
Chapter 4

Sufficient Statistics

4.1 Statistics and Sampling Distributions

Suppose that the data Y1, ..., Yn is drawn from some population. The ob-
served data is Y1 = y1, ..., Yn = yn where y1, ...., yn are numbers. Let y =
(y1, ..., yn). Real valued functions T (y1, ..., yn) = T (y) are of interest as
are vector valued functions T (y) = (T1(y), ..., Tk(y)). Sometimes the data
Y 1, ..., Y n are random vectors. Again interest is in functions of the data.
Typically the data has a joint pdf or pmf f(y1, ..., yn|θ) where the vector of
unknown parameters is θ = (θ1, ..., θk). (In the joint pdf or pmf, the y1, ..., yn

are dummy variables, not the observed data.)

Definition 4.1. A statistic is a function of the data that does not
depend on any unknown parameters. The probability distribution of the
statistic is called the sampling distribution of the statistic.

Let the data Y = (Y1, ..., Yn) where the Yi are random variables. If
T (y1, ..., yn) is a real valued function whose domain includes the sample space
Y of Y , then W = T (Y1, ..., Yn) is a statistic provided that T does not
depend on any unknown parameters. The data comes from some probability
distribution and the statistic is a random variable and hence also comes
from some probability distribution. To avoid confusing the distribution of
the statistic with the distribution of the data, the distribution of the statistic
is called the sampling distribution of the statistic. If the observed data is
Y1 = y1, ..., Yn = yn, then the observed value of the statistic is W = w =
T (y1, ..., yn). Similar remarks apply when the statistic T is vector valued and
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when the data Y 1, ..., Y n are random vectors.

Often Y1, ..., Yn will be iid and statistics of the form

n∑

i=1

aiYi and
n∑

i=1

t(Yi)

are especially important. Chapter 10 and Theorems 2.17, 2.18, 3.6 and 3.7
are useful for finding the sampling distributions of some of these statistics
when the Yi are iid from a given brand name distribution that is usually an
exponential family. The following example lists some important statistics.

Example 4.1. Let the Y1, ..., Yn be the data.
a) The sample mean

Y =

∑n
i=1 Yi

n
. (4.1)

b) The sample variance

S2 ≡ S2
n =

∑n
i=1(Yi − Y )2

n − 1
=

∑n
i=1 Y 2

i − n(Y )2

n − 1
. (4.2)

c) The sample standard deviation S ≡ Sn =
√

S2
n.

d) If the data Y1, ..., Yn is arranged in ascending order from smallest to
largest and written as Y(1) ≤ · · · ≤ Y(n), then Y(i) is the ith order statistic
and the Y(i)’s are called the order statistics.

e) The sample median

MED(n) = Y((n+1)/2) if n is odd, (4.3)

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

f) The sample median absolute deviation or median deviation is

MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n). (4.4)

g) The sample maximum

max(n) = Y(n) (4.5)

and the observed max y(n) is the largest value of the observed data.
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h) The sample minimum

min(n) = Y(1) (4.6)

and the observed min y(1) is the smallest value of the observed data.

Example 4.2. Usually the term “observed” is dropped. Hence below
“data” is “observed data”, “observed order statistics” is “order statistics”
and “observed value of MED(n)” is “MED(n).”
Let the data be 9, 2, 7, 4, 1, 6, 3, 8, 5 (so Y1 = y1 = 9, ..., Y9 = y9 = 5).
Then the order statistics are 1, 2, 3, 4, 5, 6, 7, 8, 9. Then MED(n) = 5 and
MAD(n) = 2 = MED{0, 1, 1, 2, 2, 3, 3, 4, 4}.

Example 4.3. Let the Y1, ..., Yn be iid N(µ, σ2). Then

Tn =

∑n
i=1(Yi − µ)2

n

is a statistic iff µ is known.

The following theorem is extremely important and the proof follows Rice
(1988, p. 171-173) closely.

Theorem 4.1. Let the Y1, ..., Yn be iid N(µ, σ2).
a) The sample mean Y ∼ N(µ, σ2/n).
b) Y and S2 are independent.
c) (n − 1)S2/σ2 ∼ χ2

n−1. Hence
∑n

i=1(Yi − Y )2 ∼ σ2χ2
n−1.

Proof. a) follows from Theorem 2.17e.

b) The moment generating function of (Y , Y1 − Y , ..., Yn − Y ) is

m(s, t1, ..., tn) = E(exp[sY + t1(Y1 − Y ) + · · · + tn(Yn − Y )]).

By Theorem 2.22, Y and (Y1 − Y , ..., Yn − Y ) are independent if

m(s, t1, ..., tn) = mY (s) m(t1, ..., tn)

where mY (s) is the mgf of Y and m(t1, ..., tn) is the mgf of (Y1−Y , ..., Yn−Y ).
Now

n∑

i=1

ti(Yi − Y ) =
n∑

i=1

tiYi − Y nt =
n∑

i=1

tiYi −
n∑

i=1

tYi
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and thus

sY +
n∑

i=1

ti(Yi − Y ) =
n∑

i=1

[
s

n
+ (ti − t )]Yi =

n∑

i=1

aiYi.

Now
∑n

i=1 ai =
∑n

i=1[
s
n

+ (ti − t )] = s and

n∑

i=1

a2
i =

n∑

i=1

[
s2

n2
+ 2

s

n
(ti − t ) + (ti − t )2] =

s2

n
+

n∑

i=1

(ti − t )2.

Hence

m(s, t1, ..., tn) = E(exp[sY +

n∑

i=1

ti(Yi − Y )]) = E[exp(

n∑

i=1

aiYi)]

= mY1,...,Yn
(a1, ..., an) =

n∏

i=1

mYi
(ai)

since the Yi are independent. Now

n∏

i=1

mYi
(ai) =

n∏

i=1

exp

(

µai +
σ2

2
a2

i

)

= exp

(

µ
n∑

i=1

ai +
σ2

2

n∑

i=1

a2
i

)

= exp

[

µs +
σ2

2

s2

n
+

σ2

2

n∑

i=1

(ti − t )2

]

= exp

[

µs +
σ2

2n
s2

]

exp

[

σ2

2

n∑

i=1

(ti − t )2

]

.

Now the first factor is the mgf of Y and the second factor is m(t1, ..., tn) =
m(0, t1, ..., tn) since the mgf of the marginal is found from the mgf of the
joint distribution by setting all terms not in the marginal to 0 (ie set s = 0
in m(s, t1, ..., tn) to find m(t1, ..., tn)). Hence the mgf factors and

Y (Y1 − Y , ..., Yn − Y ).

Since S2 is a function of (Y1 − Y , ..., Yn − Y ), it is also true that Y S2.
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c) (Yi − µ)/σ ∼ N(0, 1) so (Yi − µ)2/σ2 ∼ χ2
1 and

1

σ2

n∑

i=1

(Yi − µ)2 ∼ χ2
n.

