
Chapter 9

Confidence Intervals

9.1 Introduction

Definition 9.1. Let the data Y1, ..., Yn have pdf or pmf f(y|θ) with param-
eter space Θ and support Y. Let Ln(Y ) and Un(Y ) be statistics such that
Ln(y) ≤ Un(y), ∀y ∈ Y. Then (Ln(y), Un(y)) is a 100 (1−α) % confidence
interval (CI) for θ if

Pθ(Ln(Y ) < θ < Un(Y )) = 1 − α

for all θ ∈ Θ. The interval (Ln(y), Un(y)) is a large sample 100 (1 − α) %
CI for θ if

Pθ(Ln(Y ) < θ < Un(Y )) → 1 − α

for all θ ∈ Θ as n → ∞.

Definition 9.2. Let the data Y1, ..., Yn have pdf or pmf f(y|θ) with
parameter space Θ and support Y. The random variable R(Y |θ) is a pivot
or pivotal quantity if the distribution of R(Y |θ) is independent θ. The
quantity R(Y , θ) is an asymptotic pivot if the limiting distribution of
R(Y , θ) is independent of θ.

The first CI in Definition 9.1 is sometimes called an exact CI. In the
following definition, the scaled asymptotic length is closely related to asymp-
totic relative efficiency of an estimator and high power of a test of hypotheses.
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Definition 9.3. Let (Ln, Un) be a 100 (1 − α)% CI or large sample CI
for θ. If

nδ(Un − Ln)
P→ Aα,

then Aα is the scaled asymptotic length of the CI. Typically δ = 0.5 but
superefficient CIs have δ = 1. For a given α, a CI with smaller Aα is “better”
than a CI with larger Aα.

Example 9.1. Let Y1, ..., Yn be iid N(µ, σ2) where σ2 > 0. Then

R(Y |µ, σ2) =
Y − µ

S/
√

n
∼ tn−1

is a pivotal quantity. If Y1, ..., Yn are iid with E(Y ) = µ and VAR(Y ) = σ2 >
0, then, by the CLT and Slutsky’s Theorem,

R(Y |µ, σ2) =
Y − µ

S/
√

n
=

σ

S

Y − µ

σ/
√

n
D→ N(0, 1)

is an asymptotic pivot.

Large sample theory can be used to find a CI from the asymptotic pivot.
Suppose that Y = (Y1, ..., Yn) and that Wn ≡ Wn(Y ) is an estimator of some
parameter µW such that

√
n(Wn − µW )

D→ N(0, σ2
W )

where σ2
W/n is the asymptotic variance of the estimator Wn. The above

notation means that if n is large, then for probability calculations

Wn − µW ≈ N(0, σ2
W/n).

Suppose that S2
W is a consistent estimator of σ2

W so that the (asymptotic)
standard error of Wn is SE(Wn) = SW/

√
n. Let zα be the α percentile of the

N(0,1) distribution. Hence P (Z ≤ zα) = α if Z ∼ N(0, 1). Then

1 − α ≈ P (−z1−α/2 ≤
Wn − µW

SE(Wn)
≤ z1−α/2),

and an approximate or large sample 100(1 − α)% CI for µW is given by

(Wn − z1−α/2SE(Wn), Wn + z1−α/2SE(Wn)). (9.1)
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Since
tp,1−α/2

z1−α/2

→ 1

if p ≡ pn → ∞ as n → ∞, another large sample 100(1 − α)% CI for µW is

(Wn − tp,1−α/2SE(Wn), Wn + tp,1−α/2SE(Wn)). (9.2)

The CI (9.2) often performs better than the CI (9.1) in small samples. The
quantity tp,1−α/2/z1−α/2 can be regarded as a small sample correction factor.
The CI (9.2) is longer than the CI (9.1). Hence the CI (9.2) more conservative
than the CI (9.1).

Suppose that there are two independent samples Y1, ..., Yn and X1, ..., Xm

and that
( √

n(Wn(Y ) − µW (Y ))√
m(Wm(X) − µW (X))

)

D→ N2

( (

0
0

)

,

(

σ2
W (Y ) 0
0 σ2

W (X)

) )

.

Then
(

(Wn(Y ) − µW (Y ))
(Wm(X) − µW (X))

)

≈ N2

( (

0
0

)

,

(

σ2
W (Y )/n 0

0 σ2
W (X)/m

) )

,

and

Wn(Y ) −Wm(X) − (µW (Y ) − µW (X)) ≈ N(0,
σ2

W (Y )

n
+

σ2
W (X)

m
).

Hence

SE(Wn(Y ) − Wm(X)) =

√

S2
W (Y )

n
+

S2
W (X)

m
,

and the large sample 100(1 − α)% CI for µW (Y ) − µW (X) is given by

(Wn(Y ) − Wm(X)) ± z1−α/2SE(Wn(Y ) − Wm(X)). (9.3)

If pn is the degrees of freedom used for a single sample procedure when the
sample size is n, let p = min(pn, pm). Then another large sample 100(1−α)%
CI for µW (Y ) − µW (X) is given by

(Wn(Y ) − Wm(X)) ± tp,1−α/2SE(Wn(Y ) − Wm(X)). (9.4)

These CIs are known as Welch intervals. See Welch (1937) and Yuen (1974).
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Example 9.2. Consider the single sample procedures where Wn = Y n.
Then µW = E(Y ), σ2

W = VAR(Y ), SW = Sn, and p = n− 1. Let tp denote a
random variable with a t distribution with p degrees of freedom and let the
α percentile tp,α satisfy P (tp ≤ tp,α) = α. Then the classical t-interval for
µ ≡ E(Y ) is

Y n ± tn−1,1−α/2

Sn√
n

and the t-test statistic for Ho : µ = µo is

to =
Y − µo

Sn/
√

n
.

The right tailed p-value is given by P (tn−1 > to).
Now suppose that there are two samples where Wn(Y ) = Y n and Wm(X) =

Xm. Then µW (Y ) = E(Y ) ≡ µY , µW (X) = E(X) ≡ µX , σ2
W (Y ) = VAR(Y ) ≡

σ2
Y , σ2

W (X) = VAR(X) ≡ σ2
X , and pn = n − 1. Let p = min(n − 1, m − 1).

Since

SE(Wn(Y ) − Wm(X)) =

√

S2
n(Y )

n
+

S2
m(X)

m
,

the two sample t-interval for µY − µX

(Y n − Xm) ± tp,1−α/2

√

S2
n(Y )

n
+

S2
m(X)

m

and two sample t-test statistic

to =
Y n − Xm

√

S2
n(Y )

n
+ S2

m(X)
m

.

