
Chapter 3

Exponential Families

3.1 Regular Exponential Families

The theory of exponential families will be used in the following chapters
to study some of the most important topics in statistical inference such as
minimal and complete sufficient statistics, maximum likelihood estimators
(MLEs), uniform minimum variance estimators (UMVUEs) and the Fréchet
Cramér Rao lower bound (FCRLB), uniformly most powerful (UMP) tests
and large sample theory.

Often a “brand name distribution” such as the normal distribution will
have three useful parameterizations: the usual parameterization with param-
eter space ΘU is simply the formula for the probability distribution or mass
function (pdf or pmf, respectively) given when the distribution is first de-
fined. The k-parameter exponential family parameterization with parameter
space Θ, given in Definition 3.1 below, provides a simple way to determine if
the distribution is an exponential family while the natural parameterization

with parameter space Ω, given in Definition 3.2 below, is used for theory that
requires a complete sufficient statistic.

Definition 3.1. A family of joint pdfs or joint pmfs {f(y|θ) : θ =
(θ1, ..., θj) ∈ Θ } for a random vector Y is an exponential family if

f(y|θ) = h(y)c(θ) exp

[
k∑

i=1

wi(θ)ti(y)

]

(3.1)

for y ∈ Y where c(θ) ≥ 0 and h(y) ≥ 0. The functions c, h, ti, and wi are real
valued functions. The parameter θ can be a scalar and y can be a scalar.
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It is crucial that c, w1, ..., wk do not depend on y and that h, t1, ..., tk do not
depend on θ. The support of the distribution is Y and the parameter space
is Θ. The family is a k-parameter exponential family if k is the smallest
integer where (3.1) holds.

Notice that the distribution of Y is an exponential family if

f(y|θ) = h(y)c(θ) exp

[
k∑

i=1

wi(θ)ti(y)

]

(3.2)

and the distribution is a one parameter exponential family if

f(y|θ) = h(y)c(θ) exp[w(θ)t(y)]. (3.3)

The parameterization is not unique since, for example, wi could be multiplied
by a nonzero constant a if ti is divided by a. Many other parameterizations
are possible. If h(y) = g(y)IY(y), then usually c(θ) and g(y) are positive, so
another parameterization is

f(y|θ) = exp

[
k∑

i=1

wi(θ)ti(y) + d(θ) + S(y)

]

IY(y) (3.4)

where S(y) = log(g(y)), d(θ) = log(c(θ)), and Y does not depend on θ.

To demonstrate that {f(y|θ) : θ ∈ Θ} is an exponential family, find
h(y), c(θ), wi(θ) and ti(y) such that (3.1), (3.2), (3.3) or (3.4) holds.

Theorem 3.1. Suppose that Y 1, ...,Y n are iid random vectors from
an exponential family. Then the joint distribution of Y 1, ...,Y n follows an
exponential family.

Proof. Suppose that fY i
(yi) has the form of (3.1). Then by indepen-

dence,

f(y1, ...,yn) =
n∏

i=1

fY i
(yi) =

n∏

i=1

h(yi)c(θ) exp

[
k∑

j=1

wj(θ)tj(yi)

]

= [
n∏

i=1

h(yi)][c(θ)]n
n∏

i=1

exp

[
k∑

j=1

wj(θ)tj(yi)

]
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= [
n∏

i=1

h(yi)][c(θ)]n exp

(
n∑

i=1

[
k∑

j=1

wj(θ)tj(yi)

])

= [
n∏

i=1

h(yi)][c(θ)]n exp

[
k∑

j=1

wj(θ)

(
n∑

i=1

tj(yi)

)]

.

To see that this has the form (3.1), take h∗(y1, ...,yn) =
∏n

i=1 h(yi), c
∗(θ) =

[c(θ)]n, w∗
j (θ) = wj(θ) and t∗j(y1, ...,yn) =

∑n
i=1 tj(yi). QED

The parameterization that uses the natural parameter η is especially
useful for theory. See Definition 3.3 for the natural parameter space Ω.

Definition 3.2. Let Ω be the natural parameter space for η. The natural

parameterization for an exponential family is

f(y|η) = h(y)b(η) exp

[
k∑

i=1

ηiti(y)

]

(3.5)

where h(y) and ti(y) are the same as in Equation (3.1) and η ∈ Ω. The
natural parameterization for a random variable Y is

f(y|η) = h(y)b(η) exp

[
k∑

i=1

ηiti(y)

]

(3.6)

where h(y) and ti(y) are the same as in Equation (3.2) and η ∈ Ω. Again,
the parameterization is not unique. If a 6= 0, then aηi and ti(y)/a would also
work.

Notice that the natural parameterization (3.6) has the same form as (3.2)
with θ∗ = η, c∗(θ∗) = b(η) and wi(θ

∗) = wi(η) = ηi. In applications often
η and Ω are of interest while b(η) is not computed.

