
Chapter 11

Stuff for Students

To be blunt, many of us are lousy teachers, and our efforts to improve are
feeble. So students frequently view statistics as the worst course taken in

college.
Hogg (1991)

11.1 R/Splus Statistical Software

R/Splus are statistical software packages, and R is the free version of Splus..
A very useful R link is (www.r-project.org/#doc).

As of January 2008, the author’s personal computer has Version 2.4.1
(December 18, 2006) of R and Splus–2000 (see Mathsoft 1999ab).

Downloading the book’s R/Splus functions sipack.txt into R or
Splus:

Many of the homework problems use R/Splus functions contained in
the book’s website (www.math.siu.edu/olive/sipack.txt) under the file name
sipack.txt. Suppose that you download sipack.txt onto a disk. Enter R and
wait for the curser to appear. Then go to the File menu and drag down
Source R Code. A window should appear. Navigate the Look in box until it
says 3 1/2 Floppy(A:). In the Files of type box choose All files(*.*) and then
select sipack.txt. The following line should appear in the main R window.

> source("A:/sipack.txt")

Type ls(). About 9 R/Splus functions from sipack.txt should appear.
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Alternatively, from the website (www.math.siu.edu/olive/sipack.txt), go
to the Edit menu and choose Select All, then go to the Edit menu and choose
Copy. Next enter R, go to the Edit menu and choose Paste. These commands
also enter the sipack functions into R.

When you finish your R/Splus session, enter the command q(). A window
asking “Save workspace image?” will appear. Click on No if you do not want
to save the programs in R. (If you do want to save the programs then click
on Yes.)

If you use Splus, the command

> source("A:/sipack.txt")

will enter the functions into Splus. Creating a special workspace for the
functions may be useful.

This section gives tips on using R/Splus, but is no replacement for books
such as Becker, Chambers, and Wilks (1988), Chambers (1998), Dalgaard
(2002) or Venables and Ripley (2003). Also see Mathsoft (1999ab) and use
the website (http://www.google.com) to search for useful websites. For ex-
ample enter the search words R documentation.

The command q() gets you out of R or Splus.
The commands help(fn) and args(fn) give information about the function

fn, eg if fn = rnorm.
Making functions in R and Splus is easy.

For example, type the following commands.

mysquare <- function(x){

# this function squares x

r <- x^2

r }

The second line in the function shows how to put comments into functions.

Modifying your function is easy.

Use the fix command.
fix(mysquare)

This will open an editor such as Notepad and allow you to make changes.
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In Splus, the command Edit(mysquare) may also be used to modify the
function mysquare.

To save data or a function in R, when you exit, click on Yes when the
“Save worksheet image?” window appears. When you reenter R, type ls().
This will show you what is saved. You should rarely need to save anything
for the material in the first thirteen chapters of this book. In Splus, data
and functions are automatically saved. To remove unwanted items from the
worksheet, eg x, type rm(x),
pairs(x) makes a scatterplot matrix of the columns of x,
hist(y) makes a histogram of y,
boxplot(y) makes a boxplot of y,
stem(y) makes a stem and leaf plot of y,
scan(), source(), and sink() are useful on a Unix workstation.
To type a simple list, use y <− c(1,2,3.5).
The commands mean(y), median(y), var(y) are self explanatory.

The following commands are useful for a scatterplot created by the com-
mand plot(x,y).
lines(x,y), lines(lowess(x,y,f=.2))
identify(x,y)
abline(out$coef), abline(0,1)

The usual arithmetic operators are 2 + 4, 3 − 7, 8 ∗ 4, 8/4, and

2^{10}.

The ith element of vector y is y[i] while the ij element of matrix x is
x[i, j]. The second row of x is x[2, ] while the 4th column of x is x[, 4]. The
transpose of x is t(x).

The command apply(x,1,fn) will compute the row means if fn = mean.
The command apply(x,2,fn) will compute the column variances if fn = var.
The commands cbind and rbind combine column vectors or row vectors with
an existing matrix or vector of the appropriate dimension.
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11.2 Hints and Solutions to Selected Prob-

lems

1.10. d) See Problem 1.19 with Y = W and r = 1.

f) Use the fact that E(Y r) = E[(Y φ)r/φ] = E(W r/φ) where W ∼ EXP (λ).
Take r = 1.

1.11. d) Find E(Y r) for r = 1, 2 using Problem 1.19 with Y = W.

f) For r = 1, 2, find E(Y r) using the the fact that E(Y r) = E[(Y φ)r/φ] =
E(W r/φ) where W ∼ EXP (λ).

1.12. a) 200

b) 0.9(10) + 0.1(200) = 29

1.13. a) 400(1) = 400

b) 0.9E(Z) + 0.1E(W ) = 0.9(10) + 0.1(400) = 49

1.15. a) 1 A
A+B

+ 0 B
A+B

= A
A+B

.

b) nA
A+B

.

1.16. a) g(xo)P (X = xo) = g(xo)

b) E(etX) = etxo by a).

c) m′(t) = xoe
txo, m”(t) = x2

oe
txo, m(n)(t) = xn

oe
txo.

1.17. m(t) = E(etX) = etP (X = 1) + e−tP (X = −1) = 0.5(et + e−t).

1.18. a)
∑n

x=0 xetxf(x)

b)
∑n

x=0 xf(x) = E(X)

c)
∑n

x=0 x2etxf(x)

d)
∑n

x=0 x2f(x) = E(X2)

e)
∑n

x=0 xketxf(x)

1.19. E(W r) = E(erX) = mX(r) = exp(rµ+ r2σ2/2) where mX(t) is the
mgf of a N(µ, σ2) random variable.

1.20. a) E(X2) = V (X) + (E(X))2 = σ2 + µ2.

b) E(X3) = 2σ2E(X) + µE(X2) = 2σ2µ + µ(σ2 + µ2) = 3σ2µ + µ3.
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1.22.
1√
2π

∫ ∞

−∞
exp(−1

2
y2)dy = 1. So

∫ ∞

−∞
exp(−1

2
y2)dy =

√
2π.

