
Chapter 1

Probability and Expectations

1.1 Probability

Definition 1.1. Statistics is the science of extracting useful information
from data.

This chapter reviews some of the tools from probability that are useful for
statistics, and the following terms from set theory should be familiar. A set
consists of distinct elements enclosed by braces, eg {1, 5, 7}. The universal
set S is the set of all elements under consideration while the empty set Ø is
the set that contains no elements. The set A is a subset of B, written A ⊆ B,
if every element in A is in B. The union A ∪ B of A with B is the set of all
elements in A or B or in both. The intersection A ∩ B of A with B is the
set of all elements in A and B. The complement of A, written A or Ac, is the
set of all elements in S but not in A.

Theorem 1.1. DeMorgan’s Laws:

a) A ∪ B = A ∩ B.
b) A ∩ B = A ∪ B.

Sets are used in probability, but often different notation is used. For ex-
ample, the universal set is called the sample space S. In the definition of an
event below, the special field of subsets B of the sample space S forming the
class of events will not be formally given. However, B contains all “interest-
ing” subsets of S and every subset that is easy to imagine. The point is that
not necessarily all subsets of S are events, but every event A is a subset of
S.
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Definition 1.2. The sample space S is the set of all possible outcomes
of an experiment.

Definition 1.3. Let B be a special field of subsets of the sample space
S forming the class of events. Then A is an event if A ∈ B.

Definition 1.4. If A ∩ B = Ø, then A and B are mutually exclusive or
disjoint events. Events A1, A2, ... are pairwise disjoint or mutually exclusive
if Ai ∩ Aj = Ø for i 6= j.

A simple event is a set that contains exactly one element si of S, eg
A = {s3}. A sample point si is a possible outcome.

Definition 1.5. A discrete sample space consists of a finite or count-
able number of outcomes.

Notation. Generally we will assume that all events under consideration
belong to the same sample space S.

The relative frequency interpretation of probability says that the proba-
bility of an event A is the proportion of times that event A would occur if
the experiment was repeated again and again infinitely often.

Definition 1.6: Kolmogorov’s Definition of a Probability Func-

tion. Let B be the class of events of the sample space S. A probability

function P : B → [0, 1] is a set function satisfying the following three prop-
erties:
P1) P (A) ≥ 0 for all events A,
P2) P (S) = 1, and
P3) if A1, A2, ... are pairwise disjoint events, then P (∪∞

i=1Ai) =
∑∞

i=1 P (Ai).

Example 1.1. Flip a coin and observe the outcome. Then the sample
space S = {H, T}. If P ({H}) = 1/3, then P ({T}) = 2/3. Often the notation
P (H) = 1/3 will be used.

Theorem 1.2. Let A and B be any two events of S. Then
i) 0 ≤ P (A) ≤ 1.
ii) P (Ø) = 0 where Ø is the empty set.
iii) Complement Rule: P (A) = 1 − P (A).
iv) General Addition Rule: P (A ∪ B) = P (A) + P (B) − P (A ∩ B).
v) If A ⊆ B, then P (A) ≤ P (B).
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vi) Boole’s Inequality: P (∪∞
i=1Ai) ≤

∑∞

i=1 P (Ai) for any events A1, A2, ....
vii) Bonferroni’s Inequality: P (∩n

i=1Ai) ≥
∑n

i=1 P (Ai) − (n − 1) for any
events A1, A2, ..., An.

The general addition rule for two events is very useful. Given three of the
4 probabilities in iv), the 4th can be found. P (A ∪ B) can be found given
P (A), P (B) and that A and B are disjoint or independent. The addition
rule can also be used to determine whether A and B are independent (see
Section 1.3) or disjoint.

1.2 Counting

The sample point method for finding the probability for event A says that
if S = {s1, ..., sk} then 0 ≤ P (si) ≤ 1,

∑k
i=1 P (si) = 1, and P (A) =

∑

i:si∈A P (si). That is, P (A) is the sum of the probabilities of the sample
points in A. If all of the outcomes si are equally likely, then P (si) = 1/k and
P (A) = (number of outcomes in A)/k if S contains k outcomes.

Counting or combinatorics is useful for determining the number of ele-
ments in S. The multiplication rule says that if there are n1 ways to do a
first task, n2 ways to do a 2nd task, ..., and nk ways to do a kth task, then
the number of ways to perform the total act of performing the 1st task, then
the 2nd task, ..., then the kth task is

∏k
i=1 ni = n1 · n2 · n3 · · ·nk.