The next important idea is that of a regular exponential family (and of
a full exponential family). Let di(x) denote ti(y), wi(θ) or ηi. A linearity

constraint is satisfied by d1(x), ..., dk(x) if
∑k

i=1 aidi(x) = c for some constants
ai and c and for all x in the sample or parameter space where not all of the
ai = 0. If

∑k
i=1 aidi(x) = c for all x only if a1 = · · · = ak = 0, then the di(x)

do not satisfy a linearity constraint. In linear algebra, we would say that the
di(x) are linearly independent if they do not satisfy a linearity constraint.
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Let Ω̃ be the set where the integral of the kernel function is finite:

Ω̃ = {η = (η1, ..., ηk) :
1

b(η)
≡
∫ ∞

−∞
h(y) exp[

k∑

i=1

ηiti(y)]dy <∞}. (3.7)

Replace the integral by a sum for a pmf. An interesting fact is that Ω̃ is a
convex set.

Definition 3.3. Condition E1: the natural parameter space Ω = Ω̃.
Condition E2: assume that in the natural parameterization, neither the ηi
nor the ti satisfy a linearity constraint.
Condition E3: Ω is a k-dimensional open set.
If conditions E1), E2) and E3) hold then the exponential family is a regular

exponential family (REF).
If conditions E1) and E2) hold then the exponential family is a full exponen-

tial family.

Notation. A kP–REF is a k parameter regular exponential family. So a
1P–REF is a 1 parameter REF and a 2P–REF is a 2 parameter REF.

Notice that every REF is full. Any k–dimensional open set will contain a
k–dimensional rectangle. A k–fold cross product of nonempty open intervals
is a k–dimensional open set. For a one parameter exponential family, a one
dimensional rectangle is just an interval, and the only type of function of
one variable that satisfies a linearity constraint is a constant function. In the
definition of an exponential family, θ is a j× 1 vector. Typically j = k if the
family is a kP–REF. If j < k and k is as small as possible, the family will
usually not be regular.

Some care has to be taken with the definitions of Θ and Ω since formulas
(3.1) and (3.6) need to hold for every θ ∈ Θ and for every η ∈ Ω. For
a continuous random variable or vector, the pdf needs to exist. Hence all
degenerate distributions need to be deleted from ΘU to form Θ and Ω. For
continuous and discrete distributions, the natural parameter needs to exist
(and often does not exist for discrete degenerate distributions). As a rule
of thumb, remove values from ΘU that cause the pmf to have the form 00.
For example, for the binomial(k, ρ) distribution with k known, the natural
parameter η = log(ρ/(1 − ρ)). Hence instead of using ΘU = [0, 1], use ρ ∈
Θ = (0, 1), so that η ∈ Ω = (−∞,∞).
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These conditions have some redundancy. If Ω contains a k-dimensional
rectangle, no ηi is completely determined by the remaining η′js. In particular,
the ηi cannot satisfy a linearity constraint. If the ηi do satisfy a linearity
constraint, then the ηi lie on a hyperplane of dimension at most k, and such
a surface cannot contain a k-dimensional rectangle. For example, if k = 2, a
line cannot contain an open box. If k = 2 and η2 = η2

1 , then the parameter
space does not contain a 2-dimensional rectangle, although η1 and η2 do not
satisfy a linearity constraint.

The most important 1P–REFs are the binomial (k, ρ) distribution with
k known, the exponential (λ) distribution, and the Poisson (θ) distribution.

Other 1P–REFs include the Burr (φ, λ) distribution with φ known, the
double exponential (θ, λ) distribution with θ known, the two parameter ex-
ponential (θ, λ) distribution with θ known, the generalized negative binomial
(µ, κ) distribution if κ is known, the geometric (ρ) distribution, the half
normal (µ, σ2) distribution with µ known, the largest extreme value (θ, σ)
distribution if σ is known, the smallest extreme value (θ, σ) distribution if
σ is known, the inverted gamma (ν, λ) distribution if ν is known, the log-
arithmic (θ) distribution, the Maxwell–Boltzmann (µ, σ) distribution if µ
is known, the negative binomial (r, ρ) distribution if r is known, the one
sided stable (σ) distribution, the Pareto (σ, λ) distribution if σ is known, the
power (λ) distribution, the Rayleigh (µ, σ) distribution if µ is known, the
Topp-Leone (ν) distribution, the truncated extreme value (λ) distribution,
the Weibull (φ, λ) distribution if φ is known and the Zeta (ν) distribution. A
one parameter exponential family can often be obtained from a k–parameter
exponential family by holding k− 1 of the parameters fixed. Hence a normal
(µ, σ2) distribution is a 1P–REF if σ2 is known. Usually assuming scale,
location or shape parameters are known is a bad idea.

