
Chapter 5

Point Estimation

5.1 Maximum Likelihood Estimators

A point estimator gives a single value as an estimate of a parameter. For
example, Y = 10.54 is a point estimate of the population mean µ. An inter-
val estimator gives a range (Ln, Un) of reasonable values for the parameter.
Confidence intervals, studied in Chapter 9, are interval estimators. The most
widely used point estimators are the maximum likelihood estimators.

Definition 5.1. Let f(y|θ) be the pmf or pdf of a sample Y with
parameter space Θ. If Y = y is observed, then the likelihood function
L(θ) ≡ L(θ|y) = f(y|θ). For each sample point y = (y1, ..., yn), let θ̂(y) ∈ Θ
be the parameter value at which L(θ) ≡ L(θ|y) attains its maximum as a
function of θ with y held fixed. Then the maximum likelihood estimator
(MLE) of the parameter θ based on the sample Y is θ̂(Y ).

The following remarks are important. I) It is crucial to observe that
the likelihood function is a function of θ (and that y1, ..., yn act as fixed
constants). Note that the pdf or pmf f(y|θ) is a function of n variables
while L(θ) is a function of k variables if θ is a k × 1 vector. Often k = 1 or
k = 2 while n could be in the hundreds or thousands.

II) If Y1, ..., Yn is an independent sample from a population with pdf or
pmf f(y|θ), then the likelihood function

L(θ) ≡ L(θ|y1, ..., yn) =
n
∏

i=1

f(yi|θ). (5.1)
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L(θ) =

n
∏

i=1

fi(yi|θ)

if the Yi are independent but have different pdfs or pmfs.

III) If the MLE θ̂ exists, then θ̂ ∈ Θ. Hence if θ̂ is not in the parameter
space Θ, then θ̂ is not the MLE of θ.

IV) If the MLE is unique, then the MLE is a function of the minimal
sufficient statistic. See Levy (1985) and Moore (1971). This fact is useful
since exponential families tend to have a tractable log likelihood and an easily
found minimal sufficient statistic.

Theorem 5.1: Invariance Principle. If θ̂ is the MLE of θ, then h(θ̂)
is the MLE of h(θ) where h is a function with domain Θ.

This theorem will be proved in Section 5.4.

There are four commonly used techniques for finding the MLE.

• Potential candidates can be found by differentiating log L(θ), the log
likelihood.

• Potential candidates can be found by differentiating the likelihood
L(θ).

• The MLE can sometimes be found by direct maximization of the like-
lihood L(θ).

• Invariance Principle: If θ̂ is the MLE of θ, then h(θ̂) is the MLE of
h(θ).

The one parameter case can often be solved by hand with the following
technique. To show that θ̂ is the MLE of θ is equivalent to showing that θ̂ is
the global maximizer of log L(θ) on Θ where Θ is an interval with endpoints
a and b, not necessarily finite. Show that log L(θ) is differentiable on (a, b).
Then show that θ̂ is the unique solution to the equation d

dθ
log L(θ) = 0 and

that the 2nd derivative evaluated at θ̂ is negative:
d2

dθ2
log L(θ)

∣

∣

∣

∣

θ̂

< 0. See

Remark 5.1V below.
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Figure 5.1: The local max in a) is a global max, but not for b).

Remark 5.1. From calculus, recall the following facts. I) If the function
h is continuous on an interval [a, b] then both the max and min of h exist.
Suppose that h is continuous on an interval [a, b] and differentiable on (a, b).
Solve h′(θ) ≡ 0 and find the places where h′(θ) does not exist. These values
are the critical points. Evaluate h at a, b, and the critical points. One of
these values will be the min and one the max.

II) Assume h is continuous. Then a critical point θo is a local max of h(θ)
if h is increasing for θ < θo in a neighborhood of θo and if h is decreasing for
θ > θo in a neighborhood of θo (and θo is a global max if you can remove the
phrase “in a neighborhood of θo”). The first derivative test is often used.

III) If h is strictly concave (
d2

dθ2
h(θ) < 0 for all θ ∈ Θ), then any local

max of h is a global max.

IV) Suppose h′(θo) = 0. The 2nd derivative test states that if
d2

dθ2
h(θo) < 0,

then θo is a local max.

V) If h(θ) is a continuous function on an interval with endpoints a < b (not
necessarily finite), differentiable on (a, b) and if the critical point is unique,
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then the critical point is a global maximum if it is a local maximum. To
see this claim, note that if the critical point is not the global max then there
would be a local minimum and the critical point would not be unique. Also
see Casella and Berger (2002, p. 317). Let a = −2 and b = 4. In Figure 5.1
a), the critical point for g(θ) = −θ2 + 25 is at θ = 0, is unique, and is both
a local and global maximum. In Figure 5.1 b), h(θ) = θ3 − 1.5θ2 − 6θ + 11,
the critical point θ = −1 is not unique and is a local max but not a global
max.

VI) If h is strictly convex (
d2

dθ2
h(θ) > 0 for all θ ∈ Θ), then any local min

of h is a global min. If h′(θo) = 0, then the 2nd derivative test states that if
d2

dθ2
h(θo) > 0, then θo is a local min.

Tips: a) exp(a) = ea and log(y) = ln(y) = loge(y) is the natural loga-
rithm.
b) log(ab) = b log(a) and log(eb) = b.
c) log(

∏n
i=1 ai) =

∑n
i=1 log(ai).

d) log L(θ) = log(
∏n

i=1 f(yi|θ)) =
∑n

i=1 log(f(yi|θ)).
e) If t is a differentiable function and t(θ) 6= 0, then d

dθ
log(|t(θ)|) = t′(θ)

t(θ)

where t′(θ) = d
dθ

t(θ). In particular, d
dθ

log(θ) = 1/θ.
f) Anything that does not depend on θ is treated as a constant with respect
to θ and hence has derivative 0 with respect to θ.