Techniques for the multiplication principle:
a) use a slot for each task and write ni above the ith task. There will be k
slots, one for each task.
b) Use a tree diagram.

Definition 1.7. A permutation is an ordered arrangements using r of
n distinct objects and the number of permutations = P n

r . A special case of
permutation formula is

P n
n = n! = n · (n − 1) · (n − 2) · (n − 3) · · · 4 · 3 · 2 · 1 =

n ·(n−1)! = n ·(n−1) ·(n−2)! = n ·(n−1) ·(n−2) ·(n−3)! = · · · . Generally
n is a positive integer, but define 0! = 1. An application of the multiplication

rule can be used to show that P n
r = n·(n−1)·(n−2) · · · (n−r+1) =

n!

(n − r)!
.
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The quantity n! is read “n factorial.” Typical problems using n! include
the number of ways to arrange n books, to arrange the letters in the word
CLIPS (5!), et cetera.

Recognizing when a story problem is asking for the permutation formula:
The story problem has r slots and order is important. No object is allowed to
be repeated in the arrangement. Typical questions include how many ways
are there to “to choose r people from n and arrange in a line,” “to make
r letter words with no letter repeated” or “to make 7 digit phone numbers
with no digit repeated.” Key words include order, no repeated and different.

Notation. The symbol ≡ below means the first three symbols are equiv-
alent and equal, but the fourth term is the formula used to compute the
symbol. This notation will often be used when there are several equivalent
symbols that mean the same thing. The notation will also be used for func-
tions with subscripts if the subscript is usually omitted, eg gX(x) ≡ g(x).
The symbol

(
n
r

)
is read “n choose r,” and is called a binomial coefficient.

Definition 1.8. A combination is an unordered selection using r of n
distinct objects. The number of combinations is

C(n, r) ≡ Cn
r ≡

(
n

r

)

=
n!

r!(n − r)!
.

Combinations are used in story problems where order is not important.
Key words include committees, selecting (eg 4 people from 10), choose, ran-
dom sample and unordered.

1.3 Conditional Probability and Independence

Definition 1.9. The conditional probability of A given B is

P (A|B) =
P (A ∩ B)

P (B)

if P (B) > 0.

It is often useful to think of this probability as an experiment with sample
space B instead of S.
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Definition 1.10. Two events A and B are independent, written A B,
if

P (A ∩ B) = P (A)P (B).

If A and B are not independent, then A and B are dependent.

Definition 1.11. A collection of events A1, ..., An are mutually indepen-
dent if for any subcollection Ai1, ..., Aik,

P (∩k
j=1Aij) =

k∏

j=1

P (Aij).

Otherwise the n events are dependent.

Theorem 1.3. Assume that P (A) > 0 and P (B) > 0. Then the two
events A and B are independent if any of the following three conditions hold:
i) P (A ∩ B) = P (A)P (B),
ii) P (A|B) = P (A), or
iii) P (B|A) = P (B).
If any of these conditions fails to hold, then A and B are dependent.

The above theorem is useful because only one of the conditions needs to
be checked, and often one of the conditions is easier to verify than the other
two conditions.

Theorem 1.4. a) Multiplication rule: If A1, ..., Ak are events and if the
relevant conditional probabilities are defined, then P (∩k

i=1Ai) =
P (A1)P (A2|A1)P (A3|A1 ∩ A2) · · ·P (Ak|A1 ∩ A2 ∩ · · · ∩ Ak−1). In particular,
P (A ∩ B) = P (A)P (B|A) = P (B)P (A|B).

b) Multiplication rule for independent events: If A1, A2, ..., Ak are inde-
pendent, then P (A1 ∩ A2 ∩ · · · ∩ Ak) = P (A1) · · ·P (Ak). If A and B are
independent (k = 2), then P (A ∩ B) = P (A)P (B).

c) Addition rule for disjoint events: If A and B are disjoint, then P (A ∪
B) = P (A) + P (B). If A1, ..., Ak are pairwise disjoint, then P (∪k

i=1Ai) =
P (A1 ∪ A2 ∪ · · · ∪ Ak) = P (A1) + · · · + P (Ak) =

∑k
i=1 P (Ai).

