(ai + biYi) is

mW (t) = exp(t

n∑

i=1

ai)

n∏

i=1

mYi(bit). (2.23)

Proof of g): Recall that exp(w) = ew and exp(
∑n

j=1 dj) =
∏n

j=1 exp(dj).
It can be shown that for the purposes of this proof, that the complex constant
i in the characteristic function (cf) can be treated in the same way as if it
were a real constant. Now

φW (t) = E(eitW ) = E(exp[it
n∑

j=1

(aj + bjYj)])
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= exp(it

n∑

j=1

aj) E(exp[

n∑

j=1

itbjYj)])

= exp(it
n∑

j=1

aj) E(
n∏

i=1

exp[itbjYj)])

= exp(it
n∑

j=1

aj)
n∏

i=1

E[exp(itbjYj)]

since by Theorem 2.5 the expected value of a product of independent random
variables is the product of the expected values of the independent random
variables. Now in the definition of a cf, the t is a dummy variable as long
as t is real. Hence φY (t) = E[exp(itY )] and φY (s) = E[exp(isY )]. Taking
s = tbj gives E[exp(itbjYj)] = φYj(tbj). Thus

φW (t) = exp(it

n∑

j=1

aj)

n∏

i=1

φYj (tbj). QED

The distribution of W =
∑n

i=1 Yi is known as the convolution of Y1, ..., Yn.
Even for n = 2 convolution formulas tend to be hard; however, the following
two theorems suggest that to find the distribution of W =

∑n
i=1 Yi, first find

the mgf or characteristic function of W using Theorem 2.16. If the mgf or
cf is that of a brand name distribution, then W has that distribution. For
example, if the mgf of W is a normal (ν, τ 2) mgf, then W has a normal (ν, τ 2)
distribution, writtenW ∼ N(ν, τ 2). This technique is useful for several brand
name distributions. Chapter 10 will show that many of these distributions
are exponential families.

Theorem 2.17. a) If Y1, ..., Yn are independent binomial BIN(ki, ρ) ran-
dom variables, then

n∑

i=1

Yi ∼ BIN(
n∑

i=1

ki, ρ).

Thus if Y1, ..., Yn are iid BIN(k, ρ) random variables, then
∑n

i=1 Yi ∼ BIN(nk, ρ).
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b) Denote a chi–square χ2
p random variable by χ2(p). If Y1, ..., Yn are

independent chi–square χ2
pi

, then

n∑

i=1

Yi ∼ χ2(
n∑

i=1

pi).

Thus if Y1, ..., Yn are iid χ2
p, then

n∑

i=1

Yi ∼ χ2
np.

c) If Y1, ..., Yn are iid exponential EXP(λ), then

n∑

i=1

Yi ∼ G(n, λ).

d) If Y1, ..., Yn are independent Gamma G(νi, λ) then

n∑

i=1

Yi ∼ G(

n∑

i=1

νi, λ).

Thus if Y1, ..., Yn are iid G(ν, λ), then

n∑

i=1

Yi ∼ G(nν, λ).

e) If Y1, ..., Yn are independent normal N(µi, σ
2
i ), then

n∑

i=1

(ai + biYi) ∼ N(

n∑

i=1

(ai + biµi),

n∑

i=1

b2iσ
2
i ).

Here ai and bi are fixed constants. Thus if Y1, ..., Yn are iid N(µ, σ), then
Y ∼ N(µ, σ2/n).

f) If Y1, ..., Yn are independent Poisson POIS(θi), then

n∑

i=1

Yi ∼ POIS(

n∑

i=1

θi).
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Thus if Y1, ..., Yn are iid POIS(θ), then

n∑

i=1

Yi ∼ POIS(nθ).

Theorem 2.18. a) If Y1, ..., Yn are independent Cauchy C(µi, σi), then

n∑

i=1

(ai + biYi) ∼ C(
n∑

i=1

(ai + biµi),
n∑

i=1

|bi|σi).

Thus if Y1, ..., Yn are iid C(µ, σ), then Y ∼ C(µ, σ).
b) If Y1, ..., Yn are iid geometric geom(p), then

n∑

i=1

Yi ∼ NB(n, p).

c) If Y1, ..., Yn are iid inverse Gaussian IG(θ, λ), then

n∑

i=1

Yi ∼ IG(nθ, n2λ).

Also
Y ∼ IG(θ, nλ).

d) If Y1, ..., Yn are independent negative binomial NB(ri, ρ), then

n∑

i=1

Yi ∼ NB(
n∑

i=1

ri, ρ).

Thus if Y1, ..., Yn are iid NB(r, ρ), then

n∑

i=1

Yi ∼ NB(nr, ρ).

Example 2.21: Common problem. Given that Y1, ..., Yn are inde-
pendent random variables from one of the distributions in Theorem 2.17,
find the distribution of W =

∑n
i=1 Yi or W =

∑n
i=1 biYi by finding the mgf

or characteristic function of W and recognizing that it comes from a brand
name distribution.
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Tips: a) in the product, anything that does not depend on the product
index i is treated as a constant.
b) exp(a) = ea and log(y) = ln(y) = loge(y) is the natural logarithm.

c)
n∏

i=1

abθi = a
Pn

i=1 bθi = ab
Pn

i=1 θi .

In particular,

n∏

i=1

exp(bθi) = exp(

n∑

i=1

bθi) = exp(b

n∑

i=1

θi).

Example 2.22. Suppose Y1, ..., Yn are iid IG(θ, λ) where the mgf

mYi(t) = m(t) = exp

[

λ

θ

(

1 −
√

1 − 2θ2t

λ

)]

for t < λ/(2θ2). Then

mPn
i=1 Yi

(t) =

n∏

i=1

mYi(t) = [m(t)]n = exp

[

nλ

θ

(

1 −
√

1 − 2θ2t

λ

)]

= exp

[

n2λ

n θ

(

1 −
√

1 − 2(nθ)2 t

n2λ

)]

which is the mgf of an IG(nθ, n2λ) RV. The last equality was obtained by
multiplying nλ

θ
by 1 = n/n and by multiplying 2θ2t

λ
by 1 = n2/n2. Hence

∑n
i=1 Yi ∼ IG(nθ, n2λ).

2.7 Random Vectors

Definition 2.21. Y = (Y1, ..., Yp) is a 1 × p random vector if Yi is a
random variable for i = 1, ..., p. Y is a discrete random vector if each Yi is
discrete, and Y is a continuous random vector if each Yi is continuous. A
random variable Y1 is the special case of a random vector with p = 1.

In the previous sections each Y = (Y1, ..., Yn) was a random vector. In
this section we will consider n random vectors Y 1, ...,Y n. Often double
subscripts will be used: Y i = (Yi,1, ..., Yi,pi) for i = 1, ..., n.
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Notation. The notation for random vectors is rather awkward. In most
of the statistical inference literature, Y is a row vector, but in most of the
multivariate analysis literature Y is a column vector. In this text, if X and Y

are both vectors, a phrase with Y and XT means that Y is a column vector
and XT is a row vector where T stands for transpose. Hence in the definition
below, first E(Y ) is a p×1 row vector, but in the definition of Cov(Y ) below,
E(Y ) and Y −E(Y ) are p× 1 column vectors and (Y −E(Y ))T is a 1× p
row vector.

Definition 2.22. The population mean or expected value of a random
1 × p random vector (Y1, ..., Yp) is

E(Y ) = (E(Y1), ..., E(Yp))

provided that E(Yi) exists for i = 1, ..., p. Otherwise the expected value does
not exist. Now let Y be a p × 1 column vector. The p × p population
covariance matrix

Cov(Y ) = E(Y − E(Y ))(Y − E(Y ))T = ((σi,j))

where the ij entry of Cov(Y ) is Cov(Yi, Yj) = σi,j provided that each σi,j
exists. Otherwise Cov(Y ) does not exist.

The covariance matrix is also called the variance–covariance matrix and
variance matrix. Sometimes the notation Var(Y ) is used. Note that Cov(Y )
is a symmetric positive semidefinite matrix. If X and Y are p× 1 random
vectors, a a conformable constant vector and A and B are conformable
constant matrices, then

E(a + X) = a + E(X) and E(X + Y ) = E(X) + E(Y ) (2.24)

and
E(AX) = AE(X) and E(AXB) = AE(X)B. (2.25)

Thus
Cov(a + AX) = Cov(AX) = ACov(X)AT . (2.26)

Definition 2.23. Let Y 1, ...,Y n be random vectors with joint pdf or pmf
f(y1, ...,yn). Let fY i

(yi) be the marginal pdf or pmf of Y i. Then Y 1, ...,Y n
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are independent random vectors if

f(y1, ...,yn) = fY 1
(y1) · · · fY n

(yn) =
n∏

i=1

fY i
(yi).

The following theorem is a useful generalization of Theorem 2.7.

Theorem 2.19. Let Y 1, ...,Y n be independent random vectors where
Y i is a 1× pi vector for i = 1, ..., n. and let hi : <pi → <pji be vector valued
functions and suppose that hi(yi) is a function of yi alone for i = 1, ..., n.
Then the random vectors X i = hi(Y i) are independent. There are three
important special cases.
i) If pji = 1 so that each hi is a real valued function, then the random
variables Xi = hi(Y i) are independent.
ii) If pi = pji = 1 so that each Yi and each Xi = h(Yi) are random variables,
then X1, ..., Xn are independent.
iii) Let Y = (Y1, ..., Yn) and X = (X1, .., Xm) and assume that Y X. If
h(Y ) is a vector valued function of Y alone and if g(X) is a vector valued
function of X alone, then h(Y ) and g(X) are independent random vectors.

Definition 2.24. The characteristic function (cf) of a random vector
Y is

φY (t) = E(eit
TY )

∀t ∈ <n where the complex number i =
√
−1.

Definition 2.25. The moment generating function (mgf) of a ran-
dom vector Y is

mY (t) = E(et
TY )

provided that the expectation exists for all t in some neighborhood of the
origin 0.

Theorem 2.20. If Y1, ..., Yn have mgf m(t), then moments of all orders
exist and

E(Y k1
i1

· · ·Y kj

ij
) =

∂k1+···+kj

∂tk1i1 · · · ∂t
kj

ij

m(t)

∣
∣
∣
∣
t=0

.

In particular,

E(Yi) =
∂m(t)

∂ti

∣
∣
∣
∣
t=0
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and

E(YiYj) =
∂2m(t)

∂ti∂tj

∣
∣
∣
∣
t=0

.

Theorem 2.21. If Y1, ..., Yn have a cf φY (t) and mgf mY (t) then the
marginal cf and mgf for Yi1 , ..., Yik are found from the joint cf and mgf by
replacing tij by 0 for j = k + 1, ..., n. In particular, if Y = (Y 1,Y 2) and
t = (t1, t2), then

φY 1
(t1) = φY (t1, 0) and mY 1

(t1) = mY (t1, 0).

Proof. Use the definition of the cf and mgf. For example, if Y 1 =
(Y1, ..., Yk) and s = t1, then m(t1, 0) =

E[exp(t1Y1 + · · · + tkYk + 0Yk+1 + · · · + 0Yn)] = E[exp(t1Y1 + · · · + tkYk)] =

E[exp(sTY 1)] = mY 1
(s), which is the mgf of Y 1. QED

Theorem 2.22. Partition the 1 × n vectors Y and t as Y = (Y 1,Y 2)
and t = (t1, t2). Then the random vectors Y 1 and Y 2 are independent iff
their joint cf factors into the product of their marginal cfs:

φY (t) = φY 1
(t1)φY 2

(t2) ∀t ∈ <n.

If the joint mgf exists, then the random vectors Y 1 and Y 2 are independent
iff their joint mgf factors into the product of their marginal mgfs:

mY (t) = mY 1
(t1)mY 2

(t2)

∀t in some neighborhood of 0.

2.8 The Multinomial Distribution

Definition 2.26. Assume that there are m iid trials with n outcomes. Let
Yi be the number of the m trials that resulted in the ith outcome and let ρi
be the probability of the ith outcome for i = 1, ..., n where 0 ≤ ρi ≤ 1. Thus
∑n

i=1 Yi = m and
∑n

i=1 ρi = 1. Then Y = (Y1, ..., Yn) has a multinomial
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Mn(m, ρ1, ..., ρn) distribution if the joint pmf of Y is
f(y1, ..., yn) = P (Y1 = y1, ..., Yn = yn)

=
m!

y1! · · · yn!
ρy11 ρ

y2
2 · · · ρyn

n = m!

n∏

i=1

ρyi

i

yi!
. (2.27)

The support of Y is Y = {y :
∑n

i=1 yi = m and 0 ≤ yi ≤ m for i = 1, ..., n}.

The multinomial theorem states that

(x1 + · · · + xn)
m =

∑

y∈Y

m!

y1! · · · yn!
xy11 x

y2
2 · · ·xyn

n . (2.28)

Taking xi = ρi shows that (2.27) is a pmf.

Since Yn and ρn are known if Y1, ..., Yn−1 and ρ1, ..., ρn−1 are known, it is
convenient to act as if n − 1 of the outcomes Y1, ..., Yn−1 are important and
the nth outcome means that none of the n−1 important outcomes occurred.
With this reasoning, suppose that {i1, ..., ik−1} ⊂ {1, ..., n}. Let Wj = Yij ,
and let Wk count the number of times that none of Yi1 , ..., Yik−1

occurred.

Then Wk = m −∑k−1
j=1 Yij and P (Wk) = 1 −∑k−1

j=1 ρij . Here Wk represents
the unimportant outcomes and the joint distribution of W1, ...,Wk−1,Wk is
multinomial Mk(m, ρi1, ..., ρik−1

, 1 −
∑k−1

j=1 ρij ).

Notice that
∑k

j=1 Yij counts the number of times that the outcome “one

of the outcomes i1, ..., ik occurred,” an outcome with probability
∑k

j=1 ρij .

Hence
∑k

j=1 Yij ∼ BIN(m,
∑k

j=1 ρij).
Now consider conditional distributions. If it is known that Yij = yij for

j = k + 1, ..., n, then there are m −∑n
j=k+1 yij outcomes left to distribute

among Yi1 , ..., Yik. The conditional probabilities of Yi remains proportional to
ρi, but the conditional probabilities must sum to one. Hence the conditional
distribution is again multinomial. These results prove the following theorem.

Theorem 2.23. Assume that (Y1, ..., Yn) has an Mn(m, ρ1, ..., ρn) distri-
bution and that {i1, ..., ik} ⊂ {1, ..., n} with k < n and 1 ≤ i1 < i2 < · · · <
ik ≤ n.

a) (Yi1 , ..., Yik−1
, m −

∑k−1
j=1 Yij) has an Mk(m, ρi1, ..., ρik−1

, 1 −
∑k−1

j=1 ρij )
distribution.
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b)
∑k

j=1 Yij ∼ BIN(m,
∑k

j=1 ρij). In particular, Yi ∼ BIN(m, ρi).

c) Suppose that 0 ≤ yij < m for j = k+1, ..., n and that 0 ≤∑n
j=k+1 yij <

m. Let t = m−∑n
j=k+1 yij and let πij = ρij/

∑k
j=1 ρij for j = 1, ..., k. Then

the conditional distribution of Yi1 , ..., Yik|Yik+1
= yik+1

, ..., Yin = yin is the
Mk(t, πi1, ..., πik) distribution. The support of this conditional distribution is

{(yi1, ..., yik) :
∑k

j=1 yij = t, and 0 ≤ yij ≤ t for j = 1, ..., k}.

Theorem 2.24. Assume that (Y1, ..., Yn) has an Mn(m, ρ1, ..., ρn) distri-
bution. Then the mgf is

m(t) = (ρ1e
t1 + · · · + ρne

tn)m, (2.29)

E(Yi) = mρi, VAR(Yi) = mρi(1 − ρi) and Cov(Yi, Yj) = −mρiρj for i 6= j.

Proof. E(Yi) and V (Yi) follow from Theorem 2.23b, and m(t) =

E[exp(t1Y1 + · · · + tnYn)] =
∑

Y
exp(t1y1 + · · · + tnyn)

m!

y1! · · · yn!
ρy11 ρ

y2
2 · · · ρyn

n

=
∑

Y

m!

y1! · · · yn!
(ρ1e

t1)y1 · · · (ρnetn)yn = (ρ1e
t1 + · · · + ρne

tn)m

by the multinomial theorem (2.28). By Theorem 2.20,

E(YiYj) =
∂2

∂ti∂tj
(ρ1e

t1 + · · · + ρne
tn)m

∣
∣
∣
∣
t=0

=

∂

∂tj
m(ρ1e

t1 + · · · + ρne
tn)m−1ρie

ti

∣
∣
∣
∣
t=0

=

m(m− 1)(ρ1e
t1 + · · · + ρne

tn)m−2ρie
tiρje

tj

∣
∣
∣
∣
t=0

= m(m− 1)ρiρj .

Hence Cov(Yi, Yj) = E(YiYj) − E(Yi)E(Yj) = m(m − 1)ρiρj − mρimρj =
−mρiρj. QED

2.9 The Multivariate Normal Distribution

Definition 2.27: Rao (1965, p. 437). A p × 1 random vector X has
a p−dimensional multivariate normal distribution Np(µ,Σ) iff tTX has a
univariate normal distribution for any p× 1 vector t.
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If Σ is positive definite, then X has a joint pdf

f(z) =
1

(2π)p/2|Σ|1/2e
−(1/2)(z−µ)TΣ−1

(z−µ) (2.30)

where |Σ|1/2 is the square root of the determinant of Σ. Note that if p = 1,
then the quadratic form in the exponent is (z − µ)(σ2)−1(z − µ) and X has
the univariate N(µ, σ2) pdf. If Σ is positive semidefinite but not positive
definite, then X has a degenerate distribution. For example, the univariate
N(0, 02) distribution is degenerate (the point mass at 0).

Some important properties of MVN distributions are given in the follow-
ing three propositions. These propositions can be proved using results from
Johnson and Wichern (1988, p. 127-132).

Proposition 2.25. a) If X ∼ Np(µ,Σ), then E(X) = µ and

Cov(X) = Σ.

b) If X ∼ Np(µ,Σ), then any linear combination tTX = t1X1 + · · · +
tpXp ∼ N1(t

Tµ, tTΣt). Conversely, if tTX ∼ N1(t
Tµ, tTΣt) for every p× 1

vector t, then X ∼ Np(µ,Σ).

c) The joint distribution of independent normal random vari-
ables is MVN. If X1, ..., Xp are independent univariate normal N(µi, σ

2
i )

random vectors, then X = (X1, ..., Xp)
T is Np(µ,Σ) where µ = (µ1, ..., µp)

and Σ = diag(σ2
1, ..., σ

2
p) (so the off diagonal entries σi,j = 0 while the diag-

onal entries of Σ are σi,i = σ2
i .)

d) If X ∼ Np(µ,Σ) and if A is a q×pmatrix, then AX ∼ Nq(Aµ,AΣAT ).
If a is a p× 1 vector of constants, then a + X ∼ Np(a + µ,Σ).

It will be useful to partition X, µ, and Σ. Let X1 and µ1 be q × 1
vectors, let X2 and µ2 be (p− q)× 1 vectors, let Σ11 be a q × q matrix, let
Σ12 be a q × (p− q) matrix, let Σ21 be a (p− q)× q matrix, and let Σ22 be
a (p− q)× (p− q) matrix. Then

X =

(
X1

X2

)

, µ =

(
µ1

µ2

)

, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)

.

Proposition 2.26. a) All subsets of a MVN are MVN: (Xk1 , ..., Xkq)
T

∼ Nq(µ̃, Σ̃) where µ̃i = E(Xki) and Σ̃ij = Cov(Xki , Xkj ). In particular,
X1 ∼ Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22).
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b) If X1 and X2 are independent, then Cov(X1,X2) = Σ12 =
E[(X1 − E(X1))(X2 −E(X2))

T ] = 0, a q × (p− q) matrix of zeroes.

c) If X ∼ Np(µ,Σ), then X1 and X2 are independent iff Σ12 = 0.

d) If X1 ∼ Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22) are independent, then

(
X1

X2

)

∼ Np

( (
µ1

µ2

)

,

(
Σ11 0
0 Σ22

) )

.

Proposition 2.27. The conditional distribution of a MVN is
MVN. If X ∼ Np(µ,Σ), then the conditional distribution of X1 given
that X2 = x2 is multivariate normal with mean µ1 + Σ12Σ

−1
22 (x2 −µ2) and

covariance Σ11 −Σ12Σ
−1
22 Σ21. That is,

X1|X2 = x2 ∼ Nq(µ1 + Σ12Σ
−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).

Example 2.23. Let p = 2 and let (Y,X)T have a bivariate normal
distribution. That is,

(
Y
X

)

∼ N2

( (
µY
µX

)

,

(
σ2
Y Cov(Y,X)

Cov(X, Y ) σ2
X

) )

.

Also recall that the population correlation between X and Y is given by

ρ(X, Y ) =
Cov(X, Y )

√

VAR(X)
√

VAR(Y )
=

σX,Y
σXσY

if σX > 0 and σY > 0. Then Y |X = x ∼ N(E(Y |X = x),VAR(Y |X = x))
where the conditional mean

E(Y |X = x) = µY + Cov(Y,X)
1

σ2
X

(x− µX) = µY + ρ(X, Y )

√

σ2
Y

σ2
X

(x− µX)

and the conditional variance

VAR(Y |X = x) = σ2
Y −Cov(X, Y )

1

σ2
X

Cov(X, Y )

= σ2
Y − ρ(X, Y )

√

σ2
Y

σ2
X

ρ(X, Y )
√

σ2
X

√

σ2
Y
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= σ2
Y − ρ2(X, Y )σ2

Y = σ2
Y [1 − ρ2(X, Y )].

Also aX + bY is univariate normal with mean aµX + bµY and variance

a2σ2
X + b2σ2

Y + 2ab Cov(X, Y ).

Remark 2.1. There are several common misconceptions. First, it is not
true that every linear combination tTX of normal random variables
is a normal random variable, and it is not true that all uncorre-
lated normal random variables are independent. The key condition in
Proposition 2.25b and Proposition 2.26c is that the joint distribution of X is
MVN. It is possible that X1, X2, ..., Xp each has a marginal distribution that
is univariate normal, but the joint distribution of X is not MVN. Examine
the following example from Rohatgi (1976, p. 229). Suppose that the joint
pdf of X and Y is a mixture of two bivariate normal distributions both with
EX = EY = 0 and VAR(X) = VAR(Y ) = 1, but Cov(X, Y ) = ±ρ. Hence
f(x, y) =

1

2

1

2π
√

1 − ρ2
exp(

−1

2(1 − ρ2)
(x2 − 2ρxy + y2)) +

1

2

1

2π
√

1 − ρ2
exp(

−1

2(1 − ρ2)
(x2 + 2ρxy + y2)) ≡ 1

2
f1(x, y) +

1

2
f2(x, y)

where x and y are real and 0 < ρ < 1. Since both marginal distributions of
fi(x, y) are N(0,1) for i = 1 and 2 by Proposition 2.26 a), the marginal dis-
tributions of X and Y are N(0,1). Since

∫ ∫
xyfi(x, y)dxdy = ρ for i = 1 and

−ρ for i = 2, X and Y are uncorrelated, but X and Y are not independent
since f(x, y) 6= fX(x)fY (y).

Remark 2.2. In Proposition 2.27, suppose that X = (Y,X2, ..., Xp)
T .

Let X1 = Y and X2 = (X2, ..., Xp)
T . Then E[Y |X2] = β1+β2X2+· · ·+βpXp

and VAR[Y |X2] is a constant that does not depend on X2. Hence Y =
β1 + β2X2 + · · · + βpXp + e follows the multiple linear regression model.

2.10 Elliptically Contoured Distributions

Definition 2.28: Johnson (1987, p. 107-108). A p × 1 random vector
has an elliptically contoured distribution, also called an elliptically symmetric
distribution, if X has joint pdf

f(z) = kp|Σ|−1/2g[(z − µ)TΣ−1(z − µ)], (2.31)
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and we say X has an elliptically contoured ECp(µ,Σ, g) distribution.

If X has an elliptically contoured (EC) distribution, then the character-
istic function of X is

φX (t) = exp(itTµ)ψ(tTΣt) (2.32)

for some function ψ. If the second moments exist, then

E(X) = µ (2.33)

and
Cov(X) = cXΣ (2.34)

where
cX = −2ψ′(0).

Definition 2.29. The population squared Mahalanobis distance

U ≡ D2 = D2(µ,Σ) = (X − µ)TΣ−1(X − µ) (2.35)

has density

h(u) =
πp/2

Γ(p/2)
kpu

p/2−1g(u). (2.36)

For c > 0, an ECp(µ, cI, g) distribution is spherical about µ where I is
the p×p identity matrix. The multivariate normal distribution Np(µ,Σ) has
kp = (2π)−p/2, ψ(u) = g(u) = exp(−u/2), and h(u) is the χ2

p density.

The following lemma is useful for proving properties of EC distributions
without using the characteristic function (2.32). See Eaton (1986) and Cook
(1998, p. 57, 130).

Lemma 2.28. Let X be a p × 1 random vector with 1st moments; ie,
E(X) exists. Let B be any constant full rank p× r matrix where 1 ≤ r ≤ p.
Then X is elliptically contoured iff for all such conforming matrices B,

E(X|BT X) = µ + MBBT (X − µ) = aB + MBBTX (2.37)

where the p× 1 constant vector aB and the p× r constant matrix MB both
depend on B.
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To use this lemma to prove interesting properties, partition X, µ, and
Σ. Let X1 and µ1 be q×1 vectors, let X2 and µ2 be (p− q)×1 vectors. Let
Σ11 be a q× q matrix, let Σ12 be a q× (p− q) matrix, let Σ21 be a (p− q)× q
matrix, and let Σ22 be a (p− q)× (p− q) matrix. Then

X =

(
X1

X2

)

, µ =

(
µ1

µ2

)

, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)

.

Also assume that the (p+1)× 1 vector (Y,XT )T is ECp+1(µ,Σ, g) where Y
is a random variable, X is a p× 1 vector, and use

(
Y
X

)

, µ =

(
µY
µX

)

, and Σ =

(
ΣY Y ΣY X

ΣXY ΣXX

)

.

Another useful fact is that aB and MB do not depend on g:

aB = µ −MBBTµ = (Ip − MBBT )µ,

and
MB = ΣB(BTΣB)−1.

Notice that in the formula for MB, Σ can be replaced by cΣ where c > 0 is a
constant. In particular, if the EC distribution has second moments, Cov(X)
can be used instead of Σ.

Proposition 2.29. Let X ∼ ECp(µ,Σ, g) and assume that E(X) exists.

a) Any subset of X is EC, in particular X1 is EC.

b) (Cook 1998 p. 131, Kelker 1970). If Cov(X) is nonsingular,

Cov(X|BTX) = dg(B
TX)[Σ− ΣB(BTΣB)−1BTΣ]

where the real valued function dg(B
TX) is constant iff X is MVN.

Proof of a). Let A be an arbitrary full rank q×r matrix where 1 ≤ r ≤ q.
Let

B =

(
A

0

)

.

Then BTX = ATX1, and

E[X|BTX] = E[

(
X1

X2

)

|ATX1] =
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(
µ1

µ2

)

+

(
M 1B

M 2B

)
(

AT 0T
)
(

X1 − µ1

X2 − µ2

)

by Lemma 2.28. HenceE[X1|ATX1] = µ1+M 1BAT (X1−µ1). Since A was
arbitrary, X1 is EC by Lemma 2.28. Notice that MB = ΣB(BTΣB)−1 =

(
Σ11 Σ12

Σ21 Σ22

) (
A

0

)

[
(

AT 0T
)
(

Σ11 Σ12

Σ21 Σ22

)(
A

0

)

]−1

=

(
M 1B

M 2B

)

.

Hence
M 1B = Σ11A(ATΣ11A)−1

and X1 is EC with location and dispersion parameters µ1 and Σ11. QED

Proposition 2.30. Let (Y,XT )T be ECp+1(µ,Σ, g) where Y is a random
variable.

a) Assume that E[(Y,XT )T ] exists. Then E(Y |X) = α + βTX where
α = µY − βTµX and

β = Σ−1
XXΣXY .

b) Even if the first moment does not exist, the conditional median

MED(Y |X) = α + βTX

where α and β are given in a).

Proof. a) The trick is to choose B so that Lemma 2.28 applies. Let

B =

(
0T

Ip

)

.

Then BTΣB = ΣXX and

ΣB =

(
ΣY X

ΣXX

)

.

Now

E[

(
Y
X

)

| X] = E[

(
Y
X

)

| BT

(
Y
X

)

]
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= µ + ΣB(BTΣB)−1BT

(
Y − µY
X − µX

)

by Lemma 2.28. The right hand side of the last equation is equal to

µ +

(
ΣY X

ΣXX

)

Σ−1
XX(X − µX) =

(
µY − ΣY XΣ−1

XXµX + ΣY XΣ−1
XXX

X

)

and the result follows since

βT = ΣY XΣ−1
XX .

b) See Croux, Dehon, Rousseeuw and Van Aelst (2001) for references.

Example 2.24. This example illustrates another application of Lemma
2.28. Suppose that X comes from a mixture of two multivariate normals
with the same mean and proportional covariance matrices. That is, let

X ∼ (1 − γ)Np(µ,Σ) + γNp(µ, cΣ)

where c > 0 and 0 < γ < 1. Since the multivariate normal distribution is
elliptically contoured (and see Proposition 1.14c),

E(X|BTX) = (1 − γ)[µ + M1B
T (X − µ)] + γ[µ + M2B

T (X − µ)]

= µ + [(1 − γ)M 1 + γM 2]B
T (X − µ) ≡ µ + MBT (X − µ).

Since MB only depends on B and Σ, it follows that M 1 = M 2 = M = MB.
Hence X has an elliptically contoured distribution by Lemma 2.28.

2.11 Complements

Panjer (1969) provides generalizations of Steiner’s formula.
Johnson and Wichern (1988), Mardia, Kent and Bibby (1979) and Press

(2005) are good references for multivariate statistical analysis based on the
multivariate normal distribution. The elliptically contoured distributions
generalize the multivariate normal distribution and are discussed (in increas-
ing order of difficulty) in Johnson (1987), Fang, Kotz, and Ng (1990), Fang
and Anderson (1990), and Gupta and Varga (1993). Fang, Kotz, and Ng
(1990) sketch the history of elliptically contoured distributions while Gupta
and Varga (1993) discuss matrix valued elliptically contoured distributions.
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Cambanis, Huang, and Simons (1981), Chmielewski (1981) and Eaton (1986)
are also important references. Also see Muirhead (1982, p. 30–42).

Broffitt (1986), Kowalski (1973), Melnick and Tenebien (1982) and Seber
and Lee (2003, p. 23) give examples of dependent marginally normal random
variables that have 0 correlation. The example in Remark 2.1 appears in
Rohatgi (1976, p. 229) and Lancaster (1959).

2.12 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

Refer to Chapter 10 for the pdf or pmf of the distributions in
the problems below.

Theorem 2.16 is useful for Problems 2.1–2.7.

2.1∗. Let X1, ..., Xn be independent Poisson(λi). Let W =
∑n

i=1Xi. Find
the mgf of W and find the distribution of W.

2.2∗. Let X1, ..., Xn be iid Bernoulli(ρ). Let W =
∑n

i=1 Xi. Find the mgf
of W and find the distribution of W.

2.3∗. Let X1, ..., Xn be iid exponential (λ). Let W =
∑n

i=1 Xi. Find the
mgf of W and find the distribution of W.

2.4∗. Let X1, ..., Xn be independent N(µi, σ
2
i ). Let W =

∑n
i=1(ai +

biXi) where ai and bi are fixed constants. Find the mgf of W and find the
distribution of W.

2.5∗. Let X1, ..., Xn be iid negative binomial (1, ρ). Let W =
∑n

i=1 Xi.
Find the mgf of W and find the distribution of W.

2.6∗. Let X1, ..., Xn be independent gamma (νi, λ). Let W =
∑n

i=1 Xi.
Find the mgf of W and find the distribution of W.

2.7∗. Let X1, ..., Xn be independent χ2
pi

. Let W =
∑n

i=1Xi. Find the
mgf of W and find the distribution of W.

2.8. a) Let fY (y) be the pdf of Y. If W = µ + Y where −∞ < µ < ∞,
show that the pdf of W is fW (w) = fY (w − µ) .
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b) Let fY (y) be the pdf of Y. If W = σY where σ > 0, show that the pdf
of W is fW (w) = (1/σ)fY (w/σ).

c) Let fY (y) be the pdf of Y. If W = µ + σY where −∞ < µ < ∞ and
σ > 0, show that the pdf of W is fW (w) = (1/σ)fY ((w − µ)/σ).

2.9. a) If Y is lognormal LN(µ, σ2), show that W = log(Y ) is a normal
N(µ, σ2) random variable.

b) If Y is a normal N(µ, σ2) random variable, show that W = eY is a
lognormal LN(µ, σ2) random variable.

2.10. a) If Y is uniform (0,1), Show that W = − log(Y ) is
exponential (1).

b) If Y is exponential (1), show that W = exp(−Y ) is uniform (0,1).

2.11. If Y ∼ N(µ, σ2), find the pdf of

W =

(
Y − µ

σ

)2

.

2.12. If Y has a half normal distribution, Y ∼ HN(µ, σ2), show that
W = (Y − µ)2 ∼ G(1/2, 2σ2).

2.13. a) Suppose that Y has a Weibull (φ, λ) distribution with pdf

f(y) =
φ

λ
yφ−1e−

yφ

λ

where λ, y, and φ are all positive. Show that W = log(Y ) has a smallest
extreme value SEV(θ = log(λ1/φ), σ = 1/φ) distribution.

b) If Y has a SEV(θ = log(λ1/φ), σ = 1/φ) distribution, show that W =
eY has a Weibull (φ, λ) distribution.

2.14. a) Suppose that Y has a Pareto(σ, λ) distribution with pdf

f(y) =
1
λ
σ1/λ

y1+1/λ

where y ≥ σ, σ > 0, and λ > 0. Show that W = log(Y ) ∼ EXP (θ =
log(σ), λ).

b) If Y as an EXP (θ = log(σ), λ) distribution, show that W = eY has a
Pareto(σ, λ) distribution.
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2.15. a) If Y is chi χp, then the pdf of Y is

f(y) =
yp−1e−y

2/2

2
p
2
−1Γ(p/2)

where y ≥ 0 and p is a positive integer. Show that the pdf of W = Y 2 is the
χ2
p pdf.

b) If Y is a chi–square χ2
p random variable, show that W =

√
Y is a chi

χp random variable.

2.16. a) If Y is power POW (λ), then the pdf of Y is

f(y) =
1

λ
y

1
λ
−1,

where λ > 0 and 0 ≤ y ≤ 1. Show that W = − log(Y ) is an exponential (λ)
random variable.

b) If Y is an exponential(λ) random variable, show that W = e−Y is a
power POW (λ) random variable.

2.17. a) If Y is truncated extreme value TEV (λ) then the pdf of Y is

f(y) =
1

λ
exp(y − ey − 1

λ
)

where y > 0, and λ > 0. Show that W = eY −1 is an exponential (λ) random
variable.

b) If Y is an exponential(λ) random variable, show that W = log(Y + 1)
is a truncated extreme value TEV (λ) random variable.

2.18. a) If Y is BURR(φ, λ), show thatW = log(1+Y φ) is an exponential(λ)
random variable.

b) If Y is an exponential(λ) random variable, show that W = (eY − 1)1/φ

is a Burr(φ, λ) random variable.

2.19. a) If Y is Pareto PAR(σ, λ), show that W = log(Y/σ) is an
exponential(λ) random variable.

b) If Y is an exponential(λ) random variable, show that W = σeY is a
Pareto PAR(σ, λ) random variable.

2.20. a) If Y is Weibull W (φ, λ), show that W = Y φ is an exponential
(λ) random variable.



CHAPTER 2. MULTIVARIATE DISTRIBUTIONS 78

b) If Y is an exponential(λ) random variable, show that W = Y 1/φ is a
Weibull W (φ, λ) random variable.

2.21. If Y is double exponential (θ, λ), show thatW = |Y −θ| ∼ EXP(λ).

2.22. If Y has a generalized gamma distribution, Y ∼ GG(ν, λ, φ), show
that W = Y φ ∼ G(ν, λφ).

2.23. If Y has an inverted gamma distribution, Y ∼ INV G(ν, λ), show
that W = 1/Y ∼ G(ν, λ).

2.24. a) If Y has a largest extreme value distribution Y ∼ LEV (θ, σ),
show that W = exp(−(Y − θ)/σ) ∼ EXP(1).

b) If Y ∼ EXP (1), show that W = θ − σ log(Y ) ∼ LEV (θ, σ).

2.25. a) If Y has a log–Cauchy distribution , Y ∼ LC(µ, σ), show that
W = log(Y ) has a Cauchy(µ, σ) distribution.

b) If Y ∼ C(µ, σ) show that W = eY ∼ LC(µ, σ).

2.26. a) If Y has a log–logistic distribution, Y ∼ LL(φ, τ ), show that
W = log(Y ) has a logistic(µ = − log(φ), σ = 1/τ ) distribution.

b) If Y ∼ L(µ = − log(φ), σ = 1/τ ), show that W = eY ∼ LL(φ, τ ).

2.27. If Y has a Maxwell–Boltzmann distribution, Y ∼MB(µ, σ), show
that W = (Y − µ)2 ∼ G(3/2, 2σ2).

2.28. If Y has a one sided stable distribution, Y ∼ OSS(σ), show that
W = 1/Y ∼ G(1/2, 2/σ).

2.29. a) If Y has a Rayleigh distribution, Y ∼ R(µ, σ), show that W =
(Y − µ)2 ∼ EXP(2σ2).

b) If Y ∼ EXP(2σ2), show that W =
√
Y + µ ∼ R(µ, σ).

2.30. If Y has a smallest extreme value distribution, Y ∼ SEV (θ, σ),
show that W = −Y has an LEV(−θ, σ) distribution.

2.31. Let Y ∼ C(0, 1). Show that the Cauchy distribution is a location–
scale family by showing that W = µ + σY ∼ C(µ, σ) where µ is real and
σ > 0.

2.32. Let Y have a chi distribution, Y ∼ chi(p, 1) where p is known.
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Show that the chi(p, σ) distribution is a scale family for p known by showing
that W = σY ∼ chi(p, σ) for σ > 0.

2.33. Let Y ∼ DE(0, 1). Show that the double exponential distribution
is a location–scale family by showing that W = θ + λY ∼ DE(θ, λ) where θ
is real and λ > 0.

2.34. Let Y ∼ EXP(1). Show that the exponential distribution is a scale
family by showing that W = λY ∼ EXP(λ) for λ > 0.

2.35. Let Y ∼ EXP (0, 1). Show that the two parameter exponen-
tial distribution is a location–scale family by showing that W = θ + λY ∼
EXP (θ, λ) where θ is real and λ > 0.

2.36. Let Y ∼ LEV (0, 1). Show that the largest extreme value distri-
bution is a location–scale family by showing that W = θ+ σY ∼ LEV (θ, σ)
where θ is real and σ > 0.

2.37. Let Y ∼ G(ν, 1) where ν is known. Show that the gamma (ν, λ)
distribution is a scale family for ν known by showing that W = λY ∼ G(ν, λ)
for λ > 0.

2.38. Let Y ∼ HC(0, 1). Show that the half Cauchy distribution is a
location–scale family by showing that W = µ + σY ∼ HC(µ, σ) where µ is
real and σ > 0.

2.39. Let Y ∼ HL(0, 1). Show that the half logistic distribution is a
location–scale family by showing that W = µ + σY ∼ HL(µ, σ) where µ is
real and σ > 0.

2.40. Let Y ∼ HN(0, 1). Show that the half normal distribution is a
location–scale family by showing that W = µ+ σY ∼ HN(µ, σ2) where µ is
real and σ > 0.

2.41. Let Y ∼ L(0, 1). Show that the logistic distribution is a location–
scale family by showing that W = µ + σY ∼ L(µ, σ) where µ is real and
σ > 0.

2.42. Let Y ∼ MB(0, 1). Show that the Maxwell–Boltzmann distribu-
tion is a location–scale family by showing that W = µ + σY ∼ MB(µ, σ)
where µ is real and σ > 0.
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2.43. Let Y ∼ N(0, 1). Show that the normal distribution is a location–
scale family by showing that W = µ + σY ∼ N(µ, σ) where µ is real and
σ > 0.

2.44. Let Y ∼ OSS(1). Show that the one sided stable distribution is a
scale family by showing that W = σY ∼ OSS(σ) for σ > 0.

2.45. Let Y ∼ PAR(1, λ) where λ is known. Show that the Pareto
(σ, λ) distribution is a scale family for λ known by showing that W = σY ∼
PAR(σ, λ) for σ > 0.

2.46. Let Y ∼ R(0, 1). Show that the Rayleigh distribution is a location–
scale family by showing that W = µ + σY ∼ R(µ, σ) where µ is real and
σ > 0.

2.47. Let Y ∼ U(0, 1). Show that the uniform distribution is a location–
scale family by showing that W = µ + σY ∼ U(θ1, θ2) where µ = θ1 is real
and σ = θ2 − θ1 > 0.

2.48. Examine the proof of Theorem 2.2b for a joint pdf and prove the
result for a joint pmf by replacing the integrals by appropriate sums.

2.49. Examine the proof of Theorem 2.3 for a joint pdf and prove the
result for a joint pmf by replacing the integrals by appropriate sums.

2.50. Examine the proof of Theorem 2.4 for a joint pdf and prove the
result for a joint pmf by replacing the integrals by appropriate sums.

2.51. Examine the proof of Theorem 2.5 for a joint pdf and prove the
result for a joint pmf by replacing the integrals by appropriate sums.

2.52. If Y ∼ hburr(φ, λ), then the pdf of Y is

f(y) =
2

λ
√

2π

φyφ−1

(1 + yφ)
exp

(−[log(1 + yφ)]2

2λ2

)

I(y > 0)

where φ and λ are positive.

a) Show that W = log(1 + Y φ) ∼ HN(0, λ), the half normal distribution
with parameters 0 and λ.

b) If W ∼ HN(0, λ), then show Y = [eW − 1]1/φ ∼ hburr(φ, λ).
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2.53. If Y ∼ hlev(θ, λ), then the pdf of Y is

f(y) =
2

λ
√

2π
exp(

−(y − θ)

λ
) exp

[

−1

2
[exp(

−(y − θ)

λ
)]2
]

where y and θ are real and λ > 0.

a) Show that W = exp(−(Y − θ)/λ) ∼ HN(0, 1), the half normal distri-
bution with parameters 0 and 1.

b) If W ∼ HN(0, 1), then show Y = −λ log(W ) + θ ∼ hlev(θ, λ).

2.54. If Y ∼ hpar(θ, λ), then the pdf of Y is

f(y) =
2

λ
√

2π

1

y
I [y ≥ θ] exp

[−(log(y)− log(θ))2

2λ2

]

where θ > 0 and λ > 0.
a) Show thatW = log(Y ) ∼ HN(µ = log(θ), σ = λ). (See the half normal

distribution in Chapter 10.)

b) If W ∼ HN(µ, σ), then show Y = eW ∼ hpar(θ = eµ, λ = σ).

2.55. If Y ∼ hpow(λ), then the pdf of Y is

f(y) =
2

λ
√

2π

1

y
I[0,1](y) exp

[−(log(y))2

2λ2

]

where λ > 0.
a) Show that W = − log(Y ) ∼ HN(0, σ = λ), the half normal distribu-

tion with parameters 0 and λ.

b) If W ∼ HN(0, σ), then show Y = e−W ∼ hpow(λ = σ).

2.56. If Y ∼ hray(θ, λ), then the pdf of Y is

f(y) =
4

λ
√

2π
(y − θ)I [y ≥ θ] exp

[−(y − θ)4

2λ2

]

where λ > 0 and θ is real.

a) Show that W = (Y −θ)2 ∼ HN(0, σ = λ), the half normal distribution
with parameters 0 and λ.

b) If W ∼ HN(0, σ), then show Y =
√
W + θ ∼ hray(θ, λ = σ).
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2.57. If Y ∼ hsev(θ, λ), then the pdf of Y is

f(y) =
2

λ
√

2π
exp(

y − θ

λ
) exp

(

−1

2

[

exp(
y − θ

λ
)

]2
)

where y and θ are real and λ > 0.

a) Show that W = exp[(y − θ)/λ] ∼ HN(0, 1).

b) If W ∼ HN(0, 1), then show Y = λ log(W ) + θ ∼ hsev(θ, λ).

2.58. If Y ∼ htev(λ), then the pdf of Y is

f(y) =
2

λ
√

2π
exp

(

y − (ey − 1)2

2λ2

)

=
2

λ
√

2π
ey exp

(−(ey − 1)2

2λ2

)

where y > 0 and λ > 0.

a) Show that W = eY − 1 ∼ HN(0, σ = λ), the half normal distribution
with parameters 0 and λ.

b) If W ∼ HN(0, σ), then show Y = log(W + 1) ∼ htev(λ = σ).

2.59. If Y ∼ hweib(φ, λ), then the pdf of Y is

f(y) =
2

λ
√

2π
φ yφ−1 I [y > 0] exp

(−y2φ

2λ2

)

where λ and φ are positive.

a) Show that W = Y φ ∼ HN(0, σ = λ), the half normal distribution
with parameters 0 and λ.

b) If W ∼ HN(0, σ), then show Y = W 1/φ ∼ hweib(φ, λ = σ).
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Problems from old quizzes and exams.

2.60. If Y is a random variable with pdf

f(y) = λyλ−1 for 0 < y < 1

where λ > 0, show that W = − log(Y ) is an exponential(1/λ) random vari-
able.

2.61. If Y is an exponential(1/λ) random variable, show that W = e−Y

has pdf
fW (w) = λwλ−1 for 0 < w < 1.

2.62. If Y ∼ EXP (λ), find the pdf of W = 2λY.

2.63∗. (Mukhopadhyay 2000, p. 113): Suppose that X|Y ∼ N(β0 +
β1Y, Y

2), and that Y ∼ N(3, 10). That is, the conditional distribution of X
given that Y = y is normal with mean β0 + β1y and variance y2 while the
(marginal) distribution of Y is normal with mean 3 and variance 10.

a) Find EX.

b) Find Var X.

2.64∗. Suppose that







X1

X2

X3

X4







∼ N4













49
100
17
7






,







3 1 −1 0
1 6 1 −1
−1 1 4 0
0 −1 0 2












.

a) Find the distribution of X2.

b) Find the distribution of (X1, X3)
T .

c) Which pairs of random variables Xi and Xj are independent?

d) Find the correlation ρ(X1, X3).
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2.65∗. Recall that if X ∼ Np(µ,Σ), then the conditional distribution of
X1 given that X2 = x2 is multivariate normal with mean
µ1 + Σ12Σ

−1
22 (x2 − µ2) and covariance matrix Σ11 − Σ12Σ

−1
22 Σ21.

Let σ12 = Cov(Y,X) and suppose Y and X follow a bivariate normal
distribution

(
Y
X

)

∼ N2

( (
49
100

)

,

(
16 σ12

σ12 25

) )

.

a) If σ12 = 0, find Y |X. Explain your reasoning.

b) If σ12 = 10 find E(Y |X).

c) If σ12 = 10, find Var(Y |X).

2.66. Let σ12 = Cov(Y,X) and suppose Y and X follow a bivariate
normal distribution

(
Y
X

)

∼ N2

( (
15
20

)

,

(
64 σ12

σ12 81

) )

.

a) If σ12 = 10 find E(Y |X).

b) If σ12 = 10, find Var(Y |X).

c) If σ12 = 10, find ρ(Y,X), the correlation between Y and X.

2.67∗. (Mukhopadhyay 2000, p. 197): Suppose that X1 and X2 have a
joint pdf given by

f(x1, x2) = 3(x1 + x2)I(0 < x1 < 1)I(0 < x2 < 1)I(0 < x1 + x2 < 1).

Consider the transformation Y1 = X1 + X2 and Y2 = X1 −X2.

a) Find the Jacobian J for the transformation.

b) Find the support Y of Y1 and Y2.

c) Find the joint density fY1,Y2(y1, y2).

d) Find the marginal pdf fY1(y1).

e) Find the marginal pdf fY2(y2).
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2.68∗. (Aug. 2000 QUAL): Suppose that the conditional distribution of
Y |Λ = λ is the Poisson(λ) distribution and that the random variable Λ has
an exponential(1) distribution.

a) Find E(Y).

b) Find Var(Y).

2.69. Let A and B be positive integers. A hypergeometric random
variable X = W1 + W2 + · · · + Wn where the random variables Wi are
identically distributed random variables with P (Wi = 1) = A/(A + B) and
P (Wi = 0) = B/(A + B). You may use the fact that E(W1) = A/(A + B)
and that E(X) = nA/(A +B).

a) Find Var(W1).

b) If i 6= j, then Cov(Wi,Wj) =
−AB

(A+B)2(A +B − 1)
. Find Var(X) using

the formula

V ar(
n∑

i=1

Wi) =
n∑

i=1

V ar(Wi) + 2
∑∑

i<j

Cov(Wi,Wj).

(Hint: the sum
∑∑

i<j has (n− 1)n/2 terms.)

2.70. Let X = W1 + W2 + · · · + Wn where the joint distribution of the
random variables Wi is an n-dimensional multivariate normal distribution
with E(Wi) = 1 and Var(Wi) = 100 for i = 1, ..., n.

a) Find E(X).

b) Suppose that if i 6= j, then Cov(Wi,Wj) = 10. Find Var(X) using the
formula

V ar(
n∑

i=1

Wi) =
n∑

i=1

V ar(Wi) + 2
∑∑

i<j

Cov(Wi,Wj).

(Hint: the sum
∑∑

i<j has (n− 1)n/2 terms.)
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2.71. Find the moment generating function for Y1 if the joint probability
mass function f(y1, y2) of Y1 and Y2 is tabled as shown.

y2

f(y1, y2) 0 1 2
0 0.38 0.14 0.24

y1

1 0.17 0.02 0.05

2.72. Suppose that the joint pdf of X and Y is f(x, y) =

1

2

1

2π
√

1 − ρ2
exp(

−1

2(1 − ρ2)
(x2 − 2ρxy + y2))

+
1

2

1

2π
√

1 − ρ2
exp(

−1

2(1 − ρ2)
(x2 + 2ρxy + y2))

where x and y are real and 0 < ρ < 1. It can be shown that the marginal
pdfs are

fX(x) =
1√
2π

exp(
−1

2
x2)

for x real and

fY (y) =
1√
2π

exp(
−1

2
y2)

for y real. Are X and Y independent? Explain briefly.

2.73∗. Suppose that the conditional distribution of Y |P = ρ is the
binomial(k, ρ) distribution and that the random variable P has a beta(δ =
4, ν = 6) distribution.

a) Find E(Y).

b) Find Var(Y).
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2.74∗. Suppose that the joint probability mass function f(y1, y2) of Y1

and Y2 is given in the following table.

y2

f(y1, y2) 0 1 2
0 0.38 0.14 0.24

y1

1 0.17 0.02 0.05

a) Find the marginal probability function fY2(y2) for Y2.

b) Find the conditional probability function f(y1|y2) of Y1 given Y2 = 2.

2.75∗. Find the pmf of Y = X2 + 4 where the pmf of X is given below.

_______________________________________________

X | -2 -1 0 1 2

probability | 0.1 0.2 0.4 0.2 0.1

-----------------------------------------------

2.76. Suppose that X1 and X2 are independent with X1 ∼ N(0, 1) and
X2 ∼ N(0, 4) so Var(X2) = 4. Consider the transformation Y1 = X1 + X2

and Y2 = X1 −X2.

a) Find the Jacobian J for the transformation.

b) Find the joint pdf f(y1, y2) of Y1 and Y2.

c) Are Y1 and Y2 independent? Explain briefly.
Hint: can you factor the joint pdf so that f(y1, y2) = g(y1)h(y2) for every
real y1 and y2?

2.77. (Aug. 2000 Qual): The number of defects per yard, Y of a certain
fabric is known to have a Poisson distribution with parameter λ. However,
λ is a random variable with pdf

f(λ) = eλI(λ > 0).

a) Find E(Y).

b) Find Var(Y).



Chapter 3

Exponential Families

3.1 Regular Exponential Families

The theory of exponential families will be used in the following chapters
to study some of the most important topics in statistical inference such as
minimal and complete sufficient statistics, maximum likelihood estimators
(MLEs), uniform minimum variance estimators (UMVUEs) and the Fréchet
Cramér Rao lower bound (FCRLB), uniformly most powerful (UMP) tests
and large sample theory.

Often a “brand name distribution” such as the normal distribution will
have three useful parameterizations: the usual parameterization with param-
eter space ΘU is simply the formula for the probability distribution or mass
function (pdf or pmf, respectively) given when the distribution is first de-
fined. The k-parameter exponential family parameterization with parameter
space Θ, given in Definition 3.1 below, provides a simple way to determine if
the distribution is an exponential family while the natural parameterization
with parameter space Ω, given in Definition 3.2 below, is used for theory that
requires a complete sufficient statistic.

Definition 3.1. A family of joint pdfs or joint pmfs {f(y|θ) : θ =
(θ1, ..., θj) ∈ Θ } for a random vector Y is an exponential family if

f(y|θ) = h(y)c(θ) exp

[
k∑

i=1

wi(θ)ti(y)

]

(3.1)

for y ∈ Y where c(θ) ≥ 0 and h(y) ≥ 0. The functions c, h, ti, and wi are real
valued functions. The parameter θ can be a scalar and y can be a scalar.

88
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It is crucial that c, w1, ..., wk do not depend on y and that h, t1, ..., tk do not
depend on θ. The support of the distribution is Y and the parameter space
is Θ. The family is a k-parameter exponential family if k is the smallest
integer where (3.1) holds.

Notice that the distribution of Y is an exponential family if

f(y|θ) = h(y)c(θ) exp

[
k∑

i=1

wi(θ)ti(y)

]

(3.2)

and the distribution is a one parameter exponential family if

f(y|θ) = h(y)c(θ) exp[w(θ)t(y)]. (3.3)

The parameterization is not unique since, for example, wi could be multiplied
by a nonzero constant a if ti is divided by a. Many other parameterizations
are possible. If h(y) = g(y)IY(y), then usually c(θ) and g(y) are positive, so
another parameterization is

f(y|θ) = exp

[
k∑

i=1

wi(θ)ti(y) + d(θ) + S(y)

]

IY(y) (3.4)

where S(y) = log(g(y)), d(θ) = log(c(θ)), and Y does not depend on θ.

To demonstrate that {f(y|θ) : θ ∈ Θ} is an exponential family, find
h(y), c(θ), wi(θ) and ti(y) such that (3.1), (3.2), (3.3) or (3.4) holds.

Theorem 3.1. Suppose that Y 1, ...,Y n are iid random vectors from
an exponential family. Then the joint distribution of Y 1, ...,Y n follows an
exponential family.

Proof. Suppose that fY i
(yi) has the form of (3.1). Then by indepen-

dence,

f(y1, ...,yn) =
n∏

i=1

fY i
(yi) =

n∏

i=1

h(yi)c(θ) exp

[
k∑

j=1

wj(θ)tj(yi)

]

= [
n∏

i=1

h(yi)][c(θ)]n
n∏

i=1

exp

[
k∑

j=1

wj(θ)tj(yi)

]
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= [
n∏

i=1

h(yi)][c(θ)]n exp

(
n∑

i=1

[
k∑

j=1

wj(θ)tj(yi)

])

= [
n∏

i=1

h(yi)][c(θ)]n exp

[
k∑

j=1

wj(θ)

(
n∑

i=1

tj(yi)

)]

.

To see that this has the form (3.1), take h∗(y1, ...,yn) =
∏n

i=1 h(yi), c
∗(θ) =

[c(θ)]n, w∗
j (θ) = wj(θ) and t∗j(y1, ...,yn) =

∑n
i=1 tj(yi). QED

The parameterization that uses the natural parameter η is especially
useful for theory. See Definition 3.3 for the natural parameter space Ω.

Definition 3.2. Let Ω be the natural parameter space for η. The natural
parameterization for an exponential family is

f(y|η) = h(y)b(η) exp

[
k∑

i=1

ηiti(y)

]

(3.5)

where h(y) and ti(y) are the same as in Equation (3.1) and η ∈ Ω. The
natural parameterization for a random variable Y is

f(y|η) = h(y)b(η) exp

[
k∑

i=1

ηiti(y)

]

(3.6)

where h(y) and ti(y) are the same as in Equation (3.2) and η ∈ Ω. Again,
the parameterization is not unique. If a 6= 0, then aηi and ti(y)/a would also
work.

Notice that the natural parameterization (3.6) has the same form as (3.2)
with θ∗ = η, c∗(θ∗) = b(η) and wi(θ

∗) = wi(η) = ηi. In applications often
η and Ω are of interest while b(η) is not computed.

The next important idea is that of a regular exponential family (and of
a full exponential family). Let di(x) denote ti(y), wi(θ) or ηi. A linearity
constraint is satisfied by d1(x), ..., dk(x) if

∑k
i=1 aidi(x) = c for some constants

ai and c and for all x in the sample or parameter space where not all of the
ai = 0. If

∑k
i=1 aidi(x) = c for all x only if a1 = · · · = ak = 0, then the di(x)

do not satisfy a linearity constraint. In linear algebra, we would say that the
di(x) are linearly independent if they do not satisfy a linearity constraint.
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Let Ω̃ be the set where the integral of the kernel function is finite:

Ω̃ = {η = (η1, ..., ηk) :
1

b(η)
≡
∫ ∞

−∞
h(y) exp[

k∑

i=1

ηiti(y)]dy <∞}. (3.7)

Replace the integral by a sum for a pmf. An interesting fact is that Ω̃ is a
convex set.

Definition 3.3. Condition E1: the natural parameter space Ω = Ω̃.
Condition E2: assume that in the natural parameterization, neither the ηi
nor the ti satisfy a linearity constraint.
Condition E3: Ω is a k-dimensional open set.
If conditions E1), E2) and E3) hold then the exponential family is a regular
exponential family (REF).
If conditions E1) and E2) hold then the exponential family is a full exponen-
tial family.

Notation. A kP–REF is a k parameter regular exponential family. So a
1P–REF is a 1 parameter REF and a 2P–REF is a 2 parameter REF.

Notice that every REF is full. Any k–dimensional open set will contain a
k–dimensional rectangle. A k–fold cross product of nonempty open intervals
is a k–dimensional open set. For a one parameter exponential family, a one
dimensional rectangle is just an interval, and the only type of function of
one variable that satisfies a linearity constraint is a constant function. In the
definition of an exponential family, θ is a j× 1 vector. Typically j = k if the
family is a kP–REF. If j < k and k is as small as possible, the family will
usually not be regular.

Some care has to be taken with the definitions of Θ and Ω since formulas
(3.1) and (3.6) need to hold for every θ ∈ Θ and for every η ∈ Ω. For
a continuous random variable or vector, the pdf needs to exist. Hence all
degenerate distributions need to be deleted from ΘU to form Θ and Ω. For
continuous and discrete distributions, the natural parameter needs to exist
(and often does not exist for discrete degenerate distributions). As a rule
of thumb, remove values from ΘU that cause the pmf to have the form 00.
For example, for the binomial(k, ρ) distribution with k known, the natural
parameter η = log(ρ/(1 − ρ)). Hence instead of using ΘU = [0, 1], use ρ ∈
Θ = (0, 1), so that η ∈ Ω = (−∞,∞).
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These conditions have some redundancy. If Ω contains a k-dimensional
rectangle, no ηi is completely determined by the remaining η′js. In particular,
the ηi cannot satisfy a linearity constraint. If the ηi do satisfy a linearity
constraint, then the ηi lie on a hyperplane of dimension at most k, and such
a surface cannot contain a k-dimensional rectangle. For example, if k = 2, a
line cannot contain an open box. If k = 2 and η2 = η2

1 , then the parameter
space does not contain a 2-dimensional rectangle, although η1 and η2 do not
satisfy a linearity constraint.

The most important 1P–REFs are the binomial (k, ρ) distribution with
k known, the exponential (λ) distribution, and the Poisson (θ) distribution.

Other 1P–REFs include the Burr (φ, λ) distribution with φ known, the
double exponential (θ, λ) distribution with θ known, the two parameter ex-
ponential (θ, λ) distribution with θ known, the generalized negative binomial
(µ, κ) distribution if κ is known, the geometric (ρ) distribution, the half
normal (µ, σ2) distribution with µ known, the largest extreme value (θ, σ)
distribution if σ is known, the smallest extreme value (θ, σ) distribution if
σ is known, the inverted gamma (ν, λ) distribution if ν is known, the log-
arithmic (θ) distribution, the Maxwell–Boltzmann (µ, σ) distribution if µ
is known, the negative binomial (r, ρ) distribution if r is known, the one
sided stable (σ) distribution, the Pareto (σ, λ) distribution if σ is known, the
power (λ) distribution, the Rayleigh (µ, σ) distribution if µ is known, the
Topp-Leone (ν) distribution, the truncated extreme value (λ) distribution,
the Weibull (φ, λ) distribution if φ is known and the Zeta (ν) distribution. A
one parameter exponential family can often be obtained from a k–parameter
exponential family by holding k− 1 of the parameters fixed. Hence a normal
(µ, σ2) distribution is a 1P–REF if σ2 is known. Usually assuming scale,
location or shape parameters are known is a bad idea.

The most important 2P–REFs are the beta (δ, ν) distribution, the gamma
(ν, λ) distribution and the normal (µ, σ2) distribution. The chi (p, σ) distribu-
tion and the lognormal (µ, σ2) distribution are also 2–parameter exponential
families. Example 3.9 will show that the inverse Gaussian distribution is full
but not regular. The two parameter Cauchy distribution is not an exponen-
tial family because its pdf cannot be put into the form of Equation (3.1).

The natural parameterization can result in a family that is much larger
than the family defined by the usual parameterization. See the definition of
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Ω = Ω̃ given by Equation (3.7). Casella and Berger (2002, p. 114) remarks
that

{η : η = (w1(θ), ..., wk(θ))|θ ∈ Θ} ⊆ Ω, (3.8)

but often Ω is a strictly larger set.

Remark 3.1. For the families in Chapter 10 other than the χ2
p and

inverse Gaussian distributions, make the following assumptions. Assume
that ηi = wi(θ) and that dim(Θ) = k = dim(Ω). Assume the usual parameter
space ΘU is as big as possible (replace the integral by a sum for a pmf):

ΘU = {θ ∈ <k :

∫

f(y|θ)dy = 1},

and let
Θ = {θ ∈ ΘU : w1(θ), ..., wk(θ) are defined }.

Then assume that the natural parameter space satisfies condition E1) with

Ω = {(η1, ..., ηk) : ηi = wi(θ) for θ ∈ Θ}.

In other words, simply define ηi = wi(θ). For many common distributions, η

is a one to one function of θ, and the above map is correct, especially if ΘU

is an open interval or cross product of open intervals.

Example 3.1. Let f(x|µ, σ) be the N(µ, σ2) family of pdfs. Then θ =
(µ, σ) where −∞ < µ < ∞ and σ > 0. Recall that µ is the mean and σ is
the standard deviation (SD) of the distribution. The usual parameterization
is

f(x|θ) =
1√
2πσ

exp(
−(x− µ)2

2σ2
)I<(x)

where < = (−∞,∞) and the indicator IA(x) = 1 if x ∈ A and IA(x) = 0
otherwise. Notice that I<(x) = 1 ∀x. Since

f(x|µ, σ) =
1√
2πσ

exp(
−µ
2σ2

)

︸ ︷︷ ︸

c(µ,σ)≥0

exp(
−1

2σ2
︸︷︷︸

w1(θ)

x2
︸︷︷︸

t1(x)

+
µ

σ2
︸︷︷︸

w2(θ)

x
︸︷︷︸

t2(x)

) I<(x)
︸ ︷︷ ︸

h(x)≥0

,

this family is a 2-parameter exponential family. Hence η1 = −0.5/σ2 and
η2 = µ/σ2 if σ > 0, and Ω = (−∞, 0) × (−∞,∞). Plotting η1 on the
horizontal axis and η2 on the vertical axis yields the left half plane which
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certainly contains a 2-dimensional rectangle. Since t1 and t2 lie on a quadratic
rather than a line, the family is a 2P–REF. Notice that if X1, ..., Xn are iid
N(µ, σ2) random variables, then the joint pdf f(x|θ) = f(x1, ..., xn|µ, σ) =

[
1√
2πσ

exp(
−µ
2σ2

)]n

︸ ︷︷ ︸

C(µ,σ)≥0

exp(
−1

2σ2
︸︷︷︸

w1(θ)

n∑

i=1

x2
i

︸ ︷︷ ︸

T1(x)

+
µ

σ2
︸︷︷︸

w2(θ)

n∑

i=1

xi

︸ ︷︷ ︸

T2(x)

) 1
︸︷︷︸

h(x)≥0

,

and is thus a 2P–REF.

Example 3.2. The χ2
p distribution is not a REF since the usual param-

eter space ΘU for the χ2
p distribution is the set of integers, which is neither

an open set nor a convex set. Nevertheless, the natural parameterization
is the gamma(ν, λ = 2) family which is a REF. Note that this family has
uncountably many members while the χ2

p family does not.

Example 3.3. The binomial(k, ρ) pmf is

f(x|ρ) =

(
k

x

)

ρx(1 − ρ)k−x I{0,...,k}(x)

=

(
k

x

)

I{0,...,k}(x)

︸ ︷︷ ︸

h(x)≥0

(1 − ρ)k
︸ ︷︷ ︸

c(ρ)≥0

exp[log(
ρ

1 − ρ
)

︸ ︷︷ ︸

w(ρ)

x
︸︷︷︸

t(x)

]

where ΘU = [0, 1]. Since the pmf and η = log(ρ/(1 − ρ)) is undefined for
ρ = 0 and ρ = 1, we have Θ = (0, 1). Notice that Ω = (−∞,∞).

Example 3.4. The uniform(0,θ) family is not an exponential family
since the support Yθ = (0, θ) depends on the unknown parameter θ.

Example 3.5. If Y has a half normal distribution, Y ∼ HN(µ, σ), then
the pdf of Y is

f(y) =
2√

2π σ
exp (

−(y − µ)2

2σ2
)

where σ > 0 and y ≥ µ and µ is real. Notice that

f(y) =
2√

2π σ
I(y ≥ µ) exp

[

(
−1

2σ2
)(y − µ)2

]
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is a 1P–REF if µ is known. Hence Θ = (0,∞), η = −1/(2σ2) and Ω =
(−∞, 0). Notice that a different 1P–REF is obtained for each value of µ
when µ is known with support Yµ = [µ,∞). If µ is not known, then this
family is not an exponential family since the support depends on µ.

The following two examples are important examples of REFs where
dim(Θ) > dim(Ω).

Example 3.6. If the ti or ηi satisfy a linearity constraint, then the
number of terms in the exponent of Equation (3.1) can be reduced. Suppose
that Y1, ..., Yn follow the multinomialMn(m, ρ1, ..., ρn) distribution which has
dim(Θ) = n if m is known. Then

∑n
i=1 Yi = m,

∑n
i=1 ρi = 1 and the joint

pmf of Y is

f(y) = m!
n∏

i=1

ρyi
i

yi!
.