Now

n∑

i=1

(Yi − µ)2 =

n∑

i=1

(Yi − Y + Y − µ)2 =

n∑

i=1

(Yi − Y )2 + n(Y − µ)2.

Hence

W =
1

σ2

n∑

i=1

(Yi − µ)2 =
1

σ2

n∑

i=1

(Yi − Y )2 +

(
Y − µ

σ/
√

n

)2

= U + V.

Since U V by b), mW (t) = mU(t) mV (t). Since W ∼ χ2
n and V ∼ χ2

1,

mU(t) =
mW (t)

mV (t)
=

(1 − 2t)−n/2

(1 − 2t)−1/2
= (1 − 2t)−(n−1)/2

which is the mgf of a χ2
n−1 distribution. QED

Theorem 4.2. Let the Y1, ..., Yn be iid with cdf FY and pdf fY .
a) The pdf of T = Y(n) is

fY(n)
(t) = n[FY (t)]n−1fY (t).

b) The pdf of T = Y(1) is

fY(1)
(t) = n[1 − FY (t)]n−1fY (t).

c) Let 2 ≤ r ≤ n. Then the joint pdf of Y(1), Y(2), ..., Y(r) is

fY(1) ,...,Y(r)
(t1, ..., tr) =

n!

(n − r)!
[1 − FY (tr)]

n−r

r∏

i=1

fY (ti).

Proof of a) and b). a) The cdf of Y(n) is

FY(n)
(t) = P (Y(n) ≤ t) = P (Y1 ≤ t, ..., Yn ≤ t) =

n∏

i=1

P (Yi ≤ t) = [FY (t)]n.
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Hence the pdf of Y(n) is

d

dt
FY(n)

(t) =
d

dt
[FY (t)]n = n[FY (t)]n−1fY (t).

b) The cdf of Y(1) is

FY(1)
(t) = P (Y(1) ≤ t) = 1 − P (Y(1) > t) = 1 − P (Y1 > t, ..., Yn > t)

= 1 −
n∏

i=1

P (Yi > t) = 1 − [1 − FY (t)]n.

Hence the pdf of Y(n) is

d

dt
FY(n)

(t) =
d

dt
(1 − [1 − FY (t)]n) = n[1 − FY (t)]n−1fY (t). QED

To see that c) may be true, consider the following argument adapted from
Mann, Schafer and Singpurwalla (1974, p. 93). Let ∆ti be a small positive
number and notice that P (E) ≡

P (t1 < Y(1) < t1 + ∆t1, t2 < Y(2) < t2 + ∆t2, ..., tr < Y(r) < tr + ∆tr)

=

∫ tr+∆tr

tr

· · ·
∫ t1+∆t1

t1

fY(1) ,...,Y(r)
(w1, ..., wr)dw1 · · · dwr

≈ fY(1) ,...,Y(r)
(t1, ..., tr)

r∏

i=1

∆ti.

Since the event E denotes the occurrence of no observations before ti, exactly
one occurrence between t1 and t1+∆t1, no observations between t1+∆t1 and
t2 and so on, and finally the occurrence of n− r observations after tr + ∆tr,
using the multinomial pmf shows that

P (E) =
n!

0!1! · · · 0!1!(n − r)!
ρ0

1ρ
1
2ρ

0
3ρ

1
4 · · · ρ0

2r−1ρ
1
2rρ

n−r
2r+1

where
ρ2i = P (ti < Y < ti + ∆ti) ≈ f(ti)∆ti

for i = 1, ..., r and

ρ2r+1 = P (n − r Y ′s > tr + ∆tr) ≈ (1 − F (tr))
n−r.
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Hence

P (E) ≈ n!

(n − r)!
(1 − F (tr))

n−r

r∏

i=1

f(ti)

r∏

i=1

∆ti

≈ fY(1) ,...,Y(r)
(t1, ..., tr)

r∏

i=1

∆ti,

and result c) seems reasonable.

Example 4.4. Suppose Y1, ..., Yn are iid EXP(λ) with cdf F (y) =
1 − exp(−y/λ) for y > 0. Then FY(1)

(t) = 1 − [1 − (1 − exp(−t/λ))]n =
1 − [exp(−t/λ)]n = 1 − exp[−t/(λ/n)] for t > 0. Hence Y(1) ∼ EXP(λ/n).

4.2 Minimal Sufficient Statistics

For parametric inference, the pmf or pdf of a random variable Y is fθ(y)
where θ ∈ Θ is unknown. Hence Y comes from a family of distributions in-
dexed by θ and quantities such as Eθ(g(Y )) depend on θ. Since the paramet-
ric distribution is completely specified by θ, an important goal of parametric
inference is finding good estimators of θ. For example, if Y1, ..., Yn are iid
N(µ, σ2), then θ = (µ, σ) is fixed but unknown, θ ∈ Θ = (−∞,∞)× (0,∞)
and E(µ,θ)(Y ) = µ. Since V(µ,θ)(Y ) = σ2/n, Y is a good estimator for µ if n
is large. The notation fθ(y) ≡ f(y|θ) is also used.

The basic idea of a sufficient statistic T (Y ) for θ is that all of the infor-
mation needed for inference from the data Y1, ..., Yn about the parameter θ

is contained in the statistic T (Y ). For example, suppose that Y1, ..., Yn are
iid binomial(1, ρ) random variables. Hence each observed Yi is a 0 or a 1 and
the observed data is an n–tuple of 0’s and 1’s, eg 0,0,1,...,0,0,1. It will turn
out that

∑n
i=1 Yi, the number of 1’s in the n–tuple, is a sufficient statistic for

ρ. From Theorem 2.17a,
∑n

i=1 Yi ∼ BIN(n, ρ). The importance of a sufficient
statistic is dimension reduction: the statistic

∑n
i=1 Yi has all of the informa-

tion from the data needed to perform inference about ρ, and the statistic is
one dimensional and thus much easier to understand than the n dimensional
n–tuple of 0’s and 1’s. Also notice that all n–tuples with the same number of
1’s have the same amount of information needed for inference about ρ: the
n–tuples 1,1,1,0,0,0,0 and 0,1,0,0,1,0,1 both give

∑n
i=1 Yi = 3.
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Definition 4.2. Suppose that (Y 1, ..., Y n) have a joint distribution that
depends on a vector of parameters θ for θ ∈ Θ where Θ is the parameter
space. A statistic T (Y 1, ..., Y n) is a sufficient statistic for θ if the condi-
tional distribution of (Y 1, ..., Y n) given T = t does not depend on θ for any
value of t in the support of T .

Example 4.5. Suppose T (y) ≡ 7 ∀y. Then T is a constant and any
constant is independent of a random vector Y . Hence the conditional distri-
bution fθ(y|T ) = fθ(y) is not independent of θ. Thus T is not a sufficient
statistic.