Example 1.2. The above rules can be used to find the probabilities of
more complicated events. The following probabilities are closed related to
Binomial experiments. Suppose that there are n independent identical trials,
that Y counts the number of successes and that ρ = probability of success
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for any given trial. Let Di denote a success in the ith trial. Then
i) P(none of the n trials were successes) = (1 − ρ)n = P (Y = 0) =
P (D1 ∩ D2 ∩ · · · ∩ Dn).
ii) P(at least one of the trials was a success) = 1 − (1 − ρ)n = P (Y ≥ 1) =

1 − P (Y = 0) = 1 − P (none) = P (D1 ∩ D2 ∩ · · · ∩ Dn).
iii) P(all n trials were successes) = ρn = P (Y = n) = P (D1 ∩D2 ∩ · · · ∩Dn).
iv) P(not all n trials were successes) = 1−ρn = P (Y < n) = 1−P (Y = n) =
1 − P(all).
v) P(Y was at least k ) = P (Y ≥ k).
vi) P(Y was at most k) = P (Y ≤ k).

If A1, A2, ... are pairwise disjoint and if ∪∞
i=1Ai = S, then the collection of

sets A1, A2, ... is a partition of S. By taking Aj = Ø for j > k, the collection
of pairwise disjoint sets A1, A2, ..., Ak is a partition of S if ∪k

i=1Ai = S.

Theorem 1.5: Law of Total Probability. If A1, A2, ..., Ak form a
partition of S such that P (Ai) > 0 for i = 1, ..., k, then

P (B) =

k∑

j=1

P (B ∩ Ai) =

k∑

j=1

P (B|Aj)P (Aj).

Theorem 1.6: Bayes’ Theorem. Let A1, A2, ..., Ak be a partition of
S such that P (Ai) > 0 for i = 1, ..., k, and let B be an event such that
P (B) > 0. Then

P (Ai|B) =
P (B|Ai)P (Ai)

∑k
j=1 P (B|Aj)P (Aj)

.

Proof. Notice that P (Ai|B) = P (Ai ∩ B)/P (B) and P (Ai ∩ B) =
P (B|Ai)P (Ai). Since B = (B ∩ A1) ∪ · · · ∪ (B ∩ Ak) and the Ai are dis-
joint, P (B) =

∑k
j=1 P (B ∩ Aj) =

∑k
j=1 P (B|Aj)P (Aj). QED

Example 1.3. There are many medical tests for rare diseases and a
positive result means that the test suggests (perhaps incorrectly) that the
person has the disease. Suppose that a test for disease is such that if the
person has the disease, then a positive result occurs 99% of the time. Suppose
that a person without the disease tests positive 2% of the time. Also assume
that 1 in 1000 people screened have the disease. If a randomly selected person
tests positive, what is the probability that the person has the disease?
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Solution: Let A1 denote the event that the randomly selected person has
the disease and A2 denote the event that the randomly selected person does
not have the disease. If B is the event that the test gives a positive result,
then we want P (A1|B). By Bayes’ theorem,

P (A1|B) =
P (B|A1)P (A1)

P (B|A1)P (A1) + P (B|A2)P (A2)
=

0.99(0.001)

0.99(0.001) + 0.02(0.999)

≈ 0.047. Hence instead of telling the patient that she has the rare disease,
the doctor should inform the patient that she is in a high risk group and
needs further testing.

1.4 The Expected Value and Variance

Definition 1.12. A random variable (RV) Y is a real valued function with
a sample space as a domain: Y : S → < where the set of real numbers
< = (−∞,∞).

Definition 1.13. Let S be the sample space and let Y be a random
variable. Then the (induced) probability function for Y is PY (Y = yi) ≡
P (Y = yi) = PS({s ∈ S : Y (s) = yi}). The sample space of Y is
SY = {yi ∈ < : there exists an s ∈ S with Y (s) = yi}.

Definition 1.14. The population is the entire group of objects from
which we want information. The sample is the part of the population actually
examined.

Example 1.4. Suppose that 5 year survival rates of 100 lung cancer
patients are examined. Let a 1 denote the event that the ith patient died
within 5 years of being diagnosed with lung cancer, and a 0 if the patient
lived. Then outcomes in the sample space S are 100-tuples (sequences of 100
digits) of the form s = 1010111 · · · 0111. Let the random variable X(s) = the
number of 1’s in the 100-tuple = the sum of the 0’s and 1’s = the number of
the 100 lung cancer patients who died within 5 years of being diagnosed with
lung cancer. Notice that X(s) = 82 is easier to understand than a 100-tuple
with 82 ones and 18 zeroes.