1.23.
∫∞

σ
f(x|σ, θ)dx = 1, so

∫ ∞

σ

1

xθ+1
dx =

1

θσθ
. (11.1)

So

EXr =

∫ ∞

σ

xrθσθ 1

xθ+1
dx = θσθ

∫ ∞

σ

1

xθ−r+1
dx =

θσθ

(θ − r)σθ−r

by Equation 11.1. So

EXr =
θσr

θ − r

for θ > r.

1.24.

EY r =

∫ 1

0

yr Γ(δ + ν)

Γ(δ)Γ(ν)
yδ−1(1 − y)ν−1dy =

Γ(δ + ν)

Γ(δ)Γ(ν)

Γ(δ + r)Γ(ν)

Γ(δ + r + ν)

∫ 1

0

Γ(δ + r + ν)

Γ(δ + r)Γ(ν)
yδ+r−1(1 − y)ν−1dy =

Γ(δ + ν)Γ(δ + r)

Γ(δ)Γ(δ + r + ν)

for r > −δ since 1 =
∫ 1

0
beta(δ + r, ν) pdf.

1.25. E(etY ) =
∑∞

y=1 ety −1
log(1−θ)

1
y
exp[log(θ)y]. But ety exp[log(θ)y] =

exp[(log(θ) + t)y] = exp[(log(θ) + log(et))y] = exp[log(θet)y].
So E(etY ) = −1

log(1−θ)
[− log(1 − θet)]

∑∞
y=1

−1
log(1−θet)

1
y
exp[log(θet)y] =

log(1−θet)
log(1−θ)

since 1 =
∑

[logarithmic (θet) pmf] if 0 < θet < 1 or 0 < et < 1/θ

or −∞ < t < − log(θ).

1.28. a) EX = 0.9EZ+0.1EW = 0.9νλ+0.1(10) = 0.9(3)(4)+1 = 11.8.
b) EX2 = 0.9[V (Z) + (E(Z))2] + 0.1[V (W ) + (E(W ))2]

= 0.9[νλ2 + (νλ)2] + 0.1[10 + (10)2]
= 0.9[3(16) + 9(16)] + 0.1(110) = 0.9(192) + 11 = 183.8.

2.8. a) FW (w) = P (W ≤ w) = P (Y ≤ w − µ) = FY (w − µ). So
fW (w) = d

dw
FY (w − µ) = fY (w − µ).
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b) FW (w) = P (W ≤ w) = P (Y ≤ w/σ) = FY (w/σ). So fW (w) =
d

dw
FY (w/σ) = fY (w/σ) 1

σ
.

c) FW (w) = P (W ≤ w) = P (σY ≤ w − µ) = FY (w−µ
σ

). So fW (w) =
d

dw
FY (w−µ

σ
) = fY (w−µ

σ
) 1

σ
.

2.9. a) See Example 2.16.

2.11. W = Z2 ∼ χ2
1 where Z ∼ N(0, 1). So the pdf of W is

f(w) =
w

1

2
−1e−

w
2

2
1

2 Γ(1
2
)

=
1

√
w
√

2π
e−

w
2

for w > 0.

2.12. (Y − µ)/σ = |Z| ∼ HN(0, 1) where Z ∼ N(0, 1). So (Y − µ)2 =
σ2Z2 ∼ σ2χ2

1 ∼ G(0.5, 2σ2).

2.16. a) y = e−w = t−1(w), and
∣

∣

∣

∣

dt−1(w)

dw

∣

∣

∣

∣

= | − e−w| = e−w.

Now P (Y = 0) = 0 so 0 < Y ≤ 1 implies that W = − log(Y ) > 0. Hence

fW (w) = fY (t−1(w))

∣

∣

∣

∣

dt−1(w)

dw

∣

∣

∣

∣

=
1

λ
(e−w)

1

λ
−1e−w =

1

λ
e−w/λ

for w > 0 which is the EXP(λ) pdf.

2.18. a)

f(y) =
1

λ

φyφ−1

(1 + yφ)
1

λ
+1

where y, φ, and λ are all positive. Since Y > 0, W = log(1+Y φ) > log(1) > 0
and the support W = (0,∞). Now 1 + yφ = ew, so y = (ew − 1)1/φ = t−1(w).
Hence

∣

∣

∣

∣

dt−1(w)

dw

∣

∣

∣

∣

=
1

φ
(ew − 1)

1

φ
−1ew

since w > 0. Thus

fW (w) = fY (t−1(w))

∣

∣

∣

∣

dt−1(w)

dw

∣

∣

∣

∣

=
1

λ

φ(ew − 1)
φ−1

φ

(1 + (ew − 1)
φ

φ )
1

λ
+1

1

φ
(ew − 1)

1

φ
−1ew
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=
1

λ

(ew − 1)1− 1

φ (ew − 1)
1

φ
−1

(ew)
1

λ
+1

ew

1

λ
e−w/λ

for w > 0 which is the EXP(λ) pdf.

2.25. b)

f(y) =
1

πσ[1 + (y−µ
σ

)2]

where y and µ are real numbers and σ > 0. Now w = log(y) = t−1(w) and
W = eY > 0 so the support W = (0,∞). Thus

∣

∣

∣

∣

dt−1(w)

dw

∣

∣

∣

∣

=
1

y
,

and

fW (w) = fY (t−1(w))

∣

∣

∣

∣

dt−1(w)

dw

∣

∣

∣

∣

=
1

πσ

1

[1 + ( log(y)−µ
σ

)2]

1

y
=

1

πσy[1 + ( log(y)−µ
σ

)2]

for y > 0 which is the LC(µ, σ) pdf.