The support of Y is Y = {y :
∑n

i=1 yi = m and 0 ≤ yi ≤ m for i = 1, ..., n}.
Since Yn and ρn are known if Y1, ..., Yn−1 and ρ1, ..., ρn−1 are known, we

can use an equivalent joint pmf fEF in terms of Y1, ..., Yn−1. Let

h(y1, ..., yn−1) =

[
m!

∏n
i=1 yi!

]

I [(y1, ..., yn−1, yn) ∈ Y].

(This is a function of y1, ..., yn−1 since yn = m−∑n−1
i=1 yi.) Then Y1, ...., Yn−1

have a Mn(m, ρ1, ..., ρn) distribution if the joint pmf of Y1, ..., Yn−1 is

fEF (y1, ..., yn−1) = exp[
n−1∑

i=1

yi log(ρi) + (m−
n−1∑

i=1

yi) log(ρn)] h(y1, ..., yn−1)

= exp[m log(ρn)] exp[

n−1∑

i=1

yi log(ρi/ρn)] h(y1, ..., yn−1). (3.9)

Since ρn = 1 −∑n−1
j=1 ρj , this is an n − 1 dimensional REF with

ηi = log(ρi/ρn) = log

(

ρi

1 −∑n−1
j=1 ρj

)

and Ω = <n−1.



CHAPTER 3. EXPONENTIAL FAMILIES 96

Example 3.7. Similarly, let µ be a 1× j row vector and let Σ be a j× j
positive definite matrix. Then the usual parameterization of the multivariate
normal MVNj(µ,Σ) distribution has dim(Θ) = j+ j2 but is a j+ j(j+1)/2
parameter REF.

A curved exponential family is a k-parameter exponential family
where the elements of θ = (θ1, ..., θk) are completely determined by d < k
of the elements. For example if θ = (θ, θ2) then the elements of θ are com-
pletely determined by θ1 = θ. A curved exponential family is neither full
nor regular since it places a restriction on the parameter space Ω resulting
in a new parameter space ΩC where ΩC does not contain a k-dimensional
rectangle.

Example 3.8. The N(θ, θ2) distribution is a 2-parameter exponential
family with η1 = −1/(2θ2) and η2 = 1/θ. Thus

ΩC = {(η1, η2)|η1 = −0.5η2
2 ,−∞ < η1 < 0,−∞ < η2 <∞, η2 6= 0}.

The graph of this parameter space is a quadratic and cannot contain a 2-
dimensional rectangle.

3.2 Properties of (t1(Y ), ..., tk(Y ))

This section follows Lehmann (1983, p. 29-35) closely. Write the natural
parameterization for the exponential family as

f(y|η) = h(y)b(η) exp

[
k∑

i=1

ηiti(y)

]

= h(y) exp

[
k∑

i=1

ηiti(y) − a(η)

]

(3.10)

where a(η) = − log(b(η)). The kernel function of this pdf or pmf is

h(y) exp

[
k∑

i=1

ηiti(y)

]

.

Lemma 3.2. Suppose that Y comes from an exponential family (3.10)
and that g(y) is any function with Eη [|g(Y )|] < ∞. Then for any η in the
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interior of Ω, the integral
∫
g(y)f(y|θ)dy is continuous and has derivatives of

all orders. These derivatives can be obtained by interchanging the derivative
and integral operators. If f is a pmf, replace the integral by a sum.

Proof. See Lehmann (1986, p. 59).

Hence
∂

∂ηi

∫

g(y)f(y|η)dy =

∫

g(y)
∂

∂ηi
f(y|η)dy (3.11)

if f is a pdf and

∂

∂ηi

∑

g(y)f(y|η) =
∑

g(y)
∂

∂ηi
f(y|η) (3.12)

if f is a pmf.

Remark 3.2. If Y comes from an exponential family (3.1), then the
derivative and integral (or sum) operators can be interchanged. Hence

∂

∂θi

∫

...

∫

g(y)f(y|θ)dy =

∫

...

∫

g(y)
∂

∂θi
f(y|θ)dx

for any function g(y) with Eθ|g(Y )| <∞.

The behavior of (t1(Y ), ..., tk(Y )) will be of considerable interest in later
chapters. The following result is in Lehmann (1983, p. 29-30). Also see
Johnson, Ladella, and Liu (1979).

Theorem 3.3. Suppose that Y comes from an exponential family (3.10).
Then a)

E(ti(Y )) =
∂

∂ηi
a(η) = − ∂

∂ηi
log(b(η)) (3.13)

and b)

Cov(ti(Y ), tj(Y )) =
∂2

∂ηi∂ηj
a(η) = − ∂2

∂ηi∂ηj
log(b(η)). (3.14)

Notice that i = j gives the formula for VAR(ti(Y )).

Proof. The proof will be for pdfs. For pmfs replace the integrals by
sums. Use Lemma 3.2 with g(y) = 1 ∀y. a) Since 1 =

∫
f(y|η)dy,

0 =
∂

∂ηi
1 =

∂

∂ηi

∫

h(y) exp

[
k∑

m=1

ηmtm(y) − a(η)

]

dy
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=

∫

h(y)
∂

∂ηi
exp

[
k∑

m=1

ηmtm(y) − a(η)

]

dy

=

∫

h(y) exp

[
k∑

m=1

ηmtm(y) − a(η)

]

(ti(y)−
∂

∂ηi
a(η))dy

=

∫

(ti(y) −
∂

∂ηi
a(η))f(y|η)dy

= E(ti(Y )) − ∂

∂ηi
a(η).

b) Similarly,

0 =

∫

h(y)
∂2

∂ηi∂ηj
exp

[
k∑

m=1

ηmtm(y) − a(η)

]

dy.

From the proof of a),

0 =

∫

h(y)
∂

∂ηj

[

exp

[
k∑

m=1

ηmtm(y) − a(η)

]

(ti(y) −
∂

∂ηi
a(η))

]

dy

=

∫

h(y) exp

[
k∑

m=1

ηmtm(y) − a(η)

]

(ti(y)−
∂

∂ηi
a(η))(tj(y)−

∂

∂ηj
a(η))dy

−
∫

h(y) exp

[
k∑

m=1

ηmtm(y) − a(η)

]

(
∂2

∂ηi∂ηj
a(η))dy

= Cov(ti(Y ), tj(Y )) − ∂2

∂ηi∂ηj
a(η)

since ∂
∂ηj
a(η) = E(tj(Y )) by a). QED

Theorem 3.4. Suppose that Y comes from an exponential family (3.10),
and let T = (t1(Y ), ..., tk(Y )). Then for any η in the interior of Ω, the moment
generating function of T is

mT (s) = exp[a(η + s) − a(η)] = exp[a(η + s)]/ exp[a(η)].

Proof. The proof will be for pdfs. For pmfs replace the integrals by
sums. Since η is in the interior of Ω there is a neighborhood of η such that
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if s is in that neighborhood, then η + s ∈ Ω. (Hence there exists a δ > 0
such that if ‖s‖ < δ, then η + s ∈ Ω.) For such s (see Definition 2.25),

mT (s) = E[exp(
k∑

i=1

siti(Y ))] ≡ E(g(Y )).

It is important to notice that we are finding the mgf of T , not the mgf of
Y . Hence we can use the kernel method of Section 1.5 to find E(g(Y )) =
∫
g(y)f(y)dy without finding the joint distribution of T . So

mT (s) =

∫

exp(
k∑

i=1

siti(y))h(y) exp

[
k∑

i=1

ηiti(y) − a(η)

]

dy

=

∫

h(y) exp

[
k∑

i=1

(ηi + si)ti(y) − a(η + s) + a(η + s) − a(η)

]

dy

= exp[a(η + s) − a(η)]

∫

h(y) exp

[
k∑

i=1

(ηi + si)ti(y) − a(η + s)

]

dy

= exp[a(η + s) − a(η)]

∫

f(y|[η + s])dy = exp[a(η + s) − a(η)]

since the pdf f(y|[η + s]) integrates to one. QED

Theorem 3.5. Suppose that Y comes from an exponential family (3.10),
and let T = (t1(Y ), ..., tk(Y )) = (T1, ..., Tk). Then the distribution of T is an
exponential family with

f(t|η) = h∗(t) exp

[
k∑

i=1

ηiti − a(η)

]

.

Proof. See Lehmann (1986, p. 58).

The main point of this section is that T is well behaved even if Y is not.
For example, if Y follows a one sided stable distribution, then Y is from an
exponential family, but E(Y ) does not exist. However the mgf of T exists,
so all moments of T exist. If Y1, ..., Yn are iid from a one parameter exponen-
tial family, then T ≡ Tn =

∑n
i=1 t(Yi) is from a one parameter exponential

family. One way to find the distribution function of T is to find the distri-
bution of t(Y ) using the transformation method, then find the distribution
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of
∑n

i=1 t(Yi) using moment generating functions or Theorems 2.17 and 2.18.
This technique results in the following two theorems. Notice that T often
has a gamma distribution.

Theorem 3.6. Let Y1, ..., Yn be iid from the given one parameter expo-
nential family and let T ≡ Tn =

∑n
i=1 t(Yi).

a) If Yi is from a binomial (k, ρ) distribution, then t(Y ) = Y ∼ BIN(k, ρ)
and Tn =

∑n
i=1 Yi ∼ BIN(nk, ρ).

b) If Y is from an exponential (λ) distribution then, t(Y ) = Y ∼ EXP(λ)
and Tn =

∑n
i=1 Yi ∼ G(n, λ).

c) If Y is from a gamma (ν, λ) distribution with ν known, then t(Y ) =
Y ∼ G(ν, λ) and Tn =

∑n
i=1 Yi ∼ G(nν, λ).

d) If Y is from a geometric (ρ) distribution, then t(Y ) = Y ∼ geom(ρ)
and Tn =

∑n
i=1 Yi ∼ NB(n, ρ) where NB stands for negative binomial.

e) If Y is from a negative binomial (r, ρ) distribution with r known, then
t(Y ) = Y ∼ NB(r, ρ) and Tn =

∑n
i=1 Yi ∼ NB(nr, ρ).

f) If Y is from a normal (µ, σ2) distribution with σ2 known, then t(Y ) =
Y ∼ N(µ, σ2) and Tn =

∑n
i=1 Yi ∼ N(nµ, nσ2).

g) If Y is from a normal (µ, σ2) distribution with µ known, then t(Y ) =
(Y − µ)2 ∼ G(1/2, 2σ2) and Tn =

∑n
i=1(Yi − µ)2 ∼ G(n/2, 2σ2).

h) If Y is from a Poisson (θ) distribution, then t(Y ) = Y ∼ POIS(θ) and
Tn =

∑n
i=1 Yi ∼ POIS(nθ).

Theorem 3.7. Let Y1, ..., Yn be iid from the given one parameter expo-
nential family and let T ≡ Tn =

∑n
i=1 t(Yi).

a) If Yi is from a Burr (φ, λ) distribution with φ known, then t(Y ) =
log(1 + Y φ) ∼ EXP(λ) and Tn =

∑
log(1 + Y φ

i ) ∼ G(n, λ).
b) If Y is from a chi(p, σ) distribution with p known, then t(Y ) = Y 2 ∼

G(p/2, 2σ2) and Tn =
∑
Y 2
i ∼ G(np/2, 2σ2).

c) If Y is from a double exponential (θ, λ) distribution with θ known,
then t(Y ) = |Y − θ| ∼ EXP(λ) and Tn =

∑n
i=1 |Yi − θ| ∼ G(n, λ).

d) If Y is from a two parameter exponential (θ, λ) distribution with θ
known, then t(Y ) = Yi − θ ∼ EXP(λ) and Tn =

∑n
i=1(Yi − θ) ∼ G(n, λ).

e) If Y is from a generalized negative binomial GNB(µ, κ) distribution
with κ known, then Tn =

∑n
i=1 Yi ∼ GNB(nµ, nκ)

f) If Y is from a half normal (µ, σ2) distribution with µ known, then
t(Y ) = (Y − µ)2 ∼ G(1/2, 2σ2) and Tn =

∑n
i=1(Yi − µ)2 ∼ G(n/2, 2σ2).

g) If Y is from an inverse Gaussian IG(θ, λ) distribution with λ known,
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then Tn =
∑n

i=1 Yi ∼ IG(nθ, n2λ).
h) If Y is from an inverted gamma (ν, λ) distribution with ν known, then

t(Y ) = 1/Y ∼ G(ν, λ) and Tn =
∑n

i=1 1/Yi ∼ G(nν, λ).
i) If Y is from a lognormal (µ, σ2) distribution with µ known, then t(Y ) =

(log(Y ) − µ)2 ∼ G(1/2, 2σ2) and Tn =
∑n

i=1(log(Yi) − µ)2 ∼ G(n/2, 2σ2).
j) If Y is from a lognormal (µ, σ2) distribution with σ2 known, then

t(Y ) = log(Y ) ∼ N(µ, σ2) and Tn =
∑n

i=1 log(Yi) ∼ N(nµ, nσ2).
k) If Y is from a Maxwell-Boltzmann (µ, σ) distribution with µ known,

then t(Y ) = (Y −µ)2 ∼ G(3/2, 2σ2) and Tn =
∑n

i=1(Yi−µ)2 ∼ G(3n/2, 2σ2).
l) If Y is from a one sided stable (σ) distribution, then t(Y ) = 1/Y ∼

G(1/2, 2/σ) and Tn =
∑n

i=1 1/Yi ∼ G(n/2, 2/σ).
m) If Y is from a Pareto (σ, λ) distribution with σ known, then t(Y ) =

log(Y/σ) ∼ EXP(λ) and Tn =
∑n

i=1 log(Yi/σ) ∼ G(n, λ).
n) If Y is from a power (λ) distribution, then t(Y ) = − log(Y ) ∼ EXP(λ)

and Tn =
∑n

i=1[− log(Yi)] ∼ G(n, λ).
o) If Y is from a Rayleigh (µ, σ) distribution with µ known, then t(Y ) =

(Y − µ)2 ∼ EXP(2σ2) and Tn =
∑n

i=1(Yi − µ)2 ∼ G(n, 2σ2).
p) If Y is from a Topp-Leone (ν) distribution, then t(Y ) =

− log(2Y − Y 2) ∼ EXP(1/ν) and Tn =
∑n

i=1[− log(2Yi − Y 2
i )] ∼ G(n, 1/ν).

q) If Y is from a truncated extreme value (λ) distribution, then t(Y ) =
eY − 1 ∼ EXP(λ) and Tn =

∑n
i=1(e

Yi − 1) ∼ G(n, λ).
r) If Y is from a Weibull (φ, λ) distribution with φ known, then t(Y ) =

Y φ ∼ EXP(λ) and Tn =
∑n

i=1 Y
φ
i ∼ G(n, λ).

3.3 Complements

Example 3.9. Following Barndorff–Nielsen (1978, p. 117), if Y has an
inverse Gaussian distribution, Y ∼ IG(θ, λ), then the pdf of Y is

f(y) =

√

λ

2πy3
exp

[−λ(y − θ)2

2θ2y

]

where y, θ, λ > 0.
Notice that

f(y) =

√

λ

2π
eλ/θ

√
1

y3
I(y > 0) exp

[−λ
2θ2

y − λ

2

1

y

]
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is a two parameter exponential family.
Another parameterization of the inverse Gaussian distribution takes θ =

√

λ/ψ so that

f(y) =

√

λ

2π
e
√
λψ

√
1

y3
I [y > 0] exp

[−ψ
2
y − λ

2

1

y

]

,

where λ > 0 and ψ ≥ 0. Here Θ = (0,∞) × [0,∞), η1 = −ψ/2, η2 = −λ/2
and Ω = (−∞, 0]×(−∞, 0). Since Ω is not an open set, this is a 2 parameter
full exponential family that is not regular. If ψ is known then Y is a
1P–REF, but if λ is known then Y is a one parameter full exponential family.
When ψ = 0, Y has a one sided stable distribution.

The following chapters show that exponential families can be used to sim-
plify the theory of sufficiency, MLEs, UMVUEs, UMP tests and large sample
theory. Barndorff-Nielsen (1982) and Olive (2005) are useful introductions to
exponential families. Also see Bühler and Sehr (1987). Interesting subclasses
of exponential families are given by Rahman and Gupta (1993) and Sankaran
and Gupta (2005). Most statistical inference texts at the same level as this
text also cover exponential families. History and references for additional
topics (such as finding conjugate priors in Bayesian statistics) can be found
in Lehmann (1983, p. 70), Brown (1986) and Barndorff-Nielsen (1978, 1982).

Barndorff-Nielsen (1982), Brown (1986) and Johanson (1979) are post–
PhD treatments and hence very difficult. Mukhopadhyay (2000) and Brown
(1986) place restrictions on the exponential families that make their theory
less useful. For example, Brown (1986) covers linear exponential distribu-
tions. See Johnson and Kotz (1972).

3.4 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

Refer to Chapter 10 for the pdf or pmf of the distributions in
the problems below.

3.1∗. Show that each of the following families is a 1P–REF by writing
the pdf or pmf as a one parameter exponential family, finding η = w(θ) and
by showing that the natural parameter space Ω is an open interval.
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a) The binomial (k, ρ) distribution with k known and ρ ∈ Θ = (0, 1).
b) The exponential (λ) distribution with λ ∈ Θ = (0,∞).
c) The Poisson (θ) distribution with θ ∈ Θ = (0,∞).
d) The half normal (µ, σ2) distribution with µ known and σ2 ∈ Θ =

(0,∞).

3.2∗. Show that each of the following families is a 2P–REF by writing
the pdf or pmf as a two parameter exponential family, finding ηi = wi(θ)
for i = 1, 2 and by showing that the natural parameter space Ω is a cross
product of two open intervals.

a) The beta (δ, ν) distribution with Θ = (0,∞) × (0,∞).
b) The chi (p, σ) distribution with Θ = (0,∞) × (0,∞).
c) The gamma (ν, λ) distribution with Θ = (0,∞) × (0,∞).
d) The lognormal (µ, σ2) distribution with Θ = (−∞,∞) × (0,∞).
e) The normal (µ, σ2) distribution with Θ = (−∞,∞)× (0,∞).

3.3. Show that each of the following families is a 1P–REF by writing the
pdf or pmf as a one parameter exponential family, finding η = w(θ) and by
showing that the natural parameter space Ω is an open interval.

a) The generalized negative binomial (µ, κ) distribution if κ is known.
b) The geometric (ρ) distribution.
c) The logarithmic (θ) distribution.
d) The negative binomial (r, ρ) distribution if r is known.
e) The one sided stable (σ) distribution.
f) The power (λ) distribution.
g) The truncated extreme value (λ) distribution.
h) The Zeta (ν) distribution.

3.4. Show that each of the following families is a 1P–REF by writing the
pdf or pmf as a one parameter exponential family, finding η = w(θ) and by
showing that the natural parameter space Ω is an open interval.

a) The N(µ, σ2) family with σ > 0 known.

b) The N(µ, σ2) family with µ known and σ > 0.

c) The gamma (ν, λ) family with ν known.

d) The gamma (ν, λ) family with λ known.

e) The beta (δ, ν) distribution with δ known.
f) The beta (δ, ν) distribution with ν known.
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3.5. Show that each of the following families is a 1P–REF by writing the
pdf or pmf as a one parameter exponential family, finding η = w(θ) and by
showing that the natural parameter space Ω is an open interval.

a) The Burr (φ, λ) distribution with φ known.
b) The double exponential (θ, λ) distribution with θ known.
c) The two parameter exponential (θ, λ) distribution with θ known.
d) The largest extreme value (θ, σ) distribution if σ is known.
e) The smallest extreme value (θ, σ) distribution if σ is known.
f) The inverted gamma (ν, λ) distribution if ν is known.
g) The Maxwell–Boltzmann (µ, σ) distribution if µ is known.
h) The Pareto (σ, λ) distribution if σ is known.
i) The Rayleigh (µ, σ) distribution if µ is known.
j) The Weibull (φ, λ) distribution if φ is known.

3.6∗. Determine whether the Pareto (σ, λ) distribution is an exponential
family or not.

3.7. Following Kotz and van Dorp (2004, p. 35-36), if Y has a Topp–
Leone distribution, Y ∼ TL(ν), then the cdf of Y is F (y) = (2y − y2)ν for
ν > 0 and 0 < y < 1. The pdf of Y is

f(y) = ν(2 − 2y)(2y − y2)ν−1

for 0 < y < 1. Determine whether this distribution is an exponential family
or not.

3.8. In Spiegel (1975, p. 210), Y has pdf

fY (y) =
2γ3/2

√
π

y2 exp(−γ y2)

where γ > 0 and y is real. Is Y a 1P-REF?

3.9. Let Y be a (one sided) truncated exponential TEXP (λ, b) random
variable. Then the pdf of Y is

fY (y|λ, b) =
1
λ
e−y/λ

1 − exp(− b
λ
)

for 0 < y ≤ b where λ > 0. If b is known, is Y a 1P-REF? (Also see O’Reilly
and Rueda (2007).)
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Problems from old quizzes and exams.

3.10∗. Suppose that X has a N(µ, σ2) distribution where σ > 0 and µ is
known. Then

f(x) =
1√
2πσ

e−µ
2/(2σ2) exp[− 1

2σ2
x2 +

1

σ2
µx].

Let η1 = −1/(2σ2) and η2 = 1/σ2. Why is this parameterization not the
regular exponential family parameterization? (Hint: show that η1 and η2

satisfy a linearity constraint.)

3.11. Let X1, ..., Xn be iid N(µ, γ2
oµ

2) random variables where γ2
o > 0 is

known and µ > 0.

a) Find the distribution of
∑n

i=1 Xi.

b) Find E[(
∑n

i=1 Xi)
2].

c) The pdf of X is

fX(x|µ) =
1

γoµ
√

2π
exp

[− (x− µ)2

2γ2
oµ

2

]

.

Show that the family {f(x|µ) : µ > 0} is a two parameter exponential family.

d) Show that the natural parameter space is a parabola. You may assume
that ηi = wi(µ). Is this family a regular exponential family?

3.12. Let X1, ..., Xn be iid N(ασ, σ2) random variables where α is a
known real number and σ > 0.

a) Find E[
∑n

i=1X
2
i ].

b) Find E[(
∑n

i=1 Xi)
2].

c) Show that the family {f(x|σ) : σ > 0} is a two parameter exponential
family.

d) Show that the natural parameter space Ω is a parabola. You may
assume that ηi = wi(σ). Is this family a regular exponential family?



Chapter 4

Sufficient Statistics

4.1 Statistics and Sampling Distributions

Suppose that the data Y1, ..., Yn is drawn from some population. The ob-
served data is Y1 = y1, ..., Yn = yn where y1, ...., yn are numbers. Let y =
(y1, ..., yn). Real valued functions T (y1, ..., yn) = T (y) are of interest as
are vector valued functions T (y) = (T1(y), ..., Tk(y)). Sometimes the data
Y 1, ...,Y n are random vectors. Again interest is in functions of the data.
Typically the data has a joint pdf or pmf f(y1, ..., yn|θ) where the vector of
unknown parameters is θ = (θ1, ..., θk). (In the joint pdf or pmf, the y1, ..., yn
are dummy variables, not the observed data.)

Definition 4.1. A statistic is a function of the data that does not
depend on any unknown parameters. The probability distribution of the
statistic is called the sampling distribution of the statistic.

Let the data Y = (Y1, ..., Yn) where the Yi are random variables. If
T (y1, ..., yn) is a real valued function whose domain includes the sample space
Y of Y , then W = T (Y1, ..., Yn) is a statistic provided that T does not
depend on any unknown parameters. The data comes from some probability
distribution and the statistic is a random variable and hence also comes
from some probability distribution. To avoid confusing the distribution of
the statistic with the distribution of the data, the distribution of the statistic
is called the sampling distribution of the statistic. If the observed data is
Y1 = y1, ..., Yn = yn, then the observed value of the statistic is W = w =
T (y1, ..., yn). Similar remarks apply when the statistic T is vector valued and
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CHAPTER 4. SUFFICIENT STATISTICS 107

when the data Y 1, ...,Y n are random vectors.

Often Y1, ..., Yn will be iid and statistics of the form

n∑

i=1

aiYi and
n∑

i=1

t(Yi)

are especially important. Chapter 10 and Theorems 2.17, 2.18, 3.6 and 3.7
are useful for finding the sampling distributions of some of these statistics
when the Yi are iid from a given brand name distribution that is usually an
exponential family. The following example lists some important statistics.

Example 4.1. Let the Y1, ..., Yn be the data.
a) The sample mean

Y =

∑n
i=1 Yi
n

. (4.1)

b) The sample variance

S2 ≡ S2
n =

∑n
i=1(Yi − Y )2

n− 1
=

∑n
i=1 Y

2
i − n(Y )2

n− 1
. (4.2)

c) The sample standard deviation S ≡ Sn =
√

S2
n.

d) If the data Y1, ..., Yn is arranged in ascending order from smallest to
largest and written as Y(1) ≤ · · · ≤ Y(n), then Y(i) is the ith order statistic
and the Y(i)’s are called the order statistics.

e) The sample median

MED(n) = Y((n+1)/2) if n is odd, (4.3)

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

f) The sample median absolute deviation or median deviation is

MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n). (4.4)

g) The sample maximum

max(n) = Y(n) (4.5)

and the observed max y(n) is the largest value of the observed data.
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h) The sample minimum

min(n) = Y(1) (4.6)

and the observed min y(1) is the smallest value of the observed data.

Example 4.2. Usually the term “observed” is dropped. Hence below
“data” is “observed data”, “observed order statistics” is “order statistics”
and “observed value of MED(n)” is “MED(n).”
Let the data be 9, 2, 7, 4, 1, 6, 3, 8, 5 (so Y1 = y1 = 9, ..., Y9 = y9 = 5).
Then the order statistics are 1, 2, 3, 4, 5, 6, 7, 8, 9. Then MED(n) = 5 and
MAD(n) = 2 = MED{0, 1, 1, 2, 2, 3, 3, 4, 4}.

Example 4.3. Let the Y1, ..., Yn be iid N(µ, σ2). Then

Tn =

∑n
i=1(Yi − µ)2

n

is a statistic iff µ is known.

The following theorem is extremely important and the proof follows Rice
(1988, p. 171-173) closely.

Theorem 4.1. Let the Y1, ..., Yn be iid N(µ, σ2).
a) The sample mean Y ∼ N(µ, σ2/n).
b) Y and S2 are independent.
c) (n− 1)S2/σ2 ∼ χ2

n−1. Hence
∑n

i=1(Yi − Y )2 ∼ σ2χ2
n−1.

Proof. a) follows from Theorem 2.17e.

b) The moment generating function of (Y , Y1 − Y , ..., Yn− Y ) is

m(s, t1, ..., tn) = E(exp[sY + t1(Y1 − Y ) + · · · + tn(Yn − Y )]).

By Theorem 2.22, Y and (Y1 − Y , ..., Yn− Y ) are independent if

m(s, t1, ..., tn) = mY (s) m(t1, ..., tn)

where mY (s) is the mgf of Y and m(t1, ..., tn) is the mgf of (Y1−Y , ..., Yn−Y ).
Now

n∑

i=1

ti(Yi − Y ) =
n∑

i=1

tiYi − Y nt =
n∑

i=1

tiYi −
n∑

i=1

tYi
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and thus

sY +
n∑

i=1

ti(Yi − Y ) =
n∑

i=1

[
s

n
+ (ti − t )]Yi =

n∑

i=1

aiYi.

Now
∑n

i=1 ai =
∑n

i=1[
s
n

+ (ti − t )] = s and

n∑

i=1

a2
i =

n∑

i=1

[
s2

n2
+ 2

s

n
(ti − t ) + (ti − t )2] =

s2

n
+

n∑

i=1

(ti − t )2.

Hence

m(s, t1, ..., tn) = E(exp[sY +

n∑

i=1

ti(Yi − Y )]) = E[exp(

n∑

i=1

aiYi)]

= mY1,...,Yn(a1, ..., an) =

n∏

i=1

mYi(ai)

since the Yi are independent. Now

n∏

i=1

mYi(ai) =
n∏

i=1

exp

(

µai +
σ2

2
a2
i

)

= exp

(

µ
n∑

i=1

ai +
σ2

2

n∑

i=1

a2
i

)

= exp

[

µs+
σ2

2

s2

n
+
σ2

2

n∑

i=1

(ti − t )2

]

= exp

[

µs+
σ2

2n
s2

]

exp

[

σ2

2

n∑

i=1

(ti − t )2

]

.

Now the first factor is the mgf of Y and the second factor is m(t1, ..., tn) =
m(0, t1, ..., tn) since the mgf of the marginal is found from the mgf of the
joint distribution by setting all terms not in the marginal to 0 (ie set s = 0
in m(s, t1, ..., tn) to find m(t1, ..., tn)). Hence the mgf factors and

Y (Y1 − Y , ..., Yn − Y ).

Since S2 is a function of (Y1 − Y , ..., Yn − Y ), it is also true that Y S2.
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c) (Yi − µ)/σ ∼ N(0, 1) so (Yi − µ)2/σ2 ∼ χ2
1 and

1

σ2

n∑

i=1

(Yi − µ)2 ∼ χ2
n.

Now

n∑

i=1

(Yi − µ)2 =

n∑

i=1

(Yi − Y + Y − µ)2 =

n∑

i=1

(Yi − Y )2 + n(Y − µ)2.

Hence

W =
1

σ2

n∑

i=1

(Yi − µ)2 =
1

σ2

n∑

i=1

(Yi − Y )2 +

(
Y − µ

σ/
√
n

)2

= U + V.

Since U V by b), mW (t) = mU(t) mV (t). Since W ∼ χ2
n and V ∼ χ2

1,

mU(t) =
mW (t)

mV (t)
=

(1 − 2t)−n/2

(1 − 2t)−1/2
= (1 − 2t)−(n−1)/2

which is the mgf of a χ2
n−1 distribution. QED

Theorem 4.2. Let the Y1, ..., Yn be iid with cdf FY and pdf fY .
a) The pdf of T = Y(n) is

fY(n)
(t) = n[FY (t)]n−1fY (t).

b) The pdf of T = Y(1) is

fY(1)
(t) = n[1 − FY (t)]n−1fY (t).

c) Let 2 ≤ r ≤ n. Then the joint pdf of Y(1), Y(2), ..., Y(r) is

fY(1) ,...,Y(r)
(t1, ..., tr) =

n!

(n− r)!
[1 − FY (tr)]

n−r
r∏

i=1

fY (ti).

Proof of a) and b). a) The cdf of Y(n) is

FY(n)
(t) = P (Y(n) ≤ t) = P (Y1 ≤ t, ..., Yn ≤ t) =

n∏

i=1

P (Yi ≤ t) = [FY (t)]n.
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Hence the pdf of Y(n) is

d

dt
FY(n)

(t) =
d

dt
[FY (t)]n = n[FY (t)]n−1fY (t).

b) The cdf of Y(1) is

FY(1)
(t) = P (Y(1) ≤ t) = 1 − P (Y(1) > t) = 1 − P (Y1 > t, ..., Yn > t)

= 1 −
n∏

i=1

P (Yi > t) = 1 − [1 − FY (t)]n.

Hence the pdf of Y(n) is

d

dt
FY(n)

(t) =
d

dt
(1 − [1 − FY (t)]n) = n[1 − FY (t)]n−1fY (t). QED

To see that c) may be true, consider the following argument adapted from
Mann, Schafer and Singpurwalla (1974, p. 93). Let ∆ti be a small positive
number and notice that P (E) ≡

P (t1 < Y(1) < t1 + ∆t1, t2 < Y(2) < t2 + ∆t2, ..., tr < Y(r) < tr + ∆tr)

=

∫ tr+∆tr

tr

· · ·
∫ t1+∆t1

t1

fY(1) ,...,Y(r)
(w1, ..., wr)dw1 · · · dwr

≈ fY(1) ,...,Y(r)
(t1, ..., tr)

r∏

i=1

∆ti.

Since the event E denotes the occurrence of no observations before ti, exactly
one occurrence between t1 and t1+∆t1, no observations between t1+∆t1 and
t2 and so on, and finally the occurrence of n− r observations after tr + ∆tr,
using the multinomial pmf shows that

P (E) =
n!

0!1! · · · 0!1!(n− r)!
ρ0

1ρ
1
2ρ

0
3ρ

1
4 · · · ρ0

2r−1ρ
1
2rρ

n−r
2r+1

where
ρ2i = P (ti < Y < ti + ∆ti) ≈ f(ti)∆ti

for i = 1, ..., r and

ρ2r+1 = P (n − r Y ′s > tr + ∆tr) ≈ (1 − F (tr))
n−r.
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Hence

P (E) ≈ n!

(n− r)!
(1 − F (tr))

n−r
r∏

i=1

f(ti)

r∏

i=1

∆ti

≈ fY(1) ,...,Y(r)
(t1, ..., tr)

r∏

i=1

∆ti,

and result c) seems reasonable.

Example 4.4. Suppose Y1, ..., Yn are iid EXP(λ) with cdf F (y) =
1 − exp(−y/λ) for y > 0. Then FY(1)

(t) = 1 − [1 − (1 − exp(−t/λ))]n =
1 − [exp(−t/λ)]n = 1 − exp[−t/(λ/n)] for t > 0. Hence Y(1) ∼ EXP(λ/n).

4.2 Minimal Sufficient Statistics

For parametric inference, the pmf or pdf of a random variable Y is fθ(y)
where θ ∈ Θ is unknown. Hence Y comes from a family of distributions in-
dexed by θ and quantities such as Eθ(g(Y )) depend on θ. Since the paramet-
ric distribution is completely specified by θ, an important goal of parametric
inference is finding good estimators of θ. For example, if Y1, ..., Yn are iid
N(µ, σ2), then θ = (µ, σ) is fixed but unknown, θ ∈ Θ = (−∞,∞)× (0,∞)
and E(µ,θ)(Y ) = µ. Since V(µ,θ)(Y ) = σ2/n, Y is a good estimator for µ if n
is large. The notation fθ(y) ≡ f(y|θ) is also used.

The basic idea of a sufficient statistic T (Y ) for θ is that all of the infor-
mation needed for inference from the data Y1, ..., Yn about the parameter θ

is contained in the statistic T (Y ). For example, suppose that Y1, ..., Yn are
iid binomial(1, ρ) random variables. Hence each observed Yi is a 0 or a 1 and
the observed data is an n–tuple of 0’s and 1’s, eg 0,0,1,...,0,0,1. It will turn
out that

∑n
i=1 Yi, the number of 1’s in the n–tuple, is a sufficient statistic for

ρ. From Theorem 2.17a,
∑n

i=1 Yi ∼ BIN(n, ρ). The importance of a sufficient
statistic is dimension reduction: the statistic

∑n
i=1 Yi has all of the informa-

tion from the data needed to perform inference about ρ, and the statistic is
one dimensional and thus much easier to understand than the n dimensional
n–tuple of 0’s and 1’s. Also notice that all n–tuples with the same number of
1’s have the same amount of information needed for inference about ρ: the
n–tuples 1,1,1,0,0,0,0 and 0,1,0,0,1,0,1 both give

∑n
i=1 Yi = 3.
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Definition 4.2. Suppose that (Y 1, ...,Y n) have a joint distribution that
depends on a vector of parameters θ for θ ∈ Θ where Θ is the parameter
space. A statistic T (Y 1, ...,Y n) is a sufficient statistic for θ if the condi-
tional distribution of (Y 1, ...,Y n) given T = t does not depend on θ for any
value of t in the support of T .

Example 4.5. Suppose T (y) ≡ 7 ∀y. Then T is a constant and any
constant is independent of a random vector Y . Hence the conditional distri-
bution fθ(y|T ) = fθ(y) is not independent of θ. Thus T is not a sufficient
statistic.

Often T and Y i are real valued. Then T (Y1, ..., Yn) is a sufficient statistic
if the conditional distribution of Y = (Y1, ..., Yn) given T = t does not depend
on θ. The following theorem provides such an effective method for showing
that a statistic is a sufficient statistic that the definition should rarely be
used to prove that the statistic is a sufficient statistic.

Regularity Condition F.1: If f(y|θ) is a family of pmfs for θ ∈ Θ, assume
that there exists a set {yi}∞i=1 that does not depend on θ ∈ Θ such that
∑n

i=1 f(yi|θ) = 1 for all θ ∈ Θ. (This condition is usually satisfied. For
example, F.1 holds if the support Y is free of θ or if y = (y1, ..., yn) and yi
takes on values on a lattice such as yi ∈ {1, ..., θ} for θ ∈ {1, 2, 3, ...}.)

Theorem 4.3: Factorization Theorem. Let f(y|θ) for θ ∈ Θ denote
a family of pdfs or pmfs for a sample Y . For a family of pmfs, assume
condition F.1 holds. A statistic T (Y ) is a sufficient statistic for θ iff for all
sample points y and for all θ in the parameter space Θ,

f(y|θ) = g(T (y)|θ) h(y)

where both g and h are nonnegative functions. The function h does not
depend on θ and the function g depends on y only through T (y).

Proof for pmfs. If T (Y ) is a sufficient statistic, then the conditional
distribution of Y given T (Y ) = t does not depend on θ for any t in the
support of T . Taking t = T (y) gives

Pθ(Y = y|T (Y ) = T (y)) ≡ P (Y = y|T (Y ) = T (y))

for all θ in the parameter space. Now

{Y = y} ⊆ {T (Y ) = T (y)} (4.7)
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and P (A) = P (A ∩B) if A ⊆ B. Hence

f(y|θ) = Pθ(Y = y) = Pθ(Y = y and T (Y ) = T (y))

= Pθ(T (Y ) = T (y))P (Y = y|T (Y ) = T (y)) = g(T (y)|θ)h(y).

Now suppose
f(y|θ) = g(T (y)|θ) h(y)

for all y and for all θ ∈ Θ. Now

Pθ(T (Y ) = t) =
∑

{y:T (y)=t}

f(y|θ) = g(t|θ)
∑

{y:T (y)=t}

h(y).

If Y = y and T (Y ) = t, then T (y) = t and {Y = y} ⊆ {T (Y ) = t}. Thus

Pθ(Y = y|T (Y ) = t) =
Pθ(Y = y,T (Y ) = t)

Pθ(T (Y ) = t)
=

Pθ(Y = y)

Pθ(T (Y ) = t)

=
g(t|θ) h(y)

g(t|θ)
∑

{y:T (y)=t} h(y)
=

h(y)
∑

{y:T (y)=t} h(y)

which does not depend on θ since the terms in the sum do not depend on θ

by condition F.1. Hence T is a sufficient statistic. QED

Remark 4.1. If no such factorization exists for T , then T is not a
sufficient statistic.

Example 4.6. To use factorization to show that the data Y = (Y1, ..., Yn)
is a sufficient statistic, take T (Y ) = Y , g(T (y)|θ) = f(y|θ), and h(y) = 1
∀y.

Example 4.7. Let X1, ..., Xn be iid N(µ, σ2). Then

f(x1, ..., xn) =

n∏

i=1

f(xi) =

[
1√
2πσ

exp(
−µ
2σ2

)

]n

exp(
−1

2σ2

∑

i=1

x2
i +

µ

σ2

n∑

i=1

xi)

= g(T (x)|θ)h(x)

where θ = (µ, σ) and h(x) = 1. Hence T (X) = (
∑n

i=1 X
2
i ,
∑n

i=1 Xi) is a
sufficient statistic for (µ, σ) or equivalently for (µ, σ2) by the factorization
theorem.
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Example 4.8. Let Y1, ..., Yn be iid binomial(k, ρ) with k known and pmf

f(y|ρ) =

(
k

y

)

ρy(1 − ρ)k−y I{0,...,k}(y).

Then

f(y|ρ) =
n∏

i=1

f(yi|ρ) =
n∏

i=1

[(
k

yi

)

I{0,...,k}(yi)

]

(1 − ρ)nk
(

ρ

1 − ρ

)Pn
i=1 yi

.

Hence by the factorization theorem,
∑n

i=1 Yi is a sufficient statistic.

Example 4.9. Suppose X1, ..., Xn are iid uniform observations on the
interval (θ, θ + 1), −∞ < θ <∞. Notice that

n∏

i=1

IA(xi) = I(all xi ∈ A) and
n∏

i=1

IAn(x) = I∩n
i=1Ai(x)

where the latter holds since both terms are 1 if x is in all setsAi for i = 1, ..., n
and both terms are 0 otherwise. Hence f(x|θ) =

n∏

i=1

f(xi|θ) =

n∏

i=1

1I(xi ≥ θ)I(xi ≤ θ + 1) = 1I(min(xi) ≥ θ)I(max(xi) ≤ θ).

Then h(x) ≡ 1 and g(T (x)|θ) = I(min(xi) ≥ θ)I(max(xi) ≤ θ), and T (x) =
(X(1), X(n)) is a sufficient statistic by the factorization theorem.

Example 4.10. Try to place any part of f(y|θ) that depends on y

but not on θ into h(y). For example, if Y1, ..., Yn are iid U(0, θ) for θ > 0,
then f(y|θ) =

n∏

i=1

f(yi|θ) =
n∏

i=1

1

θ
I(0 ≤ yi)I(yi ≤ θ) = I(0 ≥ y(1))

1

θn
I(y(n) ≤ θ).

One could take h(y) ≡ 1 and T (y|θ) = (Y(1), Y(n)), but it is better to make
the dimension of the sufficient statistic as small as possible. Take h(y) =
I(0 ≥ y(1)). Then T (Y ) = Y(n) is a sufficient statistic by factorization.

There are infinitely many sufficient statistics (see Theorem 4.8 below),
but typically we want the dimension of the sufficient statistic to be as small
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as possible since lower dimensional statistics are easier to understand and
to use for inference than higher dimensional statistics. Data reduction is
extremely important and the following definition is useful.

Definition 4.3. Suppose that Y1, ..., Yn have a joint distribution that
depends on a vector of parameters θ for θ ∈ Θ where Θ is the parameter
space. A sufficient statistic T (Y ) for θ is a minimal sufficient statistic
for θ if T (Y ) is a function of S(Y ) for any other sufficient statistic S(Y )
for θ.

Remark 4.2. A useful mnemonic is that S = Y is a sufficient statistic,
and T ≡ T (Y ) is a function of S.

Warning: Complete sufficient statistics, defined below, are primarily
used for the theory of uniformly minimum variance estimators, which are
rarely used in applied work unless they are nearly identical to the corre-
sponding maximum likelihood estimators.

Definition 4.4. Suppose that a statistic T (Y ) has a pmf or pdf f(t|θ).
Then T (Y ) is a complete sufficient statistic for θ if Eθ[g(T (Y ))] = 0 for all
θ implies that Pθ[g(T (Y )) = 0] = 1 for all θ.

The following two theorems are useful for finding minimal sufficient statis-
tics.

Theorem 4.4: Lehmann-Scheffé Theorem for Minimal Sufficient
Statistics (LSM). Let f(y|θ) be the pmf or pdf of a sample Y . Let cx,y
be a constant. Suppose there exists a function T (y) such that for any two
sample points x and y, the ratio Rx,y(θ) = f(x|θ)/f(y|θ) = cx,y for all θ

in Θ iff T (x) = T (y). Then T (Y ) is a minimal sufficient statistic for θ.

In the Lehmann-Scheffé Theorem, for R to be constant as a function of θ,
define 0/0 = cx,y. Alternatively, replace Rx,y(θ) = f(x|θ)/f(y|θ) = cx,y
by f(x|θ) = cx,yf(y|θ) in the above definition.

Finding sufficient, minimal sufficient, and complete sufficient statistics is
often simple for regular exponential families (REFs). If the family given
by Equation (4.8) is a REF or a full exponential family, then the
conditions for Theorem 4.5abcd are satisfied as are the conditions
for e) if η is a one to one function of θ. In a), k does not need to be as
small as possible. In Corollary 4.6 below, assume that both Equation (4.8)



CHAPTER 4. SUFFICIENT STATISTICS 117

and (4.9) hold.
Note that any one to one function is onto its range. Hence if η = τ (θ)

for any η ∈ Ω where τ is a one to one function, then τ : Θ → Ω is one to one
and onto. Thus there is a one to one (and onto) inverse function τ−1 such
that θ = τ−1(η) for any θ ∈ Θ.

Theorem 4.5: Sufficiency, Minimal Sufficiency, and Complete-
ness of Exponential Families. Suppose that Y1, ..., Yn are iid from an
exponential family

f(y|θ) = h(y)c(θ) exp [w1(θ)t1(y) + · · · + wk(θ)tk(y)] (4.8)

with the natural parameterization

f(y|η) = h(y)b(η) exp [η1t1(y) + · · · + ηktk(y)] (4.9)

so that the joint pdf or pmf is given by

f(y1, ..., yn|η) = (
n∏

j=1

h(yj))[b(η)]n exp[η1

n∑

j=1

t1(yj) + · · · + ηk

n∑

j=1

tk(yj)]

which is a k-parameter exponential family. Then

T (Y ) = (
n∑

j=1

t1(Yj), ...,
n∑

j=1

tk(Yj)) is

a) a sufficient statistic for θ and for η,
b) a minimal sufficient statistic for η if η1, ..., ηk do not satisfy a linearity
constraint,
c) a minimal sufficient statistic for θ if w1(θ), ..., wk(θ) do not satisfy a lin-
earity constraint,
d) a complete sufficient statistic for η if Ω contains a k–dimensional rectan-
gle,
e) a complete sufficient statistic for θ if η is a one to one function of θ and
if Ω contains a k–dimensional rectangle.

Proof. a) Use the factorization theorem.
b) The proof expands on remarks given in Johanson (1979, p. 3) and
Lehmann(1983, p. 44). The ratio

f(x|η)

f(y|η)
=

∏n
j=1 h(xj)

∏n
j=1 h(yj)

exp[
k∑

i=1

ηi(Ti(x) − Ti(y))]
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is equal to a constant with respect to η iff

k∑

i=1

ηi[Ti(x) − Ti(y)] =
k∑

i=1

ηiai = d

for all ηi where d is some constant and where ai = Ti(x)−Ti(y) and Ti(x) =
∑n

j=1 ti(xj). Since the ηi do not satisfy a linearity constraint,
∑k

i=1 ηiai = d
iff all of the ai = 0. Hence

T (X) = (T1(X), ..., Tk(X))

is a minimal sufficient statistic by the Lehmann-Scheffé LSM theorem.
c) Use almost the same proof as b) with wi(θ) in the place of ηi and θ in
the place of η. (In particular, the result holds if ηi = wi(θ) for i = 1, ..., k
provided that the ηi do not satisfy a linearity constraint.)
d) See Lehmann (1986, p. 142).
e) If η = τ (θ) then θ = τ−1(η) and the parameters have just been renamed.
Hence Eθ[g(T )] = 0 for all θ implies that Eη [g(T )] = 0 for all η, and thus
Pη [g(T (Y )) = 0] = 1 for all η since T is a complete sufficient statistic for η

by d). Thus Pθ[g(T (Y )) = 0] = 1 for all θ, and T is a complete sufficient
statistic for θ.

Corollary 4.6: Completeness of a kP–REF. Suppose that Y1, ..., Yn
are iid from a kP–REF

f(y|θ) = h(y)c(θ) exp [w1(θ)t1(y) + · · · + wk(θ)tk(y)]

with θ ∈ Θ and natural parameterization given by (4.9) with η ∈ Ω. Then

T (Y ) = (
n∑

j=1

t1(Yj), ...,
n∑

j=1

tk(Yj)) is

a) a minimal sufficient statistic for θ and for η,
b) a complete sufficient statistic for θ and for η if η is a one to one function
of θ.

Proof. The result follows by Theorem 4.5 since for a kP–REF, the wi(θ)
and ηi do not satisfy a linearity constraint and Ω contains a k–dimensional
rectangle. QED
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Theorem 4.7: Bahadur’s Theorem. A finite dimensional complete
sufficient statistic is also minimal sufficient.

Theorem 4.8. A one to one function of a sufficient, minimal sufficient,
or complete sufficient statistic is sufficient, minimal sufficient, or complete
sufficient respectively.

Note that in a kP–REF, the statistic T is k–dimensional and thus T is
minimal sufficient by Theorem 4.7 if T is complete sufficient. Corollary 4.6
is useful because often you know or can show that the given family is a REF.
The theorem gives a particularly simple way to find complete sufficient statis-
tics for one parameter exponential families and for any family that is known
to be REF. If it is known that the distribution is regular, find the exponential
family parameterization given by Equation (4.8) or (4.9). These parameter-
izations give t1(y), ..., tk(y). Then T (Y ) = (

∑n
j=1 t1(Yj), ...,

∑n
j=1 tk(Yj)).

Example 4.11. Let X1, ..., Xn be iid N(µ, σ2). Then the N(µ, σ2) pdf is

f(x|µ, σ) =
1√
2πσ

exp(
−µ
2σ2

)

︸ ︷︷ ︸

c(µ,σ)≥0

exp(
−1

2σ2
︸︷︷︸

w1(θ)

x2
︸︷︷︸

t1(x)

+
µ

σ2
︸︷︷︸

w2(θ)

x
︸︷︷︸

t2(x)

) I<(x)
︸ ︷︷ ︸

h(x)≥0

,

with η1 = −0.5/σ2 and η2 = µ/σ2 if σ > 0. As shown in Example 3.1, this is a
2P–REF. By Corollary 4.6, T = (

∑n
i=1 Xi,

∑n
i=1X

2
i ) is a complete sufficient

statistic for (µ, σ2). The one to one functions

T 2 = (X,S2) and T 3 = (X,S)

of T are also complete sufficient where X is the sample mean and S is the
sample standard deviation. T ,T 2 and T 3 are minimal sufficient by Corollary
4.6 or by Theorem 4.7 since the statistics are 2 dimensional.

Example 4.12. Let Y1, ..., Yn be iid binomial(k, ρ) with k known and
pmf

f(y|ρ) =

(
k

y

)

ρy(1 − ρ)k−y I{0,...,k}(y)

=

(
k

y

)

I{0,...,k}(y)

︸ ︷︷ ︸

h(y)≥0

(1 − ρ)k
︸ ︷︷ ︸

c(ρ)≥0

exp[log(
ρ

1 − ρ
)

︸ ︷︷ ︸

w(ρ)

y
︸︷︷︸

t(y)

]
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where Θ = (0, 1) and Ω = (−∞,∞). Notice that η = log( ρ
1−ρ) is an in-

creasing and hence one to one function of ρ. Since this family is a 1P–REF,
Tn =

∑n
i=1 t(Yi) =

∑n
i=1 Yi is complete sufficient statistic for ρ.

Compare Examples 4.7 and 4.8 with Examples 4.11 and 4.12. The ex-
ponential family theorem gives more powerful results than the factorization
theorem, but often the factorization theorem is useful for suggesting a po-
tential minimal sufficient statistic.

Example 4.13. In testing theory, a single sample is often created by
combining two independent samples of iid data. Let X1, ..., Xn be iid ex-
ponential (θ) and Y1, ..., Ym iid exponential (θ/2). If the two samples are
independent, then the joint pdf f(x,y|θ) belongs to a regular one parameter
exponential family with complete sufficient statistic T =

∑n
i=1 Xi+2

∑m
i=1 Yi.

(Let Wi = 2Yi. Then the Wi and Xi are iid and Corollary 4.6 applies.)

Rule of thumb 4.1: A k–parameter minimal sufficient statistic for a
d–dimensional parameter where d < k will not be complete. In the following
example d = 1 < 2 = k. (A rule of thumb is something that is frequently
true but can not be used to rigorously prove something. Hence this rule of
thumb can not be used to prove that the minimal sufficient statistic is not
complete.)

Warning: Showing that a minimal sufficient statistic is not complete is
of little applied interest since complete sufficient statistics are rarely used
in applications; nevertheless, many qualifying exams in statistical inference
contain such a problem.

Example 4.14, Cox and Hinckley (1974, p. 31). Let X1, ..., Xn be
iid N(µ, γ2

oµ
2) random variables where γ2

o > 0 is known and µ > 0. Then this
family has a one dimensional parameter µ, but

f(x|µ) =
1

√

2πγ2
oµ

2
exp

(−1

2γ2
o

)

exp

( −1

2γ2
oµ

2
x2 +

1

γ2
oµ
x

)

is a two parameter exponential family with Θ = (0,∞) (which contains a
one dimensional rectangle), and (

∑n
i=1Xi,

∑n
i=1 X

2
i ) is a minimal sufficient

statistic. (Theorem 4.5 applies since the functions 1/µ and 1/µ2 do not
satisfy a linearity constraint.) However, since Eµ(X

2) = γ2
oµ

2 + µ2 and
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∑n
i=1 Xi ∼ N(nµ, nγ2

oµ
2) implies that

Eµ[(
n∑

i=1

Xi)
2] = nγ2

oµ
2 + n2µ2,

we find that

Eµ[
n+ γ2

o

1 + γ2
o

n∑

i=1

X2
i − (

n∑

i=1

Xi)
2] =

n+ γ2
o

1 + γ2
o

nµ2(1 + γ2
o ) − (nγ2

oµ
2 + n2µ2) = 0

for all µ so the minimal sufficient statistic is not complete. Notice that

Ω = {(η1, η2) : η1 =
−1

2
γ2
oη

2
2}

and a plot of η1 versus η2 is a quadratic function which can not contain a
2–dimensional rectangle. Notice that (η1, η2) is a one to one function of µ,
and thus this example illustrates that the rectangle needs to be contained in
Ω rather than Θ.

Example 4.15. The theory does not say that any sufficient statistic from
a REF is complete. Let Y be a random variable from a normal N(0, σ2) dis-
tribution with σ2 > 0. This family is a REF with complete minimal sufficient
statistic Y 2. The data Y is also a sufficient statistic, but Y is not a function
of Y 2. Hence Y is not minimal sufficient and (by Bahadur’s theorem) not
complete. Alternatively Eσ2(Y ) = 0 but Pσ2(Y = 0) = 0 < 1, so Y is not
complete.

Theorem 4.9. a) Suppose Y1, ..., Yn are iid uniform U(a, θ) where a is
known. Then T = max(Y1, ..., Yn) = Y(n) is a complete sufficient statistic for
θ.
b) Suppose Y1, ..., Yn are iid uniform U(θ, b) where b is known. Then T =
min(Y1, ..., Yn) = Y(1) is a complete sufficient statistic for θ.

A common midterm, final and qual question takes X1, ..., Xn iid
U(hl(θ), hu(θ)) where hl and hu are functions of θ such that hl(θ) < hu(θ).
The function hl and hu are chosen so that the min = X(1) and the max =
X(n) form the 2-dimensional minimal sufficient statistic by the LSM theorem.
Since θ is one dimensional, the rule of thumb suggests that the minimal
sufficient statistic is not complete. State this fact, but if you have time find
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Eθ[X(1)] and Eθ[X(n)]. Then show that Eθ[aX(1) + bX(n) + c] ≡ 0 so that
T = (X(1), X(n)) is not complete.

Example 4.16. Let X1, ..., Xn be iid U(1 − θ, 1 + θ) where θ > 0 is
unknown. Hence

fX(x) =
1

2θ
I(1 − θ < x < 1 + θ)

and
f(x)

f(y)
=
I(1 − θ < x(1) ≤ x(n) < 1 + θ)

I(1 − θ < y(1) ≤ y(n) < 1 + θ)

which is constant for all θ > 0 iff (x(1), x(n)) = (y(1), y(n)). Hence T =
(X(1), X(n)) is a minimal sufficient statistic by the LSM theorem. To show
that T is not complete, first find E(T ). Now

FX(t) =

∫ t

1−θ

1

2θ
dx =

t+ θ − 1

2θ

for 1 − θ < t < 1 + θ. Hence by Theorem 4.2a),

fX(n)
(t) =

n

2θ

(
t+ θ − 1

2θ

)n−1

for 1 − θ < t < 1 + θ and

Eθ(X(n)) =

∫

xfX(n)
(x)dx =

∫ 1+θ

1−θ
x
n

2θ

(
x+ θ − 1

2θ

)n−1

dx.

Use u–substitution with u = (x + θ − 1)/2θ and x = 2θu + 1 − θ. Hence
x = 1 + θ implies u = 1, and x = 1 − θ implies u = 0 and dx = 2θdu. Thus

Eθ(X(n)) = n

∫ 1

0

2θu+ 1 − θ

2θ
un−12θdu =

= n

∫ 1

0

[2θu+ 1 − θ]un−1du = 2θn

∫ n

0

undu+ (n− nθ)

∫ 1

0

un−1du =

2θn
un+1

n+ 1

∣
∣
∣
∣

1

0

+ n(1 − θ)
un

n

∣
∣
∣
∣

1

0

=

2θ
n

n+ 1
+
n(1 − θ)

n
= 1 − θ + 2θ

n

n + 1
.
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Note that Eθ(X(n)) ≈ 1 + θ as you should expect.
By Theorem 4.2b),

fX(1)
(t) =

n

2θ

(
θ − t+ 1

2θ

)n−1

for 1 − θ < t < 1 + θ and thus

Eθ(X(1)) =

∫ 1+θ

1−θ
x
n

2θ

(
θ − x+ 1

2θ

)n−1

dx.

Use u–substitution with u = (θ − x + 1)/2θ and x = θ + 1 − 2θu. Hence
x = 1 + θ implies u = 0, and x = 1 − θ implies u = −1 and dx = −2θdu.
Thus

Eθ(X(1)) =

∫ 0

−1

n

2θ
(θ + 1 − 2θu)un−1(−2θ)du = n

∫ 1

0

(θ + 1 − 2θu)un−1du =

n(θ+1)

∫ 1

0

un−1du−2θn

∫ 1

0

undu = (θ+1)n/n−2θn/(n+1) = θ+1−2θ
n

n + 1
.

To show that T is not complete try showing Eθ(aX(1) + bX(n) + c) = 0
for some constants a, b and c. Note that a = b = 1 and c = −2 works. Hence
Eθ(X(1)+X(n)−2) = 0 for all θ > 0 but Pθ(g(T ) = 0) = Pθ(X(1) +X(n)−2 =
0) = 0 < 1 for all θ > 0. Hence T is not complete.

Definition 4.5. Let Y1, ..., Yn have pdf or pmf f(y|θ). A statistic W (Y )
whose distribution does not depend on θ is called an ancillary statistic.

Theorem 4.10, Basu’s Theorem. Let Y1, ..., Yn have pdf or pmf
f(y|θ). If T (Y ) is a k-dimensional complete sufficient statistic, then T (Y )
is independent of every ancillary statistic.

Remark 4.3. Basu’s Theorem says that if T is minimal sufficient and
complete, then T R ifR is ancillary. Application: If T is minimal sufficient,
R ancillary and R is a function of T (so R = h(T ) is not independent of
T ), then T is not complete. Since θ is a scalar, usually need k = 1 for
T = T (Y ) = T (Y ) = T to be complete.

Example 4.17. Suppose X1, ..., Xn are iid uniform observations on the
interval (θ, θ + 1), −∞ < θ < ∞. Let X(1) = min(X1, ..., Xn), X(n) =
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max(X1, ..., Xn) and T (X) = (X(1),X(n)) be a minimal sufficient statistic.
Then R = X(n) − X(1) is ancillary since R = max(X1 − θ, ..., Xn − θ) + θ −
[min(X1 − θ, ..., Xn − θ) + θ] = U(n) − U(1) where Ui = Xi − θ ∼ U(0, 1) has
a distribution that does not depend on θ. R is not independent of T , so T is
not complete.

Example 4.18. Let Y1, ..., Yn be iid from a location family with pdf
fY (y|θ) = fX(y− θ) where Y = X + θ and fX(y) is the standard pdf for the
location family (and thus the distribution of X does not depend on θ).
Claim: W = (Y1 − Y , ..., Yn − Y ) is ancillary.

Proof: Since Yi = Xi + θ,

W =

(

X1 + θ − 1

n

n∑

i=1

(Xi + θ), ..., Xn + θ − 1

n

n∑

i=1

(Xi + θ)

)

= (X1 −X, ..., Xn −X)

and the distribution of the final vector is free of θ. QED
Application: Let Y1, ..., Yn be iid N(µ, σ2). For any fixed σ2, this is a

location family with θ = µ and complete sufficient statistic T (Y ) = Y . Thus
Y W by Basu’s Theorem. Hence Y S2 for any known σ2 > 0 since

S2 =
1

n− 1

n∑

i=1

(Yi − Y )2

is a function of W . Thus Y S2 even if σ2 > 0 is not known.

4.3 Summary

1) A statistic is a function of the data that does not depend on any unknown
parameters.

2) For parametric inference, the data Y1, ..., Yn comes from a family of
parametric distributions f(y|θ) for θ ∈ Θ. Often the data are iid and
f(y|θ) =

∏n
i=1 f(yi|θ). The parametric distribution is completely specified

by the unknown parameters θ. The statistic is a random vector or random
variable and hence also comes from some probability distribution. The dis-
tribution of the statistic is called the sampling distribution of the statistic.
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3) For iid N(µ, σ2) data, Y S2, Y ∼ N(µ, σ2/n) and
∑n

i=1(Yi − Y )2 ∼
σ2χ2

n−1.

4) For iid data with cdf FY and pdf fY , fY(n)
(t) = n[FY (t)]n−1fY (t) and

fY(1)
(t) = n[1 − FY (t)]n−1fY (t).

5) A statistic T (Y1, ..., Yn) is a sufficient statistic for θ if the conditional
distribution of (Y1, ..., Yn) given T does not depend on θ.

6) A sufficient statistic T (Y ) is a minimal sufficient statistic if for any
other sufficient statistic S(Y ), T (Y ) is a function of S(Y ).

7) Suppose that a statistic T (Y ) has a pmf or pdf f(t|θ). Then T (Y ) is
a complete statistic if Eθ[g(T (Y ))] = 0 for all θ implies that
Pθ[g(T (Y )) = 0] = 1 for all θ.

8) Factorization Theorem. Let f(y|θ) denote the pdf or pmf of a
sample Y . A statistic T (Y ) is a sufficient statistic for θ iff for all sample
points y and for all θ in the parameter space Θ,

f(y|θ) = g(T (y)|θ) h(y)

where both g and h are nonnegative functions.
9) Completeness of REFs: Suppose that Y1, ..., Yn are iid from a kP–

REF

f(y|θ) = h(y)c(θ) exp [w1(θ)t1(y) + · · · + wk(θ)tk(y)] (4.10)

with θ ∈ Θ and natural parameter η ∈ Ω. Then

T (Y ) = (
n∑

j=1

t1(Yj), ...,
n∑

j=1

tk(Yj)) is

a) a minimal sufficient statistic for η and for θ,
b) a complete sufficient statistic for θ and for η if η is a one to one function
of θ and if Ω contains a k–dimensional rectangle.

10) LSM Theorem: Let f(y|θ) be the pmf or pdf of a sample Y . Let
cx,y be a constant. Suppose there exists a function T (y) such that for any
two sample points x and y, the ratio Rx,y(θ) = f(x|θ)/f(y|θ) = cx,y for
all θ in Θ iff T (x) = T (y). Then T (Y ) is a minimal sufficient statistic for
θ.

11) Tips for finding sufficient, minimal sufficient and complete sufficient
statistics. a) Typically Y1, ..., Yn are iid so the joint distribution f(y1, ..., yn) =
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∏n
i=1 f(yi) where f(yi) is the marginal distribution. Use the factorization

theorem to find the candidate sufficient statistic T .
b) Use factorization to find candidates T that might be minimal sufficient
statistics. Try to find T with as small a dimension k as possible. If the
support of the random variable depends on θ often Y(1) or Y(n) will be a
component of the minimal sufficient statistic. To prove that T is minimal
sufficient, use the LSM theorem. Alternatively prove or recognize
that Y comes from a regular exponential family. T will be minimal
sufficient for θ if Y comes from an exponential family as long as the wi(θ)
do not satisfy a linearity constraint.
c) To prove that the statistic is complete, prove or recognize that Y
comes from a regular exponential family. Check whether dim(Θ) = k,
if dim(Θ) < k, then the family is usually not a kP–REF and Theorem 4.5
and Corollary 4.6 do not apply. The uniform distribution where one endpoint
is known also has a complete sufficient statistic.
d) Let k be free of the sample size n. Then a k−dimensional complete suffi-
cient statistic is also a minimal sufficient statistic (Bahadur’s theorem).
e) To show that a statistic T is not a sufficient statistic, either show that
factorization fails or find a minimal sufficient statistic S and show that S is
not a function of T .
f) To show that T is not minimal sufficient, first try to show that T is not a
sufficient statistic. If T is sufficient, find a minimal sufficient statistic S and
show that T is not a function of S. (Of course S will be a function of T .)
The Lehmann-Scheffé (LSM) theorem cannot be used to show that
a statistic is not minimal sufficient.
g) To show that a sufficient statistics T is not complete, find a function g(T )
such that Eθ(g(T )) = 0 for all θ but g(T ) is not equal to the zero with
probability one. Finding such a g is often hard, unless there are clues. For
example, if T = (X, Y , ....) and µ1 = µ2, try g(T ) = X − Y . As a rule
of thumb, a k–dimensional minimal sufficient statistic will generally not
be complete if k > dim(Θ). In particular, if T is k–dimensional and θ is
j–dimensional with j < k (especially j = 1 < 2 = k) then T will generally
not be complete. If you can show that a k–dimensional sufficient statistic
T is not minimal sufficient (often hard), then T is not complete by Bahadur’s
Theorem. Basu’s Theorem can sometimes be used to show that a minimal
sufficient statistic is not complete. See Remark 4.3 and Example 4.17.
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4.4 Complements

Stigler (1984) presents Kruskal’s proof that Y S2 when the data are iid
N(µ, σ2), but Zehna (1991) states that there is a flaw in the proof.

The Factorization Theorem was developed with increasing generality by
Fisher, Neyman and by Halmos and Savage (1949).

Bahadur’s Theorem is due to Bahadur (1958) and Lehmann and Scheffé
(1950).

Basu’s Theorem is due to Basu (1959). Also see Koehn and Thomas
(1975).

Some techniques for showing whether a statistic is minimal sufficient are
illustrated in Sampson and Spencer (1976).

4.5 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

Refer to Chapter 10 for the pdf or pmf of the distributions in
the problems below.

4.1. Let X1, ..., Xn be a random sample from a N(µ, σ2) distribution,
which is an exponential family. Show that the sample space of (T1, T2) con-
tains an open subset of R2, if n ≥ 2 but not if n = 1.

Hint: Show that if n ≥ 2, then T1 =
∑n

i=1 Xi and T2 =
∑n

i=1X
2
i . Then

T2 = aT 2
1 +b(X1, ..., Xn) for some constant a where b(X1, ..., Xn) =

∑n
i=1(Xi−

X)2 ∈ (0,∞). So range(T1, T2) = { (t1, t2)|t2 ≥ at21 }. Find a. If n = 1 then
b(X1) ≡ 0 and the curve can not contain an open 2-dimensional rectangle.

4.2. Let X1, ..., Xn be iid exponential(λ) random variables. Use the
Factorization Theorem to show that T (X) =

∑n
i=1 Xi is a sufficient statistic

for λ.
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4.3. Let X1, ..., Xn be iid from a regular exponential family with pdf

f(x|η) = h(x)c∗(η) exp[
k∑

i=1

ηiti(x)].