The most important 2P–REFs are the beta (δ, ν) distribution, the gamma
(ν, λ) distribution and the normal (µ, σ2) distribution. The chi (p, σ) distribu-
tion and the lognormal (µ, σ2) distribution are also 2–parameter exponential
families. Example 3.9 will show that the inverse Gaussian distribution is full
but not regular. The two parameter Cauchy distribution is not an exponen-
tial family because its pdf cannot be put into the form of Equation (3.1).

The natural parameterization can result in a family that is much larger
than the family defined by the usual parameterization. See the definition of

92



Ω = Ω̃ given by Equation (3.7). Casella and Berger (2002, p. 114) remarks
that

{η : η = (w1(θ), ..., wk(θ))|θ ∈ Θ} ⊆ Ω, (3.8)

but often Ω is a strictly larger set.

Remark 3.1. For the families in Chapter 10 other than the χ2
p and

inverse Gaussian distributions, make the following assumptions. Assume
that ηi = wi(θ) and that dim(Θ) = k = dim(Ω). Assume the usual parameter
space ΘU is as big as possible (replace the integral by a sum for a pmf):

ΘU = {θ ∈ <k :

∫

f(y|θ)dy = 1},

and let
Θ = {θ ∈ ΘU : w1(θ), ..., wk(θ) are defined }.

Then assume that the natural parameter space satisfies condition E1) with

Ω = {(η1, ..., ηk) : ηi = wi(θ) for θ ∈ Θ}.

In other words, simply define ηi = wi(θ). For many common distributions, η

is a one to one function of θ, and the above map is correct, especially if ΘU

is an open interval or cross product of open intervals.

Example 3.1. Let f(x|µ, σ) be the N(µ, σ2) family of pdfs. Then θ =
(µ, σ) where −∞ < µ < ∞ and σ > 0. Recall that µ is the mean and σ is
the standard deviation (SD) of the distribution. The usual parameterization
is

f(x|θ) =
1√
2πσ

exp(
−(x− µ)2

2σ2
)I<(x)

where < = (−∞,∞) and the indicator IA(x) = 1 if x ∈ A and IA(x) = 0
otherwise. Notice that I<(x) = 1 ∀x. Since

f(x|µ, σ) =
1√
2πσ

exp(
−µ
2σ2

)

︸ ︷︷ ︸

c(µ,σ)≥0

exp(
−1

2σ2
︸︷︷︸

w1(θ)

x2
︸︷︷︸

t1(x)

+
µ

σ2
︸︷︷︸

w2(θ)

x
︸︷︷︸

t2(x)

) I<(x)
︸ ︷︷ ︸

h(x)≥0

,

this family is a 2-parameter exponential family. Hence η1 = −0.5/σ2 and
η2 = µ/σ2 if σ > 0, and Ω = (−∞, 0) × (−∞,∞). Plotting η1 on the
horizontal axis and η2 on the vertical axis yields the left half plane which
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certainly contains a 2-dimensional rectangle. Since t1 and t2 lie on a quadratic
rather than a line, the family is a 2P–REF. Notice that if X1, ..., Xn are iid
N(µ, σ2) random variables, then the joint pdf f(x|θ) = f(x1, ..., xn|µ, σ) =

[
1√
2πσ

exp(
−µ
2σ2

)]n

︸ ︷︷ ︸

C(µ,σ)≥0

exp(
−1

2σ2
︸︷︷︸

w1(θ)

n∑

i=1

x2
i

︸ ︷︷ ︸

T1(x)

+
µ

σ2
︸︷︷︸

w2(θ)

n∑

i=1

xi

︸ ︷︷ ︸

T2(x)

) 1
︸︷︷︸

h(x)≥0

,

and is thus a 2P–REF.

Example 3.2. The χ2
p distribution is not a REF since the usual param-

eter space ΘU for the χ2
p distribution is the set of integers, which is neither

an open set nor a convex set. Nevertheless, the natural parameterization
is the gamma(ν, λ = 2) family which is a REF. Note that this family has
uncountably many members while the χ2

p family does not.

Example 3.3. The binomial(k, ρ) pmf is

f(x|ρ) =

(
k

x

)

ρx(1 − ρ)k−x I{0,...,k}(x)

=

(
k

x

)

I{0,...,k}(x)

︸ ︷︷ ︸

h(x)≥0

(1 − ρ)k
︸ ︷︷ ︸

c(ρ)≥0

exp[log(
ρ

1 − ρ
)

︸ ︷︷ ︸

w(ρ)

x
︸︷︷︸

t(x)

]

where ΘU = [0, 1]. Since the pmf and η = log(ρ/(1 − ρ)) is undefined for
ρ = 0 and ρ = 1, we have Θ = (0, 1). Notice that Ω = (−∞,∞).

Example 3.4. The uniform(0,θ) family is not an exponential family
since the support Yθ = (0, θ) depends on the unknown parameter θ.