2.63. a) EX = E[E[X|Y ]] = E[βo + β1Y ] = β0 + 3β1.

b) V (X) = E[V (X|Y )] + V [E(X|Y )] = E(Y 2) + V (β0 + β1Y ) =
V (Y ) + [E(Y )]2 + β2

1V (Y ) = 10 + 9 + β2
110 = 19 + 10β2

1 .

2.64. a) X2 ∼ N(100, 6).

b)
(

X1

X3

)

∼ N2

( (

49
17

)

,

(

3 −1
−1 4

) )

.

c) X1 X4 and X3 X4.

d)

ρ(X1, X2) =
Cov(X1, X3)

√

VAR(X1)VAR(X3)
=

−1√
3
√

4
= −0.2887.
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2.65. a) Y |X ∼ N(49, 16) since Y X. (Or use E(Y |X) = µY +
Σ12Σ

−1
22 (X − µx) = 49 + 0(1/25)(X − 100) = 49 and VAR(Y |X) = Σ11 −

Σ12Σ
−1
22 Σ21 = 16 − 0(1/25)0 = 16.)

b) E(Y |X) = µY +Σ12Σ
−1
22 (X−µx) = 49+10(1/25)(X −100) = 9+0.4X.

c) VAR(Y |X) = Σ11 − Σ12Σ
−1
22 Σ21 = 16 − 10(1/25)10 = 16 − 4 = 12.

2.68. a) E(Y ) = E[E(Y |Λ)] = E(Λ) = 1.

b) V (Y ) = E[V (Y |Λ)] + V [E(Y |Λ)] = E(Λ) + V (Λ) = 1 + (1)2 = 2.

2.71.
y 0 1

fY1
(y) = P (Y1 = y) 0.76 0.24

So m(t) =
∑

y etyf(y) =
∑

y etyP (Y = y) = et00.76 + et10.24
= 0.76 + 0.24et.

2.72. No, f(x, y) 6= fX(x)fY (y) = 1
2π

exp[−1
2

(x2 + y2)].

2.73. a) E(Y ) = E[E(Y |P )] = E(kP ) = kE(P ) = k δ
δ+ν

= k4/10 =
0.4k.

b) V (Y ) = E[V (Y |P )] + V (E(Y |P )] = E[kP (1 − P )] + V (kP ) =
kE(P ) − kE(P 2) + k2V (P ) =

k
δ

δ + ν
− n

[

δν

(δ + ν)2(δ + ν + 1)
+

(

δ

δ + ν

)2
]

+ k2 δν

(δ + ν)2(δ + ν + 1)

= k0.4 − k[0.021818 + 0.16] + k20.021818 = 0.021818k2 + 0.21818k.

2.74. a)
y2 0 1 2

fY2
(y2) 0.55 0.16 0.29

b) f(y1|2) = f(y1, 2)/fY2
(2) and f(0, 2)/fY2

(2) = .24/.29 while
f(1, 2)/fY2

(2) = .05/.29

y1 0 1
fY1|Y2

(y1|y2 = 2) 24/29 ≈ 0.8276 5/29 ≈ 0.1724

3.1. a) See Section 10.3.
b) See Section 10.10.
c) See Section 10.35.
d) See Example 3.5.
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3.2. a) See Section 10.1.
b) See Section 10.6.
c) See Section 10.13.
d) See Section 10.29.
e) See Section 10.32.

3.3. b) See Section 10.16.
c) See Section 10.25.
d) See Section 10.31.
f) See Section 10.36.
g) See Section 10.41.
h) See Section 10.44.

3.4. a) See Section 10.32.
b) See Section 10.32.
c) See Section 10.13.

3.5. a) See Section 10.4.
b) See Section 10.9.
c) See Section 10.11.
d) See Section 10.24.
h) See Section 10.34.
i) See Section 10.37.
j) See Section 10.43.

4.26.

f(x) =
Γ(2θ)

Γ(θ)Γ(θ)
xθ−1(1− x)θ−1 =

Γ(2θ)

Γ(θ)Γ(θ)
exp[(θ− 1)(log(x) + log(1− x))],

for 0 < x < 1, a 1 parameter exponential family. Hence
∑n

i=1(log(Xi) +
log(1 − Xi)) is a complete minimal sufficient statistic.

4.27. a) and b)

f(x) =
1

ζ(ν)
exp[−ν log(x)]I{1,2,...}(x)

is a 1 parameter regular exponential family. Hence
∑n

i=1 log(Xi) is a complete
minimal sufficient statistic.

c) By the Factorization Theorem, W = (X1, ..., Xn) is sufficient, but W

is not minimal since W is not a function of
∑n

i=1 log(Xi).
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5.2. The likelihood function L(θ) =

1

(2π)n
exp(

−1

2
[
∑

(xi − ρ cos θ)2 +
∑

(yi − ρ sin θ)2]) =

1

(2π)n
exp(

−1

2
[
∑

x2
i−2ρ cos θ

∑

xi+ρ2 cos2 θ+
∑

y2
i−2ρ sin θ

∑

yi+ρ2 sin2 θ])

=
1

(2π)n
exp(

−1

2
[
∑

x2
i +

∑

y2
i + ρ2]) exp(ρ cos θ

∑

xi + ρ sin θ
∑

yi).

Hence the log likelihood log L(θ)

= c + ρ cos θ
∑

xi + ρ sin θ
∑

yi.

The derivative with respect to θ is

−ρ sin θ
∑

xi + ρ cos θ
∑

yi.