The right tailed p-value is given by P (tp > to). For sample means, values of
the degrees of freedom that are more accurate than p = min(n − 1, m − 1)
can be computed. See Moore (2007, p. 474).

The remainder of this section follows Olive (2007b, Section 2.4) closely.
Let bxc denote the “greatest integer function” (eg, b7.7c = 7). Let dxe denote
the smallest integer greater than or equal to x (eg, d7.7e = 8).

Example 9.3: inference with the sample median. Let Un = n−Ln

where Ln = bn/2c − d
√

n/4 e and use

SE(MED(n)) = 0.5(Y(Un) − Y(Ln+1)).
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Let p = Un−Ln−1. Then a 100(1−α)% confidence interval for the population
median MED(Y ) is

MED(n) ± tp,1−α/2SE(MED(n)). (9.5)

Example 9.4: inference with the trimmed mean. The symmetri-
cally trimmed mean or the δ trimmed mean

Tn = Tn(Ln, Un) =
1

Un − Ln

Un
∑

i=Ln+1

Y(i) (9.6)

where Ln = bnδc and Un = n − Ln. If δ = 0.25, say, then the δ trimmed
mean is called the 25% trimmed mean.

The trimmed mean is estimating a truncated mean µT . Assume that Y
has a probability density function fY (y) that is continuous and positive on
its support. Let yδ be the number satisfying P (Y ≤ yδ) = δ. Then

µT =
1

1 − 2δ

∫ y1−δ

yδ

yfY (y)dy. (9.7)

Notice that the 25% trimmed mean is estimating

µT =

∫ y0.75

y0.25

2yfY (y)dy.

To perform inference, find d1, ..., dn where

di =







Y(Ln+1), i ≤ Ln

Y(i), Ln + 1 ≤ i ≤ Un

Y(Un), i ≥ Un + 1.

Then the Winsorized variance is the sample variance S2
n(d1, ..., dn) of d1, ..., dn,

and the scaled Winsorized variance

VSW (Ln, Un) =
S2

n(d1, ..., dn)

([Un − Ln]/n)2
. (9.8)

The standard error of Tn is SE(Tn) =
√

VSW (Ln, Un)/n.
A large sample 100 (1 − α)% confidence interval (CI) for µT is

Tn ± tp,1−α
2
SE(Tn) (9.9)
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where P (tp ≤ tp,1−α
2
) = 1 − α/2 if tp is from a t distribution with p =

Un −Ln − 1 degrees of freedom. This interval is the classical t–interval when
δ = 0, but δ = 0.25 gives a robust CI.

Example 9.5. Suppose the data below is from a symmetric distribution
with mean µ. Find a 95% CI for µ.

6, 9, 9, 7, 8, 9, 9, 7
Solution. When computing small examples by hand, the steps are to sort

the data from smallest to largest value, find n, Ln, Un, Y(Ln), Y(Un), p, MED(n)
and SE(MED(n)). After finding tp,1−α/2, plug the relevant quantities into the
formula for the CI. The sorted data are 6, 7, 7, 8, 9, 9, 9, 9. Thus MED(n) =
(8 + 9)/2 = 8.5. Since n = 8, Ln = b4c − d

√
2e = 4 − d1.414e = 4 − 2 = 2

and Un = n − Ln = 8 − 2 = 6. Hence SE(MED(n)) = 0.5(Y(6) − Y(3)) =
0.5 ∗ (9 − 7) = 1. The degrees of freedom p = Un − Ln − 1 = 6 − 2 − 1 = 3.
The cutoff t3,0.975 = 3.182. Thus the 95% CI for MED(Y ) is

MED(n) ± t3,0.975SE(MED(n))

= 8.5±3.182(1) = (5.318, 11.682). The classical t–interval uses Y = (6+7+
7 + 8 + 9 + 9 + 9 + 9)/8 and S2

n = (1/7)[(
∑n

i=1 Y 2
i ) − 8(82)] = (1/7)[(522 −

8(64)] = 10/7 ≈ 1.4286, and t7,0.975 ≈ 2.365. Hence the 95% CI for µ is

8 ± 2.365(
√

1.4286/8) = (7.001, 8.999). Notice that the t-cutoff = 2.365 for
the classical interval is less than the t-cutoff = 3.182 for the median interval
and that SE(Y ) < SE(MED(n)).

Example 9.6. In the last example, what happens if the 6 becomes 66
and a 9 becomes 99?

Solution. Then the ordered data are 7, 7, 8, 9, 9, 9, 66, 99. Hence
MED(n) = 9. Since Ln and Un only depend on the sample size, they take
the same values as in the previous example and SE(MED(n)) = 0.5(Y(6) −
Y(3)) = 0.5 ∗ (9 − 8) = 0.5. Hence the 95% CI for MED(Y ) is MED(n) ±
t3,0.975SE(MED(n)) = 9 ± 3.182(0.5) = (7.409, 10.591). Notice that with
discrete data, it is possible to drive SE(MED(n)) to 0 with a few outliers if
n is small. The classical confidence interval Y ± t7,0.975S/

√
n blows up and

is equal to (−2.955, 56.455).

Example 9.7. The Buxton (1920) data contains 87 heights of men,
but five of the men were recorded to be about 0.75 inches tall! The mean
height is Y = 1598.862 and the classical 95% CI is (1514.206, 1683.518).
MED(n) = 1693.0 and the resistant 95% CI based on the median is (1678.517,
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1707.483). The 25% trimmed mean Tn = 1689.689 with 95% CI (1672.096,
1707.282).

The heights for the five men were recorded under their head lengths, so
the outliers can be corrected. Then Y = 1692.356 and the classical 95% CI is
(1678.595, 1706.118). Now MED(n) = 1694.0 and the 95% CI based on the
median is (1678.403, 1709.597). The 25% trimmed mean Tn = 1693.200 with
95% CI (1676.259, 1710.141). Notice that when the outliers are corrected,
the three intervals are very similar although the classical interval length is
slightly shorter. Also notice that the outliers roughly shifted the median
confidence interval by about 1 mm while the outliers greatly increased the
length of the classical t–interval.