Often T and Y i are real valued. Then T (Y1, ..., Yn) is a sufficient statistic
if the conditional distribution of Y = (Y1, ..., Yn) given T = t does not depend
on θ. The following theorem provides such an effective method for showing
that a statistic is a sufficient statistic that the definition should rarely be
used to prove that the statistic is a sufficient statistic.

Regularity Condition F.1: If f(y|θ) is a family of pmfs for θ ∈ Θ, assume
that there exists a set {yi}∞i=1 that does not depend on θ ∈ Θ such that
∑n

i=1 f(yi|θ) = 1 for all θ ∈ Θ. (This condition is usually satisfied. For
example, F.1 holds if the support Y is free of θ or if y = (y1, ..., yn) and yi

takes on values on a lattice such as yi ∈ {1, ..., θ} for θ ∈ {1, 2, 3, ...}.)

Theorem 4.3: Factorization Theorem. Let f(y|θ) for θ ∈ Θ denote
a family of pdfs or pmfs for a sample Y . For a family of pmfs, assume
condition F.1 holds. A statistic T (Y ) is a sufficient statistic for θ iff for all
sample points y and for all θ in the parameter space Θ,

f(y|θ) = g(T (y)|θ) h(y)

where both g and h are nonnegative functions. The function h does not
depend on θ and the function g depends on y only through T (y).

Proof for pmfs. If T (Y ) is a sufficient statistic, then the conditional
distribution of Y given T (Y ) = t does not depend on θ for any t in the
support of T . Taking t = T (y) gives

Pθ(Y = y|T (Y ) = T (y)) ≡ P (Y = y|T (Y ) = T (y))

for all θ in the parameter space. Now

{Y = y} ⊆ {T (Y ) = T (y)} (4.7)
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and P (A) = P (A ∩ B) if A ⊆ B. Hence

f(y|θ) = Pθ(Y = y) = Pθ(Y = y and T (Y ) = T (y))

= Pθ(T (Y ) = T (y))P (Y = y|T (Y ) = T (y)) = g(T (y)|θ)h(y).

Now suppose
f(y|θ) = g(T (y)|θ) h(y)

for all y and for all θ ∈ Θ. Now

Pθ(T (Y ) = t) =
∑

{y:T (y)=t}

f(y|θ) = g(t|θ)
∑

{y:T (y)=t}

h(y).

If Y = y and T (Y ) = t, then T (y) = t and {Y = y} ⊆ {T (Y ) = t}. Thus

Pθ(Y = y|T (Y ) = t) =
Pθ(Y = y, T (Y ) = t)

Pθ(T (Y ) = t)
=

Pθ(Y = y)

Pθ(T (Y ) = t)

=
g(t|θ) h(y)

g(t|θ)
∑

{y:T (y)=t} h(y)
=

h(y)
∑

{y:T (y)=t} h(y)

which does not depend on θ since the terms in the sum do not depend on θ

by condition F.1. Hence T is a sufficient statistic. QED

Remark 4.1. If no such factorization exists for T , then T is not a
sufficient statistic.

Example 4.6. To use factorization to show that the data Y = (Y1, ..., Yn)
is a sufficient statistic, take T (Y ) = Y , g(T (y)|θ) = f(y|θ), and h(y) = 1
∀y.

Example 4.7. Let X1, ..., Xn be iid N(µ, σ2). Then

f(x1, ..., xn) =

n∏

i=1

f(xi) =

[
1√
2πσ

exp(
−µ

2σ2
)

]n

exp(
−1

2σ2

∑

i=1

x2
i +

µ

σ2

n∑

i=1

xi)

= g(T (x)|θ)h(x)

where θ = (µ, σ) and h(x) = 1. Hence T (X) = (
∑n

i=1 X2
i ,
∑n

i=1 Xi) is a
sufficient statistic for (µ, σ) or equivalently for (µ, σ2) by the factorization
theorem.
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Example 4.8. Let Y1, ..., Yn be iid binomial(k, ρ) with k known and pmf

f(y|ρ) =

(
k

y

)

ρy(1 − ρ)k−y I{0,...,k}(y).

Then

f(y|ρ) =
n∏

i=1

f(yi|ρ) =
n∏

i=1

[(
k

yi

)

I{0,...,k}(yi)

]

(1 − ρ)nk

(
ρ

1 − ρ

)P

n

i=1 yi

.

Hence by the factorization theorem,
∑n

i=1 Yi is a sufficient statistic.

Example 4.9. Suppose X1, ..., Xn are iid uniform observations on the
interval (θ, θ + 1), −∞ < θ < ∞. Notice that

n∏

i=1

IA(xi) = I(all xi ∈ A) and
n∏

i=1

IAn(x) = I∩n
i=1Ai(x)

where the latter holds since both terms are 1 if x is in all sets Ai for i = 1, ..., n
and both terms are 0 otherwise. Hence f(x|θ) =

n∏

i=1

f(xi|θ) =

n∏

i=1

1I(xi ≥ θ)I(xi ≤ θ + 1) = 1I(min(xi) ≥ θ)I(max(xi) ≤ θ).

Then h(x) ≡ 1 and g(T (x)|θ) = I(min(xi) ≥ θ)I(max(xi) ≤ θ), and T (x) =
(X(1), X(n)) is a sufficient statistic by the factorization theorem.

Example 4.10. Try to place any part of f(y|θ) that depends on y

but not on θ into h(y). For example, if Y1, ..., Yn are iid U(0, θ) for θ > 0,
then f(y|θ) =

n∏

i=1

f(yi|θ) =
n∏

i=1

1

θ
I(0 ≤ yi)I(yi ≤ θ) = I(0 ≥ y(1))

1

θn
I(y(n) ≤ θ).

One could take h(y) ≡ 1 and T (y|θ) = (Y(1), Y(n)), but it is better to make
the dimension of the sufficient statistic as small as possible. Take h(y) =
I(0 ≥ y(1)). Then T (Y ) = Y(n) is a sufficient statistic by factorization.

There are infinitely many sufficient statistics (see Theorem 4.8 below),
but typically we want the dimension of the sufficient statistic to be as small
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as possible since lower dimensional statistics are easier to understand and
to use for inference than higher dimensional statistics. Data reduction is
extremely important and the following definition is useful.

Definition 4.3. Suppose that Y1, ..., Yn have a joint distribution that
depends on a vector of parameters θ for θ ∈ Θ where Θ is the parameter
space. A sufficient statistic T (Y ) for θ is a minimal sufficient statistic
for θ if T (Y ) is a function of S(Y ) for any other sufficient statistic S(Y )
for θ.

Remark 4.2. A useful mnemonic is that S = Y is a sufficient statistic,
and T ≡ T (Y ) is a function of S.