Setting this derivative to zero gives

ρ
∑

yi cos θ = ρ
∑

xi sin θ

or
∑

yi
∑

xi
= tan θ.

Thus

θ̂ = tan−1(

∑

yi
∑

xi
).

Now the boundary points are θ = 0 and θ = 2π. Hence θ̂MLE equals 0, 2π,
or θ̂ depending on which value maximizes the likelihood.

5.6. See Section 10.4.

5.7. See Section 10.6.

5.8. See Section 10.9.

5.9. See Section 10.10.

5.10. See Section 10.13.

5.11. See Section 10.16.
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5.12. See Section 10.22.

5.13. See Section 10.22.

5.14. See Section 10.24.

5.15. See Section 10.31.

5.16. See Section 10.37.

5.17. See Section 10.43.

5.18. See Section 10.3.

5.19. See Section 10.11.

5.20. See Section 10.41,

5.23. a) The log likelihood is log L(τ ) = −n
2
log(2πτ )− 1

2τ

∑n
i=1(Xi−µ)2.

The derivative of the log likelihood is equal to − n
2τ

+ 1
2τ2

∑n
i=1(Xi−µ)2. Setting

the derivative equal to 0 and solving for τ gives the MLE τ̂ =
Pn

i=1
(Xi−µ)2

n
.

Now the likelihood is only defined for τ > 0. As τ goes to 0 or ∞, log L(τ )
tends to −∞. Since there is only one critical point, τ̂ is the MLE.

b) By the invariance principle, the MLE is
√

Pn
i=1

(Xi−µ)2

n
.

5.28. This problem is nearly the same as finding the MLE of σ2 when
the data are iid N(µ, σ2) when µ is known. See Problem 5.23. The MLE
in a) is

∑n
i=1(Xi − µ)2/n. For b) use the invariance principle and take the

square root of the answer in a).

5.29. See Example 5.5.

5.30.

L(θ) =
1

θ
√

2π
e−(x−θ)2/2θ2

ln(L(θ)) = −ln(θ) − ln(
√

2π) − (x − θ)2/2θ2

dln(L(θ))

dθ
=

−1

θ
+

x − θ

θ2
+

(x − θ)2

θ3

=
x2

θ3
− x

θ2
− 1

θ
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by solving for θ,

θ =
x

2
∗ (−1 +

√
5),

and
θ =

x

2
∗ (−1 −

√
5).

But, θ > 0. Thus, θ̂ = x
2
∗ (−1 +

√
5), when x > 0, and θ̂ = x

2
∗ (−1 −

√
5),

when x < 0.
To check with the second derivative

d2ln(L(θ))

dθ2
= −2θ + x

θ3
+

3(θ2 + θx − x2)

θ4

=
θ2 + 2θx − 3x2

θ4

but the sign of the θ4 is always positive, thus the sign of the second derivative
depends on the sign of the numerator. Substitute θ̂ in the numerator and
simplify, you get x2

2
(−5 ±

√
5), which is always negative. Hence by the

invariance principle, the MLE of θ2 is θ̂2.

5.31. a) For any λ > 0, the likelihood function

L(σ, λ) = σn/λ I [x(1) ≥ σ]
1

λn
exp

[

−(1 +
1

λ
)

n
∑

i=1

log(xi)

]

is maximized by making σ as large as possible. Hence σ̂ = X(1).

b)

L(σ̂, λ) = σ̂n/λ I [x(1) ≥ σ̂]
1

λn
exp

[

−(1 +
1

λ
)

n
∑

i=1

log(xi)

]

.

Hence log L(σ̂, λ) =

n

λ
log(σ̂) − n log(λ) − (1 +

1

λ
)

n
∑

i=1

log(xi).

Thus
d

dλ
log L(σ̂, λ) =

−n

λ2
log(σ̂) − n

λ
+

1

λ2

n
∑

i=1

log(xi)
set
= 0,
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or −n log(σ̂) +
∑n

i=1 log(xi) = nλ. So

λ̂ = − log(σ̂) +

∑n
i=1 log(xi)

n
=

∑n
i=1 log(xi/σ̂)

n
.

Now

d2

dλ2
log L(σ̂, λ) =

2n

λ3
log(σ̂) +

n

λ2
− 2

λ3

n
∑

i=1

log(xi)

∣

∣

∣

∣

∣

λ=λ̂

=
n

λ̂2
− 2

λ̂3

n
∑

i=1

log(xi/σ̂) =
−n

λ̂2
< 0.

Hence (σ̂, λ̂) is the MLE of (σ, λ).

5.32. a) the likelihood

L(λ) = c
1

λn
exp

[

−(1 +
1

λ
)
∑

log(xi)

]

,

and the log likelihood

log(L(λ)) = d − n log(λ) − (1 +
1

λ
)
∑

log(xi).

Hence
d

dλ
log(L(λ)) =

−n

λ
+

1

λ2

∑

log(xi)
set
= 0,

or
∑

log(xi) = nλ or

λ̂ =

∑

log(Xi)

n
.

Notice that

d2

dλ2
log(L(λ)) =

n

λ2
− 2

∑

log(xi)

λ3

∣

∣

∣

∣

λ=λ̂

=

n

λ̂2
− 2nλ̂

λ̂3
=

−n

λ̂2
< 0.

Hence λ̂ is the MLE of λ.

b) By invariance, λ̂8 is the MLE of λ8.
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5.33. a) The likelihood

L(θ) = c e−n2θ exp[log(2θ)
∑

xi],

and the log likelihood

log(L(θ)) = d − n2θ + log(2θ)
∑

xi.

Hence
d

dθ
log(L(θ)) = −2n +

2

2θ

∑

xi
set
= 0,

or
∑

xi = 2nθ, or

θ̂ = X/2.