Example 3.5. If Y has a half normal distribution, Y ∼ HN(µ, σ), then
the pdf of Y is

f(y) =
2√

2π σ
exp (

−(y − µ)2

2σ2
)

where σ > 0 and y ≥ µ and µ is real. Notice that

f(y) =
2√

2π σ
I(y ≥ µ) exp

[

(
−1

2σ2
)(y − µ)2

]
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is a 1P–REF if µ is known. Hence Θ = (0,∞), η = −1/(2σ2) and Ω =
(−∞, 0). Notice that a different 1P–REF is obtained for each value of µ
when µ is known with support Yµ = [µ,∞). If µ is not known, then this
family is not an exponential family since the support depends on µ.

The following two examples are important examples of REFs where
dim(Θ) > dim(Ω).

Example 3.6. If the ti or ηi satisfy a linearity constraint, then the
number of terms in the exponent of Equation (3.1) can be reduced. Suppose
that Y1, ..., Yn follow the multinomialMn(m, ρ1, ..., ρn) distribution which has
dim(Θ) = n if m is known. Then

∑n
i=1 Yi = m,

∑n
i=1 ρi = 1 and the joint

pmf of Y is

f(y) = m!
n∏

i=1

ρyi

i

yi!
.

The support of Y is Y = {y :
∑n

i=1 yi = m and 0 ≤ yi ≤ m for i = 1, ..., n}.
Since Yn and ρn are known if Y1, ..., Yn−1 and ρ1, ..., ρn−1 are known, we

can use an equivalent joint pmf fEF in terms of Y1, ..., Yn−1. Let

h(y1, ..., yn−1) =

[
m!

∏n
i=1 yi!

]

I [(y1, ..., yn−1, yn) ∈ Y].

(This is a function of y1, ..., yn−1 since yn = m−∑n−1
i=1 yi.) Then Y1, ...., Yn−1

have a Mn(m, ρ1, ..., ρn) distribution if the joint pmf of Y1, ..., Yn−1 is

fEF (y1, ..., yn−1) = exp[
n−1∑

i=1

yi log(ρi) + (m−
n−1∑

i=1

yi) log(ρn)] h(y1, ..., yn−1)

= exp[m log(ρn)] exp[

n−1∑

i=1

yi log(ρi/ρn)] h(y1, ..., yn−1). (3.9)

Since ρn = 1 −∑n−1
j=1 ρj , this is an n − 1 dimensional REF with

ηi = log(ρi/ρn) = log

(

ρi

1 −∑n−1
j=1 ρj

)

and Ω = <n−1.
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Example 3.7. Similarly, let µ be a 1× j row vector and let Σ be a j× j
positive definite matrix. Then the usual parameterization of the multivariate
normal MVNj(µ,Σ) distribution has dim(Θ) = j+ j2 but is a j+ j(j+1)/2
parameter REF.

A curved exponential family is a k-parameter exponential family
where the elements of θ = (θ1, ..., θk) are completely determined by d < k
of the elements. For example if θ = (θ, θ2) then the elements of θ are com-
pletely determined by θ1 = θ. A curved exponential family is neither full
nor regular since it places a restriction on the parameter space Ω resulting
in a new parameter space ΩC where ΩC does not contain a k-dimensional
rectangle.

Example 3.8. The N(θ, θ2) distribution is a 2-parameter exponential
family with η1 = −1/(2θ2) and η2 = 1/θ. Thus

ΩC = {(η1, η2)|η1 = −0.5η2
2 ,−∞ < η1 < 0,−∞ < η2 <∞, η2 6= 0}.

The graph of this parameter space is a quadratic and cannot contain a 2-
dimensional rectangle.

3.2 Properties of (t1(Y ), ..., tk(Y ))

This section follows Lehmann (1983, p. 29-35) closely. Write the natural

parameterization for the exponential family as

f(y|η) = h(y)b(η) exp

[
k∑

i=1

ηiti(y)

]

= h(y) exp

[
k∑

i=1

ηiti(y) − a(η)

]

(3.10)

where a(η) = − log(b(η)). The kernel function of this pdf or pmf is

h(y) exp

[
k∑

i=1

ηiti(y)

]

.

Lemma 3.2. Suppose that Y comes from an exponential family (3.10)
and that g(y) is any function with Eη [|g(Y )|] < ∞. Then for any η in the
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interior of Ω, the integral
∫
g(y)f(y|θ)dy is continuous and has derivatives of

all orders. These derivatives can be obtained by interchanging the derivative
and integral operators. If f is a pmf, replace the integral by a sum.

Proof. See Lehmann (1986, p. 59).

Hence
∂

∂ηi

∫

g(y)f(y|η)dy =

∫

g(y)
∂

∂ηi
f(y|η)dy (3.11)

if f is a pdf and

∂

∂ηi

∑

g(y)f(y|η) =
∑

g(y)
∂

∂ηi
f(y|η) (3.12)

if f is a pmf.