9.2 Some Examples

Example 9.8. Suppose that Y1, ..., Yn are iid from a one parameter expo-
nential family with parameter τ . Assume that Tn =

∑n
i=1 t(Yi) is a complete

sufficient statistic. Then from Theorems 3.6 and 3.7, often Tn ∼ G(na, 2b τ )
where a and b are known positive constants. Then

τ̂ =
Tn

2nab

is the UMVUE and often the MLE of τ. Since Tn/(b τ ) ∼ G(na, 2), a
100(1 − α)% confidence interval for τ is

(

Tn/b

G(na, 2, 1 − α/2)
,

Tn/b

G(na, 2, α/2)

)

≈
(

Tn/b

χ2
d(1 − α/2)

,
Tn/b

χ2
d(α/2)

)

(9.10)

where d = b2nac, bxc is the greatest integer function (e.g. b7.7c = b7c = 7),
P [G ≤ G(ν, λ, α)] = α if G ∼ G(ν, λ), and P [X ≤ χ2

d(α)] = α if X has a
chi-square χ2

d distribution with d degrees of freedom.

This confidence interval can be inverted to perform two tail tests of hy-
potheses. By Theorem 7.3, the uniformly most powerful (UMP) test of
Ho : τ ≤ τo versus HA : τ > τo rejects Ho if and only if Tn > k where
P [G > k] = α when G ∼ G(na, 2b τo). Hence

k = G(na, 2b τo, 1 − α). (9.11)

253



A good approximation to this test rejects Ho if and only if

Tn > b τoχ
2
d(1 − α)

where d = b2nac.

Example 9.9. If Y is half normal HN(µ, σ) then the pdf of Y is

f(y) =
2√

2π σ
exp (

−(y − µ)2

2σ2
)

where σ > 0 and y > µ and µ is real. Since

f(y) =
2√

2π σ
I [y > µ] exp

[

(
−1

2σ2
)(y − µ)2

]

,

Y is a 1P–REF if µ is known.
Since Tn =

∑

(Yi − µ)2 ∼ G(n/2, 2σ2), in Example 9.8 take a = 1/2,
b = 1, d = n and τ = σ2. Then a 100(1 − α)% confidence interval for σ2 is

(

Tn

χ2
n(1 − α/2)

,
Tn

χ2
n(α/2)

)

. (9.12)

The UMP test of Ho : σ2 ≤ σ2
o versus HA : σ2 > σ2

o rejects Ho if and only
if

Tn/σ
2
o > χ2

n(1 − α).

Now consider inference when both µ and σ are unknown. Then the family
is no longer an exponential family since the support depends on µ. Let

Dn =

n
∑

i=1

(Yi − Y1:n)
2. (9.13)

Pewsey (2002) showed that (µ̂, σ̂2) = (Y1:n,
1
n
Dn) is the MLE of (µ, σ2),

and that
Y1:n − µ

σΦ−1(1
2

+ 1
2n

)

D→ EXP (1).

Since (
√

π/2)/n is an approximation to Φ−1(1
2

+ 1
2n

) based on a first order
Taylor series expansion such that

Φ−1(1
2

+ 1
2n

)

(
√

π/2)/n
→ 1,
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it follows that
n(Y1:n − µ)

σ
√

π
2

D→ EXP (1). (9.14)

Using this fact, it can be shown that a large sample 100(1 − α)% CI for µ is

(µ̂ + σ̂ log(α) Φ−1(
1

2
+

1

2n
) (1 + 13/n2), µ̂) (9.15)

where the term (1+13/n2) is a small sample correction factor. See Abuhassan
and Olive (2008).

Note that

Dn =

n
∑

i=1

(Yi − Y1:n)
2 =

n
∑

i=1

(Yi − µ + µ − Y1:n)
2 =

n
∑

i=1

(Yi − µ)2 + n(µ − Y1:n)
2 + 2(µ − Y1:n)

n
∑

i=1

(Yi − µ).

Hence

Dn = Tn +
1

n
[n(Y1:n − µ)]2 − 2[n(Y1:n − µ)]

∑n
i=1(Yi − µ)

n
,

or

Dn

σ2
=

Tn

σ2
+

1

n

1

σ2
[n(Y1:n − µ)]2 − 2[

n(Y1:n − µ)

σ
]

∑n
i=1(Yi − µ)

nσ
. (9.16)

Consider the three terms on the right hand side of (9.16). The middle
term converges to 0 in distribution while the third term converges in dis-
tribution to a −2EXP (1) or −χ2

2 distribution since
∑n

i=1(Yi − µ)/(σn) is

the sample mean of HN(0,1) random variables and E(X) =
√

2/π when
X ∼ HN(0, 1).

Let Tn−p =
∑n−p

i=1 (Yi − µ)2. Then

Dn = Tn−p +
n
∑

i=n−p+1

(Yi − µ)2 − Vn (9.17)

where
Vn

σ2

D→ χ2
2.
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Hence
Dn

Tn−p

D→ 1

and Dn/σ2 is asymptotically equivalent to a χ2
n−p random variable where p

is an arbitrary nonnegative integer. Pewsey (2002) used p = 1.
Thus when both µ and σ2 are unknown, a large sample 100(1 − α)%

confidence interval for σ2 is
(

Dn

χ2
n−1(1 − α/2)

,
Dn

χ2
n−1(α/2)

)

. (9.18)

It can be shown that
√

n CI length converges to σ2
√

2(z1−α/2 − zα/2) for

CIs (9.12) and (9.18) while n length CI (9.15) converges to −σ log(α)
√

π/2.
When µ and σ2 are unknown, an approximate α level test of Ho : σ2 ≤ σ2

o

versus HA : σ2 > σ2
o that rejects Ho if and only if

Dn/σ2
o > χ2

n−1(1 − α) (9.19)

has nearly as much power as the α level UMP test when µ is known if n is
large.

Example 9.10. Following Mann, Schafer, and Singpurwalla (1974, p.
176), let W1, ..., Wn be iid EXP (θ, λ) random variables. Let

W1:n = min(W1, ..., Wn).

Then the MLE

(θ̂, λ̂) =

(

W1:n,
1

n

n
∑

i=1

(Wi − W1:n)

)

= (W1:n, W − W1:n).

Let Dn = nλ̂. For n > 1, a 100(1 − α)% confidence interval (CI) for θ is

(W1:n − λ̂[(α)−1/(n−1) − 1], W1:n) (9.20)

while a 100(1 − α)% CI for λ is

(

2Dn

χ2
2(n−1),1−α/2

,
2Dn

χ2
2(n−1),α/2

)

. (9.21)
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Let Tn =
∑n

i=1(Wi − θ) = n(W − θ). If θ is known, then

λ̂θ =

∑n
i=1(Wi − θ)

n
= W − θ

is the UMVUE and MLE of λ, and a 100(1 − α)% CI for λ is

(

2Tn

χ2
2n,1−α/2

,
2Tn

χ2
2n,α/2

)

. (9.22)

Using χ2
n,α/

√
n ≈

√
2zα +

√
n, it can be shown that

√
n CI length converges

to λ(z1−α/2 − zα) for CIs (9.21) and (9.22) (in probability). It can be shown
that n length CI (9.20) converges to −λ log(α).