Let T (X) = (T1(X), ..., Tk(X)) where Ti(X) =
∑n

j=1 ti(Xj).

a) Use the factorization theorem to show that T (X) is a k-dimensional
sufficient statistic for η.

b) Use the Lehmann Scheffé theorem to show that T (X) is a minimal
sufficient statistic for η.
(Hint: in a regular exponential family, if

∑k
i=1 aiηi = c for all η in the natural

parameter space for some fixed constants a1, ..., ak and c, then a1 = · · · =
ak = 0.)

4.4. Let X1, ..., Xn be iid N(µ, γ2
oµ

2) random variables where γ2
o > 0 is

known and µ > 0.

a) Find a sufficient statistic for µ.

b) Show that (
∑n

i=1 xi,
∑n

i=1 x
2
i ) is a minimal sufficient statistic.

c) Find Eµ
∑n

i=1 X
2
i .

d) Find Eµ[(
∑n

i=1Xi)
2].

e) Find

Eµ[
n+ γ2

o

1 + γ2
o

n∑

i=1

X2
i − (

n∑

i=1

Xi)
2].

(Hint: use c) and d).)

f) Is the minimal sufficient statistic given in b) complete? Explain.

4.5. If X1, ..., Xn are iid with f(x|θ) = exp[−(x− θ)]for x > θ, then the
joint pdf can be written as

f(x|θ) = enθ exp(−
∑

xi)I [θ < x(1)].

By the factorization theorem, T (X) = (
∑
Xi, X(1)) is a sufficient statistic.

Show that R(θ) = f(x|θ)/f(y|θ) can be constant even though T (x) 6= T (y).
Hence the Lehmann-Scheffé theorem does not imply that T (X) is a minimal
sufficient statistic.
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Problems from old quizzes and exams.

4.6. Suppose that X1, ..., Xm;Y1, ..., Yn are iid N(µ, 1) random variables.
Find a minimal sufficient statistic for µ.

4.7. Let X1, ..., Xn be iid from a uniform U(θ − 1, θ + 2) distribution.
Find a sufficient statistic for θ.

4.8. Let Y1, ..., Yn be iid with a distribution that has pmf Pθ(X = x) =
θ(1− θ)x−1, x = 1, 2, ..., where 0 < θ < 1. Find a minimal sufficient statistic
for θ.

4.9. Let Y1, ..., Yn be iid Poisson(λ) random variables. Find a minimal
sufficient statistic for λ using the fact that the Poisson distribution is a regular
exponential family (REF).

4.10. Suppose that X1, ..., Xn are iid from a REF with pdf (with respect
to the natural parameterization)

f(x) = h(x)c∗(η) exp[
4∑

i=1

ηiti(x)].

Assume dim(Θ) = 4. Find a complete minimal sufficient statistic T (X) in
terms of n, t1, t2, t3, and t4.

4.11. Let X be a uniform U(−θ, θ) random variable (sample size n = 1).
Hence T (X) = X is a minimal sufficient statistic by Lehmann Scheffé. Is
T (X) a complete sufficient statistic? (Hint: find EθX.)
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4.12. A fact from mathematics is that if the polynomial
P (w) = anw

n + an−1w
n−1 + · · ·+ a2w

2 + a1w + a0 ≡ 0 for all w in a domain
that includes an open interval, then an = · · · = a1 = a0 = 0. Suppose that
you are trying to use the Lehmann Scheffé (LSM) theorem to show that
(
∑
Xi,
∑
X2
i ) is a minimal sufficient statistic and that you have managed to

show that
f(x|µ)

f(y|µ)
≡ c

iff

− 1

2γ2
oµ

2
[
∑

x2
i −

∑

y2
i ] +

1

γ2
oµ

[
∑

xi −
∑

yi] ≡ d (4.11)

for all µ > 0. Parts a) and b) give two different ways to proceed.
a) Let w = 1/µ and assume that γo is known. Identify a2, a1 and a0 and

show that ai = 0 implies that (
∑
Xi,
∑
X2
i ) is a minimal sufficient statistic.

b) Let η1 = 1/µ2 and η2 = 1/µ. Since (4.11) is a polynomial in 1/µ,
can η1 and η2 satisfy a linearity constraint? If not, why is (

∑
Xi,
∑
X2
i ) a

minimal sufficient statistic?

4.13 Let X1, ..., Xn be iid Exponential(λ) random variables and Y1, ..., Ym
iid Exponential(λ/2) random variables. Assume that the Yi’s and Xj ’s are
independent. Show that the statistic (

∑n
i=1 Xi,

∑m
i=1 Yi) is not a complete

sufficient statistic.

4.14. Let X1, ..., Xn be iid gamma(ν, λ) random variables. Find a com-
plete, minimal sufficient statistic (T1(X), T2(X)). (Hint: recall a theorem for
exponential families. The gamma pdf is (for x > 0)

f(x) =
xν−1e−x/λ

λνΓ(ν)
.)

4.15. Let X1, ..., Xn be iid uniform(θ − 1, θ + 1) random variables. The
following expectations may be useful:

EθX = θ, EθX(1) = 1 + θ − 2θ
n

n+ 1
, EθX(n) = 1 − θ + 2θ

n

n+ 1
.

a) Find a minimal sufficient statistic for θ.

b) Show whether the minimal sufficient statistic is complete or not.
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4.16. Let X1, ..., Xn be independent identically distributed random vari-
ables with pdf

f(x) =

√
σ

2πx3
exp

(

− σ

2x

)

where x and σ are both positive. Find a sufficient statistic T (X) for σ.

4.17. Suppose that X1, ..., Xn are iid beta(δ, ν) random variables. Find
a minimal sufficient statistic for (δ, ν). Hint: write as a 2 parameter REF.

4.18. Let X1, ..., Xn be iid from a distribution with pdf

f(x|θ) = θx−2, 0 < θ ≤ x <∞.

Find a sufficient statistic for θ.

4.19. Let X1, ..., Xn be iid with a distribution that has pdf

f(x) =
x

σ2
exp(

−x
2σ2

)

for x > 0 and σ2 > 0. Find a minimal sufficient statistic for σ2 using the
Lehmann-Scheffé theorem.

4.20. Let X1, ..., Xn be iid exponential (λ) random variables. Find a min-
imal sufficient statistic for λ using the fact that the exponential distribution
is a 1P–REF.

4.21. Suppose that X1, ..., Xn are iid N(µ, σ2). Find a complete sufficient
statistic for (µ, σ2).

4.22. (Jan. 2003 QUAL) Let X1 and X2 be iid Poisson (λ) random
variables. Show that T = X1 + 2X2 is not a sufficient statistic for λ. (Hint:
the Factorization Theorem uses the word iff. Alternatively, find a minimal
sufficient statistic S and show that S is not a function of T .)

4.23. (Aug. 2002 QUAL): Suppose that X1, ..., Xn are iid N(σ, σ) where
σ > 0.

a) Find a minimal sufficient statistic for σ.
b) Show that (X,S2) is a sufficient statistic but is not a complete sufficient

statistic for σ.
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4.24. Let X1, ..., Xk be iid binomial(n = 1, θ) random variables and
Y1, ..., Ym iid binomial(n = 1, θ/2) random variables. Assume that the Yi’s
and Xj ’s are independent. Show that the statistic (

∑k
i=1 Xi,

∑m
i=1 Yi) is not

a complete sufficient statistic.

4.25. Suppose that X1, ..., Xn are iid Poisson(λ) where λ > 0. Show that
(X,S2) is not a complete sufficient statistic for λ.

4.26. (Aug. 2004 QUAL): Let X1, ..., Xn be iid beta(θ, θ). (Hence δ =
ν = θ.)

a) Find a minimal sufficient statistic for θ.
b) Is the statistic found in a) complete? (prove or disprove)

4.27. (Sept. 2005 QUAL): Let X1, ..., Xn be independent identically
distributed random variables with probability mass function

f(x) = P (X = x) =
1

xνζ(ν)

where ν > 1 and x = 1, 2, 3, .... Here the zeta function

ζ(ν) =
∞∑

x=1

1

xν

for ν > 1.

a) Find a minimal sufficient statistic for ν.

b) Is the statistic found in a) complete? (prove or disprove)

c) Give an example of a sufficient statistic that is strictly not minimal.



Chapter 5

Point Estimation

5.1 Maximum Likelihood Estimators

A point estimator gives a single value as an estimate of a parameter. For
example, Y = 10.54 is a point estimate of the population mean µ. An inter-
val estimator gives a range (Ln, Un) of reasonable values for the parameter.
Confidence intervals, studied in Chapter 9, are interval estimators. The most
widely used point estimators are the maximum likelihood estimators.

Definition 5.1. Let f(y|θ) be the pmf or pdf of a sample Y with
parameter space Θ. If Y = y is observed, then the likelihood function
L(θ) ≡ L(θ|y) = f(y|θ). For each sample point y = (y1, ..., yn), let θ̂(y) ∈ Θ
be the parameter value at which L(θ) ≡ L(θ|y) attains its maximum as a
function of θ with y held fixed. Then the maximum likelihood estimator
(MLE) of the parameter θ based on the sample Y is θ̂(Y ).

The following remarks are important. I) It is crucial to observe that
the likelihood function is a function of θ (and that y1, ..., yn act as fixed
constants). Note that the pdf or pmf f(y|θ) is a function of n variables
while L(θ) is a function of k variables if θ is a k × 1 vector. Often k = 1 or
k = 2 while n could be in the hundreds or thousands.

II) If Y1, ..., Yn is an independent sample from a population with pdf or
pmf f(y|θ), then the likelihood function

L(θ) ≡ L(θ|y1, ..., yn) =
n∏

i=1

f(yi|θ). (5.1)

133
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L(θ) =

n∏

i=1

fi(yi|θ)

if the Yi are independent but have different pdfs or pmfs.

III) If the MLE θ̂ exists, then θ̂ ∈ Θ. Hence if θ̂ is not in the parameter
space Θ, then θ̂ is not the MLE of θ.

IV) If the MLE is unique, then the MLE is a function of the minimal
sufficient statistic. See Levy (1985) and Moore (1971). This fact is useful
since exponential families tend to have a tractable log likelihood and an easily
found minimal sufficient statistic.

Theorem 5.1: Invariance Principle. If θ̂ is the MLE of θ, then h(θ̂)
is the MLE of h(θ) where h is a function with domain Θ.

This theorem will be proved in Section 5.4.

There are four commonly used techniques for finding the MLE.

• Potential candidates can be found by differentiating log L(θ), the log
likelihood.

• Potential candidates can be found by differentiating the likelihood
L(θ).

• The MLE can sometimes be found by direct maximization of the like-
lihood L(θ).

• Invariance Principle: If θ̂ is the MLE of θ, then h(θ̂) is the MLE of
h(θ).

The one parameter case can often be solved by hand with the following
technique. To show that θ̂ is the MLE of θ is equivalent to showing that θ̂ is
the global maximizer of logL(θ) on Θ where Θ is an interval with endpoints
a and b, not necessarily finite. Show that logL(θ) is differentiable on (a, b).
Then show that θ̂ is the unique solution to the equation d

dθ
logL(θ) = 0 and

that the 2nd derivative evaluated at θ̂ is negative:
d2

dθ2
logL(θ)

∣
∣
∣
∣
θ̂

< 0. See

Remark 5.1V below.
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Figure 5.1: The local max in a) is a global max, but not for b).

Remark 5.1. From calculus, recall the following facts. I) If the function
h is continuous on an interval [a, b] then both the max and min of h exist.
Suppose that h is continuous on an interval [a, b] and differentiable on (a, b).
Solve h′(θ) ≡ 0 and find the places where h′(θ) does not exist. These values
are the critical points. Evaluate h at a, b, and the critical points. One of
these values will be the min and one the max.

II) Assume h is continuous. Then a critical point θo is a local max of h(θ)
if h is increasing for θ < θo in a neighborhood of θo and if h is decreasing for
θ > θo in a neighborhood of θo (and θo is a global max if you can remove the
phrase “in a neighborhood of θo”). The first derivative test is often used.

III) If h is strictly concave (
d2

dθ2
h(θ) < 0 for all θ ∈ Θ), then any local

max of h is a global max.

IV) Suppose h′(θo) = 0. The 2nd derivative test states that if
d2

dθ2
h(θo) < 0,

then θo is a local max.

V) If h(θ) is a continuous function on an interval with endpoints a < b (not
necessarily finite), differentiable on (a, b) and if the critical point is unique,
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then the critical point is a global maximum if it is a local maximum. To
see this claim, note that if the critical point is not the global max then there
would be a local minimum and the critical point would not be unique. Also
see Casella and Berger (2002, p. 317). Let a = −2 and b = 4. In Figure 5.1
a), the critical point for g(θ) = −θ2 + 25 is at θ = 0, is unique, and is both
a local and global maximum. In Figure 5.1 b), h(θ) = θ3 − 1.5θ2 − 6θ + 11,
the critical point θ = −1 is not unique and is a local max but not a global
max.

VI) If h is strictly convex (
d2

dθ2
h(θ) > 0 for all θ ∈ Θ), then any local min

of h is a global min. If h′(θo) = 0, then the 2nd derivative test states that if
d2

dθ2
h(θo) > 0, then θo is a local min.

Tips: a) exp(a) = ea and log(y) = ln(y) = loge(y) is the natural loga-
rithm.
b) log(ab) = b log(a) and log(eb) = b.
c) log(

∏n
i=1 ai) =

∑n
i=1 log(ai).

d) logL(θ) = log(
∏n

i=1 f(yi|θ)) =
∑n

i=1 log(f(yi|θ)).
e) If t is a differentiable function and t(θ) 6= 0, then d

dθ
log(|t(θ)|) = t′(θ)

t(θ)

where t′(θ) = d
dθ
t(θ). In particular, d

dθ
log(θ) = 1/θ.

f) Anything that does not depend on θ is treated as a constant with respect
to θ and hence has derivative 0 with respect to θ.

Showing that θ̂ is the global maximum of log(L(θ)) is much more difficult
in the multiparameter case. To show that θ̂ is a local max often involves using
a Hessian matrix of second derivatives. Calculations involving the Hessian
matrix are often too difficult for exams. Often there is no closed form solution
for the MLE and a computer needs to be used. For hand calculations, Remark
5.2 and Theorem 5.2 can often be used to avoid using the Hessian matrix.

Definition 5.2. Let the data be Y1, ..., Yn and suppose that the pa-
rameter θ has components (θ1, ..., θk). Then θ̂i will be called the MLE of
θi. Without loss of generality, assume that θ = (θ1, θ2), that the MLE of
θ is (θ̂1, θ̂2) and that θ̂2 is known. The profile likelihood function is
LP (θ1) = L(θ1, θ̂2(y)) with domain {θ1 : (θ1, θ̂2) ∈ Θ}.

Remark 5.2. Since L(θ1, θ2) is maximized over Θ by (θ̂1, θ̂2), the max-
imizer of the profile likelihood function and of the log profile likelihood func-
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tion is θ̂1. The log profile likelihood function can often be maximized using
calculus if θ1 = θ1 is a scalar.

Theorem 5.2: Existence of the MLE for a REF (Barndorff–
Nielsen 1982): Assume that the natural parameterization of the k-parameter
REF is used so that Ω is an open k-dimensional convex set (usually an open
interval or cross product of open intervals). Then the log likelihood function
log L(η) is a strictly concave function of η. Hence if η̂ is a critical point of
log L(η) and if η̂ ∈ Ω then η̂ is the unique MLE of η. Hence the Hessian
matrix of 2nd derivatives does not need to be checked!

Remark 5.3. A nice proof of this result would be useful to show that
the result is true and not just part of the statistical folklore. For k-parameter
exponential families with k > 1, it is usually easier to verify that the family
is regular than to calculate the Hessian matrix. For 1P–REFs, check that
the critical point is a global maximum using standard calculus techniques
such as calculating the second derivative of the log likelihood logL(θ). For
a 1P–REF, verifying that the family is regular is often more difficult than
using calculus. Also, often the MLE is desired for a parameter space ΘU

which is not an open set (eg for ΘU = [0, 1] instead of Θ = (0, 1)).

Remark 5.4, (Barndorff–Nielsen 1982). The MLE does not exist
if η̂ is not in Ω, an event that occurs with positive probability for discrete
distributions. If T is the complete sufficient statistic and C is the closed
convex hull of the support of T , then the MLE exists iff T ∈ int C where
int C is the interior of C .

Remark 5.5. As illustrated in the following examples, the 2nd derivative
is evaluated at θ̂(y). The MLE is a statistic and Tn(y) = θ̂(y) is the observed
value of the MLE Tn(Y ) = θ̂(Y ). Often y and Y are suppressed.

Example 5.1. Suppose that Y1, ..., Yn are iid Poisson (θ). This distribu-
tion is a 1P–REF with Θ = (0,∞). The likelihood

L(θ) = c e−nθ exp[log(θ)
∑

yi]

where the constant c does not depend on θ, and the log likelihood

log(L(θ)) = d− nθ + log(θ)
∑

yi
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where d = log(c) does not depend on θ. Hence

d

dθ
log(L(θ)) = −n+

1

θ

∑

yi
set
= 0,

or
∑
yi = nθ, or

θ̂ = y.

Notice that θ̂ is the unique solution and

d2

dθ2
log(L(θ)) =

−∑ yi
θ2

< 0

unless
∑
yi = 0. Hence for

∑
yi > 0 the log likelihood is strictly concave and

Y is the MLE of θ. The MLE does not exist if
∑n

i=1 Yi = 0 since 0 is not in
Θ.

Now suppose that Θ = [0,∞). This family is not an exponential family
since the same formula for the pmf needs to hold for all values of θ ∈ Θ and
00 is not defined. Notice that

f(y|θ) =
e−θθy

y!
I [θ > 0] + 1 I [θ = 0, y = 0].

Now
IA(θ)IB(θ) = IA∩B(θ)

and IØ(θ) = 0 for all θ. Hence the likelihood

L(θ) = e−nθ exp[log(θ)
n∑

i=1

yi]
1

∏n
i=1 yi!

I [θ > 0] + 1 I [θ = 0,
n∑

i=1

yi = 0].

If
∑
yi 6= 0, then y maximizes L(θ) by the work above. If

∑
yi = 0, then

L(θ) = e−nθI(θ > 0) + I(θ = 0) = e−nθI(θ ≥ 0) which is maximized by
θ = 0 = y. Hence Y is the MLE of θ if Θ = [0,∞).

By invariance, t(Y ) is the MLE of t(θ). Hence (Y )2 is the MLE of θ2.
sin(Y ) is the MLE of sin(θ), et cetera.

Example 5.2. Suppose that Y1, ..., Yn are iid N(µ, σ2) where σ2 > 0 and
µ ∈ < = (−∞,∞). Then

L(µ, σ2) =

(
1√
2π

)n
1

(σ2)n/2
exp

[

−1

2σ2

n∑

i=1

(yi − µ)2

]

.
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Notice that
d

dµ

n∑

i=1

(yi − µ)2 =

n∑

i=1

−2(yi − µ)
set
= 0

or
∑n

i=1 yi = nµ or µ̂ = y. Since µ̂ is the unique solution and

d2

dµ2

n∑

i=1

(yi − µ)2 = 2n > 0,

µ̂ = y is the minimizer of h(µ) =
∑n

i=1(yi−µ)2. Hence y is the maximizer of

exp

[

−1

2σ2

n∑

i=1

(yi − µ)2

]

regardless of the value of σ2 > 0. Hence µ̂ = Y is the MLE of µ and the MLE
of σ2 can be found by maximizing the profile likelihood

LP (σ2) = L(µ̂(y), σ2) =

(
1√
2π

)n
1

(σ2)n/2
exp

[

−1

2σ2

n∑

i=1

(yi − y)2

]

.

Writing τ = σ2 often helps prevent calculus errors. Then

log(Lp(τ )) = d − n

2
log(τ ) +

−1

2τ

n∑

i=1

(yi − y)2

where the constant d does not depend on τ. Hence

d

dτ
log(Lp(τ )) =

−n
2

1

τ
+

1

2τ 2

n∑

i=1

(yi − y)2 set
= 0,

or

nτ =
n∑

i=1

(yi − y)2

or

τ̂ =
1

n

n∑

i=1

(yi − y)2

and the solution τ̂ is the unique critical point. Note that

d2

dµ2
log(LP (τ )) =

n

2(τ )2
−
∑

(yi − y)2

(τ )3

∣
∣
∣
∣
τ=τ̂

=
n

2(τ̂ )2
− nτ̂

(τ̂ )3

2

2
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=
−n

2(τ̂ )2
< 0.

Hence σ̂2 = τ̂ = 1
n

∑n
i=1(Yi − Y )2 is the MLE of σ2 by Remark 5.1 V). Thus

(Y , 1
n

∑n
i=1(Yi − Y )2) is the MLE of (µ, σ2).

Example 5.3. Following Pewsey (2002), suppose that Y1, ..., Yn are iid
HN(µ, σ2) where µ and σ2 are both unknown. Let the ith order statistic
Y(i) ≡ Yi:n. Then the likelihood

L(µ, σ2) = cI [y1:n ≥ µ]
1

σn
exp

[

(
−1

2σ2
)
∑

(yi − µ)2

]

.

For any fixed σ2 > 0, this likelihood is maximized by making
∑

(yi − µ)2

as small as possible subject to the constraint y1:n ≥ µ. Notice that for any
µo < y1:n, the terms (yi − y1:n)

2 < (yi − µo)
2. Hence the MLE of µ is

µ̂ = Y1:n

and the MLE of σ2 is found by maximizing the log profile likelihood

log(LP (σ2)) = log(L(y1:n, σ
2)) = d− n

2
log(σ2) − 1

2σ2

∑

(yi − y1:n)
2,

and
d

d(σ2)
log(L(y1:n, σ

2)) =
−n

2(σ2)
+

1

2(σ2)2

∑

(yi − y1:n)
2 set

= 0.

Or
∑

(yi − y1:n)
2 = nσ2. So

σ̂2 ≡ wn =
1

n

∑

(yi − y1:n)
2.

Since the solution σ̂2 is unique and

d2

d(σ2)2
log(L(y1:n, σ

2)) =

n

2(σ2)2
−
∑

(yi − µ)2

(σ2)3
)

∣
∣
∣
∣
σ2=σ̂2

=
n

2(σ̂2)2
− nσ̂2

(σ̂2)3

2

2
=

−n
2σ̂2

< 0,

(µ̂, σ̂2) = (Y1:n,Wn) is MLE of (µ, σ2).
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Example 5.4. Suppose that the random vectors X1, ...,Xn are iid from
a multivariate normal Np(µ,Σ) distribution where Σ is a positive definite
matrix. To find the MLE of (µ,Σ) we will use three results proved in An-
derson (1984, p. 62).

i)

n∑

i=1

(xi − µ)TΣ−1(xi − µ) = tr(Σ−1A) + n(x − µ)TΣ−1(x −µ)

where

A =

n∑

i=1

(xi − x)(xi − x)T .

ii) Let C and D be positive definite matrices. Then C = 1
n
D maximizes

h(C) = −n log(|C|) − tr(C−1D)

with respect to positive definite matrices.
iii) Since Σ−1 is positive definite, (x − µ)TΣ−1(x − µ) ≥ 0 as a function of
µ with equality iff µ = x.

Since

f(x|µ,Σ) =
1

(2π)p/2|Σ|1/2 exp

[

−1

2
(x −µ)TΣ−1(x −µ)

]

,

the likelihood function

L(µ,Σ) =

n∏

i=1

f(xi|µ,Σ)

=
1

(2π)np/2|Σ|n/2 exp

[

−1

2

n∑

i=1

(xi −µ)TΣ−1(xi −µ)

]

,

and the log likelihood log(L(µ,Σ)) =

−np
2

log(2π) − n

2
log(|Σ|)− 1

2

n∑

i=1

(xi − µ)TΣ−1(xi − µ)

= −np
2

log(2π) − n

2
log(|Σ|) − 1

2
tr(Σ−1A) − n

2
(x −µ)TΣ−1(x −µ)
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by i). Now the last term is maximized by µ = x by iii) and the middle two
terms are maximized by 1

n
A by ii) since Σ and A are both positive definite.

Hence the MLE of (µ,Σ) is

(µ̂, Σ̂) = (X,
1

n

n∑

i=1

(X i −X)(X i − X)T ).

Example 5.5. Let X1, ..., Xn be independent identically distributed ran-
dom variables from a lognormal (µ, σ2) distribution with pdf

f(x) =
1

x
√

2πσ2
exp (

−(log(x) − µ)2

2σ2
)

where σ > 0 and x > 0 and µ is real. Assume that σ is known.
a) Find the maximum likelihood estimator of µ.

b) What is the maximum likelihood estimator of µ3? Explain.

Solution: a)

µ̂ =

∑
log(Xi)

n

To see this note that

L(µ) = (
∏ 1

xi
√

2πσ2
) exp(

−∑(log(xi) − µ)2

2σ2
.

So

log(L(µ)) = log(c) −
∑

(log(xi) − µ)2

2σ2

and the derivative of the log likelihood wrt µ is
∑

2(log(xi) − µ)

2σ2
.

Setting this quantity equal to 0 gives nµ =
∑

log(xi) and the solution is
unique. The second derivative is −n/σ2 < 0, so µ̂ is indeed the global
maximum.

b)
(∑

log(Xi)

n

)3

by invariance.
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Example 5.6. Suppose that the joint probability distribution function
of X1, ..., Xk is

f(x1, x2, ..., xk|θ) =
n!

(n− k)!θk
exp

(

−[(
∑k

i=1 xi) + (n− k)xk]

θ

)

where 0 ≤ x1 ≤ x2 ≤ · · · ≤ xk and θ > 0.

a) Find the maximum likelihood estimator (MLE) for θ.

b) What is the MLE for θ2? Explain briefly.

Solution: a) Let t = [(
∑k

i=1 xi)+(n−k)xk]. L(θ) = f(x|θ) and log(L(θ)) =
log(f(x|θ)) =

d− k log(θ) − t

θ
.

Hence
d

dθ
log(L(θ)) =

−k
θ

+
t

θ2

set
= 0.

Hence
kθ = t

or

θ̂ =
t

k
.

This is a unique solution and

d2

dθ2
log(L(θ)) =

k

θ2
− 2t

θ3

∣
∣
∣
∣
θ=θ̂

=
k

θ̂2
− 2kθ̂

θ̂3
= − k

θ̂2
< 0.

Hence θ̂ = T/k is the MLE where T = [(
∑k

i=1Xi) + (n− k)Xk].

b) θ̂2 by the invariance principle.

Example 5.7. Let X1, ..., Xn be independent identically distributed ran-
dom variables with pdf

f(x) =
1

λ
x

1
λ
−1,

where λ > 0 and 0 < x ≤ 1.

a) Find the maximum likelihood estimator of λ.

b) What is the maximum likelihood estimator of λ3? Explain.
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Figure 5.2: Sample Size n = 10

Solution: a) For 0 < x ≤ 1

f(x) =
1

λ
exp

[

(
1

λ
− 1) log(x)

]

.

Hence the likelihood

L(λ) =
1

λn
exp

[

(
1

λ
− 1)

∑

log(xi)

]

,

and the log likelihood

log(L(λ)) = −n log(λ) + (
1

λ
− 1)

∑

log(xi).

Hence
d

dλ
log(L(λ)) =

−n
λ

−
∑

log(xi)

λ2

set
= 0,

or −∑ log(xi) = nλ, or

λ̂ =
−∑ log(xi)

n
.
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Notice that λ̂ is the unique solution and that

d2

dλ2
log(L(λ)) =

n

λ2
+

2
∑

log(xi)

λ3

∣
∣
∣
∣
λ=λ̂

=
n

λ̂2
− 2nλ̂

λ̂3
=

−n
λ̂2

< 0.

Hence λ̂ = −∑ log(Xi)/n is the MLE of λ.

b) By invariance, λ̂3 is the MLE of λ.

Example 5.8. Suppose Y1, ..., Yn are iid U(θ − 1, θ + 1). Then

L(θ) =
n∏

i=1

f(yi) =
n∏

i=1

1

2
I(θ− 1 ≤ yi ≤ θ + 1) =

1

2n
I(θ − 1 ≤ all yi ≤ θ + 1)

=
1

2n
I(θ− 1 ≤ y(1) ≤ y(n) ≤ θ + 1) =

1

2n
I(y(n) − 1 ≤ θ ≤ y(1) + 1).

Let 0 ≤ c ≤ 1. Then any estimator of the form θ̂c = c[Y(n)−1]+(1−c)[Y(1)+1]
is an MLE of θ. Figure 5.2 shows L(θ) for U(2, 4) data with n = 10, y(1) =
2.0375 and y(n) = 3.7383.

5.2 Method of Moments Estimators

The method of moments is another useful way for obtaining point estimators.
Let Y1, ..., Yn be an iid sample and let

µ̂j =
1

n

n∑

i=1

Y j
i and µj ≡ µj(θ) = Eθ(Y j) (5.2)

for j = 1, ..., k. So µ̂j is the jth sample moment and µj is the jth population
moment. Fix k and assume that µj = µj(θ1, ..., θk). Solve the system

µ̂1
set
= µ1(θ1, ..., θk)

...
...

µ̂k
set
= µk(θ1, ..., θk)

for θ̃.
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Definition 5.3. The solution θ̃ = (θ̃1, ..., θ̃k) is the method of mo-
ments estimator of θ. If g is a continuous function of the first k moments
and h(θ) = g(µ1(θ), ..., µk(θ)), then the method of moments estimator of
h(θ) is

g(µ̂1, ..., µ̂k).

Sometimes the notation θ̂MLE and θ̂MM will be used to denote the MLE
and method of moments estimators of θ, respectively.

Example 5.9. Let Y1, ..., Yn be iid from a distribution with a given pdf
or pmf f(y|θ).

a) If E(Y ) = h(θ), then θ̂MM = h−1(Y ).
b) The method of moments estimator of E(Y ) = µ1 is µ̂1 = Y .
c) The method of moments estimator of VARθ(Y ) = µ2(θ) − [µ1(θ)]

2 is

σ̂2
MM = µ̂2 − µ̂2

1 =
1

n

n∑

i=1

Y 2
i − (Y )2 =

1

n

n∑

i=1

(Yi − Y )2 ≡ S2
M .

Method of moments estimators need not be unique. For example both
Y and S2

M are method of moment estimators of θ for iid Poisson(θ) data.
Generally the method of moments estimators that use small j for µ̂j are
preferred, so use Y for Poisson data.

Proposition 5.3. Let S2
M = 1

n

∑n
i=1(Yi − Y )2 and suppose that E(Y ) =

h1(θ1, θ2) and V (Y ) = h2(θ1, θ2). Then solving

Y
set
= h1(θ1, θ2)

S2
M

set
= h2(θ1, θ2)

for θ̃ is a method of moments estimator.

Proof. Notice that µ1 = h1(θ1, θ2) = µ1(θ1, θ2) while µ2 − [µ1]
2 =

h2(θ1, θ2). Hence µ2 = h2(θ1, θ2)+[h1(θ1, θ2)]
2 = µ2(θ1, θ2). Hence the method

of moments estimator is a solution to Y
set
= µ1(θ1, θ2) and 1

n

∑n
i=1 Y

2
i

set
=

h2(θ1, θ2) + [µ1(θ1, θ2)]
2. Equivalently, solve Y

set
= h1(θ1, θ2) and

1
n

∑n
i=1 Y

2
i − [Y ]2 = S2

M
set
= h2(θ1, θ2). QED

Example 5.10. Suppose that Y1, ..., Yn be iid gamma (ν, λ). Then µ̂1
set
=

E(Y ) = νλ and µ̂2
set
= E(Y 2) = VAR(Y )+[E(Y )]2 = νλ2+ν2λ2 = νλ2(1+ν).
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Substitute ν = µ̂1/λ into the 2nd equation to obtain

µ̂2 =
µ̂1

λ
λ2(1 +

µ̂1

λ
) = λµ̂1 + µ̂2

1.

Thus

λ̃ =
µ̂2 − µ̂2

1

µ̂1
=
S2
M

Y
and ν̃ =

µ̂1

λ̃
=

µ̂2
1

µ̂2 − µ̂2
1

=
[Y ]2

S2
M

.

Alternatively, solve Y
set
= νλ and S2

M
set
= νλ2 = (νλ)λ. Hence λ̃ = S2

M/Y and

ν̃ =
Y

λ̃
=

[Y ]2

S2
M

.

5.3 Summary

A) Let Y1, ..., Yn be iid with pdf or pmf f(y|θ). Then L(θ) =
∏n

i=1 f(yi|θ). To
find the MLE,
i) find L(θ) and then find the log likelihood logL(θ).
ii) Find the derivative d

dθ
logL(θ), set the derivative equal to zero and solve

for θ. The solution is a candidate for the MLE.
iii) Invariance Principle: If θ̂ is the MLE of θ, then τ (θ̂) is the MLE of
τ (θ).
iv) Show that θ̂ is the MLE by showing that θ̂ is the global maximizer of
logL(θ). Often this is done by noting that θ̂ is the unique solution to the
equation d

dθ
logL(θ) = 0 and that the 2nd derivative evaluated at θ̂ is nega-

tive:
d2

dθ2
logL(θ)|θ̂ < 0.

B) If logL(θ) is strictly concave (
d2

dθ2
logL(θ) < 0 for all θ ∈ Θ), then

any local max of logL(θ) is a global max.

C) Know how to find the MLE for the normal distribution (including
when µ or σ2 is known). Memorize the MLEs

Y , S2
M =

1

n

n∑

i=1

(Yi − Y )2,
1

n

n∑

i=1

(Yi − µ)2

for the normal and for the uniform distribution. Also Y is the MLE for
several brand name distributions. Notice that S2

M is the method of moments
estimator for V (Y ) and is the MLE for V (Y ) if the data are iid N(µ, σ2).
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D) On qualifying exams, the N(µ, µ) and N(µ, µ2) distributions are
common. See Problem 5.35.

E) Indicators are useful. For example,
∏n

i=1 IA(yi) = I(all yi ∈ A) and
∏k

j=1 IAj(y) = I∩k
j=1Aj

(y). Hence I(0 ≤ y ≤ θ) = I(0 ≤ y)I(y ≤ θ), and
∏n

i=1 I(θ1 ≤ yi ≤ θ2) = I(θ1 ≤ y(1) ≤ y(n) ≤ θ2) = I(θ1 ≤ y(1))I(y(n) ≤ θ2).

F) Let µ̂j = 1
n

∑n
i=1 Y

j
i , let µj = E(Y j) and assume that µj = µj(θ1, ..., θk).

Solve the system

µ̂1
set
= µ1(θ1, ..., θk)

...
...

µ̂k
set
= µk(θ1, ..., θk)

for the method of moments estimator θ̃.
G) If g is a continuous function of the first k moments and h(θ) =

g(µ1(θ), ..., µk(θ)), then the method of moments estimator of h(θ) is
g(µ̂1, ..., µ̂k).

5.4 Complements

Optimization theory is also known as nonlinear programming and shows how
to find the global max and min of a multivariate function. Peressini, Sullivan
and Uhl (1988) is an undergraduate text. Also see Sundaram (1996) and
Bertsekas (1999).

Maximum likelihood estimation is widely used in statistical models. See
Pawitan (2001) and texts for Categorical Data Analysis, Econometrics, Mul-
tiple Linear Regression, Generalized Linear Models, Multivariate Analysis
and Survival Analysis.

Suppose that Y = t(W ) and W = t−1(Y ) where W has a pdf with param-
eters θ, the transformation t does not depend on any unknown parameters,
and the pdf of Y is

fY (y) = fW (t−1(y))

∣
∣
∣
∣

dt−1(y)

dy

∣
∣
∣
∣
.

If W1, ...,Wn are iid with pdf fW (w), assume that the MLE of θ is θ̂W (w)
where the wi are the observed values of Wi and w = (w1, ..., wn). If Y1, ..., Yn
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are iid and the yi are the observed values of Yi, then the likelihood is

LY (θ) =

(
n∏

i=1

∣
∣
∣
∣

dt−1(yi)

dy

∣
∣
∣
∣

)
n∏

i=1

fW (t−1(yi)|θ) = c

n∏

i=1

fW (t−1(yi)|θ).

Hence the log likelihood is log(LY (θ)) =

d +
n∑

i=1

log[fW (t−1(yi)|θ)] = d+
n∑

i=1

log[fW (wi|θ)] = d+ log[LW (θ)]

where wi = t−1(yi). Hence maximizing the log(LY (θ)) is equivalent to maxi-
mizing log(LW (θ)) and

θ̂Y (y) = θ̂W (w) = θ̂W (t−1(y1), ..., t
−1(yn)). (5.3)

Compare Meeker and Escobar (1998, p. 175).

Example 5.11. Suppose Y1, ..., Yn are iid lognormal (µ, σ2). Then Wi =
log(Yi) ∼ N(µ, σ2) and the MLE (µ̂, σ̂2) = (W, 1

n

∑n
i=1(Wi −W )2).

One of the most useful properties of the maximum likelihood estimator is
the invariance property: if θ̂ is the MLE of θ, then τ (θ̂) is the MLE of τ (θ).
Olive (2004) is a good discussion of the MLE invariance principle. Also see
Pal and Berry (1992). Many texts either define the MLE of τ (θ) to be τ (θ̂),
say that the property is immediate from the definition of the MLE, or quote
Zehna (1966). A little known paper, Berk (1967), gives an elegant proof of
the invariance property that can be used in introductory statistical courses.
The next subsection will show that Berk (1967) answers some questions about
the MLE which can not be answered using Zehna (1966).

5.4.1 Two “Proofs” of the Invariance Principle

“Proof” I) The following argument of Zehna (1966) also appears in Casella
and Berger (2002, p. 320). Let θ ∈ Θ and let h : Θ → Λ be a function.
Since the MLE

θ̂ ∈ Θ, h(θ̂) = λ̂ ∈ Λ.

If h is not one to one, then many values of θ may be mapped to λ. Let

Θλ = {θ : h(θ) = λ}
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and define the induced likelihood function M(λ) by

M(λ) = sup
θ∈Θ

λ

L(θ). (5.4)

Then for any λ ∈ Λ,

M(λ) = sup
θ∈Θ

λ

L(θ) ≤ sup
θ∈Θ

L(θ) = L(θ̂) = M(λ̂). (5.5)

Hence h(θ̂) = λ̂ maximizes the induced likelihood M(λ). Zehna (1966) says
that since h(θ̂) maximizes the induced likelihood, we should call h(θ̂) the
MLE of h(θ), but the definition of MLE says that we should be maximizing
a genuine likelihood.

This argument raises two important questions.

• If we call h(θ̂) the MLE of h(θ) and h is not one to one, does h(θ̂)
maximize a likelihood or should h(θ̂) be called a maximum induced
likelihood estimator?

• If h(θ̂) is an MLE, what is the likelihood function K(h(θ))?

Some examples might clarify these questions.

• If the population come from a N(µ, σ2) distribution, the invariance
principle says that the MLE of µ/σ is X/SM where

X =
1

n

n∑

i=1

Xi

and

S2
M =

1

n

n∑

i=1

(Xi −X)2

are the MLEs of µ and σ2. Since the function h(x, y) = x/
√
y is not one

to one (eg h(x, y) = 1 if x =
√
y), what is the likelihood K(h(µ, σ2)) =

K(µ/σ) that is being maximized?

• If Xi comes from a Bernoulli(ρ) population, why is Xn(1 − Xn) the
MLE of ρ(1 − ρ)?
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Proof II) Examining the invariance principle for one to one functions h is
also useful. When h is one to one, let η = h(θ). Then the inverse function
h−1 exists and θ = h−1(η). Hence

f(x|θ) = f(x|h−1(η)) (5.6)

is the joint pdf or pmf of x. So the likelihood function of h(θ) = η is

L∗(η) ≡ K(η) = L(h−1(η)). (5.7)

Also note that

sup
η
K(η|x) = sup

η
L(h−1(η)|x) = L(θ̂|x). (5.8)

Thus
η̂ = h(θ̂) (5.9)

is the MLE of η = h(θ) when h is one to one.

If h is not one to one, then the new parameters η = h(θ) do not give
enough information to define f(x|η). Hence we cannot define the likelihood.
That is, a N(µ, σ2) density cannot be defined by the parameter µ/σ alone.
Before concluding that the MLE does not exist if h is not one to one, note
that if X1, ..., Xn are iid N(µ, σ2) then X1, ..., Xn remain iid N(µ, σ2) even
though the investigator did not rename the parameters wisely or is interested
in a function h(µ, σ) = µ/σ that is not one to one. Berk (1967) said that if
h is not one to one, define

w(θ) = (h(θ), u(θ)) = (η,γ) = ξ (5.10)

such that w(θ) is one to one. Note that the choice

w(θ) = (h(θ), θ)

works. In other words, we can always take u to be the identity function.
The choice of w is not unique, but the inverse function

w−1(ξ) = θ

is unique. Hence the likelihood is well defined, and w(θ̂) is the MLE of ξ.
QED



CHAPTER 5. POINT ESTIMATION 152

Example 5.12. Following Lehmann (1999, p. 466), let

f(x|σ) =
1√

2π σ
exp(

−x2

2σ2
)

where x is real and σ > 0. Let η = σk so σ = η1/k = h−1(η). Then

f∗(x|η) =
1√

2π η1/k
exp(

−x2

2η2/k
) = f(x|σ = h−1(η)).

Notice that calling h(θ̂) the MLE of h(θ) is analogous to calling Xn the
MLE of µ when the data are from a N(µ, σ2) population. It is often possible
to choose the function u so that if θ is a p × 1 vector, then so is ξ. For
the N(µ, σ2) example with h(µ, σ2) = h(θ) = µ/σ we can take u(θ) = µ
or u(θ) = σ2. For the Ber(ρ) example, w(ρ) = (ρ(1 − ρ), ρ) is a reasonable
choice.

To summarize, Berk’s proof should be widely used to prove the invariance
principle, and

I) changing the names of the parameters does not change the distribution
of the sample, eg, if X1, ..., Xn are iid N(µ, σ2), then X1, ..., Xn remain iid
N(µ, σ2) regardless of the function h(µ, σ2) that is of interest to the investi-
gator.

II) The invariance principle holds as long as h(θ̂) is a random variable
or random vector: h does not need to be a one to one function. If there is
interest in η = h(θ) where h is not one to one, then additional parameters
γ = u(θ) need to be specified so that w(θ) = ξ = (η,γ) = (h(θ), u(θ)) has a
well defined likelihood K(ξ) = L(w−1(ξ)). Then by Definition 5.2, the MLE
is ξ̂ = w(θ̂) = w(h(θ̂), u(θ̂)) and the MLE of η = h(θ) is η̂ = h(θ̂).

III) Using the identity function γ = u(θ) = θ always works since ξ =
w(θ) = (h(θ), θ) is a one to one function of θ. However, using u(θ) such that
ξ and θ have the same dimension is often useful.

5.5 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.
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Refer to Chapter 10 for the pdf or pmf of the distributions in
the problems below.

5.1∗. Let Y1, ..., Yn be iid binomial (k = 1, ρ).
a) Assume that ρ ∈ Θ = (0, 1) and that 0 <

∑n
i=1 yi < n. Show that the

MLE of ρ is ρ̂ = Y .

b) Now assume that ρ ∈ Θ = [0, 1]. Show that f(y|ρ) = ρy(1−ρ)1−yI(0 <
ρ < 1) + I(ρ = 0, y = 0) + I(ρ = 1, y = 1). Then show that

L(ρ) = ρ
P

y(1−ρ)n−
P

yI(0 < ρ < 1)+I(ρ = 0,
∑

y = 0)+I(ρ = 1,
∑

y = n).

If
∑
y = 0 show that ρ̂ = 0 = y. If

∑
y = n show that ρ̂ = 1 = y. Then

explain why ρ̂ = Y if Θ = [0, 1].

5.2. (1989 Univ. of Minn. and Aug. 2000 SIU QUAL): Let (X, Y ) have
the bivariate density

f(x, y) =
1

2π
exp(

−1

2
[(x− ρ cos θ)2 + (y − ρ sin θ)2]).

Suppose that there are n independent pairs of observations (Xi, Yi) from
the above density and that ρ is known. Assume that 0 ≤ θ ≤ 2π. Find a
candidate for the maximum likelihood estimator θ̂ by differentiating the log
likelihood L(θ). (Do not show that the candidate is the MLE, it is difficult
to tell whether the candidate, 0 or 2π is the MLE without the actual data.)

5.3∗. Suppose a single observation X = x is observed where X is a
random variable with pmf given by the table below. Assume 0 ≤ θ ≤ 1, and
find the MLE θ̂MLE(x). (Hint: drawing L(θ) = L(θ|x) for each of the four
values of x may help.)

x 1 2 3 4
f(x|θ) 1/4 1/4 1+θ

4
1−θ
4

5.4. Let X1, ..., Xn be iid normal N(µ, γ2
oµ

2) random variables where
γ2
o > 0 is known and µ > 0. Find the log likelihood log(L(µ|x1, ..., xn)) and

solve
d

dµ
log(L(µ|x1, ..., xn)) = 0

for µ̂o, a potential candidate for the MLE of µ.

5.5. Suppose that X1, ..., Xn are iid uniform U(0, θ). Use the factorization
theorem to write f(x|θ) = g(T (x)|θ) (so h(x) ≡ 1) where T (x) is a one
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dimensional sufficient statistic. Then plot the likelihood function L(θ) =
g(T (x)|θ) and find the MLE of θ.

5.6. Let Y1, ..., Yn be iid Burr(λ, φ) with φ known. Find the MLE of λ.

5.7. Let Y1, ..., Yn be iid chi(p, σ) with p known. Find the MLE of σ2.

5.8. Let Y1, ..., Yn iid double exponential DE(θ, λ) with θ known. Find
the MLE of λ.

5.9. Let Y1, ..., Yn be iid exponential EXP(λ). Find the MLE of λ.

5.10. If Y1, ..., Yn are iid gamma G(ν, λ) with ν known, find the MLE of
λ.

5.11. If Y1, ..., Yn are iid geometric geom(ρ), find the MLE of ρ.

5.12. If Y1, ..., Yn are iid inverse Gaussian IG(θ, λ) with λ known, find
the MLE of θ.

5.13. If Y1, ..., Yn are iid inverse Gaussian IG(θ, λ) with θ known, find
the MLE of λ.

5.14. If Y1, ..., Yn are iid largest extreme value LEV(θ, σ) where σ is
known, find the MLE of θ.

5.15. If Y1, ..., Yn are iid negative binomial NB(r, ρ) with r known, find
the MLE of ρ.

5.16. If Y1, ..., Yn are iid Rayleigh R(µ, σ) with µ known, find the MLE
of σ2.

5.17. If Y1, ..., Yn are iid Weibull W (k, ρ) with k known, find the MLE of
ρ.

5.18. If Y1, ..., Yn are iid binomial BIN(φ, λ) with φ known, find the
MLE of λ.

5.19. Suppose Y1, ..., Yn are iid two parameter exponential EXP(θ, λ).
a) Show that for any fixed λ > 0, the log likelihood is maximized by y(1).

Hence the MLE θ̂ = Y(1).

b) Find λ̂ by maximizing the profile likelihood.

5.20. Suppose Y1, ..., Yn are iid truncated extreme value TEV(λ). Find
the MLE of λ.
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Problems from old quizzes and exams.

Note: Problem 5.21 would be better if it replaced “λ ≥ 0” by “λ > 0, and
assume

∑
xi > 0.” But problems like 5.21 are extremely common on exams

and in texts.

5.21. Suppose that X1, ..., Xn are iid Poisson with pmf

f(x|λ) = P (X = x|λ) =
e−λλx

x!

where x = 0, 1, ... and λ ≥ 0.

a) Find the MLE of λ. (Make sure that you prove that your estimator
maximizes the likelihood).

b) Find the MLE of (1 − λ)2.

5.22. Suppose thatX1, ..., Xn are iid U(0, θ).Make a plot of L(θ|x1, ..., xn).

a) If the uniform density is f(x) = 1
θ
I(0 ≤ x ≤ θ), find the MLE of θ if it

exists.

b) If the uniform density is f(x) = 1
θ
I(0 < x < θ), find the MLE of θ if

it exists.

5.23. (Jan. 2001 Qual): Let X1, ..., Xn be a random sample from a
normal distribution with known mean µ and unknown variance τ.

a) Find the maximum likelihood estimator of the variance τ.

b) Find the maximum likelihood estimator of the standard deviation
√
τ.

Explain how the MLE was obtained.

5.24. Suppose a single observation X = x is observed where X is a
random variable with pmf given by the table below. Assume 0 ≤ θ ≤ 1. and
find the MLE θ̂MLE(x). (Hint: drawing L(θ) = L(θ|x) for each of the values
of x may help.)

x 0 1
f(x|θ) 1+θ

2
1−θ
2
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5.25. Suppose that X is a random variable with pdf f(x|θ) = (x− θ)2/3
for θ − 1 ≤ x ≤ 2 + θ. Hence L(θ) = (x − θ)2/3 for x − 2 ≤ θ ≤ x + 1.
Suppose that one observation X = 7 was observed. Find the MLE θ̂ for θ.
(Hint: evaluate the likelihood at the critical value and the two endpoints.
One of these three values has to be the MLE.)

5.26. Let X1, ..., Xn be iid from a distribution with pdf

f(x|θ) = θx−2, 0 < θ ≤ x <∞.

a) Find a minimal sufficient statistic for θ.

b) Find the MLE for θ.

5.27. Let Y1, ..., Yn be iid from a distribution with probability mass func-
tion

f(y|θ) = θ(1 − θ)y, where y = 0, 1, ... and 0 < θ < 1.

Assume 0 <
∑
yi < n.

a) Find the MLE of θ. (Show that it is the global maximizer.)

c) What is the MLE of 1/θ2? Explain.

5.28. (Aug. 2002 QUAL): Let X1, ..., Xn be independent identically
distributed random variables from a half normal HN(µ, σ2) distribution with
pdf

f(x) =
2√

2π σ
exp (

−(x− µ)2

2σ2
)

where σ > 0 and x > µ and µ is real. Assume that µ is known.
a) Find the maximum likelihood estimator of σ2.

b) What is the maximum likelihood estimator of σ? Explain.

5.29. (Jan. 2003 QUAL): Let X1, ..., Xn be independent identically dis-
tributed random variables from a lognormal (µ, σ2) distribution with pdf

f(x) =
1

x
√

2πσ2
exp (

−(log(x) − µ)2

2σ2
)

where σ > 0 and x > 0 and µ is real. Assume that σ is known.
a) Find the maximum likelihood estimator of µ.

b) What is the maximum likelihood estimator of µ3? Explain.
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5.30. (Aug. 2004 QUAL): Let X be a single observation from a normal
distribution with mean θ and with variance θ2, where θ > 0. Find the
maximum likelihood estimator of θ2.

5.31. (Sept. 2005 QUAL): Let X1, ..., Xn be independent identically
distributed random variables with probability density function

f(x) =
σ1/λ

λ
exp

[

−(1 +
1

λ
) log(x)

]

I [x ≥ σ]

where x ≥ σ, σ > 0, and λ > 0. The indicator function I [x ≥ σ] = 1 if x ≥ σ
and 0, otherwise. Find the maximum likelihood estimator (MLE) (σ̂, λ̂) of
(σ, λ) with the following steps.

a) Explain why σ̂ = X(1) = min(X1, ..., Xn) is the MLE of σ regardless of
the value of λ > 0.

b) Find the MLE λ̂ of λ if σ = σ̂ (that is, act as if σ = σ̂ is known).

5.32. (Aug. 2003 QUAL): Let X1, ..., Xn be independent identically
distributed random variables with pdf

f(x) =
1

λ
exp

[

−(1 +
1

λ
) log(x)

]

where λ > 0 and x ≥ 1.

a) Find the maximum likelihood estimator of λ.

b) What is the maximum likelihood estimator of λ8 ? Explain.

5.33. (Jan. 2004 QUAL): Let X1, ..., Xn be independent identically dis-
tributed random variables with probability mass function

f(x) = e−2θ 1

x!
exp[log(2θ)x],

for x = 0, 1, . . . , where θ > 0. Assume that at least one Xi > 0.

a) Find the maximum likelihood estimator of θ.

b) What is the maximum likelihood estimator of (θ)4 ? Explain.
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5.34. (Jan. 2006 QUAL): LetX1, ..., Xn be iid with one of two probability
density functions. If θ = 0, then

f(x|θ) =

{
1, 0 ≤ x ≤ 1
0, otherwise.

If θ = 1, then

f(x|θ) =

{
1

2
√
x
, 0 ≤ x ≤ 1

0, otherwise.

Find the maximum likelihood estimator of θ.

Warning: Variants of the following question often appears on qualifying
exams.

5.35. (Aug. 2006 Qual): Let Y1, ..., Yn denote a random sample from a
N(aθ, θ) population.

a) Find the MLE of θ when a = 1.

b) Find the MLE of θ when a is known but arbitrary.

5.36. Suppose that X1, ..., Xn are iid random variable with pdf

f(x|θ) = (x− θ)2/3

for θ − 1 ≤ x ≤ 2 + θ.

a) Assume that n = 1 and that X = 7 was observed. Sketch the log
likelihood function L(θ) and find the maximum likelihood estimator (MLE)
θ̂.

b) Again assume that n = 1 and that X = 7 was observed. Find the
MLE of

h(θ) = 2θ − exp(−θ2).
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5.37. (Aug. 2006 Qual): Let X1, ..., Xn be independent identically dis-
tributed (iid) random variables with probability density function

f(x) =
2

λ
√

2π
ex exp

(−(ex − 1)2

2λ2

)

where x > 0 and λ > 0.
a) Find the maximum likelihood estimator (MLE) λ̂ of λ.

b) What is the MLE of λ2? Explain.

5.38. (Jan. 2007 Qual): Let X1, ..., Xn be independent identically dis-
tributed random variables from a distribution with pdf

f(x) =
2

λ
√

2π

1

x
exp

[−(log(x))2

2λ2

]

where λ > 0 where and 0 ≤ x ≤ 1.

a) Find the maximum likelihood estimator (MLE) of λ.

b) Find the MLE of λ2.



Chapter 6

UMVUEs and the FCRLB

Warning: UMVUE theory is rarely used in practice unless the UMVUE Un
of θ satisfies Un = anθ̂MLE where an is a constant that could depend on the
sample size n. UMVUE theory tends to be somewhat useful if the data is iid
from a 1P–REF.

6.1 MSE and Bias

Definition 6.1. Let the sample Y = (Y1, ..., Yn) where Y has a pdf or pmf
f(y|θ) for θ ∈ Θ. Assume all relevant expectations exist. Let τ (θ) be a real
valued function of θ, and let T ≡ T (Y1, ..., Yn) be an estimator of τ (θ). The
bias of the estimator T for τ (θ) is

B(T ) ≡ B
τ (θ)

(T ) ≡ Bias(T) ≡ Bias
τ (θ)

(T) = Eθ(T) − τ (θ). (6.1)

The mean squared error (MSE) of an estimator T for τ (θ) is

MSE(T) ≡ MSE
τ (θ)

(T) = Eθ[(T− τ (θ))2]

= V arθ(T ) + [Bias
τ (θ)

(T)]2. (6.2)

T is an unbiased estimator of τ (θ) if

Eθ(T ) = τ (θ) (6.3)

for all θ ∈ Θ. Notice that Bias
τ (θ)

(T) = 0 for all θ ∈ Θ if T is an unbiased

estimator of τ (θ).

160
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Notice that the bias and MSE are functions of θ for θ ∈ Θ. IfMSE
τ (θ)

(T1)

< MSE
τ (θ)

(T2) for all θ ∈ Θ, then T1 is “a better estimator” of τ (θ) than

T2. So estimators with small MSE are judged to be better than ones with
large MSE. Often T1 has smaller MSE than T2 for some θ but larger MSE
for other values of θ.

Often θ is real valued. A common problem considers a class of estimators
Tk(Y ) of τ (θ) where k ∈ Λ. Find the MSE as a function of k and then find
the value ko ∈ Λ that is the global minimizer of MSE(k) ≡ MSE(Tk). This
type of problem is a lot like the MLE problem except you need to find the
global min rather than the global max.

This type of problem can often be done if Tk = kW1(X)+ (1− k)W2(X)
where both W1 and W2 are unbiased estimators of τ (θ) and 0 ≤ k ≤ 1.

Example 6.1. If X1, ..., Xn are iid N(µ, σ2) then ko = n+1 will minimize
the MSE for estimators of σ2 of the form

S2(k) =
1

k

n∑

i=1

(Xi −X)2

where k > 0. See Problem 6.2.

Example 6.2. Find the bias and MSE (as a function of n and c ) of
an estimator T = c

∑n
i=1 Yi or (T = bY ) of θ when Y1, ..., Yn are iid with

E(Y1) = µ = h(θ) and V (Yi) = σ2.
Solution: E(T ) = c

∑n
i=1E(Yi) = ncµ, V (T ) = c2

∑n
i=1 V (Yi) = nc2σ2,

B(T ) = E(T ) − θ and MSE(T ) = V (T ) + [B(T )]2. (For T = bY , use
c = b/n.)

Example 6.3. Suppose that Y1, ..., Yn are independent binomial(mi, ρ)
where the mi ≥ 1 are known constants. Let

T1 =

∑n
i=1 Yi

∑n
i=1 mi

and T2 =
1

n

n∑

i=1

Yi

mi

be estimators of ρ.
a) Find MSE(T1).

b) Find MSE(T2).

c) Which estimator is better?
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Hint: by the arithmetic–geometric–harmonic mean inequality,

1

n

n∑

i=1

mi ≥
n

∑n
i=1

1
mi

.

Solution: a)

E(T1) =

∑n
i=1E(Yi)
∑n

i=1 mi
=

∑n
i=1miρ

∑n
i=1 mi

= ρ,

so MSE(T1) = V (T1) =

1

(
∑n

i=1 mi)2
V (

n∑

i=1

Yi) =
1

(
∑n

i=1 mi)2

n∑

i=1

V (Yi) =
1

(
∑n

i=1 mi)2

n∑

i=1

miρ(1 − ρ)

=
ρ(1 − ρ)
∑n

i=1mi
.

b)

E(T2) =
1

n

n∑

i=1

E(Yi)

mi
=

1

n

n∑

i=1

miρ

mi
=

1

n

n∑

i=1

ρ = ρ,

so MSE(T2) = V (T2) =

1

n2
V (

n∑

i=1

Yi
mi

) =
1

n2

n∑

i=1

V (
Yi
mi

) =
1

n2

n∑

i=1

V (Yi)

(mi)2
=

1

n2

n∑

i=1

miρ(1 − ρ)

(mi)2

=
ρ(1 − ρ)

n2

n∑

i=1

1

mi

.

c) The hint

1

n

n∑

i=1

mi ≥
n

∑n
i=1

1
mi

implies that

n
∑n

i=1 mi
≤
∑n

i=1
1
mi

n
and

1
∑n

i=1 mi
≤
∑n

i=1
1

mi

n2
.

Hence MSE(T1) ≤ MSE(T2), and T1 is better.
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6.2 Exponential Families, UMVUEs and the

FCRLB.

Definition 6.2. Let the sample Y = (Y1, ..., Yn) where Y has a pdf or pmf
f(y|θ) for θ ∈ Θ. Assume all relevant expectations exist. Let τ (θ) be a real
valued function of θ, and let U ≡ U(Y1, ..., Yn) be an estimator of τ (θ). Then
U is the uniformly minimum variance unbiased estimator (UMVUE) of τ (θ)
if U is an unbiased estimator of τ (θ) and if Varθ(U) ≤ Varθ(W) for all θ ∈ Θ
where W is any other unbiased estimator of τ (θ).

The following theorem is the most useful method for finding UMVUEs
since if Y1, ..., Yn are iid from a 1P–REF f(y|θ) = h(y)c(θ) exp[w(θ)t(y)]
where η = w(θ) ∈ Ω = (a, b) and a < b are not necessarily finite, then
T (Y ) =

∑n
i=1 t(Yi) is a complete sufficient statistic. It will turn out that

Eθ[W (Y )|T (Y )] ≡ E[W (Y )|T (Y )] does not depend on θ. Hence U =
E[W (Y )|T (Y )] is a statistic.

Theorem 6.1, Lehmann-Scheffé UMVUE (LSU) Theorem: If
T (Y ) is a complete sufficient statistic for θ, then

U = g(T (Y )) (6.4)

is the UMVUE of its expectation Eθ(U) = Eθ[g(T (Y ))]. In particular, if
W (Y ) is any unbiased estimator of τ (θ), then

U ≡ E[W (Y )|T (Y )] (6.5)

is the UMVUE of τ (θ).

The process (6.5) is called Rao-Blackwellization because of the following
theorem.

Theorem 6.2, Rao-Blackwell Theorem. Let W ≡ W (Y ) be an
unbiased estimator of τ (θ) and let T ≡ T (Y ) be a sufficient statistic for τ (θ).
Then φ(T ) = E[W |T ] is an unbiased estimator of τ (θ) and VARθ[φ(T )] ≤
VARθ(W ) for all θ ∈ Θ.

Proof. Notice that φ(T ) does not depend on θ by the definition of a
sufficient statistic, and that φ(T ) is an unbiased estimator for τ (θ) since
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τ (θ) = Eθ(W ) = Eθ(E(W |T )) = Eθ(φ(T )) by iterated expectations (Theo-
rem 2.10). By Steiner’s formula (Theorem 2.11), VARθ(W ) =

Eθ[VAR(W |T )] + VARθ[E(W |T )] ≥ VARθ[E(W |T )] = VARθ[φ(T )]. QED

Tips for finding the UMVUE:

i) From the LSU Theorem, if T (Y ) is complete sufficient statistic and
g(T (Y )) is a real valued function, then U = g(T (Y )) is the UMVUE of
its expectation Eθ[g(T (Y ))].

ii) Given a complete sufficient statistic T (Y ) (eg T (Y ) =
∑n

i=1 t(Yi) if
the data are iid from a 1P–REF), the first method for finding the UMVUE
of τ (θ) is to guess g and show that Eθ[g(T (Y ))] = τ (θ) for all θ.

iii) If T (Y ) is complete, the second method is to find any unbiased
estimator W (Y ) of τ (θ). Then U(Y ) = E[W (Y )|T (Y )] is the UMVUE of
τ (θ).

This problem is often very hard because guessing g or finding an unbiased
estimatorW and computing E[W (Y )|T (Y )] tend to be difficult. Write down
the two methods for finding the UMVUE and simplify E[W (Y )|T (Y )] as far
as you can for partial credit. If you are asked to find the UMVUE of τ (θ), see
if an unbiased estimator W (Y ) is given in the problem. Also check whether
you are asked to compute E[W (Y )|T (Y ) = t] anywhere.

iv) The following facts can be useful for computing the conditional expec-
tation (Rao-Blackwellization). Suppose Y1, ..., Yn are iid with finite expecta-
tion.
a) Then E[Y1|

∑n
i=1 Yi = x] = x/n.

b) If the Yi are iid Poisson(λ), then (Y1|
∑n

i=1 Yi = x) ∼ bin(x, 1/n).
c) If the Yi are iid Bernoulli Ber(p), then (Y1|

∑n
i=1 Yi = x) ∼ Ber(x/n).

d) If the Yi are iid N(µ, σ2), then (Y1|
∑n

i=1 Yi = x) ∼ N [x/n, σ2(1 − 1/n)].

Often students will be asked to compute a lower bound on the variance
of unbiased estimators of η = τ (θ) when θ is a scalar.

Definition 6.3. Let Y = (Y1, ..., Yn) have a pdf or pmf f(y|θ). Then the
information number or Fisher Information is

IY (θ) ≡ In(θ) = Eθ

([
∂

∂θ
log(f(Y |θ))

]2
)

. (6.6)
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Let η = τ (θ) where τ ′(θ) 6= 0. Then

In(η) ≡ In(τ (θ)) =
In(θ)

[τ ′(θ)]2.
(6.7)

Theorem 6.3. a) Equations (6.6) and (6.7) agree if τ ′(θ) is continuous,
τ ′(θ) 6= 0, and τ (θ) is one to one and onto so that an inverse function exists
such that θ = τ−1(η)

b) If the Y1 ≡ Y is from a 1P–REF, then the Fisher information in a
sample of size one is

I1(θ) = −Eθ
[
∂2

∂θ2
log(f(Y |θ))

]

. (6.8)

c) If the Y1, ..., Yn are iid from a 1P–REF, then

In(θ) = nI1(θ). (6.9)

Hence if τ ′(θ) exists and is continuous and if τ ′(θ) 6= 0, then

In(τ (θ)) =
nI1(θ)

[τ ′(θ)]2
. (6.10)

Proof. a) See Lehmann (1999, p. 467–468).

b) The proof will be for a pdf. For a pmf replace the integrals by sums.
By Remark 3.2, the integral and differentiation operators of all orders can
be interchanged. Note that

0 = E

[
∂

∂θ
log(f(Y |θ))

]

(6.11)

since

∂

∂θ
1 = 0 =

∂

∂θ

∫

f(y|θ)dy =

∫
∂

∂θ
f(y|θ)dy =

∫ ∂
∂θ
f(y|θ)
f(y|θ) f(y|θ)dy

or

0 =
∂

∂θ

∫

f(y|θ)dy =

∫ [
∂

∂θ
log(f(y|θ))

]

f(y|θ)dy
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which is (6.11). Taking 2nd derivatives of the above expression gives

0 =
∂2

∂θ2

∫

f(y|θ)dy =
∂

∂θ

∫ [
∂

∂θ
log(f(y|θ))

]

f(y|θ)dy =

∫
∂

∂θ

([
∂

∂θ
log(f(y|θ))

]

f(y|θ)
)

dy =

∫ [
∂2

∂θ2
log(f(y|θ))

]

f(y|θ)dy +

∫ [
∂

∂θ
log(f(y|θ))

] [
∂

∂θ
f(y|θ)

]
f(y|θ)
f(y|θ)dy

=

∫ [
∂2

∂θ2
log(f(y|θ))

]

f(y|θ)dy +

∫ [
∂

∂θ
log(f(y|θ))

]2

f(y|θ)dy

or

I1(θ) = Eθ[(
∂

∂θ
log f(Y |θ))2] = −Eθ

[
∂2

∂θ2
log(f(Y |θ))

]

.

c) By independence,

In(θ) = Eθ





(

∂

∂θ
log(

n∏

i=1

f(Yi|θ))
)2


 = Eθ





(

∂

∂θ

n∑

i=1

log(f(Yi|θ))
)2


 =

Eθ

[(

∂

∂θ

n∑

i=1

log(f(Yi|θ))
)(

∂

∂θ

n∑

j=1

log(f(Yj |θ))
)]

=

Eθ

[(
n∑

i=1

∂

∂θ
log(f(Yi|θ))

)(
n∑

j=1

∂

∂θ
log(f(Yj |θ))

)]

=

n∑

i=1

Eθ

[(
∂

∂θ
log(f(Yi|θ))

)2
]

+

∑∑

i6=j
Eθ

[(
∂

∂θ
log(f(Yi|θ))

)(
∂

∂θ
log(f(Yj |θ))

)]

.