Notice that
d2

dθ2
log(L(θ)) =

−∑ xi

θ2
< 0

unless
∑

xi = 0.

b) (θ̂)4 = (X/2)4 by invariance.

5.34. L(0|x) = 1 for 0 < xi < 1, and L(1|x) =
∏n

i=1
1

2
√

xi
for 0 < xi < 1.

Thus the MLE is 0 if 1 ≥∏n
i=1

1
2
√

xi
and the MLE is 1 if 1 <

∏n
i=1

1
2
√

xi
.

5.35. a) Notice that θ > 0 and

f(y) =
1√
2π

1√
θ

exp

(−(y − θ)2

2θ

)

.

Hence the likelihood

L(θ) = c
1

θn/2
exp

[−1

2θ

∑

(yi − θ)2

]

and the log likelihood

log(L(θ)) = d − n

2
log(θ) − 1

2θ

∑

(yi − θ)2 =

d − n

2
log(θ) − 1

2

n
∑

i=1

(

y2
i

θ
− 2yiθ

θ
+

θ2

θ

)
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= d − n

2
log(θ) − 1

2

∑n
i=1 y2

i

θ
+

n
∑

i=1

yi − 1

2
nθ.

Thus
d

dθ
log(L(θ)) =

−n

2

1

θ
+

1

2

n
∑

i=1

y2
i

1

θ2
− n

2
set
= 0,

or
−n

2
θ2 − n

2
θ +

1

2

n
∑

i=1

y2
i = 0,

or

nθ2 + nθ −
n
∑

i=1

y2
i = 0. (11.2)

Now the quadratic formula states that for a 6= 0, the quadratic equation
ay2 + by + c = 0 has roots

−b ±
√

b2 − 4ac

2a
.

Applying the quadratic formula to (11.2) gives

θ =
−n ±

√

n2 + 4n
∑n

i=1 y2
i

2n
.

Since θ > 0, a candidate for the MLE is

θ̂ =
−n +

√

n2 + 4n
∑n

i=1 Y 2
i

2n
=

−1 +
√

1 + 4 1
n

∑n
i=1 Y 2

i

2
.

Since θ̂ satisfies (11.2),

nθ̂ −
n
∑

i=1

y2
i = −nθ̂2. (11.3)

Note that

d2

dθ2
log(L(θ)) =

n

2θ2
−
∑n

i=1 y2
i

θ3
=

1

2θ3
[nθ − 2

n
∑

i=1

y2
i ]

∣

∣

∣

∣

∣

θ=θ̂

=

1

2θ̂3
[nθ̂ −

n
∑

i=1

y2
i −

n
∑

i=1

y2
i ] =

1

2θ̂3
[−nθ̂2 −

n
∑

i=1

y2
i ] < 0
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by (11.3). Since L(θ) is continuous with a unique root on θ > 0, θ̂ is the
MLE.

5.36. a) L(θ) = (θ−x)2/3 for x−2 ≤ θ ≤ x+1. Since x = 7, L(5) = 4.3,
L(7) = 0, and L(8) = 1/3. So L is maximized at an endpoint and the MLE
θ̂ = 5.

b) By invariance the MLE is h(θ̂) = h(5) = 10 − e−25 ≈ 10.

5.37. a) L(λ) = c 1
λn exp

( −1
2λ2

∑n
i=1(e

xi − 1)2
)

.
Thus

log(L(λ)) = d − n log(λ) − 1

2λ2

n
∑

i=1

(exi − 1)2.

Hence
d log(L(λ))

dλ
=

−n

λ
+

1

λ3

∑

(exi − 1)2 set
= 0,

or nλ2 =
∑

(exi − 1)2, or

λ̂ =

∑

(eXi − 1)2

n
.

Now
d2 log(L(λ))

dλ2
=

n

λ2
− 3

λ4

∑

(exi − 1)2

∣

∣

∣

∣

λ=λ̂

=
n

λ̂2
− 3n

λ̂4
λ̂2 =

n

λ2
[1 − 3] < 0.

So λ̂ is the MLE.

5.38. a) The likelihood

L(λ) =
∏

f(xi) = c

(

∏ 1

xi

)

1

λn
exp

[∑−(log xi)
2

2λ2

]

,

and the log likelihood

log(L(λ)) = d −
∑

log(xi) − n log(λ) −
∑

(log xi)
2

2λ2
.

Hence
d

dλ
log(L(λ)) =

−n

λ
+

∑

(log xi)
2

λ3

set
= 0,
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or
∑

(log xi)
2 = nλ2, or

λ̂ =

√

∑

(log xi)2

n
.

This solution is unique.
Notice that

d2

dλ2
log(L(λ)) =

n

λ2
− 3

∑

(log xi)
2

λ4

∣

∣

∣

∣

λ=λ̂

=
n

λ̂2
− 3nλ̂2

λ̂4
=

−2n

λ̂2
< 0.

Hence

λ̂ =

√

∑

(log Xi)2

n
is the MLE of λ.

b)

λ̂2 =

∑

(log Xi)
2

n

is the MLE of λ2 by invariance.

6.7. a) The joint density

f(x) =
1

(2π)n/2
exp[−1

2

∑

(xi − µ)2]

=
1

(2π)n/2
exp[−1

2
(
∑

x2
i − 2µ

∑

xi + nµ2)]

=
1

(2π)n/2
exp[−1

2

∑

x2
i ] exp[nµx − nµ2

2
].

Hence by the factorization theorem X is a sufficient statistic for µ.

b) X is sufficient by a) and complete since the N(µ, 1) family is a regular
one parameter exponential family.

c) E(I−(∞,t](X1)|X = x) = P (X1 ≤ t|X = x) = Φ( t−x√
1−1/n

).

d) By Rao-Blackwell-Lehmann-Scheffe,

Φ(
t− X

√

1 − 1/n
)
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is the UMVUE.