When a random variable is a simple transformation of a distribution that
has an easily computed CI, the transformed random variable will often have
an easily computed CI. Similarly the MLEs of the two distributions are often
closely related. See the discussion above Example 5.10. The first 3 of the
following 4 examples are from Abuhassan and Olive (2008).

Example 9.11. If Y has a Pareto distribution, Y ∼ PAR(σ, λ), then
W = log(Y ) ∼ EXP (θ = log(σ), λ). If θ = log(σ) so σ = eθ, then a
100 (1 − α)% CI for θ is (9.20). A 100 (1 − α)% CI for σ is obtained by
exponentiating the endpoints of (9.20), and a 100 (1−α)% CI for λ is (9.21).
The fact that the Pareto distribution is a log-location-scale family and hence
has simple inference does not seem to be well known.

Example 9.12. If Y has a power distribution, Y ∼ POW (λ), then
W = − log(Y ) is EXP (0, λ). A 100 (1 − α)% CI for λ is (9.22).

Example 9.13. If Y has a truncated extreme value distribution, Y ∼
TEV (λ), then W = eY − 1 is EXP (0, λ). A 100 (1−α)% CI for λ is (9.22).

Example 9.14. If Y has a lognormal distribution, Y ∼ LN(µ, σ2), then
Wi = log(Yi) ∼ N(µ, σ2). Thus a (1 − α)100% CI for µ when σ is unknown
is

(W n − tn−1,1−α
2

SW√
n

, W n + tn−1,1−α
2

SW√
n

)
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where

SW =
n

n − 1
σ̂ =

√

√

√

√

1

n − 1

n
∑

i=1

(Wi − W )2,

and P (t ≤ tn−1,1−α
2
) = 1 − α/2 when t ∼ tn−1.

Example 9.15. Let X1, ..., Xn be iid Poisson(θ) random variables. The
classical large sample 100 (1 − α)% CI for θ is

X ± z1−α/2

√

X/n

where P (Z ≤ z1−α/2) = 1 − α/2 if Z ∼ N(0, 1).

Following Byrne and Kabaila (2005), a modified large sample 100 (1−α)%
CI for θ is (Ln, Un) where

Ln =
1

n





n
∑

i=1

Xi − 0.5 + 0.5z2
1−α/2 − z1−α/2

√

√

√

√

n
∑

i=1

Xi − 0.5 + 0.25z2
1−α/2





and

Un =
1

n





n
∑

i=1

Xi + 0.5 + 0.5z2
1−α/2 + z1−α/2

√

√

√

√

n
∑

i=1

Xi + 0.5 + 0.25z2
1−α/2



 .

Following Grosh (1989, p. 59, 197–200), let W =
∑n

i=1 Xi and suppose
that W = w is observed. Let P (T < χ2

d(α)) = α if T ∼ χ2
d. Then an “exact”

100 (1 − α)% CI for θ is

(

χ2
2w(α

2
)

2n
,
χ2

2w+2(1 − α
2
)

2n

)

for w 6= 0 and
(

0,
χ2

2(1 − α)

2n

)

for w = 0.
The “exact” CI is conservative: the actual coverage (1 − δn) ≥ 1 − α =

the nominal coverage. This interval performs well if θ is very close to 0. See
Problem 9.3.
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Example 9.16. Let Y1, ..., Yn be iid bin(1, ρ). Let ρ̂ =
∑n

i=1 Yi/n =
number of “successes”/n. The classical large sample 100 (1 − α)% CI for ρ
is

ρ̂ ± z1−α/2

√

ρ̂(1 − ρ̂)

n

where P (Z ≤ z1−α/2) = 1 − α/2 if Z ∼ N(0, 1).

The Agresti Coull CI takes ñ = n + z2
1−α/2 and

ρ̃ =
nρ̂ + 0.5z2

1−α/2

n + z2
1−α/2

.

(The method adds 0.5z2
1−α/2 “0’s and 0.5z2

1−α/2 “1’s” to the sample, so the

sample size increases by z2
1−α/2.) Then the large sample 100 (1−α)% Agresti

Coull CI for ρ is

p̃ ± z1−α/2

√

ρ̃(1 − ρ̃)

ñ
.

Now let Y1, ..., Yn be independent bin(mi, ρ) random variables, let W =
∑n

i=1 Yi ∼ bin(
∑n

i=1 mi, ρ) and let nw =
∑n

i=1 mi. Often mi ≡ 1 and then
nw = n. Let P (Fd1,d2 ≤ Fd1,d2(α)) = α where Fd1,d2 has an F distribution
with d1 and d2 degrees of freedom. Assume W = w is observed. Then the
Clopper Pearson “exact” 100 (1 − α)% CI for ρ is

(

0,
1

1 + nw F2nw,2(α)

)

for w = 0,

(

nw

nw + F2,2nw(1 − α)
, 1

)

for w = nw,

and (ρL, ρU) for 0 < w < nw with

ρL =
w

w + (nw − w + 1)F2(nw−w+1),2w(1 − α/2)

and

ρU =
w + 1

w + 1 + (nw − w)F2(nw−w),2(w+1)(α/2)
.

The “exact” CI is conservative: the actual coverage (1 − δn) ≥ 1 − α =
the nominal coverage. This interval performs well if ρ is very close to 0 or 1.
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The classical interval should only be used if it agrees with the Agresti Coull
interval. See Problem 9.2.

Example 9.17. Let ρ̂ = number of “successes”/n. Consider a taking a
simple random sample of size n from a finite population of known size N .
Then the classical finite population large sample 100 (1 − α)% CI for ρ is

ρ̂ ± z1−α/2

√

ρ̂(1 − ρ̂)

n − 1

(

N − n

N

)

= ρ̂ ± z1−α/2SE(ρ̂) (9.23)

where P (Z ≤ z1−α/2) = 1 − α/2 if Z ∼ N(0, 1).

Let ñ = n + z2
1−α/2 and

ρ̃ =
nρ̂ + 0.5z2

1−α/2

n + z2
1−α/2

.