Hence

In(θ) = nI1(θ) +
∑∑

i6=j
Eθ

[(
∂

∂θ
log(f(Yi|θ))

)]

Eθ

[(
∂

∂θ
log(f(Yj |θ))

)]
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by independence. Hence

In(θ) = nI1(θ) + n(n − 1)

[

Eθ

(
∂

∂θ
log(f(Yj |θ))

)]2

since the Yi are iid. Thus In(θ) = nI1(θ) by Equation (6.11) which holds
since the Yi are iid from a 1P–REF. QED

Definition 6.4. Let Y = (Y1, ..., Yn) be the data, and consider τ (θ)
where τ ′(θ) 6= 0. The quantity

FCRLBn(τ (θ)) =
[τ ′(θ)]2

In(θ)

is called the Fréchet Cramér Rao lower bound (FCRLB) for the variance
of unbiased estimators of τ (θ). In particular, if τ (θ) = θ, then FCRLBn(θ) =

1

In(θ)
. The FCRLB is often called the Cramér Rao lower bound (CRLB).

Theorem 6.4, Fréchet Cramér Rao Lower Bound or Information
Inequality. Let Y1, ..., Yn be iid from a 1P–REF with pdf or pmf f(y|θ). Let
W (Y1, ..., Yn) = W (Y ) be any unbiased estimator of τ (θ) ≡ EθW (Y ). Then

VARθ(W (Y )) ≥ FCRLBn(τ (θ)) =
[τ ′(θ)]2

In(θ)
=

[τ ′(θ)]2

nI1(θ)
.

Proof. By Definition 6.4 and Theorem 6.3c,

FCRLBn(τ (θ)) =
[τ ′(θ)]2

In(θ)
=

[τ ′(θ)]2

nI1(θ)
.

Since the Yi are iid from a 1P–REF, by Remark 3.2 the derivative and integral
or sum operators can be interchanged when finding the derivative of Eθh(Y )
if Eθ|h(Y )| <∞. The following argument will be for pdfs. For pmfs, replace
the integrals by appropriate sums. Following Casella and Berger (2002, p.
335-8), the Cauchy Schwarz Inequality is

[Cov(X,Y)]2 ≤ V(X)V(Y), or V(X) ≥ [Cov(X,Y)]2

V(Y)
.

Hence

Vθ(W (Y )) ≥ (Covθ[W(Y ), ∂
∂θ

log(f(Y |θ))])2

Vθ[
∂
∂θ

log(f(Y |θ))] . (6.12)
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Now

Eθ[
∂

∂θ
log(f(Y |θ))] = Eθ

[
∂
∂θ
f(Y |θ)
f(Y |θ)

]

since the derivative of log(h(t)) is h′(t)/h(t). By the definition of expectation,

Eθ[
∂

∂θ
log(f(Y |θ))] =

∫

· · ·
∫

Y

∂
∂θ
f(y|θ)
f(y|θ) f(y|θ)dy

=

∫

· · ·
∫

Y

∂

∂θ
f(y|θ)dy =

d

dθ

∫

· · ·
∫

Y
f(y|θ)dy =

d

dθ
1 = 0.

Notice that f(y|θ) > 0 on the support Y, that the f(y|θ) cancelled in the
2nd term, that the derivative was moved outside of the integral by Remark
3.2, and that the integral of f(y|θ) on the support Y is equal to 1.

This result implies that

Covθ[W(Y ),
∂

∂θ
log(f(Y |θ))] = Eθ[W(Y )

∂

∂θ
log(f(Y |θ))]

= Eθ

[

W (Y ) ( ∂
∂θ
f(Y |θ))

f(Y |θ)

]

since the derivative of log(h(t)) is h′(t)/h(t). By the definition of expectation,
the right hand side is equal to

∫

· · ·
∫

Y

W (y) ∂
∂θ
f(y|θ)

f(y|θ) f(y|θ)dy =
d

dθ

∫

· · ·
∫

Y
W (y)f(y|θ)dy

=
d

dθ
EθW (Y ) = τ ′(θ) = Covθ[W(Y ),

∂

∂θ
log(f(Y |θ))]. (6.13)

Since

Eθ[
∂

∂θ
log f(Y |θ)] = 0,

Vθ[
∂

∂θ
log(f(Y |θ))] = Eθ([

∂

∂θ
log(f(Y |θ))]2) = In(θ) (6.14)

by Definition 6.3. Plugging (6.13) and (6.14) into (6.12) gives the result.
QED

Theorem 6.4 is not very useful in applications. If the data are iid from
a 1P–REF then FCRLBn(τ (θ)) = [τ ′(θ)]2/[nI1(θ)] by Theorem 6.4. Notice
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that W (Y ) is an unbiased estimator of τ (θ) since EθW (Y ) = τ (θ). Hence
if the data are iid from a 1P–REF and if VARθ(W (Y )) = FCRLBn(τ (θ))
for all θ ∈ Θ then W (Y ) is the UMVUE of τ (θ); however, this technique for
finding a UMVUE rarely works since typically equality holds only if
1) the data come from a 1P–REF with complete sufficient statistic T , and
2) W = a + bT is a linear function of T .
The FCRLB inequality will typically be strict for nonlinear functions of T
if the data is iid from a 1P–REF. If T is complete, g(T ) is the UMVUE of
its expectation, and determining that T is the complete sufficient statistic
from a 1P–REF is simpler than computing VARθ(W ) and FCRLBn(τ (θ)). If
the family is not an exponential family, the FCRLB may not be a lower
bound on the variance of unbiased estimators of τ (θ).

Example 6.4. Let Y1, ..., Yn be iid random variables with pdf

f(y) =
2√
2πλ

1

y
I[0,1](y) exp

[−(log(y))2

2λ2

]

where λ > 0. Then [log(Yi)]
2 ∼ G(1/2, 2λ2) ∼ λ2χ2

1.
a) Find the uniformly minimum variance estimator (UMVUE) of λ2.

b) Find the information number I1(λ).

c) Find the Fréchet Cramér Rao lower bound (FCRLB) for estimating
τ (λ) = λ2.

Solution. a) This is a one parameter exponential family with complete
sufficient statistic Tn =

∑n
i=1[log(Yi)]

2. Now E(Tn) = nE([log(Yi)]
2) = nλ2.

Hence E(Tn/n) = λ2 and Tn/n is the UMVUE of λ2 by the LSU Theorem.
b) Now

log(f(y|λ)) = log(2/
√

2π) − log(λ) − log(y) − [log(y)]2

2λ2
.

Hence
d

dλ
log(f(y|λ)) =

−1

λ
+

[log(y)]2

λ3
,

and
d2

dλ2
log(f(y|λ)) =

1

λ2
− 3[log(y)]2

λ4
.

Thus

I1(λ) = −E
[

1

λ2
− 3[log(Y )]2

λ4

]

=
−1

λ2
+

3λ2

λ4
=

2

λ2
.
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c)

FCRLB(τ (λ)) =
[τ ′(λ)]2

nI1(λ)
.

Now τ (λ) = λ2 and τ ′(λ) = 2λ. So

FCRLB(τ (λ)) =
4λ2

n2/λ2
=

2λ4

n
.

Example 6.5. Suppose that X1, ..., Xn are iid Bernoulli(p) where n ≥ 2
and 0 < p < 1 is the unknown parameter.

a) Derive the UMVUE of τ (p), where τ (p) = e2(p(1 − p)).

b) Find the FCRLB for estimating τ (p) = e2(p(1 − p)).

Solution: a) Consider the statistic W = X1(1−X2) which is an unbiased
estimator of τ (p) = p(1 − p). The statistic T =

∑n
i=1Xi is both complete

and sufficient. The possible values of W are 0 or 1. Then U = φ(T ) where

φ(t) = E[X1(1 −X2)|T = t]

= 0P [X1(1 −X2) = 0|T = t] + 1P [X1(1 −X2) = 1|T = t]

= P [X1(1 −X2) = 1|T = t]

=
P [X1 = 1, X2 = 0 and

∑n
i=1 Xi = t]

P [
∑n

i=1Xi = t]

=
P [X1 = 1]P [X2 = 0]P [

∑n
i=3Xi = t− 1]

P [
∑n

i=1Xi = t]
.

Now
∑n

i=3Xi is Bin(n− 2, p) and
∑n

i=1Xi is Bin(n, p). Thus

φ(t) =
p(1 − p)[

(
n−2
t−1

)
pt−1(1 − p)n−t−1]

(
n
t

)
pt(1 − p)n−t

=

(
n−2
t−1

)

(
n
t

) =
(n − 2)!

(t− 1)!(n− 2 − t+ 1)!

t(t− 1)!(n− t)(n− t− 1)!

n(n− 1)(n− 2)!
=

t(n− t)

n(n− 1)

=
t
n
(n− n t

n
)

n− 1
=

t
n
n(1 − t

n
)

n− 1
=

n

n− 1
x(1 − x).

Thus n
n−1

X(1 −X) is the UMVUE of p(1 − p) and U = e2 n
n−1

X(1 −X)
is the UMVUE of τ (p) = e2p(1 − p).
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Alternatively, X is a complete sufficient statistic, so try an estimator of
the form U = a(X)2+bX+c. Then U is the UMVUE if Ep(U) = e2p(1−p) =
e2(p − p2). Now E(X) = E(X1) = p and V (X) = V (X1)/n = p(1 − p)/n
since

∑
Xi ∼ Bin(n, p). So E[(X)2] = V (X) + [E(X)]2 = p(1 − p)/n + p2.

So Ep(U) = a[p(1 − p)/n] + ap2 + bp+ c

=
ap

n
− ap2

n
+ ap2 + bp + c = (

a

n
+ b)p + (a− a

n
)p2 + c.

So c = 0 and a− a
n

= an−1
n

= −e2 or

a =
−n
n− 1

e2.

Hence a
n

+ b = e2 or

b = e2 − a

n
= e2 +

n

n(n− 1)
e2 =

n

n− 1
e2.

So

U =
−n
n − 1

e2(X)2 +
n

n− 1
e2X =

n

n− 1
e2X(1 −X).

b) The FCRLB for τ (p) is [τ ′(p)]2/nI1(p). Now f(x) = px(1 − p)1−x, so
log f(x) = x log(p) + (1 − x) log(1 − p). Hence

∂ log f

∂p
=
x

p
− 1 − x

1 − p

and
∂2 log f

∂p2
=

−x
p2

− 1 − x

(1 − p)2
.

So

I1(p) = −E(
∂2 log f

∂p2
) = −(

−p
p2

− 1 − p

(1 − p)2
) =

1

p(1 − p)
.

So

FCRLB =
[e2(1 − 2p)]2

n
p(1−p)

=
e4(1 − 2p)2p(1 − p)

n
.

Example 6.6. Let X1, ..., Xn be iid random variables with pdf

f(x) =
1

λ
φxφ−1 1

1 + xφ
exp

[

− 1

λ
log(1 + xφ)

]
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where x, φ, and λ are all positive. If φ is known, find the uniformly minimum
unbiased estimator of λ using the fact that log(1+Xφ

i ) ∼ Gamma (ν = 1, λ).

Solution: This is a regular one parameter exponential family with com-
plete sufficient statistic Tn =

∑n
i=1 log(1+Xφ

i ) ∼ G(n, λ). Hence E(Tn) = nλ
and Tn/n is the UMVUE of λ.

6.3 Summary

1) The bias of the estimator T for τ (θ) is

B(T ) ≡ B
τ (θ)

(T ) ≡ Bias
τ (θ)

(T) = EθT − τ (θ)

and the MSE is

MSE
τ (θ)

(T) = Eθ[(T − τ (θ))2] = Vθ(T) + [Bias
τ (θ)

(T)]2.

2) T is an unbiased estimator of τ (θ) if EθT = τ (θ) for all θ ∈ Θ.

3) Let U ≡ U(Y1, ..., Yn) be an estimator of τ (θ). Then U is the UMVUE
of τ (θ) if U is an unbiased estimator of τ (θ) and if VARθU ≤ VARθW for all
θ ∈ Θ where W is any other unbiased estimator of τ (θ).

4) If Y1, ..., Yn are iid from a 1P–REF f(y|θ) = h(y)c(θ) exp[w(θ)t(y)]
where η = w(θ) ∈ Ω = (a, b), and if T ≡ T (Y ) =

∑n
i=1 t(Yi), then by the

LSU Theorem, g(T ) is the UMVUE of its expectation τ (θ) = Eθ(g(T )).

5) Given a complete sufficient statistic T (Y ) and any unbiased estimator
W (Y ) of τ (θ), then U(Y ) = E[W (Y )|T (Y )] is the UMVUE of τ (θ).

7) In(θ) = Eθ[(
∂
∂θ

log f(Y |θ))2].

8) FCRLBn(τ (θ)) =
[τ ′(θ)]2

In(θ)
.

9) If Y1, ..., Yn are iid from a 1P–REF f(y|θ) = h(y)c(θ) exp[w(θ)t(y)],
then a)

I1(θ) = −Eθ
[
∂2

∂θ2
log(f(Y |θ))

]

.

b)

In(τ (θ)) =
nI1(θ)

[τ ′(θ)]2
.
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c)

FCRLBn(τ (θ)) =
[τ ′(θ)]2

nI1(θ)
.

d) Information inequality: Let Y1, ..., Yn be iid from a 1P–REF and let
W (Y ) be any unbiased estimator of τ (θ) ≡ EθW (Y ). Then

VARθ(W (Y )) ≥ FCRLBn(τ (θ)) =
[τ ′(θ)]2

nI1(θ)
.

e) Rule of thumb for a 1P–REF: Let T (Y ) =
∑n

i=1 t(Yi) and τ (θ) =
Eθ(g(T (Y )). Then g(T (Y )) is the UMVUE of τ (θ) by LSU, but the in-
formation inequality is strict for nonlinear functions g(T (Y )). Expect the
equality

VARθ(g(T (Y )) =
[τ ′(θ)]2

nI1(θ)

only if g is a linear function, ie, g(T ) = a + bT for some fixed constants a
and b.

10) If the family is not an exponential family, the FCRLB may not be
a lower bound on the variance of unbiased estimators of τ (θ).

6.4 Complements

For a more precise statement of when the FCRLB is achieved and for some
counterexamples, see Wijsman (1973) and Joshi (1976). Although the FCRLB
is not very useful for finding UMVUEs, similar ideas are useful for finding the
asymptotic variances of UMVUEs and MLEs. See Chapter 8 and Portnoy
(1977).

Karakostas (1985) has useful references for UMVUEs. Also see Guenther
(1978).

6.5 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

Refer to Chapter 10 for the pdf or pmf of the distributions in
the problems below.
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6.1∗. Let W be an estimator of τ (θ). Show that

MSEτ (θ)(W ) = V arθ(W ) + [Biasτ (θ)(W )]2.

6.2. (Aug. 2002 QUAL): Let X1, ..., Xn be independent identically dis-
tributed random variable from a N(µ, σ2) distribution. Hence E(X1) = µ
and V AR(X1) = σ2. Consider estimates of σ2 of the form

S2(k) =
1

k

n∑

i=1

(Xi −X)2

where k > 0 is a constant to be chosen. Determine the value of k which gives
the smallest mean square error. (Hint: Find the MSE as a function of k,
then take derivatives with respect to k. Also, use Theorem 4.1c.)

6.3. Let X1, ..., Xn be iid N(µ, 1) random variables. Find τ (µ) such that
T (X1, ..., Xn) = (

∑n
i=1Xi)

2 is the UMVUE of τ (µ).

6.4. Let X ∼ N(µ, σ2) where σ2 is known. Find the Fisher information
I1(µ).

6.5. Let X ∼ N(µ, σ2) where µ is known. Find the Fisher information
I1(σ

2).

6.6. Let X1, ..., Xn be iid N(µ, σ2) random variables where µ is known
and σ2 > 0. Then W =

∑n
i=1(Xi − µ)2 is a complete sufficient statistic and

W ∼ σ2χ2
n. From Chapter 10,

EY k =
2kΓ(k + n/2)

Γ(n/2)

if Y ∼ χ2
n. Hence

Tk(X1, ..., Xn) ≡
Γ(n/2)W k

2kΓ(k + n/2)

is the UMVUE of τk(σ
2) = σ2k for k > 0. Note that τk(θ) = (θ)k and θ = σ2.

a) Show that

V arθTk(X1, ..., Xn) = σ4k

[
Γ(n/2)Γ(2k + n/2)

Γ(k + n/2)Γ(k + n/2)
− 1

]

≡ ckσ
4k
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b) Let k = 2 and show that VarθT2−CRLB(τ2(θ)) > 0 where CRLB(τ2(θ))
is for estimating τ2(σ

2) = σ4 and θ = σ2.

6.7. (Jan. 2001 QUAL): Let X1, ..., Xn be independent, identically dis-
tributed N(µ, 1) random variables where µ is unknown and n ≥ 2. Let t be
a fixed real number. Then the expectation

Eµ[S] = Eµ(I(−∞,t](X1)) = Pµ(X1 ≤ t) = Φ(t− µ)

for all µ where Φ(x) is the cumulative distribution function of a N(0, 1)
random variable.

a) Show that the sample mean X is a sufficient statistic for µ.

b) Explain why (or show that) X is a complete sufficient statistic for µ.

c) Using the fact that the conditional distribution of X1 given X = x is
the N(x, 1 − 1/n) distribution where the second parameter 1 − 1/n is the
variance of conditional distribution, find

Eµ(I(−∞,t](X1)|X = x) = Eµ[I(−∞,t](W )]

where W ∼ N(x, 1 − 1/n). (Hint: your answer should be Φ(g(x)) for some
function g.)

d) What is the uniformly minimum variance unbiased estimator for
Φ(t− µ)?

Problems from old quizzes and exams.

6.8. Suppose that X is Poisson with pmf

f(x|λ) = P (X = x|λ) =
e−λλx

x!

where x = 0, 1, ... and λ > 0. Find the Fisher information I1(λ).

6.9. Let X1, ..., Xn be iid Exponential(β) random variables and Y1, ..., Ym
iid Exponential(β/2) random variables. Assume that the Yi’s and Xj’s are
independent.

a) Find the joint pdf f(x1, ..., xn, y1, ..., ym) and show that this pdf is a
regular exponential family with complete sufficient statistic T =

∑n
i=1 Xi +

2
∑m

i=1 Yi.
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b) Find the function τ (β) such that T is the UMVUE of τ (β). (Hint:
find EβT. The theorems of this chapter apply since X1, ..., Xn, 2Y1, ..., 2Ym
are iid.)

6.10. Let X1, ..., Xn be independent, identically distributed N(µ, 1) ran-
dom variables where µ is unknown.

a) Find EµX
2
1 .

b) Using the fact that the conditional distribution of X1 given X = x is
the N(x, 1 − 1/n) distribution where the second parameter 1 − 1/n is the
variance of conditional distribution, find

Eµ(X
2
1 |X = x).

[Hint: this expected value is equal to E(W 2) where W ∼ N(x, 1 − 1/n).]

c) What is the MLE for µ2 + 1? (Hint: you may use the fact that the
MLE for µ is X.)

d) What is the uniformly minimum variance unbiased estimator for µ2+1?
Explain.

6.11. Let X1, ..., Xn be a random sample from a Poisson(λ) population.

a) Find the Fréchet Cramér Rao lower bound FCRLBn(λ
2) for the vari-

ance of an unbiased estimator of τ (λ) = λ2.

b) The UMVUE for λ2 is T (X1, ..., Xn) = (X)2 − X/n. Will V arλT =
FCRLBn(λ

2) or will V arλT > FCRLBn(λ
2)? Explain. (Hint: use the rule

of thumb 9e from Section 6.3.)
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6.12. Let X1, ..., Xn be independent, identically distributed Poisson(λ)
random variables where λ > 0 is unknown.

a) Find EλX
2
1 .

b) Using the fact that the conditional distribution of X1 given
∑n

i=1Xi =
y is the Binomial(y, 1/n) distribution, find

Eλ(X
2
1 |

n∑

i=1

Xi = y).

c) Find τ (λ) such that Eλ(X
2
1 |
∑n

i=1Xi) is the uniformly minimum vari-
ance unbiased estimator for τ (λ).

6.13. Let X1, ..., Xn be iid Bernoulli(ρ) random variables.

a) Find the Fisher information I1(ρ).

b) Find the Fréchet Cramér Rao lower bound for unbiased estimators of
τ (ρ) = ρ.

c) The MLE for ρ is X. Find Var(X).

d) Does the MLE achieve the FCRLB? Is this surprising? Explain.

6.14. (Jan. 2003 QUAL): Let X1, ..., Xn be independent, identically dis-
tributed exponential(θ) random variables where θ > 0 is unknown. Consider
the class of estimators of θ

{Tn(c) = c

n∑

i=1

Xi | c > 0}.

Determine the value of c that minimizes the mean square error MSE. Show
work and prove that your value of c is indeed the global minimizer.
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6.15. Let X1, ..., Xn be iid from a distribution with pdf

f(x|θ) = θxθ−1I(0 < x < 1), θ > 0.

a) Find the MLE of θ.

b) What is the MLE of 1/θ2? Explain.

c) Find the Fisher information I1(θ).You may use the fact that − log(X) ∼
exponential(1/θ).

d) Find the Fréchet Cramér Rao lower bound for unbiased estimators of
τ (θ) = 1/θ2.

6.16. LetX1, ..., Xn be iid random variables withE(X) = µ and V ar(X) =
1. Suppose that T =

∑n
i=1 Xi is a complete sufficient statistic. Find the

UMVUE of µ2.

6.17. Let X1, ..., Xn be iid exponential(λ) random variables.

a) Find I1(λ).

b) Find the FCRLB for estimating τ (λ) = λ2.

c) If T =
∑n

i=1 Xi, it can be shown that the UMVUE of λ2 is

W =
Γ(n)

Γ(2 + n)
T 2.

Do you think that V arλ(W ) is equal to the FCRLB in part b)? Explain
briefly.

6.18. Let X1, ..., Xn be iidN(µ, σ2) where µ is known and n > 1. Suppose
interest is in estimating θ = σ2. You should have memorized the fact that

(n− 1)S2

σ2
∼ χ2

n−1.

a) Find the MSE of S2 for estimating σ2.

b) Find the MSE of T for estimating σ2 where

T =
1

n

n∑

i=1

(xi − µ)2.
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6.19. (Aug. 2000 SIU, 1995 Univ. Minn. QUAL): Let X1, ..., Xn be
independent identically distributed random variable from a N(µ, σ2) distri-
bution. Hence E(X1) = µ and V AR(X1) = σ2. Suppose that µ is known and
consider estimates of σ2 of the form

S2(k) =
1

k

n∑

i=1

(Xi − µ)2

where k is a constant to be chosen. Note: E(χ2
m) = m and V AR(χ2

m) = 2m.
Determine the value of k which gives the smallest mean square error. (Hint:
Find the MSE as a function of k, then take derivatives with respect to k.)

6.20. (Aug. 2001 QUAL): Let X1, ..., Xn be independent identically
distributed random variables with pdf

f(x|θ) =
2x

θ
e−x

2/θ, x > 0

and f(x|θ) = 0 for x ≤ 0.

a) Show that X2
1 is an unbiased estimator of θ. (Hint: use the substitution

W = X2 and find the pdf of W or use u-substitution with u = x2/θ.)

b) Find the Cramer-Rao lower bound for the variance of an unbiased
estimator of θ.

c) Find the uniformly minimum variance unbiased estimator (UMVUE)
of θ.

6.21. (Aug. 2001 QUAL): See Mukhopadhyay (2000, p. 377). Let
X1, ..., Xn be iid N(θ, θ2) normal random variables with mean θ and variance
θ2. Let

T1 = X =
1

n

n∑

i=1

Xi

and let

T2 = cnS = cn

√
∑n

i=1(Xi −X)2

n− 1

where the constant cn is such that Eθ[cnS] = θ. You do not need to find the
constant cn. Consider estimators W (α) of θ of the form.

W (α) = αT1 + (1 − α)T2
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where 0 ≤ α ≤ 1.

a) Find the variance

V arθ[W (α)] = V arθ(αT1 + (1 − α)T2).

b) Find the mean square error of W (α) in terms of V arθ(T1), V arθ(T2)
and α.

c) Assume that

V arθ(T2) ≈
θ2

2n
.

Determine the value of α that gives the smallest mean square error. (Hint:
Find the MSE as a function of α, then take the derivative with respect to
α. Set the derivative equal to zero and use the above approximation for
V arθ(T2). Show that your value of α is indeed the global minimizer.)

6.22. (Aug. 2003 QUAL): Suppose that X1, ..., Xn are iid normal dis-
tribution with mean 0 and variance σ2. Consider the following estimators:

T1 = 1
2
|X1 −X2| and T2 =

√
1
n

∑n
i=1 X

2
i .

a) Is T1 unbiased for σ? Evaluate the mean square error (MSE) of T1.

b) Is T2 unbiased for σ? If not, find a suitable multiple of T2 which is
unbiased for σ.

6.23. (Aug. 2003 QUAL): Let X1, ..., Xn be independent identically
distributed random variables with pdf (probability density function)

f(x) =
1

λ
exp

(

−x
λ

)

where x and λ are both positive. Find the uniformly minimum variance
unbiased estimator (UMVUE) of λ2.
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6.24. (Jan. 2004 QUAL): Let X1, ..., Xn be independent identically dis-
tributed random variables with pdf (probability density function)

f(x) =

√
σ

2πx3
exp

(

− σ

2x

)

where x and σ are both positive. Then Xi =
σ

Wi
where Wi ∼ χ2

1. Find the

uniformly minimum variance unbiased estimator (UMVUE) of
1

σ
.

6.25. (Jan. 2004 QUAL): Let X1, ..., Xn be a random sample from the
distribution with density

f(x) =

{
2x
θ2
, 0 < x < θ

0 elsewhere

Let T = max(X1, ..., Xn). To estimate θ consider estimators of the form CT .
Determine the value of C which gives the smallest mean square error.

6.26. (Aug. 2004 QUAL): Let X1, ..., Xn be a random sample from a
distribution with pdf

f(x) =
2x

θ2
, 0 < x < θ.

Let T = cX be an estimator of θ where c is a constant.

a) Find the mean square error (MSE) of T as a function of c (and of θ
and n).

b) Find the value c that minimizes the MSE. Prove that your value is the
minimizer.

6.27. (Aug. 2004 QUAL): Suppose that X1, ..., Xn are iid Bernoulli(p)
where n ≥ 2 and 0 < p < 1 is the unknown parameter.

a) Derive the UMVUE of ν(p), where ν(p) = e2(p(1 − p)).

b) Find the Cramér Rao lower bound for estimating ν(p) = e2(p(1− p)).

6.28. Let X1, ..., Xn be independent identically distributed Poisson(λ)
random variables. Find the UMVUE of

λ

n
+ λ2.



Chapter 7

Testing Statistical Hypotheses

A hypothesis is a statement about a population parameter θ, and in hypoth-
esis testing there are two competing hypotheses called the null hypothesis
Ho ≡ H0 and the alternative hypothesis H1 ≡ HA. Let Θ1 and Θ0 be dis-
joint sets with Θi ⊂ Θ where Θ is the parameter space. Then Ho : θ ∈ Θ0

and H1 : θ ∈ Θ1.
When a researcher wants strong evidence about a hypothesis, usually this

hypothesis is H1. For example, if Ford claims that their latest car gets 30
mpg on average, thenHo : µ = 30 and H1 : µ > 30 are reasonable hypotheses
where θ = µ is the population mean mpg of the car.

Definition 7.1. Assume that the data Y = (Y1, ..., Yn) has pdf or pmf
f(y|θ) for θ ∈ Θ. A hypothesis test is a rule for rejecting Ho.

Definition 7.2. A type I error is rejecting Ho when Ho is true. A type
II error is failing to reject Ho when Ho is false. Pθ(reject Ho) = Pθ(type I
error) if θ ∈ Θ0 while Pθ(reject Ho) = 1 − Pθ(type II error) if θ ∈ Θ1.

Definition 7.3. The power function of a hypothesis test is

β(θ) = Pθ(Ho is rejected)

for θ ∈ Θ.

Often there is a rejection region R and an acceptance region. Reject
Ho if the observed statistic T (y) ∈ R, otherwise fail to reject Ho. Then
β(θ) = Pθ(T (Y ) ∈ R) = Pθ(reject Ho).

182
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Definition 7.4. For 0 ≤ α ≤ 1, a test with power function β(θ) is a size
α test if

sup
θ∈Θ0

β(θ) = α

and a level α test if
sup
θ∈Θ0

β(θ) ≤ α.

Notice that for θ ∈ Θ0, β(θ) = Pθ(type I error) and for θ ∈ Θ1, β(θ) =
1 − Pθ(type II error). We would like β(θ) ≈ 0 for θ ∈ Θ0 and β(θ) ≈ 1
for θ ∈ Θ1, but this may not be possible even if the sample size n is large.
The tradeoff is that decreasing the probability of a type I error increases the
probability of a type II error while decreasing the probability of a type II
error increases the probability of a type I error. The size or level of the test
gives an upper bound α on the probability of the type I error. Typically the
level is fixed, eg α = 0.05, and then we attempt to find tests that have a
small probability of type II error. The following example is a level 0.07 and
size 0.0668 test.

Example 7.1. Suppose that Y ∼ N(µ, 1/9) where µ ∈ {0, 1}. Let
Ho : µ = 0 and H1 : µ = 1. Let T (Y ) = Y and suppose that we reject Ho if
Y ≥ 0.5. Let Z ∼ N(0, 1) and σ = 1/3. Then

β(0) = P0(Y ≥ 0.5) = P0(
Y − 0

1/3
≥ 0.5

1/3
) = P (Z ≥ 1.5) ≈ 0.0668.

β(1) = P1(Y ≥ 0.5) = P1(
Y − 1

1/3
≥ 0.5 − 1

1/3
) = P (Z ≥ −1.5) ≈ 0.9332.

7.1 Exponential Families, the Neyman Pear-

son Lemma, and UMP Tests

Definition 7.5. Consider all level α tests of Ho : θ ∈ Θo vs H1 : θ ∈ Θ1.
A uniformly most powerful (UMP) level α test is a level α test with
power function βUMP(θ) such that βUMP(θ) ≥ β(θ) for every θ ∈ Θ1 where
β is the power function for any level α test of Ho vs H1.

The following three theorems can be used to find UMP tests.
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Theorem 7.1, The Neyman Pearson Lemma (NPL). Consider test-
ing Ho : θ = θ0 vs H1 : θ = θ1 where the pdf or pmf corresponding to θi is
f(y|θi) for i = 0, 1. Suppose the test rejects Ho if f(y|θ1) > kf(y|θ0), and
rejects Ho with probability γ if f(y|θ1) = kf(y|θ0) for some k ≥ 0. If

α = β(θ0) = Pθ0 [f(Y |θ1) > kf(Y |θ0)] + γPθ0 [f(Y |θ1) = kf(Y |θ0)],

then this test is a UMP level α test.

Proof. The proof is for pdfs. Replace the integrals by sums for pmfs.
Following Ferguson (1967, p. 202), a test can be written as a test function
ψ(y) ∈ [0, 1] where ψ(y) is the probability that the test rejects Ho when
Y = y. The Neyman Pearson (NP) test function is

φ(y) =







1, f(y|θ1) > kf(y|θ0)
γ, f(y|θ1) = kf(y|θ0)
0, f(y|θ1) < kf(y|θ0)

and α = Eθ0 [φ(Y )]. Consider any level α test ψ(y). Since ψ(y) is a level α
test,

Eθ0 [ψ(Y )] ≤ Eθ0 [φ(Y )] = α. (7.1)

Then the NP test is UMP if the power

βψ(θ1) = Eθ1[ψ(Y )] ≤ βφ(θ1) = Eθ1 [φ(Y )].

Let fi(y) = f(y|θi) for i = 0, 1. Notice that φ(y) = 1 ≥ ψ(y) if f1(y) >
kf0(y) and φ(y) = 0 ≤ ψ(y) if f1(y) < kf0(y). Hence

∫

[φ(y) − ψ(y)][f1(y) − kf0(y)]dy ≥ 0 (7.2)

since the integrand is nonnegative. Hence the power

βφ(θ1) − βψ(θ1) = Eθ1 [φ(Y )] −Eθ1 [ψ(Y )] ≥ k(Eθ0[φ(Y )] − Eθ0 [ψ(Y )]) ≥ 0

where the first inequality follows from (7.2) and the second inequality from
Equation (7.1). QED
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Theorem 7.2, One Sided UMP Tests via the Neyman Pearson
Lemma. Suppose that the hypotheses are of the form Ho : θ ≤ θo vs
H1 : θ > θo or Ho : θ ≥ θo vs H1 : θ < θo, or that the inequality in Ho is
replaced by equality. Also assume that

sup
θ∈Θ0

β(θ) = β(θo).

Pick θ1 ∈ Θ1 and use the Neyman Pearson lemma to find the UMP test for
H∗
o : θ = θo vs H∗

A : θ = θ1. Then the UMP test rejects H∗
o if f(y|θ1) >

kf(y|θo), and rejects H∗
o with probability γ if f(y|θ1) = kf(y|θo) for some

k ≥ 0 where α = β(θo). This test is also the UMP level α test for Ho : θ ∈ Θ0

vs H1 : θ ∈ Θ1 if k does not depend on the value of θ1 ∈ Θ1.

Theorem 7.3, One Sided UMP Tests for Exponential Families.
Let Y1, ..., Yn be a sample with a joint pdf or pmf from a one parameter ex-
ponential family where w(θ) is increasing and T (y) is the complete sufficient
statistic. Alternatively, let Y1, ..., Yn be iid with pdf or pmf

f(y|θ) = h(y)c(θ) exp[w(θ)t(y)]

from a one parameter exponential family where θ is real and w(θ) is in-
creasing. Here T (y) =

∑n
i=1 t(yi). I) Let θ1 > θo. Consider the test that

rejects Ho if T (y) > k and rejects Ho with probability γ if T (y) = k where
α = Pθo(T (Y ) > k) + γPθo (T (Y ) = k). This test is the UMP test for
a) Ho : θ = θo vs HA : θ = θ1,
b) Ho : θ = θo vs HA : θ > θo, and
c) Ho : θ ≤ θo vs HA : θ > θo.
II) Let θ1 < θo. Consider the test that rejects Ho if T (x) < k and rejects Ho

with probability γ if T (y) = k where α = Pθo(T (Y ) < k)+γPθo (T (Y ) = k).
This test is the UMP test for
d) Ho : θ = θo vs HA : θ = θ1

e) Ho : θ = θo vs HA : θ < θo, and
f) Ho : θ ≥ θo vs HA : θ < θo.

Proof. I) Let θ1 > θo. a) Then

f(y|θ1)

f(y|θo)
=

[
c(θ1)

c(θo)

]n
exp[w(θ1)

∑n
i=1 t(yi)]

exp[w(θ0)
∑n

i=1 t(yi)]
> c

iff

[w(θ1) −w(θ0)]
n∑

i=1

t(yi) > d
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iff
∑n

i=1 t(yi) > k since w(θ) is increasing. Hence the result holds by the NP
lemma. b) The test in a) did not depend on θ1 > θo, so the test is UMP by
Theorem 7.2. c) In a), θo < θ1 were arbitrary, so supθ∈Θ0

β(θ) = β(θo) where
Θo = {θ ∈ Θ|θ ≤ θo}. So the test is UMP by Theorem 7.2. The proof of II)
is similar. QED

Remark 7.1. As a mnemonic, note that the inequality used in the rejec-
tion region is the same as the inequality in the alternative hypothesis. Usually
γ = 0 if f is a pdf. Suppose that the parameterization is

f(y|θ) = h(y)c(θ) exp[w̃(θ)t̃(y)]

where w̃(θ) is decreasing. Then set w(θ) = −w̃(θ) and t(y) = −t̃(y). In
this text, w(θ) is an increasing function if w(θo) < w(θ1) for θo < θ1 and
nondecreasing if w(θo) ≤ w(θ1). Some texts use “strictly increasing” for
“increasing” and use “increasing” for “nondecreasing.”

If the data are iid from a one parameter exponential family, then Theorem
7.3 is simpler to use than the Neyman Pearson lemma since the test statistic
T will have a distribution from an exponential family. This result makes
finding the cutoff value k easier. To find a UMP test via the Neyman Pearson
lemma, you need to check that the cutoff value k does not depend on θ1 ∈ Θ1

and usually need to transform the NP test statistic to put the test in useful
form. With exponential families, the transformed test statistic is often T.

Example 7.2. Suppose that X1, ..., X10 are iid Poisson with unknown
mean λ. Derive the most powerful level α = 0.10 test for H0 : λ = 0.30
versus H1 : λ = 0.40.

Solution: Since

f(x|λ) =
1

x!
e−λ exp[log(λ)x]

and log(λ) is an increasing function of λ, by Theorem 7.3 the UMP test
rejects Ho if

∑
xi > k and rejects Ho with probability γ if

∑
xi = k where

α = 0.1 = PHo(
∑
Xi > k) + γPHo(

∑
Xi = k). Notice that

γ =
α − PHo(

∑
Xi > k)

PHo(
∑
Xi = k)

. (7.3)

Alternatively use the Neyman Pearson lemma. Let

r = f(x|0.4)/f(x|0.3) =
e−nλ1λ

P

xi

1
∏
xi!

∏
xi!

e−nλ0λ
P

xi

0

= e−n(λ1−λ0)

(
λ1

λ0

)P

xi

.
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Since λ1 = 0.4 > 0.3 = λ0, r > c is equivalent to
∑
xi > k and the NP

UMP test has the same form as the UMP test found using the much simpler
Theorem 7.3.

k 0 1 2 3 4 5
P(T = k) 0.0498 0.1494 0.2240 0.2240 0.1680 0.1008

F(k) 0.0498 0.1992 0.4232 0.6472 0.8152 0.9160

If Ho is true, then T =
∑10

i=1 Xi ∼ Pois(3) since 3 = 10λ0 = 10(0.3). The
above table gives the probability that T = k and F (k) = P (T ≤ k). First find
the smallest integer k such that Pλ=0.30(

∑
Xi > k) = P (T > k) < α = 0.1.

Since P (T > k) = 1−F (k), find the smallest value of k such that F (k) > 0.9.
This happens with k = 5. Next use (7.3) to find γ.

γ =
0.1 − (1 − 0.9160)

0.1008
=

0.1 − 0.084

0.1008
=

0.016

0.1008
≈ 0.1587.

Hence the α = 0.1 UMP test rejects Ho if T ≡ ∑10
i=1Xi > 5 and rejects

Ho with probability 0.1587 if
∑10

i=1 Xi = 5. Equivalently, the test function
φ(T ) gives the probability of rejecting Ho for a given value of T where

φ(T ) =







1, T > 5
0.1587, T = 5
0, T < 5.

Example 7.3. Let X1, ..., Xn be independent identically distributed ran-
dom variables from a distribution with pdf

f(x) =
2

λ
√

2π

1

x
exp

[−(log(x))2

2λ2

]

where λ > 0 where and 0 ≤ x ≤ 1.

a) What is the UMP (uniformly most powerful) level α test for
Ho : λ = 1 vs. H1 : λ = 2 ?

b) If possible, find the UMP level α test for Ho : λ = 1 vs. H1 : λ > 1.

Solution. a) By the NP lemma reject Ho if

f(x|λ = 2)

f(x|λ = 1)
> k′.
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The LHS =
1
2n exp[−1

8

∑
[log(xi)]

2]

exp[−1
2

∑
[log(xi)]2]

.

So reject Ho if
1

2n
exp[

∑

[log(xi)]
2(

1

2
− 1

8
)] > k′

or if
∑

[log(Xi)]
2 > k where PHo(

∑
[log(Xi)]

2 > k) = α.

b) In the above argument, with any λ1 > 1, get

∑

[log(xi)]
2(

1

2
− 1

2λ2
1

)

and
1

2
− 1

2λ2
1

> 0

for any λ2
1 > 1. Hence the UMP test is the same as in a).

Theorem 7.3 gives the same UMP test as a) for both a) and b) since
the pdf is a 1P-REF and w(λ2) = −1/(2λ2) is an increasing function of
λ2. Also, it can be shown that

∑
[log(Xi)]

2 ∼ λ2χ2
n, so k = χ2

n,1−α where
P (W > χ2

n,1−α) = α if W ∼ χ2
n.

Example 7.4. Let X1, ..., Xn be independent identically distributed (iid)
random variables with probability density function

f(x) =
2

λ
√

2π
ex exp

(−(ex − 1)2

2λ2

)

where x > 0 and λ > 0.

a) What is the UMP (uniformly most powerful) level α test for
Ho : λ = 1 vs. H1 : λ = 2 ?

b) If possible, find the UMP level α test for Ho : λ = 1 vs. H1 : λ > 1.

a) By the NP lemma reject Ho if

f(x|λ = 2)

f(x|λ = 1)
> k′.

The LHS =
1
2n exp[−1

8

∑
(exi − 1)2]

exp[−1
2

∑
(exi − 1)2]

.
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So reject Ho if
1

2n
exp[

∑

(exi − 1)2(
1

2
− 1

8
)] > k′

or if
∑

(exi − 1)2 > k where P1(
∑

(eXi − 1)2 > k) = α.

b) In the above argument, with any λ1 > 1, get

∑

(exi − 1)2(
1

2
− 1

2λ2
1

)

and
1

2
− 1

2λ2
1

> 0

for any λ2
1 > 1. Hence the UMP test is the same as in a).

Alternatively, use the fact that this is an exponential family where w(λ2) =
−1/(2λ2) is an increasing function of λ2 with T (Xi) = (eXi − 1)2. Hence the
same test in a) is UMP for both a) and b) by Theorem 7.3.

Example 7.5. Let X1, ..., Xn be independent identically distributed ran-
dom variables from a half normal HN(µ, σ2) distribution with pdf

f(x) =
2

σ
√

2π
exp (

−(x− µ)2

2σ2
)

where σ > 0 and x > µ and µ is real. Assume that µ is known.

a) What is the UMP (uniformly most powerful) level α test for
Ho : σ2 = 1 vs. H1 : σ2 = 4 ?

b) If possible, find the UMP level α test for Ho : σ2 = 1 vs. H1 : σ2 > 1.

Solution: a) By the NP lemma reject Ho if

f(x|σ2 = 4)

f(x|σ2 = 1)
> k′.

The LHS =
1
2n exp[(−

P

(xi−µ)2

2(4)
)]

exp[(−
P

(xi−µ)2

2
)]

.

So reject Ho if
1

2n
exp[

∑

(xi − µ)2(
−1

8
+

1

2
)] > k′
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or if
∑

(xi − µ)2 > k where PHo(
∑

(Xi − µ)2 > k) = α.

Under Ho,
∑

(Xi−µ)2 ∼ χ2
n so k = χ2

n(1−α) where P (χ2
n > χ2

n(1−α)) =
α.

b) In the above argument,

−1

2(4)
+ 0.5 =

−1

8
+ 0.5 > 0

but −1

2σ2
1

+ 0.5 > 0

for any σ2
1 > 1. Hence the UMP test is the same as in a).

Alternatively, use the fact that this is an exponential family where w(σ2) =
−1/(2σ2) is an increasing function of σ2 with T (Xi) = (Xi − µ)2. Hence the
test in a) is UMP for a) and b) by Theorem 7.3.

7.2 Likelihood Ratio Tests

Definition 7.6. Let Y1, ..., Yn be the data with pdf or pmf f(y|θ) where θ

is a vector of unknown parameters with parameter space Θ. Let θ̂ be the
MLE of θ and let θ̂o be the MLE of θ if the parameter space is Θ0 (where
Θ0 ⊂ Θ). A likelihood test (LRT) statistic for testing Ho : θ ∈ Θ0 versus
H1 : θ ∈ Θc

0 is

λ(y) =
L(θ̂o|y)

L(θ̂|y)
=

supΘ0
L(θ|y)

supΘ L(θ|y)
. (7.4)

The likelihood ratio test (LRT) has a rejection region of the form

R = {y|λ(y) ≤ c}

where 0 ≤ c ≤ 1, and α = supθ∈Θ0
Pθ(λ(Y ) ≤ c). Suppose θo ∈ Θ0 and

supθ∈Θ0
Pθ(λ(Y ) ≤ c) = Pθo

(λ(Y ) ≤ c). Then α = Pθo
(λ(Y ) ≤ c).

Rule of Thumb 7.1: Asymptotic Distribution of the LRT. Let
Y1, ..., Yn be iid. Then under strong regularity conditions, −2 log λ(x) ≈ χ2

j

for large n where j = r − q, r is the number of free parameters specified by
θ ∈ Θ1, and q is the number of free parameters specified by θ ∈ Θo. Hence
the approximate LRT rejects Ho if −2 log λ(y) > c where P (χ2

j > c) = α.
Thus c = χ2

j,1−α where P (χ2
j > χ2

j,1−α) = α.
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Often θ = θ is a scalar parameter, Θ0 = (a, θo] and Θ1 = Θc
0 = (θo, b) or

Θ0 = [θo, b) and Θ1 = (a, θo).

Remark 7.2. Suppose the problem wants the rejection region in useful
form. Find the two MLEs and write L(θ|y) in terms of a sufficient statistic.
Then you should either I) simplify the LRT test statistic λ(y) and try to find
an equivalent test that uses test statistic T (y) where the distribution of T (Y )
is known (ie put the LRT in useful form). Often the LRT rejects Ho if T > k
(or T < k). Getting the test into useful form can be very difficult. Monotone
transformations such as log or power transformations can be useful. II) If
you can not find a statistic T with a simple distribution, state that the Rule
of Thumb 7.1 suggests that the LRT test rejects Ho if −2 log λ(y) > χ2

j,1−α
where α = P (−2 log λ(Y ) > χ2

j,1−α). Using II) is dangerous because for many
data sets the asymptotic result will not be valid.

Example 7.6. Let X1, ..., Xn be independent identically distributed ran-
dom variables from a N(µ, σ2) distribution where the variance σ2 is known.
We want to test H0 : µ = µ0 against H1 : µ 6= µ0.

a) Derive the likelihood ratio test.

b) Let λ be the likelihood ratio. Show that −2 log λ is a function of
(X − µ0).

c) Assuming that H0 is true, find P (−2 log λ > 3.84).

Solution: a) The likelihood function

L(µ) = (2πσ2)−n/2 exp[
−1

2σ2

∑

(xi − µ)2]

and the MLE for µ is µ̂ = x. Thus the numerator of the likelihood ratio test
statistic is L(µ0) and the denominator is L(x). So the test is reject H0 if
λ = L(µ0)/L(x) ≤ c where α = PH0(λ ≤ c).

b) As a statistic, log λ = logL(µ0) − logL(X) =
− 1

2σ2 [
∑

(Xi − µ0)
2 −

∑
(Xi − X)2] = −n

2σ2 [X − µ0]
2 since

∑
(Xi − µ0)

2 =
∑

(Xi−X+X−µ0)
2 =

∑
(Xi−X)2+n(X−µo)2. So −2 log λ = n

σ2 [X−µ0]
2.

c) −2 log λ ∼ χ2
1 and from a chi–square table, P (−2 log λ > 3.84) = 0.05.

Example 7.7. Let Y1, ..., Yn be iid N(µ, σ2) random variables where µ
and σ2 are unknown. Set up the likelihood ratio test for Ho : µ = µo versus
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HA : µ 6= µo.
Solution: Under Ho, µ = µo is known and the MLE

(µ̂o, σ̂
2
o) = (µo,

1

n

n∑

i=1

(Yi − µo)
2).

Recall that

(µ̂, σ̂2) = (Y ,
1

n

n∑

i=1

(Yi − Y )2).

Now

L(µ, σ2) =

n∏

i=1

1

σ
√

2π
exp[

1

2σ2
(yi − µ)2].

Thus

λ(y) =
L(µ̂o, σ̂

2
o|y)

L(µ̂, σ̂2|y)
=

1
(σ̂2

o)n/2 exp[ 1
2σ̂2

o

∑n
i=1(yi − µo)

2]

1
(σ̂2)n/2 exp[ 1

2σ̂2

∑n
i=1(yi − y)2]

=

(
σ̂2

σ̂2
o

)n/2
exp(n/2)

exp(n/2)
=

(
σ̂2

σ̂2
o

)n/2

.

The LRT rejects Ho iff λ(y) ≤ c where supσ2 Pµo,σ2(λ(Y ) ≤ c) = α.
On an exam the above work may be sufficient, but to implement the

LRT, more work is needed. Notice that the LRT rejects Ho iff σ̂2/σ̂2
o ≤ c′ iff

σ̂2
o/σ̂

2 ≥ k′. Using

n∑

i=1

(yi − µo)
2 =

n∑

i=1

(yi − y)2 + n(y − µo)
2,

the LRT rejects Ho iff

[

1 +
n(y − µo)

2

∑n
i=1(yi − y)2

]

≥ k”

iff

√
n |y − µo|

[
Pn

i=1(yi−y)2
n−1

]1/2
=

√
n
|y − µo|

s
≥ k
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where s is the observed sample standard deviation. Hence the LRT is equiv-
alent to the usual t test with test statistic

To =
Y − µo
S/

√
n

that rejects Ho iff |To| ≥ k with k = tn−1,1−α/2 where P (T ≤ tn−1,1−α/2) =
1 − α/2 when T ∼ tn−1.

Example 7.8. Suppose that X1, ..., Xn are iid N(0, σ2) where σ > 0 is
the unknown parameter. With preassigned α ∈ (0, 1), derive a level α like-
lihood ratio test for the null hypothesis H0 : σ2 = σ2

0 against an alternative
hypothesis HA : σ2 6= σ2

0.

Solution: The likelihood function is given by

L(σ2) = (2πσ2)−
n
2 exp(− 1

2σ2

n∑

i=1

x2
i )

for all σ2 > 0, and σ̂2(x) =
∑n

i=1 x
2
i/n is the MLE for σ2. Under Ho, σ̂2

o = σ2
o

since σ2
o is the only value in the parameter space Θo = {σ2

o}. Thus

λ(x) =
L(σ̂2

o |x)

L(σ̂2|x)
=

supΘ0
L(σ2|x)

supσ2 L(σ2|x)
=

(2πσ2
0)

−n
2 exp(− 1

2σ2
0

∑n
i=1 x

2
i )

(2πσ̂2)
−n
2 exp(−n

2
)

.

So

λ(x) =

(
σ̂2

σ2
o

)n/2

exp(
−nσ̂2

2σ2
o

)en/2 =

[
σ̂2

σ2
o

exp

(

1 − σ̂2

σ2
o

)]n/2

.

The LRT rejects H0 if λ(x) ≤ c where Pσ2
o
(λ(X) ≤ c) = α.

The function g(u) = ue1−uI(u > 0) monotonically increases for 0 < u <
d, monotonically decreases for d < u < ∞, and attains its maximum at
u = d, for some d > 0. So λ(x) will be small in the two tail areas.

Under H0, T =
∑

i=1 X
2
i /σ

2
o ∼ χ2

n. Hence the LR test will reject Ho if
T < a or T > b where 0 < a < b. The a and b correspond to horizontal line
drawn on the χ2

n pdf such that the tail area is α. Hence a and b need to be
found numerically. An approximation that should be good for large n rejects
Ho if T < χ2

n,α
2

or T > χ2
n,1−α

2
where P (χ2

n < χ2
n,α) = α.
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7.3 Summary

For hypothesis testing there is a null hypothesis Ho and an alternative hy-
pothesis H1 ≡ HA. A hypothesis test is a rule for rejecting Ho. Either
reject Ho or fail to reject Ho. A simple hypothesis consists of exactly one
distribution for the sample. A composite hypothesis consists of more than
one distribution for the sample.

The power β(θ) = Pθ(reject Ho) is the probability of rejecting Ho when
θ is the true value of the parameter. Often the power function can not be
calculated, but you should be prepared to calculate the power for a sample
of size one for a test of the form Ho : f(x) = f0(x) versus H1 : f(x) = f1(x)
or if the test is of the form

∑
t(Xi) > k or

∑
t(Xi) < k when

∑
t(Xi) has

an easily handled distribution under H1, eg binomial, normal, Poisson, or χ2
p.

To compute the power, you need to find k and γ for the given value of α.

Consider all level α tests of Ho : θ ∈ Θo vs H1 : θ1 ∈ Θ1. A uniformly
most powerful (UMP) level α test is a level α test with power function
βUMP(θ) such that βUMP(θ) ≥ β(θ) for every θ ∈ Θ1 where β is the power
function for any level α test of Ho vs H1.

One Sided UMP Tests for Exponential Families. Let Y1, ..., Yn be
iid with pdf or pmf

f(y|θ) = h(y)c(θ) exp[w(θ)t(y)]

from a one parameter exponential family where θ is real and w(θ) is increas-
ing. Let T (y) =

∑n
i=1 t(yi).Then the UMP test forHo : θ ≤ θo vsHA : θ > θo

rejects Ho if T (y) > k and rejects Ho with probability γ if T (y) = k where
α = Pθo(T (Y ) > k) + γPθo (T (Y ) = k). The UMP test for Ho : θ ≥ θo vs
HA : θ < θo rejects Ho if T (x) < k and rejects Ho with probability γ if
T (y) = k where α = Pθo (T (Y ) < k) + γPθo(T (Y ) = k).

Fact: if f is a pdf, then γ = 0. For a pmf and HA : θ > θo,

γ =
α− Pθo [T (Y ) > k]

Pθo [T (Y ) = k]
.

For a pmf and HA : θ < θo,

γ =
α− Pθo [T (Y ) < k]

Pθo [T (Y ) = k]
.
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As a mnemonic, note that the inequality used in the rejection region is
the same as the inequality in the alternative hypothesis. Suppose that the
parameterization is

f(y|θ) = h(y)c(θ) exp[w̃(θ)t̃(y)]

where w̃(θ) is decreasing. Then set w(θ) = −w̃(θ) and t(y) = −t̃(y).

Recall that w(θ) is increasing on Θ if w′(θ) > 0 for θ ∈ Θ, and w(θ) is
decreasing on Θ if w′(θ) < 0 for θ ∈ Θ. Also w(θ) is nondecreasing on Θ if
w′(θ) ≥ 0 for θ ∈ Θ, and w(θ) is nonincreasing on Θ if w′(θ) ≤ 0 for θ ∈ Θ.

The Neyman Pearson Lemma: Consider testing Ho : θ = θ0 vs
H1 : θ = θ1 where the pdf or pmf corresponding to θi is f(y|θi) for i =
0, 1. Suppose the test rejects Ho if f(y|θ1) > kf(y|θ0), and rejects Ho with
probability γ if f(y|θ1) = kf(y|θ0) for some k ≥ 0. If

α = β(θ0) = Pθ0 [f(Y |θ1) > kf(Y |θ0)] + γPθ0 [f(Y |θ1) = kf(Y |θ0)],

then this test is a UMP level α test.

One Sided UMP Tests via the Neyman Pearson Lemma: Suppose
that the hypotheses are of the form Ho : θ ≤ θo vs H1 : θ > θo or Ho : θ ≥ θo
vs H1 : θ < θo, or that the inequality in Ho is replaced by equality. Also
assume that

sup
θ∈Θ0

β(θ) = β(θo).

Pick θ1 ∈ Θ1 and use the Neyman Pearson lemma to find the UMP test for
H∗
o : θ = θo vs H∗

A : θ = θ1. Then the UMP test rejects H∗
o if f(y|θ1) >

kf(y|θo), and rejects H∗
o with probability γ if f(y|θ1) = kf(y|θo) for some

k ≥ 0 where α = β(θo). This test is also the UMP level α test for Ho : θ ∈ Θ0

vs H1 : θ ∈ Θ1 if k does not depend on the value of θ1 ∈ Θ1.

Fact: if f is a pdf, then γ = 0 and α = Pθo [f(Y |θ1) > kf(Y |θo)]. So γ is
important when f is a pmf. For a pmf,

γ =
α − Pθo [f(Y |θ1) > kf(Y |θo)]
Pθo [f(Y |θ1) = kf(Y |θo)]

.



CHAPTER 7. TESTING STATISTICAL HYPOTHESES 196

Often it is too hard to give the UMP test in useful form. Then simply
specify when the test rejects Ho and specify α in terms of k (eg α = PHo(T >
k) + γPHo(T = k)).

The problem will be harder if you are asked to put the test in useful

form. To find an UMP test with the NP lemma, often the ratio
f(y|θ1)

f(y|θ0)
is computed. The test will certainly reject Ho is the ratio is large, but
usually the distribution of the ratio is not easy to use. Hence try to get an
equivalent test by simplifying and transforming the ratio. Ideally, the ratio
can be transformed into a statistic T whose distribution is tabled.

If the test rejects Ho if T > k (or if T > k and with probability γ if
T = k, or if T < k, or if T < k and with probability γ if T = k) the test is
in useful form if for a given α, you find k and γ. If you are asked to find
the power (perhaps with a table), put the test in useful form.

Let Y1, ..., Yn be the data with pdf or pmf f(y|θ) where θ is a vector of
unknown parameters with parameter space Θ. Let θ̂ be the MLE of θ and
let θ̂o be the MLE of θ if the parameter space is Θ0 (where Θ0 ⊂ Θ). A LRT
statistic for testing Ho : θ ∈ Θ0 versus H1 : θ ∈ Θc

0 is

λ(y) =
L(θ̂o|y)

L(θ̂|y)
.

The LRT has a rejection region of the form

R = {y|λ(y) ≤ c}

where 0 ≤ c ≤ 1 and α = supθ∈Θ0
Pθ(λ(Y ) ≤ c).

Fact: Often Θo = (a, θo] and Θ1 = (θo, b) or Θo = [θo, b) and Θ1 = (a, θo).

If you are not asked to find the power or to put the LRT into useful
form, it is often enough to find the two MLEs and write L(θ|y) in terms
of a sufficient statistic. Simplify the statistic λ(y) and state that the LRT
test rejects Ho if λ(y) ≤ c where α = supθ∈Θ0

Pθ(λ(Y ) ≤ c). If the sup is
achieved at θo ∈ Θ0, then α = Pθo

(λ(Y ) ≤ c).

Put the LRT into useful form if asked to find the power. Try to simplify
λ or transform λ so that the test rejects Ho if some statistic T > k (or
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T < k). Getting the test into useful form can be very difficult. Monotone
transformations such as log or power transformations can be useful. If you
can not find a statistic T with a simple distribution, use the large sample
approximation to the LRT that rejects Ho if −2 log λ(x) > χ2

j,1−α where
P (χ2

j > χ2
j,1−α) = α. Here j = r− q where r is the number of free parameters

specified by θ ∈ Θ, and q is the number of free parameters specified by
θ ∈ Θo.

7.4 Complements

Definition 7.7. Let Y1, ..., Yn have pdf or pmf f(y|θ) for θ ∈ Θ. Let T (Y ) be
a statistic. Then f(y|θ) has a monotone likelihood ratio (MLR) in statis-
tic T if for any two values θo, θ1 ∈ Θ with θo < θ1, the ratio f(y|θ1)/f(y|θo)
depends on the vector y only through T (y), and this ratio is an increasing
function of T (y) over the possible values of T (y).

Remark 7.3. Theorem 7.3 is a corollary of the following theorem, be-
cause under the conditions of Theorem 7.3, f(y|θ) has MLR in T (y) =
∑n

i=1 t(yi).

Theorem 7.4, MLR UMP Tests. Let Y1, ..., Yn be a sample with a
joint pdf or pmf f(y|θ) that has MLR in statistic T (y). Then the UMP test
for Ho : θ ≤ θo vs H1 : θ > θo rejects Ho if T (y) > k and rejects Ho with
probability γ if T (y) = k where α = Pθo(T (Y ) > k) + γPθo (T (Y ) = k). The
UMP test for Ho : θ ≥ θo vs H1 : θ < θo rejectsHo if T (x) < k and rejectsHo

with probability γ if T (y) = k where α = Pθo(T (Y ) < k)+γPθo (T (Y ) = k).

Lehmann and Romano (2005) is an authoritative PhD level text on testing
statistical hypotheses. Many of the most used statistical tests of hypotheses
are likelihood ratio tests, and several examples are given in DeGroot and
Schervish (2001). Scott (2007) discusses the asymptotic distribution of the
LRT test.

Birkes (1990) and Solomen (1975) compare the LRT and UMP tests.
Rohatgi (1984, p. 725) claims that if the Neyman Pearson and likelihood
ratio tests exist for a given size α, then the two tests are equivalent, but this
claim seems to contradict Solomen (1975). Exponential families have the
MLR property, and Pfanzagl (1968) gives a partial converse.
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7.5 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

Refer to Chapter 10 for the pdf or pmf of the distributions in
the problems below.

7.1. Let X1, ..., Xn be iid N(µ, σ2), σ2 > 0. Let Θo = {(µo, σ2) : µo fixed,
σ2 > 0} and let Θ = {(µ, σ2) : µ ∈ <, σ2 > 0}. Consider testing Ho : θ =

(µ, σ2) ∈ Θo vs H1: not Ho. The MLE θ̂ = (µ̂, σ̂2) = (X,
1

n

n∑

i=1

(Xi −X)2)

while the restricted MLE is θ̂o = (µ̂o, σ̂
2
o) = (µo,

1

n

n∑

i=1

(Xi − µo)
2).

a) Show that the likelihood ratio statistic

λ(x) = (σ̂2/σ̂2
o)
n/2 = [1 +

n(x− µo)
2

∑n
i=1(xi − x)2

]−n/2.

b) Show that Ho is rejected iff |√n(X − µo)/S| ≥ k and find k if n = 11
and α = 0.05. (Hint: show thatHo is rejected iff n(X−µo)2/

∑n
i=1(Xi−X)2 ≥

c, then multiply both sides by a constant such that the left hand side has a
(tn−1)

2 distribution. Use a t-table to find k.)

7.2. Let X1, ..., Xn be a random sample from the distribution with pdf

f(x|θ) =
xθ−1e−x

Γ(θ)
, x > 0, θ > 0.

For a) and b) do not put the rejection region into useful form.

a) Use the Neyman Pearson Lemma to find the UMP size α test for
testing H0 : θ = 1 vs H1 : θ = θ1 where θ1 is a fixed number greater than 1.

b) Find the uniformly most powerful level α test of

H0: θ = 1 versus H1: θ > 1.

Justify your steps. Hint: Use the statistic in part a).

7.3. Let Ho : X1, ..., Xn are iid U(0, 10) and H1 : X1, ..., Xn are iid
U(4, 7). Suppose you had a sample of size n = 1000. How would you decide
which hypothesis is true?
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Problems from old quizzes and exams.

7.4. Let X1, ..., X10 be iid Bernoulli(p). The most powerful level α =
0.0547 test of Ho : p = 1/2 vs H1 : p = 1/4 rejects Ho if

∑10
i=1 xi ≤ 2. Ho is

not rejected if
∑10

i=1 xi > 2. Find the power of this test if p = 1/4.

7.5. Let X1, ..., Xn be iid exponential(β). Hence the pdf is

f(x|β) =
1

β
exp(−x/β)

where 0 ≤ x and 0 < β.

a) Find the MLE of β.

b) Find the level α likelihood ratio test for the hypotheses Ho : β = βo
vs H1 : β 6= βo.

7.6. (Aug. 2002 QUAL): Let X1, ..., Xn be independent, identically dis-
tributed random variables from a distribution with a beta(θ, θ) pdf

f(x|θ) =
Γ(2θ)

Γ(θ)Γ(θ)
[x(1 − x)]θ−1

where 0 < x < 1 and θ > 0.
a) Find the UMP (uniformly most powerful) level α test for Ho : θ = 1

vs. H1 : θ = 2.

b) If possible, find the UMP level α test for Ho : θ = 1 vs. H1 : θ > 1.

7.7. Let X1, ..., Xn be iid N(µ1, 1) random variables and let Y1, ..., Yn be
iid N(µ2, 1) random variables that are independent of the X’s.

a) Find the α level likelihood ratio test for Ho : µ1 = µ2 vs H1 : µ1 6= µ2.
You may assume that (X, Y ) is the MLE of (µ1, µ2) and that under the
restriction µ1 = µ2 = µ, say, then the restricted MLE

µ̂ =

∑n
i=1 Xi +

∑n
i=1 Yi

2n
.

b) If λ is the LRT test statistic of the above test, use the approximation

−2 log λ ≈ χ2
d

for the appropriate degrees of freedom d to find the rejection region of the
test in useful form if α = 0.05.
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7.8. Let X1, ..., Xn be independent identically distributed random vari-
ables from a distribution with pdf

f(x) =
2

σ
√

2π

1

x
exp

(−[log(x)]2

2σ2

)

where σ > 0 and x ≥ 1.

If possible, find the UMP level α test for Ho : σ = 1 vs. H1 : σ > 1.

7.9. Let X1, ..., Xn be independent identically distributed random vari-
ables from a distribution with pdf

f(x) =
2

σ
√

2π
exp

(−(x− µ)2

2σ2

)

where σ > 0 and x > µ and µ is real. Assume that µ is known.

a) What is the UMP (uniformly most powerful) level α test for
Ho : σ2 = 1 vs. H1 : σ2 = 4 ?

b) If possible, find the UMP level α test for Ho : σ2 = 1 vs. H1 : σ2 > 1.

7.10. (Jan. 2001 SIU and 1990 Univ. MN QUAL): Let X1, ..., Xn be a
random sample from the distribution with pdf

f(x, θ) =
xθ−1e−x

Γ(θ)
, x > 0, θ > 0.

Find the uniformly most powerful level α test of

H: θ = 1 versus K: θ > 1.

7.11. (Jan 2001 QUAL): Let X1, ..., Xn be independent identically dis-
tributed random variables from a N(µ, σ2) distribution where the variance
σ2 is known. We want to test H0 : µ = µ0 against H1 : µ 6= µ0.

a) Derive the likelihood ratio test.

b) Let λ be the likelihood ratio. Show that −2 log λ is a function of
(X − µ0).

c) Assuming that H0 is true, find P (−2 log λ > 3.84).
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7.12. (Aug. 2001 QUAL): Let X1, ..., Xn be iid from a distribution with
pdf

f(x) =
2x

λ
exp(−x2/λ)

where λ and x are both positive. Find the level α UMP test for Ho : λ = 1
vs H1 : λ > 1.

7.13. (Jan. 2003 QUAL): Let X1, ..., Xn be iid from a distribution with
pdf

f(x|θ) =
(log θ)θx

θ − 1

where 0 < x < 1 and θ > 1. Find the UMP (uniformly most powerful) level
α test of Ho : θ = 2 vs. H1 : θ = 4.

7.14. (Aug. 2003 QUAL): Let X1, ..., Xn be independent identically
distributed random variables from a distribution with pdf

f(x) =
x2 exp

(
−x2

2σ2

)

σ3
√

2 Γ(3/2)

where σ > 0 and x ≥ 0.

a) What is the UMP (uniformly most powerful) level α test for
Ho : σ = 1 vs. H1 : σ = 2 ?

b) If possible, find the UMP level α test for Ho : σ = 1 vs. H1 : σ > 1.

7.15. (Jan. 2004 QUAL): Let X1, ..., Xn be independent identically dis-
tributed random variables from a distribution with pdf

f(x) =
2

σ
√

2π

1

x
exp

(−[log(x)]2

2σ2

)

where σ > 0 and x ≥ 1.

a) What is the UMP (uniformly most powerful) level α test for
Ho : σ = 1 vs. H1 : σ = 2 ?

b) If possible, find the UMP level α test for Ho : σ = 1 vs. H1 : σ > 1.



CHAPTER 7. TESTING STATISTICAL HYPOTHESES 202

7.16. (Aug. 2004 QUAL): Suppose X is an observable random variable
with its pdf given by f(x), x ∈ R. Consider two functions defined as follows:

f0(x) =

{
3
64
x2 0 ≤ x ≤ 4

0 elsewhere

f1(x) =

{
3
16

√
x 0 ≤ x ≤ 4

0 elsewhere.