Showing that θ̂ is the global maximum of log(L(θ)) is much more difficult
in the multiparameter case. To show that θ̂ is a local max often involves using
a Hessian matrix of second derivatives. Calculations involving the Hessian
matrix are often too difficult for exams. Often there is no closed form solution
for the MLE and a computer needs to be used. For hand calculations, Remark
5.2 and Theorem 5.2 can often be used to avoid using the Hessian matrix.

Definition 5.2. Let the data be Y1, ..., Yn and suppose that the pa-
rameter θ has components (θ1, ..., θk). Then θ̂i will be called the MLE of
θi. Without loss of generality, assume that θ = (θ1, θ2), that the MLE of
θ is (θ̂1, θ̂2) and that θ̂2 is known. The profile likelihood function is
LP (θ1) = L(θ1, θ̂2(y)) with domain {θ1 : (θ1, θ̂2) ∈ Θ}.

Remark 5.2. Since L(θ1, θ2) is maximized over Θ by (θ̂1, θ̂2), the max-
imizer of the profile likelihood function and of the log profile likelihood func-
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tion is θ̂1. The log profile likelihood function can often be maximized using
calculus if θ1 = θ1 is a scalar.

Theorem 5.2: Existence of the MLE for a REF (Barndorff–
Nielsen 1982): Assume that the natural parameterization of the k-parameter
REF is used so that Ω is an open k-dimensional convex set (usually an open
interval or cross product of open intervals). Then the log likelihood function
log L(η) is a strictly concave function of η. Hence if η̂ is a critical point of
log L(η) and if η̂ ∈ Ω then η̂ is the unique MLE of η. Hence the Hessian
matrix of 2nd derivatives does not need to be checked!

Remark 5.3. A nice proof of this result would be useful to show that
the result is true and not just part of the statistical folklore. For k-parameter
exponential families with k > 1, it is usually easier to verify that the family
is regular than to calculate the Hessian matrix. For 1P–REFs, check that
the critical point is a global maximum using standard calculus techniques
such as calculating the second derivative of the log likelihood log L(θ). For
a 1P–REF, verifying that the family is regular is often more difficult than
using calculus. Also, often the MLE is desired for a parameter space ΘU

which is not an open set (eg for ΘU = [0, 1] instead of Θ = (0, 1)).

Remark 5.4, (Barndorff–Nielsen 1982). The MLE does not exist
if η̂ is not in Ω, an event that occurs with positive probability for discrete
distributions. If T is the complete sufficient statistic and C is the closed
convex hull of the support of T , then the MLE exists iff T ∈ int C where
int C is the interior of C .

Remark 5.5. As illustrated in the following examples, the 2nd derivative
is evaluated at θ̂(y). The MLE is a statistic and Tn(y) = θ̂(y) is the observed
value of the MLE Tn(Y ) = θ̂(Y ). Often y and Y are suppressed.

Example 5.1. Suppose that Y1, ..., Yn are iid Poisson (θ). This distribu-
tion is a 1P–REF with Θ = (0,∞). The likelihood

L(θ) = c e−nθ exp[log(θ)
∑

yi]

where the constant c does not depend on θ, and the log likelihood

log(L(θ)) = d − nθ + log(θ)
∑

yi
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where d = log(c) does not depend on θ. Hence

d

dθ
log(L(θ)) = −n +

1

θ

∑

yi
set
= 0,

or
∑

yi = nθ, or

θ̂ = y.

Notice that θ̂ is the unique solution and

d2

dθ2
log(L(θ)) =

−∑ yi

θ2
< 0

unless
∑

yi = 0. Hence for
∑

yi > 0 the log likelihood is strictly concave and
Y is the MLE of θ. The MLE does not exist if

∑n
i=1 Yi = 0 since 0 is not in

Θ.
Now suppose that Θ = [0,∞). This family is not an exponential family

since the same formula for the pmf needs to hold for all values of θ ∈ Θ and
00 is not defined. Notice that

f(y|θ) =
e−θθy

y!
I [θ > 0] + 1 I [θ = 0, y = 0].

Now
IA(θ)IB(θ) = IA∩B(θ)

and IØ(θ) = 0 for all θ. Hence the likelihood

L(θ) = e−nθ exp[log(θ)
n
∑

i=1

yi]
1

∏n
i=1 yi!

I [θ > 0] + 1 I [θ = 0,
n
∑

i=1

yi = 0].

If
∑

yi 6= 0, then y maximizes L(θ) by the work above. If
∑

yi = 0, then
L(θ) = e−nθI(θ > 0) + I(θ = 0) = e−nθI(θ ≥ 0) which is maximized by
θ = 0 = y. Hence Y is the MLE of θ if Θ = [0,∞).

By invariance, t(Y ) is the MLE of t(θ). Hence (Y )2 is the MLE of θ2.
sin(Y ) is the MLE of sin(θ), et cetera.

Example 5.2. Suppose that Y1, ..., Yn are iid N(µ, σ2) where σ2 > 0 and
µ ∈ < = (−∞,∞). Then

L(µ, σ2) =

(

1√
2π

)n
1

(σ2)n/2
exp

[

−1

2σ2

n
∑

i=1

(yi − µ)2

]

.
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Notice that
d

dµ

n
∑

i=1

(yi − µ)2 =

n
∑

i=1

−2(yi − µ)
set
= 0

or
∑n

i=1 yi = nµ or µ̂ = y. Since µ̂ is the unique solution and

d2

dµ2

n
∑

i=1

(yi − µ)2 = 2n > 0,

µ̂ = y is the minimizer of h(µ) =
∑n

i=1(yi −µ)2. Hence y is the maximizer of

exp

[

−1

2σ2

n
∑

i=1

(yi − µ)2

]

regardless of the value of σ2 > 0. Hence µ̂ = Y is the MLE of µ and the MLE
of σ2 can be found by maximizing the profile likelihood

LP (σ2) = L(µ̂(y), σ2) =

(

1√
2π

)n
1

(σ2)n/2
exp

[

−1

2σ2

n
∑

i=1

(yi − y)2

]

.