6.14. Note that
∑

Xi ∼ G(n, θ). Hence MSE(c) = V arθ(Tn(c))+[EθTn(c)−
θ]2 = c2V arθ(

∑

Xi) + [ncEθX − θ]2 = c2nθ2 + [ncθ − θ]2.
So

d

dc
MSE(c) = 2cnθ2 + 2[ncθ − θ]nθ.

Set this equation to 0 to get 2nθ2[c + nc − 1] = 0 or c(n + 1) = 1. So
c = 1/(n + 1).

The second derivative is 2nθ2 + 2n2θ2 > 0 so the function is convex and
the local min is in fact global.

6.17. a) Since this is an exponential family, log(f(x|λ)) = − log(λ)−x/λ
and

∂

∂λ
log(f(x|λ)) =

−1

λ
+

x

λ2
.

Hence
∂2

∂λ2
log(f(x|λ)) =

1

λ2
− 2x

λ3

and

I1(λ) = −E

[

∂

∂λ
log(f(x|λ))

]

=
−1

λ2
+

2λ

λ3
=

1

λ2
.

b)

FCRLB(τ (λ)) =
[τ ′(λ)]2

nI1(λ)
=

4λ2

n/λ2
= 4λ4/n.

c) (T =
∑n

i=1 Xi ∼ Gamma(n, λ) is a complete sufficient statistic. Now
E(T 2) = V (T )+ [E(T )]2 = nλ2 +n2λ2. Hence the UMVUE of λ2 is T 2/(n +
n2).) No, W is a nonlinear function of the complete sufficient statistic T .

6.19.
W ≡ S2(k)/σ2 ∼ χ2

n/k

and
MSE(S2(k)) = MSE(W ) = V AR(W ) + (E(W ) − σ2)2

=
σ4

k2
2n + (

σ2n

k
− σ2)2

= σ4[
2n

k2
+ (

n

k
− 1)2] = σ4 2n + (n − k)2

k2
.
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Now the derivative d
dk

MSE(S2(k))/σ4 =

−2

k3
[2n + (n − k)2] +

−2(n − k)

k2
.

Set this derivative equal to zero. Then

2k2 − 2nk = 4n + 2(n − k)2 = 4n + 2n2 − 4nk + 2k2.

Hence
2nk = 4n + 2n2

or k = n + 2.
Should also argue that k = n + 2 is the global minimizer. Certainly need

k > 0 and the absolute bias will tend to ∞ as k → 0 and the bias tends
to σ2 as k → ∞, so k = n + 2 is the unique critical point and is the global
minimizer.

6.20. a) Let W = X2. Then f(w) = fX(
√

w) 1/(2
√

w) = (1/θ) exp(−w/θ)
and W ∼ exp(θ). Hence Eθ(X

2) = Eθ(W ) = θ.

b) This is an exponential family and

log(f(x|θ)) = log(2x) − log(θ) − 1

θ
x2

for x < 0. Hence
∂

∂θ
f(x|θ) =

−1

θ
+

1

θ2
x2

and
∂2

∂θ2
f(x|θ) =

1

θ2
+

−2

θ3
x2.

Hence

I1(θ) = −Eθ[
1

θ2
+

−2

θ3
x2] =

1

θ2

by a). Now

CRLB =
[τ ′(θ)]2

nI1(θ)
=

θ2

n

where τ (θ) = θ.

c) This is a regular exponential family so
∑n

i=1 X2
i is a complete sufficient

statistic. Since

Eθ[

∑n
i=1 X2

i

n
] = θ,
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the UMVUE is
Pn

i=1
X2

i

n
.

6.21. a) In normal samples, X and S are independent, hence

V arθ[W (α)] = α2V arθ(T1) + (1 − α)2V arθ(T2).

b) W (α) is an unbiased estimator of θ. Hence MSE(W (α) ≡ MSE(α) =
V arθ[W (α)] which is found in part a).

c) Now

d

dα
MSE(α) = 2αV arθ(T1) − 2(1 − α)V arθ(T2) = 0.

Hence

α̂ =
V arθ(T2)

V arθ(T1) + V arθ(T2)
≈

θ2

2n
θ2

2n
+ 2θ2

2n

= 1/3

using the approximation and the fact that Var(X̄) = θ2/n. Note that the
second derivative

d2

dα2
MSE(α) = 2[V arθ(T1) + V arθ(T2)] > 0,

so α = 1/3 is a local min. The critical value was unique, hence 1/3 is the
global min.

6.22. a) X1 − X2 ∼ N(0, 2σ2). Thus,

E(T1) =

∫ ∞

0

u
1√

4πσ2
e

−u2

4σ2 du

=
σ√
π

.

E(T 2
1 ) =

1

2

∫ ∞

0

u2 1√
4πσ2

e
−u2

4σ2 du

=
σ2

2
.

V (T1) = σ2(1
2
− 1

π
) and

MSE(T1) = σ2[(
1√
π

) − 1)2 +
1

2
− 1

π
] = σ2[

3

2
− 2√

π
].
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b) Xi

σ
has a N(0,1) and

Pn
i=1

X2

i

σ2 has a chi square distribution with n degrees
of freedom. Thus

E(

√

∑n
i=1 X2

i

σ2
) =

√
2Γ(n+1

2
)

Γ(n
2
)

,

and

E(T2) =
σ√
n

√
2Γ(n+1

2
)

Γ(n
2
)

.

Therefore,

E(

√
n√
2

Γ(n
2
)

Γ(n+1
2

)
T2) = σ.