Determine the most powerful level α test for H0 : f(x) = f0(x) versus
Ha : f(x) = f1(x) in the simplest implementable form. Also, find the power
of the test when α = 0.01

7.17. (Sept. 2005 QUAL): Let X be one observation from the probability
density function

f(x) = θxθ−1, 0 < x < 1, θ > 0.

a) Find the most powerful level α test of H0 : θ = 1 versus H1 : θ = 2.

b) For testing H0 : θ ≤ 1 versus H1 : θ > 1, find the size and the power

function of the test which rejects H0 if X >
5

8
.

c) Is there a UMP test of H0 : θ ≤ 1 versus H1 : θ > 1? If so, find it. If
not, prove so.



Chapter 8

Large Sample Theory

8.1 The CLT, Delta Method and an Expo-

nential Family Limit Theorem

Large sample theory, also called asymptotic theory, is used to approximate
the distribution of an estimator when the sample size n is large. This theory
is extremely useful if the exact sampling distribution of the estimator is
complicated or unknown. To use this theory, one must determine what the
estimator is estimating, the rate of convergence, the asymptotic distribution,
and how large n must be for the approximation to be useful. Moreover, the
(asymptotic) standard error (SE), an estimator of the asymptotic standard
deviation, must be computable if the estimator is to be useful for inference.

Theorem 8.1: the Central Limit Theorem (CLT). Let Y1, ..., Yn be
iid with E(Y ) = µ and VAR(Y ) = σ2. Let the sample mean Y n = 1

n

∑n
i=1 Yi.

Then √
n(Y n − µ)

D→ N(0, σ2).

Hence
√
n

(
Y n − µ

σ

)

=
√
n

(∑n
i=1 Yi − nµ

nσ

)

D→ N(0, 1).

Note that the sample mean is estimating the population mean µ with
a
√
n convergence rate, the asymptotic distribution is normal, and the SE

= S/
√
n where S is the sample standard deviation. For many distributions

203
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the central limit theorem provides a good approximation if the sample size
n > 30. A special case of the CLT is proven at the end of Section 4.

Notation. The notation X ∼ Y and X
D
= Y both mean that the random

variables X and Y have the same distribution. See Definition 1.24. The
notation Yn

D→ X means that for large n we can approximate the cdf of
Yn by the cdf of X. The distribution of X is the limiting distribution or
asymptotic distribution of Yn. For the CLT, notice that

Zn =
√
n

(
Y n − µ

σ

)

=

(
Y n − µ

σ/
√
n

)

is the z–score of Y . If Zn
D→ N(0, 1), then the notation Zn ≈ N(0, 1), also

written as Zn ∼ AN(0, 1), means approximate the cdf of Zn by the standard
normal cdf. Similarly, the notation

Y n ≈ N(µ, σ2/n),

also written as Y n ∼ AN(µ, σ2/n), means approximate cdf of Y n as if Y n ∼
N(µ, σ2/n).

The two main applications of the CLT are to give the limiting distribution
of

√
n(Y n−µ) and the limiting distribution of

√
n(Yn/n−µX) for a random

variable Yn such that Yn =
∑n

i=1 Xi where the Xi are iid with E(X) = µX
and VAR(X) = σ2

X. Several of the random variables in Theorems 2.17 and
2.18 can be approximated in this way.

Example 8.1. a) Let Y1, ..., Yn be iid Ber(ρ). Then E(Y ) = ρ and
VAR(Y ) = ρ(1 − ρ). Hence

√
n(Y n − ρ)

D→ N(0, ρ(1 − ρ))

by the CLT.

b) Now suppose that Yn ∼ BIN(n, ρ). Then Yn
D
=
∑n

i=1Xi where
X1, ..., Xn are iid Ber(ρ). Hence

√
n(
Yn
n

− ρ)
D→ N(0, ρ(1 − ρ))

since √
n(
Yn
n

− ρ)
D
=

√
n(Xn − ρ)

D→ N(0, ρ(1 − ρ))
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by a).
c) Now suppose that Yn ∼ BIN(kn, ρ) where kn → ∞ as n→ ∞. Then

√

kn(
Yn
kn

− ρ) ≈ N(0, ρ(1 − ρ))

or
Yn
kn

≈ N

(

ρ,
ρ(1 − ρ)

kn

)

or Yn ≈ N (knρ, knρ(1 − ρ)) .

Theorem 8.2: the Delta Method. If g′(θ) 6= 0 and

√
n(Tn − θ)

D→ N(0, σ2),

then √
n(g(Tn) − g(θ))

D→ N(0, σ2[g′(θ)]2).

Example 8.2. Let Y1, ..., Yn be iid with E(Y ) = µ and VAR(Y ) = σ2.
Then by the CLT, √

n(Y n − µ)
D→ N(0, σ2).

Let g(µ) = µ2. Then g′(µ) = 2µ 6= 0 for µ 6= 0. Hence

√
n((Y n)

2 − µ2)
D→ N(0, 4σ2µ2)

for µ 6= 0 by the delta method.

Example 8.3. Let X ∼ Binomial(n, p) where the positive integer n is

large and 0 < p < 1. Find the limiting distribution of
√
n

[ (
X

n

)2

− p2

]

.

Solution. Example 8.1b gives the limiting distribution of
√
n(X

n
− p). Let

g(p) = p2. Then g′(p) = 2p and by the delta method,

√
n

[ (
X

n

)2

− p2

]

=
√
n

(

g(
X

n
) − g(p)

)

D→

N(0, p(1 − p)(g′(p))2) = N(0, p(1 − p)4p2) = N(0, 4p3(1 − p)).

Example 8.4. Let Xn ∼ Poisson(nλ) where the positive integer n is
large and 0 < λ.
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a) Find the limiting distribution of
√
n

(
Xn

n
− λ

)

.

b) Find the limiting distribution of
√
n

[ √

Xn

n
−

√
λ

]

.

Solution. a)Xn
D
=
∑n

i=1 Yi where the Yi are iid Poisson(λ). HenceE(Y ) =
λ = V ar(Y ). Thus by the CLT,

√
n

(
Xn

n
− λ

)

D
=

√
n

( ∑n
i=1 Yi
n

− λ

)

D→ N(0, λ).

b) Let g(λ) =
√
λ. Then g′(λ) = 1

2
√
λ

and by the delta method,

√
n

[ √

Xn

n
−

√
λ

]

=
√
n

(

g(
Xn

n
) − g(λ)

)

D→

N(0, λ (g′(λ))2) = N(0, λ
1

4λ
) = N(0,

1

4
).

Example 8.5. Let Y1, ..., Yn be independent and identically distributed
(iid) from a Gamma(α, β) distribution.

a) Find the limiting distribution of
√
n
(
Y − αβ

)
.

b) Find the limiting distribution of
√
n
(

(Y )2 − c
)

for appropriate con-
stant c.

Solution: a) Since E(Y ) = αβ and V (Y ) = αβ2, by the CLT√
n
(
Y − αβ

) D→ N(0, αβ2).
b) Let µ = αβ and σ2 = αβ2. Let g(µ) = µ2 so g′(µ) = 2µ and

[g′(µ)]2 = 4µ2 = 4α2β2. Then by the delta method,
√
n
(

(Y )2 − c
) D→

N(0, σ2[g′(µ)]2) = N(0, 4α3β4) where c = µ2 = α2β2.

Barndorff–Nielsen (1982), Casella and Berger (2002, p. 472, 515), Cox
and Hinckley (1974, p. 286), Lehmann and Casella (1998, Section 6.3),
Schervish (1995, p. 418), and many others suggest that under regularity
conditions if Y1, ..., Yn are iid from a one parameter regular exponential family,
and if θ̂ is the MLE of θ, then

√
n(τ (θ̂) − τ (θ))

D→ N

(

0,
[τ ′(θ)]2

I1(θ)

)

= N [0, FCRLB1(τ (θ))] (8.1)
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where the Fréchet Cramér Rao lower bound for τ (θ) is

FCRLB1(τ (θ)) =
[τ ′(θ)]2

I1(θ)

and the Fisher information based on a sample of size one is

I1(θ) = −Eθ[
∂2

∂θ2
log(f(X|θ))].

Notice that if
√
n(θ̂ − θ)

D→ N

(

0,
1

I1(θ)

)

,

then (8.1) follows by the delta method. Also recall that τ (θ̂) is the MLE of
τ (θ) by the invariance principle and that

I1(τ (θ)) =
I1(θ)

[τ ′(θ)]2

if τ ′(θ) 6= 0 by Definition 6.3.
For a 1P–REF, T n = 1

n

∑n
i=1 t(Yi) is the UMVUE and generally the MLE

of its expectation µt ≡ µT = Eθ(Tn) = Eθ[t(Y )]. Let σ2
t = VARθ[t(Y )].

These values can be found by using the distribution of t(Y ) (see Theorems
3.6 and 3.7) or by the following result.

Proposition 8.3. Suppose Y is a 1P–REF with pdf or pmf

f(y|θ) = h(y)c(θ) exp[w(θ)t(y)]

and natural parameterization

f(y|η) = h(y)b(η) exp[ηt(y)].

Then a)

µt = E[t(Y )] =
−c′(θ)
c(θ)w′(θ)

=
−∂
∂η

log(b(η)), (8.2)

and b)

σ2
t = V [t(Y )] =

−∂2

∂θ2
log(c(θ)) − [w′′(θ)]µt

[w′(θ)]2
=

−∂2

∂η2
log(b(η)). (8.3)
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Proof. The proof will be for pdfs. For pmfs replace the integrals by
sums. By Theorem 3.3, only the middle equalities need to be shown. By
Remark 3.2 the derivative and integral operators can be interchanged for a
1P–REF. a) Since 1 =

∫
f(y|θ)dy,

0 =
∂

∂θ
1 =

∂

∂θ

∫

h(y) exp[w(θ)t(y) + log(c(θ))]dy

=

∫

h(y)
∂

∂θ
exp[w(θ)t(y) + log(c(θ))]dy

=

∫

h(y) exp[w(θ)t(y) + log(c(θ))]

(

w′(θ)t(y) +
c′(θ)

c(θ)

)

dy

or

E[w′(θ)t(Y )] =
−c′(θ)
c(θ)

or

E[t(Y )] =
−c′(θ)
c(θ)w′(θ)

.

b) Similarly,

0 =

∫

h(y)
∂2

∂θ2
exp[w(θ)t(y) + log(c(θ))]dy.

From the proof of a) and since ∂
∂θ

log(c(θ)) = c′(θ)/c(θ),

0 =

∫

h(y)
∂

∂θ

[

exp[w(θ)t(y) + log(c(θ))]

(

w′(θ)t(y) +
∂

∂θ
log(c(θ))

)]

dy

=

∫

h(y) exp[w(θ)t(y) + log(c(θ))]

(

w′(θ)t(y) +
∂

∂θ
log(c(θ))

)2

dy

+

∫

h(y) exp[w(θ)t(y) + log(c(θ))]

(

w′′(θ)t(y) +
∂2

∂θ2
log(c(θ))

)

dy.

So

E

(

w′(θ)t(Y ) +
∂

∂θ
log(c(θ))

)2

= −E
(

w′′(θ)t(Y ) +
∂2

∂θ2
log(c(θ))

)

. (8.4)
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Using a) shows that the left hand side of (8.4) equals

E

(

w′(θ)

(

t(Y ) +
c′(θ)

c(θ)w′(θ)

))2

= [w′(θ)]2 VAR(t(Y ))

while the right hand side of (8.4) equals

−
(

w′′(θ)µt +
∂2

∂θ2
log(c(θ))

)

and the result follows. QED

The simplicity of the following result is rather surprising. When (as is
usually the case) T n = 1

n

∑n
i=1 t(Yi) is the MLE of µt, η̂ = g−1(Tn) is the

MLE of η by the invariance principle.

Theorem 8.4. Let Y1, ..., Yn be iid from a 1P–REF with pdf or pmf

f(y|θ) = h(y)c(θ) exp[w(θ)t(y)]

and natural parameterization

f(y|η) = h(y)b(η) exp[ηt(y)].

Let
E(t(Y )) = µt ≡ g(η)

and VAR(t(Y )) = σ2
t .

a) Then √
n[Tn − µt]

D→ N(0, I1(η))

where

I1(η) = σ2
t = g′(η) =

[g′(η)]2

I1(η)
.

b) If η = g−1(µt), η̂ = g−1(Tn), and g−1′(µt) 6= 0 exists, then

√
n[η̂ − η]

D→ N

(

0,
1

I1(η)

)

.

c) Suppose the conditions in b) hold. If θ = w−1(η), θ̂ = w−1(η̂), w−1′

exists and is continuous, and w−1′(η) 6= 0, then

√
n[θ̂ − θ]

D→ N

(

0,
1

I1(θ)

)

.
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d) If the conditions in c) hold, if τ ′ is continuous and if τ ′(θ) 6= 0, then

√
n[τ (θ̂) − τ (θ)]

D→ N

(

0,
[τ ′(θ)]2

I1(θ)

)

.

Proof: a) The result follows by the central limit theorem if σ2
t = I1(η) =

g′(η). Since log(f(y|η)) = log(h(y)) + log(b(η)) + ηt(y),

∂

∂η
log(f(y|η)) =

∂

∂η
log(b(η)) + t(y) = −µt + t(y) = −g(η) + t(y)

by Proposition 8.3 a). Hence

∂2

∂η2
log(f(y|η)) =

∂2

∂η2
log(b(η)) = −g′(η),

and thus by Proposition 8.3 b)

I1(η) =
−∂2

∂η2
log(b(η)) = σ2

t = g′(η).

b) By the delta method,

√
n(η̂ − η)

D→ N(0, σ2
t [g

−1′(µt)]
2),

but

g−1′(µt) =
1

g′(g−1(µt))
=

1

g′(η)
.

Since σ2
t = I1(η) = g′(η), it follows that σ2

t = [g′(η)]2/I1(η), and

σ2
t [g

−1′(µt)]
2 =

[g′(η)]2

I1(η)

1

[g′(η)]2
=

1

I1(η)
.

So
√
n(η̂ − η)

D→ N

(

0,
1

I1(η)

)

.

c) By the delta method,

√
n(θ̂ − θ)

D→ N

(

0,
[w−1′(η)]2

I1(η)

)

,
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but
[w−1′(η)]2

I1(η)
=

1

I1(θ)
.

The last equality holds since by Theorem 6.3c, if θ = g(η), if g′ exists and
is continuous, and if g′(θ) 6= 0, then I1(θ) = I1(η)/[g

′(η)]2. Use η = w(θ) so
θ = g(η) = w−1(η).

d) The result follows by the delta method. QED

8.2 Asymptotically Efficient Estimators

Definition 8.1. Let Y1, ..., Yn be iid random variables. Let Tn ≡ Tn(Y1, ..., Yn)
be an estimator of a parameter µT such that

√
n(Tn − µT )

D→ N(0, σ2
A).

Then the asymptotic variance of
√
n(Tn − µT ) is σ2

A and the asymptotic
variance (AV) of Tn is σ2

A/n. If S2
A is a consistent estimator of σ2

A, then the
(asymptotic) standard error (SE) of Tn is SA/

√
n.

Remark 8.1. Consistent estimators are defined in the following section.
The parameter σ2

A is a function of both the estimator Tn and the underlying
distribution F of Y1. Frequently nVAR(Tn) converges in distribution to σ2

A,
but not always. See Staudte and Sheather (1990, p. 51) and Lehmann (1999,
p. 232).

Example 8.6. If Y1, ..., Yn are iid from a distribution with mean µ and
variance σ2, then by the central limit theorem,

√
n(Y n − µ)

D→ N(0, σ2).

Recall that VAR(Y n) = σ2/n = AV (Y n) and that the standard error SE(Y n)
= Sn/

√
n where S2

n is the sample variance.

Definition 8.2. Let T1,n and T2,n be two estimators of a parameter θ
such that

nδ(T1,n − θ)
D→ N(0, σ2

1(F ))

and
nδ(T2,n− θ)

D→ N(0, σ2
2(F )),
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then the asymptotic relative efficiency of T1,n with respect to T2,n is

ARE(T1,n, T2,n) =
σ2

2(F )

σ2
1(F )

.

This definition brings up several issues. First, both estimators must have
the same convergence rate nδ. Usually δ = 0.5. If Ti,n has convergence rate
nδi, then estimator T1,n is judged to be “better” than T2,n if δ1 > δ2. Secondly,
the two estimators need to estimate the same parameter θ. This condition
will often not hold unless the distribution is symmetric about µ. Then θ = µ
is a natural choice. Thirdly, estimators are often judged by their Gaussian
efficiency with respect to the sample mean (thus F is the normal distribu-
tion). Since the normal distribution is a location–scale family, it is often
enough to compute the ARE for the standard normal distribution. If the
data come from a distribution F and the ARE can be computed, then T1,n is
judged to be a “better” estimator (for the data distribution F ) than T2,n if
the ARE > 1. Similarly, T1,n is judged to be a “worse” estimator than T2,n if
the ARE < 1. Notice that the “better” estimator has the smaller asymptotic
variance.

The population median is any value MED(Y ) such that

P (Y ≤ MED(Y )) ≥ 0.5 and P (Y ≥ MED(Y )) ≥ 0.5. (8.5)

In simulation studies, typically the underlying distribution F belongs to a
symmetric location–scale family. There are at least two reasons for using such
distributions. First, if the distribution is symmetric, then the population
median MED(Y ) is the point of symmetry and the natural parameter to
estimate. Under the symmetry assumption, there are many estimators of
MED(Y ) that can be compared via their ARE with respect to the sample
mean or the maximum likelihood estimator (MLE). Secondly, once the ARE
is obtained for one member of the family, it is typically obtained for all
members of the location–scale family. That is, suppose that Y1, ..., Yn are iid
from a location–scale family with parameters µ and σ. Then Yi = µ + σZi
where the Zi are iid from the same family with µ = 0 and σ = 1. Typically

AV [Ti,n(Y )] = σ2AV [Ti,n(Z)],

so
ARE[T1,n(Y ), T2,n(Y )] = ARE[T1,n(Z), T2,n(Z)].
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Theorem 8.5. Let Y1, ..., Yn be iid with a pdf f that is positive at the
population median: f(MED(Y )) > 0. Then

√
n(MED(n) −MED(Y ))

D→ N

(

0,
1

4[f(MED(Y ))]2

)

.

Example 8.7. Let Y1, ..., Yn be iid N(µ, σ2), T1,n = Y and let T2,n =
MED(n) be the sample median. Let θ = µ = E(Y ) = MED(Y ). Find
ARE(T1,n, T2,n).

Solution: By the CLT, σ2
1(F ) = σ2 when F is the N(µ, σ2) distribution.

By Theorem 8.5,

σ2
2(F ) =

1

4[f(MED(Y ))]2
=

1

4[ 1√
2πσ2

exp( −0
2σ2 )]2

=
πσ2

2
.

Hence

ARE(T1,n, T2,n) =
πσ2/2

σ2
=
π

2
≈ 1.571

and the sample mean Y is a “better” estimator of µ than the sample median
MED(n) for the family of normal distributions.

Recall from Definition 6.3 that I1(θ) is the information number for θ based
on a sample of size 1. Also recall that I1(τ (θ)) = I1(θ)/[τ

′(θ)]2.

Definition 8.3. Assume τ ′(θ) 6= 0. Then an estimator Tn of τ (θ) is
asymptotically efficient if

√
n(Tn − τ (θ))

D→ N

(

0,
[τ ′(θ)]2

I1(θ)

)

. (8.6)

In particular, the estimator Tn of θ is asymptotically efficient if

√
n(Tn − θ)

D→ N

(

0,
1

I1(θ)

)

. (8.7)

Following Lehmann (1999, p. 486), if T2,n is an asymptotically efficient
estimator of θ, if I1(θ) and v(θ) are continuous functions, and if T1,n is an
estimator such that √

n(T1,n − θ)
D→ N(0, v(θ)),
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then under regularity conditions, v(θ) ≥ 1/I1(θ) and

ARE(T1,n, T2,n) =

1
I1(θ)

v(θ)
=

1

I1(θ)v(θ)
≤ 1.

Hence asymptotically efficient estimators are “better” than estimators of the
form T1,n. When T2,n is asymptotically efficient,

AE(T1,n) = ARE(T1,n, T2,n) =
1

I1(θ)v(θ)

is sometimes called the asymptotic efficiency of T1,n.
Notice that for a 1P–REF, Tn = 1

n

∑n
i=1 t(Yi) is an asymptotically efficient

estimator of g(η) = E(t(Y )) by Theorem 8.4. Tn is the UMVUE of E(t(Y ))
by the LSU theorem.

The following rule of thumb suggests that MLEs and UMVUEs are often
asymptotically efficient. The rule often holds for location families where the
support does not depend on θ. The rule does not hold for the uniform (0, θ)
family.

Rule of Thumb 8.1. Let θ̂n be the MLE or UMVUE of θ. If τ ′(θ) 6= 0,
then

√
n[τ (θ̂n) − τ (θ)]

D→ N

(

0,
[τ ′(θ)]2

I1(θ)

)

.

8.3 Modes of Convergence and Consistency

Definition 8.4. Let {Zn, n = 1, 2, ...} be a sequence of random variables
with cdfs Fn, and letX be a random variable with cdf F. Then Zn converges
in distribution to X, written

Zn
D→ X,

or Zn converges in law to X, written Zn
L→ X, if

lim
n→∞

Fn(t) = F (t)

at each continuity point t of F. The distribution of X is called the limiting
distribution or the asymptotic distribution of Zn.
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Notice that the CLT, delta method and Theorem 8.4 give the limiting
distributions of Zn =

√
n(Y n−µ), Zn =

√
n(g(Tn)−g(θ)) and Zn =

√
n(Tn−

E(t(Y ))), respectively.
Convergence in distribution is useful because if the distribution of Xn is

unknown or complicated and the distribution of X is easy to use, then for
large n we can approximate the probability that Xn is in an interval by the

probability that X is in the interval. To see this, notice that if Xn
D→ X,

then P (a < Xn ≤ b) = Fn(b) − Fn(a) → F (b)− F (a) = P (a < X ≤ b) if F
is continuous at a and b.

Warning: convergence in distribution says that the cdf Fn(t) of Xn gets
close to the cdf of F(t) of X as n → ∞ provided that t is a continuity
point of F . Hence for any ε > 0 there exists Nt such that if n > Nt, then
|Fn(t) − F (t)| < ε. Notice that Nt depends on the value of t. Convergence
in distribution does not imply that the random variables Xn converge to the
random variable X.

Example 8.8. Suppose that Xn ∼ U(−1/n, 1/n). Then the cdf Fn(x) of
Xn is

Fn(x) =







0, x ≤ −1
n

nx
2

+ 1
2
, −1

n
≤ x ≤ 1

n

1, x ≥ 1
n
.

Sketching Fn(x) shows that it has a line segment rising from 0 at x = −1/n
to 1 at x = 1/n and that Fn(0) = 0.5 for all n ≥ 1. Examining the cases
x < 0, x = 0 and x > 0 shows that as n→ ∞,

Fn(x) →







0, x < 0
1
2

x = 0
1, x > 0.

Notice that if X is a random variable such that P (X = 0) = 1, then X has
cdf

FX(x) =

{
0, x < 0
1, x ≥ 0.

Since x = 0 is the only discontinuity point of FX(x) and since Fn(x) → FX(x)
for all continuity points of FX(x) (ie for x 6= 0),

Xn
D→ X.
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Example 8.9. Suppose Yn ∼ U(0, n). Then Fn(t) = t/n for 0 < t ≤ n
and Fn(t) = 0 for t ≤ 0. Hence limn→∞ Fn(t) = 0 for t ≤ 0. If t > 0 and
n > t, then Fn(t) = t/n → 0 as n → ∞. Thus limn→∞ Fn(t) = 0 for all
t and Yn does not converge in distribution to any random variable Y since
H(t) ≡ 0 is not a cdf.

Definition 8.5. A sequence of random variables Xn converges in distri-
bution to a constant τ (θ), written

Xn
D→ τ (θ), if Xn

D→ X

where P (X = τ (θ)) = 1. The distribution of the random variable X is said
to be degenerate at τ (θ).

Definition 8.6. A sequence of random variables Xn converges in prob-
ability to a constant τ (θ), written

Xn
P→ τ (θ),

if for every ε > 0,

lim
n→∞

P (|Xn − τ (θ)| < ε) = 1 or, equivalently, lim
n→∞

P(|Xn − τ (θ)| ≥ ε) = 0.

The sequence Xn converges in probability to X, written

Xn
P→ X,

if Xn −X
P→ 0.

Notice that Xn
P→ X if for every ε > 0,

lim
n→∞

P (|Xn −X| < ε) = 1, or, equivalently, lim
n→∞

P(|Xn − X| ≥ ε) = 0.

Definition 8.7. A sequence of estimators Tn of τ (θ) is consistent for
τ (θ) if

Tn
P→ τ (θ)

for every θ ∈ Θ. If Tn is consistent for τ (θ), then Tn is a consistent esti-
mator of τ (θ).
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Consistency is a weak property that is usually satisfied by good estima-
tors. Tn is a consistent estimator for τ (θ) if the probability that Tn falls in
any neighborhood of τ (θ) goes to one, regardless of the value of θ ∈ Θ.

Definition 8.8. For a real number r > 0, Yn converges in rth mean to a
random variable Y , written

Yn
r→ Y,

if
E(|Yn − Y |r) → 0

as n→ ∞. In particular, if r = 2, Yn converges in quadratic mean to Y ,
written

Yn
2→ Y or Yn

qm→ Y,

if
E[(Yn − Y )2] → 0

as n→ ∞.

Lemma 8.6: Generalized Chebyshev’s Inequality. Let u : < →
[0,∞) be a nonnegative function. If E[u(Y )] exists then for any c > 0,

P [u(Y ) ≥ c] ≤ E[u(Y )]

c
.

If µ = E(Y ) exists, then taking u(y) = |y − µ|r and c̃ = cr gives
Markov’s Inequality: for r > 0 and any c > 0,

P (|Y − µ| ≥ c] = P (|Y − µ|r ≥ cr] ≤ E[|Y − µ|r]
cr

.

If r = 2 and σ2 = VAR(Y ) exists, then we obtain
Chebyshev’s Inequality:

P (|Y − µ| ≥ c] ≤ VAR(Y )

c2
.

Proof. The proof is given for pdfs. For pmfs, replace the integrals by
sums. Now

E[u(Y )] =

∫

<
u(y)f(y)dy =

∫

{y:u(y)≥c}
u(y)f(y)dy +

∫

{y:u(y)<c}
u(y)f(y)dy
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≥
∫

{y:u(y)≥c}
u(y)f(y)dy

since the integrand u(y)f(y) ≥ 0. Hence

E[u(Y )] ≥ c

∫

{y:u(y)≥c}
f(y)dy = cP [u(Y ) ≥ c]. QED

The following proposition gives sufficient conditions for Tn to be a con-
sistent estimator of τ (θ). Notice that MSEτ (θ)(Tn) → 0 for all θ ∈ Θ is

equivalent to Tn
qm→ τ (θ) for all θ ∈ Θ.

Proposition 8.7. a) If

lim
n→∞

MSEτ (θ)(Tn) = 0

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

b) If
lim
n→∞

VARθ(Tn) = 0 and lim
n→∞

Eθ(Tn) = τ (θ))

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

Proof. a) Using Lemma 8.6 with Y = Tn, u(Tn) = [Tn−τ (θ)]2 and c = ε2

shows that for any ε > 0,

Pθ(|Tn − τ (θ)| ≥ ε) = Pθ[(Tn− τ (θ))2 ≥ ε2] ≤ Eθ[(Tn − τ (θ))2]

ε2
.

Hence
lim
n→∞

Eθ[(Tn − τ (θ))2] = lim
n→∞

MSEτ (θ)(Tn) → 0

is a sufficient condition for Tn to be a consistent estimator of τ (θ).
b) Referring to Definition 6.1,

MSEτ (θ)(Tn) = VARθ(Tn) + [Biasτ (θ)(Tn)]
2

where Biasτ (θ)(Tn) = Eθ(Tn)−τ (θ). SinceMSEτ (θ)(Tn) → 0 if both VARθ(Tn)
→ 0 and Biasτ (θ)(Tn) = Eθ(Tn)−τ (θ) → 0, the result follows from a). QED

The following result shows estimators that converge at a
√
n rate are

consistent. Use this result and the delta method to show that g(Tn) is a con-
sistent estimator of g(θ). Note that b) follows from a) with Xθ ∼ N(0, v(θ)).
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The WLLN shows that Y is a consistent estimator of E(Y ) = µ if E(Y )
exists.

Proposition 8.8. a) Let X be a random variable and 0 < δ ≤ 1. If

nδ(Tn − τ (θ))
D→ X

then Tn
P→ τ (θ).

b) If √
n(Tn − τ (θ))

D→ N(0, v(θ))

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

Definition 8.9. A sequence of random variables Xn converges almost
everywhere (or almost surely, or with probability 1) to X if

P ( lim
n→∞

Xn = X) = 1.

This type of convergence will be denoted by

Xn
ae→ X.

Notation such as “Xn converges to X ae” will also be used. Sometimes
“ae” will be replaced with “as” or “wp1.” We say that Xn converges almost
everywhere to τ (θ), written

Xn
ae→ τ (θ),

if P (limn→∞Xn = τ (θ)) = 1.

Theorem 8.9. Let Yn be a sequence of iid random variables with E(Yi) =
µ. Then

a) Strong Law of Large Numbers (SLLN): Y n
ae→ µ, and

b) Weak Law of Large Numbers (WLLN): Y n
P→ µ.

Proof of WLLN when V (Yi) = σ2: By Chebyshev’s inequality, for
every ε > 0,

P (|Y n − µ| ≥ ε) ≤ V (Y n)

ε2
=

σ2

nε2
→ 0

as n→ ∞. QED
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8.4 Slutsky’s Theorem and Related Results

Theorem 8.10: Slutsky’s Theorem. Suppose Yn
D→ Y and Wn

P→ w for
some constant w. Then

a) Yn +Wn
D→ Y + w,

b) YnWn
D→ wY, and

c) Yn/Wn
D→ Y/w if w 6= 0.

Theorem 8.11. a) If Xn
P→ X then Xn

D→ X.

b) If Xn
ae→ X then Xn

P→ X and Xn
D→ X.

c) If Xn
r→ X then Xn

P→ X and Xn
D→ X.

d) Xn
P→ τ (θ) iff Xn

D→ τ (θ).

e) If Xn
P→ θ and τ is continuous at θ, then τ (Xn)

P→ τ (θ).

f) If Xn
D→ θ and τ is continuous at θ, then τ (Xn)

D→ τ (θ).

Suppose that for all θ ∈ Θ, Tn
D→ τ (θ), Tn

r→ τ (θ) or Tn
ae→ τ (θ). Then

Tn is a consistent estimator of τ (θ) by Theorem 8.11.

Example 8.10. Let Y1, ..., Yn be iid with mean E(Yi) = µ and variance
V (Yi) = σ2. Then the sample mean Y n is a consistent estimator of µ since
i) the SLLN holds (use Theorem 8.9 and 8.11), ii) the WLLN holds and iii)
the CLT holds (use Proposition 8.8). Since

lim
n→∞

VARµ(Y n) = lim
n→∞

σ2/n = 0 and lim
n→∞

Eµ(Y n) = µ,

Y n is also a consistent estimator of µ by Proposition 8.7b. By the delta
method and Proposition 8.8b, Tn = g(Y n) is a consistent estimator of g(µ)
if g′(µ) 6= 0 for all µ ∈ Θ. By Theorem 8.11e, g(Y n) is a consistent estimator
of g(µ) if g is continuous at µ for all µ ∈ Θ.

Theorem 8.12: Generalized Continuous Mapping Theorem. If

Xn
D→ X and the function g is such that P [X ∈ C(g)] = 1 where C(g) is the

set of points where g is continuous, then g(Xn)
D→ g(X).

Remark 8.2. For Theorem 8.11, a) follows from Slutsky’s Theorem

by taking Yn ≡ X = Y and Wn = Xn − X. Then Yn
D→ Y = X and

Wn
P→ 0. HenceXn = Yn+Wn

D→ Y +0 = X. The convergence in distribution
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parts of b) and c) follow from a). Part f) follows from d) and e). Part
e) implies that if Tn is a consistent estimator of θ and τ is a continuous
function, then τ (Tn) is a consistent estimator of τ (θ). Theorem 8.12 says
that convergence in distribution is preserved by continuous functions, and
even some discontinuities are allowed as long as the set of continuity points
is assigned probability 1 by the asymptotic distribution. Equivalently, the
set of discontinuity points is assigned probability 0.

Example 8.11. (Ferguson 1996, p. 40): If Xn
D→ X then 1/Xn

D→ 1/X
if X is a continuous random variable since P (X = 0) = 0 and x = 0 is the
only discontinuity point of g(x) = 1/x.

Example 8.12. Show that if Yn ∼ tn, a t distribution with n degrees of

freedom, then Yn
D→ Z where Z ∼ N(0, 1).

Solution: Yn
D
= Z/

√

Vn/n where Z Vn ∼ χ2
n. If Wn =

√

Vn/n
P→ 1,

then the result follows by Slutsky’s Theorem. But Vn
D
=
∑n

i=1Xi where the

iid Xi ∼ χ2
1. Hence Vn/n

P→ 1 by the WLLN and
√

Vn/n
P→ 1 by Theorem

8.11e.

Theorem 8.13: Continuity Theorem. Let Yn be sequence of random
variables with characteristic functions φn(t). Let Y be a random variable
with cf φ(t).

a)

Yn
D→ Y iff φn(t) → φ(t) ∀t ∈ <.

b) Also assume that Yn has mgf mn and Y has mgf m. Assume that
all of the mgfs mn and m are defined on |t| ≤ d for some d > 0. Then if

mn(t) → m(t) as n→ ∞ for all |t| < c where 0 < c < d, then Yn
D→ Y .

Application: Proof of a Special Case of the CLT. Following
Rohatgi (1984, p. 569-9), let Y1, ..., Yn be iid with mean µ, variance σ2 and
mgf mY (t) for |t| < to. Then

Zi =
Yi − µ

σ

has mean 0, variance 1 and mgf mZ(t) = exp(−tµ/σ)mY (t/σ) for |t| < σto.
Want to show that

Wn =
√
n

(
Y n − µ

σ

)

D→ N(0, 1).
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Notice that Wn =

n−1/2

n∑

i=1

Zi = n−1/2

n∑

i=1

(
Yi − µ

σ

)

= n−1/2

∑n
i=1 Yi − nµ

σ
=
n−1/2

1
n

Y n − µ

σ
.

Thus

mWn(t) = E(etWn) = E[exp(tn−1/2
n∑

i=1

Zi)] = E[exp(
n∑

i=1

tZi/
√
n)]

=

n∏

i=1

E[etZi/
√
n] =

n∏

i=1

mZ(t/
√
n) = [mZ(t/

√
n)]n.

Set φ(x) = log(mZ(x)). Then

log[mWn(t)] = n log[mZ(t/
√
n)] = nφ(t/

√
n) =

φ(t/
√
n)

1
n

.

Now φ(0) = log[mZ(0)] = log(1) = 0. Thus by L’Hôpital’s rule (where the
derivative is with respect to n), limn→∞ log[mWn(t)] =

lim
n→∞

φ(t/
√
n )

1
n

= lim
n→∞

φ′(t/
√
n )[−t/2

n3/2 ]

(−1
n2 )

=
t

2
lim
n→∞

φ′(t/
√
n )

1√
n

.

Now

φ′(0) =
m′
Z(0)

mZ(0)
= E(Zi)/1 = 0,

so L’Hôpital’s rule can be applied again, giving limn→∞ log[mWn(t)] =

t

2
lim
n→∞

φ′′(t/
√
n )[ −t

2n3/2 ]

( −1
2n3/2 )

=
t2

2
lim
n→∞

φ′′(t/
√
n ) =

t2

2
φ′′(0).

Now

φ′′(t) =
d

dt

m′
Z(t)

mZ(t)
=
m′′
Z(t)mZ(t) − (m′

Z(t))2

[mZ(t)]2
.

So
φ′′(o) = m′′

Z(0) − [m′
Z(0)]2 = E(Z2

i ) − [E(Zi)]
2 = 1.

Hence limn→∞ log[mWn(t)] = t2/2 and

lim
n→∞

mWn(t) = exp(t2/2)

which is the N(0,1) mgf. Thus by the continuity theorem,

Wn =
√
n

(
Y n − µ

σ

)

D→ N(0, 1).
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8.5 Order Relations and Convergence Rates

Definition 8.10. Lehmann (1999, p. 53-54): a) A sequence of random
variables Wn is tight or bounded in probability, written Wn = OP (1), if for
every ε > 0 there exist positive constants Dε and Nε such that

P (|Wn| ≤ Dε) ≥ 1 − ε

for all n ≥ Nε. Also Wn = OP (Xn) if |Wn/Xn| = OP (1).
b) The sequence Wn = oP (n−δ) if nδWn = oP (1) which means that

nδWn
P→ 0.

c) Wn has the same order as Xn in probability, written Wn �P Xn, if for
every ε > 0 there exist positive constants Nε and 0 < dε < Dε such that

P (dε ≤
∣
∣
∣
∣

Wn

Xn

∣
∣
∣
∣
≤ Dε) ≥ 1 − ε

for all n ≥ Nε.
d) Similar notation is used for a k × r matrix An = [ai,j(n)] if each

element ai,j(n) has the desired property. For example, An = OP (n−1/2) if
each ai,j(n) = OP (n−1/2).

Definition 8.11. Let β̂n be an estimator of a p × 1 vector β, and let
Wn = ‖β̂n − β‖.

a) If Wn �P n
−δ for some δ > 0, then both Wn and β̂n have (tightness)

rate nδ.
b) If there exists a constant κ such that

nδ(Wn − κ)
D→ X

for some nondegenerate random variable X, then both Wn and β̂n have
convergence rate nδ.

Proposition 8.14. Suppose there exists a constant κ such that

nδ(Wn − κ)
D→ X.

a) Then Wn = OP (n−δ).
b) If X is not degenerate, then Wn �P n

−δ .
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The above result implies that if Wn has convergence rate nδ , then Wn has
tightness rate nδ, and the term “tightness” will often be omitted. Part a) is
proved, for example, in Lehmann (1999, p. 67).

The following result shows that if Wn �P Xn, then Xn �P Wn, Wn =
OP (Xn) and Xn = OP (Wn). Notice that if Wn = OP (n−δ), then nδ is a
lower bound on the rate of Wn. As an example, if the CLT holds then
Y n = OP (n−1/3), but Y n �P n

−1/2.

Proposition 8.15. a) If Wn �P Xn then Xn �P Wn.
b) If Wn �P Xn then Wn = OP (Xn).
c) If Wn �P Xn then Xn = OP (Wn).
d) Wn �P Xn iff Wn = OP (Xn) and Xn = OP (Wn).

Proof. a) Since Wn �P Xn,

P (dε ≤
∣
∣
∣
∣

Wn

Xn

∣
∣
∣
∣
≤ Dε) = P (

1

Dε
≤
∣
∣
∣
∣

Xn

Wn

∣
∣
∣
∣
≤ 1

d ε
) ≥ 1 − ε

for all n ≥ Nε. Hence Xn �P Wn.
b) Since Wn �P Xn,

P (|Wn| ≤ |XnDε|) ≥ P (dε ≤
∣
∣
∣
∣

Wn

Xn

∣
∣
∣
∣
≤ Dε) ≥ 1 − ε

for all n ≥ Nε. Hence Wn = OP (Xn).
c) Follows by a) and b).
d) If Wn �P Xn, then Wn = OP (Xn) and Xn = OP (Wn) by b) and c).

Now suppose Wn = OP (Xn) and Xn = OP (Wn). Then

P (|Wn| ≤ |Xn|Dε/2) ≥ 1 − ε/2

for all n ≥ N1, and

P (|Xn| ≤ |Wn|1/dε/2) ≥ 1 − ε/2

for all n ≥ N2. Hence

P (A) ≡ P (

∣
∣
∣
∣

Wn

Xn

∣
∣
∣
∣
≤ Dε/2) ≥ 1 − ε/2

and

P (B) ≡ P (dε/2 ≤
∣
∣
∣
∣

Wn

Xn

∣
∣
∣
∣
) ≥ 1 − ε/2
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for all n ≥ N = max(N1, N2). Since P (A∩B) = P (A)+P (B)−P (A∪B) ≥
P (A) + P (B)− 1,

P (A ∩ B) = P (dε/2 ≤
∣
∣
∣
∣

Wn

Xn

∣
∣
∣
∣
≤ Dε/2) ≥ 1 − ε/2 + 1 − ε/2 − 1 = 1 − ε

for all n ≥ N. Hence Wn �P Xn. QED

The following result is used to prove the following Theorem 8.17 which
says that if there are K estimators Tj,n of a parameter β, such that ‖Tj,n −
β‖ = OP (n−δ) where 0 < δ ≤ 1, and if T ∗

n picks one of these estimators, then
‖T ∗

n − β‖ = OP (n−δ).

Proposition 8.16: Pratt (1959). Let X1,n, ..., XK,n each be OP (1)
where K is fixed. Suppose Wn = Xin,n for some in ∈ {1, ..., K}. Then

Wn = OP (1). (8.8)

Proof.

P (max{X1,n, ..., XK,n} ≤ x) = P (X1,n ≤ x, ..., XK,n ≤ x) ≤
FWn(x) ≤ P (min{X1,n, ..., XK,n} ≤ x) = 1 − P (X1,n > x, ..., XK,n > x).

SinceK is finite, there exists B > 0 and N such that P (Xi,n ≤ B) > 1−ε/2K
and P (Xi,n > −B) > 1 − ε/2K for all n > N and i = 1, ..., K. Bonferroni’s

inequality states that P (∩Ki=1Ai) ≥
∑K

i=1 P (Ai) − (K − 1). Thus

FWn(B) ≥ P (X1,n ≤ B, ..., XK,n ≤ B) ≥
K(1 − ε/2K) − (K − 1) = K − ε/2 −K + 1 = 1 − ε/2

and
−FWn(−B) ≥ −1 + P (X1,n > −B, ..., XK,n > −B) ≥

−1 +K(1 − ε/2K) − (K − 1) = −1 +K − ε/2 −K + 1 = −ε/2.
Hence

FWn(B)− FWn(−B) ≥ 1 − ε for n > N. QED

Theorem 8.17. Suppose ‖Tj,n − β‖ = OP (n−δ) for j = 1, ..., K where
0 < δ ≤ 1. Let T ∗

n = Tin,n for some in ∈ {1, ..., K} where, for example, Tin,n
is the Tj,n that minimized some criterion function. Then

‖T ∗
n − β‖ = OP (n−δ). (8.9)

Proof. Let Xj,n = nδ‖Tj,n − β‖. Then Xj,n = OP (1) so by Proposition
8.16, nδ‖T ∗

n − β‖ = OP (1). Hence ‖T ∗
n − β‖ = OP (n−δ). QED
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8.6 Multivariate Limit Theorems

Many of the univariate results of the previous 5 sections can be extended to
random vectors. As stated in Section 2.7, the notation for random vectors
is rather awkward. For the limit theorems, the vector X is typically a k × 1
column vector and XT is a row vector. Let ‖x‖ =

√

x2
1 + · · · + x2

k be the
Euclidean norm of x.

Definition 8.12. Let Xn be a sequence of random vectors with joint
cdfs Fn(x) and let X be a random vector with joint cdf F (x).

a) Xn converges in distribution to X, written Xn
D→ X, if Fn(x) →

F (x) as n→ ∞ for all points x at which F (x) is continuous. The distribution
of X is the limiting distribution or asymptotic distribution of Xn.

b) Xn converges in probability to X, written Xn
P→ X, if for every

ε > 0, P (‖Xn − X‖ > ε) → 0 as n→ ∞.
c) Let r > 0 be a real number. Then Xn converges in rth mean to

X, written Xn
r→ X, if E(‖Xn −X‖r) → 0 as n→ ∞.

d) Xn converges almost everywhere to X, written Xn
ae→ X, if

P (limn→∞ Xn = X) = 1.

Theorems 8.18, 8.19 and 8.21 below are the multivariate extensions of
the limit theorems in Section 8.1. When the limiting distribution of Zn =√
n(g(T n) − g(θ)) is multivariate normal Nk(0,Σ), approximate the joint

cdf of Zn with the joint cdf of the Nk(0,Σ) distribution. Thus to find
probabilities, manipulate Zn as if Zn ≈ Nk(0,Σ). To see that the CLT is a
special case of the MCLT below, let k = 1, E(X) = µ and V (X) = Σ = σ2.

Theorem 8.18: the Multivariate Central Limit Theorem (MCLT).
If X1, ...,Xn are iid k×1 random vectors with E(X) = µ and Cov(X) = Σ,
then √

n(X − µ)
D→ Nk(0,Σ)

where the sample mean

X =
1

n

n∑

i=1

X i.

To see that the delta method is a special case of the multivariate delta
method, note that if Tn and parameter θ are real valued, then Dg(θ)

= g′(θ).
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Theorem 8.19: the Multivariate Delta Method. If
√
n(T n − θ)

D→ Nk(0,Σ),

then √
n(g(T n) − g(θ))

D→ Nd(0,Dg(θ)
ΣDT

g(θ)
)

where the d× k Jacobian matrix of partial derivatives

Dg(θ)
=






∂
∂θ1
g1(θ) . . . ∂

∂θk
g1(θ)

...
...

∂
∂θ1
gd(θ) . . . ∂

∂θk
gd(θ)




 .

Here the mapping g : <k → <d needs to be differentiable in a neighborhood
of θ ∈ <k.

Example 8.13. If Y has a Weibull distribution, Y ∼ W (φ, λ), then the
pdf of Y is

f(y) =
φ

λ
yφ−1e−

yφ

λ

where λ, y, and φ are all positive. If µ = λ1/φ so µφ = λ, then the Weibull
pdf

f(y) =
φ

µ

(
y

µ

)φ−1

exp

[

−
(
y

µ

)φ
]

.

Let (µ̂, φ̂) be the MLE of (µ, φ). According to Bain (1978, p. 215),

√
n

( (
µ̂

φ̂

)

−
(
µ
φ

) )

D→ N

( (
0
0

)

,

(

1.109µ
2

φ2 0.257µ

0.257µ 0.608φ2

) )

= N2(0, I
−1(θ)).

Let column vectors θ = (µ φ)T and η = (λ φ)T . Then

η = g(θ) =

(
λ
φ

)

=

(
µφ

φ

)

=

(
g1(θ)
g2(θ)

)

.

So

Dg(θ)
=





∂
∂θ1
g1(θ) ∂

∂θ2
g1(θ)

∂
∂θ1
g2(θ) ∂

∂θ2
g2(θ)



 =





∂
∂µ
µφ ∂

∂φ
µφ

∂
∂µ
φ ∂

∂φ
φ



 =





φµφ−1 µφ log(µ)

0 1



 .
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Thus by the multivariate delta method,

√
n

( (
λ̂

φ̂

)

−
(
λ
φ

) )

D→ N2(0,Σ)

where (see Definition 8.15 below)

Σ = I(η)−1 = [I(g(θ))]−1 = Dg(θ)
I−1(θ)DT

g(θ)
=





1.109λ2(1 + 0.4635 log(λ) + 0.5482(log(λ))2) 0.257φλ + 0.608λφ log(λ)

0.257φλ + 0.608λφ log(λ) 0.608φ2



 .

Definition 8.13. Let X be a random variable with pdf or pmf f(x|θ).
Then the information matrix

I(θ) = [Ii,j]

where

I i,j = E

[
∂

∂θi
log(f(X|θ))

∂

∂θj
log(f(X|θ))

]

.

Definition 8.14. An estimator T n of θ is asymptotically efficient if

√
n(T n − θ)

D→ Nk(0, I
−1(θ)).

Following Lehmann (1999, p. 511), if T n is asymptotically efficient and
if the estimator W n satisfies

√
n(W n − θ)

D→ Nk(0,J(θ))

where J(θ) and I−1(θ) are continuous functions of θ, then under regularity
conditions, J(θ)−I−1(θ) is a positive semidefinite matrix, and T n is “better”
than W n.

Definition 8.15. Assume that η = g(θ). Then

I(η) = I(g(θ)) = [Dg(θ)
I−1(θ)DT

g(θ)
]−1.
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Notice that this definition agrees with the multivariate delta method if

√
n(T n − θ)

D→ Nk(0,Σ)

where Σ = I−1(θ).

Now suppose that X1, ..., Xn are iid random variables from a k-parameter
REF

f(x|θ) = h(x)c(θ) exp

[
k∑

i=1

wi(θ)ti(x)

]

(8.10)

with natural parameterization

f(x|η) = h(x)b(η) exp

[
k∑

i=1

ηiti(x)

]

. (8.11)

Then the complete minimal sufficient statistic is

T n =
1

n
(
n∑

i=1

t1(Xi), ...,
n∑

i=1

tk(Xi))
T .

Let µT = (E(t1(X), ..., E(tk(X)))T . From Theorem 3.3, for η ∈ Ω,

E(ti(X)) =
−∂
∂ηi

log(b(η)),

and

Cov(ti(X), tj(X)) ≡ σi,j =
−∂2

∂ηi∂ηj

log(b(η)).

Proposition 8.20. If the random variable X is a kP–REF with pdf or
pdf (8.12), then the information matrix

I(η) = [Ii,j]

where

Ii,j = E

[
∂

∂ηi
log(f(X|η))

∂

∂ηj
log(f(X|η))

]

= −E
[

∂2

∂ηi∂ηj
log(f(X|η))

]

.

Several authors, including Barndorff–Nielsen (1982), have noted that the

multivariate CLT can be used to show that
√
n(T n − µT )

D→ Nk(0,Σ). The
fact that Σ = I(η) appears in Lehmann (1983, p. 127).
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Theorem 8.21. If X1, ..., Xn are iid from a k-parameter regular expo-
nential family, then

√
n(T n − µT )

D→ Nk(0, I(η)).

Proof. By the multivariate central limit theorem,

√
n(T n − µT )

D→ Nk(0,Σ)

where Σ = [σi,j]. Hence the result follows if σi,j = Ii,j. Since

log(f(x|η)) = log(h(x)) + log(b(η)) +
k∑

l=1

ηltl(x),

∂

∂ηi
log(f(x|η)) =

∂

∂ηi
log(b(η)) + ti(X).

Hence

−Ii,j = E

[
∂2

∂ηi∂ηj
log(f(X|η))

]

=
∂2

∂ηi∂ηj
log(b(η)) = −σi,j. QED

To obtain standard results, use the multivariate delta method, assume
that both θ and η are k × 1 vectors, and assume that η = g(θ) is a one
to one mapping so that the inverse mapping is θ = g−1(η). If Dg(θ)

is

nonsingular, then
D−1

g(θ)
= Dg−1(η) (8.12)

(see Searle 1982, p. 339), and

I(η) = [D
g(θ)

I−1(θ)DT

g(θ)
]−1 = [D−1

g(θ)
]TI(θ)D−1

g(θ)
= DT

g−1(η)I(θ)Dg−1(η).

(8.13)
Compare Lehmann (1999, p. 500) and Lehmann (1983, p. 127).

For example, suppose that µT and η are k × 1 vectors, and

√
n(η̂ − η)

D→ Nk(0, I
−1(η))

where µT = g(η) and η = g−1(µT ). Also assume that T n = g(η̂) and
η̂ = g−1(T n). Then by the multivariate delta method and Theorem 8.21,

√
n(T n−µT ) =

√
n(g(η̂)−g(η))

D→ Nk[0, I(η)] = Nk[0,Dg(η)I
−1(η)DT

g(η)].
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Hence
I(η) = Dg(η)I

−1(η)DT
g(η).

Similarly,

√
n(g−1(T n) − g−1(µT )) =

√
n(η̂ − η)

D→ Nk[0, I
−1(η)] =

Nk[0,Dg−1(µT )I(η)DT
g−1(µT )].

Thus

I−1(η) = Dg−1(µT )I(η)DT
g−1(µT ) = Dg−1(µT )Dg(η)I

−1(η)DT
g(η)D

T
g−1(µT )

as expected by Equation (8.13). Typically θ̂ is a function of the sufficient
statistic T n and is the unique MLE of θ. Replacing η by θ in the above

discussion shows that
√
n(θ̂− θ)

D→ Nk(0, I
−1(θ)) is equivalent to

√
n(T n−

µT )
D→ Nk(0, I(θ)) provided that Dg(θ)

is nonsingular.

8.7 More Multivariate Results

Definition 8.16. If the estimator g(T n)
P→ g(θ) for all θ ∈ Θ, then g(T n)

is a consistent estimator of g(θ).

Proposition 8.22. If 0 < δ ≤ 1, X is a random vector, and

nδ(g(T n) − g(θ))
D→ X,

then g(T n)
P→ g(θ).

Theorem 8.23. If X1, ...,Xn are iid, E(‖X‖) < ∞ and E(X) = µ,
then

a) WLLN: Xn
D→ µ and

b) SLLN: Xn
ae→ µ.

Theorem 8.24: Continuity Theorem. Let Xn be a sequence of k×1
random vectors with characteristic function φn(t) and let X be a k × 1
random vector with cf φ(t). Then

Xn
D→ X iff φn(t) → φ(t)
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for all t ∈ <k.

Theorem 8.25: Cramér Wold Device. Let Xn be a sequence of k×1
random vectors and let X be a k × 1 random vector. Then

Xn
D→ X iff tTXn

D→ tTX

for all t ∈ <k.

Theorem 8.26. a) If Xn
P→ X, then Xn

D→ X.
b)

Xn
P→ g(θ) iff Xn

D→ g(θ).

Let g(n) ≥ 1 be an increasing function of the sample size n: g(n) ↑
∞, eg g(n) =

√
n. See White (1984, p. 15). If a k × 1 random vector

T n − µ converges to a nondegenerate multivariate normal distribution with
convergence rate

√
n, then T n has (tightness) rate

√
n.

Definition 8.17. Let An = [ai,j(n)] be an r × c random matrix.
a) An = OP (Xn) if ai,j(n) = OP (Xn) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
b) An = op(Xn) if ai,j(n) = op(Xn) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
c) An �P (1/(g(n)) if ai,j(n) �P (1/(g(n)) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
d) Let A1,n = T n − µ and A2,n = Cn − cΣ for some constant c > 0. If
A1,n �P (1/(g(n)) and A2,n �P (1/(g(n)), then (T n,Cn) has (tightness)
rate g(n).

Recall that the smallest integer function dxe rounds up, eg d7.7e = 8.

Definition 8.18. The sample α quantile ξ̂n,α = Y(dnαe). The population
quantile ξα = Q(α) = inf{y : F (y) ≥ α}.

Theorem 8.27: Serfling (1980, p. 80). Let 0 < ρ1 < ρ2 < · · · <
ρk < 1. Suppose that F has a density f that is positive and continuous in
neighborhoods of ξρ1 , ..., ξρk

. Then

√
n[(ξ̂n,ρ1 , ..., ξ̂n,ρk

)T − (ξρ1 , ..., ξρk
)T ]

D→ Nk(0,Σ)

where Σ = (σij) and

σij =
ρi(1 − ρj)

f(ξρi)f(ξρj )

for i ≤ j and σij = σji for i > j.
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Theorem 8.28: Continuous Mapping Theorem. Let Xn ∈ <k. If

Xn
D→ X and if the function g : <k → <j is continuous, then

g(Xn)
D→ g(X).

8.8 Summary

1) CLT: Let Y1, ..., Yn be iid with E(Y ) = µ and V (Y ) = σ2. Then√
n(Y n − µ)

D→ N(0, σ2).

2) Delta Method: If g′(θ) 6= 0 and
√
n(Tn − θ)

D→ N(0, σ2), then√
n(g(Tn) − g(θ))

D→ N(0, σ2[g′(θ)]2).

3) 1P–REF Limit Theorem: Let Y1, ..., Yn be iid from a 1P–REF with
pdf or pmf f(y|θ) = h(y)c(θ) exp[w(θ)t(y)] and natural parameterization
f(y|η) = h(y)b(η) exp[ηt(y)]. Let E(t(Y )) = µt ≡ g(η) and V (t(Y )) = σ2

t .

Then
√
n[Tn − µt]

D→ N(0, I1(η)) where I1(η) = σ2
t = g′(η) and Tn =

1
n

∑n
i=1 t(Yi).

4) Limit theorem for the Sample Median:
√
n(MED(n) −MED(Y ))

D→ N
(

0, 1
4f2(MED(Y ))

)

.

5) If nδ(T1,n − θ)
D→ N(0, σ2

1(F )) and nδ(T2,n − θ)
D→ N(0, σ2

2(F )), then
the asymptotic relative efficiency of T1,n with respect to T2,n is

ARE(T1,n, T2,n) =
σ2

2(F )

σ2
1(F )

.

The “better” estimator has the smaller asymptotic variance or σ2
i (F ).

6) An estimator Tn of τ (θ) is asymptotically efficient if

√
n(Tn − τ (θ))

D→ N

(

0,
[τ ′(θ)]2

I1(θ)

)

.

7) For a 1P–REF, Tn = 1
n

∑n
i=1 t(Yi) is an asymptotically efficient esti-

mator of g(η) = E(t(Y )).
8) Rule of thumb: If θ̂n is the MLE or UMVUE of θ, then Tn = τ (θ̂n) is

an asymptotically efficient estimator of τ (θ). Hence if τ ′(θ) 6= 0, then

√
n[τ (θ̂n) − τ (θ)]

D→ N

(

0,
[τ ′(θ)]2

I1(θ)

)

.
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9) Xn
D→ X if

lim
n→∞

Fn(t) = F (t)

at each continuity point t of F.

10) Xn
P→ τ (θ) if for every ε > 0,

lim
n→∞

P (|Xn − τ (θ)| < ε) = 1 or, equivalently, lim
n→∞

P(|Xn − τ (θ)| ≥ ε) = 0.

11) Tn is a consistent estimator of τ (θ) if Tn
P→ τ (θ) for every θ ∈ Θ.

12) Tn is a consistent estimator of τ (θ) if any of the following 3 condi-
tions holds:

i) limn→∞ VARθ(Tn) = 0 and limn→∞Eθ(Tn) = τ (θ) for all θ ∈ Θ.

ii) MSEτ (θ)(Tn) → 0 for all θ ∈ Θ.

iii) E[(Tn − τ (θ)2) → 0 for all θ ∈ Θ.

13) If √
n(Tn − τ (θ))

D→ N(0, v(θ))

for all θ ∈ Θ, then Tn is a consistent estimator of τ (θ).

14) WLLN: Let Y1, ..., Yn, ... be a sequence of iid random variables with

E(Yi) = µ. Then Y n
P→ µ. Hence Y n is a consistent estimator of µ.

15) i) If Xn
P→ X then Xn

D→ X.

ii) Tn
P→ τ (θ) iff Tn

D→ τ (θ).

iii) If Tn
P→ θ and τ is continuous at θ, then τ (Tn)

P→ τ (θ). Hence if Tn is
a consistent estimator of θ, then τ (Tn)is a consistent estimator of τ (θ) if τ is
a continuous function on Θ.

8.9 Complements

The following extension of the delta method is sometimes useful.
Theorem 8.29. Suppose that g′(θ) = 0, g′′(θ) 6= 0 and

√
n(Tn − θ)

D→ N(0, τ 2(θ)).

Then

n[g(Tn) − g(θ)]
D→ 1

2
τ 2(θ)g′′(θ)χ2

1.
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Example 8.14. Let Xn ∼ Binomial(n, p) where the positive integer n
is large and 0 < p < 1. Let g(θ) = θ3 − θ. Find the limiting distribution of

n

[

g

(
Xn

n

)

− c

]

for appropriate constant c when p =
1√
3
.

Solution: Since Xn
D
=
∑n

i=1 Yi where Yi ∼ BIN(1, p),

√
n

(
Xn

n
− p

)

D→ N(0, p(1 − p))

by the CLT. Let θ = p. Then g′(θ) = 3θ2 − 1 and g′′(θ) = 6θ. Notice that

g(1/
√

3) = (1/
√

3)3 − 1/
√

3 = (1/
√

3)(
1

3
− 1) =

−2

3
√

3
= c.

Also g′(1/
√

3) = 0 and g′′(1/
√

3) = 6/
√

3. Since τ 2(p) = p(1 − p),

τ 2(1/
√

3) =
1√
3
(1 − 1√

3
).

Hence

n

[

g

(
Xn

n

)

−
( −2

3
√

3

) ]

D→ 1

2

1√
3
(1 − 1√

3
)

6√
3
χ2

1 = (1 − 1√
3
) χ2

1.

There are many texts on large sample theory including, in roughly in-
creasing order of difficulty, Lehmann (1999), Ferguson (1996), Sen and Singer
(1993), and Serfling (1980). Cramér (1946) is also an important reference,
and White (1984) considers asymptotic theory for econometric applications.
Lecture notes are available from
(www.stat.psu.edu/∼dhunter/asymp/lectures/). Also see DasGupta (2008),
Davidson (1994) and van der Vaart (1998).

In analysis, convergence in probability is a special case of convergence in
measure and convergence in distribution is a special case of weak convergence.
See Ash (1972, p. 322) and Sen and Singer (1993, p. 39). Almost sure
convergence is also known as strong convergence. See Sen and Singer (1993,

p. 34). Since Y
P→ µ iff Y

D→ µ, the WLLN refers to weak convergence.
Technically the Xn and X need to share a common probability space for
convergence in probability and almost sure convergence.

Perlman (1972) and Wald (1949) give general results on the consistency
of the MLE while Berk (1972), Lehmann (1980) and Schervish (1995, p.
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418) discuss the asymptotic normality of the MLE in exponential families.
Theorems 8.4 and 8.20 appear in Olive (2007a). Also see Cox (1984) and
McCulloch (1988). A similar result to Theorem 8.20 for linear exponential
families where ti(x) = xi, are given by Brown (1986, p. 172). Portnoy
(1977) gives large sample theory for unbiased estimators in exponential fam-
ilies. Although Tn is the UMVUE of E(t(Y )) = µt, asymptotic efficiency of
UMVUEs is not simple in general. See Pfanzagl (1993).

The multivariate delta method appears, for example, in Ferguson (1996,
p. 45), Lehmann (1999, p. 315), Mardia, Kent and Bibby (1979, p. 52), Sen
and Singer (1993, p. 136) or Serfling (1980, p. 122).

In analysis, the fact that

D−1

g(θ)
= Dg−1(η)

is a corollary of the inverse mapping theorem (or of the inverse function
theorem). See Apostol (1957, p. 146) and Wade (2000, p. 353).

Casella and Berger (2002, p. 112, 133) give results similar to Proposition
8.3.

According to Rohatgi (1984, p. 626), if Y1, ..., Yn are iid with pdf f(y), if
Yrn:n is the rnth order statistic, rn/n→ ρ, F (ξρ) = ρ and if f(ξρ) > 0, then

√
n(Yrn:n − ξρ)

D→ N

(

0,
ρ(1 − ρ)

[f(ξρ)]2

)

.

So there are many asymptotically equivalent ways of defining the sample ρ
quantile.

8.10 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

Refer to Chapter 10 for the pdf or pmf of the distributions in
the problems below.

8.1∗. a) Enter the following R/Splus function that is used to illustrate
the central limit theorem when the data Y1, ..., Yn are iid from an exponential
distribution. The function generates a data set of size n and computes Y 1

from the data set. This step is repeated nruns = 100 times. The output is
a vector (Y 1, Y 2, ..., Y 100). A histogram of these means should resemble a
symmetric normal density once n is large enough.
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cltsim <- function(n=100, nruns=100){

ybar <- 1:nruns

for(i in 1:nruns){

ybar[i] <- mean(rexp(n))}

list(ybar=ybar)}

b) The following commands will plot 4 histograms with n = 1, 5, 25 and
100. Save the plot in Word.

> z1 <- cltsim(n=1)

> z5 <- cltsim(n=5)

> z25 <- cltsim(n=25)

> z200 <- cltsim(n=200)

> par(mfrow=c(2,2))

> hist(z1$ybar)

> hist(z5$ybar)

> hist(z25$ybar)

> hist(z200$ybar)

c) Explain how your plot illustrates the central limit theorem.

d) Repeat parts a), b) and c), but in part a), change rexp(n) to rnorm(n).
Then Y1, ..., Yn are iid N(0,1) and Y ∼ N(0, 1/n).

8.2∗. Let X1, ..., Xn be iid from a normal distribution with unknown
mean µ and known variance σ2. Let

X =

∑n
i=1Xi

n

Find the limiting distribution of
√
n(X

3 − c) for an appropriate constant c.

8.3∗. (Aug. 03 QUAL) Let X1, ..., Xn be a random sample from a popu-
lation with pdf

f(x) =

{
θxθ−1

3θ 0 < x < 3
0 elsewhere

The method of moments estimator for θ is Tn =
X

3 −X
.
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a) Find the limiting distribution of
√
n(Tn − θ) as n→ ∞.

b) Is Tn asymptotically efficient? Why?

c) Find a consistent estimator for θ and show that it is consistent.

8.4∗. From Theorems 2.17 and 2.18, if Yn =
∑n

i=1Xi where the Xi are iid
from a nice distribution, then Yn also has a nice distribution. If E(X) = µ
and VAR(X) = σ2 then by the CLT

√
n(Xn − µ)

D→ N(0, σ2).

Hence √
n(
Yn
n

− µ)
D→ N(0, σ2).

Find µ, σ2 and the distribution of Xi if

i) Yn ∼ BIN(n, ρ) where BIN stands for binomial.

ii) Yn ∼ χ2
n.

iii) Yn ∼ G(nν, λ) where G stands for gamma.

iv) Yn ∼ NB(n, ρ) where NB stands for negative binomial.

v) Yn ∼ POIS(nθ) where POIS stands for Poisson.

vi) Yn ∼ N(nµ, nσ2).

8.5∗. Suppose that Xn ∼ U(−1/n, 1/n).
a) What is the cdf Fn(x) of Xn?
b) What does Fn(x) converge to?

(Hint: consider x < 0, x = 0 and x > 0.)

c) Xn
D→ X. What is X?

8.6. Continuity Theorem problem: Let Xn be sequence of random vari-
ables with cdfs Fn and mgfs mn. Let X be a random variable with cdf F
and mgf m. Assume that all of the mgfs mn and m are defined to |t| ≤ d for
some d > 0. Then if mn(t) → m(t) as n→ ∞ for all |t| < c where 0 < c < d,

then Xn
D→ X.

Let

mn(t) =
1

[1 − (λ+ 1
n
)t]

for t < 1/(λ + 1/n). Then what is m(t) and what is X?
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8.7. Let Y1, ..., Yn be iid, T1,n = Y and let T2,n = MED(n) be the sample
median. Let θ = µ.

Then

√
n(MED(n) −MED(Y ))

D→ N

(

0,
1

4f2(MED(Y ))

)

where the population median is MED(Y ) (and MED(Y ) = µ = θ for a) and
b) below).

a) FindARE(T1,n, T2,n) if F is the cdf of the normal N(µ, σ2) distribution.

b) Find ARE(T1,n, T2,n) if F is the cdf of the double exponential DE(θ, λ)
distribution.