Writing τ = σ2 often helps prevent calculus errors. Then

log(Lp(τ )) = d − n

2
log(τ ) +

−1

2τ

n
∑

i=1

(yi − y)2

where the constant d does not depend on τ. Hence

d

dτ
log(Lp(τ )) =

−n

2

1

τ
+

1

2τ 2

n
∑

i=1

(yi − y)2 set
= 0,

or

nτ =
n
∑

i=1

(yi − y)2

or

τ̂ =
1

n

n
∑

i=1

(yi − y)2

and the solution τ̂ is the unique critical point. Note that

d2

dµ2
log(LP (τ )) =

n

2(τ )2
−
∑

(yi − y)2

(τ )3

∣

∣

∣

∣

τ=τ̂

=
n

2(τ̂ )2
− nτ̂

(τ̂ )3

2

2
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=
−n

2(τ̂ )2
< 0.

Hence σ̂2 = τ̂ = 1
n

∑n
i=1(Yi − Y )2 is the MLE of σ2 by Remark 5.1 V). Thus

(Y , 1
n

∑n
i=1(Yi − Y )2) is the MLE of (µ, σ2).

Example 5.3. Following Pewsey (2002), suppose that Y1, ..., Yn are iid
HN(µ, σ2) where µ and σ2 are both unknown. Let the ith order statistic
Y(i) ≡ Yi:n. Then the likelihood

L(µ, σ2) = cI [y1:n ≥ µ]
1

σn
exp

[

(
−1

2σ2
)
∑

(yi − µ)2

]

.

For any fixed σ2 > 0, this likelihood is maximized by making
∑

(yi − µ)2

as small as possible subject to the constraint y1:n ≥ µ. Notice that for any
µo < y1:n, the terms (yi − y1:n)

2 < (yi − µo)
2. Hence the MLE of µ is

µ̂ = Y1:n

and the MLE of σ2 is found by maximizing the log profile likelihood

log(LP (σ2)) = log(L(y1:n, σ
2)) = d − n

2
log(σ2) − 1

2σ2

∑

(yi − y1:n)
2,

and
d

d(σ2)
log(L(y1:n, σ

2)) =
−n

2(σ2)
+

1

2(σ2)2

∑

(yi − y1:n)
2 set

= 0.

Or
∑

(yi − y1:n)
2 = nσ2. So

σ̂2 ≡ wn =
1

n

∑

(yi − y1:n)
2.

Since the solution σ̂2 is unique and

d2

d(σ2)2
log(L(y1:n, σ

2)) =

n

2(σ2)2
−
∑

(yi − µ)2

(σ2)3
)

∣

∣

∣

∣

σ2=σ̂2

=
n

2(σ̂2)2
− nσ̂2

(σ̂2)3

2

2
=

−n

2σ̂2
< 0,

(µ̂, σ̂2) = (Y1:n, Wn) is MLE of (µ, σ2).
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Example 5.4. Suppose that the random vectors X1, ..., Xn are iid from
a multivariate normal Np(µ,Σ) distribution where Σ is a positive definite
matrix. To find the MLE of (µ,Σ) we will use three results proved in An-
derson (1984, p. 62).

i)

n
∑

i=1

(xi − µ)TΣ−1(xi − µ) = tr(Σ−1A) + n(x − µ)TΣ−1(x −µ)

where

A =

n
∑

i=1

(xi − x)(xi − x)T .

ii) Let C and D be positive definite matrices. Then C = 1
n
D maximizes

h(C) = −n log(|C|) − tr(C−1D)

with respect to positive definite matrices.
iii) Since Σ−1 is positive definite, (x − µ)T Σ−1(x − µ) ≥ 0 as a function of
µ with equality iff µ = x.

Since

f(x|µ,Σ) =
1

(2π)p/2|Σ|1/2
exp

[

−1

2
(x −µ)TΣ−1(x −µ)

]

,

the likelihood function

L(µ,Σ) =

n
∏

i=1

f(xi|µ,Σ)

=
1

(2π)np/2|Σ|n/2
exp

[

−1

2

n
∑

i=1

(xi −µ)TΣ−1(xi −µ)

]

,

and the log likelihood log(L(µ,Σ)) =

−np

2
log(2π) − n

2
log(|Σ|)− 1

2

n
∑

i=1

(xi − µ)TΣ−1(xi − µ)

= −np

2
log(2π) − n

2
log(|Σ|) − 1

2
tr(Σ−1A) − n

2
(x −µ)TΣ−1(x −µ)
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by i). Now the last term is maximized by µ = x by iii) and the middle two
terms are maximized by 1

n
A by ii) since Σ and A are both positive definite.

Hence the MLE of (µ,Σ) is

(µ̂, Σ̂) = (X,
1

n

n
∑

i=1

(X i −X)(X i − X)T ).

Example 5.5. Let X1, ..., Xn be independent identically distributed ran-
dom variables from a lognormal (µ, σ2) distribution with pdf

f(x) =
1

x
√

2πσ2
exp (

−(log(x) − µ)2

2σ2
)

where σ > 0 and x > 0 and µ is real. Assume that σ is known.
a) Find the maximum likelihood estimator of µ.

b) What is the maximum likelihood estimator of µ3? Explain.

Solution: a)

µ̂ =

∑

log(Xi)

n

To see this note that

L(µ) = (
∏ 1

xi

√
2πσ2

) exp(
−∑(log(xi) − µ)2

2σ2
.

So

log(L(µ)) = log(c) −
∑

(log(xi) − µ)2

2σ2

and the derivative of the log likelihood wrt µ is
∑

2(log(xi) − µ)

2σ2
.

Setting this quantity equal to 0 gives nµ =
∑

log(xi) and the solution is
unique. The second derivative is −n/σ2 < 0, so µ̂ is indeed the global
maximum.

b)
(∑

log(Xi)

n

)3

by invariance.
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Example 5.6. Suppose that the joint probability distribution function
of X1, ..., Xk is

f(x1, x2, ..., xk|θ) =
n!