Warning: Complete sufficient statistics, defined below, are primarily
used for the theory of uniformly minimum variance estimators, which are
rarely used in applied work unless they are nearly identical to the corre-
sponding maximum likelihood estimators.

Definition 4.4. Suppose that a statistic T (Y ) has a pmf or pdf f(t|θ).
Then T (Y ) is a complete sufficient statistic for θ if Eθ[g(T (Y ))] = 0 for all
θ implies that Pθ[g(T (Y )) = 0] = 1 for all θ.

The following two theorems are useful for finding minimal sufficient statis-
tics.

Theorem 4.4: Lehmann-Scheffé Theorem for Minimal Sufficient
Statistics (LSM). Let f(y|θ) be the pmf or pdf of a sample Y . Let cx,y
be a constant. Suppose there exists a function T (y) such that for any two
sample points x and y, the ratio Rx,y(θ) = f(x|θ)/f(y|θ) = cx,y for all θ

in Θ iff T (x) = T (y). Then T (Y ) is a minimal sufficient statistic for θ.

In the Lehmann-Scheffé Theorem, for R to be constant as a function of θ,
define 0/0 = cx,y. Alternatively, replace Rx,y(θ) = f(x|θ)/f(y|θ) = cx,y
by f(x|θ) = cx,yf(y|θ) in the above definition.

Finding sufficient, minimal sufficient, and complete sufficient statistics is
often simple for regular exponential families (REFs). If the family given
by Equation (4.8) is a REF or a full exponential family, then the
conditions for Theorem 4.5abcd are satisfied as are the conditions
for e) if η is a one to one function of θ. In a), k does not need to be as
small as possible. In Corollary 4.6 below, assume that both Equation (4.8)
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and (4.9) hold.
Note that any one to one function is onto its range. Hence if η = τ (θ)

for any η ∈ Ω where τ is a one to one function, then τ : Θ → Ω is one to one
and onto. Thus there is a one to one (and onto) inverse function τ−1 such
that θ = τ−1(η) for any θ ∈ Θ.

Theorem 4.5: Sufficiency, Minimal Sufficiency, and Complete-
ness of Exponential Families. Suppose that Y1, ..., Yn are iid from an
exponential family

f(y|θ) = h(y)c(θ) exp [w1(θ)t1(y) + · · · + wk(θ)tk(y)] (4.8)

with the natural parameterization

f(y|η) = h(y)b(η) exp [η1t1(y) + · · · + ηktk(y)] (4.9)

so that the joint pdf or pmf is given by

f(y1, ..., yn|η) = (
n∏

j=1

h(yj))[b(η)]n exp[η1

n∑

j=1

t1(yj) + · · · + ηk

n∑

j=1

tk(yj)]

which is a k-parameter exponential family. Then

T (Y ) = (
n∑

j=1

t1(Yj), ...,
n∑

j=1

tk(Yj)) is

a) a sufficient statistic for θ and for η,
b) a minimal sufficient statistic for η if η1, ..., ηk do not satisfy a linearity
constraint,
c) a minimal sufficient statistic for θ if w1(θ), ..., wk(θ) do not satisfy a lin-
earity constraint,
d) a complete sufficient statistic for η if Ω contains a k–dimensional rectan-
gle,
e) a complete sufficient statistic for θ if η is a one to one function of θ and
if Ω contains a k–dimensional rectangle.

Proof. a) Use the factorization theorem.
b) The proof expands on remarks given in Johanson (1979, p. 3) and
Lehmann(1983, p. 44). The ratio

f(x|η)

f(y|η)
=

∏n
j=1 h(xj)

∏n
j=1 h(yj)

exp[
k∑

i=1

ηi(Ti(x) − Ti(y))]
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is equal to a constant with respect to η iff

k∑

i=1

ηi[Ti(x) − Ti(y)] =
k∑

i=1

ηiai = d

for all ηi where d is some constant and where ai = Ti(x)−Ti(y) and Ti(x) =
∑n

j=1 ti(xj). Since the ηi do not satisfy a linearity constraint,
∑k

i=1 ηiai = d
iff all of the ai = 0. Hence

T (X) = (T1(X), ..., Tk(X))

is a minimal sufficient statistic by the Lehmann-Scheffé LSM theorem.
c) Use almost the same proof as b) with wi(θ) in the place of ηi and θ in
the place of η. (In particular, the result holds if ηi = wi(θ) for i = 1, ..., k
provided that the ηi do not satisfy a linearity constraint.)
d) See Lehmann (1986, p. 142).
e) If η = τ (θ) then θ = τ−1(η) and the parameters have just been renamed.
Hence Eθ[g(T )] = 0 for all θ implies that Eη [g(T )] = 0 for all η, and thus
Pη [g(T (Y )) = 0] = 1 for all η since T is a complete sufficient statistic for η

by d). Thus Pθ[g(T (Y )) = 0] = 1 for all θ, and T is a complete sufficient
statistic for θ.

Corollary 4.6: Completeness of a kP–REF. Suppose that Y1, ..., Yn

are iid from a kP–REF

f(y|θ) = h(y)c(θ) exp [w1(θ)t1(y) + · · · + wk(θ)tk(y)]

with θ ∈ Θ and natural parameterization given by (4.9) with η ∈ Ω. Then

T (Y ) = (
n∑

j=1

t1(Yj), ...,
n∑

j=1

tk(Yj)) is

a) a minimal sufficient statistic for θ and for η,
b) a complete sufficient statistic for θ and for η if η is a one to one function
of θ.

Proof. The result follows by Theorem 4.5 since for a kP–REF, the wi(θ)
and ηi do not satisfy a linearity constraint and Ω contains a k–dimensional
rectangle. QED
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Theorem 4.7: Bahadur’s Theorem. A finite dimensional complete
sufficient statistic is also minimal sufficient.

Theorem 4.8. A one to one function of a sufficient, minimal sufficient,
or complete sufficient statistic is sufficient, minimal sufficient, or complete
sufficient respectively.

Note that in a kP–REF, the statistic T is k–dimensional and thus T is
minimal sufficient by Theorem 4.7 if T is complete sufficient. Corollary 4.6
is useful because often you know or can show that the given family is a REF.
The theorem gives a particularly simple way to find complete sufficient statis-
tics for one parameter exponential families and for any family that is known
to be REF. If it is known that the distribution is regular, find the exponential
family parameterization given by Equation (4.8) or (4.9). These parameter-
izations give t1(y), ..., tk(y). Then T (Y ) = (

∑n
j=1 t1(Yj), ...,

∑n
j=1 tk(Yj)).