8.8. (Sept. 2005 Qual) Let X1, ..., Xn be independent identically dis-
tributed random variables with probability density function

f(x) = θxθ−1, 0 < x < 1, θ > 0.

a) Find the MLE of
1

θ
. Is it unbiased? Does it achieve the information

inequality lower bound?

b) Find the asymptotic distribution of the MLE of
1

θ
.

c) Show that Xn is unbiased for
θ

θ + 1
. Does Xn achieve the information

inequality lower bound?

d) Find an estimator of
1

θ
from part (c) above using Xn which is different

from the MLE in (a). Find the asymptotic distribution of your estimator
using the delta method.

e) Find the asymptotic relative efficiency of your estimator in (d) with
respect to the MLE in (b).

8.9. Many multiple linear regression estimators β̂ satisfy

√
n(β̂ − β)

D→ Np(0, V (β̂, F ) W ) (8.14)

when
XTX

n
P→ W −1, (8.15)



CHAPTER 8. LARGE SAMPLE THEORY 240

and when the errors ei are iid with a cdf F and a unimodal pdf f that is
symmetric with a unique maximum at 0. When the variance V (ei) exists,

V (OLS, F ) = V (ei) = σ2 while V(L1,F) =
1

4[f(0)]2
.

In the multiple linear regression model,

Yi = xi,1β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei (8.16)

for i = 1, . . . , n. In matrix notation, these n equations become

Y = Xβ + e, (8.17)

where Y is an n × 1 vector of dependent variables, X is an n × p matrix
of predictors, β is a p× 1 vector of unknown coefficients, and e is an n × 1
vector of unknown errors.

a) What is the ijth element of the matrix

XTX

n
?

b) Suppose xk,1 = 1 and that xk,j ∼ Xj are iid with E(Xj) = 0 and
V (Xj) = 1 for k = 1, ..., n and j = 2, ..., p. Assume that Xi and Xj are
independent for i 6= j, i > 1 and j > 1. (Often xk,j ∼ N(0, 1) in simulations.)
Then what is W −1 in (8.16)?

c) Suppose p = 2 and Yi = α+ βXi + ei. Show

(XTX)−1 =






P

X2
i

n
P

(Xi−X)2
−

P

Xi

n
P

(Xi−X)2

−
P

Xi

n
P

(Xi−X)2
n

n
P

(Xi−X)2




 .

d) Under the conditions of c), let S2
x =

∑
(Xi −X)2/n. Show that

n(XTX)−1 =

(
XTX

n

)−1

=






1
n

P

X2
i

S2
x

−X
S2

x

−X
S2

x

1
S2

x




 .

e) If the Xi are iid with variance V (X) then n(XTX)−1 P→ W . What is
W ?
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f) Now suppose that n is divisible by 5 and the n/5 of Xi are at 0.1, n/5
at 0.3, n/5 at 0.5, n/5 at 0.7 and n/5 at 0.9. (Hence if n = 100, 20 of the Xi

are at 0.1, 0.3, 0.5, 0.7 and 0.9.)
Find

∑
X2
i /n, X and S2

x. (Your answers should not depend on n.)

g) Under the conditions of f), estimate V (α̂) and V (β̂) if L1 is used and
if the ei are iid N(0, 0.01).

Hint: Estimate W with n(XTX)−1 and V (β̂, F ) = V (L1, F ) = 1
4[f(0)]2

.
Hence





α̂

β̂



 ≈ N2










α

β



 ,
1

n

1

4[f(0)]2






1
n

P

X2
i

S2
x

−X
S2

x

−X
S2

x

1
S2

x









 .

You should get an answer like 0.0648/n.

Problems from old quizzes and exams.

8.10. Let X1, ..., Xn be iid Bernoulli(p) random variables.

a) Find I1(p).

b) Find the FCRLB for estimating p.

c) Find the limiting distribution of
√
n( Xn − p ).

d) Find the limiting distribution of
√
n [ (Xn)

2 − c ] for an appropriate
constant c.

8.11. Let X1, ..., Xn be iid Exponential(β) random variables.

a) Find the FCRLB for estimating β.

b) Find the limiting distribution of
√
n( Xn − β ).

c) Find the limiting distribution of
√
n [ (Xn)

2 − c ] for an appropriate
constant c.

8.12. Let Y1, ..., Yn be iid Poisson (λ) random variables.
a) Find the limiting distribution of

√
n( Y n − λ ).

b) Find the limiting distribution of
√
n [ (Y n)

2 − c ] for an appropriate
constant c.

8.13. Let Yn ∼ χ2
n.

a) Find the limiting distribution of
√
n

(
Yn
n

− 1

)

.
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b) Find the limiting distribution of
√
n

[ (
Yn
n

)3

− 1

]

.

8.14. Let X1, ..., Xn be iid with cdf F (x) = P (X ≤ x). Let Yi =
I(Xi ≤ x) where the indicator equals 1 if Xi ≤ x and 0, otherwise.

a) Find E(Yi).

b) Find VAR(Yi).

c) Let F̂n(x) =
1

n

n∑

i=1

I(Xi ≤ x) for some fixed real number x. Find the

limiting distribution of
√
n
(

F̂n(x) − cx
)

for an appropriate constant cx.

8.15. Suppose Xn has cdf

Fn(x) = 1 −
(

1 − x

θn

)n

for x ≥ 0 and Fn(x) = 0 for x < 0. Show that Xn
D→ X by finding the cdf of

X.

8.16. Let Xn be a sequence of random variables such that
P (Xn = 1/n) = 1. Does Xn converge in distribution? If yes, prove it by
finding X and the cdf of X. If no, prove it.

8.17. Suppose that Y1, ..., Yn are iid with E(Y ) = (1−ρ)/ρ and VAR(Y ) =
(1 − ρ)/ρ2 where 0 < ρ < 1.

a) Find the limiting distribution of

√
n

(

Y n −
1 − ρ

ρ

)

.

b) Find the limiting distribution of
√
n
[
g(Y n) − ρ

]
for appropriate

function g.

8.18. Let Xn ∼ Binomial(n, p) where the positive integer n is large and
0 < p < 1.

a) Find the limiting distribution of
√
n

(
Xn

n
− p

)

.

b) Find the limiting distribution of
√
n

[ (
Xn

n

)2

− p2

]

.
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8.19. Let Y1, ..., Yn be iid exponential (λ) so that E(Y ) = λ and MED(Y ) =
log(2)λ.

a) Let T1,n = log(2)Y and find the limiting distribution of√
n(T1,n− log(2)λ).

b) Let T2,n = MED(n) be the sample median and find the limiting dis-
tribution of

√
n(T2,n − log(2)λ).

c) Find ARE(T1,n, T2,n).

8.20. Suppose that η = g(θ), θ = g−1(η) and g′(θ) > 0 exists. If X has
pdf or pmf f(x|θ), then in terms of η, the pdf or pmf is f∗(x|η) = f(x|g−1(η)).
Now

A =
∂

∂η
log[f(x|g−1(η))] =

1

f(x|g−1(η))

∂

∂η
f(x|g−1(η)) =

[
1

f(x|g−1(η))

] [

∂

∂θ
f(x|θ)

∣
∣
∣
∣
θ=g−1(η)

] [
∂

∂η
g−1(η)

]

using the chain rule twice. Since θ = g−1(η),

A =

[
1

f(x|θ)

] [
∂

∂θ
f(x|θ)

] [
∂

∂η
g−1(η)

]

.

Hence

A =
∂

∂η
log[f(x|g−1(η))] =

[
∂

∂θ
log[f(x|θ)]

][
∂

∂η
g−1(η)

]

.

Now show that

I∗1(η) =
I1(θ)

[g′(θ)]2
.

8.21. Let Y1, ..., Yn be iid exponential (1) so that P (Y ≤ y) = F (y) =
1 − e−y for y ≥ 0. Let Y(n) = max(Y1, ..., Yn).

a) Show that FY(n)
(t) = P (Y(n) ≤ t) = [1 − e−t]n for t ≥ 0.

b) Show that P (Y(n) − log(n) ≤ t) → exp(−e−t) (for all t ∈ (−∞,∞)
since t+ log(n) > 0 implies t ∈ < as n→ ∞).
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8.22. Let Y1, ..., Yn be iid uniform (0, 2θ).

a) Let T1,n = Y and find the limiting distribution of
√
n(T1,n− θ).

b) Let T2,n = MED(n) be the sample median and find the limiting dis-
tribution of

√
n(T2,n − θ).

c) Find ARE(T1,n, T2,n). Which estimator is better, asymptotically?

8.23. Suppose that Y1, ..., Yn are iid from a distribution with pdf f(y|θ)
and that the integral and differentiation operators of all orders can be inter-
changed (eg the data is from a one parameter exponential family).

a) Show that 0 = E
[
∂
∂θ

log(f(Y |θ))
]

by showing that

∂

∂θ
1 = 0 =

∂

∂θ

∫

f(y|θ)dy =

∫ [
∂

∂θ
log(f(y|θ))

]

f(y|θ)dy. (∗)

b) Take 2nd derivatives of (*) to show that

I1(θ) = Eθ[(
∂

∂θ
log f(Y |θ))2] = −Eθ

[
∂2

∂θ2
log(f(Y |θ))

]

.

8.24. Suppose that X1, ..., Xn are iid N(µ, σ2).
a) Find the limiting distribution of

√
n
(
Xn − µ

)
.

b) Let g(θ) = [log(1 + θ)]2. Find the limiting distribution of√
n
(
g(Xn) − g(µ)

)
for µ > 0.

c) Let g(θ) = [log(1 + θ)]2. Find the limiting distribution of
n
(
g(Xn) − g(µ)

)
for µ = 0. Hint: Use Theorem 8.29.

8.25. Let Wn = Xn −X and let r > 0. Notice that for any ε > 0,

E|Xn −X|r ≥ E[|Xn −X|r I(|Xn −X| ≥ ε)] ≥ εrP (|Xn −X| ≥ ε).

Show that Wn
P→ 0 if E|Xn −X|r → 0 as n→ ∞.

8.26. Let X1, ..., Xn be iid with E(X) = µ and V (X) = σ2. What is the
limiting distribution of n[(X)2 − µ2] for the value or values of µ where the
delta method does not apply? Hint: use Theorem 8.29.
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8.27. (Sept. 05 QUAL) Let X ∼ Binomial(n, p) where the positive
integer n is large and 0 < p < 1.

a) Find the limiting distribution of
√
n

(
X

n
− p

)

.

b) Find the limiting distribution of
√
n

[ (
X

n

)2

− p2

]

.

c) Show how to find the limiting distribution of

[ (
X

n

)3

− X

n

]

when

p =
1√
3
.

(Actually want the limiting distribution of

n

([ (
X

n

)3

− X

n

]

− g(p)

)

where g(θ) = θ3 − θ.)

8.28. (Aug. 04 QUAL) Let X1, ..., Xn be independent and identically
distributed (iid) from a Poisson(λ) distribution.

a) Find the limiting distribution of
√
n ( X − λ ).

b) Find the limiting distribution of
√
n [ (X)3 − (λ)3 ].

8.29. (Jan. 04 QUAL) Let X1, ..., Xn be iid from a normal distribution

with unknown mean µ and known variance σ2. Let X =
Pn

i=1Xi

n
and S2 =

1
n−1

∑n
i=1(Xi −X)2.

a) Show that X and S2 are independent.

b) Find the limiting distribution of
√
n(X

3−c) for an appropriate constant
c.
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8.30. Suppose that Y1, ..., Yn are iid logistic(θ, 1) with pdf

f(y) =
exp (−(y − θ))

[1 + exp (−(y − θ))]2

where and y and θ are real.
a) I1(θ) = 1/3 and the family is regular so the “standard limit theorem”

for the MLE θ̂n holds. Using this standard theorem, what is the limiting
distribution of

√
n(θ̂n − θ)?

b) Find the limiting distribution of
√
n(Y n − θ).

c) Find the limiting distribution of
√
n(MED(n) − θ).

d) Consider the estimators θ̂n, Y n and MED(n). Which is the best esti-
mator and which is the worst?

8.31. Let Yn ∼ binomial(n, p). Find the limiting distribution of

√
n

(

arcsin

(√

Yn

n

)

− arcsin(
√

p)

)

.

(Hint:
d

dx
arcsin(x) =

1√
1 − x2

.)

8.32. Suppose Yn ∼ uniform(−n, n). Let Fn(y) be the cdf of Yn.
a) Find F (y) such that Fn(y) → F (y) for all y as n→ ∞.

b) Does Yn
L→ Y ? Explain briefly.



Chapter 9

Confidence Intervals

9.1 Introduction

Definition 9.1. Let the data Y1, ..., Yn have pdf or pmf f(y|θ) with param-
eter space Θ and support Y. Let Ln(Y ) and Un(Y ) be statistics such that
Ln(y) ≤ Un(y), ∀y ∈ Y. Then (Ln(y), Un(y)) is a 100 (1−α) % confidence
interval (CI) for θ if

Pθ(Ln(Y ) < θ < Un(Y )) = 1 − α

for all θ ∈ Θ. The interval (Ln(y), Un(y)) is a large sample 100 (1 − α) %
CI for θ if

Pθ(Ln(Y ) < θ < Un(Y )) → 1 − α

for all θ ∈ Θ as n→ ∞.

Definition 9.2. Let the data Y1, ..., Yn have pdf or pmf f(y|θ) with
parameter space Θ and support Y. The random variable R(Y |θ) is a pivot
or pivotal quantity if the distribution of R(Y |θ) is independent θ. The
quantity R(Y , θ) is an asymptotic pivot if the limiting distribution of
R(Y , θ) is independent of θ.

The first CI in Definition 9.1 is sometimes called an exact CI. In the
following definition, the scaled asymptotic length is closely related to asymp-
totic relative efficiency of an estimator and high power of a test of hypotheses.

247
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Definition 9.3. Let (Ln, Un) be a 100 (1 − α)% CI or large sample CI
for θ. If

nδ(Un − Ln)
P→ Aα,

then Aα is the scaled asymptotic length of the CI. Typically δ = 0.5 but
superefficient CIs have δ = 1. For a given α, a CI with smaller Aα is “better”
than a CI with larger Aα.

Example 9.1. Let Y1, ..., Yn be iid N(µ, σ2) where σ2 > 0. Then

R(Y |µ, σ2) =
Y − µ

S/
√
n

∼ tn−1

is a pivotal quantity. If Y1, ..., Yn are iid with E(Y ) = µ and VAR(Y ) = σ2 >
0, then, by the CLT and Slutsky’s Theorem,

R(Y |µ, σ2) =
Y − µ

S/
√
n

=
σ

S

Y − µ

σ/
√
n

D→ N(0, 1)

is an asymptotic pivot.

Large sample theory can be used to find a CI from the asymptotic pivot.
Suppose that Y = (Y1, ..., Yn) and that Wn ≡ Wn(Y ) is an estimator of some
parameter µW such that

√
n(Wn − µW )

D→ N(0, σ2
W )

where σ2
W/n is the asymptotic variance of the estimator Wn. The above

notation means that if n is large, then for probability calculations

Wn − µW ≈ N(0, σ2
W/n).

Suppose that S2
W is a consistent estimator of σ2

W so that the (asymptotic)
standard error of Wn is SE(Wn) = SW/

√
n. Let zα be the α percentile of the

N(0,1) distribution. Hence P (Z ≤ zα) = α if Z ∼ N(0, 1). Then

1 − α ≈ P (−z1−α/2 ≤
Wn − µW
SE(Wn)

≤ z1−α/2),

and an approximate or large sample 100(1 − α)% CI for µW is given by

(Wn − z1−α/2SE(Wn),Wn + z1−α/2SE(Wn)). (9.1)
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Since
tp,1−α/2
z1−α/2

→ 1

if p ≡ pn → ∞ as n→ ∞, another large sample 100(1 − α)% CI for µW is

(Wn − tp,1−α/2SE(Wn),Wn + tp,1−α/2SE(Wn)). (9.2)

The CI (9.2) often performs better than the CI (9.1) in small samples. The
quantity tp,1−α/2/z1−α/2 can be regarded as a small sample correction factor.
The CI (9.2) is longer than the CI (9.1). Hence the CI (9.2) more conservative
than the CI (9.1).

Suppose that there are two independent samples Y1, ..., Yn and X1, ..., Xm

and that
( √

n(Wn(Y ) − µW (Y ))√
m(Wm(X) − µW (X))

)

D→ N2

( (
0
0

)

,

(
σ2
W (Y ) 0
0 σ2

W (X)

) )

.

Then
(

(Wn(Y ) − µW (Y ))
(Wm(X) − µW (X))

)

≈ N2

( (
0
0

)

,

(
σ2
W (Y )/n 0

0 σ2
W (X)/m

) )

,

and

Wn(Y ) −Wm(X) − (µW (Y ) − µW (X)) ≈ N(0,
σ2
W (Y )

n
+
σ2
W (X)

m
).

Hence

SE(Wn(Y ) −Wm(X)) =

√

S2
W (Y )

n
+
S2
W (X)

m
,

and the large sample 100(1 − α)% CI for µW (Y ) − µW (X) is given by

(Wn(Y ) −Wm(X)) ± z1−α/2SE(Wn(Y ) −Wm(X)). (9.3)

If pn is the degrees of freedom used for a single sample procedure when the
sample size is n, let p = min(pn, pm). Then another large sample 100(1−α)%
CI for µW (Y ) − µW (X) is given by

(Wn(Y ) −Wm(X)) ± tp,1−α/2SE(Wn(Y ) −Wm(X)). (9.4)

These CIs are known as Welch intervals. See Welch (1937) and Yuen (1974).
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Example 9.2. Consider the single sample procedures where Wn = Y n.
Then µW = E(Y ), σ2

W = VAR(Y ), SW = Sn, and p = n− 1. Let tp denote a
random variable with a t distribution with p degrees of freedom and let the
α percentile tp,α satisfy P (tp ≤ tp,α) = α. Then the classical t-interval for
µ ≡ E(Y ) is

Y n ± tn−1,1−α/2
Sn√
n

and the t-test statistic for Ho : µ = µo is

to =
Y − µo
Sn/

√
n
.

The right tailed p-value is given by P (tn−1 > to).
Now suppose that there are two samples whereWn(Y ) = Y n andWm(X) =

Xm.Then µW (Y ) = E(Y ) ≡ µY , µW (X) = E(X) ≡ µX , σ
2
W (Y ) = VAR(Y ) ≡

σ2
Y , σ

2
W (X) = VAR(X) ≡ σ2

X , and pn = n − 1. Let p = min(n − 1, m − 1).
Since

SE(Wn(Y ) −Wm(X)) =

√

S2
n(Y )

n
+
S2
m(X)

m
,

the two sample t-interval for µY − µX

(Y n −Xm) ± tp,1−α/2

√

S2
n(Y )

n
+
S2
m(X)

m

and two sample t-test statistic

to =
Y n −Xm

√
S2

n(Y )
n

+ S2
m(X)
m

.

The right tailed p-value is given by P (tp > to). For sample means, values of
the degrees of freedom that are more accurate than p = min(n − 1, m − 1)
can be computed. See Moore (2007, p. 474).

The remainder of this section follows Olive (2007b, Section 2.4) closely.
Let bxc denote the “greatest integer function” (eg, b7.7c = 7). Let dxe denote
the smallest integer greater than or equal to x (eg, d7.7e = 8).

Example 9.3: inference with the sample median. Let Un = n−Ln
where Ln = bn/2c − d

√

n/4 e and use

SE(MED(n)) = 0.5(Y(Un) − Y(Ln+1)).
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Let p = Un−Ln−1. Then a 100(1−α)% confidence interval for the population
median MED(Y ) is

MED(n) ± tp,1−α/2SE(MED(n)). (9.5)

Example 9.4: inference with the trimmed mean. The symmetri-
cally trimmed mean or the δ trimmed mean

Tn = Tn(Ln, Un) =
1

Un − Ln

Un∑

i=Ln+1

Y(i) (9.6)

where Ln = bnδc and Un = n − Ln. If δ = 0.25, say, then the δ trimmed
mean is called the 25% trimmed mean.

The trimmed mean is estimating a truncated mean µT . Assume that Y
has a probability density function fY (y) that is continuous and positive on
its support. Let yδ be the number satisfying P (Y ≤ yδ) = δ. Then

µT =
1

1 − 2δ

∫ y1−δ

yδ

yfY (y)dy. (9.7)

Notice that the 25% trimmed mean is estimating

µT =

∫ y0.75

y0.25

2yfY (y)dy.

To perform inference, find d1, ..., dn where

di =







Y(Ln+1), i ≤ Ln
Y(i), Ln + 1 ≤ i ≤ Un
Y(Un), i ≥ Un + 1.

Then the Winsorized variance is the sample variance S2
n(d1, ..., dn) of d1, ..., dn,

and the scaled Winsorized variance

VSW (Ln, Un) =
S2
n(d1, ..., dn)

([Un − Ln]/n)2
. (9.8)

The standard error of Tn is SE(Tn) =
√

VSW (Ln, Un)/n.
A large sample 100 (1 − α)% confidence interval (CI) for µT is

Tn ± tp,1−α
2
SE(Tn) (9.9)
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where P (tp ≤ tp,1−α
2
) = 1 − α/2 if tp is from a t distribution with p =

Un−Ln− 1 degrees of freedom. This interval is the classical t–interval when
δ = 0, but δ = 0.25 gives a robust CI.

Example 9.5. Suppose the data below is from a symmetric distribution
with mean µ. Find a 95% CI for µ.

6, 9, 9, 7, 8, 9, 9, 7
Solution. When computing small examples by hand, the steps are to sort

the data from smallest to largest value, find n, Ln, Un, Y(Ln), Y(Un), p, MED(n)
and SE(MED(n)). After finding tp,1−α/2, plug the relevant quantities into the
formula for the CI. The sorted data are 6, 7, 7, 8, 9, 9, 9, 9. Thus MED(n) =
(8 + 9)/2 = 8.5. Since n = 8, Ln = b4c − d

√
2e = 4 − d1.414e = 4 − 2 = 2

and Un = n − Ln = 8 − 2 = 6. Hence SE(MED(n)) = 0.5(Y(6) − Y(3)) =
0.5 ∗ (9 − 7) = 1. The degrees of freedom p = Un − Ln − 1 = 6 − 2 − 1 = 3.
The cutoff t3,0.975 = 3.182. Thus the 95% CI for MED(Y ) is

MED(n) ± t3,0.975SE(MED(n))

= 8.5±3.182(1) = (5.318, 11.682). The classical t–interval uses Y = (6+7+
7 + 8 + 9 + 9 + 9 + 9)/8 and S2

n = (1/7)[(
∑n

i=1 Y
2
i ) − 8(82)] = (1/7)[(522 −

8(64)] = 10/7 ≈ 1.4286, and t7,0.975 ≈ 2.365. Hence the 95% CI for µ is

8 ± 2.365(
√

1.4286/8) = (7.001, 8.999). Notice that the t-cutoff = 2.365 for
the classical interval is less than the t-cutoff = 3.182 for the median interval
and that SE(Y ) < SE(MED(n)).

Example 9.6. In the last example, what happens if the 6 becomes 66
and a 9 becomes 99?

Solution. Then the ordered data are 7, 7, 8, 9, 9, 9, 66, 99. Hence
MED(n) = 9. Since Ln and Un only depend on the sample size, they take
the same values as in the previous example and SE(MED(n)) = 0.5(Y(6) −
Y(3)) = 0.5 ∗ (9 − 8) = 0.5. Hence the 95% CI for MED(Y ) is MED(n) ±
t3,0.975SE(MED(n)) = 9 ± 3.182(0.5) = (7.409, 10.591). Notice that with
discrete data, it is possible to drive SE(MED(n)) to 0 with a few outliers if
n is small. The classical confidence interval Y ± t7,0.975S/

√
n blows up and

is equal to (−2.955, 56.455).

Example 9.7. The Buxton (1920) data contains 87 heights of men,
but five of the men were recorded to be about 0.75 inches tall! The mean
height is Y = 1598.862 and the classical 95% CI is (1514.206, 1683.518).
MED(n) = 1693.0 and the resistant 95% CI based on the median is (1678.517,
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1707.483). The 25% trimmed mean Tn = 1689.689 with 95% CI (1672.096,
1707.282).

The heights for the five men were recorded under their head lengths, so
the outliers can be corrected. Then Y = 1692.356 and the classical 95% CI is
(1678.595, 1706.118). Now MED(n) = 1694.0 and the 95% CI based on the
median is (1678.403, 1709.597). The 25% trimmed mean Tn = 1693.200 with
95% CI (1676.259, 1710.141). Notice that when the outliers are corrected,
the three intervals are very similar although the classical interval length is
slightly shorter. Also notice that the outliers roughly shifted the median
confidence interval by about 1 mm while the outliers greatly increased the
length of the classical t–interval.

9.2 Some Examples

Example 9.8. Suppose that Y1, ..., Yn are iid from a one parameter expo-
nential family with parameter τ . Assume that Tn =

∑n
i=1 t(Yi) is a complete

sufficient statistic. Then from Theorems 3.6 and 3.7, often Tn ∼ G(na, 2b τ )
where a and b are known positive constants. Then

τ̂ =
Tn

2nab

is the UMVUE and often the MLE of τ. Since Tn/(b τ ) ∼ G(na, 2), a
100(1 − α)% confidence interval for τ is

(
Tn/b

G(na, 2, 1 − α/2)
,

Tn/b

G(na, 2, α/2)

)

≈
(

Tn/b

χ2
d(1 − α/2)

,
Tn/b

χ2
d(α/2)

)

(9.10)

where d = b2nac, bxc is the greatest integer function (e.g. b7.7c = b7c = 7),
P [G ≤ G(ν, λ, α)] = α if G ∼ G(ν, λ), and P [X ≤ χ2

d(α)] = α if X has a
chi-square χ2

d distribution with d degrees of freedom.

This confidence interval can be inverted to perform two tail tests of hy-
potheses. By Theorem 7.3, the uniformly most powerful (UMP) test of
Ho : τ ≤ τo versus HA : τ > τo rejects Ho if and only if Tn > k where
P [G > k] = α when G ∼ G(na, 2b τo). Hence

k = G(na, 2b τo, 1 − α). (9.11)



CHAPTER 9. CONFIDENCE INTERVALS 254

A good approximation to this test rejects Ho if and only if

Tn > b τoχ
2
d(1 − α)

where d = b2nac.

Example 9.9. If Y is half normal HN(µ, σ) then the pdf of Y is

f(y) =
2√

2π σ
exp (

−(y − µ)2

2σ2
)

where σ > 0 and y > µ and µ is real. Since

f(y) =
2√

2π σ
I [y > µ] exp

[

(
−1

2σ2
)(y − µ)2

]

,

Y is a 1P–REF if µ is known.
Since Tn =

∑
(Yi − µ)2 ∼ G(n/2, 2σ2), in Example 9.8 take a = 1/2,

b = 1, d = n and τ = σ2. Then a 100(1 − α)% confidence interval for σ2 is
(

Tn
χ2
n(1 − α/2)

,
Tn

χ2
n(α/2)

)

. (9.12)

The UMP test of Ho : σ2 ≤ σ2
o versus HA : σ2 > σ2

o rejects Ho if and only
if

Tn/σ
2
o > χ2

n(1 − α).

Now consider inference when both µ and σ are unknown. Then the family
is no longer an exponential family since the support depends on µ. Let

Dn =

n∑

i=1

(Yi − Y1:n)
2. (9.13)

Pewsey (2002) showed that (µ̂, σ̂2) = (Y1:n,
1
n
Dn) is the MLE of (µ, σ2),

and that
Y1:n − µ

σΦ−1(1
2

+ 1
2n

)

D→ EXP (1).

Since (
√

π/2)/n is an approximation to Φ−1(1
2

+ 1
2n

) based on a first order
Taylor series expansion such that

Φ−1(1
2

+ 1
2n

)

(
√

π/2)/n
→ 1,
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it follows that
n(Y1:n − µ)

σ
√

π
2

D→ EXP (1). (9.14)

Using this fact, it can be shown that a large sample 100(1 − α)% CI for µ is

(µ̂ + σ̂ log(α) Φ−1(
1

2
+

1

2n
) (1 + 13/n2), µ̂) (9.15)

where the term (1+13/n2) is a small sample correction factor. See Abuhassan
and Olive (2008).

Note that

Dn =

n∑

i=1

(Yi − Y1:n)
2 =

n∑

i=1

(Yi − µ + µ− Y1:n)
2 =

n∑

i=1

(Yi − µ)2 + n(µ − Y1:n)
2 + 2(µ− Y1:n)

n∑

i=1

(Yi − µ).

Hence

Dn = Tn +
1

n
[n(Y1:n − µ)]2 − 2[n(Y1:n − µ)]

∑n
i=1(Yi − µ)

n
,

or

Dn

σ2
=
Tn
σ2

+
1

n

1

σ2
[n(Y1:n − µ)]2 − 2[

n(Y1:n − µ)

σ
]

∑n
i=1(Yi − µ)

nσ
. (9.16)

Consider the three terms on the right hand side of (9.16). The middle
term converges to 0 in distribution while the third term converges in dis-
tribution to a −2EXP (1) or −χ2

2 distribution since
∑n

i=1(Yi − µ)/(σn) is

the sample mean of HN(0,1) random variables and E(X) =
√

2/π when
X ∼ HN(0, 1).

Let Tn−p =
∑n−p

i=1 (Yi − µ)2. Then

Dn = Tn−p +
n∑

i=n−p+1

(Yi − µ)2 − Vn (9.17)

where
Vn
σ2

D→ χ2
2.
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Hence
Dn

Tn−p

D→ 1

and Dn/σ
2 is asymptotically equivalent to a χ2

n−p random variable where p
is an arbitrary nonnegative integer. Pewsey (2002) used p = 1.

Thus when both µ and σ2 are unknown, a large sample 100(1 − α)%
confidence interval for σ2 is

(
Dn

χ2
n−1(1 − α/2)

,
Dn

χ2
n−1(α/2)

)

. (9.18)

It can be shown that
√
n CI length converges to σ2

√
2(z1−α/2 − zα/2) for

CIs (9.12) and (9.18) while n length CI (9.15) converges to −σ log(α)
√

π/2.
When µ and σ2 are unknown, an approximate α level test of Ho : σ2 ≤ σ2

o

versus HA : σ2 > σ2
o that rejects Ho if and only if

Dn/σ
2
o > χ2

n−1(1 − α) (9.19)

has nearly as much power as the α level UMP test when µ is known if n is
large.

Example 9.10. Following Mann, Schafer, and Singpurwalla (1974, p.
176), let W1, ...,Wn be iid EXP (θ, λ) random variables. Let

W1:n = min(W1, ...,Wn).

Then the MLE

(θ̂, λ̂) =

(

W1:n,
1

n

n∑

i=1

(Wi −W1:n)

)

= (W1:n,W −W1:n).

Let Dn = nλ̂. For n > 1, a 100(1 − α)% confidence interval (CI) for θ is

(W1:n − λ̂[(α)−1/(n−1) − 1],W1:n) (9.20)

while a 100(1 − α)% CI for λ is

(

2Dn

χ2
2(n−1),1−α/2

,
2Dn

χ2
2(n−1),α/2

)

. (9.21)



CHAPTER 9. CONFIDENCE INTERVALS 257

Let Tn =
∑n

i=1(Wi − θ) = n(W − θ). If θ is known, then

λ̂θ =

∑n
i=1(Wi − θ)

n
= W − θ

is the UMVUE and MLE of λ, and a 100(1 − α)% CI for λ is

(

2Tn
χ2

2n,1−α/2
,

2Tn
χ2

2n,α/2

)

. (9.22)

Using χ2
n,α/

√
n ≈

√
2zα +

√
n, it can be shown that

√
n CI length converges

to λ(z1−α/2 − zα) for CIs (9.21) and (9.22) (in probability). It can be shown
that n length CI (9.20) converges to −λ log(α).

When a random variable is a simple transformation of a distribution that
has an easily computed CI, the transformed random variable will often have
an easily computed CI. Similarly the MLEs of the two distributions are often
closely related. See the discussion above Example 5.10. The first 3 of the
following 4 examples are from Abuhassan and Olive (2008).

Example 9.11. If Y has a Pareto distribution, Y ∼ PAR(σ, λ), then
W = log(Y ) ∼ EXP (θ = log(σ), λ). If θ = log(σ) so σ = eθ, then a
100 (1 − α)% CI for θ is (9.20). A 100 (1 − α)% CI for σ is obtained by
exponentiating the endpoints of (9.20), and a 100 (1−α)% CI for λ is (9.21).
The fact that the Pareto distribution is a log-location-scale family and hence
has simple inference does not seem to be well known.

Example 9.12. If Y has a power distribution, Y ∼ POW (λ), then
W = − log(Y ) is EXP (0, λ). A 100 (1 − α)% CI for λ is (9.22).

Example 9.13. If Y has a truncated extreme value distribution, Y ∼
TEV (λ), then W = eY − 1 is EXP (0, λ). A 100 (1−α)% CI for λ is (9.22).

Example 9.14. If Y has a lognormal distribution, Y ∼ LN(µ, σ2), then
Wi = log(Yi) ∼ N(µ, σ2). Thus a (1 − α)100% CI for µ when σ is unknown
is

(W n − tn−1,1−α
2

SW√
n
,W n + tn−1,1−α

2

SW√
n

)
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where

SW =
n

n − 1
σ̂ =

√
√
√
√

1

n − 1

n∑

i=1

(Wi −W )2,

and P (t ≤ tn−1,1−α
2
) = 1 − α/2 when t ∼ tn−1.

Example 9.15. Let X1, ..., Xn be iid Poisson(θ) random variables. The
classical large sample 100 (1 − α)% CI for θ is

X ± z1−α/2

√

X/n

where P (Z ≤ z1−α/2) = 1 − α/2 if Z ∼ N(0, 1).

Following Byrne and Kabaila (2005), a modified large sample 100 (1−α)%
CI for θ is (Ln, Un) where

Ln =
1

n





n∑

i=1

Xi − 0.5 + 0.5z2
1−α/2 − z1−α/2

√
√
√
√

n∑

i=1

Xi − 0.5 + 0.25z2
1−α/2





and

Un =
1

n





n∑

i=1

Xi + 0.5 + 0.5z2
1−α/2 + z1−α/2

√
√
√
√

n∑

i=1

Xi + 0.5 + 0.25z2
1−α/2



 .

Following Grosh (1989, p. 59, 197–200), let W =
∑n

i=1Xi and suppose
that W = w is observed. Let P (T < χ2

d(α)) = α if T ∼ χ2
d. Then an “exact”

100 (1 − α)% CI for θ is

(
χ2

2w(α
2
)

2n
,
χ2

2w+2(1 − α
2
)

2n

)

for w 6= 0 and
(

0,
χ2

2(1 − α)

2n

)

for w = 0.
The “exact” CI is conservative: the actual coverage (1 − δn) ≥ 1 − α =

the nominal coverage. This interval performs well if θ is very close to 0. See
Problem 9.3.



CHAPTER 9. CONFIDENCE INTERVALS 259

Example 9.16. Let Y1, ..., Yn be iid bin(1, ρ). Let ρ̂ =
∑n

i=1 Yi/n =
number of “successes”/n. The classical large sample 100 (1 − α)% CI for ρ
is

ρ̂± z1−α/2

√

ρ̂(1 − ρ̂)

n

where P (Z ≤ z1−α/2) = 1 − α/2 if Z ∼ N(0, 1).

The Agresti Coull CI takes ñ = n+ z2
1−α/2 and

ρ̃ =
nρ̂+ 0.5z2

1−α/2
n + z2

1−α/2
.

(The method adds 0.5z2
1−α/2 “0’s and 0.5z2

1−α/2 “1’s” to the sample, so the

sample size increases by z2
1−α/2.) Then the large sample 100 (1−α)% Agresti

Coull CI for ρ is

p̃± z1−α/2

√

ρ̃(1 − ρ̃)

ñ
.

Now let Y1, ..., Yn be independent bin(mi, ρ) random variables, let W =
∑n

i=1 Yi ∼ bin(
∑n

i=1 mi, ρ) and let nw =
∑n

i=1 mi. Often mi ≡ 1 and then
nw = n. Let P (Fd1,d2 ≤ Fd1,d2(α)) = α where Fd1,d2 has an F distribution
with d1 and d2 degrees of freedom. Assume W = w is observed. Then the
Clopper Pearson “exact” 100 (1 − α)% CI for ρ is

(

0,
1

1 + nw F2nw,2(α)

)

for w = 0,

(
nw

nw + F2,2nw(1 − α)
, 1

)

for w = nw,

and (ρL, ρU) for 0 < w < nw with

ρL =
w

w + (nw − w + 1)F2(nw−w+1),2w(1 − α/2)

and

ρU =
w + 1

w + 1 + (nw − w)F2(nw−w),2(w+1)(α/2)
.

The “exact” CI is conservative: the actual coverage (1 − δn) ≥ 1 − α =
the nominal coverage. This interval performs well if ρ is very close to 0 or 1.



CHAPTER 9. CONFIDENCE INTERVALS 260

The classical interval should only be used if it agrees with the Agresti Coull
interval. See Problem 9.2.

Example 9.17. Let ρ̂ = number of “successes”/n. Consider a taking a
simple random sample of size n from a finite population of known size N .
Then the classical finite population large sample 100 (1 − α)% CI for ρ is

ρ̂± z1−α/2

√

ρ̂(1 − ρ̂)

n− 1

(
N − n

N

)

= ρ̂± z1−α/2SE(ρ̂) (9.23)

where P (Z ≤ z1−α/2) = 1 − α/2 if Z ∼ N(0, 1).

Let ñ = n+ z2
1−α/2 and

ρ̃ =
nρ̂+ 0.5z2

1−α/2
n + z2

1−α/2
.

(Heuristically, the method adds 0.5z2
1−α/2 “0’s” and 0.5z2

1−α/2 “1’s” to the

sample, so the sample size increases by z2
1−α/2.) Then a large sample 100

(1 − α)% Agresti Coull type finite population CI for ρ is

ρ̃± z1−α/2

√

ρ̃(1 − ρ̃)

ñ

(
N − n

N

)

= ρ̃ ± z1−α/2SE(ρ̃). (9.24)

Notice that a 95% CI uses z1−α/2 = 1.96 ≈ 2.
For data from a finite population, large sample theory gives useful ap-

proximations as N and n → ∞ and n/N → 0. Hence theory suggests that
the Agresti Coull CI should have better coverage than the classical CI if the
p is near 0 or 1, if the sample size n is moderate, and if n is small compared
to the population size N . The coverage of the classical and Agresti Coull CIs
should be very similar if n is large enough but small compared to N (which
may only be possible if N is enormous). As n increases to N , ρ̂ goes to p,
SE(ρ̂) goes to 0, and the classical CI may perform well. SE(ρ̃) also goes to
0, but ρ̃ is a biased estimator of ρ and the Agresti Coull CI will not perform
well if n/N is too large. See Problem 9.4.

Example 9.18. If Y1, ..., Yn are iid Weibull (φ, λ), then the MLE (φ̂, λ̂)
must be found before obtaining CIs. The likelihood

L(φ, λ) =
φn

λn

n∏

i=1

yφ−1
i

1

λn
exp

[−1

λ

∑

yφi

]

,
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and the log likelihood

log(L(φ, λ)) = n log(φ) − n log(λ) + (φ− 1)
n∑

i=1

log(yi) −
1

λ

∑

yφi .

Hence
∂

∂λ
log(L(φ, λ)) =

−n
λ

+

∑
yφi
λ2

set
= 0,

or
∑
yφi = nλ, or

λ̂ =

∑
yφ̂i
n

.

Now
∂

∂φ
log(L(φ, λ)) =

n

φ
+

n∑

i=1

log(yi) −
1

λ

∑

yφi log(yi)
set
= 0,

so

n+ φ[
n∑

i=1

log(yi) −
1

λ

∑

yφi log(yi)] = 0,

or
φ̂ =

n

1

λ̂

∑
yφ̂i log(yi) −

∑n
i=1 log(yi)

.

One way to find the MLE is to use iteration

λ̂k =

∑
y
φ̂k−1

i

n

and
φ̂k =

n

1

λ̂k

∑
y
φ̂k−1

i log(yi) −
∑n

i=1 log(yi)
.

Since W = log(Y ) ∼ SEV (θ = log(λ1/φ), σ = 1/φ), let

σ̂R = MAD(W1, ...,Wn)/0.767049

and
θ̂R = MED(W1, ...,Wn) − log(log(2))σ̂R.

Then φ̂0 = 1/σ̂R and λ̂0 = exp(θ̂R/σ̂R). The iteration might be run until
both |φ̂k − φ̂k−1| < 10−6 and |λ̂k − λ̂k−1| < 10−6. Then take (φ̂, λ̂) = (φ̂k, λ̂k).
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By Example 8.13,

√
n

( (
λ̂

φ̂

)

−
(
λ
φ

) )

D→ N2(0,Σ)

where Σ =




1.109λ2(1 + 0.4635 log(λ) + 0.5482(log(λ))2) 0.257φλ + 0.608λφ log(λ)

0.257φλ + 0.608λφ log(λ) 0.608φ2



 .

Thus 1 − α ≈ P (−z1−α/2
√

0.608φ̂ <
√
n(φ̂− φ) < z1−α/2

√
0.608φ̂) and a

large sample 100(1 − α)% CI for φ is

φ̂± z1−α/2 φ̂
√

0.608/n. (9.25)

Similarly, a large sample 100(1 − α)% CI for λ is

λ̂± z1−α/2√
n

√

1.109λ̂2[1 + 0.4635 log(λ̂) + 0.5824(log(λ̂))2]. (9.26)

In simulations, for small n the number of iterations for the MLE to con-
verge could be in the thousands, and the coverage of the large sample CIs is
poor for n < 50. See Problem 9.7.

Iterating the likelihood equations until “convergence” to a point θ̂ is
called a fixed point algorithm. Such algorithms may not converge, so check
that θ̂ satisfies the likelihood equations. Other methods such as Newton’s
method may perform better.

Newton’s method is used to solve g(θ) = 0 for θ, where the solution is
called θ̂, and uses

θk+1 = θk − [Dg(θk)
]−1g(θk) (9.27)

where

Dg(θ)
=






∂
∂θ1
g1(θ) . . . ∂

∂θp
g1(θ)

...
...

∂
∂θ1
gp(θ) . . . ∂

∂θp
gp(θ)




 .

If the MLE is the solution of the likelihood equations, then use g(θ) =
(g1(θ), ..., gp(θ))T where

gi(θ) =
∂

∂θi
log(L(θ)).
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Let θ0 be an initial estimator, such as the method of moments estimator of
θ. Let D = Dg(θ)

. Then

Dij =
∂

∂θj
gi(θ) =

∂2

∂θi∂θj
log(L(θ)) =

n∑

k=1

∂2

∂θi∂θj
log(f(xk|θ)),

and

1

n
Dij =

1

n

n∑

k=1

∂2

∂θi∂θj
log(f(Xk|θ))

D→ E

[
∂2

∂θi∂θj
log(f(X|θ))

]

.

Newton’s method converges if the initial estimator is sufficiently close,
but may diverge otherwise. Hence

√
n consistent initial estimators are rec-

ommended. Newton’s method is also popular because if the partial derivative
and integration operations can be interchanged, then

1

n
Dg(θ)

D→ −I(θ). (9.28)

For example, the regularity conditions hold for a kP-REF by Proposition
8.20. Then a 100 (1 − α)% large sample CI for θi is

θ̂i ± z1−α/2

√

−D−1
ii (9.29)

where

D−1 =
[

D
g(

ˆθ)

]−1

.

This result follows because
√

−D−1
ii ≈

√

[I−1(θ̂)]ii/n.

Example 9.19. Problem 9.8 simulates CIs for the Rayleigh (µ, σ) dis-
tribution of the form (9.29) although no check has been made on whether
(9.28) holds for the Rayleigh distribution (which is not a 2P-REF).

L(µ, σ) =

(
∏ yi − µ

σ2

)

exp

[

− 1

2σ2

∑

(yi − µ)2

]

.

Notice that for fixed σ, L(Y(1), σ) = 0. Hence the MLE µ̂ < Y(1). Now the log
likelihood

log(L(µ, σ)) =
n∑

i=1

log(yi − µ) − 2n log(σ)− 1

2

∑ (yi − µ)2

σ2
.
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Hence g1(µ, σ) =

∂

∂µ
log(L(µ, σ)) = −

n∑

i=1

1

yi − µ
+

1

σ2

n∑

i=1

(yi − µ)
set
= 0,

and g2(µ, σ) =

∂

∂σ
log(L(µ, σ)) =

−2n

σ
+

1

σ3

n∑

i=1

(yi − µ)2 set
= 0,

which has solution

σ̂2 =
1

2n

n∑

i=1

(Yi − µ̂)2. (9.30)

To obtain initial estimators, let σ̂M =
√

S2/0.429204 and µ̂M = Y −
1.253314σ̂M . These would be the method of moments estimators if S2

M was
used instead of the sample variance S2. Then use µ0 = min(µ̂M , 2Y(1) − µ̂M )

and σ0 =
√∑

(Yi − µ0)2/(2n). Now θ = (µ, σ)T and

D ≡ Dg(θ)
=





∂
∂µ
g1(θ) ∂

∂σ
g1(θ)

∂
∂µ
g2(θ) ∂

∂σ
g2(θ)



 =





−∑n
i=1

1
(yi−µ)2

− n
σ2 − 2

σ3

∑n
i=1(yi − µ)

− 2
σ3

∑n
i=1(yi − µ) 2n

σ2 − 3
σ4

∑n
i=1(yi − µ)2



 .

So

θk+1 = θk −






−∑n
i=1

1
(yi−µk)2

− n
σ2

k
− 2
σ3

k

∑n
i=1(yi − µk)

− 2
σ3

k

∑n
i=1(yi − µk)

2n
σ2

k
− 3

σ4
k

∑n
i=1(yi − µk)

2






−1

g(θk)

where

g(θk) =






−∑n
i=1

1
(yi−µk)

− 1
σ2

k

∑n
i=1(yi − µk)

−2n
σk

+ 1
σ3

k

∑n
i=1(yi − µk)

2




 .
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This formula could be iterated for 100 steps resulting in θ101 = (µ101, σ101)
T .

Then take µ̂ = min(µ101, 2Y(1) − µ101) and

σ̂ =

√
√
√
√

1

2n

n∑

i=1

(Yi − µ̂)2.

Then θ̂ = (µ̂, σ̂)T and compute D ≡ D
g(

ˆθ)
. Then (assuming (9.28) holds) a

100 (1 − α)% large sample CI for µ is

µ̂ ± z1−α/2

√

−D−1
11

and a 100 (1 − α)% large sample CI for σ is

σ̂ ± z1−α/2

√

−D−1
22 .

Example 9.20. Assume that Y1, ..., Yn are iid discrete uniform (1, η)
where η is an integer. For example, each Yi could be drawn with replacement
from a population of η tanks with serial numbers 1, 2, ..., η. The Yi would be
the serial number observed, and the goal would be to estimate the population
size η = number of tanks. Then P (Yi = i) = 1/η for i = 1, ..., η. Then the
CDF of Y is

F (y) =

byc
∑

i=1

1

η
=

byc
η

for 1 ≤ y ≤ η. Here byc is the greatest integer function, eg, b7.7c = 7.
Now let Zi = Yi/η which has CDF

FZ(t) = P (Z ≤ t) = P (Y ≤ tη) =
btηc
η

≈ t

for 0 < t < 1. Let Z(n) = Y(n)/η = max(Z1, ..., Zn). Then

FZ(n)
(t) = P (

Y(n)

η
≤ t) =

(btηc
η

)n

for 1/η < t < 1.
Want cn so that

P (cn ≤ Y(n)

η
≤ 1) = 1 − α



CHAPTER 9. CONFIDENCE INTERVALS 266

for 0 < α < 1. So

1 − FZ(n)
(cn) = 1 − α or 1 −

(bcnηc
η

)n

= 1 − α

or
bcnηc
η

= α1/n.

The solution may not exist, but cn − 1/η ≤ α1/n ≤ cn. Take cn = α1/n then

[Y(n),
Y(n)

α1/n
)

is a CI for η that has coverage slightly less than 100(1−α)% for small n, but
the coverage converges in probability to 1 as n→ ∞.

For small n the midpoint of the 95% CI might be a better estimator of η
than Y(n). The left endpoint is closed since Y(n) is a consistent estimator of
η. If the endpoint was open, coverage would go to 0 instead of 1. It can be
shown that n (length CI) converges to −η log(α) in probability. Hence
n (length 95% CI) ≈ 3η. Problem 9.9 provides simulations that suggest that
the 95% CI coverage and length is close to the asymptotic values for n ≥ 10.

Example 9.21. Assume that Y1, ..., Yn are iid uniform (0, θ). Let Zi =
Yi/θ ∼ U(0, 1) which has cdf FZ(t) = t for 0 < t < 1. Let Z(n) = Y(n)/θ =
max(Z1, ..., Zn). Then

FZ(n)
(t) = P (

Y(n)

θ
≤ t) = tn

for 0 < t < 1.
Want cn so that

P (cn ≤ Y(n)

θ
≤ 1) = 1 − α

for 0 < α < 1. So

1 − FZ(n)
(cn) = 1 − α or 1 − cn

n = 1 − α

or
cn = α1/n.
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Then (

Y(n),
Y(n)

α1/n

)

is an exact 100(1−α)% CI for θ. It can be shown that n (length CI) converges
to −θ log(α) in probability.

If Y1, ..., Yn are iid U(θ1, θ2) where θ1 is known, then Yi − θ1 are iid
U(0, θ2 − θ1) and

(

Y(n) − θ1,
Y(n) − θ1

α1/n

)

is a 100(1 − α)% CI for θ2 − θ1. Thus if θ1 is known, then

(

Y(n), θ1(1 −
1

α1/n
) +

Y(n)

α1/n

)

is a 100(1−α)% CI for θ2. Notice that if θ1 is unknown, Y(n) > 0 and Y(1) < 0,
then replacing θ1(1 − 1/α1/n) by 0 increases the coverage.

Example 9.22. Assume Y1, ..., Yn are iid with mean µ and variance σ2.
Bickel and Doksum (2007, p. 279) suggest that

Wn = n−1/2

[
(n − 1)S2

σ2
− n

]

can be used as an asymptotic pivot for σ2 if E(Y 4) <∞. Notice that Wn =

n−1/2

[∑
(Yi − µ)2

σ2
− n(Y − µ)2

σ2
− n

]

=

√
n

[∑(
Yi−µ
σ

)2

n
− 1

]

− 1√
n
n

(
Y − µ

σ

)2

= Xn − Zn.

Since
√
nZn

D→ χ2
1, the term Zn

D→ 0. Now Xn =
√
n(U − 1)

D→ N(0, τ ) by
the CLT since Ui = [(Yi − µ)/σ]2 has mean E(Ui) = 1 and variance

V (Ui) = τ = E(U2
i ) − (E(Ui))

2 =
E[(Yi − µ)4]

σ4
− 1 = κ+ 2

where κ is the kurtosis of Yi. Thus Wn
D→ N(0, τ ).
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Hence

1 − α ≈ P (−z1−α/2 <
Wn√
τ
< z1−α/2) = P (−z1−α/2

√
τ < Wn < z1−α/2

√
τ )

= P (−z1−α/2
√
nτ <

(n− 1)S2

σ2
− n < z1−α/2

√
nτ )

= P (n− z1−α/2
√
nτ <

(n− 1)S2

σ2
< n+ z1−α/2

√
nτ).

Hence a large sample 100(1 − α)% CI for σ2 is
(

(n− 1)S2

n+ z1−α/2
√
nτ̂
,

(n− 1)S2

n− z1−α/2
√
nτ̂

)

where

τ̂ =
1
n

∑n
i=1(Yi − Y )4

S4
− 1.

Notice that this CI needs n > z1−α/2
√
nτ̂ for the right endpoint to be positive.

It can be shown that
√
n (length CI) converges to 2σ2z1−α/2

√
τ in probability.

Problem 9.10 uses an asymptotically equivalent 100(1 − α)% CI of the
form (

(n− a)S2

n + tn−1,1−α/2
√
nτ̂
,

(n+ b)S2

n− tn−1,1−α/2
√
nτ̂

)

where a and b depend on τ̂ . The goal was to make a 95% CI with good
coverage for a wide variety of distributions (with 4th moments) for n ≥ 100.
The price is that the CI is too long for some of the distributions with small
kurtosis. The N(µ, σ2) distribution has τ = 2, while the EXP(λ) distribution
has σ2 = λ2 and τ = 8. The quantity τ is small for the uniform distribution
but large for the lognormal LN(0,1) distribution.

By the binomial theorem, if E(Y 4) exists and E(Y ) = µ then

E(Y − µ)4 =
4∑

j=0

(
4

j

)

E[Y j](−µ)4−j =

µ4 − 4µ3E(Y ) + 6µ2(V (Y ) + [E(Y )]2) − 4µE(Y 3) + E(Y 4).

This fact can be useful for computing

τ =
E[(Yi − µ)4]

σ4
− 1 = κ+ 2.
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9.3 Complements

Guenther (1969) is a useful reference for confidence intervals. Agresti and
Coull (1998) and Brown, Cai and DasGupta (2001, 2002) discuss CIs for a
binomial proportion. Agresti and Caffo (2000) discuss CIs for the difference
of two binomial proportions ρ1 − ρ2 obtained from 2 independent samples.
Barker (2002) and Byrne and Kabaila (2005) discuss CIs for Poisson (θ) data.
Brown, Cai and DasGupta (2003) discuss CIs for several discrete exponential
families. Abuhassan and Olive (2008) consider CIs for some transformed
random variable.

A comparison of CIs with other intervals (such as prediction intervals) is
given in Vardeman (1992).

Newton’s method is described, for example, in Peressini, Sullivan and Uhl
(1988, p. 85).

9.4 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

Refer to Chapter 10 for the pdf or pmf of the distributions in
the problems below.

9.1. (Aug. 2003 QUAL): Suppose that X1, ..., Xn are iid with the Weibull
distribution, that is the common pdf is

f(x) =

{

b
a
xb−1e−

xb

a 0 < x
0 elsewhere

where a is the unknown parameter, but b(> 0) is assumed known.

a) Find a minimal sufficient statistic for a
b) Assume n = 10. Use the Chi-Square Table and the minimal sufficient

statistic to find a 95% two sided confidence interval for a.

R/Splus Problems

Use the command source(“A:/sipack.txt”) to download the func-
tions. See Section 11.1. Typing the name of the sipack function, eg
accisimf, will display the code for the function. Use the args command, eg
args(accisimf), to display the needed arguments for the function.
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9.2. Let Y1, ..., Yn be iid binomial(1, ρ) random variables.
From the website (www.math.siu.edu/olive/sipack.txt), enter the R/Splus

function bcisim into R/Splus. This function simulates the 3 CIs (classical,
modified and exact) from Example 9.16, but changes the CI (L,U) to
(max(0,L),min(1,U)) to get shorter lengths.

To run the function for n = 10 and ρ ≡ p = 0.001, enter the R/Splus
command bcisim(n=10,p=0.001). Make a table with header “n p ccov clen
accov aclen ecov elen.” Fill the table for n = 10 and p = 0.001, 0.01, 0.5,
0.99, 0.999 and then repeat for n = 100. The “cov” is the proportion of 500
runs where the CI contained p and the nominal coverage is 0.95. A coverage
between 0.92 and 0.98 gives little evidence that the true coverage differs
from the nominal coverage of 0.95. A coverage greater that 0.98 suggests
that the CI is conservative while a coverage less than 0.92 suggests that the
CI is liberal. Typically want the true coverage ≥ to the nominal coverage, so
conservative intervals are better than liberal CIs. The “len” is the average
scaled length of the CI and for large n should be near 2(1.96)

√

p(1 − p).
From your table, is the classical estimator or the Agresti Coull CI better?

When is the exact interval good? Explain briefly.

9.3. Let X1, ..., Xn be iid Poisson(θ) random variables.
From the website (www.math.siu.edu/olive/sipack.txt), enter the R/Splus

function poiscisim into R/Splus. This function simulates the 3 CIs (classi-
cal, modified and exact) from Example 9.15. To run the function for n = 100
and θ = 5, enter the R/Splus command poiscisim(theta=5). Make a table
with header “theta ccov clen mcov mlen ecov elen.” Fill the table for theta =
0.001, 0.1, 1.0, and 5.

The “cov” is the proportion of 500 runs where the CI contained θ and
the nominal coverage is 0.95. A coverage between 0.92 and 0.98 gives little
evidence that the true coverage differs from the nominal coverage of 0.95.
A coverage greater that 0.98 suggests that the CI is conservative while a
coverage less than 0.92 suggests that the CI is liberal (too short). Typically
want the true coverage ≥ to the nominal coverage, so conservative intervals
are better than liberal CIs. The “len” is the average scaled length of the CI
and for large nθ should be near 2(1.96)

√
θ for the classical and modified CIs.

From your table, is the classical CI or the modified CI or the exact CI
better? Explain briefly. (Warning: in a 1999 version of R, there was a bug
for the Poisson random number generator for θ ≥ 10. The 2007 version of R
seems to work.)
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9.4. This problem simulates the CIs from Example 9.17.
a) Download the function accisimf into R/Splus.

b) The function will be used to compare the classical and Agresti Coull
95% CIs when the population size N = 500 and p is close to 0.01. The
function generates such a population, then selects 5000 independent simple
random samples from the population. The 5000 CIs are made for both types
of intervals, and the number of times the true population p is in the ith CI is
counted. The simulated coverage is this count divided by 5000 (the number
of CIs). The nominal coverage is 0.95. To run the function for n = 50
and p ≈ 0.01, enter the command accisimf(n=50,p=0.01). Make a table
with header “n p ccov accov.” Fill the table for n = 50 and then repeat for
n = 100, 150, 200, 250, 300, 350, 400 and 450. The “cov” is the proportion of
5000 runs where the CI contained p and the nominal coverage is 0.95. For
5000 runs, an observed coverage between 0.94 and 0.96 gives little evidence
that the true coverage differs from the nominal coverage of 0.95. A coverage
greater that 0.96 suggests that the CI is conservative while a coverage less
than 0.94 suggests that the CI is liberal. Typically want the true coverage
≥ to the nominal coverage, so conservative intervals are better than liberal
CIs. The “ccov” is for the classical CI while “accov” is for the Agresti Coull
CI.

c) From your table, for what values of n is the Agresti Coull CI better,
for what values of n are the 2 intervals about the same, and for what values
of n is the classical CI better?

9.5. This problem simulates the CIs from Example 9.10.

a) Download the function expsim into R/Splus.

The output from this function are the coverages scov, lcov and ccov of
the CI for λ, θ and of λ if θ is known. The scaled average lengths of the CIs
are also given. The lengths of the CIs for λ are multiplied by

√
n while the

length of the CI for θ is multiplied by n.

b) The 5000 CIs are made for 3 intervals, and the number of times the
true population parameter λ or θ is in the ith CI is counted. The simulated
coverage is this count divided by 5000 (the number of CIs). The nominal
coverage is 0.95. To run the function for n = 5, θ = 0 and λ = 1 enter the
command expsim(n=5). Make a table with header
“CI for λ CI for θ CI for λ, θ unknown.”
Then a second header “n cov slen cov slen cov slen.” Fill the table for n = 5
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and then repeat for n = 10, 20, 50, 100 and 1000. The “cov” is the proportion
of 5000 runs where the CI contained λ or θ and the nominal coverage is
0.95. For 5000 runs, an observed coverage between 0.94 and 0.96 gives little
evidence that the true coverage differs from the nominal coverage of 0.95.
A coverage greater that 0.96 suggests that the CI is conservative while a
coverage less than 0.94 suggests that the CI is liberal. As n gets large, the
values of slen should get closer to 3.92, 2.9957 and 3.92.

9.6. This problem simulates the CIs from Example 9.9.

a) Download the function hnsim into R/Splus.
The output from this function are the coverages scov, lcov and ccov of

the CI for σ2, µ and of σ2 if µ is known. The scaled average lengths of the
CIs are also given. The lengths of the CIs for σ2 are multiplied by

√
n while

the length of the CI for µ is multiplied by n.

b) The 5000 CIs are made for 3 intervals, and the number of times the
true population parameter θ = µ or σ2 is in the ith CI is counted. The
simulated coverage is this count divided by 5000 (the number of CIs). The
nominal coverage is 0.95. To run the function for n = 5, µ = 0 and σ2 = 1
enter the command hnsim(n=5). Make a table with header
“CI for σ2 CI for µ CI for σ2, µ unknown.”
Then a second header “n cov slen cov slen cov slen.” Fill the table for n = 5
and then repeat for n = 10, 20, 50, 100 and 1000. The “cov” is the proportion
of 5000 runs where the CI contained θ and the nominal coverage is 0.95. For
5000 runs, an observed coverage between 0.94 and 0.96 gives little evidence
that the true coverage differs from the nominal coverage of 0.95. A coverage
greater that 0.96 suggests that the CI is conservative while a coverage less
than 0.94 suggests that the CI is liberal. As n gets large, the values of slen
should get closer to 5.5437, 3.7546 and 5.5437.

9.7. a) Download the function wcisim into R/Splus.
The output from this function includes the coverages pcov and lcov of

the CIs for φ and λ if the simulated data Y1, ..., Yn are iid Weibull (φ, λ). The
scaled average lengths of the CIs are also given. The values pconv and lconv

should be less than 10−5. If this is not the case, increase iter. 100 samples
of size n = 100 are used to create the 95% large sample CIs for φ and λ
given in Example 9.18. If the sample size is large, then sdphihat, the sample
standard deviation of the 100 values of the MLE φ̂, should be close to phiasd

= φ
√
.608. Similarly, sdlamhat should be close to the asymptotic standard
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deviation lamasd =
√

1.109λ2(1 + 0.4635 log(λ) + 0.5282(log(λ))2).

b) Type the command
wcisim(n = 100, phi = 1, lam = 1, iter = 100)

and record the coverages for the CIs for φ and λ.

c) Type the command
wcisim(n = 100, phi = 20, lam = 20, iter = 100)

and record the coverages for the CIs for φ and λ.

9.8. a) Download the function raysim into R/Splus.
b) Type the command

raysim(n = 100, mu = 20, sigma = 20, iter = 100)

and record the coverages for the CIs for µ and σ.

9.9. a) Download the function ducisim into R/Splus to simulate the CI
of Example 9.20.

b) Type the command
ducisim(n=10,nruns=1000,eta=1000).
Repeat for n = 50, 100, 500 and make a table with header
“n coverage n 95% CI length.”
Fill in the table for n = 10, 50, 100 and 500.

c) Are the coverages close to or higher than 0.95 and is the scaled length
close to 3η = 3000?

9.10. a) Download the function varcisim into R/Splus to simulate a
modified version of the CI of Example 9.22.

b) Type the command varcisim(n = 100, nruns = 1000, type = 1)

to simulate the 95% CI for the variance for iid N(0,1) data. Is the coverage
vcov close to or higher than 0.95? Is the scaled length vlen =

√
n (CI length)

= 2(1.96)σ2
√
τ = 5.554σ2 close to 5.554?

c) Type the command varcisim(n = 100, nruns = 1000, type = 2)

to simulate the 95% CI for the variance for iid EXP(1) data. Is the coverage
vcov close to or higher than 0.95? Is the scaled length vlen =

√
n (CI length)

= 2(1.96)σ2
√
τ = 2(1.96)λ2

√
8 = 11.087λ2 close to 11.087?

d) Type the command varcisim(n = 100, nruns = 1000, type = 3)

to simulate the 95% CI for the variance for iid LN(0,1) data. Is the coverage
vcov close to or higher than 0.95? Is the scaled length vlen long?



Chapter 10

Some Useful Distributions

Definition 10.1. The population median is any value MED(Y ) such that

P (Y ≤ MED(Y )) ≥ 0.5 and P (Y ≥ MED(Y )) ≥ 0.5. (10.1)

Definition 10.2. The population median absolute deviation is

MAD(Y ) = MED(|Y − MED(Y )|). (10.2)

Finding MED(Y ) and MAD(Y ) for symmetric distributions and location–
scale families is made easier by the following lemma. Let F (yα) = P (Y ≤
yα) = α for 0 < α < 1 where the cdf F (y) = P (Y ≤ y). Let D = MAD(Y ),
M = MED(Y ) = y0.5 and U = y0.75.

Lemma 10.1. a) If W = a + bY, then MED(W ) = a + bMED(Y ) and
MAD(W ) = |b|MAD(Y ).

b) If Y has a pdf that is continuous and positive on its support and
symmetric about µ, then MED(Y ) = µ and MAD(Y ) = y0.75 − MED(Y ).
Find M = MED(Y ) by solving the equation F (M) = 0.5 for M , and find U
by solving F (U) = 0.75 for U . Then D = MAD(Y ) = U −M.

c) Suppose that W is from a location–scale family with standard pdf
fY (y) that is continuous and positive on its support. Then W = µ + σY
where σ > 0. First find M by solving FY (M) = 0.5. After finding M , find
D by solving FY (M + D) − FY (M − D) = 0.5. Then MED(W ) = µ + σM
and MAD(W ) = σD.

274
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Definition 10.3. The gamma function Γ(x) =
∫∞

0
tx−1e−tdt for x > 0.

Some properties of the gamma function follow.
i) Γ(k) = (k − 1)! for integer k ≥ 1.
ii) Γ(x + 1) = x Γ(x) for x > 0.
iii) Γ(x) = (x− 1) Γ(x− 1) for x > 1.
iv) Γ(0.5) =

√
π.

Some lower case Greek letters are alpha: α, beta: β, gamma: γ, delta: δ,
epsilon: ε, zeta: ζ, eta: η, theta: θ, iota: ι, kappa: κ, lambda: λ, mu: µ, nu:
ν, xi: ξ, omicron: o, pi: π, rho: ρ, sigma: σ, upsilon: υ, phi: φ, chi: χ, psi:
ψ and omega: ω.

Some capital Greek letters are gamma: Γ, theta: Θ, sigma: Σ and phi:
Φ.

For the discrete uniform and geometric distributions, the following facts
on series are useful.

Lemma 10.2. Let n, n1 and n2 be integers with n1 ≤ n2, and let a be a
constant. Notice that

∑n2

i=n1
ai = n2 − n1 + 1 if a = 1.

a)
n2∑

i=n1

ai =
an1 − an2+1

1 − a
, a 6= 1.

b)
∞∑

i=0

ai =
1

1 − a
, |a| < 1.

c)

∞∑

i=1

ai =
a

1 − a
, |a| < 1.

d)
∞∑

i=n1

ai =
an1

1 − a
, |a| < 1.

e)
n∑

i=1

i =
n(n + 1)

2
.

f)

n∑

i=1

i2 =
n(n+ 1)(2n + 1)

6
.
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See Gabel and Roberts (1980, p. 473-476) for the proof of a)–d).
For the special case of 0 ≤ n1 ≤ n2, notice that

n2∑

i=0

ai =
1 − an2+1

1 − a
, a 6= 1.

To see this, multiply both sides by (1 − a). Then

(1 − a)
n2∑

i=0

ai = (1 − a)(1 + a + a2 + · · · + an2−1 + an2) =

1 + a + a2 + · · · + an2−1 + an2

−a− a2 − · · · − an2 − an2+1

= 1 − an2+1 and the result follows. Hence for a 6= 1,

n2∑

i=n1

ai =
n2∑

i=0

ai −
n1−1∑

i=0

ai =
1 − an2+1

1 − a
− 1 − an1

1 − a
=
an1 − an2+1

1 − a
.