(n − k)!θk
exp

(

−[(
∑k

i=1 xi) + (n − k)xk]

θ

)

where 0 ≤ x1 ≤ x2 ≤ · · · ≤ xk and θ > 0.

a) Find the maximum likelihood estimator (MLE) for θ.

b) What is the MLE for θ2? Explain briefly.

Solution: a) Let t = [(
∑k

i=1 xi)+(n−k)xk]. L(θ) = f(x|θ) and log(L(θ)) =
log(f(x|θ)) =

d − k log(θ) − t

θ
.

Hence
d

dθ
log(L(θ)) =

−k

θ
+

t

θ2

set
= 0.

Hence
kθ = t

or

θ̂ =
t

k
.

This is a unique solution and

d2

dθ2
log(L(θ)) =

k

θ2
− 2t

θ3

∣

∣

∣

∣

θ=θ̂

=
k

θ̂2
− 2kθ̂

θ̂3
= − k

θ̂2
< 0.

Hence θ̂ = T/k is the MLE where T = [(
∑k

i=1 Xi) + (n − k)Xk].

b) θ̂2 by the invariance principle.

Example 5.7. Let X1, ..., Xn be independent identically distributed ran-
dom variables with pdf

f(x) =
1

λ
x

1

λ
−1,

where λ > 0 and 0 < x ≤ 1.

a) Find the maximum likelihood estimator of λ.

b) What is the maximum likelihood estimator of λ3? Explain.
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Solution: a) For 0 < x ≤ 1

f(x) =
1

λ
exp

[

(
1

λ
− 1) log(x)

]

.

Hence the likelihood

L(λ) =
1

λn
exp

[

(
1

λ
− 1)

∑

log(xi)

]

,

and the log likelihood

log(L(λ)) = −n log(λ) + (
1

λ
− 1)

∑

log(xi).

Hence
d

dλ
log(L(λ)) =

−n

λ
−
∑

log(xi)

λ2

set
= 0,

or −∑ log(xi) = nλ, or

λ̂ =
−∑ log(xi)

n
.
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Notice that λ̂ is the unique solution and that

d2

dλ2
log(L(λ)) =

n

λ2
+

2
∑

log(xi)

λ3

∣

∣

∣

∣

λ=λ̂

=
n

λ̂2
− 2nλ̂

λ̂3
=

−n

λ̂2
< 0.

Hence λ̂ = −∑ log(Xi)/n is the MLE of λ.

b) By invariance, λ̂3 is the MLE of λ.

Example 5.8. Suppose Y1, ..., Yn are iid U(θ − 1, θ + 1). Then

L(θ) =
n
∏

i=1

f(yi) =
n
∏

i=1

1

2
I(θ − 1 ≤ yi ≤ θ + 1) =

1

2n
I(θ − 1 ≤ all yi ≤ θ + 1)

=
1

2n
I(θ − 1 ≤ y(1) ≤ y(n) ≤ θ + 1) =

1

2n
I(y(n) − 1 ≤ θ ≤ y(1) + 1).

Let 0 ≤ c ≤ 1. Then any estimator of the form θ̂c = c[Y(n)−1]+(1−c)[Y(1)+1]
is an MLE of θ. Figure 5.2 shows L(θ) for U(2, 4) data with n = 10, y(1) =
2.0375 and y(n) = 3.7383.

5.2 Method of Moments Estimators

The method of moments is another useful way for obtaining point estimators.
Let Y1, ..., Yn be an iid sample and let

µ̂j =
1

n

n
∑

i=1

Y j
i and µj ≡ µj(θ) = Eθ(Y j) (5.2)

for j = 1, ..., k. So µ̂j is the jth sample moment and µj is the jth population
moment. Fix k and assume that µj = µj(θ1, ..., θk). Solve the system

µ̂1
set
= µ1(θ1, ..., θk)

...
...

µ̂k
set
= µk(θ1, ..., θk)

for θ̃.
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Definition 5.3. The solution θ̃ = (θ̃1, ..., θ̃k) is the method of mo-
ments estimator of θ. If g is a continuous function of the first k moments
and h(θ) = g(µ1(θ), ..., µk(θ)), then the method of moments estimator of
h(θ) is

g(µ̂1, ..., µ̂k).

Sometimes the notation θ̂MLE and θ̂MM will be used to denote the MLE
and method of moments estimators of θ, respectively.

Example 5.9. Let Y1, ..., Yn be iid from a distribution with a given pdf
or pmf f(y|θ).

a) If E(Y ) = h(θ), then θ̂MM = h−1(Y ).
b) The method of moments estimator of E(Y ) = µ1 is µ̂1 = Y .
c) The method of moments estimator of VARθ(Y ) = µ2(θ) − [µ1(θ)]

2 is

σ̂2
MM = µ̂2 − µ̂2

1 =
1

n

n
∑

i=1

Y 2
i − (Y )2 =

1

n

n
∑

i=1

(Yi − Y )2 ≡ S2
M .

Method of moments estimators need not be unique. For example both
Y and S2

M are method of moment estimators of θ for iid Poisson(θ) data.
Generally the method of moments estimators that use small j for µ̂j are
preferred, so use Y for Poisson data.

Proposition 5.3. Let S2
M = 1

n

∑n
i=1(Yi − Y )2 and suppose that E(Y ) =

h1(θ1, θ2) and V (Y ) = h2(θ1, θ2). Then solving

Y
set
= h1(θ1, θ2)

S2
M

set
= h2(θ1, θ2)

for θ̃ is a method of moments estimator.