6.23. This is a regular one parameter exponential family with complete
sufficient statistic Tn =

∑n
i=1 Xi ∼ G(n, λ). Hence E(Tn) = nλ, E(T 2

n) =
V (Tn) + (E(Tn))

2 = nλ2 + n2λ2, and T 2
n/(n + n2) is the UMVUE of λ2.

6.24.
1

Xi
=

Wi

σ
∼ χ2

1

σ
.

Hence if

T =
n
∑

i=1

1

Xi
, then E(

T

n
) =

n

nσ
,

and T/n is the UMVUE since f(x) is an exponential family with complete
sufficient statistic 1/X.

6.25. The pdf of T is

g(t) =
2nt2n−1

θ2n

for 0 < t < θ.
E(T ) = 2n

2n+1
θ and E(T 2) = 2n

2n+2
θ2.

MSE(CT ) = (C
2n

2n + 1
θ − θ)2 + C2[

2n

2n + 2
θ2 − (

2n

2n + 1
θ)2]

dMSE(CT )

dC
= 2[

2cnθ

2n + 1
− θ][

2nθ

2n + 1
] + 2c[

2nθ2

2n + 2
− 4n2θ2

(2n + 1)2
].

Solve dMSE(CT )
dC

= 0 to get

C = 2
n + 1

2n + 1
.
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Check with the second derivative d2MSE(CT )
dC2 = 4 nθ2

2n+2
, which is always posi-

tive.

6.26. a) E(Yi) = 2θ/3 and V (Yi) = θ2/18. So bias of T = B(T ) =
EcX − θ = c2

3
θ − θ and Var(T ) =

V ar(
c
∑

Xi

n
) =

c2

n2

∑

V ar(Xi) =
c2

n2

nθ2

18
.

So MSE = Var(T) +[B(T )]2 =

c2θ2

18n
+ (

2θ

3
c − θ)2.

b)
dMSE(c)

dc
=

2cθ2

18n
+ 2(

2θ

3
c − θ)

2θ

3
.

Set this equation equal to 0 and solve, so

θ22c

18n
+

4

3
θ(

2

3
θc − θ) = 0

or

c[
2θ2

18n
+

8

9
θ2] =

4

3
θ2

or

c(
1

9n
+

8

9
θ2) =

4

3
θ2

or

c(
1

9n
+

8n

9n
) =

4

3
or

c =
9n

1 + 8n

4

3
=

12n

1 + 8n
.

This is a global min since the MSE is a quadratic in c2 with a positive
coefficient, or because

d2MSE(c)

dc2
=

2θ2

18n
+

8θ2

9
> 0.

6.27. See Example 6.5.

7.6. For both a) and b), the test is reject Ho iff
∏n

i=1 xi(1−xi) > c where
Pθ=1[

∏n
i=1 xi(1 − xi) > c] = α.
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7.10. H says f(x) = e−x while K says

f(x) = xθ−1e−x/Γ(θ).

The monotone likelihood ratio property holds for
∏

xi since then

fn(x, θ2)

fn(x, θ1)
=

(
∏n

i=1 xi)
θ2−1(Γ(θ1))

n

(
∏n

i=1 xi)θ1−1(Γ(θ2))n
= (

Γ(θ1)

Γ(θ2)
)n(

n
∏

i=1

xi)
θ2−θ1

which increases as
∏n

i=1 xi increases if θ2 > θ1. Hence the level α UMP test
rejects H if

n
∏

i=1

Xi > c

where

PH (
n
∏

i=1

Xi > c) = PH(
∑

log(Xi) > log(c)) = 1 − α.

7.11. See Example 7.6.

7.13. Let θ1 = 4. By Neyman Pearson lemma, reject Ho if

f(x|θ1)

f(x|2) =

(

log(θ1)

θ − 1

)n

θ
P

xi

1

(

1

log(2)

)n
1

2
P

xi
> k

iff
(

log(θ1)

(θ − 1) log(2)

)n(
θ1

2

)

P

xi

> k

iff
(

θ1

2

)

P

xi

> k′

iff
∑

xi log(θ1/2) > c′.

So reject Ho iff
∑

Xi > c where Pθ=2(
∑

Xi > c) = α.

7.14. a) By NP lemma reject Ho if

f(x|σ = 2)

f(x|σ = 1)
> k′.
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The LHS =
1

23n exp[−1
8

∑

x2
i ]

exp[−1
2

∑

x2
i ]

So reject Ho if
1

23n
exp[

∑

x2
i (

1

2
− 1

8
)] > k′

or if
∑

x2
i > k where PHo(

∑

x2
i > k) = α.

b) In the above argument, with any σ1 > 1, get

∑

x2
i (

1

2
− 1

2σ2
1

)

and
1

2
− 1

2σ2
1

> 0

for any σ2
1 > 1. Hence the UMP test is the same as in a).

7.15. a) By NP lemma reject Ho if

f(x|σ = 2)

f(x|σ = 1)
> k′.

The LHS =
1
2n exp[−1

8

∑

[log(xi)]
2]

exp[−1
2

∑

[log(xi)]2]

So reject Ho if
1

2n
exp[

∑

[log(xi)]
2(

1

2
− 1

8
)] > k′

or if
∑

[log(Xi)]
2 > k where PHo(

∑

[log(Xi)]
2 > k) = α.

b) In the above argument, with any σ1 > 1, get

∑

[log(xi)]
2(

1

2
− 1

2σ2
1

)

and
1

2
− 1

2σ2
1

> 0

for any σ2
1 > 1. Hence the UMP test is the same as in a).
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7.16. The most powerful test will have the following form
Reject H0 iff f1(x)

f0(x)
> k.