Example 4.11. Let X1, ..., Xn be iid N(µ, σ2). Then the N(µ, σ2) pdf is

f(x|µ, σ) =
1√
2πσ

exp(
−µ

2σ2
)

︸ ︷︷ ︸

c(µ,σ)≥0

exp(
−1

2σ2
︸︷︷︸

w1(θ)

x2
︸︷︷︸

t1(x)

+
µ

σ2
︸︷︷︸

w2(θ)

x
︸︷︷︸

t2(x)

) I<(x)
︸ ︷︷ ︸

h(x)≥0

,

with η1 = −0.5/σ2 and η2 = µ/σ2 if σ > 0. As shown in Example 3.1, this is a
2P–REF. By Corollary 4.6, T = (

∑n
i=1 Xi,

∑n
i=1 X2

i ) is a complete sufficient
statistic for (µ, σ2). The one to one functions

T 2 = (X, S2) and T 3 = (X, S)

of T are also complete sufficient where X is the sample mean and S is the
sample standard deviation. T , T 2 and T 3 are minimal sufficient by Corollary
4.6 or by Theorem 4.7 since the statistics are 2 dimensional.

Example 4.12. Let Y1, ..., Yn be iid binomial(k, ρ) with k known and
pmf

f(y|ρ) =

(
k

y

)

ρy(1 − ρ)k−y I{0,...,k}(y)

=

(
k

y

)

I{0,...,k}(y)

︸ ︷︷ ︸

h(y)≥0

(1 − ρ)k

︸ ︷︷ ︸

c(ρ)≥0

exp[log(
ρ

1 − ρ
)

︸ ︷︷ ︸

w(ρ)

y
︸︷︷︸

t(y)

]
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where Θ = (0, 1) and Ω = (−∞,∞). Notice that η = log( ρ
1−ρ

) is an in-
creasing and hence one to one function of ρ. Since this family is a 1P–REF,
Tn =

∑n
i=1 t(Yi) =

∑n
i=1 Yi is complete sufficient statistic for ρ.

Compare Examples 4.7 and 4.8 with Examples 4.11 and 4.12. The ex-
ponential family theorem gives more powerful results than the factorization
theorem, but often the factorization theorem is useful for suggesting a po-
tential minimal sufficient statistic.

Example 4.13. In testing theory, a single sample is often created by
combining two independent samples of iid data. Let X1, ..., Xn be iid ex-
ponential (θ) and Y1, ..., Ym iid exponential (θ/2). If the two samples are
independent, then the joint pdf f(x, y|θ) belongs to a regular one parameter
exponential family with complete sufficient statistic T =

∑n
i=1 Xi+2

∑m
i=1 Yi.

(Let Wi = 2Yi. Then the Wi and Xi are iid and Corollary 4.6 applies.)

Rule of thumb 4.1: A k–parameter minimal sufficient statistic for a
d–dimensional parameter where d < k will not be complete. In the following
example d = 1 < 2 = k. (A rule of thumb is something that is frequently
true but can not be used to rigorously prove something. Hence this rule of
thumb can not be used to prove that the minimal sufficient statistic is not
complete.)

Warning: Showing that a minimal sufficient statistic is not complete is
of little applied interest since complete sufficient statistics are rarely used
in applications; nevertheless, many qualifying exams in statistical inference
contain such a problem.

Example 4.14, Cox and Hinckley (1974, p. 31). Let X1, ..., Xn be
iid N(µ, γ2

oµ
2) random variables where γ2

o > 0 is known and µ > 0. Then this
family has a one dimensional parameter µ, but

f(x|µ) =
1

√

2πγ2
oµ

2
exp

(−1

2γ2
o

)

exp

( −1

2γ2
oµ

2
x2 +

1

γ2
oµ

x

)

is a two parameter exponential family with Θ = (0,∞) (which contains a
one dimensional rectangle), and (

∑n
i=1 Xi,

∑n
i=1 X2

i ) is a minimal sufficient
statistic. (Theorem 4.5 applies since the functions 1/µ and 1/µ2 do not
satisfy a linearity constraint.) However, since Eµ(X2) = γ2

oµ
2 + µ2 and
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∑n
i=1 Xi ∼ N(nµ, nγ2

oµ
2) implies that

Eµ[(
n∑

i=1

Xi)
2] = nγ2

oµ
2 + n2µ2,

we find that

Eµ[
n + γ2

o

1 + γ2
o

n∑

i=1

X2
i − (

n∑

i=1

Xi)
2] =

n + γ2
o

1 + γ2
o

nµ2(1 + γ2
o ) − (nγ2

oµ
2 + n2µ2) = 0

for all µ so the minimal sufficient statistic is not complete. Notice that

Ω = {(η1, η2) : η1 =
−1

2
γ2

oη
2
2}

and a plot of η1 versus η2 is a quadratic function which can not contain a
2–dimensional rectangle. Notice that (η1, η2) is a one to one function of µ,
and thus this example illustrates that the rectangle needs to be contained in
Ω rather than Θ.

Example 4.15. The theory does not say that any sufficient statistic from
a REF is complete. Let Y be a random variable from a normal N(0, σ2) dis-
tribution with σ2 > 0. This family is a REF with complete minimal sufficient
statistic Y 2. The data Y is also a sufficient statistic, but Y is not a function
of Y 2. Hence Y is not minimal sufficient and (by Bahadur’s theorem) not
complete. Alternatively Eσ2(Y ) = 0 but Pσ2(Y = 0) = 0 < 1, so Y is not
complete.

Theorem 4.9. a) Suppose Y1, ..., Yn are iid uniform U(a, θ) where a is
known. Then T = max(Y1, ..., Yn) = Y(n) is a complete sufficient statistic for
θ.
b) Suppose Y1, ..., Yn are iid uniform U(θ, b) where b is known. Then T =
min(Y1, ..., Yn) = Y(1) is a complete sufficient statistic for θ.

A common midterm, final and qual question takes X1, ..., Xn iid
U(hl(θ), hu(θ)) where hl and hu are functions of θ such that hl(θ) < hu(θ).
The function hl and hu are chosen so that the min = X(1) and the max =
X(n) form the 2-dimensional minimal sufficient statistic by the LSM theorem.
Since θ is one dimensional, the rule of thumb suggests that the minimal
sufficient statistic is not complete. State this fact, but if you have time find
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Eθ[X(1)] and Eθ[X(n)]. Then show that Eθ[aX(1) + bX(n) + c] ≡ 0 so that
T = (X(1), X(n)) is not complete.

Example 4.16. Let X1, ..., Xn be iid U(1 − θ, 1 + θ) where θ > 0 is
unknown. Hence

fX(x) =
1

2θ
I(1 − θ < x < 1 + θ)

and
f(x)

f(y)
=

I(1 − θ < x(1) ≤ x(n) < 1 + θ)

I(1 − θ < y(1) ≤ y(n) < 1 + θ)

which is constant for all θ > 0 iff (x(1), x(n)) = (y(1), y(n)). Hence T =
(X(1), X(n)) is a minimal sufficient statistic by the LSM theorem. To show
that T is not complete, first find E(T ). Now

FX(t) =

∫ t

1−θ

1

2θ
dx =

t + θ − 1

2θ

for 1 − θ < t < 1 + θ. Hence by Theorem 4.2a),

fX(n)
(t) =

n

2θ

(
t + θ − 1

2θ

)n−1

for 1 − θ < t < 1 + θ and

Eθ(X(n)) =

∫

xfX(n)
(x)dx =

∫ 1+θ

1−θ

x
n

2θ

(
x + θ − 1

2θ

)n−1

dx.