Proof. Notice that µ1 = h1(θ1, θ2) = µ1(θ1, θ2) while µ2 − [µ1]
2 =

h2(θ1, θ2). Hence µ2 = h2(θ1, θ2)+[h1(θ1, θ2)]
2 = µ2(θ1, θ2). Hence the method

of moments estimator is a solution to Y
set
= µ1(θ1, θ2) and 1

n

∑n
i=1 Y 2

i
set
=

h2(θ1, θ2) + [µ1(θ1, θ2)]
2. Equivalently, solve Y

set
= h1(θ1, θ2) and

1
n

∑n
i=1 Y 2

i − [Y ]2 = S2
M

set
= h2(θ1, θ2). QED

Example 5.10. Suppose that Y1, ..., Yn be iid gamma (ν, λ). Then µ̂1
set
=

E(Y ) = νλ and µ̂2
set
= E(Y 2) = VAR(Y )+[E(Y )]2 = νλ2+ν2λ2 = νλ2(1+ν).
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Substitute ν = µ̂1/λ into the 2nd equation to obtain

µ̂2 =
µ̂1

λ
λ2(1 +

µ̂1

λ
) = λµ̂1 + µ̂2

1.

Thus

λ̃ =
µ̂2 − µ̂2

1

µ̂1
=

S2
M

Y
and ν̃ =

µ̂1

λ̃
=

µ̂2
1

µ̂2 − µ̂2
1

=
[Y ]2

S2
M

.

Alternatively, solve Y
set
= νλ and S2

M
set
= νλ2 = (νλ)λ. Hence λ̃ = S2

M/Y and

ν̃ =
Y

λ̃
=

[Y ]2

S2
M

.

5.3 Summary

A) Let Y1, ..., Yn be iid with pdf or pmf f(y|θ). Then L(θ) =
∏n

i=1 f(yi|θ). To
find the MLE,
i) find L(θ) and then find the log likelihood log L(θ).
ii) Find the derivative d

dθ
log L(θ), set the derivative equal to zero and solve

for θ. The solution is a candidate for the MLE.
iii) Invariance Principle: If θ̂ is the MLE of θ, then τ (θ̂) is the MLE of
τ (θ).
iv) Show that θ̂ is the MLE by showing that θ̂ is the global maximizer of
log L(θ). Often this is done by noting that θ̂ is the unique solution to the
equation d

dθ
log L(θ) = 0 and that the 2nd derivative evaluated at θ̂ is nega-

tive:
d2

dθ2
log L(θ)|θ̂ < 0.

B) If log L(θ) is strictly concave (
d2

dθ2
log L(θ) < 0 for all θ ∈ Θ), then

any local max of log L(θ) is a global max.

C) Know how to find the MLE for the normal distribution (including
when µ or σ2 is known). Memorize the MLEs

Y , S2
M =

1

n

n
∑

i=1

(Yi − Y )2,
1

n

n
∑

i=1

(Yi − µ)2

for the normal and for the uniform distribution. Also Y is the MLE for
several brand name distributions. Notice that S2

M is the method of moments
estimator for V (Y ) and is the MLE for V (Y ) if the data are iid N(µ, σ2).

147



D) On qualifying exams, the N(µ, µ) and N(µ, µ2) distributions are
common. See Problem 5.35.

E) Indicators are useful. For example,
∏n

i=1 IA(yi) = I(all yi ∈ A) and
∏k

j=1 IAj
(y) = I∩k

j=1
Aj

(y). Hence I(0 ≤ y ≤ θ) = I(0 ≤ y)I(y ≤ θ), and
∏n

i=1 I(θ1 ≤ yi ≤ θ2) = I(θ1 ≤ y(1) ≤ y(n) ≤ θ2) = I(θ1 ≤ y(1))I(y(n) ≤ θ2).

F) Let µ̂j = 1
n

∑n
i=1 Y j

i , let µj = E(Y j) and assume that µj = µj(θ1, ..., θk).
Solve the system

µ̂1
set
= µ1(θ1, ..., θk)

...
...

µ̂k
set
= µk(θ1, ..., θk)

for the method of moments estimator θ̃.
G) If g is a continuous function of the first k moments and h(θ) =

g(µ1(θ), ..., µk(θ)), then the method of moments estimator of h(θ) is
g(µ̂1, ..., µ̂k).

5.4 Complements

Optimization theory is also known as nonlinear programming and shows how
to find the global max and min of a multivariate function. Peressini, Sullivan
and Uhl (1988) is an undergraduate text. Also see Sundaram (1996) and
Bertsekas (1999).

Maximum likelihood estimation is widely used in statistical models. See
Pawitan (2001) and texts for Categorical Data Analysis, Econometrics, Mul-
tiple Linear Regression, Generalized Linear Models, Multivariate Analysis
and Survival Analysis.

Suppose that Y = t(W ) and W = t−1(Y ) where W has a pdf with param-
eters θ, the transformation t does not depend on any unknown parameters,
and the pdf of Y is

fY (y) = fW (t−1(y))

∣

∣

∣

∣

dt−1(y)

dy

∣

∣

∣

∣

.

If W1, ..., Wn are iid with pdf fW (w), assume that the MLE of θ is θ̂W (w)
where the wi are the observed values of Wi and w = (w1, ..., wn). If Y1, ..., Yn
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are iid and the yi are the observed values of Yi, then the likelihood is

LY (θ) =

(

n
∏

i=1

∣

∣

∣

∣

dt−1(yi)

dy

∣

∣

∣

∣

)

n
∏

i=1

fW (t−1(yi)|θ) = c

n
∏

i=1

fW (t−1(yi)|θ).

Hence the log likelihood is log(LY (θ)) =

d +
n
∑

i=1

log[fW (t−1(yi)|θ)] = d +
n
∑

i=1

log[fW (wi|θ)] = d + log[LW (θ)]

where wi = t−1(yi). Hence maximizing the log(LY (θ)) is equivalent to maxi-
mizing log(LW (θ)) and

θ̂Y (y) = θ̂W (w) = θ̂W (t−1(y1), ..., t
−1(yn)). (5.3)

Compare Meeker and Escobar (1998, p. 175).

Example 5.11. Suppose Y1, ..., Yn are iid lognormal (µ, σ2). Then Wi =
log(Yi) ∼ N(µ, σ2) and the MLE (µ̂, σ̂2) = (W, 1

n

∑n
i=1(Wi − W )2).