For the following definition, F is a right continuous function if for ev-
ery real number x, limy↓x F (y) = F (x). Also, F (∞) = limy→∞ F (y) and
F (−∞) = limy→−∞ F (y).

7



Definition 1.15. The cumulative distribution function (cdf) of any
RV Y is F (y) = P (Y ≤ y) for all y ∈ <. If F (y) is a cumulative distribution
function, then F (−∞) = 0, F (∞) = 1, F is a nondecreasing function and F
is right continuous.

Definition 1.16. A RV is discrete if it can assume only a finite or
countable number of distinct values. The collection of these probabilities
is the probability distribution of the discrete RV. The probability mass

function (pmf) of a discrete RV Y is f(y) = P (Y = y) for all y ∈ < where
0 ≤ f(y) ≤ 1 and

∑

y:f(y)>0 f(y) = 1.

Remark 1.1. The cdf F of a discrete RV is a step function.

Example 1.5: Common low level problem. The sample space of
Y is SY = {y1, y2, ..., yk} and a table of yj and f(yj) is given with one

f(yj) omitted. Find the omitted f(yj) by using the fact that
∑k

i=1 f(yi) =
f(y1) + f(y2) + · · · + f(yk) = 1.

Definition 1.17. A RV Y is continuous if its distribution function F (y)
is continuous.

The notation ∀y means “for all y.”

Definition 1.18. If Y is a continuous RV, then the probability density

function (pdf) f(y) of Y is a function such that

F (y) =

∫ y

−∞

f(t)dt (1.1)

for all y ∈ <. If f(y) is a pdf, then f(y) ≥ 0 ∀y and
∫ ∞

−∞
f(t)dt = 1.

Theorem 1.7. If Y has pdf f(y), then f(y) = d
dy

F (y) ≡ F ′(y) wherever

the derivative exists (in this text the derivative will exist everywhere except
possibly for a finite number of points).

Theorem 1.8. i) P (a < Y ≤ b) = F (b) − F (a).
ii) If Y has pdf f(y), then P (a < Y < b) = P (a < Y ≤ b) = P (a ≤ Y <

b) = P (a ≤ Y ≤ b) =
∫ b

a
f(y)dy = F (b)− F (a).

iii) If Y has a probability mass function f(y), then Y is discrete and P (a <
Y ≤ b) = F (b)− F (a), but P (a ≤ Y ≤ b) 6= F (b)− F (a) if f(a) > 0.

Definition 1.19. Let Y be a discrete RV with probability mass function
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f(y). Then the mean or expected value of Y is

EY ≡ µ ≡ E(Y ) =
∑

y:f(y)>0

y f(y) (1.2)

if the sum exists when y is replaced by |y|. If g(Y ) is a real valued function
of Y, then g(Y ) is a random variable and

E[g(Y )] =
∑

y:f(y)>0

g(y) f(y) (1.3)

if the sum exists when g(y) is replaced by |g(y)|. If the sums are not abso-
lutely convergent, then E(Y ) and E[g(Y )] do not exist.

Definition 1.20. If Y has pdf f(y), then the mean or expected value

of Y is

EY ≡ E(Y ) =

∫ ∞

−∞

yf(y)dy (1.4)

and

E[g(Y )] =

∫ ∞

−∞

g(y)f(y)dy (1.5)

provided the integrals exist when y and g(y) are replaced by |y| and |g(y)|.
If the modified integrals do not exist, then E(Y ) and E[g(Y )] do not exist.

Definition 1.21. If E(Y 2) exists, then the variance of a RV Y is

VAR(Y ) ≡ Var(Y) ≡ V Y ≡ V(Y) = E[(Y − E(Y))2]

and the standard deviation of Y is SD(Y ) =
√

V (Y ). If E(Y 2) does not
exist, then V (Y ) does not exist.

The following theorem is used over and over again, especially to find
E(Y 2) = V (Y )+(E(Y ))2. The theorem is valid for all random variables that
have a variance, including continuous and discrete RVs. If Y is a Cauchy
(µ, σ) RV (see Chapter 10), then neither E(Y ) nor V (Y ) exist.

Theorem 1.9: Short cut formula for variance.