(Heuristically, the method adds 0.5z2
1−α/2 “0’s” and 0.5z2

1−α/2 “1’s” to the

sample, so the sample size increases by z2
1−α/2.) Then a large sample 100

(1 − α)% Agresti Coull type finite population CI for ρ is

ρ̃ ± z1−α/2

√

ρ̃(1 − ρ̃)

ñ

(

N − n

N

)

= ρ̃ ± z1−α/2SE(ρ̃). (9.24)

Notice that a 95% CI uses z1−α/2 = 1.96 ≈ 2.
For data from a finite population, large sample theory gives useful ap-

proximations as N and n → ∞ and n/N → 0. Hence theory suggests that
the Agresti Coull CI should have better coverage than the classical CI if the
p is near 0 or 1, if the sample size n is moderate, and if n is small compared
to the population size N . The coverage of the classical and Agresti Coull CIs
should be very similar if n is large enough but small compared to N (which
may only be possible if N is enormous). As n increases to N , ρ̂ goes to p,
SE(ρ̂) goes to 0, and the classical CI may perform well. SE(ρ̃) also goes to
0, but ρ̃ is a biased estimator of ρ and the Agresti Coull CI will not perform
well if n/N is too large. See Problem 9.4.

Example 9.18. If Y1, ..., Yn are iid Weibull (φ, λ), then the MLE (φ̂, λ̂)
must be found before obtaining CIs. The likelihood

L(φ, λ) =
φn

λn

n
∏

i=1

yφ−1
i

1

λn
exp

[−1

λ

∑

yφ
i

]

,
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and the log likelihood

log(L(φ, λ)) = n log(φ) − n log(λ) + (φ− 1)
n
∑

i=1

log(yi) −
1

λ

∑

yφ
i .

Hence
∂

∂λ
log(L(φ, λ)) =

−n

λ
+

∑

yφ
i

λ2

set
= 0,

or
∑

yφ
i = nλ, or

λ̂ =

∑

yφ̂
i

n
.

Now
∂

∂φ
log(L(φ, λ)) =

n

φ
+

n
∑

i=1

log(yi) −
1

λ

∑

yφ
i log(yi)

set
= 0,

so

n + φ[
n
∑

i=1

log(yi) −
1

λ

∑

yφ
i log(yi)] = 0,

or
φ̂ =

n

1

λ̂

∑

yφ̂
i log(yi) −

∑n
i=1 log(yi)

.

One way to find the MLE is to use iteration

λ̂k =

∑

y
φ̂k−1

i

n

and
φ̂k =

n

1

λ̂k

∑

y
φ̂k−1

i log(yi) −
∑n

i=1 log(yi)
.

Since W = log(Y ) ∼ SEV (θ = log(λ1/φ), σ = 1/φ), let

σ̂R = MAD(W1, ..., Wn)/0.767049

and
θ̂R = MED(W1, ..., Wn) − log(log(2))σ̂R.

Then φ̂0 = 1/σ̂R and λ̂0 = exp(θ̂R/σ̂R). The iteration might be run until
both |φ̂k − φ̂k−1| < 10−6 and |λ̂k − λ̂k−1| < 10−6. Then take (φ̂, λ̂) = (φ̂k, λ̂k).
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By Example 8.13,

√
n

( (

λ̂

φ̂

)

−
(

λ
φ

) )

D→ N2(0,Σ)

where Σ =




1.109λ2(1 + 0.4635 log(λ) + 0.5482(log(λ))2) 0.257φλ + 0.608λφ log(λ)

0.257φλ + 0.608λφ log(λ) 0.608φ2



 .

Thus 1 − α ≈ P (−z1−α/2

√
0.608φ̂ <

√
n(φ̂ − φ) < z1−α/2

√
0.608φ̂) and a

large sample 100(1 − α)% CI for φ is

φ̂ ± z1−α/2 φ̂
√

0.608/n. (9.25)

Similarly, a large sample 100(1 − α)% CI for λ is

λ̂ ± z1−α/2√
n

√

1.109λ̂2[1 + 0.4635 log(λ̂) + 0.5824(log(λ̂))2]. (9.26)

In simulations, for small n the number of iterations for the MLE to con-
verge could be in the thousands, and the coverage of the large sample CIs is
poor for n < 50. See Problem 9.7.

Iterating the likelihood equations until “convergence” to a point θ̂ is
called a fixed point algorithm. Such algorithms may not converge, so check
that θ̂ satisfies the likelihood equations. Other methods such as Newton’s
method may perform better.

Newton’s method is used to solve g(θ) = 0 for θ, where the solution is
called θ̂, and uses

θk+1 = θk − [Dg(θk)
]−1g(θk) (9.27)

where

Dg(θ)
=







∂
∂θ1

g1(θ) . . . ∂
∂θp

g1(θ)
...

...
∂

∂θ1
gp(θ) . . . ∂

∂θp
gp(θ)






.

If the MLE is the solution of the likelihood equations, then use g(θ) =
(g1(θ), ..., gp(θ))T where

gi(θ) =
∂

∂θi
log(L(θ)).
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Let θ0 be an initial estimator, such as the method of moments estimator of
θ. Let D = Dg(θ)

. Then

Dij =
∂

∂θj
gi(θ) =

∂2

∂θi∂θj
log(L(θ)) =

n
∑

k=1

∂2

∂θi∂θj
log(f(xk|θ)),

and

1

n
Dij =

1

n

n
∑

k=1

∂2

∂θi∂θj
log(f(Xk|θ))

D→ E

[

∂2

∂θi∂θj
log(f(X|θ))

]

.

Newton’s method converges if the initial estimator is sufficiently close,
but may diverge otherwise. Hence

√
n consistent initial estimators are rec-

ommended. Newton’s method is also popular because if the partial derivative
and integration operations can be interchanged, then

1

n
Dg(θ)

D→ −I(θ). (9.28)

For example, the regularity conditions hold for a kP-REF by Proposition
8.20. Then a 100 (1 − α)% large sample CI for θi is

θ̂i ± z1−α/2

√

−D−1
ii (9.29)

where

D−1 =
[

D
g(

ˆθ)

]−1

.

This result follows because
√

−D−1
ii ≈

√

[I−1(θ̂)]ii/n.

Example 9.19. Problem 9.8 simulates CIs for the Rayleigh (µ, σ) dis-
tribution of the form (9.29) although no check has been made on whether
(9.28) holds for the Rayleigh distribution (which is not a 2P-REF).

L(µ, σ) =

(

∏ yi − µ

σ2

)

exp

[

− 1

2σ2

∑

(yi − µ)2

]

.