One of the most useful properties of the maximum likelihood estimator is
the invariance property: if θ̂ is the MLE of θ, then τ (θ̂) is the MLE of τ (θ).
Olive (2004) is a good discussion of the MLE invariance principle. Also see
Pal and Berry (1992). Many texts either define the MLE of τ (θ) to be τ (θ̂),
say that the property is immediate from the definition of the MLE, or quote
Zehna (1966). A little known paper, Berk (1967), gives an elegant proof of
the invariance property that can be used in introductory statistical courses.
The next subsection will show that Berk (1967) answers some questions about
the MLE which can not be answered using Zehna (1966).

5.4.1 Two “Proofs” of the Invariance Principle

“Proof” I) The following argument of Zehna (1966) also appears in Casella
and Berger (2002, p. 320). Let θ ∈ Θ and let h : Θ → Λ be a function.
Since the MLE

θ̂ ∈ Θ, h(θ̂) = λ̂ ∈ Λ.

If h is not one to one, then many values of θ may be mapped to λ. Let

Θλ = {θ : h(θ) = λ}
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and define the induced likelihood function M(λ) by

M(λ) = sup
θ∈Θ

λ

L(θ). (5.4)

Then for any λ ∈ Λ,

M(λ) = sup
θ∈Θ

λ

L(θ) ≤ sup
θ∈Θ

L(θ) = L(θ̂) = M(λ̂). (5.5)

Hence h(θ̂) = λ̂ maximizes the induced likelihood M(λ). Zehna (1966) says
that since h(θ̂) maximizes the induced likelihood, we should call h(θ̂) the
MLE of h(θ), but the definition of MLE says that we should be maximizing
a genuine likelihood.

This argument raises two important questions.

• If we call h(θ̂) the MLE of h(θ) and h is not one to one, does h(θ̂)
maximize a likelihood or should h(θ̂) be called a maximum induced
likelihood estimator?

• If h(θ̂) is an MLE, what is the likelihood function K(h(θ))?

Some examples might clarify these questions.

• If the population come from a N(µ, σ2) distribution, the invariance
principle says that the MLE of µ/σ is X/SM where

X =
1

n

n
∑

i=1

Xi

and

S2
M =

1

n

n
∑

i=1

(Xi − X)2

are the MLEs of µ and σ2. Since the function h(x, y) = x/
√

y is not one
to one (eg h(x, y) = 1 if x =

√
y), what is the likelihood K(h(µ, σ2)) =

K(µ/σ) that is being maximized?

• If Xi comes from a Bernoulli(ρ) population, why is Xn(1 − Xn) the
MLE of ρ(1 − ρ)?
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Proof II) Examining the invariance principle for one to one functions h is
also useful. When h is one to one, let η = h(θ). Then the inverse function
h−1 exists and θ = h−1(η). Hence

f(x|θ) = f(x|h−1(η)) (5.6)

is the joint pdf or pmf of x. So the likelihood function of h(θ) = η is

L∗(η) ≡ K(η) = L(h−1(η)). (5.7)

Also note that

sup
η

K(η|x) = sup
η

L(h−1(η)|x) = L(θ̂|x). (5.8)

Thus
η̂ = h(θ̂) (5.9)

is the MLE of η = h(θ) when h is one to one.

If h is not one to one, then the new parameters η = h(θ) do not give
enough information to define f(x|η). Hence we cannot define the likelihood.
That is, a N(µ, σ2) density cannot be defined by the parameter µ/σ alone.
Before concluding that the MLE does not exist if h is not one to one, note
that if X1, ..., Xn are iid N(µ, σ2) then X1, ..., Xn remain iid N(µ, σ2) even
though the investigator did not rename the parameters wisely or is interested
in a function h(µ, σ) = µ/σ that is not one to one. Berk (1967) said that if
h is not one to one, define

w(θ) = (h(θ), u(θ)) = (η, γ) = ξ (5.10)

such that w(θ) is one to one. Note that the choice

w(θ) = (h(θ), θ)

works. In other words, we can always take u to be the identity function.
The choice of w is not unique, but the inverse function

w−1(ξ) = θ

is unique. Hence the likelihood is well defined, and w(θ̂) is the MLE of ξ.
QED
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Example 5.12. Following Lehmann (1999, p. 466), let

f(x|σ) =
1√

2π σ
exp(

−x2

2σ2
)

where x is real and σ > 0. Let η = σk so σ = η1/k = h−1(η). Then

f∗(x|η) =
1√

2π η1/k
exp(

−x2

2η2/k
) = f(x|σ = h−1(η)).

Notice that calling h(θ̂) the MLE of h(θ) is analogous to calling Xn the
MLE of µ when the data are from a N(µ, σ2) population. It is often possible
to choose the function u so that if θ is a p × 1 vector, then so is ξ. For
the N(µ, σ2) example with h(µ, σ2) = h(θ) = µ/σ we can take u(θ) = µ
or u(θ) = σ2. For the Ber(ρ) example, w(ρ) = (ρ(1 − ρ), ρ) is a reasonable
choice.

To summarize, Berk’s proof should be widely used to prove the invariance
principle, and

I) changing the names of the parameters does not change the distribution
of the sample, eg, if X1, ..., Xn are iid N(µ, σ2), then X1, ..., Xn remain iid
N(µ, σ2) regardless of the function h(µ, σ2) that is of interest to the investi-
gator.

II) The invariance principle holds as long as h(θ̂) is a random variable
or random vector: h does not need to be a one to one function. If there is
interest in η = h(θ) where h is not one to one, then additional parameters
γ = u(θ) need to be specified so that w(θ) = ξ = (η, γ) = (h(θ), u(θ)) has a
well defined likelihood K(ξ) = L(w−1(ξ)). Then by Definition 5.2, the MLE
is ξ̂ = w(θ̂) = w(h(θ̂), u(θ̂)) and the MLE of η = h(θ) is η̂ = h(θ̂).