Remark 3.2. If Y comes from an exponential family (3.1), then the
derivative and integral (or sum) operators can be interchanged. Hence

∂

∂θi

∫

...

∫

g(y)f(y|θ)dy =

∫

...

∫

g(y)
∂

∂θi
f(y|θ)dx

for any function g(y) with Eθ|g(Y )| <∞.

The behavior of (t1(Y ), ..., tk(Y )) will be of considerable interest in later
chapters. The following result is in Lehmann (1983, p. 29-30). Also see
Johnson, Ladella, and Liu (1979).

Theorem 3.3. Suppose that Y comes from an exponential family (3.10).
Then a)

E(ti(Y )) =
∂

∂ηi
a(η) = − ∂

∂ηi
log(b(η)) (3.13)

and b)

Cov(ti(Y ), tj(Y )) =
∂2

∂ηi∂ηj
a(η) = − ∂2

∂ηi∂ηj
log(b(η)). (3.14)

Notice that i = j gives the formula for VAR(ti(Y )).

Proof. The proof will be for pdfs. For pmfs replace the integrals by
sums. Use Lemma 3.2 with g(y) = 1 ∀y. a) Since 1 =

∫
f(y|η)dy,

0 =
∂

∂ηi
1 =

∂

∂ηi

∫

h(y) exp

[
k∑

m=1

ηmtm(y) − a(η)

]

dy
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=

∫

h(y)
∂

∂ηi
exp

[
k∑

m=1

ηmtm(y) − a(η)

]

dy

=

∫

h(y) exp

[
k∑

m=1

ηmtm(y) − a(η)

]

(ti(y)−
∂

∂ηi
a(η))dy

=

∫

(ti(y) −
∂

∂ηi
a(η))f(y|η)dy

= E(ti(Y )) − ∂

∂ηi
a(η).

b) Similarly,

0 =

∫

h(y)
∂2

∂ηi∂ηj
exp

[
k∑

m=1

ηmtm(y) − a(η)

]

dy.

From the proof of a),

0 =

∫

h(y)
∂

∂ηj

[

exp

[
k∑

m=1

ηmtm(y) − a(η)

]

(ti(y) −
∂

∂ηi
a(η))

]

dy

=

∫

h(y) exp

[
k∑

m=1

ηmtm(y) − a(η)

]

(ti(y)−
∂

∂ηi
a(η))(tj(y)−

∂

∂ηj
a(η))dy

−
∫

h(y) exp

[
k∑

m=1

ηmtm(y) − a(η)

]

(
∂2

∂ηi∂ηj
a(η))dy

= Cov(ti(Y ), tj(Y )) − ∂2

∂ηi∂ηj
a(η)

since ∂
∂ηj
a(η) = E(tj(Y )) by a). QED

Theorem 3.4. Suppose that Y comes from an exponential family (3.10),
and let T = (t1(Y ), ..., tk(Y )). Then for any η in the interior of Ω, the moment
generating function of T is

mT (s) = exp[a(η + s) − a(η)] = exp[a(η + s)]/ exp[a(η)].

Proof. The proof will be for pdfs. For pmfs replace the integrals by
sums. Since η is in the interior of Ω there is a neighborhood of η such that
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if s is in that neighborhood, then η + s ∈ Ω. (Hence there exists a δ > 0
such that if ‖s‖ < δ, then η + s ∈ Ω.) For such s (see Definition 2.25),

mT (s) = E[exp(
k∑

i=1

siti(Y ))] ≡ E(g(Y )).

It is important to notice that we are finding the mgf of T , not the mgf of
Y . Hence we can use the kernel method of Section 1.5 to find E(g(Y )) =
∫
g(y)f(y)dy without finding the joint distribution of T . So

mT (s) =

∫

exp(
k∑

i=1

siti(y))h(y) exp

[
k∑

i=1

ηiti(y) − a(η)

]

dy

=

∫

h(y) exp

[
k∑

i=1

(ηi + si)ti(y) − a(η + s) + a(η + s) − a(η)

]

dy

= exp[a(η + s) − a(η)]

∫

h(y) exp

[
k∑

i=1

(ηi + si)ti(y) − a(η + s)

]

dy

= exp[a(η + s) − a(η)]

∫

f(y|[η + s])dy = exp[a(η + s) − a(η)]

since the pdf f(y|[η + s]) integrates to one. QED

Theorem 3.5. Suppose that Y comes from an exponential family (3.10),
and let T = (t1(Y ), ..., tk(Y )) = (T1, ..., Tk). Then the distribution of T is an
exponential family with

f(t|η) = h∗(t) exp

[
k∑

i=1

ηiti − a(η)

]

.

Proof. See Lehmann (1986, p. 58).