But f1(x)
f0(x)

= 4x− 3

2 and hence we reject H0 iff X is small, i.e. reject H0 is
X < k for some constant k. This test must also have the size α, that is we
require:

α = P (X < k) when f(x) = f0(x)) =
∫ k

0
3
64

x2dx = 1
64

k3,

so that k = 4α
1

3 .
For the power, when k = 4α

1

3

P [X < k when f(x) = f1(x)] =
∫ k

0
3
16

√
xdx =

√
α

When α = 0.01, the power is = 0.10.

8.1 c) The histograms should become more like a normal distribution as
n increases from 1 to 200. In particular, when n = 1 the histogram should be
right skewed while for n = 200 the histogram should be nearly symmetric.
Also the scale on the horizontal axis should decrease as n increases.

d) Now Y ∼ N(0, 1/n). Hence the histograms should all be roughly
symmetric, but the scale on the horizontal axis should be from about −3/

√
n

to 3/
√

n.

8.3. a) E(X) = 3θ
θ+1

, thus√
n(X − E(x)) → N(0, V (x)), but

V (x) = 9θ
(θ+2)(θ+1)2

. Let g(y) = y
3−y

, thus g′(y) = 3
(3−y)2

. Using delta method
√

n(Tn − θ) → N(0, θ(θ+1)2

θ+2
).

b) It is asymptotically efficient if
√

n(Tn − θ) → N(0, ν(θ)), where

ν(θ) =
d
dθ

(θ)

−E( d2

dθ2 lnf(x|θ))

But, E(( d2

dθ2 lnf(x|θ)) = 1
θ2 . Thus ν(θ) = θ2 6= θ(θ+1)2

θ+2

c) X → 3θ
θ+1

in probability. Thus Tn → θ in probability.

8.5. See Example 8.8.

8.7. a) See Example 8.7.

8.13. a) Yn
D
=
∑n

i=1 Xi where the Xi are iid χ2
1. Hence E(Xi) = 1 and
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Var(Xi) = 2. Thus by the CLT,

√
n

(

Yn

n
− 1

)

D
=

√
n

( ∑n
i=1 Xi

n
− 1

)

D→ N(0, 2).

b) Let g(θ) = θ3. Then g′(θ) = 3θ2, g′(1) = 3, and by the delta method,

√
n

[

(

Yn

n

)3

− 1

]

D→ N(0, 2(g′(1))2) = N(0, 18).

8.27. a) See Example 8.1b.
b) See Example 8.3.

8.28. a) By the CLT,
√

n(X − λ)/
√

λ
D→ N(0, 1). Hence

√
n(X − λ)

D→
N(0, λ).

b) Let g(λ) = λ3 so that g′(λ) = 3λ2 then
√

n](X)3−(λ)3]
D→ N(0, λ[g′(λ)]2) =

N(0, 9λ5).

8.29. a) X is a complete sufficient statistic. Also, we have (n−1)S2

σ2 has a
chi square distribution with df = n−1, thus since σ2 is known the distribution
of S2 does not depend on µ, so S2 is ancillary. Thus, by Basu’s Theorem X
and S2 are independent.

b) by CLT (n is large )
√

n(X−µ) has approximately normal distribution
with mean 0 and variance σ2. Let g(x) = x3, thus, g

′

(x) = 3x2. Using
delta method

√
n(g(X) − g(µ)) goes in distribution to N(0, σ2(g

′

(µ))2) or√
n(X

3 − µ3) goes in distribution to N(0, σ2(3µ2)2). Thus the distribution

of X
3

is approximately normal with mean µ3 and variance 9σ2µ4

9
.

8.30. a) According to the standard theorem,
√

n(θ̂n − θ) → N(0, 3).

b) E(Y ) = θ, V ar(Y ) = π2

3
, according to CLT we have

√
n(Y n − θ) →

N(0, π2

3
).

c) MED(Y ) = θ, then
√

n(MED(n) − θ) → N(0, 1
4 f2(MED(Y ))

) and

f(MED(Y )) = exp (−(θ−θ))
[1+exp (−(θ−θ))]2

= 1
4
. Thus

√
n(MED(n)− θ) → N(0, 1

4 1

16

) →
√

n(MED(n) − θ) → N(0, 4).

d) All three estimators are consistent, but 3 < π2

3
< 4, therefore the

estimator θ̂n is the best, and the estimator MED(n) is the worst.
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9.1. a)
∑n

i=1 Xb
i is minimal sufficient for a.

b) It can be shown that Xb

a
has an exponential distribution with mean 1.

Thus,
2

Pn
i=1

Xib

a
is distributed χ2

2n. Let χ2
2n,α/2 be the upper 100(1

2
α)% point

of the chi-square distribution with 2n degrees of freedom. Thus, we can write

1 − α = P (χ2
2n,1−α/2 <

2
∑n

i=1 Xb
i

a
< χ2

2n,α/2)

which translates into
(

2
∑n

i=1 Xb
i

χ2
2n,α/2

,
2
∑n

i=1 Xb
i

χ2
2n,1−α/2

)

as a two sided (1−α) confidence interval for a. For α = 0.05 and n = 20, we
have χ2

2n,α/2 = 34.1696 and χ2
2n,1−α/2 = 9.59083. Thus the confidence interval

for a is
(∑n

i=1 Xb
i

17.0848
,

∑n
i=1 Xb

i

4.795415

)

.

9.4. Tables are from simulated data but should be similar to the table
below.

n p ccov acov

50 .01 .4236 .9914 AC CI better

100 .01 .6704 .9406 AC CI better

150 .01 .8278 .9720 AC CI better

200 .01 .9294 .9098 the CIs are about the same

250 .01 .8160 .8160 the CIs are about the same

300 .01 .9158 .9228 the CIs are about the same

350 .01 .9702 .8312 classical is better

400 .01 .9486 .6692 classical is better

450 .01 .9250 .4080 classical is better
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