The binomial theorem below is sometimes useful.

Theorem 10.3, The Binomial Theorem. For any real numbers x and
y and for any integer n ≥ 0,

(x+ y)n =

n∑

i=0

(
n

i

)

xiyn−i = (y + x)n =

n∑

i=0

(
n

i

)

yixn−i.

10.1 The Beta Distribution

If Y has a beta distribution, Y ∼ beta(δ, ν), then the probability density
function (pdf) of Y is

f(y) =
Γ(δ + ν)

Γ(δ)Γ(ν)
yδ−1(1 − y)ν−1

where δ > 0, ν > 0 and 0 ≤ y ≤ 1.

E(Y ) =
δ

δ + ν
.
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VAR(Y ) =
δν

(δ + ν)2(δ + ν + 1)
.

Notice that

f(y) =
Γ(δ + ν)

Γ(δ)Γ(ν)
I[0,1](y) exp[(δ − 1) log(y) + (ν − 1) log(1 − y)]

is a 2P–REF. Hence Θ = (0,∞) × (0,∞), η1 = δ − 1, η2 = ν − 1 and
Ω = (−1,∞) × (−1,∞).

If δ = 1, then W = − log(1 − Y ) ∼ EXP(1/ν). Hence Tn =
−∑ log(1 − Yi) ∼ G(n, 1/ν) and if r > −n then T rn is the UMVUE of

E(T rn) =
1

νr
Γ(r + n)

Γ(n)
.

If ν = 1, then W = − log(Y ) ∼ EXP(1/δ). Hence Tn = −
∑

log(Yi) ∼
G(n, 1/δ) and and if r > −n then T rn is the UMVUE of

E(T rn) =
1

δr
Γ(r + n)

Γ(n)
.

10.2 The Beta–Binomial Distribution

If Y has a beta–binomial distribution, Y ∼ BB(m, ρ, θ), then the probability
mass function of Y is

P (Y = y) =

(
m

y

)
B(δ + y, ν +m− y)

B(δ, ν)

for y = 0, 1, 2, ..., m where 0 < ρ < 1 and θ > 0. Here δ = ρ/θ and ν =
(1 − ρ)/θ, so ρ = δ/(δ + ν) and θ = 1/(δ + ν). Also

B(δ, ν) =
Γ(δ)Γ(ν)

Γ(δ + ν)
.

Hence δ > 0 and ν > 0. Then E(Y ) = mδ/(δ + ν) = mρ and V(Y ) =
mρ(1−ρ)[1+(m−1)θ/(1+ θ)]. If Y |π ∼ binomial(m, π) and π ∼ beta(δ, ν),
then Y ∼ BB(m, ρ, θ).
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10.3 The Bernoulli and Binomial Distribu-

tions

If Y has a binomial distribution, Y ∼ BIN(k, ρ), then the probability mass
function (pmf) of Y is

f(y) = P (Y = y) =

(
k

y

)

ρy(1 − ρ)k−y

for y = 0, 1, . . . , k where 0 < ρ < 1.
If ρ = 0, P (Y = 0) = 1 = (1 − ρ)k while if ρ = 1, P (Y = k) = 1 = ρk.
The moment generating function

m(t) = [(1 − ρ) + ρet]k,

and the characteristic function c(t) = [(1 − ρ) + ρeit]k.

E(Y ) = kρ.

VAR(Y ) = kρ(1 − ρ).

The Bernoulli (ρ) distribution is the binomial (k = 1, ρ) distribution.
Pourahmadi (1995) showed that the moments of a binomial (k, ρ) random

variable can be found recursively. If r ≥ 1 is an integer,
(
0
0

)
= 1 and the last

term below is 0 for r = 1, then

E(Y r) = kρ
r−1∑

i=0

(
r − 1

i

)

E(Y i) − ρ
r−2∑

i=0

(
r − 1

i

)

E(Y i+1).

The following normal approximation is often used.

Y ≈ N(kρ, kρ(1 − ρ))

when kρ(1 − ρ) > 9. Hence

P (Y ≤ y) ≈ Φ

(

y + 0.5 − kρ
√

kρ(1 − ρ)

)

.

Also

P (Y = y) ≈ 1
√

kρ(1 − ρ)

1√
2π

exp

(

−1

2

(y − kρ)2

kρ(1 − ρ)

)

.
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See Johnson, Kotz and Kemp (1992, p. 115). This approximation suggests
that MED(Y ) ≈ kρ, and MAD(Y ) ≈ 0.674

√

kρ(1 − ρ). Hamza (1995) states
that |E(Y ) −MED(Y )| ≤ max(ρ, 1 − ρ) and shows that

|E(Y ) − MED(Y )| ≤ log(2).

If k is large and kρ small, then Y ≈ Poisson(kρ).
If Y1, ..., Yn are independent BIN(ki, ρ) then

∑n
i=1 Yi ∼ BIN(

∑n
i=1 ki, ρ).

Notice that

f(y) =

(
k

y

)

(1 − ρ)k exp

[

log(
ρ

1 − ρ
)y

]

is a 1P–REF in ρ if k is known. Thus Θ = (0, 1),

η = log

(
ρ

1 − ρ

)

and Ω = (−∞,∞).
Assume that Y1, ..., Yn are iid BIN(k, ρ), then

Tn =
n∑

i=1

Yi ∼ BIN(nk, ρ).

If k is known, then the likelihood

L(ρ) = c ρ
Pn

i=1 yi (1 − ρ)nk−
Pn

i=1 yi ,

and the log likelihood

log(L(ρ)) = d+ log(ρ)

n∑

i=1

yi + (nk −
n∑

i=1

yi) log(1 − ρ).

Hence
d

dρ
log(L(ρ)) =

∑n
i=1 yi
ρ

+
nk −∑n

i=1 yi
1 − ρ

(−1)
set
= 0,

or (1 − ρ)
∑n

i=1 yi = ρ(nk −∑n
i=1 yi), or

∑n
i=1 yi = ρnk or

ρ̂ =
n∑

i=1

yi/(nk).
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This solution is unique and

d2

dρ2
log(L(ρ)) =

−
∑n

i=1 yi
ρ2

− nk −
∑n

i=1 yi
(1 − ρ)2

< 0

if 0 <
∑n

i=1 yi < nk. Hence kρ̂ = Y is the UMVUE, MLE and MME of kρ if
k is known.

Let ρ̂ = number of “successes”/n and let P (Z ≤ z1−α/2) = 1 − α/2 if
Z ∼ N(0, 1). Let ñ = n+ z2

1−α/2 and

ρ̃ =
nρ̂+ 0.5z2

1−α/2
n + z2

1−α/2
.

Then the large sample 100 (1 − α)% Agresti Coull CI for ρ is

p̃± z1−α/2

√

ρ̃(1 − ρ̃)

ñ
.

Let W =
∑n

i=1 Yi ∼ bin(
∑n

i=1 ki, ρ) and let nw =
∑n

i=1 ki. Often ki ≡ 1
and then nw = n. Let P (Fd1,d2 ≤ Fd1,d2(α)) = α where Fd1,d2 has an F
distribution with d1 and d2 degrees of freedom. Then the Clopper Pearson
“exact” 100 (1 − α)% CI for ρ is

(

0,
1

1 + nw F2nw,2(α)

)

for W = 0,

(
nw

nw + F2,2nw(1 − α)
, 1

)

for W = nw,

and (ρL, ρU) for 0 < W < nw with

ρL =
W

W + (nw −W + 1)F2(nw−W+1),2W (1 − α/2)

and

ρU =
W + 1

W + 1 + (nw −W )F2(nw−W ),2(W+1)(α/2)
.
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10.4 The Burr Distribution

If Y has a Burr distribution, Y ∼ Burr(φ, λ), then the pdf of Y is

f(y) =
1

λ

φyφ−1

(1 + yφ)
1
λ
+1

where y, φ, and λ are all positive.
The cdf of Y is

F (y) = 1 − exp

[− log(1 + yφ)

λ

]

= 1 − (1 + yφ)−1/λ for y > 0.

MED(Y ) = [eλ log(2) − 1]1/φ.
See Patel, Kapadia and Owen (1976, p. 195).
W = log(1 + Y φ) is EXP(λ).

Notice that

f(y) =
1

λ
φyφ−1 1

1 + yφ
exp

[

−1

λ
log(1 + yφ)

]

I(y > 0)

is a one parameter exponential family if φ is known.
If Y1, ..., Yn are iid Burr(λ, φ), then

Tn =
n∑

i=1

log(1 + Y φ
i ) ∼ G(n, λ).

If φ is known, then the likelihood

L(λ) = c
1

λn
exp

[

−1

λ

n∑

i=1

log(1 + yφi )

]

,

and the log likelihood log(L(λ)) = d− n log(λ) − 1
λ

∑n
i=1 log(1 + yφi ). Hence

d

dλ
log(L(λ)) =

−n
λ

+

∑n
i=1 log(1 + yφi )

λ2

set
= 0,

or
∑n

i=1 log(1 + yφi ) = nλ or

λ̂ =

∑n
i=1 log(1 + yφi )

n
.
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This solution is unique and

d2

dλ2
log(L(λ)) =

n

λ2
− 2

∑n
i=1 log(1 + yφi )

λ2

∣
∣
∣
∣
∣
λ=λ̂

=
n

λ̂2
− 2nλ̂

λ̂3
=

−n
λ̂2

< 0.

Thus

λ̂ =

∑n
i=1 log(1 + Y φ

i )

n
is the UMVUE and MLE of λ if φ is known.

If φ is known and r > −n, then T rn is the UMVUE of

E(T rn) = λr
Γ(r + n)

Γ(n)
.

10.5 The Cauchy Distribution

If Y has a Cauchy distribution, Y ∼ C(µ, σ), then the pdf of Y is

f(y) =
σ

π

1

σ2 + (y − µ)2
=

1

πσ[1 + (y−µ
σ

)2]

where y and µ are real numbers and σ > 0.
The cumulative distribution function (cdf) of Y is

F (y) =
1

π
[arctan(

y − µ

σ
) + π/2].

See Ferguson (1967, p. 102). This family is a location–scale family that is
symmetric about µ.

The moments of Y do not exist, but the characteristic function of Y is

c(t) = exp(itµ− |t|σ).

MED(Y ) = µ, the upper quartile = µ + σ, and the lower quartile = µ− σ.
MAD(Y ) = F−1(3/4) − MED(Y ) = σ.
If Y1, ..., Yn are independent C(µi, σi), then

n∑

i=1

aiYi ∼ C(
n∑

i=1

aiµi,
n∑

i=1

|ai|σi).

In particular, if Y1, ..., Yn are iid C(µ, σ), then Y ∼ C(µ, σ).
If W ∼ U(−π/2, π/2), then Y = tan(W ) ∼ C(0, 1).
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10.6 The Chi Distribution

If Y has a chi distribution (also called a p–dimensional Rayleigh distribution),
Y ∼ chi(p, σ), then the pdf of Y is

f(y) =
yp−1e

−1
2σ2 y

2

σp2
p
2
−1Γ(p/2)

where y ≥ 0 and σ, p > 0. This is a scale family if p is known.

E(Y ) = σ
√

2
Γ(1+p

2
)

Γ(p/2)
.

VAR(Y ) = 2σ2




Γ(2+p

2
)

Γ(p/2)
−
(

Γ(1+p
2

)

Γ(p/2)

)2


 ,

and

E(Y r) = 2r/2σr
Γ( r+p

2
)

Γ(p/2)

for r > −p.
The mode is at σ

√
p− 1 for p ≥ 1. See Cohen and Whitten (1988, ch. 10).

Note that W = Y 2 ∼ G(p/2, 2σ2).
Y ∼ generalized gamma (ν = p/2, λ = σ

√
2, φ = 2).

If p = 1, then Y has a half normal distribution, Y ∼ HN(0, σ2).
If p = 2, then Y has a Rayleigh distribution, Y ∼ R(0, σ).
If p = 3, then Y has a Maxwell–Boltzmann distribution (also known as a
Boltzmann distribution or a Maxwell distribution), Y ∼ MB (0, σ).
If p is an integer and Y ∼ chi(p, 1), then Y 2 ∼ χ2

p.
Since

f(y) =
1

2
p
2
−1Γ(p/2)σp

I(y > 0) exp[(p− 1) log(y)− 1

2σ2
y2],

this family appears to be a 2P–REF. Notice that Θ = (0,∞) × (0,∞),
η1 = p− 1, η2 = −1/(2σ2), and Ω = (−1,∞) × (−∞, 0).

If p is known then

f(y) =
yp−1

2
p
2
−1Γ(p/2)

I(y > 0)
1

σp
exp

[−1

2σ2
y2

]
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appears to be a 1P–REF.
If Y1, ..., Yn are iid chi(p, σ), then

Tn =
n∑

i=1

Y 2
i ∼ G(np/2, 2σ2).

If p is known, then the likelihood

L(σ2) = c
1

σnp
exp[

−1

2σ2

n∑

i=1

y2
i ],

and the log likelihood

log(L(σ2)) = d− np

2
log(σ2) − 1

2σ2

n∑

i=1

y2
i .

Hence
d

d(σ2)
log(σ2) =

−np
2σ2

+
1

2(σ2)2

n∑

i=1

y2
i
set
= 0,

or
∑n

i=1 y
2
i = npσ2 or

σ̂2 =

∑n
i=1 y

2
i

np
.

This solution is unique and

d2

d(σ2)2
log(L(σ2)) =

np

2(σ2)2
−
∑n

i=1 y
2
i

(σ2)3

∣
∣
∣
∣
σ2=σ̂2

=
np

2(σ̂2)2
− npσ̂

(σ̂2)3

2

2
=

−np
2(σ̂2)2

< 0.

Thus σ̂2

σ̂2 =

∑n
i=1 Y

2
i

np

is the UMVUE and MLE of σ2 when p is known.
If p is known and r > −np/2, then T rn is the UMVUE of

E(T rn) =
2rσ2rΓ(r + np/2)

Γ(np/2)
.
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10.7 The Chi–square Distribution

If Y has a chi–square distribution, Y ∼ χ2
p, then the pdf of Y is

f(y) =
y

p
2
−1e−

y
2

2
p
2 Γ(p

2
)

where y ≥ 0 and p is a positive integer.
The mgf of Y is

m(t) =

(
1

1 − 2t

)p/2

= (1 − 2t)−p/2

for t < 1/2. The characteristic function

c(t) =

(
1

1 − i2t

)p/2

.

E(Y ) = p.
VAR(Y ) = 2p.
Since Y is gamma G(ν = p/2, λ = 2),

E(Y r) =
2rΓ(r + p/2)

Γ(p/2)
, r > −p/2.

MED(Y ) ≈ p−2/3. See Pratt (1968, p. 1470) for more terms in the expansion
of MED(Y ).
Empirically,

MAD(Y ) ≈
√

2p

1.483
(1 − 2

9p
)2 ≈ 0.9536

√
p.

There are several normal approximations for this distribution. The Wilson–
Hilferty approximation is

(
Y

p

)1
3

≈ N(1 − 2

9p
,

2

9p
).

See Bowman and Shenton (1992, p. 6). This approximation gives

P (Y ≤ x) ≈ Φ[((
x

p
)1/3 − 1 + 2/9p)

√

9p/2],
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and

χ2
p,α ≈ p(zα

√
2

9p
+ 1 − 2

9p
)3

where zα is the standard normal percentile, α = Φ(zα). The last approxima-
tion is good if p > −1.24 log(α). See Kennedy and Gentle (1980, p. 118).

This family is a one parameter exponential family, but is not a REF since
the set of integers does not contain an open interval.

10.8 The Discrete Uniform Distribution

If Y has a discrete uniform distribution, Y ∼ DU(θ1, θ2), then the pmf of Y
is

f(y) = P (Y = y) =
1

θ2 − θ1 + 1

for θ1 ≤ y ≤ θ2 where y and the θi are integers. Let θ2 = θ1 + τ − 1 where
τ = θ2 − θ1 + 1.

The cdf for Y is

F (y) =
byc − θ1 + 1

θ2 − θ1 + 1

for θ1 ≤ y ≤ θ2. Here byc is the greatest integer function, eg, b7.7c = 7. This
result holds since for θ1 ≤ y ≤ θ2,

F (y) =

byc
∑

i=θ1

1

θ2 − θ1 + 1
.

E(Y ) = (θ1 + θ2)/2 = θ1 + (τ − 1)/2 while V (Y ) = (τ 2 − 1)/12.
The result for E(Y ) follows by symmetry, or because

E(Y ) =
θ2∑

y=θ1

y

θ2 − θ1 + 1
=
θ1(θ2 − θ1 + 1) + [0 + 1 + 2 + · · · + (θ2 − θ1)]

θ2 − θ1 + 1

where last equality follows by adding and subtracting θ1 to y for each of the
θ2 − θ1 + 1 terms in the middle sum. Thus

E(Y ) = θ1 +
(θ2 − θ1)(θ2 − θ1 + 1)

2(θ2 − θ1 + 1)
=

2θ1

2
+
θ2 − θ1

2
=
θ1 + θ2

2

since
∑n

i=1 i = n(n+ 1)/2 by Lemma 10.2e with n = θ2 − θ1.



CHAPTER 10. SOME USEFUL DISTRIBUTIONS 287

To see the result for V (Y ), let W = Y − θ1 +1. Then V (Y ) = V (W ) and
f(w) = 1/τ for w = 1, ..., τ . Hence W ∼ DU(1, τ ),

E(W ) =
1

τ

τ∑

i=1

w =
τ (τ + 1)

2τ
=

1 + τ

2
,

and

E(W ) =
1

τ

τ∑

i=1

w2 =
τ (τ + 1)(2τ + 1)

6τ
=

(τ + 1)(2τ + 1)

6

by Lemma 10.2. So

V (Y ) = V (W ) = E(W 2) − (E(W ))2 =
(τ + 1)(2τ + 1)

6
−
(

1 + τ

2

)2

=

2(τ + 1)(2τ + 1) − 3(τ + 1)2

12
=

2(τ + 1)[2(τ + 1) − 1] − 3(τ + 1)2

12
=

4(τ + 1)2 − 2(τ + 1) − 3(τ + 1)2

12
=

(τ + 1)2 − 2τ − 2

12
=

τ 2 + 2τ + 1 − 2τ − 2

12
=
τ 2 − 1

12
.

Let Z be the set of integers and let Y1, ..., Yn be iid DU(θ1, θ2). Then the
likelihood function L(θ1, θ2) =

1

(θ2 − θ1 + 1)n
I(θ1 ≤ Y(1))I(θ2 ≥ Y(n))I(θ1 ≤ θ2)I(θ1 ∈ Z)I(θ2 ∈ Z)

is maximized by making θ2−θ1−1 as small as possible where integers θ2 ≥ θ1.
So need θ2 as small as possible and θ1 as large as possible, and the MLE of
(θ1, θ2) is (Y(1), Y(n)).

10.9 The Double Exponential Distribution

If Y has a double exponential distribution (or Laplace distribution), Y ∼
DE(θ, λ), then the pdf of Y is

f(y) =
1

2λ
exp

(−|y − θ|
λ

)
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where y is real and λ > 0.
The cdf of Y is

F (y) = 0.5 exp

(
y − θ

λ

)

if y ≤ θ,

and

F (y) = 1 − 0.5 exp

(−(y − θ)

λ

)

if y ≥ θ.

This family is a location–scale family which is symmetric about θ.
The mgf

m(t) = exp(θt)/(1 − λ2t2)

for |t| < 1/λ,
and the characteristic function c(t) = exp(θit)/(1 + λ2t2).
E(Y ) = θ, and
MED(Y ) = θ.
VAR(Y ) = 2λ2, and
MAD(Y ) = log(2)λ ≈ 0.693λ.
Hence λ = MAD(Y )/ log(2) ≈ 1.443MAD(Y ).
To see that MAD(Y ) = λ log(2), note that F (θ+λ log(2)) = 1−0.25 = 0.75.

The maximum likelihood estimators are θ̂MLE = MED(n) and

λ̂MLE =
1

n

n∑

i=1

|Yi − MED(n)|.

A 100(1 − α)% confidence interval (CI) for λ is

(

2
∑n

i=1 |Yi −MED(n)|
χ2

2n−1,1−α
2

,
2
∑n

i=1 |Yi −MED(n)|
χ2

2n−1,α
2

)

,

and a 100(1 − α)% CI for θ is



MED(n) ± z1−α/2
∑n

i=1 |Yi −MED(n)|
n
√

n − z2
1−α/2





where χ2
p,α and zα are the α percentiles of the χ2

p and standard normal dis-
tributions, respectively. See Patel, Kapadia and Owen (1976, p. 194).
W = |Y − θ| ∼ EXP(λ).
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Notice that

f(y) =
1

2λ
exp

[−1

λ
|y − θ|

]

is a one parameter exponential family in λ if θ is known.
If Y1, ..., Yn are iid DE(θ, λ) then

Tn =

n∑

i=1

|Yi − θ| ∼ G(n, λ).

If θ is known, then the likelihood

L(λ) = c
1

λn
exp

[

−1

λ

n∑

i=1

|yi − θ|
]

,

and the log likelihood

log(L(λ)) = d− n log(λ) − 1

λ

n∑

i=1

|yi − θ|.

Hence
d

dλ
log(L(λ)) =

−n
λ

+
1

λ2

n∑

i=1

|yi − θ| set= 0

or
∑n

i=1 |yi − θ| = nλ or

λ̂ =

∑n
i=1 |yi − θ|

n
.

This solution is unique and

d2

dλ2
log(L(λ)) =

n

λ2
− 2

∑n
i=1 |yi − θ|
λ3

∣
∣
∣
∣
λ=λ̂

=
n

λ̂2
− 2nλ̂

λ̂3
=

−n
λ̂2

< 0.

Thus

λ̂ =

∑n
i=1 |Yi − θ|

n

is the UMVUE and MLE of λ if θ is known.
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10.10 The Exponential Distribution

If Y has an exponential distribution, Y ∼ EXP(λ), then the pdf of Y is

f(y) =
1

λ
exp (

−y
λ

) I(y ≥ 0)

where λ > 0.
The cdf of Y is

F (y) = 1 − exp(−y/λ), y ≥ 0.

This distribution is a scale family with scale parameter λ.
The mgf

m(t) = 1/(1 − λt)

for t < 1/λ, and the characteristic function c(t) = 1/(1 − iλt).
E(Y ) = λ,
and VAR(Y ) = λ2.
W = 2Y/λ ∼ χ2

2.
Since Y is gamma G(ν = 1, λ), E(Y r) = λΓ(r + 1) for r > −1.

MED(Y ) = log(2)λ and
MAD(Y ) ≈ λ/2.0781 since it can be shown that

exp(MAD(Y )/λ) = 1 + exp(−MAD(Y )/λ).

Hence 2.0781 MAD(Y ) ≈ λ.
The classical estimator is λ̂ = Y n and the 100(1 − α)% CI for E(Y ) = λ

is (

2
∑n

i=1 Yi
χ2

2n,1−α
2

,
2
∑n

i=1 Yi
χ2

2n,α
2

)

where P (Y ≤ χ2
2n,α

2
) = α/2 if Y is χ2

2n. See Patel, Kapadia and Owen (1976,

p. 188).
Notice that

f(y) =
1

λ
I(y ≥ 0) exp

[−1

λ
y

]

is a 1P–REF. Hence Θ = (0,∞), η = −1/λ and Ω = (−∞, 0).
Suppose that Y1, ..., Yn are iid EXP(λ), then

Tn =
n∑

i=1

Yi ∼ G(n, λ).
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The likelihood

L(λ) =
1

λn
exp

[

−1

λ

n∑

i=1

yi

]

,

and the log likelihood

log(L(λ)) = −n log(λ) − 1

λ

n∑

i=1

yi.

Hence
d

dλ
log(L(λ)) =

−n
λ

+
1

λ2

n∑

i=1

yi
set
= 0,

or
∑n

i=1 yi = nλ or

λ̂ = y.

Since this solution is unique and

d2

dλ2
log(L(λ)) =

n

λ2
− 2

∑n
i=1 yi
λ3

∣
∣
∣
∣
λ=λ̂

=
n

λ̂2
− 2nλ̂

λ̂3
=

−n
λ̂2

< 0,

the λ̂ = Y is the UMVUE, MLE and MME of λ.
If r > −n, then T rn is the UMVUE of

E(T rn) =
λrΓ(r + n)

Γ(n)
.

10.11 The Two Parameter Exponential Dis-

tribution

If Y has a 2 parameter exponential distribution, Y ∼ EXP(θ, λ) then the pdf
of Y is

f(y) =
1

λ
exp

(−(y − θ)

λ

)

I(y ≥ θ)

where λ > 0 and θ is real.
The cdf of Y is

F (y) = 1 − exp[−(y − θ)/λ)], y ≥ θ.



CHAPTER 10. SOME USEFUL DISTRIBUTIONS 292

This family is an asymmetric location-scale family.
The mgf

m(t) = exp(tθ)/(1 − λt)

for t < 1/λ, and
the characteristic function c(t) = exp(itθ)/(1 − iλt).
E(Y ) = θ + λ,
and VAR(Y ) = λ2.

MED(Y ) = θ + λ log(2)

and
MAD(Y ) ≈ λ/2.0781.

Hence θ ≈ MED(Y ) − 2.0781 log(2)MAD(Y ). See Rousseeuw and Croux
(1993) for similar results. Note that 2.0781 log(2) ≈ 1.44.

To see that 2.0781MAD(Y ) ≈ λ, note that

0.5 =

∫ θ+λ log(2)+MAD

θ+λ log(2)−MAD

1

λ
exp(−(y − θ)/λ)dy

= 0.5[−e−MAD/λ + eMAD/λ]

assuming λ log(2) > MAD. Plug in MAD = λ/2.0781 to get the result.
If θ is known, then

f(y) = I(y ≥ θ)
1

λ
exp

[−1

λ
(y − θ)

]

is a 1P–REF in λ. Notice that Y − θ ∼ EXP (λ). Let

λ̂ =

∑n
i=1(Yi − θ)

n
.

Then λ̂ is the UMVUE and MLE of λ if θ is known.
If Y1, ..., Yn are iid EXP(θ, λ), then the likelihood

L(θ, λ) =
1

λn
exp

[

−1

λ

n∑

i=1

(yi − θ)

]

I(y(1) ≥ θ),



CHAPTER 10. SOME USEFUL DISTRIBUTIONS 293

and the log likelihood

log(L(θ, λ)) = [−n log(λ) − 1

λ

n∑

i=1

(yi − θ)]I(y(1) ≥ θ).

For any fixed λ > 0, the log likelihood is maximized by maximizing θ. Hence
θ̂ = Y(1), and the profile log likelihood is

log(L(λ|y(1))) = −n log(λ) − 1

λ

n∑

i=1

(yi − y(1))

is maximized by λ̂ = 1
n

∑n
i=1(yi − y(1)). Hence the MLE

(θ̂, λ̂) =

(

Y(1),
1

n

n∑

i=1

(Yi − Y(1))

)

= (Y(1), Y − Y(1)).

Let Dn =
∑n

i=1(Yi − Y(1)) = nλ̂. Then for n ≥ 2,

(

2Dn

χ2
2(n−1),1−α/2

,
2Dn

χ2
2(n−1),α/2

)

(10.3)

is a 100(1 − α)% CI for λ, while

(Y(1) − λ̂[(α)−1/(n−1) − 1], Y(1)) (10.4)

is a 100 (1 − α)% CI for θ. See Mann, Schafer, and Singpurwalla (1974, p.
176).

If θ is known and Tn =
∑n

i=1(Yi − θ), then a 100(1 − α)% CI for λ is

(

2Tn
χ2

2n,1−α/2
,

2Tn
χ2

2n,α/2

)

. (10.5)

10.12 The F Distribution

If Y has an F distribution, Y ∼ F (ν1, ν2), then the pdf of Y is

f(y) =
Γ(ν1+ν2

2
)

Γ(ν1/2)Γ(ν2/2)

(
ν1

ν2

)ν1/2 y(ν1−2)/2

(

1 + (ν1
ν2

)y
)(ν1+ν2)/2
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where y > 0 and ν1 and ν2 are positive integers.

E(Y ) =
ν2

ν2 − 2
, ν2 > 2

and

VAR(Y ) = 2

(
ν2

ν2 − 2

)2
(ν1 + ν2 − 2)

ν1(ν2 − 4)
, ν2 > 4.

E(Y r) =
Γ(ν1+2r

2
)Γ(ν2−2r

2
)

Γ(ν1/2)Γ(ν2/2)

(
ν2

ν1

)r

, r < ν2/2.

Suppose that X1 and X2 are independent where X1 ∼ χ2
ν1

and X2 ∼ χ2
ν2
.

Then

W =
(X1/ν1)

(X2/ν2)
∼ F (ν1, ν2).

Notice that E(Y r) = E(W r) =
(
ν2
ν1

)r

E(Xr
1)W (X−r

2 ).

If W ∼ tν, then Y = W 2 ∼ F (1, ν).

10.13 The Gamma Distribution

If Y has a gamma distribution, Y ∼ G(ν, λ), then the pdf of Y is

f(y) =
yν−1e−y/λ

λνΓ(ν)

where ν, λ, and y are positive.
The mgf of Y is

m(t) =

(
1/λ
1
λ
− t

)ν

=

(
1

1 − λt

)ν

for t < 1/λ. The characteristic function

c(t) =

(
1

1 − iλt

)ν

.

E(Y ) = νλ.
VAR(Y ) = νλ2.

E(Y r) =
λrΓ(r + ν)

Γ(ν)
if r > −ν. (10.6)
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Chen and Rubin (1986) show that λ(ν − 1/3) < MED(Y ) < λν = E(Y ).
Empirically, for ν > 3/2,

MED(Y ) ≈ λ(ν − 1/3),

and

MAD(Y ) ≈ λ
√
ν

1.483
.

This family is a scale family for fixed ν, so if Y is G(ν, λ) then cY is G(ν, cλ)
for c > 0. If W is EXP(λ) then W is G(1, λ). If W is χ2

p, then W is G(p/2, 2).
Some classical estimators are given next. Let

w = log

[
yn

geometric mean(n)

]

where geometric mean(n) = (y1y2 . . . yn)
1/n = exp[ 1

n

∑n
i=1 log(yi)].Then Thom’s

estimator (Johnson and Kotz 1970a, p. 188) is

ν̂ ≈ 0.25(1 +
√

1 + 4w/3 )

w
.

Also

ν̂MLE ≈ 0.5000876 + 0.1648852w − 0.0544274w2

w
for 0 < w ≤ 0.5772, and

ν̂MLE ≈ 8.898919 + 9.059950w + 0.9775374w2

w(17.79728 + 11.968477w + w2)

for 0.5772 < w ≤ 17. If W > 17 then estimation is much more difficult, but
a rough approximation is ν̂ ≈ 1/w for w > 17. See Bowman and Shenton
(1988, p. 46) and Greenwood and Durand (1960). Finally, λ̂ = Y n/ν̂. Notice
that β̂ may not be very good if ν̂ < 1/17.

Several normal approximations are available. The Wilson–Hilferty ap-
proximation says that for ν > 0.5,

Y 1/3 ≈ N

(

(νλ)1/3(1 − 1

9ν
), (νλ)2/3 1

9ν

)

.

Hence if Y is G(ν, λ) and

α = P [Y ≤ Gα],
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then

Gα ≈ νλ

[

zα

√

1

9ν
+ 1 − 1

9ν

]3

where zα is the standard normal percentile, α = Φ(zα). Bowman and Shenton
(1988, p. 101) include higher order terms.

Notice that

f(y) =
1

λνΓ(ν)
I(y > 0) exp

[−1

λ
y + (ν − 1) log(y)

]

is a 2P–REF. Hence Θ = (0,∞) × (0,∞), η1 = −1/λ, η2 = ν − 1 and
Ω = (−∞, 0) × (−1,∞).

If Y1, ..., Yn are independent G(νi, λ) then
∑n

i=1 Yi ∼ G(
∑n

i=1 νi, λ).
If Y1, ..., Yn are iid G(ν, λ), then

Tn =
n∑

i=1

Yi ∼ G(nν, λ).

Since

f(y) =
1

Γ(ν)
exp[(ν − 1) log(y)]I(y > 0)

1

λν
exp

[−1

λ
y

]

,

Y is a 1P–REF when ν is known.
If ν is known, then the likelihood

L(β) = c
1

λnν
exp

[

−1

λ

n∑

i=1

yi

]

.

The log likelihood

log(L(λ)) = d− nν log(λ) − 1

λ

n∑

i=1

yi.

Hence
d

dλ
log(L(λ)) =

−nν
λ

+

∑n
i=1 yi
λ2

set
= 0,

or
∑n

i=1 yi = nνλ or

λ̂ = y/ν.
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This solution is unique and

d2

dλ2
log(L(λ)) =

nν

λ2
− 2

∑n
i=1 yi
λ3

∣
∣
∣
∣
λ=λ̂

=
nν

λ̂2
− 2nνλ̂

λ̂3
=

−nν
λ̂2

< 0.

Thus Y is the UMVUE, MLE and MME of νλ if ν is known.

10.14 The Generalized Gamma Distribution

If Y has a generalized gamma distribution, Y ∼ GG(ν, λ, φ), then the pdf of
Y is

f(y) =
φyφν−1

λφνΓ(ν)
exp(−yφ/λφ)

where ν, λ, φ and y are positive.
This family is a scale family with scale parameter λ if φ and ν are known.

E(Y k) =
λkΓ(ν + k

φ
)

Γ(ν)
if k > −φν. (10.7)

If φ and ν are known, then

f(y) =
φyφν−1

Γ(ν)
I(y > 0)

1

λφν
exp

[−1

λφ
yφ
]

,

which is a one parameter exponential family.
Notice that W = Y φ ∼ G(ν, λφ). If Y1, ..., Yn are iid GG(ν, λ, φ) where φ

and ν are known, then Tn =
∑n

i=1 Y
φ
i ∼ G(nν, λφ), and T rn is the UMVUE

of

E(T rn) = λφr
Γ(r + nν)

Γ(nν)

for r > −nν.

10.15 The Generalized Negative Binomial Dis-

tribution

If Y has a generalized negative binomial distribution, Y ∼ GNB(µ, κ), then
the pmf of Y is

f(y) = P (Y = y) =
Γ(y + κ)

Γ(κ)Γ(y + 1)

(
κ

µ+ κ

)κ(

1 − κ

µ+ κ

)y
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for y = 0, 1, 2, ... where µ > 0 and κ > 0. This distribution is a generalization
of the negative binomial (κ, ρ) distribution with ρ = κ/(µ + κ) and κ > 0 is
an unknown real parameter rather than a known integer.

The mgf is

m(t) =

[
κ

κ+ µ(1 − et)

]κ

for t < − log(µ/(µ + κ)).
E(Y ) = µ and
VAR(Y ) = µ + µ2/κ.

If Y1, ..., Yn are iid GNB(µ, κ), then
∑n

i=1 Yi ∼ GNB(nµ, nκ).
When κ is known, this distribution is a 1P–REF. If Y1, ..., Yn are iid

GNB(µ, κ) where κ is known, then µ̂ = Y is the MLE, UMVUE and MME
of µ.

10.16 The Geometric Distribution

If Y has a geometric distribution, Y ∼ geom(ρ) then the pmf of Y is

f(y) = P (Y = y) = ρ(1 − ρ)y

for y = 0, 1, 2, ... and 0 < ρ < 1.
The cdf for Y is F (y) = 1 − (1 − ρ)byc+1 for y ≥ 0 and F (y) = 0 for y < 0.

Here byc is the greatest integer function, eg, b7.7c = 7. To see this, note that
for y ≥ 0,

F (y) = ρ

byc
∑

i=0

(1 − ρ)y = ρ
1 − (1 − ρ)byc+1

1 − (1 − ρ)

by Lemma 10.2a with n1 = 0, n2 = byc and a = 1 − ρ.
E(Y ) = (1 − ρ)/ρ.
VAR(Y ) = (1 − ρ)/ρ2.
Y ∼ NB(1, ρ).
Hence the mgf of Y is

m(t) =
ρ

1 − (1 − ρ)et

for t < − log(1 − ρ).
Notice that

f(y) = ρ exp[log(1 − ρ)y]
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is a 1P–REF. Hence Θ = (0, 1), η = log(1 − ρ) and Ω = (−∞, 0).
If Y1, ..., Yn are iid geom(ρ), then

Tn =

n∑

i=1

Yi ∼ NB(n, ρ).

The likelihood

L(ρ) = ρn exp[log(1 − ρ)
n∑

i=1

yi],

and the log likelihood

log(L(ρ)) = n log(ρ) + log(1 − ρ)

n∑

i=1

yi.

Hence
d

dρ
log(L(ρ)) =

n

ρ
− 1

1 − ρ

n∑

i=1

yi
set
= 0

or n(1 − ρ)/ρ =
∑n

i=1 yi or n− nρ− ρ
∑n

i=1 yi = 0 or

ρ̂ =
n

n +
∑n

i=1 yi
.

This solution is unique and

d2

dρ2
log(L(ρ)) =

−n
ρ2

−
∑n

i=1 yi
(1 − ρ)2

< 0.

Thus
ρ̂ =

n

n+
∑n

i=1 Yi

is the MLE of ρ.
The UMVUE, MLE and MME of (1 − ρ)/ρ is Y .

10.17 The Gompertz Distribution

If Y has a Gompertz distribution, Y ∼ Gomp(θ, ν), then the pdf of Y is

f(y) = νeθy exp
[ν

θ
(1 − eθy)

]
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for θ 6= 0 where ν > 0 and y > 0. The parameter θ is real, and the
Gomp(θ = 0, ν) distribution is the exponential (1/ν) distribution. The cdf is

F (y) = 1 − exp
[ν

θ
(1 − eθy)

]

for θ 6= 0 and y > 0. For fixed θ this distribution is a scale family with scale
parameter 1/ν.

10.18 The Half Cauchy Distribution

If Y has a half Cauchy distribution, Y ∼ HC(µ, σ), then the pdf of Y is

f(y) =
2

πσ[1 + (y−µ
σ

)2]

where y ≥ µ, µ is a real number and σ > 0. The cdf of Y is

F (y) =
2

π
arctan(

y − µ

σ
)

for y ≥ µ and is 0, otherwise. This distribution is a right skewed location-
scale family.

MED(Y ) = µ+ σ.
MAD(Y ) = 0.73205σ.

10.19 The Half Logistic Distribution

If Y has a half logistic distribution, Y ∼ HL(µ, σ), then the pdf of Y is

f(y) =
2 exp (−(y − µ)/σ)

σ[1 + exp (−(y − µ)/σ)]2

where σ > 0, y ≥ µ and µ are real. The cdf of Y is

F (y) =
exp[(y − µ)/σ] − 1

1 + exp[(y − µ)/σ)]

for y ≥ µ and 0 otherwise. This family is a right skewed location–scale family.
MED(Y ) = µ+ log(3)σ.
MAD(Y ) = 0.67346σ.
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10.20 The Half Normal Distribution

If Y has a half normal distribution, Y ∼ HN(µ, σ2), then the pdf of Y is

f(y) =
2√

2π σ
exp (

−(y − µ)2

2σ2
)

where σ > 0 and y ≥ µ and µ is real. Let Φ(y) denote the standard normal
cdf. Then the cdf of Y is

F (y) = 2Φ(
y − µ

σ
) − 1

for y > µ and F (y) = 0, otherwise.
E(Y ) = µ+ σ

√

2/π ≈ µ + 0.797885σ.

VAR(Y ) =
σ2(π − 2)

π
≈ 0.363380σ2 .

This is an asymmetric location–scale family that has the same distribution
as µ + σ|Z| where Z ∼ N(0, 1). Note that Z2 ∼ χ2

1. Hence the formula for
the rth moment of the χ2

1 random variable can be used to find the moments
of Y .

MED(Y ) = µ+ 0.6745σ.
MAD(Y ) = 0.3990916σ.
Notice that

f(y) =
2√

2π σ
I(y ≥ µ) exp

[

(
−1

2σ2
)(y − µ)2

]

is a 1P–REF if µ is known. Hence Θ = (0,∞), η = −1/(2σ2) and Ω =
(−∞, 0).

W = (Y − µ)2 ∼ G(1/2, 2σ2).
If Y1, ..., Yn are iid HN(µ, σ2), then

Tn =
n∑

i=1

(Yi − µ)2 ∼ G(n/2, 2σ2).

If µ is known, then the likelihood

L(σ2) = c
1

σn
− exp

[

(
−1

2σ2
)

n∑

i=1

(yi − µ)2

]

,
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and the log likelihood

log(L(σ2)) = d− n

2
log(σ2) − 1

2σ2

n∑

i=1

(yi − µ)2.

Hence
d

d(σ2)
log(L(σ2)) =

−n
2(σ2)

+
1

2(σ2)2

n∑

i=1

(yi − µ)2 set
= 0,

or
∑n

i=1(yi − µ)2 = nσ2 or

σ̂2 =
1

n

n∑

i=1

(yi − µ)2.

This solution is unique and

d2

d(σ2)2
log(L(σ2)) =

n

2(σ2)2
−
∑n

i=1(yi − µ)2

(σ2)3

∣
∣
∣
∣
σ2=σ̂2

=
n

2(σ̂2)2
− nσ̂2

(σ̂2)3

2

2
=

−n
2σ̂2

< 0.

Thus

σ̂2 =
1

n

n∑

i=1

(Yi − µ)2

is the UMVUE and MLE of σ2 if µ is known.
If r > −n/2 and if µ is known, then T rn is the UMVUE of

E(T rn) = 2rσ2rΓ(r + n/2)/Γ(n/2).

Example 5.3 shows that (µ̂, σ̂2) = (Y(1),
1
n

∑n
i=1(Yi − Y(1))

2) is MLE of
(µ, σ2). Following Pewsey (2002), a large sample 100(1 − α)% confidence
interval for σ2 is (

nσ̂2

χ2
n−1(1 − α/2)

,
nσ̂2

χ2
n−1(α/2)

)

(10.8)

while a large sample 100(1 − α)% CI for µ is

(µ̂ + σ̂ log(α) Φ−1(
1

2
+

1

2n
) (1 + 13/n2), µ̂). (10.9)

If µ is known, then a 100(1 − α)% CI for σ2 is
(

Tn
χ2
n(1 − α/2)

,
Tn

χ2
n(α/2)

)

. (10.10)
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10.21 The Hypergeometric Distribution

If Y has a hypergeometric distribution, Y ∼ HG(C,N−C, n), then the data
set contains N objects of two types. There are C objects of the first type
(that you wish to count) and N−C objects of the second type. Suppose that
n objects are selected at random without replacement from the N objects.
Then Y counts the number of the n selected objects that were of the first
type. The pmf of Y is

f(y) = P (Y = y) =

(
C
y

)(
N−C
n−y
)

(
N
n

)

where the integer y satisfies max(0, n−N + C) ≤ y ≤ min(n, C). The right
inequality is true since if n objects are selected, then the number of objects
y of the first type must be less than or equal to both n and C . The first
inequality holds since n − y counts the number of objects of second type.
Hence n− y ≤ N − C .

Let p = C/N. Then

E(Y ) =
nC

N
= np

and

VAR(Y ) =
nC(N − C)

N2

N − n

N − 1
= np(1 − p)

N − n

N − 1
.

If n is small compared to both C and N −C then Y ≈ BIN(n, p). If n is
large but n is small compared to both C and N−C then Y ≈ N(np, np(1−p)).

10.22 The Inverse Gaussian Distribution

If Y has an inverse Gaussian distribution, Y ∼ IG(θ, λ), then the pdf of Y is

f(y) =

√

λ

2πy3
exp

[−λ(y − θ)2

2θ2y

]

where y, θ, λ > 0.
The mgf is

m(t) = exp

[

λ

θ

(

1 −
√

1 − 2θ2t

λ

)]
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for t < λ/(2θ2). See Datta (2005) and Schwarz and Samanta (1991) for
additional properties.

The characteristic function is

φ(t) = exp

[

λ

θ

(

1 −
√

1 − 2θ2it

λ

)]

.

E(Y ) = θ and

VAR(Y ) =
θ3

λ
.

Notice that

f(y) =

√

λ

2π
eλ/θ

√
1

y3
I(y > 0) exp

[−λ
2θ2

y − λ

2

1

y

]

is a two parameter exponential family.
If Y1, ..., Yn are iid IG(θ, λ), then

n∑

i=1

Yi ∼ IG(nθ, n2λ) and Y ∼ IG(θ, nλ).

If λ is known, then the likelihood

L(θ) = c enλ/θ exp[
−λ
2θ2

n∑

i=1

yi],

and the log likelihood

log(L(θ)) = d +
nλ

θ
− λ

2θ2

n∑

i=1

yi.

Hence
d

dθ
log(L(θ)) =

−nλ
θ2

+
λ

θ3

n∑

i=1

yi
set
= 0,

or
∑n

i=1 yi = nθ or

θ̂ = y.

This solution is unique and

d2

dθ2
log(L(θ)) =

2nλ

θ3
− 3λ

∑n
i=1 yi
θ4

∣
∣
∣
∣
θ=θ̂

=
2nλ

θ̂3
− 3nλθ̂

θ̂4
=

−nλ
θ̂3

< 0.
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Thus Y is the UMVUE, MLE and MME of θ if λ is known.
If θ is known, then the likelihood

L(λ) = c λn/2 exp

[

−λ
2θ2

n∑

i=1

(yi − θ)2

yi

]

,

and the log likelihood

log(L(λ)) = d+
n

2
log(λ) − λ

2θ2

n∑

i=1

(yi − θ)2

yi
.

Hence
d

dλ
log(L(λ)) =

n

2λ
− 1

2θ2

n∑

i=1

(yi − θ)2

yi

set
= 0

or

λ̂ =
nθ2

∑n
i=1

(yi−θ)2
yi

.

This solution is unique and

d2

dλ2
log(L(λ)) =

−n
2λ2

< 0.

Thus

λ̂ =
nθ2

∑n
i=1

(Yi−θ)2
Yi

is the MLE of λ if θ is known.

Another parameterization of the inverse Gaussian distribution takes θ =
√

λ/ψ so that

f(y) =

√

λ

2π
e
√
λψ

√
1

y3
I [y > 0] exp

[−ψ
2
y − λ

2

1

y

]

,

where λ > 0 and ψ ≥ 0. Here Θ = (0,∞) × [0,∞), η1 = −ψ/2, η2 = −λ/2
and Ω = (−∞, 0]×(−∞, 0). Since Ω is not an open set, this is a 2 parameter
full exponential family that is not regular. If ψ is known then Y is a
1P–REF, but if λ is known the Y is a one parameter full exponential family.
When ψ = 0, Y has a one sided stable distribution with index 1/2. See
Barndorff–Nielsen (1978, p. 117).
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10.23 The Inverted Gamma Distribution

If Y has an inverted gamma distribution, Y ∼ INV G(ν, λ), then the pdf of
Y is

f(y) =
1

yν+1Γ(ν)
I(y > 0)

1

λν
exp

(−1

λ

1

y

)

where λ, ν and y are all positive. It can be shown that W = 1/Y ∼ G(ν, λ).
This family is a scale family with scale parameter τ = 1/λ if ν is known.

If ν is known, this family is a 1 parameter exponential family. If Y1, ..., Yn
are iid INVG(ν, λ) and ν is known, then Tn =

∑n
i=1

1
Yi

∼ G(nν, λ) and T rn is
the UMVUE of

λr
Γ(r + nν)

Γ(nν)

for r > −nν.

10.24 The Largest Extreme Value Distribu-

tion

If Y has a largest extreme value distribution (or Gumbel distribution), Y ∼
LEV (θ, σ), then the pdf of Y is

f(y) =
1

σ
exp(−(

y − θ

σ
)) exp[− exp(−(

y − θ

σ
))]

where y and θ are real and σ > 0. The cdf of Y is

F (y) = exp[− exp(−(
y − θ

σ
))].

This family is an asymmetric location–scale family with a mode at θ.
The mgf

m(t) = exp(tθ)Γ(1 − σt)

for |t| < 1/σ.
E(Y ) ≈ θ + 0.57721σ, and
VAR(Y ) = σ2π2/6 ≈ 1.64493σ2.

MED(Y ) = θ − σ log(log(2)) ≈ θ + 0.36651σ
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and
MAD(Y ) ≈ 0.767049σ.

W = exp(−(Y − θ)/σ) ∼ EXP(1).
Notice that

f(y) =
1

σ
eθ/σe−y/σ exp

[
−eθ/σe−y/σ

]

is a one parameter exponential family in θ if σ is known.
If Y1, ..., Yn are iid LEV(θ, σ) where σ is known, then the likelihood

L(σ) = c enθ/σ exp[−eθ/σ
n∑

i=1

e−yi/σ],

and the log likelihood

log(L(θ)) = d+
nθ

σ
− eθ/σ

n∑

i=1

e−yi/σ.

Hence
d

dθ
log(L(θ)) =

n

σ
− eθ/σ

1

σ

n∑

i=1

e−yi/σ set
= 0,

or

eθ/σ
n∑

i=1

e−yi/σ = n,

or
eθ/σ =

n
∑n

i=1 e
−yi/σ

,

or

θ̂ = log

(
n

∑n
i=1 e

−yi/σ

)

.

Since this solution is unique and

d2

dθ2
log(L(θ)) =

−1

σ2
eθ/σ

n∑

i=1

e−yi/σ < 0,

θ̂ = log

(
n

∑n
i=1 e

−Yi/σ

)

is the MLE of θ.
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10.25 The Logarithmic Distribution

If Y has a logarithmic distribution, then the pmf of Y is

f(y) = P (Y = y) =
−1

log(1 − θ)

θy

y

for y = 1, 2, ... and 0 < θ < 1. This distribution is sometimes called the
logarithmic series distribution or the log-series distribution.

The mgf

m(t) =
log(1 − θet)

log(1 − θ)

for t < − log(θ).

E(Y ) =
−1

log(1 − θ)

θ

1 − θ
.

Notice that

f(y) =
−1

log(1 − θ)

1

y
exp(log(θ)y)

is a 1P–REF. Hence Θ = (0, 1), η = log(θ) and Ω = (−∞, 0).
If Y1, ..., Yn are iid logarithmic (θ), then Y is the UMVUE of E(Y ).

10.26 The Logistic Distribution

If Y has a logistic distribution, Y ∼ L(µ, σ), then the pdf of Y is

f(y) =
exp (−(y − µ)/σ)

σ[1 + exp (−(y − µ)/σ)]2

where σ > 0 and y and µ are real.
The characteristic function of Y is

F (y) =
1

1 + exp (−(y − µ)/σ)
=

exp ((y − µ)/σ)

1 + exp ((y − µ)/σ)
.

This family is a symmetric location–scale family.
The mgf of Y is m(t) = πσteµt csc(πσt) for |t| < 1/σ, and
the chf is c(t) = πiσteiµt csc(πiσt) where csc(t) is the cosecant of t.
E(Y ) = µ, and
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MED(Y ) = µ.
VAR(Y ) = σ2π2/3, and
MAD(Y ) = log(3)σ ≈ 1.0986 σ.
Hence σ = MAD(Y )/ log(3).

The estimators µ̂ = Y n and S2 = 1
n−1

∑n
i=1(Yi−Y n)

2 are sometimes used.
Note that if

q = FL(0,1)(c) =
ec

1 + ec
then c = log(

q

1 − q
).

Taking q = .9995 gives c = log(1999) ≈ 7.6.
To see that MAD(Y ) = log(3)σ, note that F (µ+ log(3)σ) = 0.75,
F (µ− log(3)σ) = 0.25, and 0.75 = exp (log(3))/(1 + exp(log(3))).

10.27 The Log-Cauchy Distribution

If Y has a log–Cauchy distribution, Y ∼ LC(µ, σ), then the pdf of Y is

f(y) =
1

πσy[1 + ( log(y)−µ
σ

)2]

where y > 0, σ > 0 and µ is a real number. This family is a scale family with
scale parameter τ = eµ if σ is known. It can be shown that W = log(Y ) has
a Cauchy(µ, σ) distribution.

10.28 The Log-Logistic Distribution

If Y has a log–logistic distribution, Y ∼ LL(φ, τ ), then the pdf of Y is

f(y) =
φτ (φy)τ−1

[1 + (φy)τ ]2

where y > 0, φ > 0 and τ > 0. The cdf of Y is

F (y) = 1 − 1

1 + (φy)τ

for y > 0. This family is a scale family with scale parameter φ−1 if τ is
known.
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MED(Y ) = 1/φ.
It can be shown that W = log(Y ) has a logistic(µ = − log(φ), σ = 1/τ )

distribution. Hence φ = e−µ and τ = 1/σ. Kalbfleisch and Prentice (1980,
p. 27-28) suggest that the log-logistic distribution is a competitor of the
lognormal distribution.

10.29 The Lognormal Distribution

If Y has a lognormal distribution, Y ∼ LN(µ, σ2), then the pdf of Y is

f(y) =
1

y
√

2πσ2
exp

(−(log(y) − µ)2

2σ2

)

where y > 0 and σ > 0 and µ is real.
The cdf of Y is

F (y) = Φ

(
log(y)− µ

σ

)

for y > 0

where Φ(y) is the standard normal N(0,1) cdf.
This family is a scale family with scale parameter τ = eµ if σ2 is known.

E(Y ) = exp(µ+ σ2/2)

and
VAR(Y ) = exp(σ2)(exp(σ2) − 1) exp(2µ).

For any r,
E(Y r) = exp(rµ + r2σ2/2).

MED(Y ) = exp(µ) and
exp(µ)[1 − exp(−0.6744σ)] ≤ MAD(Y ) ≤ exp(µ)[1 + exp(0.6744σ)].

Notice that

f(y) =
1√
2π

1

σ
exp(

−µ2

2σ2
)
1

y
I(y ≥ 0) exp

[−1

2σ2
(log(y))2 +

µ

σ2
log(y)

]

is a 2P–REF. Hence Θ = (−∞,∞)× (0,∞), η1 = −1/(2σ2), η2 = µ/σ2 and
Ω = (−∞, 0) × (−∞,∞).

Note that W = log(Y ) ∼ N(µ, σ2).
Notice that

f(y) =
1√
2π

1

σ

1

y
I(y ≥ 0) exp

[−1

2σ2
(log(y)− µ)2

]
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is a 1P–REF if µ is known,.
If Y1, ..., Yn are iid LN(µ, σ2) where µ is known, then the likelihood

L(σ2) = c
1

σn
exp

[

−1

2σ2

n∑

i=1

(log(yi) − µ)2

]

,

and the log likelihood

log(L(σ2)) = d − n

2
log(σ2) − 1

2σ2

n∑

i=1

(log(yi) − µ)2.

Hence

d

d(σ2)
log(L(σ2)) =

−n
2σ2

+
1

2(σ2)2

n∑

i=1

(log(yi) − µ)2 set
= 0,

or
∑n

i=1(log(yi) − µ)2 = nσ2 or

σ̂2 =

∑n
i=1(log(yi) − µ)2

n
.

Since this solution is unique and

d2

d(σ2)2
log(L(σ2)) =

n

2(σ2)2
−
∑n

i=1(log(yi) − µ)2

(σ2)3

∣
∣
∣
∣
σ2=σ̂2

=
n

2(σ̂2)2
− nσ̂2

(σ̂2)3

2

2
=

−n
2(σ̂2)2

< 0,

σ̂2 =

∑n
i=1(log(Yi) − µ)2

n

is the UMVUE and MLE of σ2 if µ is known.
Since Tn =

∑n
i=1[log(Yi)−µ]2 ∼ G(n/2, 2σ2), if µ is known and r > −n/2

then T rn is UMVUE of

E(T rn) = 2rσ2rΓ(r + n/2)

Γ(n/2)
.

If σ2 is known,

f(y) =
1√
2π

1

σ

1

y
I(y ≥ 0) exp(

−1

2σ2
(log(y))2) exp(

−µ2

2σ2
) exp

[ µ

σ2
log(y)

]
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is a 1P–REF.
If Y1, ..., Yn are iid LN(µ, σ2), where σ2 is known, then the likelihood

L(µ) = c exp(
−nµ2

2σ2
) exp

[

µ

σ2

n∑

i=1

log(yi)

]

,

and the log likelihood

log(L(µ)) = d− nµ2

2σ2
+

µ

σ2

n∑

i=1

log(yi).

Hence
d

dµ
log(L(µ)) =

−2nµ

2σ2
+

∑n
i=1 log(yi)

σ2

set
= 0,

or
∑n

i=1 log(yi) = nµ or

µ̂ =

∑n
i=1 log(yi)

n
.

This solution is unique and

d2

dµ2
log(L(µ)) =

−n
σ2

< 0.

Since Tn =
∑n

i=1 log(Yi) ∼ N(nµ, nσ2),

µ̂ =

∑n
i=1 log(Yi)

n

is the UMVUE and MLE of µ if σ2 is known.
When neither µ nor σ are known, the log likelihood

log(L(σ2)) = d − n

2
log(σ2) − 1

2σ2

n∑

i=1

(log(yi) − µ)2.

Let wi = log(yi) then the log likelihood is

log(L(σ2)) = d − n

2
log(σ2) − 1

2σ2

n∑

i=1

(wi − µ)2,
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which has the same form as the normal N(µ, σ2) log likelihood. Hence the
MLE

(µ̂, σ̂) =




1

n

n∑

i=1

Wi,

√
√
√
√

1

n

n∑

i=1

(Wi −W )2



 .

Hence inference for µ and σ is simple. Use the fact that Wi = log(Yi) ∼
N(µ, σ2) and then perform the corresponding normal based inference on the
Wi. For example, a the classical (1−α)100% CI for µ when σ is unknown is

(W n − tn−1,1−α
2

SW√
n
,W n + tn−1,1−α

2

SW√
n

)

where

SW =
n

n − 1
σ̂ =

√
√
√
√

1

n − 1

n∑

i=1

(Wi −W )2,

and P (t ≤ tn−1,1−α
2
) = 1 − α/2 when t is from a t distribution with n − 1

degrees of freedom. Compare Meeker and Escobar (1998, p. 175).

10.30 The Maxwell-Boltzmann Distribution

If Y has a Maxwell–Boltzmann distribution, Y ∼MB(µ, σ), then the pdf of
Y is

f(y) =

√
2(y − µ)2e

−1
2σ2 (y−µ)2

σ3
√
π

where µ is real, y ≥ µ and σ > 0. This is a location–scale family.

E(Y ) = µ+ σ
√

2
1

Γ(3/2)
= µ+ σ

2
√

2√
π
.

VAR(Y ) = 2σ2

[

Γ(5
2
)

Γ(3/2)
−
(

1

Γ(3/2)

)2
]

= σ2

(

3 − 8

π

)

.

MED(Y ) = µ+ 1.5381722σ and MAD(Y ) = 0.460244σ.
This distribution a one parameter exponential family when µ is known.
Note that W = (Y − µ)2 ∼ G(3/2, 2σ2).
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If Z ∼MB(0, σ), then Z ∼ chi(p = 3, σ), and

E(Zr) = 2r/2σr
Γ( r+3

2
)

Γ(3/2)

for r > −3.
The mode of Z is at σ

√
2.

10.31 The Negative Binomial Distribution

If Y has a negative binomial distribution (also called the Pascal distribution),
Y ∼ NB(r, ρ), then the pmf of Y is

f(y) = P (Y = y) =

(
r + y − 1

y

)

ρr(1 − ρ)y

for y = 0, 1, . . . where 0 < ρ < 1.
The moment generating function

m(t) =

[
ρ

1 − (1 − ρ)et

]r

for t < − log(1 − ρ).
E(Y ) = r(1 − ρ)/ρ, and

VAR(Y ) =
r(1 − ρ)

ρ2
.

Notice that

f(y) = ρr
(
r + y − 1

y

)

exp[log(1 − ρ)y]

is a 1P–REF in ρ for known r. Thus Θ = (0, 1), η = log(1 − ρ) and
Ω = (−∞, 0).

If Y1, ..., Yn are independent NB(ri, ρ), then

n∑

i=1

Yi ∼ NB(
n∑

i=1

ri, ρ).
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If Y1, ..., Yn are iid NB(r, ρ), then

Tn =
n∑

i=1

Yi ∼ NB(nr, ρ).

If r is known, then the likelihood

L(p) = c ρnr exp[log(1 − ρ)
n∑

i=1

yi],

and the log likelihood

log(L(ρ)) = d+ nr log(ρ) + log(1 − ρ)

n∑

i=1

yi.

Hence
d

dρ
log(L(ρ)) =

nr

ρ
− 1

1 − ρ

n∑

i=1

yi
set
= 0,

or
1 − ρ

ρ
nr =

n∑

i=1

yi,

or nr − ρnr − ρ
∑n

i=1 yi = 0 or

ρ̂ =
nr

nr +
∑n

i=1 yi
.

This solution is unique and

d2

dρ2
log(L(ρ)) =

−nr
ρ2

− 1

(1 − ρ)2

n∑

i=1

yi < 0.

Thus
ρ̂ =

nr

nr +
∑n

i=1 Yi

is the MLE of ρ if r is known.
Notice that Y is the UMVUE, MLE and MME of r(1−ρ)/ρ if r is known.
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10.32 The Normal Distribution

If Y has a normal distribution (or Gaussian distribution), Y ∼ N(µ, σ2),
then the pdf of Y is

f(y) =
1√

2πσ2
exp

(−(y − µ)2

2σ2

)

where σ > 0 and µ and y are real.
Let Φ(y) denote the standard normal cdf. Recall that Φ(y) = 1 − Φ(−y).
The cdf F (y) of Y does not have a closed form, but

F (y) = Φ

(
y − µ

σ

)

,

and
Φ(y) ≈ 0.5(1 +

√

1 − exp(−2y2/π) )

for y ≥ 0. See Johnson and Kotz (1970a, p. 57).
The moment generating function is

m(t) = exp(tµ+ t2σ2/2).

The characteristic function is c(t) = exp(itµ− t2σ2/2).
E(Y ) = µ and
VAR(Y ) = σ2.

E[|Y − µ|r] = σr
2r/2Γ((r + 1)/2)√

π
for r > −1.

If k ≥ 2 is an integer, then E(Y k) = (k − 1)σ2E(Y k−2) + µE(Y k−1). See
Stein (1981) and Casella and Berger (2002, p. 125).
MED(Y ) = µ and

MAD(Y ) = Φ−1(0.75)σ ≈ 0.6745σ.

Hence σ = [Φ−1(0.75)]−1MAD(Y ) ≈ 1.483MAD(Y ).
This family is a location–scale family which is symmetric about µ.

Suggested estimators are

Y n = µ̂ =
1

n

n∑

i=1

Yi and S2 = S2
Y =

1

n− 1

n∑

i=1

(Yi − Y n)
2.
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The classical (1 − α)100% CI for µ when σ is unknown is

(Y n − tn−1,1−α
2

SY√
n
, Y n + tn−1,1−α

2

SY√
n

)

where P (t ≤ tn−1,1−α
2
) = 1 − α/2 when t is from a t distribution with n− 1

degrees of freedom.
If α = Φ(zα), then

zα ≈ m− co + c1m+ c2m
2

1 + d1m+ d2m2 + d3m3

where
m = [−2 log(1 − α)]1/2,

c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 = 1.432788, d2 = 0.189269,
d3 = 0.001308, and 0.5 ≤ α. For 0 < α < 0.5,

zα = −z1−α.

See Kennedy and Gentle (1980, p. 95).
To see that MAD(Y ) = Φ−1(0.75)σ, note that 3/4 = F (µ+ MAD) since

Y is symmetric about µ. However,

F (y) = Φ

(
y − µ

σ

)

and
3

4
= Φ

(
µ+ Φ−1(3/4)σ − µ

σ

)

.

So µ+ MAD = µ + Φ−1(3/4)σ. Cancel µ from both sides to get the result.
Notice that

f(y) =
1√

2πσ2
exp(

−µ2

2σ2
) exp

[−1

2σ2
y2 +

µ

σ2
y

]

is a 2P–REF. Hence Θ = (0,∞)× (−∞,∞), η1 = −1/(2σ2), η2 = µ/σ2 and
Ω = (−∞, 0) × (−∞,∞).

If σ2 is known,

f(y) =
1√

2πσ2
exp

[−1

2σ2
y2

]

exp(
−µ2

2σ2
) exp

[ µ

σ2
y
]
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is a 1P–REF. Also the likelihood

L(µ) = c exp(
−nµ2

2σ2
) exp

[

µ

σ2

n∑

i=1

yi

]

and the log likelihood

log(L(µ)) = d− nµ2

2σ2
+

µ

σ2

n∑

i=1

yi.

Hence
d

dµ
log(L(µ)) =

−2nµ

2σ2
+

∑n
i=1 yi
σ2

set
= 0,

or nµ =
∑n

i=1 yi, or
µ̂ = y.

This solution is unique and

d2

dµ2
log(L(µ)) =

−n
σ2

< 0.

Since Tn =
∑n

i=1 Yi ∼ N(nµ, nσ2), Y is the UMVUE, MLE and MME of µ
if σ2 is known.

If µ is known,

f(y) =
1√

2πσ2
exp

[−1

2σ2
(y − µ)2

]

is a 1P–REF. Also the likelihood

L(σ2) = c
1

σn
exp

[

−1

2σ2

n∑

i=1

(yi − µ)2

]

and the log likelihood

log(L(σ2)) = d− n

2
log(σ2) − 1

2σ2

n∑

i=1

(yi − µ)2.

Hence
d

dσ2
log(L(σ2)) =

−n
2σ2

+
1

2(σ2)2

n∑

i=1

(yi − µ)2 set
= 0,



CHAPTER 10. SOME USEFUL DISTRIBUTIONS 319

or nσ2 =
∑n

i=1(yi − µ)2, or

σ̂2 =

∑n
i=1(yi − µ)2

n
.

This solution is unique and

d2

d(σ2)2
log(L(σ2)) =

n

2(σ2)2
−
∑n

i=1(yi − µ)2

(σ2)3

∣
∣
∣
∣
σ2=σ̂2

=
n

2(σ̂2)2
− nσ̂2

(σ̂2)3

2

2

=
−n

2(σ̂2)2
< 0.

Since Tn =
∑n

i=1(Yi − µ)2 ∼ G(n/2, 2σ2),

σ̂2 =

∑n
i=1(Yi − µ)2

n

is the UMVUE and MLE of σ2 if µ is known.
Note that if µ is known and r > −n/2, then T rn is the UMVUE of

E(T rn) = 2rσ2rΓ(r + n/2)

Γ(n/2)
.