The main point of this section is that T is well behaved even if Y is not.
For example, if Y follows a one sided stable distribution, then Y is from an
exponential family, but E(Y ) does not exist. However the mgf of T exists,
so all moments of T exist. If Y1, ..., Yn are iid from a one parameter exponen-
tial family, then T ≡ Tn =

∑n
i=1 t(Yi) is from a one parameter exponential

family. One way to find the distribution function of T is to find the distri-
bution of t(Y ) using the transformation method, then find the distribution
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of
∑n

i=1 t(Yi) using moment generating functions or Theorems 2.17 and 2.18.
This technique results in the following two theorems. Notice that T often
has a gamma distribution.

Theorem 3.6. Let Y1, ..., Yn be iid from the given one parameter expo-
nential family and let T ≡ Tn =

∑n
i=1 t(Yi).

a) If Yi is from a binomial (k, ρ) distribution, then t(Y ) = Y ∼ BIN(k, ρ)
and Tn =

∑n
i=1 Yi ∼ BIN(nk, ρ).

b) If Y is from an exponential (λ) distribution then, t(Y ) = Y ∼ EXP(λ)
and Tn =

∑n
i=1 Yi ∼ G(n, λ).

c) If Y is from a gamma (ν, λ) distribution with ν known, then t(Y ) =
Y ∼ G(ν, λ) and Tn =

∑n
i=1 Yi ∼ G(nν, λ).

d) If Y is from a geometric (ρ) distribution, then t(Y ) = Y ∼ geom(ρ)
and Tn =

∑n
i=1 Yi ∼ NB(n, ρ) where NB stands for negative binomial.

e) If Y is from a negative binomial (r, ρ) distribution with r known, then
t(Y ) = Y ∼ NB(r, ρ) and Tn =

∑n
i=1 Yi ∼ NB(nr, ρ).

f) If Y is from a normal (µ, σ2) distribution with σ2 known, then t(Y ) =
Y ∼ N(µ, σ2) and Tn =

∑n
i=1 Yi ∼ N(nµ, nσ2).

g) If Y is from a normal (µ, σ2) distribution with µ known, then t(Y ) =
(Y − µ)2 ∼ G(1/2, 2σ2) and Tn =

∑n
i=1(Yi − µ)2 ∼ G(n/2, 2σ2).

h) If Y is from a Poisson (θ) distribution, then t(Y ) = Y ∼ POIS(θ) and
Tn =

∑n
i=1 Yi ∼ POIS(nθ).

Theorem 3.7. Let Y1, ..., Yn be iid from the given one parameter expo-
nential family and let T ≡ Tn =

∑n
i=1 t(Yi).

a) If Yi is from a Burr (φ, λ) distribution with φ known, then t(Y ) =
log(1 + Y φ) ∼ EXP(λ) and Tn =

∑
log(1 + Y φ

i ) ∼ G(n, λ).
b) If Y is from a chi(p, σ) distribution with p known, then t(Y ) = Y 2 ∼

G(p/2, 2σ2) and Tn =
∑
Y 2
i ∼ G(np/2, 2σ2).

c) If Y is from a double exponential (θ, λ) distribution with θ known,
then t(Y ) = |Y − θ| ∼ EXP(λ) and Tn =

∑n
i=1 |Yi − θ| ∼ G(n, λ).

d) If Y is from a two parameter exponential (θ, λ) distribution with θ
known, then t(Y ) = Yi − θ ∼ EXP(λ) and Tn =

∑n
i=1(Yi − θ) ∼ G(n, λ).

e) If Y is from a generalized negative binomial GNB(µ, κ) distribution
with κ known, then Tn =

∑n
i=1 Yi ∼ GNB(nµ, nκ)

f) If Y is from a half normal (µ, σ2) distribution with µ known, then
t(Y ) = (Y − µ)2 ∼ G(1/2, 2σ2) and Tn =

∑n
i=1(Yi − µ)2 ∼ G(n/2, 2σ2).

g) If Y is from an inverse Gaussian IG(θ, λ) distribution with λ known,
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then Tn =
∑n

i=1 Yi ∼ IG(nθ, n2λ).
h) If Y is from an inverted gamma (ν, λ) distribution with ν known, then

t(Y ) = 1/Y ∼ G(ν, λ) and Tn =
∑n

i=1 1/Yi ∼ G(nν, λ).
i) If Y is from a lognormal (µ, σ2) distribution with µ known, then t(Y ) =

(log(Y ) − µ)2 ∼ G(1/2, 2σ2) and Tn =
∑n

i=1(log(Yi) − µ)2 ∼ G(n/2, 2σ2).
j) If Y is from a lognormal (µ, σ2) distribution with σ2 known, then

t(Y ) = log(Y ) ∼ N(µ, σ2) and Tn =
∑n

i=1 log(Yi) ∼ N(nµ, nσ2).
k) If Y is from a Maxwell-Boltzmann (µ, σ) distribution with µ known,

then t(Y ) = (Y −µ)2 ∼ G(3/2, 2σ2) and Tn =
∑n

i=1(Yi−µ)2 ∼ G(3n/2, 2σ2).
l) If Y is from a one sided stable (σ) distribution, then t(Y ) = 1/Y ∼