III) Using the identity function γ = u(θ) = θ always works since ξ =
w(θ) = (h(θ), θ) is a one to one function of θ. However, using u(θ) such that
ξ and θ have the same dimension is often useful.

5.5 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.
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Refer to Chapter 10 for the pdf or pmf of the distributions in
the problems below.

5.1∗. Let Y1, ..., Yn be iid binomial (k = 1, ρ).
a) Assume that ρ ∈ Θ = (0, 1) and that 0 <

∑n
i=1 yi < n. Show that the

MLE of ρ is ρ̂ = Y .

b) Now assume that ρ ∈ Θ = [0, 1]. Show that f(y|ρ) = ρy(1−ρ)1−yI(0 <
ρ < 1) + I(ρ = 0, y = 0) + I(ρ = 1, y = 1). Then show that

L(ρ) = ρ
P

y(1−ρ)n−
P

yI(0 < ρ < 1)+I(ρ = 0,
∑

y = 0)+I(ρ = 1,
∑

y = n).

If
∑

y = 0 show that ρ̂ = 0 = y. If
∑

y = n show that ρ̂ = 1 = y. Then
explain why ρ̂ = Y if Θ = [0, 1].

5.2. (1989 Univ. of Minn. and Aug. 2000 SIU QUAL): Let (X, Y ) have
the bivariate density

f(x, y) =
1

2π
exp(

−1

2
[(x − ρ cos θ)2 + (y − ρ sin θ)2]).

Suppose that there are n independent pairs of observations (Xi, Yi) from
the above density and that ρ is known. Assume that 0 ≤ θ ≤ 2π. Find a
candidate for the maximum likelihood estimator θ̂ by differentiating the log
likelihood L(θ). (Do not show that the candidate is the MLE, it is difficult
to tell whether the candidate, 0 or 2π is the MLE without the actual data.)

5.3∗. Suppose a single observation X = x is observed where X is a
random variable with pmf given by the table below. Assume 0 ≤ θ ≤ 1, and
find the MLE θ̂MLE(x). (Hint: drawing L(θ) = L(θ|x) for each of the four
values of x may help.)

x 1 2 3 4
f(x|θ) 1/4 1/4 1+θ

4
1−θ
4

5.4. Let X1, ..., Xn be iid normal N(µ, γ2
oµ

2) random variables where
γ2

o > 0 is known and µ > 0. Find the log likelihood log(L(µ|x1, ..., xn)) and
solve

d

dµ
log(L(µ|x1, ..., xn)) = 0

for µ̂o, a potential candidate for the MLE of µ.

5.5. Suppose that X1, ..., Xn are iid uniform U(0, θ). Use the factorization
theorem to write f(x|θ) = g(T (x)|θ) (so h(x) ≡ 1) where T (x) is a one
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dimensional sufficient statistic. Then plot the likelihood function L(θ) =
g(T (x)|θ) and find the MLE of θ.

5.6. Let Y1, ..., Yn be iid Burr(λ, φ) with φ known. Find the MLE of λ.

5.7. Let Y1, ..., Yn be iid chi(p, σ) with p known. Find the MLE of σ2.

5.8. Let Y1, ..., Yn iid double exponential DE(θ, λ) with θ known. Find
the MLE of λ.

5.9. Let Y1, ..., Yn be iid exponential EXP(λ). Find the MLE of λ.

5.10. If Y1, ..., Yn are iid gamma G(ν, λ) with ν known, find the MLE of
λ.

5.11. If Y1, ..., Yn are iid geometric geom(ρ), find the MLE of ρ.

5.12. If Y1, ..., Yn are iid inverse Gaussian IG(θ, λ) with λ known, find
the MLE of θ.

5.13. If Y1, ..., Yn are iid inverse Gaussian IG(θ, λ) with θ known, find
the MLE of λ.

5.14. If Y1, ..., Yn are iid largest extreme value LEV(θ, σ) where σ is
known, find the MLE of θ.

5.15. If Y1, ..., Yn are iid negative binomial NB(r, ρ) with r known, find
the MLE of ρ.

5.16. If Y1, ..., Yn are iid Rayleigh R(µ, σ) with µ known, find the MLE
of σ2.

5.17. If Y1, ..., Yn are iid Weibull W (k, ρ) with k known, find the MLE of
ρ.

5.18. If Y1, ..., Yn are iid binomial BIN(φ, λ) with φ known, find the
MLE of λ.

5.19. Suppose Y1, ..., Yn are iid two parameter exponential EXP(θ, λ).
a) Show that for any fixed λ > 0, the log likelihood is maximized by y(1).

Hence the MLE θ̂ = Y(1).

b) Find λ̂ by maximizing the profile likelihood.

5.20. Suppose Y1, ..., Yn are iid truncated extreme value TEV(λ). Find
the MLE of λ.

154



Problems from old quizzes and exams.

Note: Problem 5.21 would be better if it replaced “λ ≥ 0” by “λ > 0, and
assume

∑

xi > 0.” But problems like 5.21 are extremely common on exams
and in texts.

5.21. Suppose that X1, ..., Xn are iid Poisson with pmf

f(x|λ) = P (X = x|λ) =
e−λλx

x!

where x = 0, 1, ... and λ ≥ 0.

a) Find the MLE of λ. (Make sure that you prove that your estimator
maximizes the likelihood).

b) Find the MLE of (1 − λ)2.

5.22. Suppose that X1, ..., Xn are iid U(0, θ). Make a plot of L(θ|x1, ..., xn).

a) If the uniform density is f(x) = 1
θ
I(0 ≤ x ≤ θ), find the MLE of θ if it

exists.

b) If the uniform density is f(x) = 1
θ
I(0 < x < θ), find the MLE of θ if

it exists.

5.23. (Jan. 2001 Qual): Let X1, ..., Xn be a random sample from a
normal distribution with known mean µ and unknown variance τ.

a) Find the maximum likelihood estimator of the variance τ.

b) Find the maximum likelihood estimator of the standard deviation
√

τ.
Explain how the MLE was obtained.