Notice that for fixed σ, L(Y(1), σ) = 0. Hence the MLE µ̂ < Y(1). Now the log
likelihood

log(L(µ, σ)) =
n
∑

i=1

log(yi − µ) − 2n log(σ)− 1

2

∑ (yi − µ)2

σ2
.
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Hence g1(µ, σ) =

∂

∂µ
log(L(µ, σ)) = −

n
∑

i=1

1

yi − µ
+

1

σ2

n
∑

i=1

(yi − µ)
set
= 0,

and g2(µ, σ) =

∂

∂σ
log(L(µ, σ)) =

−2n

σ
+

1

σ3

n
∑

i=1

(yi − µ)2 set
= 0,

which has solution

σ̂2 =
1

2n

n
∑

i=1

(Yi − µ̂)2. (9.30)

To obtain initial estimators, let σ̂M =
√

S2/0.429204 and µ̂M = Y −
1.253314σ̂M . These would be the method of moments estimators if S2

M was
used instead of the sample variance S2. Then use µ0 = min(µ̂M , 2Y(1) − µ̂M )

and σ0 =
√
∑

(Yi − µ0)2/(2n). Now θ = (µ, σ)T and

D ≡ Dg(θ)
=





∂
∂µ

g1(θ) ∂
∂σ

g1(θ)

∂
∂µ

g2(θ) ∂
∂σ

g2(θ)



 =





−∑n
i=1

1
(yi−µ)2

− n
σ2 − 2

σ3

∑n
i=1(yi − µ)

− 2
σ3

∑n
i=1(yi − µ) 2n

σ2 − 3
σ4

∑n
i=1(yi − µ)2



 .

So

θk+1 = θk −







−∑n
i=1

1
(yi−µk)2

− n
σ2

k

− 2
σ3

k

∑n
i=1(yi − µk)

− 2
σ3

k

∑n
i=1(yi − µk)

2n
σ2

k

− 3
σ4

k

∑n
i=1(yi − µk)

2







−1

g(θk)

where

g(θk) =







−∑n
i=1

1
(yi−µk)

− 1
σ2

k

∑n
i=1(yi − µk)

−2n
σk

+ 1
σ3

k

∑n
i=1(yi − µk)

2






.
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This formula could be iterated for 100 steps resulting in θ101 = (µ101, σ101)
T .

Then take µ̂ = min(µ101, 2Y(1) − µ101) and

σ̂ =

√

√

√

√

1

2n

n
∑

i=1

(Yi − µ̂)2.

Then θ̂ = (µ̂, σ̂)T and compute D ≡ D
g(

ˆθ)
. Then (assuming (9.28) holds) a

100 (1 − α)% large sample CI for µ is

µ̂ ± z1−α/2

√

−D−1
11

and a 100 (1 − α)% large sample CI for σ is

σ̂ ± z1−α/2

√

−D−1
22 .

Example 9.20. Assume that Y1, ..., Yn are iid discrete uniform (1, η)
where η is an integer. For example, each Yi could be drawn with replacement
from a population of η tanks with serial numbers 1, 2, ..., η. The Yi would be
the serial number observed, and the goal would be to estimate the population
size η = number of tanks. Then P (Yi = i) = 1/η for i = 1, ..., η. Then the
CDF of Y is

F (y) =

byc
∑

i=1

1

η
=

byc
η

for 1 ≤ y ≤ η. Here byc is the greatest integer function, eg, b7.7c = 7.
Now let Zi = Yi/η which has CDF

FZ(t) = P (Z ≤ t) = P (Y ≤ tη) =
btηc
η

≈ t

for 0 < t < 1. Let Z(n) = Y(n)/η = max(Z1, ..., Zn). Then

FZ(n)
(t) = P (

Y(n)

η
≤ t) =

(btηc
η

)n

for 1/η < t < 1.
Want cn so that

P (cn ≤ Y(n)

η
≤ 1) = 1 − α
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for 0 < α < 1. So

1 − FZ(n)
(cn) = 1 − α or 1 −

(bcnηc
η

)n

= 1 − α

or
bcnηc

η
= α1/n.

The solution may not exist, but cn − 1/η ≤ α1/n ≤ cn. Take cn = α1/n then

[Y(n),
Y(n)

α1/n
)

is a CI for η that has coverage slightly less than 100(1−α)% for small n, but
the coverage converges in probability to 1 as n → ∞.

For small n the midpoint of the 95% CI might be a better estimator of η
than Y(n). The left endpoint is closed since Y(n) is a consistent estimator of
η. If the endpoint was open, coverage would go to 0 instead of 1. It can be
shown that n (length CI) converges to −η log(α) in probability. Hence
n (length 95% CI) ≈ 3η. Problem 9.9 provides simulations that suggest that
the 95% CI coverage and length is close to the asymptotic values for n ≥ 10.

Example 9.21. Assume that Y1, ..., Yn are iid uniform (0, θ). Let Zi =
Yi/θ ∼ U(0, 1) which has cdf FZ(t) = t for 0 < t < 1. Let Z(n) = Y(n)/θ =
max(Z1, ..., Zn). Then

FZ(n)
(t) = P (

Y(n)

θ
≤ t) = tn

for 0 < t < 1.
Want cn so that

P (cn ≤ Y(n)

θ
≤ 1) = 1 − α

for 0 < α < 1. So

1 − FZ(n)
(cn) = 1 − α or 1 − cn

n = 1 − α

or
cn = α1/n.
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Then
(

Y(n),
Y(n)

α1/n

)

is an exact 100(1−α)% CI for θ. It can be shown that n (length CI) converges
to −θ log(α) in probability.

If Y1, ..., Yn are iid U(θ1, θ2) where θ1 is known, then Yi − θ1 are iid
U(0, θ2 − θ1) and

(

Y(n) − θ1,
Y(n) − θ1

α1/n

)

is a 100(1 − α)% CI for θ2 − θ1. Thus if θ1 is known, then

(

Y(n), θ1(1 −
1

α1/n
) +

Y(n)

α1/n

)

is a 100(1−α)% CI for θ2. Notice that if θ1 is unknown, Y(n) > 0 and Y(1) < 0,
then replacing θ1(1 − 1/α1/n) by 0 increases the coverage.

Example 9.22. Assume Y1, ..., Yn are iid with mean µ and variance σ2.
Bickel and Doksum (2007, p. 279) suggest that

Wn = n−1/2

[

(n − 1)S2

σ2
− n

]

can be used as an asymptotic pivot for σ2 if E(Y 4) < ∞. Notice that Wn =

n−1/2

[∑

(Yi − µ)2

σ2
− n(Y − µ)2

σ2
− n

]

=

√
n

[

∑
(

Yi−µ
σ

)2

n
− 1

]

− 1√
n

n

(

Y − µ

σ

)2

= Xn − Zn.