G(1/2, 2/σ) and Tn =
∑n

i=1 1/Yi ∼ G(n/2, 2/σ).
m) If Y is from a Pareto (σ, λ) distribution with σ known, then t(Y ) =

log(Y/σ) ∼ EXP(λ) and Tn =
∑n

i=1 log(Yi/σ) ∼ G(n, λ).
n) If Y is from a power (λ) distribution, then t(Y ) = − log(Y ) ∼ EXP(λ)

and Tn =
∑n

i=1[− log(Yi)] ∼ G(n, λ).
o) If Y is from a Rayleigh (µ, σ) distribution with µ known, then t(Y ) =

(Y − µ)2 ∼ EXP(2σ2) and Tn =
∑n

i=1(Yi − µ)2 ∼ G(n, 2σ2).
p) If Y is from a Topp-Leone (ν) distribution, then t(Y ) =

− log(2Y − Y 2) ∼ EXP(1/ν) and Tn =
∑n

i=1[− log(2Yi − Y 2
i )] ∼ G(n, 1/ν).

q) If Y is from a truncated extreme value (λ) distribution, then t(Y ) =
eY − 1 ∼ EXP(λ) and Tn =

∑n
i=1(e

Yi − 1) ∼ G(n, λ).
r) If Y is from a Weibull (φ, λ) distribution with φ known, then t(Y ) =

Y φ ∼ EXP(λ) and Tn =
∑n

i=1 Y
φ
i ∼ G(n, λ).

3.3 Complements

Example 3.9. Following Barndorff–Nielsen (1978, p. 117), if Y has an
inverse Gaussian distribution, Y ∼ IG(θ, λ), then the pdf of Y is

f(y) =

√

λ

2πy3
exp

[−λ(y − θ)2

2θ2y

]

where y, θ, λ > 0.
Notice that

f(y) =

√

λ

2π
eλ/θ

√
1

y3
I(y > 0) exp

[−λ
2θ2

y − λ

2

1

y

]
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is a two parameter exponential family.
Another parameterization of the inverse Gaussian distribution takes θ =

√

λ/ψ so that

f(y) =

√

λ

2π
e
√
λψ

√
1

y3
I [y > 0] exp

[−ψ
2
y − λ

2

1

y

]

,

where λ > 0 and ψ ≥ 0. Here Θ = (0,∞) × [0,∞), η1 = −ψ/2, η2 = −λ/2
and Ω = (−∞, 0]×(−∞, 0). Since Ω is not an open set, this is a 2 parameter

full exponential family that is not regular. If ψ is known then Y is a
1P–REF, but if λ is known then Y is a one parameter full exponential family.
When ψ = 0, Y has a one sided stable distribution.

The following chapters show that exponential families can be used to sim-
plify the theory of sufficiency, MLEs, UMVUEs, UMP tests and large sample
theory. Barndorff-Nielsen (1982) and Olive (2005) are useful introductions to
exponential families. Also see Bühler and Sehr (1987). Interesting subclasses
of exponential families are given by Rahman and Gupta (1993) and Sankaran
and Gupta (2005). Most statistical inference texts at the same level as this
text also cover exponential families. History and references for additional
topics (such as finding conjugate priors in Bayesian statistics) can be found
in Lehmann (1983, p. 70), Brown (1986) and Barndorff-Nielsen (1978, 1982).

Barndorff-Nielsen (1982), Brown (1986) and Johanson (1979) are post–
PhD treatments and hence very difficult. Mukhopadhyay (2000) and Brown
(1986) place restrictions on the exponential families that make their theory
less useful. For example, Brown (1986) covers linear exponential distribu-
tions. See Johnson and Kotz (1972).

3.4 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-

FUL.

Refer to Chapter 10 for the pdf or pmf of the distributions in

the problems below.

3.1∗. Show that each of the following families is a 1P–REF by writing
the pdf or pmf as a one parameter exponential family, finding η = w(θ) and
by showing that the natural parameter space Ω is an open interval.
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a) The binomial (k, ρ) distribution with k known and ρ ∈ Θ = (0, 1).
b) The exponential (λ) distribution with λ ∈ Θ = (0,∞).
c) The Poisson (θ) distribution with θ ∈ Θ = (0,∞).
d) The half normal (µ, σ2) distribution with µ known and σ2 ∈ Θ =

(0,∞).