Use u–substitution with u = (x + θ − 1)/2θ and x = 2θu + 1 − θ. Hence
x = 1 + θ implies u = 1, and x = 1 − θ implies u = 0 and dx = 2θdu. Thus

Eθ(X(n)) = n

∫ 1

0

2θu + 1 − θ

2θ
un−12θdu =

= n

∫ 1

0

[2θu + 1 − θ]un−1du = 2θn

∫ n

0

undu + (n − nθ)

∫ 1

0

un−1du =

2θn
un+1

n + 1

∣
∣
∣
∣

1

0

+ n(1 − θ)
un

n

∣
∣
∣
∣

1

0

=

2θ
n

n + 1
+

n(1 − θ)

n
= 1 − θ + 2θ

n

n + 1
.
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Note that Eθ(X(n)) ≈ 1 + θ as you should expect.
By Theorem 4.2b),

fX(1)
(t) =

n

2θ

(
θ − t + 1

2θ

)n−1

for 1 − θ < t < 1 + θ and thus

Eθ(X(1)) =

∫ 1+θ

1−θ

x
n

2θ

(
θ − x + 1

2θ

)n−1

dx.

Use u–substitution with u = (θ − x + 1)/2θ and x = θ + 1 − 2θu. Hence
x = 1 + θ implies u = 0, and x = 1 − θ implies u = −1 and dx = −2θdu.
Thus

Eθ(X(1)) =

∫ 0

−1

n

2θ
(θ + 1 − 2θu)un−1(−2θ)du = n

∫ 1

0

(θ + 1 − 2θu)un−1du =

n(θ+1)

∫ 1

0

un−1du−2θn

∫ 1

0

undu = (θ+1)n/n−2θn/(n+1) = θ+1−2θ
n

n + 1
.

To show that T is not complete try showing Eθ(aX(1) + bX(n) + c) = 0
for some constants a, b and c. Note that a = b = 1 and c = −2 works. Hence
Eθ(X(1)+X(n)−2) = 0 for all θ > 0 but Pθ(g(T ) = 0) = Pθ(X(1) +X(n)−2 =
0) = 0 < 1 for all θ > 0. Hence T is not complete.

Definition 4.5. Let Y1, ..., Yn have pdf or pmf f(y|θ). A statistic W (Y )
whose distribution does not depend on θ is called an ancillary statistic.

Theorem 4.10, Basu’s Theorem. Let Y1, ..., Yn have pdf or pmf
f(y|θ). If T (Y ) is a k-dimensional complete sufficient statistic, then T (Y )
is independent of every ancillary statistic.

Remark 4.3. Basu’s Theorem says that if T is minimal sufficient and
complete, then T R if R is ancillary. Application: If T is minimal sufficient,
R ancillary and R is a function of T (so R = h(T ) is not independent of
T ), then T is not complete. Since θ is a scalar, usually need k = 1 for
T = T (Y ) = T (Y ) = T to be complete.

Example 4.17. Suppose X1, ..., Xn are iid uniform observations on the
interval (θ, θ + 1), −∞ < θ < ∞. Let X(1) = min(X1, ..., Xn), X(n) =
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max(X1, ..., Xn) and T (X) = (X(1),X(n)) be a minimal sufficient statistic.
Then R = X(n) − X(1) is ancillary since R = max(X1 − θ, ..., Xn − θ) + θ −
[min(X1 − θ, ..., Xn − θ) + θ] = U(n) − U(1) where Ui = Xi − θ ∼ U(0, 1) has
a distribution that does not depend on θ. R is not independent of T , so T is
not complete.

Example 4.18. Let Y1, ..., Yn be iid from a location family with pdf
fY (y|θ) = fX(y − θ) where Y = X + θ and fX(y) is the standard pdf for the
location family (and thus the distribution of X does not depend on θ).
Claim: W = (Y1 − Y , ..., Yn − Y ) is ancillary.

Proof: Since Yi = Xi + θ,

W =

(

X1 + θ − 1

n

n∑

i=1

(Xi + θ), ..., Xn + θ − 1

n

n∑

i=1

(Xi + θ)

)

= (X1 − X, ..., Xn −X)

and the distribution of the final vector is free of θ. QED
Application: Let Y1, ..., Yn be iid N(µ, σ2). For any fixed σ2, this is a

location family with θ = µ and complete sufficient statistic T (Y ) = Y . Thus
Y W by Basu’s Theorem. Hence Y S2 for any known σ2 > 0 since

S2 =
1

n − 1

n∑

i=1

(Yi − Y )2

is a function of W . Thus Y S2 even if σ2 > 0 is not known.

4.3 Summary

1) A statistic is a function of the data that does not depend on any unknown
parameters.

2) For parametric inference, the data Y1, ..., Yn comes from a family of
parametric distributions f(y|θ) for θ ∈ Θ. Often the data are iid and
f(y|θ) =

∏n
i=1 f(yi|θ). The parametric distribution is completely specified

by the unknown parameters θ. The statistic is a random vector or random
variable and hence also comes from some probability distribution. The dis-
tribution of the statistic is called the sampling distribution of the statistic.

124



3) For iid N(µ, σ2) data, Y S2, Y ∼ N(µ, σ2/n) and
∑n

i=1(Yi − Y )2 ∼
σ2χ2

n−1.

4) For iid data with cdf FY and pdf fY , fY(n)
(t) = n[FY (t)]n−1fY (t) and

fY(1)
(t) = n[1 − FY (t)]n−1fY (t).

5) A statistic T (Y1, ..., Yn) is a sufficient statistic for θ if the conditional
distribution of (Y1, ..., Yn) given T does not depend on θ.

6) A sufficient statistic T (Y ) is a minimal sufficient statistic if for any
other sufficient statistic S(Y ), T (Y ) is a function of S(Y ).

7) Suppose that a statistic T (Y ) has a pmf or pdf f(t|θ). Then T (Y ) is
a complete statistic if Eθ[g(T (Y ))] = 0 for all θ implies that
Pθ[g(T (Y )) = 0] = 1 for all θ.