Since
√

nZn
D→ χ2

1, the term Zn
D→ 0. Now Xn =

√
n(U − 1)

D→ N(0, τ ) by
the CLT since Ui = [(Yi − µ)/σ]2 has mean E(Ui) = 1 and variance

V (Ui) = τ = E(U2
i ) − (E(Ui))

2 =
E[(Yi − µ)4]

σ4
− 1 = κ + 2

where κ is the kurtosis of Yi. Thus Wn
D→ N(0, τ ).
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Hence

1 − α ≈ P (−z1−α/2 <
Wn√

τ
< z1−α/2) = P (−z1−α/2

√
τ < Wn < z1−α/2

√
τ )

= P (−z1−α/2

√
nτ <

(n − 1)S2

σ2
− n < z1−α/2

√
nτ )

= P (n − z1−α/2

√
nτ <

(n − 1)S2

σ2
< n + z1−α/2

√
nτ).

Hence a large sample 100(1 − α)% CI for σ2 is
(

(n − 1)S2

n + z1−α/2

√
nτ̂

,
(n − 1)S2

n − z1−α/2

√
nτ̂

)

where

τ̂ =
1
n

∑n
i=1(Yi − Y )4

S4
− 1.

Notice that this CI needs n > z1−α/2

√
nτ̂ for the right endpoint to be positive.

It can be shown that
√

n (length CI) converges to 2σ2z1−α/2

√
τ in probability.

Problem 9.10 uses an asymptotically equivalent 100(1 − α)% CI of the
form

(

(n − a)S2

n + tn−1,1−α/2

√
nτ̂

,
(n + b)S2

n − tn−1,1−α/2

√
nτ̂

)

where a and b depend on τ̂ . The goal was to make a 95% CI with good
coverage for a wide variety of distributions (with 4th moments) for n ≥ 100.
The price is that the CI is too long for some of the distributions with small
kurtosis. The N(µ, σ2) distribution has τ = 2, while the EXP(λ) distribution
has σ2 = λ2 and τ = 8. The quantity τ is small for the uniform distribution
but large for the lognormal LN(0,1) distribution.

By the binomial theorem, if E(Y 4) exists and E(Y ) = µ then

E(Y − µ)4 =
4
∑

j=0

(

4

j

)

E[Y j](−µ)4−j =

µ4 − 4µ3E(Y ) + 6µ2(V (Y ) + [E(Y )]2) − 4µE(Y 3) + E(Y 4).

This fact can be useful for computing

τ =
E[(Yi − µ)4]

σ4
− 1 = κ + 2.
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9.3 Complements

Guenther (1969) is a useful reference for confidence intervals. Agresti and
Coull (1998) and Brown, Cai and DasGupta (2001, 2002) discuss CIs for a
binomial proportion. Agresti and Caffo (2000) discuss CIs for the difference
of two binomial proportions ρ1 − ρ2 obtained from 2 independent samples.
Barker (2002) and Byrne and Kabaila (2005) discuss CIs for Poisson (θ) data.
Brown, Cai and DasGupta (2003) discuss CIs for several discrete exponential
families. Abuhassan and Olive (2008) consider CIs for some transformed
random variable.

A comparison of CIs with other intervals (such as prediction intervals) is
given in Vardeman (1992).

Newton’s method is described, for example, in Peressini, Sullivan and Uhl
(1988, p. 85).

9.4 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

Refer to Chapter 10 for the pdf or pmf of the distributions in
the problems below.

9.1. (Aug. 2003 QUAL): Suppose that X1, ..., Xn are iid with the Weibull
distribution, that is the common pdf is

f(x) =

{

b
a
xb−1e−

xb

a 0 < x
0 elsewhere

where a is the unknown parameter, but b(> 0) is assumed known.

a) Find a minimal sufficient statistic for a
b) Assume n = 10. Use the Chi-Square Table and the minimal sufficient

statistic to find a 95% two sided confidence interval for a.

R/Splus Problems

Use the command source(“A:/sipack.txt”) to download the func-
tions. See Section 11.1. Typing the name of the sipack function, eg
accisimf, will display the code for the function. Use the args command, eg
args(accisimf), to display the needed arguments for the function.
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9.2. Let Y1, ..., Yn be iid binomial(1, ρ) random variables.
From the website (www.math.siu.edu/olive/sipack.txt), enter the R/Splus

function bcisim into R/Splus. This function simulates the 3 CIs (classical,
modified and exact) from Example 9.16, but changes the CI (L,U) to
(max(0,L),min(1,U)) to get shorter lengths.

To run the function for n = 10 and ρ ≡ p = 0.001, enter the R/Splus
command bcisim(n=10,p=0.001). Make a table with header “n p ccov clen
accov aclen ecov elen.” Fill the table for n = 10 and p = 0.001, 0.01, 0.5,
0.99, 0.999 and then repeat for n = 100. The “cov” is the proportion of 500
runs where the CI contained p and the nominal coverage is 0.95. A coverage
between 0.92 and 0.98 gives little evidence that the true coverage differs
from the nominal coverage of 0.95. A coverage greater that 0.98 suggests
that the CI is conservative while a coverage less than 0.92 suggests that the
CI is liberal. Typically want the true coverage ≥ to the nominal coverage, so
conservative intervals are better than liberal CIs. The “len” is the average
scaled length of the CI and for large n should be near 2(1.96)

√

p(1 − p).
From your table, is the classical estimator or the Agresti Coull CI better?

When is the exact interval good? Explain briefly.

9.3. Let X1, ..., Xn be iid Poisson(θ) random variables.
From the website (www.math.siu.edu/olive/sipack.txt), enter the R/Splus

function poiscisim into R/Splus. This function simulates the 3 CIs (classi-
cal, modified and exact) from Example 9.15. To run the function for n = 100
and θ = 5, enter the R/Splus command poiscisim(theta=5). Make a table
with header “theta ccov clen mcov mlen ecov elen.” Fill the table for theta =
0.001, 0.1, 1.0, and 5.

The “cov” is the proportion of 500 runs where the CI contained θ and
the nominal coverage is 0.95. A coverage between 0.92 and 0.98 gives little
evidence that the true coverage differs from the nominal coverage of 0.95.
A coverage greater that 0.98 suggests that the CI is conservative while a
coverage less than 0.92 suggests that the CI is liberal (too short). Typically
want the true coverage ≥ to the nominal coverage, so conservative intervals
are better than liberal CIs. The “len” is the average scaled length of the CI
and for large nθ should be near 2(1.96)

√
θ for the classical and modified CIs.