10.33 The One Sided Stable Distribution

If Y has a one sided stable distribution (with index 1/2, also called a Lévy
distribution), Y ∼ OSS(σ), then the pdf of Y is

f(y) =
1

√

2πy3

√
σ exp

(−σ
2

1

y

)

for y > 0 and σ > 0. This distribution is a scale family with scale param-
eter σ and a 1P–REF. When σ = 1, Y ∼ INVG(ν = 1/2, λ = 2) where
INVG stands for inverted gamma. This family is a special case of the inverse
Gaussian IG distribution. It can be shown that W = 1/Y ∼ G(1/2, 2/σ).
This distribution is even more outlier prone than the Cauchy distribution.
See Feller (1971, p. 52) and Lehmann (1999, p. 76). For applications see
Besbeas and Morgan (2004).
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If Y1, ..., Yn are iid OSS(σ) then Tn =
∑n

i=1
1
Yi

∼ G(n/2, 2/σ). The likeli-
hood

L(σ) =
n∏

i=1

f(yi) =

(
n∏

i=1

1
√

2πy3
i

)

σn/2 exp

(

−σ
2

n∑

i=1

1

yi

)

,

and the log likelihood

log(L(σ)) = log

(
n∏

i=1

1
√

2πy3
i

)

+
n

2
log(σ)− σ

2

n∑

i=1

1

yi
.

Hence
d

dσ
log(L(σ)) =

n

2

1

σ
− 1

2

n∑

i=1

1

yi

set
= 0,

or
n

2
= σ

1

2

n∑

i=1

1

yi
,

or
σ̂ =

n
∑n

i=1
1
yi

.

This solution is unique and

d2

dσ2
log(L(σ)) = −n

2

1

σ2
< 0.

Hence the MLE
σ̂ =

n
∑n

i=1
1
Yi

.

Notice that Tn/n is the UMVUE and MLE of 1/σ and T rn is the UMVUE
of

1

σr
2rΓ(r + n/2)

Γ(n/2)

for r > −n/2.
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10.34 The Pareto Distribution

If Y has a Pareto distribution, Y ∼ PAR(σ, λ), then the pdf of Y is

f(y) =
1
λ
σ1/λ

y1+1/λ

where y ≥ σ, σ > 0, and λ > 0. The mode is at Y = σ.
The cdf of Y is F (y) = 1 − (σ/y)1/λ for y > σ.
This family is a scale family with scale parameter σ when λ is fixed.

E(Y ) =
σ

1 − λ

for λ < 1.

E(Y r) =
σr

1 − rλ
for r < 1/λ.

MED(Y ) = σ2λ.
X = log(Y/σ) is EXP(λ) and W = log(Y ) is EXP(θ = log(σ), λ).

Notice that

f(y) =
1

σλ

1

y
I [y ≥ σ] exp

[−1

λ
log(y/σ)

]

is a one parameter exponential family if σ is known.
If Y1, ..., Yn are iid PAR(σ, λ) then

Tn =

n∑

i=1

log(Yi/σ) ∼ G(n, λ).

If σ is known, then the likelihood

L(λ) = c
1

λn
exp

[

−(1 +
1

λ
)

n∑

i=1

log(yi/σ)

]

,

and the log likelihood

log(L(λ)) = d− n log(λ) − (1 +
1

λ
)

n∑

i=1

log(yi/σ).
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Hence
d

dλ
log(L(λ)) =

−n
λ

+
1

λ2

n∑

i=1

log(yi/σ)
set
= 0,

or
∑n

i=1 log(yi/σ) = nλ or

λ̂ =

∑n
i=1 log(yi/σ)

n
.

This solution is unique and

d2

dλ2
log(L(λ)) =

n

λ2
− 2

∑n
i=1 log(yi/σ)

λ3

∣
∣
∣
∣
λ=λ̂

=

n

λ̂2
− 2nλ̂

λ̂3
=

−n
λ̂2

< 0.

Hence

λ̂ =

∑n
i=1 log(Yi/σ)

n

is the UMVUE and MLE of λ if σ is known.
If σ is known and r > −n, then T rn is the UMVUE of

E(T rn) = λr
Γ(r + n)

Γ(n)
.

If neither σ nor λ are known, notice that

f(y) =
1

y

1

λ
exp

[

−
(

log(y) − log(σ)

λ

)]

I(y ≥ σ).

Hence the likelihood

L(λ, σ) = c
1

λn
exp

[

−
n∑

i=1

(
log(yi) − log(σ)

λ

)]

I(y(1) ≥ σ),

and the log likelihood is

logL(λ, σ) =

[

d − n log(λ) −
n∑

i=1

(
log(yi) − log(σ)

λ

)]

I(y(1) ≥ σ).
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Let wi = log(yi) and θ = log(σ), so σ = eθ. Then the log likelihood is

logL(λ, θ) =

[

d− n log(λ) −
n∑

i=1

(
wi − θ

λ

)]

I(w(1) ≥ θ),

which has the same form as the log likelihood of the EXP(θ, λ) distribution.
Hence (λ̂, θ̂) = (W −W(1),W(1)), and by invariance, the MLE

(λ̂, σ̂) = (W −W(1), Y(1)).

Let Dn =
∑n

i=1(Wi − W1:n) = nλ̂ where W(1) = W1:n. For n > 1, a
100(1 − α)% CI for θ is

(W1:n − λ̂[(α)−1/(n−1) − 1],W1:n). (10.11)

Exponentiate the endpoints for a 100(1 − α)% CI for σ. A 100(1 − α)% CI
for λ is (

2Dn

χ2
2(n−1),1−α/2

,
2Dn

χ2
2(n−1),α/2

)

. (10.12)

This distribution is used to model economic data such as national yearly
income data, size of loans made by a bank, et cetera.

10.35 The Poisson Distribution

If Y has a Poisson distribution, Y ∼ POIS(θ), then the pmf of Y is

f(y) = P (Y = y) =
e−θθy

y!

for y = 0, 1, . . . , where θ > 0.
The mgf of Y is

m(t) = exp(θ(et − 1)),

and the characteristic function of Y is c(t) = exp(θ(eit − 1)).
E(Y ) = θ, and
VAR(Y ) = θ.
Chen and Rubin (1986) and Adell and Jodrá (2005) show that
−1 < MED(Y ) − E(Y ) < 1/3.
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Pourahmadi (1995) showed that the moments of a Poisson (θ) random
variable can be found recursively. If k ≥ 1 is an integer and

(
0
0

)
= 1, then

E(Y k) = θ
k−1∑

i=0

(
k − 1

i

)

E(Y i).

The classical estimator of θ is θ̂ = Y n.
The approximations Y ≈ N(θ, θ) and 2

√
Y ≈ N(2

√
θ, 1) are sometimes used.

Notice that

f(y) = e−θ
1

y!
exp[log(θ)y]

is a 1P–REF. Thus Θ = (0,∞), η = log(θ) and Ω = (−∞,∞).
If Y1, ..., Yn are independent POIS(θi) then

∑n
i=1 Yi ∼ POIS(

∑n
i=1 θi).

If Y1, ..., Yn are iid POIS(θ) then

Tn =
n∑

i=1

Yi ∼ POIS(nθ).

The likelihood

L(θ) = c e−nθ exp[log(θ)
n∑

i=1

yi],

and the log likelihood

log(L(θ)) = d− nθ + log(θ)
n∑

i=1

yi.

Hence
d

dθ
log(L(θ)) = −n+

1

θ

n∑

i=1

yi
set
= 0,

or
∑n

i=1 yi = nθ, or

θ̂ = y.

This solution is unique and

d2

dθ2
log(L(θ)) =

−∑n
i=1 yi
θ2

< 0
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unless
∑n

i=1 yi = 0.
Hence Y is the UMVUE and MLE of θ.
Let W =

∑n
i=1 Yi and suppose that W = w is observed. Let P (T <

χ2
d(α)) = α if T ∼ χ2

d. Then an “exact” 100 (1 − α)% CI for θ is
(
χ2

2w(α
2
)

2n
,
χ2

2w+2(1 − α
2
)

2n

)

for w 6= 0 and
(

0,
χ2

2(1 − α)

2n

)

for w = 0.

10.36 The Power Distribution

If Y has a power distribution, Y ∼ POW(λ), then the pdf of Y is

f(y) =
1

λ
y

1
λ
−1,

where λ > 0 and 0 < y ≤ 1.
The cdf of Y is F (y) = y1/λ for 0 < y ≤ 1.
MED(Y ) = (1/2)λ.
W = − log(Y ) is EXP(λ). Notice that Y ∼ beta(δ = 1/λ, ν = 1).

Notice that

f(y) =
1

λ
I(0,1](y) exp

[

(
1

λ
− 1) log(y)

]

=
1

λ

1

y
I(0,1](y) exp

[−1

λ
(− log(y))

]

is a 1P–REF. Thus Θ = (0,∞), η = −1/λ and Ω = (−∞, 0).
If Y1, ..., Yn are iid POW (λ), then

Tn = −
n∑

i=1

log(Yi) ∼ G(n, λ).

The likelihood

L(λ) =
1

λn
exp

[

(
1

λ
− 1)

n∑

i=1

log(yi)

]

,



CHAPTER 10. SOME USEFUL DISTRIBUTIONS 326

and the log likelihood

log(L(λ)) = −n log(λ) + (
1

λ
− 1)

n∑

i=1

log(yi).

Hence
d

dλ
log(L(λ)) =

−n
λ

−
∑n

i=1 log(yi)

λ2

set
= 0,

or −∑n
i=1 log(yi) = nλ, or

λ̂ =
−∑n

i=1 log(yi)

n
.

This solution is unique and

d2

dλ2
log(L(λ)) =

n

λ2
− 2

∑n
i=1 log(yi)

λ3

∣
∣
∣
∣
λ=λ̂

=
n

λ̂2
+

2nλ̂

λ̂3
=

−n
λ̂2

< 0.

Hence

λ̂ =
−∑n

i=1 log(Yi)

n
is the UMVUE and MLE of λ.

If r > −n, then T rn is the UMVUE of

E(T rn) = λr
Γ(r + n)

Γ(n)
.

A 100(1 − α)% CI for λ is
(

2Tn
χ2

2n,1−α/2
,

2Tn
χ2

2n,α/2

)

. (10.13)

10.37 The Rayleigh Distribution

If Y has a Rayleigh distribution, Y ∼ R(µ, σ), then the pdf of Y is

f(y) =
y − µ

σ2
exp

[

−1

2

(
y − µ

σ

)2
]
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where σ > 0, µ is real, and y ≥ µ. See Cohen and Whitten (1988, Ch. 10).
This is an asymmetric location–scale family.
The cdf of Y is

F (y) = 1 − exp

[

−1

2

(
y − µ

σ

)2
]

for y ≥ µ, and F (y) = 0, otherwise.

E(Y ) = µ+ σ
√

π/2 ≈ µ+ 1.253314σ.

VAR(Y ) = σ2(4 − π)/2 ≈ 0.429204σ2.

MED(Y ) = µ+ σ
√

log(4) ≈ µ + 1.17741σ.
Hence µ ≈ MED(Y ) − 2.6255MAD(Y ) and σ ≈ 2.230MAD(Y ).
Let σD = MAD(Y ). If µ = 0, and σ = 1, then

0.5 = exp[−0.5(
√

log(4) −D)2] − exp[−0.5(
√

log(4) +D)2].

Hence D ≈ 0.448453 and MAD(Y ) ≈ 0.448453σ.
It can be shown that W = (Y − µ)2 ∼ EXP(2σ2).

Other parameterizations for the Rayleigh distribution are possible.
Note that

f(y) =
1

σ2
(y − µ)I(y ≥ µ) exp

[

− 1

2σ2
(y − µ)2

]

appears to be a 1P–REF if µ is known.
If Y1, ..., Yn are iid R(µ, σ), then

Tn =
n∑

i=1

(Yi − µ)2 ∼ G(n, 2σ2).

If µ is known, then the likelihood

L(σ2) = c
1

σ2n
exp

[

− 1

2σ2

n∑

i=1

(yi − µ)2

]

,

and the log likelihood

log(L(σ2)) = d− n log(σ2) − 1

2σ2

n∑

i=1

(yi − µ)2.
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Hence
d

d(σ2)
log(L(σ2)) =

−n
σ2

+
1

2σ2

n∑

i=1

(yi − µ)2 set
= 0,

or
∑n

i=1(yi − µ)2 = 2nσ2, or

σ̂2 =

∑n
i=1(yi − µ)2

2n
.

This solution is unique and

d2

d(σ2)2
log(L(σ2)) =

n

(σ2)2
−
∑n

i=1(yi − µ)2

(σ2)3

∣
∣
∣
∣
σ2=σ̂2

=

n

(σ̂2)2
− 2nσ̂2

(σ̂2)3
=

−n
(σ̂2)2

< 0.

Hence

σ̂2 =

∑n
i=1(Yi − µ)2

2n

is the UMVUE and MLE of σ2 if µ is known.
If µ is known and r > −n, then T rn is the UMVUE of

E(T rn) = 2rσ2rΓ(r + n)

Γ(n)
.

10.38 The Smallest Extreme Value Distribu-

tion

If Y has a smallest extreme value distribution (or log-Weibull distribution),
Y ∼ SEV (θ, σ), then the pdf of Y is

f(y) =
1

σ
exp(

y − θ

σ
) exp[− exp(

y − θ

σ
)]

where y and θ are real and σ > 0.
The cdf of Y is

F (y) = 1 − exp[− exp(
y − θ

σ
)].

This family is an asymmetric location-scale family with a longer left tail than
right.
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E(Y ) ≈ θ − 0.57721σ, and
VAR(Y ) = σ2π2/6 ≈ 1.64493σ2.

MED(Y ) = θ − σ log(log(2)).
MAD(Y ) ≈ 0.767049σ.
Y is a one parameter exponential family in θ if σ is known.
If Y has a SEV(θ, σ) distribution, then W = −Y has an LEV(−θ, σ)

distribution.

10.39 The Student’s t Distribution

If Y has a Student’s t distribution, Y ∼ tp, then the pdf of Y is

f(y) =
Γ(p+1

2
)

(pπ)1/2Γ(p/2)
(1 +

y2

p
)−( p+1

2
)

where p is a positive integer and y is real. This family is symmetric about
0. The t1 distribution is the Cauchy(0, 1) distribution. If Z is N(0, 1) and is
independent of W ∼ χ2

p, then
Z

(W
p

)1/2

is tp.
E(Y ) = 0 for p ≥ 2.
MED(Y ) = 0.
VAR(Y ) = p/(p − 2) for p ≥ 3, and
MAD(Y ) = tp,0.75 where P (tp ≤ tp,0.75) = 0.75.

If α = P (tp ≤ tp,α), then Cooke, Craven, and Clarke (1982, p. 84) suggest
the approximation

tp,α ≈
√

p[exp(
w2
α

p
) − 1)]

where

wα =
zα(8p + 3)

8p+ 1
,

zα is the standard normal cutoff: α = Φ(zα), and 0.5 ≤ α. If 0 < α < 0.5,
then

tp,α = −tp,1−α.
This approximation seems to get better as the degrees of freedom increase.
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10.40 The Topp-Leone Distribution

If Y has a Topp–Leone distribution, Y ∼ TL(ν), then pdf of Y is

f(y) = ν(2 − 2y)(2y − y2)ν−1

for ν > 0 and 0 < y < 1. The cdf of Y is F (y) = (2y − y2)ν for 0 < y < 1.
This distribution is a 1P–REF since

f(y) = ν(2 − 2y)I(0,1)(y) exp[(1 − ν)(− log(2y − y2))].

MED(Y ) = 1 −
√

1 − (1/2)1/ν , and Example 2.17 showed that
W = − log(2Y − Y 2) ∼ EXP (1/ν).

The likelihood

L(ν) = c νn
n∏

i=1

(2yi − y2
i )
ν−1,

and the log likelihood

log(L(ν)) = d + n log(ν) + (ν − 1)
n∑

i=1

log(2yi − y2
i ).

Hence
d

dν
log(L(ν)) =

n

ν
+

n∑

i=1

log(2yi − y2
i )

set
= 0,

or n+ ν
∑n

i=1 log(2yi − y2
i ) = 0, or

ν̂ =
−n

∑n
i=1 log(2yi − y2

i )
.

This solution is unique and

d2

dν2
log(L(ν)) =

−n
ν2

< 0.

Hence

ν̂ =
−n

∑n
i=1 log(2Yi − Y 2

i )
=

n

−
∑n

i=1 log(2Yi − Y 2
i )

is the MLE of ν.
If Tn = −∑n

i=1 log(2Yi − Y 2
i ) ∼ G(n, 1/ν), then T rn is the UMVUE of

E(T rn) =
1

νr
Γ(r + n)

Γ(n)

for r > −n. In particular, ν̂ = n
Tn

is the MLE and UMVUE of ν for n > 1.
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10.41 The Truncated Extreme Value Distri-

bution

If Y has a truncated extreme value distribution, Y ∼ TEV(λ), then the pdf
of Y is

f(y) =
1

λ
exp

(

y − ey − 1

λ

)

where y > 0 and λ > 0.
The cdf of Y is

F (y) = 1 − exp

[−(ey − 1)

λ

]

for y > 0.
MED(Y ) = log(1 + λ log(2)).
W = eY − 1 is EXP(λ).

Notice that

f(y) =
1

λ
eyI(y ≥ 0) exp

[−1

λ
(ey − 1)

]

is a 1P–REF. Hence Θ = (0,∞), η = −1/λ and Ω = (−∞, 0).
If Y1, ..., Yn are iid TEV(λ), then

Tn =

n∑

i=1

(eYi − 1) ∼ G(n, λ).

The likelihood

L(λ) = c
1

λn
exp

[

−1

λ

n∑

i=1

log(eyi − 1)

]

,

and the log likelihood

log(L(λ)) = d − n log(λ) − 1

λ

n∑

i=1

log(eyi − 1).

Hence
d

dλ
log(L(λ)) =

−n
λ

+

∑n
i=1 log(eyi − 1)

λ2

set
= 0,
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or
∑n

i=1 log(eyi − 1) = nλ, or

λ̂ =
−∑n

i=1 log(eyi − 1)

n
.

This solution is unique and

d2

dλ2
log(L(λ)) =

n

λ2
− 2

∑n
i=1 log(eyi − 1)

λ3

∣
∣
∣
∣
λ=λ̂

=
n

λ̂2
− 2nλ̂

λ̂3
=

−n
λ̂2

< 0.

Hence

λ̂ =
−
∑n

i=1 log(eYi − 1)

n

is the UMVUE and MLE of λ.
If r > −n, then T rn is the UMVUE of

E(T rn) = λr
Γ(r + n)

Γ(n)
.

A 100(1 − α)% CI for λ is

(

2Tn
χ2

2n,1−α/2
,

2Tn
χ2

2n,α/2

)

. (10.14)

10.42 The Uniform Distribution

If Y has a uniform distribution, Y ∼ U(θ1, θ2), then the pdf of Y is

f(y) =
1

θ2 − θ1
I(θ1 ≤ y ≤ θ2).

The cdf of Y is F (y) = (y − θ1)/(θ2 − θ1) for θ1 ≤ y ≤ θ2.
This family is a location-scale family which is symmetric about (θ1 + θ2)/2.
By definition, m(0) = c(0) = 1. For t 6= 0, the mgf of Y is

m(t) =
etθ2 − etθ1

(θ2 − θ1)t
,
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and the characteristic function of Y is

c(t) =
eitθ2 − eitθ1

(θ2 − θ1)it
.

E(Y ) = (θ1 + θ2)/2, and
MED(Y ) = (θ1 + θ2)/2.
VAR(Y ) = (θ2 − θ1)

2/12, and
MAD(Y ) = (θ2 − θ1)/4.
Note that θ1 = MED(Y ) − 2MAD(Y ) and θ2 = MED(Y ) + 2MAD(Y ).
Some classical estimators are θ̂1 = Y(1) and θ̂2 = Y(n).

10.43 The Weibull Distribution

If Y has a Weibull distribution, Y ∼W (φ, λ), then the pdf of Y is

f(y) =
φ

λ
yφ−1e−

yφ

λ

where λ, y, and φ are all positive. For fixed φ, this is a scale family in
σ = λ1/φ.
The cdf of Y is F (y) = 1 − exp(−yφ/λ) for y > 0.
E(Y ) = λ1/φ Γ(1 + 1/φ).
VAR(Y ) = λ2/φΓ(1 + 2/φ) − (E(Y ))2.

E(Y r) = λr/φ Γ(1 +
r

φ
) for r > −φ.

MED(Y ) = (λ log(2))1/φ.
Note that

λ =
(MED(Y ))φ

log(2)
.

W = Y φ is EXP(λ).
W = log(Y ) has a smallest extreme value SEV(θ = log(λ1/φ), σ = 1/φ)

distribution.
Notice that

f(y) =
φ

λ
yφ−1I(y ≥ 0) exp

[−1

λ
yφ
]

is a one parameter exponential family in λ if φ is known.



CHAPTER 10. SOME USEFUL DISTRIBUTIONS 334

If Y1, ..., Yn are iid W (φ, λ), then

Tn =
n∑

i=1

Y φ
i ∼ G(n, λ).

If φ is known, then the likelihood

L(λ) = c
1

λn
exp

[

−1

λ

n∑

i=1

yφi

]

,

and the log likelihood

log(L(λ)) = d− n log(λ) − 1

λ

n∑

i=1

yφi .

Hence
d

dλ
log(L(λ)) =

−n
λ

+

∑n
i=1 y

φ
i

λ2

set
= 0,

or
∑n

i=1 y
φ
i = nλ, or

λ̂ =

∑n
i=1 y

φ
i

n
.

This solution was unique and

d2

dλ2
log(L(λ)) =

n

λ2
− 2

∑n
i=1 y

φ
i

λ3

∣
∣
∣
∣
∣
λ=λ̂

=
n

λ̂2
− 2nλ̂

λ̂3
=

−n
λ̂2

< 0.

Hence

λ̂ =

∑n
i=1 Y

φ
i

n

is the UMVUE and MLE of λ.
If r > −n, then T rn is the UMVUE of

E(T rn) = λr
Γ(r + n)

Γ(n)
.

MLEs and CIs for φ and λ are discussed in Example 9.18.
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10.44 The Zeta Distribution

If Y has a Zeta distribution, Y ∼ Zeta(ν), then the pmf of Y is

f(y) = P (Y = y) =
1

yνζ(ν)

where ν > 1 and y = 1, 2, 3, .... Here the zeta function

ζ(ν) =
∞∑

y=1

1

yν

for ν > 1. This distribution is a one parameter exponential family.

E(Y ) =
ζ(ν − 1)

ζ(ν)

for ν > 2, and

VAR(Y ) =
ζ(ν − 2)

ζ(ν)
−
[
ζ(ν − 1)

ζ(ν)

]2

for ν > 3.

E(Y r) =
ζ(ν − r)

ζ(ν)

for ν > r + 1.
This distribution is sometimes used for count data, especially by linguis-

tics for word frequency. See Lindsey (2004, p. 154).

10.45 Complements

Many of the distribution results used in this chapter came from Johnson and
Kotz (1970a,b) and Patel, Kapadia and Owen (1976). Bickel and Doksum
(2007), Castillo (1988), Cohen and Whitten (1988), Cramér (1946), DeG-
root and Schervish (2001), Ferguson (1967), Hastings and Peacock (1975),
Kennedy and Gentle (1980), Kotz and van Dorp (2004), Leemis (1986),
Lehmann (1983) and Meeker and Escobar (1998) also have useful results
on distributions. Also see articles in Kotz and Johnson (1982ab, 1983ab,
1985ab, 1986, 1988ab). Often an entire book is devoted to a single distribu-
tion, see for example, Bowman and Shenton (1988).

Abuhassan and Olive (2007) discuss confidence intervals for the two pa-
rameter exponential, half normal and Pareto distributions.



Chapter 11

Stuff for Students

To be blunt, many of us are lousy teachers, and our efforts to improve are
feeble. So students frequently view statistics as the worst course taken in

college.
Hogg (1991)

11.1 R/Splus Statistical Software

R/Splus are statistical software packages, and R is the free version of Splus..
A very useful R link is (www.r-project.org/#doc).

As of January 2008, the author’s personal computer has Version 2.4.1
(December 18, 2006) of R and Splus–2000 (see Mathsoft 1999ab).

Downloading the book’s R/Splus functions sipack.txt into R or
Splus:

Many of the homework problems use R/Splus functions contained in
the book’s website (www.math.siu.edu/olive/sipack.txt) under the file name
sipack.txt. Suppose that you download sipack.txt onto a disk. Enter R and
wait for the curser to appear. Then go to the File menu and drag down
Source R Code. A window should appear. Navigate the Look in box until it
says 3 1/2 Floppy(A:). In the Files of type box choose All files(*.*) and then
select sipack.txt. The following line should appear in the main R window.

> source("A:/sipack.txt")

Type ls(). About 9 R/Splus functions from sipack.txt should appear.

336
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Alternatively, from the website (www.math.siu.edu/olive/sipack.txt), go
to the Edit menu and choose Select All, then go to the Edit menu and choose
Copy. Next enter R, go to the Edit menu and choose Paste. These commands
also enter the sipack functions into R.

When you finish your R/Splus session, enter the command q(). A window
asking “Save workspace image?” will appear. Click on No if you do not want
to save the programs in R. (If you do want to save the programs then click
on Yes.)

If you use Splus, the command

> source("A:/sipack.txt")

will enter the functions into Splus. Creating a special workspace for the
functions may be useful.

This section gives tips on using R/Splus, but is no replacement for books
such as Becker, Chambers, and Wilks (1988), Chambers (1998), Dalgaard
(2002) or Venables and Ripley (2003). Also see Mathsoft (1999ab) and use
the website (http://www.google.com) to search for useful websites. For ex-
ample enter the search words R documentation.

The command q() gets you out of R or Splus.
The commands help(fn) and args(fn) give information about the function

fn, eg if fn = rnorm.
Making functions in R and Splus is easy.

For example, type the following commands.

mysquare <- function(x){

# this function squares x

r <- x^2

r }

The second line in the function shows how to put comments into functions.

Modifying your function is easy.

Use the fix command.
fix(mysquare)

This will open an editor such as Notepad and allow you to make changes.
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In Splus, the command Edit(mysquare) may also be used to modify the
function mysquare.

To save data or a function in R, when you exit, click on Yes when the
“Save worksheet image?” window appears. When you reenter R, type ls().
This will show you what is saved. You should rarely need to save anything
for the material in the first thirteen chapters of this book. In Splus, data
and functions are automatically saved. To remove unwanted items from the
worksheet, eg x, type rm(x),
pairs(x) makes a scatterplot matrix of the columns of x,
hist(y) makes a histogram of y,
boxplot(y) makes a boxplot of y,
stem(y) makes a stem and leaf plot of y,
scan(), source(), and sink() are useful on a Unix workstation.
To type a simple list, use y <− c(1,2,3.5).
The commands mean(y), median(y), var(y) are self explanatory.

The following commands are useful for a scatterplot created by the com-
mand plot(x,y).
lines(x,y), lines(lowess(x,y,f=.2))
identify(x,y)
abline(out$coef), abline(0,1)

The usual arithmetic operators are 2 + 4, 3 − 7, 8 ∗ 4, 8/4, and

2^{10}.

The ith element of vector y is y[i] while the ij element of matrix x is
x[i, j]. The second row of x is x[2, ] while the 4th column of x is x[, 4]. The
transpose of x is t(x).

The command apply(x,1,fn) will compute the row means if fn = mean.
The command apply(x,2,fn) will compute the column variances if fn = var.
The commands cbind and rbind combine column vectors or row vectors with
an existing matrix or vector of the appropriate dimension.
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11.2 Hints and Solutions to Selected Prob-

lems

1.10. d) See Problem 1.19 with Y = W and r = 1.

f) Use the fact that E(Y r) = E[(Y φ)r/φ] = E(W r/φ) whereW ∼ EXP (λ).
Take r = 1.

1.11. d) Find E(Y r) for r = 1, 2 using Problem 1.19 with Y = W.

f) For r = 1, 2, find E(Y r) using the the fact that E(Y r) = E[(Y φ)r/φ] =
E(W r/φ) where W ∼ EXP (λ).

1.12. a) 200

b) 0.9(10) + 0.1(200) = 29

1.13. a) 400(1) = 400

b) 0.9E(Z) + 0.1E(W ) = 0.9(10) + 0.1(400) = 49

1.15. a) 1 A
A+B

+ 0 B
A+B

= A
A+B

.

b) nA
A+B

.

1.16. a) g(xo)P (X = xo) = g(xo)

b) E(etX) = etxo by a).

c) m′(t) = xoe
txo, m”(t) = x2

oe
txo, m(n)(t) = xnoe

txo.

1.17. m(t) = E(etX) = etP (X = 1) + e−tP (X = −1) = 0.5(et + e−t).

1.18. a)
∑n

x=0 xe
txf(x)

b)
∑n

x=0 xf(x) = E(X)

c)
∑n

x=0 x
2etxf(x)

d)
∑n

x=0 x
2f(x) = E(X2)

e)
∑n

x=0 x
ketxf(x)

1.19. E(W r) = E(erX) = mX(r) = exp(rµ+ r2σ2/2) where mX(t) is the
mgf of a N(µ, σ2) random variable.

1.20. a) E(X2) = V (X) + (E(X))2 = σ2 + µ2.

b) E(X3) = 2σ2E(X) + µE(X2) = 2σ2µ+ µ(σ2 + µ2) = 3σ2µ+ µ3.
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1.22.
1√
2π

∫ ∞

−∞
exp(−1

2
y2)dy = 1. So

∫ ∞

−∞
exp(−1

2
y2)dy =

√
2π.

1.23.
∫∞
σ
f(x|σ, θ)dx = 1, so

∫ ∞

σ

1

xθ+1
dx =

1

θσθ
. (11.1)

So

EXr =

∫ ∞

σ

xrθσθ
1

xθ+1
dx = θσθ

∫ ∞

σ

1

xθ−r+1
dx =

θσθ

(θ − r)σθ−r

by Equation 11.1. So

EXr =
θσr

θ − r

for θ > r.

1.24.

EY r =

∫ 1

0

yr
Γ(δ + ν)

Γ(δ)Γ(ν)
yδ−1(1 − y)ν−1dy =

Γ(δ + ν)

Γ(δ)Γ(ν)

Γ(δ + r)Γ(ν)

Γ(δ + r + ν)

∫ 1

0

Γ(δ + r + ν)

Γ(δ + r)Γ(ν)
yδ+r−1(1 − y)ν−1dy =

Γ(δ + ν)Γ(δ + r)

Γ(δ)Γ(δ + r + ν)

for r > −δ since 1 =
∫ 1

0
beta(δ + r, ν) pdf.

1.25. E(etY ) =
∑∞

y=1 e
ty −1

log(1−θ)
1
y
exp[log(θ)y]. But ety exp[log(θ)y] =

exp[(log(θ) + t)y] = exp[(log(θ) + log(et))y] = exp[log(θet)y].
So E(etY ) = −1

log(1−θ) [− log(1 − θet)]
∑∞

y=1
−1

log(1−θet)
1
y
exp[log(θet)y] =

log(1−θet)
log(1−θ) since 1 =

∑
[logarithmic (θet) pmf] if 0 < θet < 1 or 0 < et < 1/θ

or −∞ < t < − log(θ).

1.28. a) EX = 0.9EZ+0.1EW = 0.9νλ+0.1(10) = 0.9(3)(4)+1 = 11.8.
b) EX2 = 0.9[V (Z) + (E(Z))2] + 0.1[V (W ) + (E(W ))2]

= 0.9[νλ2 + (νλ)2] + 0.1[10 + (10)2]
= 0.9[3(16) + 9(16)] + 0.1(110) = 0.9(192) + 11 = 183.8.

2.8. a) FW (w) = P (W ≤ w) = P (Y ≤ w − µ) = FY (w − µ). So
fW (w) = d

dw
FY (w − µ) = fY (w − µ).
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b) FW (w) = P (W ≤ w) = P (Y ≤ w/σ) = FY (w/σ). So fW (w) =
d
dw
FY (w/σ) = fY (w/σ) 1

σ
.

c) FW (w) = P (W ≤ w) = P (σY ≤ w − µ) = FY (w−µ
σ

). So fW (w) =
d
dw
FY (w−µ

σ
) = fY (w−µ

σ
) 1
σ
.

2.9. a) See Example 2.16.

2.11. W = Z2 ∼ χ2
1 where Z ∼ N(0, 1). So the pdf of W is

f(w) =
w

1
2
−1e−

w
2

2
1
2 Γ(1

2
)

=
1

√
w
√

2π
e−

w
2

for w > 0.

2.12. (Y − µ)/σ = |Z| ∼ HN(0, 1) where Z ∼ N(0, 1). So (Y − µ)2 =
σ2Z2 ∼ σ2χ2

1 ∼ G(0.5, 2σ2).

2.16. a) y = e−w = t−1(w), and
∣
∣
∣
∣

dt−1(w)

dw

∣
∣
∣
∣
= | − e−w| = e−w.

Now P (Y = 0) = 0 so 0 < Y ≤ 1 implies that W = − log(Y ) > 0. Hence

fW (w) = fY (t−1(w))

∣
∣
∣
∣

dt−1(w)

dw

∣
∣
∣
∣
=

1

λ
(e−w)

1
λ
−1e−w =

1

λ
e−w/λ

for w > 0 which is the EXP(λ) pdf.

2.18. a)

f(y) =
1

λ

φyφ−1

(1 + yφ)
1
λ
+1

where y, φ, and λ are all positive. Since Y > 0, W = log(1+Y φ) > log(1) > 0
and the support W = (0,∞). Now 1 + yφ = ew, so y = (ew − 1)1/φ = t−1(w).
Hence ∣

∣
∣
∣

dt−1(w)

dw

∣
∣
∣
∣
=

1

φ
(ew − 1)

1
φ
−1ew

since w > 0. Thus

fW (w) = fY (t−1(w))

∣
∣
∣
∣

dt−1(w)

dw

∣
∣
∣
∣
=

1

λ

φ(ew − 1)
φ−1

φ

(1 + (ew − 1)
φ
φ )

1
λ
+1

1

φ
(ew − 1)

1
φ
−1ew



CHAPTER 11. STUFF FOR STUDENTS 342

=
1

λ

(ew − 1)1− 1
φ (ew − 1)

1
φ
−1

(ew)
1
λ
+1

ew

1

λ
e−w/λ

for w > 0 which is the EXP(λ) pdf.

2.25. b)

f(y) =
1

πσ[1 + (y−µ
σ

)2]

where y and µ are real numbers and σ > 0. Now w = log(y) = t−1(w) and
W = eY > 0 so the support W = (0,∞). Thus

∣
∣
∣
∣

dt−1(w)

dw

∣
∣
∣
∣
=

1

y
,

and

fW (w) = fY (t−1(w))

∣
∣
∣
∣

dt−1(w)

dw

∣
∣
∣
∣
=

1

πσ

1

[1 + ( log(y)−µ
σ

)2]

1

y
=

1

πσy[1 + ( log(y)−µ
σ

)2]

for y > 0 which is the LC(µ, σ) pdf.

2.63. a) EX = E[E[X|Y ]] = E[βo + β1Y ] = β0 + 3β1.

b) V (X) = E[V (X|Y )] + V [E(X|Y )] = E(Y 2) + V (β0 + β1Y ) =
V (Y ) + [E(Y )]2 + β2

1V (Y ) = 10 + 9 + β2
110 = 19 + 10β2

1 .

2.64. a) X2 ∼ N(100, 6).

b)
(
X1

X3

)

∼ N2

( (
49
17

)

,

(
3 −1
−1 4

) )

.

c) X1 X4 and X3 X4.

d)

ρ(X1, X2) =
Cov(X1, X3)

√

VAR(X1)VAR(X3)
=

−1√
3
√

4
= −0.2887.
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2.65. a) Y |X ∼ N(49, 16) since Y X. (Or use E(Y |X) = µY +
Σ12Σ

−1
22 (X − µx) = 49 + 0(1/25)(X − 100) = 49 and VAR(Y |X) = Σ11 −

Σ12Σ
−1
22 Σ21 = 16 − 0(1/25)0 = 16.)

b) E(Y |X) = µY +Σ12Σ
−1
22 (X−µx) = 49+10(1/25)(X−100) = 9+0.4X.

c) VAR(Y |X) = Σ11 − Σ12Σ
−1
22 Σ21 = 16 − 10(1/25)10 = 16 − 4 = 12.

2.68. a) E(Y ) = E[E(Y |Λ)] = E(Λ) = 1.

b) V (Y ) = E[V (Y |Λ)] + V [E(Y |Λ)] = E(Λ) + V (Λ) = 1 + (1)2 = 2.

2.71.
y 0 1

fY1(y) = P (Y1 = y) 0.76 0.24

So m(t) =
∑

y e
tyf(y) =

∑

y e
tyP (Y = y) = et00.76 + et10.24

= 0.76 + 0.24et.

2.72. No, f(x, y) 6= fX(x)fY (y) = 1
2π

exp[−1
2

(x2 + y2)].

2.73. a) E(Y ) = E[E(Y |P )] = E(kP ) = kE(P ) = k δ
δ+ν

= k4/10 =
0.4k.

b) V (Y ) = E[V (Y |P )] + V (E(Y |P )] = E[kP (1 − P )] + V (kP ) =
kE(P ) − kE(P 2) + k2V (P ) =

k
δ

δ + ν
− n

[

δν

(δ + ν)2(δ + ν + 1)
+

(
δ

δ + ν

)2
]

+ k2 δν

(δ + ν)2(δ + ν + 1)

= k0.4 − k[0.021818 + 0.16] + k20.021818 = 0.021818k2 + 0.21818k.

2.74. a)
y2 0 1 2

fY2(y2) 0.55 0.16 0.29

b) f(y1|2) = f(y1, 2)/fY2(2) and f(0, 2)/fY2 (2) = .24/.29 while
f(1, 2)/fY2 (2) = .05/.29

y1 0 1
fY1|Y2

(y1|y2 = 2) 24/29 ≈ 0.8276 5/29 ≈ 0.1724

3.1. a) See Section 10.3.
b) See Section 10.10.
c) See Section 10.35.
d) See Example 3.5.
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3.2. a) See Section 10.1.
b) See Section 10.6.
c) See Section 10.13.
d) See Section 10.29.
e) See Section 10.32.

3.3. b) See Section 10.16.
c) See Section 10.25.
d) See Section 10.31.
f) See Section 10.36.
g) See Section 10.41.
h) See Section 10.44.

3.4. a) See Section 10.32.
b) See Section 10.32.
c) See Section 10.13.

3.5. a) See Section 10.4.
b) See Section 10.9.
c) See Section 10.11.
d) See Section 10.24.
h) See Section 10.34.
i) See Section 10.37.
j) See Section 10.43.

4.26.

f(x) =
Γ(2θ)

Γ(θ)Γ(θ)
xθ−1(1− x)θ−1 =

Γ(2θ)

Γ(θ)Γ(θ)
exp[(θ− 1)(log(x) + log(1− x))],

for 0 < x < 1, a 1 parameter exponential family. Hence
∑n

i=1(log(Xi) +
log(1 −Xi)) is a complete minimal sufficient statistic.

4.27. a) and b)

f(x) =
1

ζ(ν)
exp[−ν log(x)]I{1,2,...}(x)

is a 1 parameter regular exponential family. Hence
∑n

i=1 log(Xi) is a complete
minimal sufficient statistic.

c) By the Factorization Theorem, W = (X1, ..., Xn) is sufficient, but W

is not minimal since W is not a function of
∑n

i=1 log(Xi).
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5.2. The likelihood function L(θ) =

1

(2π)n
exp(

−1

2
[
∑

(xi − ρ cos θ)2 +
∑

(yi − ρ sin θ)2]) =

1

(2π)n
exp(

−1

2
[
∑

x2
i−2ρ cos θ

∑

xi+ρ
2 cos2 θ+

∑

y2
i−2ρ sin θ

∑

yi+ρ
2 sin2 θ])

=
1

(2π)n
exp(

−1

2
[
∑

x2
i +

∑

y2
i + ρ2]) exp(ρ cos θ

∑

xi + ρ sin θ
∑

yi).

Hence the log likelihood log L(θ)

= c+ ρ cos θ
∑

xi + ρ sin θ
∑

yi.

The derivative with respect to θ is

−ρ sin θ
∑

xi + ρ cos θ
∑

yi.

Setting this derivative to zero gives

ρ
∑

yi cos θ = ρ
∑

xi sin θ

or ∑
yi

∑
xi

= tan θ.

Thus

θ̂ = tan−1(

∑
yi

∑
xi

).

Now the boundary points are θ = 0 and θ = 2π. Hence θ̂MLE equals 0, 2π,
or θ̂ depending on which value maximizes the likelihood.

5.6. See Section 10.4.

5.7. See Section 10.6.

5.8. See Section 10.9.

5.9. See Section 10.10.

5.10. See Section 10.13.

5.11. See Section 10.16.
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5.12. See Section 10.22.

5.13. See Section 10.22.

5.14. See Section 10.24.

5.15. See Section 10.31.

5.16. See Section 10.37.

5.17. See Section 10.43.

5.18. See Section 10.3.

5.19. See Section 10.11.

5.20. See Section 10.41,

5.23. a) The log likelihood is logL(τ ) = −n
2
log(2πτ )− 1

2τ

∑n
i=1(Xi−µ)2.

The derivative of the log likelihood is equal to − n
2τ

+ 1
2τ2

∑n
i=1(Xi−µ)2. Setting

the derivative equal to 0 and solving for τ gives the MLE τ̂ =
Pn

i=1(Xi−µ)2

n
.

Now the likelihood is only defined for τ > 0. As τ goes to 0 or ∞, logL(τ )
tends to −∞. Since there is only one critical point, τ̂ is the MLE.

b) By the invariance principle, the MLE is
√

Pn
i=1(Xi−µ)2

n
.

5.28. This problem is nearly the same as finding the MLE of σ2 when
the data are iid N(µ, σ2) when µ is known. See Problem 5.23. The MLE
in a) is

∑n
i=1(Xi − µ)2/n. For b) use the invariance principle and take the

square root of the answer in a).

5.29. See Example 5.5.

5.30.

L(θ) =
1

θ
√

2π
e−(x−θ)2/2θ2

ln(L(θ)) = −ln(θ) − ln(
√

2π) − (x− θ)2/2θ2

dln(L(θ))

dθ
=

−1

θ
+
x− θ

θ2
+

(x− θ)2

θ3

=
x2

θ3
− x

θ2
− 1

θ
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by solving for θ,

θ =
x

2
∗ (−1 +

√
5),

and
θ =

x

2
∗ (−1 −

√
5).

But, θ > 0. Thus, θ̂ = x
2
∗ (−1 +

√
5), when x > 0, and θ̂ = x

2
∗ (−1 −

√
5),

when x < 0.
To check with the second derivative

d2ln(L(θ))

dθ2
= −2θ + x

θ3
+

3(θ2 + θx− x2)

θ4

=
θ2 + 2θx − 3x2

θ4

but the sign of the θ4 is always positive, thus the sign of the second derivative
depends on the sign of the numerator. Substitute θ̂ in the numerator and
simplify, you get x2

2
(−5 ±

√
5), which is always negative. Hence by the

invariance principle, the MLE of θ2 is θ̂2.

5.31. a) For any λ > 0, the likelihood function

L(σ, λ) = σn/λ I [x(1) ≥ σ]
1

λn
exp

[

−(1 +
1

λ
)

n∑

i=1

log(xi)

]

is maximized by making σ as large as possible. Hence σ̂ = X(1).

b)

L(σ̂, λ) = σ̂n/λ I [x(1) ≥ σ̂]
1

λn
exp

[

−(1 +
1

λ
)

n∑

i=1

log(xi)

]

.

Hence logL(σ̂, λ) =

n

λ
log(σ̂) − n log(λ) − (1 +

1

λ
)

n∑

i=1

log(xi).

Thus
d

dλ
logL(σ̂, λ) =

−n
λ2

log(σ̂) − n

λ
+

1

λ2

n∑

i=1

log(xi)
set
= 0,
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or −n log(σ̂) +
∑n

i=1 log(xi) = nλ. So

λ̂ = − log(σ̂) +

∑n
i=1 log(xi)

n
=

∑n
i=1 log(xi/σ̂)

n
.

Now

d2

dλ2
logL(σ̂, λ) =

2n

λ3
log(σ̂) +

n

λ2
− 2

λ3

n∑

i=1

log(xi)

∣
∣
∣
∣
∣
λ=λ̂

=
n

λ̂2
− 2

λ̂3

n∑

i=1

log(xi/σ̂) =
−n
λ̂2

< 0.

Hence (σ̂, λ̂) is the MLE of (σ, λ).

5.32. a) the likelihood

L(λ) = c
1

λn
exp

[

−(1 +
1

λ
)
∑

log(xi)

]

,

and the log likelihood

log(L(λ)) = d− n log(λ) − (1 +
1

λ
)
∑

log(xi).

Hence
d

dλ
log(L(λ)) =

−n
λ

+
1

λ2

∑

log(xi)
set
= 0,

or
∑

log(xi) = nλ or

λ̂ =

∑
log(Xi)

n
.

Notice that

d2

dλ2
log(L(λ)) =

n

λ2
− 2

∑
log(xi)

λ3

∣
∣
∣
∣
λ=λ̂

=

n

λ̂2
− 2nλ̂

λ̂3
=

−n
λ̂2

< 0.

Hence λ̂ is the MLE of λ.

b) By invariance, λ̂8 is the MLE of λ8.
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5.33. a) The likelihood

L(θ) = c e−n2θ exp[log(2θ)
∑

xi],

and the log likelihood

log(L(θ)) = d− n2θ + log(2θ)
∑

xi.

Hence
d

dθ
log(L(θ)) = −2n+

2

2θ

∑

xi
set
= 0,

or
∑
xi = 2nθ, or

θ̂ = X/2.

Notice that
d2

dθ2
log(L(θ)) =

−∑ xi
θ2

< 0

unless
∑
xi = 0.

b) (θ̂)4 = (X/2)4 by invariance.

5.34. L(0|x) = 1 for 0 < xi < 1, and L(1|x) =
∏n

i=1
1

2
√
xi

for 0 < xi < 1.

Thus the MLE is 0 if 1 ≥∏n
i=1

1
2
√
xi

and the MLE is 1 if 1 <
∏n

i=1
1

2
√
xi

.

5.35. a) Notice that θ > 0 and

f(y) =
1√
2π

1√
θ

exp

(−(y − θ)2

2θ

)

.

Hence the likelihood

L(θ) = c
1

θn/2
exp

[−1

2θ

∑

(yi − θ)2

]

and the log likelihood

log(L(θ)) = d − n

2
log(θ) − 1

2θ

∑

(yi − θ)2 =

d − n

2
log(θ) − 1

2

n∑

i=1

(
y2
i

θ
− 2yiθ

θ
+

θ2

θ

)
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= d − n

2
log(θ) − 1

2

∑n
i=1 y

2
i

θ
+

n∑

i=1

yi − 1

2
nθ.

Thus
d

dθ
log(L(θ)) =

−n
2

1

θ
+

1

2

n∑

i=1

y2
i

1

θ2
− n

2
set
= 0,

or
−n
2
θ2 − n

2
θ +

1

2

n∑

i=1

y2
i = 0,

or

nθ2 + nθ −
n∑

i=1

y2
i = 0. (11.2)

Now the quadratic formula states that for a 6= 0, the quadratic equation
ay2 + by + c = 0 has roots

−b±
√
b2 − 4ac

2a
.

Applying the quadratic formula to (11.2) gives

θ =
−n±

√

n2 + 4n
∑n

i=1 y
2
i

2n
.

Since θ > 0, a candidate for the MLE is

θ̂ =
−n+

√

n2 + 4n
∑n

i=1 Y
2
i

2n
=

−1 +
√

1 + 4 1
n

∑n
i=1 Y

2
i

2
.

Since θ̂ satisfies (11.2),

nθ̂ −
n∑

i=1

y2
i = −nθ̂2. (11.3)

Note that

d2

dθ2
log(L(θ)) =

n

2θ2
−
∑n

i=1 y
2
i

θ3
=

1

2θ3
[nθ − 2

n∑

i=1

y2
i ]

∣
∣
∣
∣
∣
θ=θ̂

=

1

2θ̂3
[nθ̂ −

n∑

i=1

y2
i −

n∑

i=1

y2
i ] =

1

2θ̂3
[−nθ̂2 −

n∑

i=1

y2
i ] < 0
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by (11.3). Since L(θ) is continuous with a unique root on θ > 0, θ̂ is the
MLE.

5.36. a) L(θ) = (θ−x)2/3 for x−2 ≤ θ ≤ x+1. Since x = 7, L(5) = 4.3,
L(7) = 0, and L(8) = 1/3. So L is maximized at an endpoint and the MLE
θ̂ = 5.

b) By invariance the MLE is h(θ̂) = h(5) = 10 − e−25 ≈ 10.

5.37. a) L(λ) = c 1
λn exp

( −1
2λ2

∑n
i=1(e

xi − 1)2
)
.

Thus

log(L(λ)) = d− n log(λ) − 1

2λ2

n∑

i=1

(exi − 1)2.

Hence
d log(L(λ))

dλ
=

−n
λ

+
1

λ3

∑

(exi − 1)2 set
= 0,

or nλ2 =
∑

(exi − 1)2, or

λ̂ =

∑
(eXi − 1)2

n
.

Now
d2 log(L(λ))

dλ2
=

n

λ2
− 3

λ4

∑

(exi − 1)2

∣
∣
∣
∣
λ=λ̂

=
n

λ̂2
− 3n

λ̂4
λ̂2 =

n

λ2
[1 − 3] < 0.

So λ̂ is the MLE.

5.38. a) The likelihood

L(λ) =
∏

f(xi) = c

(
∏ 1

xi

)
1

λn
exp

[∑−(log xi)
2

2λ2

]

,

and the log likelihood

log(L(λ)) = d −
∑

log(xi) − n log(λ) −
∑

(log xi)
2

2λ2
.

Hence
d

dλ
log(L(λ)) =

−n
λ

+

∑
(log xi)

2

λ3

set
= 0,
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or
∑

(log xi)
2 = nλ2, or

λ̂ =

√∑
(log xi)2

n
.

This solution is unique.
Notice that

d2

dλ2
log(L(λ)) =

n

λ2
− 3

∑
(log xi)

2

λ4

∣
∣
∣
∣
λ=λ̂

=
n

λ̂2
− 3nλ̂2

λ̂4
=

−2n

λ̂2
< 0.

Hence

λ̂ =

√∑
(logXi)2

n
is the MLE of λ.

b)

λ̂2 =

∑
(logXi)

2

n

is the MLE of λ2 by invariance.

6.7. a) The joint density

f(x) =
1

(2π)n/2
exp[−1

2

∑

(xi − µ)2]

=
1

(2π)n/2
exp[−1

2
(
∑

x2
i − 2µ

∑

xi + nµ2)]

=
1

(2π)n/2
exp[−1

2

∑

x2
i ] exp[nµx− nµ2

2
].

Hence by the factorization theorem X is a sufficient statistic for µ.

b) X is sufficient by a) and complete since the N(µ, 1) family is a regular
one parameter exponential family.

c) E(I−(∞,t](X1)|X = x) = P (X1 ≤ t|X = x) = Φ( t−x√
1−1/n

).

d) By Rao-Blackwell-Lehmann-Scheffe,

Φ(
t−X

√

1 − 1/n
)
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is the UMVUE.

6.14. Note that
∑
Xi ∼ G(n, θ). Hence MSE(c) = V arθ(Tn(c))+[EθTn(c)−

θ]2 = c2V arθ(
∑
Xi) + [ncEθX − θ]2 = c2nθ2 + [ncθ − θ]2.

So
d

dc
MSE(c) = 2cnθ2 + 2[ncθ − θ]nθ.

Set this equation to 0 to get 2nθ2[c + nc − 1] = 0 or c(n + 1) = 1. So
c = 1/(n + 1).

The second derivative is 2nθ2 + 2n2θ2 > 0 so the function is convex and
the local min is in fact global.

6.17. a) Since this is an exponential family, log(f(x|λ)) = − log(λ)−x/λ
and

∂

∂λ
log(f(x|λ)) =

−1

λ
+

x

λ2
.

Hence
∂2

∂λ2
log(f(x|λ)) =

1

λ2
− 2x

λ3

and

I1(λ) = −E
[
∂

∂λ
log(f(x|λ))

]

=
−1

λ2
+

2λ

λ3
=

1

λ2
.

b)

FCRLB(τ (λ)) =
[τ ′(λ)]2

nI1(λ)
=

4λ2

n/λ2
= 4λ4/n.

c) (T =
∑n

i=1Xi ∼ Gamma(n, λ) is a complete sufficient statistic. Now
E(T 2) = V (T )+ [E(T )]2 = nλ2 +n2λ2. Hence the UMVUE of λ2 is T 2/(n+
n2).) No, W is a nonlinear function of the complete sufficient statistic T .

6.19.
W ≡ S2(k)/σ2 ∼ χ2

n/k

and
MSE(S2(k)) = MSE(W ) = V AR(W ) + (E(W ) − σ2)2

=
σ4

k2
2n + (

σ2n

k
− σ2)2

= σ4[
2n

k2
+ (

n

k
− 1)2] = σ4 2n+ (n− k)2

k2
.
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Now the derivative d
dk
MSE(S2(k))/σ4 =

−2

k3
[2n+ (n− k)2] +

−2(n− k)

k2
.

Set this derivative equal to zero. Then

2k2 − 2nk = 4n+ 2(n − k)2 = 4n + 2n2 − 4nk + 2k2.

Hence
2nk = 4n + 2n2

or k = n+ 2.
Should also argue that k = n+ 2 is the global minimizer. Certainly need

k > 0 and the absolute bias will tend to ∞ as k → 0 and the bias tends
to σ2 as k → ∞, so k = n + 2 is the unique critical point and is the global
minimizer.

6.20. a) LetW = X2.Then f(w) = fX(
√
w) 1/(2

√
w) = (1/θ) exp(−w/θ)

and W ∼ exp(θ). Hence Eθ(X
2) = Eθ(W ) = θ.

b) This is an exponential family and

log(f(x|θ)) = log(2x) − log(θ) − 1

θ
x2

for x < 0. Hence
∂

∂θ
f(x|θ) =

−1

θ
+

1

θ2
x2

and
∂2

∂θ2
f(x|θ) =

1

θ2
+

−2

θ3
x2.

Hence

I1(θ) = −Eθ[
1

θ2
+

−2

θ3
x2] =

1

θ2

by a). Now

CRLB =
[τ ′(θ)]2

nI1(θ)
=
θ2

n

where τ (θ) = θ.

c) This is a regular exponential family so
∑n

i=1X
2
i is a complete sufficient

statistic. Since

Eθ[

∑n
i=1 X

2
i

n
] = θ,
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the UMVUE is
Pn

i=1 X
2
i

n
.

6.21. a) In normal samples, X and S are independent, hence

V arθ[W (α)] = α2V arθ(T1) + (1 − α)2V arθ(T2).

b) W (α) is an unbiased estimator of θ. Hence MSE(W (α) ≡MSE(α) =
V arθ[W (α)] which is found in part a).

c) Now

d

dα
MSE(α) = 2αV arθ(T1) − 2(1 − α)V arθ(T2) = 0.

Hence

α̂ =
V arθ(T2)

V arθ(T1) + V arθ(T2)
≈

θ2

2n
θ2

2n
+ 2θ2

2n

= 1/3

using the approximation and the fact that Var(X̄) = θ2/n. Note that the
second derivative

d2

dα2
MSE(α) = 2[V arθ(T1) + V arθ(T2)] > 0,

so α = 1/3 is a local min. The critical value was unique, hence 1/3 is the
global min.

6.22. a) X1 −X2 ∼ N(0, 2σ2). Thus,

E(T1) =

∫ ∞

0

u
1√

4πσ2
e

−u2

4σ2 du

=
σ√
π
.

E(T 2
1 ) =

1

2

∫ ∞

0

u2 1√
4πσ2

e
−u2

4σ2 du

=
σ2

2
.

V (T1) = σ2(1
2
− 1

π
) and

MSE(T1) = σ2[(
1√
π

) − 1)2 +
1

2
− 1

π
] = σ2[

3

2
− 2√

π
].
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b) Xi

σ
has a N(0,1) and

Pn
i=1 X

2
i

σ2 has a chi square distribution with n degrees
of freedom. Thus

E(

√∑n
i=1 X

2
i

σ2
) =

√
2Γ(n+1

2
)

Γ(n
2
)

,

and

E(T2) =
σ√
n

√
2Γ(n+1

2
)

Γ(n
2
)

.

Therefore,

E(

√
n√
2

Γ(n
2
)

Γ(n+1
2

)
T2) = σ.

6.23. This is a regular one parameter exponential family with complete
sufficient statistic Tn =

∑n
i=1 Xi ∼ G(n, λ). Hence E(Tn) = nλ, E(T 2

n) =
V (Tn) + (E(Tn))

2 = nλ2 + n2λ2, and T 2
n/(n+ n2) is the UMVUE of λ2.

6.24.
1

Xi
=
Wi

σ
∼ χ2

1

σ
.

Hence if

T =
n∑

i=1

1

Xi
, then E(

T

n
) =

n

nσ
,

and T/n is the UMVUE since f(x) is an exponential family with complete
sufficient statistic 1/X.

6.25. The pdf of T is

g(t) =
2nt2n−1

θ2n

for 0 < t < θ.
E(T ) = 2n

2n+1
θ and E(T 2) = 2n

2n+2
θ2.

MSE(CT ) = (C
2n

2n + 1
θ − θ)2 + C2[

2n

2n+ 2
θ2 − (

2n

2n + 1
θ)2]

dMSE(CT )

dC
= 2[

2cnθ

2n+ 1
− θ][

2nθ

2n+ 1
] + 2c[

2nθ2

2n + 2
− 4n2θ2

(2n + 1)2
].

Solve dMSE(CT )
dC

= 0 to get

C = 2
n+ 1

2n + 1
.
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Check with the second derivative d2MSE(CT )
dC2 = 4 nθ2

2n+2
, which is always posi-

tive.

6.26. a) E(Yi) = 2θ/3 and V (Yi) = θ2/18. So bias of T = B(T ) =
EcX − θ = c2

3
θ − θ and Var(T ) =

V ar(
c
∑
Xi

n
) =

c2

n2

∑

V ar(Xi) =
c2

n2

nθ2

18
.

So MSE = Var(T) +[B(T )]2 =

c2θ2

18n
+ (

2θ

3
c− θ)2.

b)
dMSE(c)

dc
=

2cθ2

18n
+ 2(

2θ

3
c − θ)

2θ

3
.

Set this equation equal to 0 and solve, so

θ22c

18n
+

4

3
θ(

2

3
θc− θ) = 0

or

c[
2θ2

18n
+

8

9
θ2] =

4

3
θ2

or

c(
1

9n
+

8

9
θ2) =

4

3
θ2

or

c(
1

9n
+

8n

9n
) =

4

3
or

c =
9n

1 + 8n

4

3
=

12n

1 + 8n
.

This is a global min since the MSE is a quadratic in c2 with a positive
coefficient, or because

d2MSE(c)

dc2
=

2θ2

18n
+

8θ2

9
> 0.

6.27. See Example 6.5.

7.6. For both a) and b), the test is reject Ho iff
∏n

i=1 xi(1−xi) > c where
Pθ=1[

∏n
i=1 xi(1 − xi) > c] = α.
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7.10. H says f(x) = e−x while K says

f(x) = xθ−1e−x/Γ(θ).

The monotone likelihood ratio property holds for
∏
xi since then

fn(x, θ2)

fn(x, θ1)
=

(
∏n

i=1 xi)
θ2−1(Γ(θ1))

n

(
∏n

i=1 xi)
θ1−1(Γ(θ2))n

= (
Γ(θ1)

Γ(θ2)
)n(

n∏

i=1

xi)
θ2−θ1

which increases as
∏n

i=1 xi increases if θ2 > θ1. Hence the level α UMP test
rejects H if

n∏

i=1

Xi > c

where

PH (
n∏

i=1

Xi > c) = PH(
∑

log(Xi) > log(c)) = 1 − α.

7.11. See Example 7.6.

7.13. Let θ1 = 4. By Neyman Pearson lemma, reject Ho if

f(x|θ1)

f(x|2) =

(
log(θ1)

θ − 1

)n

θ
P

xi

1

(
1

log(2)

)n
1

2
P

xi
> k

iff
(

log(θ1)

(θ − 1) log(2)

)n(
θ1

2

)P

xi

> k

iff
(
θ1

2

)P

xi

> k′

iff ∑

xi log(θ1/2) > c′.

So reject Ho iff
∑
Xi > c where Pθ=2(

∑
Xi > c) = α.

7.14. a) By NP lemma reject Ho if

f(x|σ = 2)

f(x|σ = 1)
> k′.
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The LHS =
1

23n exp[−1
8

∑
x2
i ]

exp[−1
2

∑
x2
i ]

So reject Ho if
1

23n
exp[

∑

x2
i (

1

2
− 1

8
)] > k′

or if
∑
x2
i > k where PHo(

∑
x2
i > k) = α.

b) In the above argument, with any σ1 > 1, get

∑

x2
i (

1

2
− 1

2σ2
1

)

and
1

2
− 1

2σ2
1

> 0

for any σ2
1 > 1. Hence the UMP test is the same as in a).

7.15. a) By NP lemma reject Ho if

f(x|σ = 2)

f(x|σ = 1)
> k′.

The LHS =
1
2n exp[−1

8

∑
[log(xi)]

2]

exp[−1
2

∑
[log(xi)]2]

So reject Ho if
1

2n
exp[

∑

[log(xi)]
2(

1

2
− 1

8
)] > k′

or if
∑

[log(Xi)]
2 > k where PHo(

∑
[log(Xi)]

2 > k) = α.

b) In the above argument, with any σ1 > 1, get

∑

[log(xi)]
2(

1

2
− 1

2σ2
1

)

and
1

2
− 1

2σ2
1

> 0

for any σ2
1 > 1. Hence the UMP test is the same as in a).
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7.16. The most powerful test will have the following form
Reject H0 iff f1(x)

f0(x)
> k.

But f1(x)
f0(x)

= 4x−
3
2 and hence we reject H0 iff X is small, i.e. reject H0 is

X < k for some constant k. This test must also have the size α, that is we
require:

α = P (X < k) when f(x) = f0(x)) =
∫ k

0
3
64
x2dx = 1

64
k3,

so that k = 4α
1
3 .

For the power, when k = 4α
1
3

P [X < k when f(x) = f1(x)] =
∫ k

0
3
16

√
xdx =

√
α

When α = 0.01, the power is = 0.10.

8.1 c) The histograms should become more like a normal distribution as
n increases from 1 to 200. In particular, when n = 1 the histogram should be
right skewed while for n = 200 the histogram should be nearly symmetric.
Also the scale on the horizontal axis should decrease as n increases.

d) Now Y ∼ N(0, 1/n). Hence the histograms should all be roughly
symmetric, but the scale on the horizontal axis should be from about −3/

√
n

to 3/
√
n.

8.3. a) E(X) = 3θ
θ+1

, thus√
n(X − E(x)) → N(0, V (x)), but

V (x) = 9θ
(θ+2)(θ+1)2

. Let g(y) = y
3−y , thus g′(y) = 3

(3−y)2 . Using delta method
√
n(Tn − θ) → N(0, θ(θ+1)2

θ+2
).

b) It is asymptotically efficient if
√
n(Tn − θ) → N(0, ν(θ)), where

ν(θ) =
d
dθ

(θ)

−E( d
2

dθ2
lnf(x|θ))

But, E(( d2

dθ2
lnf(x|θ)) = 1

θ2
. Thus ν(θ) = θ2 6= θ(θ+1)2

θ+2

c) X → 3θ
θ+1

in probability. Thus Tn → θ in probability.

8.5. See Example 8.8.

8.7. a) See Example 8.7.

8.13. a) Yn
D
=
∑n

i=1 Xi where the Xi are iid χ2
1. Hence E(Xi) = 1 and
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Var(Xi) = 2. Thus by the CLT,

√
n

(
Yn
n

− 1

)

D
=

√
n

( ∑n
i=1 Xi

n
− 1

)

D→ N(0, 2).

b) Let g(θ) = θ3. Then g′(θ) = 3θ2, g′(1) = 3, and by the delta method,

√
n

[ (
Yn
n

)3

− 1

]

D→ N(0, 2(g′(1))2) = N(0, 18).

8.27. a) See Example 8.1b.
b) See Example 8.3.

8.28. a) By the CLT,
√
n(X − λ)/

√
λ

D→ N(0, 1). Hence
√
n(X − λ)

D→
N(0, λ).

b) Let g(λ) = λ3 so that g′(λ) = 3λ2 then
√
n](X)3−(λ)3]

D→ N(0, λ[g′(λ)]2) =
N(0, 9λ5).

8.29. a) X is a complete sufficient statistic. Also, we have (n−1)S2

σ2 has a
chi square distribution with df = n−1, thus since σ2 is known the distribution
of S2 does not depend on µ, so S2 is ancillary. Thus, by Basu’s Theorem X
and S2 are independent.

b) by CLT (n is large )
√
n(X−µ) has approximately normal distribution

with mean 0 and variance σ2. Let g(x) = x3, thus, g
′

(x) = 3x2. Using
delta method

√
n(g(X) − g(µ)) goes in distribution to N(0, σ2(g

′

(µ))2) or√
n(X

3 − µ3) goes in distribution to N(0, σ2(3µ2)2). Thus the distribution

of X
3

is approximately normal with mean µ3 and variance 9σ2µ4

9
.

8.30. a) According to the standard theorem,
√
n(θ̂n − θ) → N(0, 3).

b) E(Y ) = θ, V ar(Y ) = π2

3
, according to CLT we have

√
n(Y n − θ) →

N(0, π
2

3
).

c) MED(Y ) = θ, then
√
n(MED(n) − θ) → N(0, 1

4 f2(MED(Y ))
) and

f(MED(Y )) = exp (−(θ−θ))
[1+exp (−(θ−θ))]2 = 1

4
. Thus

√
n(MED(n)− θ) → N(0, 1

4 1
16

) →
√
n(MED(n) − θ) → N(0, 4).

d) All three estimators are consistent, but 3 < π2

3
< 4, therefore the

estimator θ̂n is the best, and the estimator MED(n) is the worst.
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9.1. a)
∑n

i=1 X
b
i is minimal sufficient for a.

b) It can be shown that Xb

a
has an exponential distribution with mean 1.

Thus,
2

Pn
i=1Xi

b

a
is distributed χ2

2n. Let χ2
2n,α/2 be the upper 100(1

2
α)% point

of the chi-square distribution with 2n degrees of freedom. Thus, we can write

1 − α = P (χ2
2n,1−α/2 <

2
∑n

i=1 X
b
i

a
< χ2

2n,α/2)

which translates into
(

2
∑n

i=1 X
b
i

χ2
2n,α/2

,
2
∑n

i=1X
b
i

χ2
2n,1−α/2

)

as a two sided (1−α) confidence interval for a. For α = 0.05 and n = 20, we
have χ2

2n,α/2 = 34.1696 and χ2
2n,1−α/2 = 9.59083. Thus the confidence interval

for a is (∑n
i=1 X

b
i

17.0848
,

∑n
i=1X

b
i

4.795415

)

.

9.4. Tables are from simulated data but should be similar to the table
below.

n p ccov acov

50 .01 .4236 .9914 AC CI better

100 .01 .6704 .9406 AC CI better

150 .01 .8278 .9720 AC CI better

200 .01 .9294 .9098 the CIs are about the same

250 .01 .8160 .8160 the CIs are about the same

300 .01 .9158 .9228 the CIs are about the same

350 .01 .9702 .8312 classical is better

400 .01 .9486 .6692 classical is better

450 .01 .9250 .4080 classical is better
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