8) Factorization Theorem. Let f(y|θ) denote the pdf or pmf of a
sample Y . A statistic T (Y ) is a sufficient statistic for θ iff for all sample
points y and for all θ in the parameter space Θ,

f(y|θ) = g(T (y)|θ) h(y)

where both g and h are nonnegative functions.
9) Completeness of REFs: Suppose that Y1, ..., Yn are iid from a kP–

REF

f(y|θ) = h(y)c(θ) exp [w1(θ)t1(y) + · · · + wk(θ)tk(y)] (4.10)

with θ ∈ Θ and natural parameter η ∈ Ω. Then

T (Y ) = (
n∑

j=1

t1(Yj), ...,
n∑

j=1

tk(Yj)) is

a) a minimal sufficient statistic for η and for θ,
b) a complete sufficient statistic for θ and for η if η is a one to one function
of θ and if Ω contains a k–dimensional rectangle.

10) LSM Theorem: Let f(y|θ) be the pmf or pdf of a sample Y . Let
cx,y be a constant. Suppose there exists a function T (y) such that for any
two sample points x and y, the ratio Rx,y(θ) = f(x|θ)/f(y|θ) = cx,y for
all θ in Θ iff T (x) = T (y). Then T (Y ) is a minimal sufficient statistic for
θ.

11) Tips for finding sufficient, minimal sufficient and complete sufficient

statistics. a) Typically Y1, ..., Yn are iid so the joint distribution f(y1, ..., yn) =
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∏n
i=1 f(yi) where f(yi) is the marginal distribution. Use the factorization

theorem to find the candidate sufficient statistic T .
b) Use factorization to find candidates T that might be minimal sufficient
statistics. Try to find T with as small a dimension k as possible. If the
support of the random variable depends on θ often Y(1) or Y(n) will be a
component of the minimal sufficient statistic. To prove that T is minimal
sufficient, use the LSM theorem. Alternatively prove or recognize
that Y comes from a regular exponential family. T will be minimal
sufficient for θ if Y comes from an exponential family as long as the wi(θ)
do not satisfy a linearity constraint.
c) To prove that the statistic is complete, prove or recognize that Y
comes from a regular exponential family. Check whether dim(Θ) = k,
if dim(Θ) < k, then the family is usually not a kP–REF and Theorem 4.5
and Corollary 4.6 do not apply. The uniform distribution where one endpoint
is known also has a complete sufficient statistic.
d) Let k be free of the sample size n. Then a k−dimensional complete suffi-
cient statistic is also a minimal sufficient statistic (Bahadur’s theorem).
e) To show that a statistic T is not a sufficient statistic, either show that
factorization fails or find a minimal sufficient statistic S and show that S is
not a function of T .
f) To show that T is not minimal sufficient, first try to show that T is not a
sufficient statistic. If T is sufficient, find a minimal sufficient statistic S and
show that T is not a function of S. (Of course S will be a function of T .)
The Lehmann-Scheffé (LSM) theorem cannot be used to show that
a statistic is not minimal sufficient.
g) To show that a sufficient statistics T is not complete, find a function g(T )
such that Eθ(g(T )) = 0 for all θ but g(T ) is not equal to the zero with
probability one. Finding such a g is often hard, unless there are clues. For
example, if T = (X, Y , ....) and µ1 = µ2, try g(T ) = X − Y . As a rule
of thumb, a k–dimensional minimal sufficient statistic will generally not
be complete if k > dim(Θ). In particular, if T is k–dimensional and θ is
j–dimensional with j < k (especially j = 1 < 2 = k) then T will generally
not be complete. If you can show that a k–dimensional sufficient statistic
T is not minimal sufficient (often hard), then T is not complete by Bahadur’s
Theorem. Basu’s Theorem can sometimes be used to show that a minimal
sufficient statistic is not complete. See Remark 4.3 and Example 4.17.
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4.4 Complements

Stigler (1984) presents Kruskal’s proof that Y S2 when the data are iid
N(µ, σ2), but Zehna (1991) states that there is a flaw in the proof.

The Factorization Theorem was developed with increasing generality by
Fisher, Neyman and by Halmos and Savage (1949).

Bahadur’s Theorem is due to Bahadur (1958) and Lehmann and Scheffé
(1950).

Basu’s Theorem is due to Basu (1959). Also see Koehn and Thomas
(1975).

Some techniques for showing whether a statistic is minimal sufficient are
illustrated in Sampson and Spencer (1976).

4.5 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

Refer to Chapter 10 for the pdf or pmf of the distributions in
the problems below.

4.1. Let X1, ..., Xn be a random sample from a N(µ, σ2) distribution,
which is an exponential family. Show that the sample space of (T1, T2) con-
tains an open subset of R2, if n ≥ 2 but not if n = 1.

Hint: Show that if n ≥ 2, then T1 =
∑n

i=1 Xi and T2 =
∑n

i=1 X2
i . Then

T2 = aT 2
1 +b(X1, ..., Xn) for some constant a where b(X1, ..., Xn) =

∑n
i=1(Xi−

X)2 ∈ (0,∞). So range(T1, T2) = { (t1, t2)|t2 ≥ at21 }. Find a. If n = 1 then
b(X1) ≡ 0 and the curve can not contain an open 2-dimensional rectangle.

4.2. Let X1, ..., Xn be iid exponential(λ) random variables. Use the
Factorization Theorem to show that T (X) =

∑n
i=1 Xi is a sufficient statistic

for λ.
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4.3. Let X1, ..., Xn be iid from a regular exponential family with pdf

f(x|η) = h(x)c∗(η) exp[
k∑

i=1

ηiti(x)].

Let T (X) = (T1(X), ..., Tk(X)) where Ti(X) =
∑n

j=1 ti(Xj).

a) Use the factorization theorem to show that T (X) is a k-dimensional
sufficient statistic for η.

b) Use the Lehmann Scheffé theorem to show that T (X) is a minimal
sufficient statistic for η.
(Hint: in a regular exponential family, if

∑k
i=1 aiηi = c for all η in the natural

parameter space for some fixed constants a1, ..., ak and c, then a1 = · · · =
ak = 0.)

4.4. Let X1, ..., Xn be iid N(µ, γ2
oµ

2) random variables where γ2
o > 0 is

known and µ > 0.

a) Find a sufficient statistic for µ.

b) Show that (
∑n

i=1 xi,
∑n

i=1 x2
i ) is a minimal sufficient statistic.

c) Find Eµ

∑n
i=1 X2

i .

d) Find Eµ[(
∑n

i=1 Xi)
2].

e) Find

Eµ[
n + γ2

o

1 + γ2
o

n∑

i=1

X2
i − (

n∑

i=1

Xi)
2].

(Hint: use c) and d).)

f) Is the minimal sufficient statistic given in b) complete? Explain.

4.5. If X1, ..., Xn are iid with f(x|θ) = exp[−(x − θ)]for x > θ, then the
joint pdf can be written as

f(x|θ) = enθ exp(−
∑

xi)I [θ < x(1)].