3.2∗. Show that each of the following families is a 2P–REF by writing
the pdf or pmf as a two parameter exponential family, finding ηi = wi(θ)
for i = 1, 2 and by showing that the natural parameter space Ω is a cross
product of two open intervals.

a) The beta (δ, ν) distribution with Θ = (0,∞) × (0,∞).
b) The chi (p, σ) distribution with Θ = (0,∞) × (0,∞).
c) The gamma (ν, λ) distribution with Θ = (0,∞) × (0,∞).
d) The lognormal (µ, σ2) distribution with Θ = (−∞,∞) × (0,∞).
e) The normal (µ, σ2) distribution with Θ = (−∞,∞)× (0,∞).

3.3. Show that each of the following families is a 1P–REF by writing the
pdf or pmf as a one parameter exponential family, finding η = w(θ) and by
showing that the natural parameter space Ω is an open interval.

a) The generalized negative binomial (µ, κ) distribution if κ is known.
b) The geometric (ρ) distribution.
c) The logarithmic (θ) distribution.
d) The negative binomial (r, ρ) distribution if r is known.
e) The one sided stable (σ) distribution.
f) The power (λ) distribution.
g) The truncated extreme value (λ) distribution.
h) The Zeta (ν) distribution.

3.4. Show that each of the following families is a 1P–REF by writing the
pdf or pmf as a one parameter exponential family, finding η = w(θ) and by
showing that the natural parameter space Ω is an open interval.

a) The N(µ, σ2) family with σ > 0 known.

b) The N(µ, σ2) family with µ known and σ > 0.

c) The gamma (ν, λ) family with ν known.

d) The gamma (ν, λ) family with λ known.

e) The beta (δ, ν) distribution with δ known.
f) The beta (δ, ν) distribution with ν known.
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3.5. Show that each of the following families is a 1P–REF by writing the
pdf or pmf as a one parameter exponential family, finding η = w(θ) and by
showing that the natural parameter space Ω is an open interval.

a) The Burr (φ, λ) distribution with φ known.
b) The double exponential (θ, λ) distribution with θ known.
c) The two parameter exponential (θ, λ) distribution with θ known.
d) The largest extreme value (θ, σ) distribution if σ is known.
e) The smallest extreme value (θ, σ) distribution if σ is known.
f) The inverted gamma (ν, λ) distribution if ν is known.
g) The Maxwell–Boltzmann (µ, σ) distribution if µ is known.
h) The Pareto (σ, λ) distribution if σ is known.
i) The Rayleigh (µ, σ) distribution if µ is known.
j) The Weibull (φ, λ) distribution if φ is known.

3.6∗. Determine whether the Pareto (σ, λ) distribution is an exponential
family or not.

3.7. Following Kotz and van Dorp (2004, p. 35-36), if Y has a Topp–
Leone distribution, Y ∼ TL(ν), then the cdf of Y is F (y) = (2y − y2)ν for
ν > 0 and 0 < y < 1. The pdf of Y is

f(y) = ν(2 − 2y)(2y − y2)ν−1

for 0 < y < 1. Determine whether this distribution is an exponential family
or not.

3.8. In Spiegel (1975, p. 210), Y has pdf

fY (y) =
2γ3/2

√
π

y2 exp(−γ y2)

where γ > 0 and y is real. Is Y a 1P-REF?

3.9. Let Y be a (one sided) truncated exponential TEXP (λ, b) random
variable. Then the pdf of Y is

fY (y|λ, b) =
1
λ
e−y/λ

1 − exp(− b
λ
)

for 0 < y ≤ b where λ > 0. If b is known, is Y a 1P-REF? (Also see O’Reilly
and Rueda (2007).)
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Problems from old quizzes and exams.

3.10∗. Suppose that X has a N(µ, σ2) distribution where σ > 0 and µ is

known. Then

f(x) =
1√
2πσ

e−µ
2/(2σ2) exp[− 1

2σ2
x2 +

1

σ2
µx].

Let η1 = −1/(2σ2) and η2 = 1/σ2. Why is this parameterization not the
regular exponential family parameterization? (Hint: show that η1 and η2

satisfy a linearity constraint.)

3.11. Let X1, ..., Xn be iid N(µ, γ2
oµ

2) random variables where γ2
o > 0 is

known and µ > 0.

a) Find the distribution of
∑n

i=1 Xi.

b) Find E[(
∑n

i=1 Xi)
2].

c) The pdf of X is

fX(x|µ) =
1

γoµ
√

2π
exp

[− (x− µ)2

2γ2
oµ

2

]

.

Show that the family {f(x|µ) : µ > 0} is a two parameter exponential family.

d) Show that the natural parameter space is a parabola. You may assume
that ηi = wi(µ). Is this family a regular exponential family?

3.12. Let X1, ..., Xn be iid N(ασ, σ2) random variables where α is a
known real number and σ > 0.

a) Find E[
∑n

i=1X
2
i ].

b) Find E[(
∑n

i=1 Xi)
2].

c) Show that the family {f(x|σ) : σ > 0} is a two parameter exponential
family.

d) Show that the natural parameter space Ω is a parabola. You may
assume that ηi = wi(σ). Is this family a regular exponential family?
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