From your table, is the classical CI or the modified CI or the exact CI
better? Explain briefly. (Warning: in a 1999 version of R, there was a bug
for the Poisson random number generator for θ ≥ 10. The 2007 version of R
seems to work.)
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9.4. This problem simulates the CIs from Example 9.17.
a) Download the function accisimf into R/Splus.

b) The function will be used to compare the classical and Agresti Coull
95% CIs when the population size N = 500 and p is close to 0.01. The
function generates such a population, then selects 5000 independent simple
random samples from the population. The 5000 CIs are made for both types
of intervals, and the number of times the true population p is in the ith CI is
counted. The simulated coverage is this count divided by 5000 (the number
of CIs). The nominal coverage is 0.95. To run the function for n = 50
and p ≈ 0.01, enter the command accisimf(n=50,p=0.01). Make a table
with header “n p ccov accov.” Fill the table for n = 50 and then repeat for
n = 100, 150, 200, 250, 300, 350, 400 and 450. The “cov” is the proportion of
5000 runs where the CI contained p and the nominal coverage is 0.95. For
5000 runs, an observed coverage between 0.94 and 0.96 gives little evidence
that the true coverage differs from the nominal coverage of 0.95. A coverage
greater that 0.96 suggests that the CI is conservative while a coverage less
than 0.94 suggests that the CI is liberal. Typically want the true coverage
≥ to the nominal coverage, so conservative intervals are better than liberal
CIs. The “ccov” is for the classical CI while “accov” is for the Agresti Coull
CI.

c) From your table, for what values of n is the Agresti Coull CI better,
for what values of n are the 2 intervals about the same, and for what values
of n is the classical CI better?

9.5. This problem simulates the CIs from Example 9.10.

a) Download the function expsim into R/Splus.

The output from this function are the coverages scov, lcov and ccov of
the CI for λ, θ and of λ if θ is known. The scaled average lengths of the CIs
are also given. The lengths of the CIs for λ are multiplied by

√
n while the

length of the CI for θ is multiplied by n.

b) The 5000 CIs are made for 3 intervals, and the number of times the
true population parameter λ or θ is in the ith CI is counted. The simulated
coverage is this count divided by 5000 (the number of CIs). The nominal
coverage is 0.95. To run the function for n = 5, θ = 0 and λ = 1 enter the
command expsim(n=5). Make a table with header
“CI for λ CI for θ CI for λ, θ unknown.”
Then a second header “n cov slen cov slen cov slen.” Fill the table for n = 5
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and then repeat for n = 10, 20, 50, 100 and 1000. The “cov” is the proportion
of 5000 runs where the CI contained λ or θ and the nominal coverage is
0.95. For 5000 runs, an observed coverage between 0.94 and 0.96 gives little
evidence that the true coverage differs from the nominal coverage of 0.95.
A coverage greater that 0.96 suggests that the CI is conservative while a
coverage less than 0.94 suggests that the CI is liberal. As n gets large, the
values of slen should get closer to 3.92, 2.9957 and 3.92.

9.6. This problem simulates the CIs from Example 9.9.

a) Download the function hnsim into R/Splus.
The output from this function are the coverages scov, lcov and ccov of

the CI for σ2, µ and of σ2 if µ is known. The scaled average lengths of the
CIs are also given. The lengths of the CIs for σ2 are multiplied by

√
n while

the length of the CI for µ is multiplied by n.

b) The 5000 CIs are made for 3 intervals, and the number of times the
true population parameter θ = µ or σ2 is in the ith CI is counted. The
simulated coverage is this count divided by 5000 (the number of CIs). The
nominal coverage is 0.95. To run the function for n = 5, µ = 0 and σ2 = 1
enter the command hnsim(n=5). Make a table with header
“CI for σ2 CI for µ CI for σ2, µ unknown.”
Then a second header “n cov slen cov slen cov slen.” Fill the table for n = 5
and then repeat for n = 10, 20, 50, 100 and 1000. The “cov” is the proportion
of 5000 runs where the CI contained θ and the nominal coverage is 0.95. For
5000 runs, an observed coverage between 0.94 and 0.96 gives little evidence
that the true coverage differs from the nominal coverage of 0.95. A coverage
greater that 0.96 suggests that the CI is conservative while a coverage less
than 0.94 suggests that the CI is liberal. As n gets large, the values of slen
should get closer to 5.5437, 3.7546 and 5.5437.

9.7. a) Download the function wcisim into R/Splus.
The output from this function includes the coverages pcov and lcov of

the CIs for φ and λ if the simulated data Y1, ..., Yn are iid Weibull (φ, λ). The
scaled average lengths of the CIs are also given. The values pconv and lconv

should be less than 10−5. If this is not the case, increase iter. 100 samples
of size n = 100 are used to create the 95% large sample CIs for φ and λ
given in Example 9.18. If the sample size is large, then sdphihat, the sample
standard deviation of the 100 values of the MLE φ̂, should be close to phiasd

= φ
√

.608. Similarly, sdlamhat should be close to the asymptotic standard
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deviation lamasd =
√

1.109λ2(1 + 0.4635 log(λ) + 0.5282(log(λ))2).

b) Type the command
wcisim(n = 100, phi = 1, lam = 1, iter = 100)

and record the coverages for the CIs for φ and λ.

c) Type the command
wcisim(n = 100, phi = 20, lam = 20, iter = 100)

and record the coverages for the CIs for φ and λ.

9.8. a) Download the function raysim into R/Splus.
b) Type the command

raysim(n = 100, mu = 20, sigma = 20, iter = 100)

and record the coverages for the CIs for µ and σ.

9.9. a) Download the function ducisim into R/Splus to simulate the CI
of Example 9.20.

b) Type the command
ducisim(n=10,nruns=1000,eta=1000).
Repeat for n = 50, 100, 500 and make a table with header
“n coverage n 95% CI length.”
Fill in the table for n = 10, 50, 100 and 500.

c) Are the coverages close to or higher than 0.95 and is the scaled length
close to 3η = 3000?

9.10. a) Download the function varcisim into R/Splus to simulate a
modified version of the CI of Example 9.22.

b) Type the command varcisim(n = 100, nruns = 1000, type = 1)

to simulate the 95% CI for the variance for iid N(0,1) data. Is the coverage
vcov close to or higher than 0.95? Is the scaled length vlen =

√
n (CI length)

= 2(1.96)σ2
√

τ = 5.554σ2 close to 5.554?
c) Type the command varcisim(n = 100, nruns = 1000, type = 2)

to simulate the 95% CI for the variance for iid EXP(1) data. Is the coverage
vcov close to or higher than 0.95? Is the scaled length vlen =

√
n (CI length)

= 2(1.96)σ2
√

τ = 2(1.96)λ2
√

8 = 11.087λ2 close to 11.087?
d) Type the command varcisim(n = 100, nruns = 1000, type = 3)

to simulate the 95% CI for the variance for iid LN(0,1) data. Is the coverage
vcov close to or higher than 0.95? Is the scaled length vlen long?
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