By the factorization theorem, T (X) = (
∑

Xi, X(1)) is a sufficient statistic.
Show that R(θ) = f(x|θ)/f(y|θ) can be constant even though T (x) 6= T (y).
Hence the Lehmann-Scheffé theorem does not imply that T (X) is a minimal
sufficient statistic.
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Problems from old quizzes and exams.

4.6. Suppose that X1, ..., Xm; Y1, ..., Yn are iid N(µ, 1) random variables.
Find a minimal sufficient statistic for µ.

4.7. Let X1, ..., Xn be iid from a uniform U(θ − 1, θ + 2) distribution.
Find a sufficient statistic for θ.

4.8. Let Y1, ..., Yn be iid with a distribution that has pmf Pθ(X = x) =
θ(1− θ)x−1, x = 1, 2, ..., where 0 < θ < 1. Find a minimal sufficient statistic
for θ.

4.9. Let Y1, ..., Yn be iid Poisson(λ) random variables. Find a minimal
sufficient statistic for λ using the fact that the Poisson distribution is a regular
exponential family (REF).

4.10. Suppose that X1, ..., Xn are iid from a REF with pdf (with respect
to the natural parameterization)

f(x) = h(x)c∗(η) exp[
4∑

i=1

ηiti(x)].

Assume dim(Θ) = 4. Find a complete minimal sufficient statistic T (X) in
terms of n, t1, t2, t3, and t4.

4.11. Let X be a uniform U(−θ, θ) random variable (sample size n = 1).
Hence T (X) = X is a minimal sufficient statistic by Lehmann Scheffé. Is
T (X) a complete sufficient statistic? (Hint: find EθX.)
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4.12. A fact from mathematics is that if the polynomial
P (w) = anw

n + an−1w
n−1 + · · ·+ a2w

2 + a1w + a0 ≡ 0 for all w in a domain
that includes an open interval, then an = · · · = a1 = a0 = 0. Suppose that
you are trying to use the Lehmann Scheffé (LSM) theorem to show that
(
∑

Xi,
∑

X2
i ) is a minimal sufficient statistic and that you have managed to

show that
f(x|µ)

f(y|µ)
≡ c

iff

− 1

2γ2
oµ

2
[
∑

x2
i −

∑

y2
i ] +

1

γ2
oµ

[
∑

xi −
∑

yi] ≡ d (4.11)

for all µ > 0. Parts a) and b) give two different ways to proceed.
a) Let w = 1/µ and assume that γo is known. Identify a2, a1 and a0 and

show that ai = 0 implies that (
∑

Xi,
∑

X2
i ) is a minimal sufficient statistic.

b) Let η1 = 1/µ2 and η2 = 1/µ. Since (4.11) is a polynomial in 1/µ,
can η1 and η2 satisfy a linearity constraint? If not, why is (

∑
Xi,
∑

X2
i ) a

minimal sufficient statistic?

4.13 Let X1, ..., Xn be iid Exponential(λ) random variables and Y1, ..., Ym

iid Exponential(λ/2) random variables. Assume that the Yi’s and Xj ’s are
independent. Show that the statistic (

∑n
i=1 Xi,

∑m
i=1 Yi) is not a complete

sufficient statistic.

4.14. Let X1, ..., Xn be iid gamma(ν, λ) random variables. Find a com-
plete, minimal sufficient statistic (T1(X), T2(X)). (Hint: recall a theorem for
exponential families. The gamma pdf is (for x > 0)

f(x) =
xν−1e−x/λ

λνΓ(ν)
.)

4.15. Let X1, ..., Xn be iid uniform(θ − 1, θ + 1) random variables. The
following expectations may be useful:

EθX = θ, EθX(1) = 1 + θ − 2θ
n

n + 1
, EθX(n) = 1 − θ + 2θ

n

n + 1
.

a) Find a minimal sufficient statistic for θ.

b) Show whether the minimal sufficient statistic is complete or not.
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4.16. Let X1, ..., Xn be independent identically distributed random vari-
ables with pdf

f(x) =

√
σ

2πx3
exp

(

− σ

2x

)

where x and σ are both positive. Find a sufficient statistic T (X) for σ.

4.17. Suppose that X1, ..., Xn are iid beta(δ, ν) random variables. Find
a minimal sufficient statistic for (δ, ν). Hint: write as a 2 parameter REF.

4.18. Let X1, ..., Xn be iid from a distribution with pdf

f(x|θ) = θx−2, 0 < θ ≤ x < ∞.

Find a sufficient statistic for θ.

4.19. Let X1, ..., Xn be iid with a distribution that has pdf

f(x) =
x

σ2
exp(

−x

2σ2
)

for x > 0 and σ2 > 0. Find a minimal sufficient statistic for σ2 using the
Lehmann-Scheffé theorem.

4.20. Let X1, ..., Xn be iid exponential (λ) random variables. Find a min-
imal sufficient statistic for λ using the fact that the exponential distribution
is a 1P–REF.

4.21. Suppose that X1, ..., Xn are iid N(µ, σ2). Find a complete sufficient
statistic for (µ, σ2).

4.22. (Jan. 2003 QUAL) Let X1 and X2 be iid Poisson (λ) random
variables. Show that T = X1 + 2X2 is not a sufficient statistic for λ. (Hint:
the Factorization Theorem uses the word iff. Alternatively, find a minimal
sufficient statistic S and show that S is not a function of T .)

4.23. (Aug. 2002 QUAL): Suppose that X1, ..., Xn are iid N(σ, σ) where
σ > 0.

a) Find a minimal sufficient statistic for σ.
b) Show that (X, S2) is a sufficient statistic but is not a complete sufficient

statistic for σ.
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4.24. Let X1, ..., Xk be iid binomial(n = 1, θ) random variables and
Y1, ..., Ym iid binomial(n = 1, θ/2) random variables. Assume that the Yi’s
and Xj ’s are independent. Show that the statistic (

∑k
i=1 Xi,

∑m
i=1 Yi) is not

a complete sufficient statistic.

4.25. Suppose that X1, ..., Xn are iid Poisson(λ) where λ > 0. Show that
(X, S2) is not a complete sufficient statistic for λ.

4.26. (Aug. 2004 QUAL): Let X1, ..., Xn be iid beta(θ, θ). (Hence δ =
ν = θ.)

a) Find a minimal sufficient statistic for θ.
b) Is the statistic found in a) complete? (prove or disprove)

4.27. (Sept. 2005 QUAL): Let X1, ..., Xn be independent identically
distributed random variables with probability mass function

f(x) = P (X = x) =
1

xνζ(ν)

where ν > 1 and x = 1, 2, 3, .... Here the zeta function

ζ(ν) =
∞∑

x=1

1

xν

for ν > 1.

a) Find a minimal sufficient statistic for ν.

b) Is the statistic found in a) complete? (prove or disprove)

c) Give an example of a sufficient statistic that is strictly not minimal.
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