5.24. Suppose a single observation X = x is observed where X is a
random variable with pmf given by the table below. Assume 0 ≤ θ ≤ 1. and
find the MLE θ̂MLE(x). (Hint: drawing L(θ) = L(θ|x) for each of the values
of x may help.)

x 0 1
f(x|θ) 1+θ

2
1−θ
2
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5.25. Suppose that X is a random variable with pdf f(x|θ) = (x− θ)2/3
for θ − 1 ≤ x ≤ 2 + θ. Hence L(θ) = (x − θ)2/3 for x − 2 ≤ θ ≤ x + 1.
Suppose that one observation X = 7 was observed. Find the MLE θ̂ for θ.
(Hint: evaluate the likelihood at the critical value and the two endpoints.
One of these three values has to be the MLE.)

5.26. Let X1, ..., Xn be iid from a distribution with pdf

f(x|θ) = θx−2, 0 < θ ≤ x < ∞.

a) Find a minimal sufficient statistic for θ.

b) Find the MLE for θ.

5.27. Let Y1, ..., Yn be iid from a distribution with probability mass func-
tion

f(y|θ) = θ(1 − θ)y, where y = 0, 1, ... and 0 < θ < 1.

Assume 0 <
∑

yi < n.

a) Find the MLE of θ. (Show that it is the global maximizer.)

c) What is the MLE of 1/θ2? Explain.

5.28. (Aug. 2002 QUAL): Let X1, ..., Xn be independent identically
distributed random variables from a half normal HN(µ, σ2) distribution with
pdf

f(x) =
2√

2π σ
exp (

−(x− µ)2

2σ2
)

where σ > 0 and x > µ and µ is real. Assume that µ is known.
a) Find the maximum likelihood estimator of σ2.

b) What is the maximum likelihood estimator of σ? Explain.

5.29. (Jan. 2003 QUAL): Let X1, ..., Xn be independent identically dis-
tributed random variables from a lognormal (µ, σ2) distribution with pdf

f(x) =
1

x
√

2πσ2
exp (

−(log(x) − µ)2

2σ2
)

where σ > 0 and x > 0 and µ is real. Assume that σ is known.
a) Find the maximum likelihood estimator of µ.

b) What is the maximum likelihood estimator of µ3? Explain.
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5.30. (Aug. 2004 QUAL): Let X be a single observation from a normal
distribution with mean θ and with variance θ2, where θ > 0. Find the
maximum likelihood estimator of θ2.

5.31. (Sept. 2005 QUAL): Let X1, ..., Xn be independent identically
distributed random variables with probability density function

f(x) =
σ1/λ

λ
exp

[

−(1 +
1

λ
) log(x)

]

I [x ≥ σ]

where x ≥ σ, σ > 0, and λ > 0. The indicator function I [x ≥ σ] = 1 if x ≥ σ
and 0, otherwise. Find the maximum likelihood estimator (MLE) (σ̂, λ̂) of
(σ, λ) with the following steps.

a) Explain why σ̂ = X(1) = min(X1, ..., Xn) is the MLE of σ regardless of
the value of λ > 0.

b) Find the MLE λ̂ of λ if σ = σ̂ (that is, act as if σ = σ̂ is known).

5.32. (Aug. 2003 QUAL): Let X1, ..., Xn be independent identically
distributed random variables with pdf

f(x) =
1

λ
exp

[

−(1 +
1

λ
) log(x)

]

where λ > 0 and x ≥ 1.

a) Find the maximum likelihood estimator of λ.

b) What is the maximum likelihood estimator of λ8 ? Explain.

5.33. (Jan. 2004 QUAL): Let X1, ..., Xn be independent identically dis-
tributed random variables with probability mass function

f(x) = e−2θ 1

x!
exp[log(2θ)x],

for x = 0, 1, . . . , where θ > 0. Assume that at least one Xi > 0.

a) Find the maximum likelihood estimator of θ.

b) What is the maximum likelihood estimator of (θ)4 ? Explain.
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5.34. (Jan. 2006 QUAL): Let X1, ..., Xn be iid with one of two probability
density functions. If θ = 0, then

f(x|θ) =

{

1, 0 ≤ x ≤ 1
0, otherwise.

If θ = 1, then

f(x|θ) =

{

1
2
√

x
, 0 ≤ x ≤ 1

0, otherwise.

Find the maximum likelihood estimator of θ.

Warning: Variants of the following question often appears on qualifying
exams.

5.35. (Aug. 2006 Qual): Let Y1, ..., Yn denote a random sample from a
N(aθ, θ) population.

a) Find the MLE of θ when a = 1.

b) Find the MLE of θ when a is known but arbitrary.

5.36. Suppose that X1, ..., Xn are iid random variable with pdf

f(x|θ) = (x − θ)2/3

for θ − 1 ≤ x ≤ 2 + θ.

a) Assume that n = 1 and that X = 7 was observed. Sketch the log
likelihood function L(θ) and find the maximum likelihood estimator (MLE)
θ̂.

b) Again assume that n = 1 and that X = 7 was observed. Find the
MLE of

h(θ) = 2θ − exp(−θ2).
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5.37. (Aug. 2006 Qual): Let X1, ..., Xn be independent identically dis-
tributed (iid) random variables with probability density function

f(x) =
2

λ
√

2π
ex exp

(−(ex − 1)2

2λ2

)

where x > 0 and λ > 0.
a) Find the maximum likelihood estimator (MLE) λ̂ of λ.

b) What is the MLE of λ2? Explain.

5.38. (Jan. 2007 Qual): Let X1, ..., Xn be independent identically dis-
tributed random variables from a distribution with pdf

f(x) =
2

λ
√

2π

1

x
exp

[−(log(x))2

2λ2

]

where λ > 0 where and 0 ≤ x ≤ 1.

a) Find the maximum likelihood estimator (MLE) of λ.

b) Find the MLE of λ2.
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