V (Y ) = E(Y 2) − (E(Y ))2. (1.6)
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If Y is a discrete RV with sample space SY = {y1, y2, ..., yk} then

E(Y ) =
k∑

i=1

yif(yi) = y1f(y1) + y2f(y2) + · · · + ykf(yk)

and E[g(Y )] =
k∑

i=1

g(yi)f(yi) = g(y1)f(y1) + g(y2)f(y2) + · · · + g(yk)f(yk).

In particular,

E(Y 2) = y2
1f(y1) + y2

2f(y2) + · · · + y2
kf(yk).

Also

V (Y ) =
k∑

i=1

(yi − E(Y ))2f(yi) =

(y1 − E(Y ))2f(y1) + (y2 − E(Y ))2f(y2) + · · · + (yk − E(Y ))2f(yk).

For a continuous RV Y with pdf f(y), V (Y ) =
∫ ∞

−∞
(y−E[Y ])2f(y)dy. Often

using V (Y ) = E(Y 2) − (E(Y ))2 is simpler.

Example 1.6: Common low level problem. i) Given a table of y
and f(y), find E[g(Y )] and the standard deviation σ = SD(Y ). ii) Find f(y)
from F (y). iii) Find F (y) from f(y). iv) Given that f(y) = c g(y), find c.
v) Given the pdf f(y), find P (a < Y < b), et cetera. vi) Given the pmf
or pdf f(y) find E[Y ], V (Y ), SD(Y ), and E[g(Y )]. The functions g(y) = y,
g(y) = y2, and g(y) = ety are especially common.

Theorem 1.10. Let a and b be any constants and assume all relevant
expectations exist.
i) E(a) = a.
ii) E(aY + b) = aE(Y ) + b.
iii) E(aX + bY ) = aE(X) + bE(Y ).
iv) V (aY + b) = a2V (Y ).

Definition 1.22. The moment generating function (mgf) of a ran-
dom variable Y is

m(t) = E[etY ] (1.7)

if the expectation exists for t in some neighborhood of 0. Otherwise, the
mgf does not exist. If Y is discrete, then m(t) =

∑

y etyf(y), and if Y is

continuous, then m(t) =
∫ ∞

−∞
etyf(y)dy.
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Definition 1.23. The characteristic function (cf) of a random vari-
able Y is c(t) = E[eitY ] where the complex number i =

√
−1.

This text does not require much knowledge of theory of complex variables,
but know that i2 = −1, i3 = −i and i4 = 1. Hence i4k−3 = i, i4k−2 = −1,
i4k−1 = −i and i4k = 1 for k = 1, 2, 3, .... To compute the cf, the following
result will be used. Moment generating functions do not necessarily exist in
a neighborhood of zero, but a characteristic function always exists.

Proposition 1.11. Suppose that Y is a RV with an mgf m(t) that exists
for |t| < b for some constant b > 0. Then the cf of Y is c(t) = m(it).

Definition 1.24. Random variables X and Y are identically distributed,
written X ∼ Y or Y ∼ FX, if FX(y) = FY (y) for all real y.

Proposition 1.12. Let X and Y be random variables. Then X and Y
are identically distributed, X ∼ Y , if any of the following conditions hold.
a) FX(y) = FY (y) for all y,
b) fX(y) = fY (y) for all y,
c) cX(t) = cY (t) for all t or
d) mX(t) = mY (t) for all t in a neighborhood of zero.

Definition 1.25. The kth moment of Y is E[Y k] while the kth central
moment is E[(Y −E[Y ])k].

Theorem 1.13. Suppose that the mgf m(t) exists for |t| < b for some
constant b > 0, and suppose that the kth derivative m(k)(t) exists for |t| < b.
Then E[Y k] = m(k)(0). In particular, E[Y ] = m′(0) and E[Y 2] = m

′′

(0).

Notation. The natural logarithm of y is log(y) = ln(y). If another base
is wanted, it will be given, eg log10(y).

Example 1.7: Common problem. Let h(y), g(y), n(y) and d(y) be
functions. Review how to find the derivative g′(y) of g(y) and how to find
kth derivative

g(k)(y) =
dk

dyk
g(y)

for k ≥ 2. Recall that the product rule is

(h(y)g(y))′ = h′(y)g(y) + h(y)g′(y).
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The quotient rule is

(
n(y)

d(y)

)′

=
d(y)n′(y) − n(y)d′(y)

[d(y)]2
.

The chain rule is
[h(g(y))]′ = [h′(g(y))][g′(y)].

Know the derivative of log(y) and ey and know the chain rule with these
functions. Know the derivative of yk.

Then given the mgf m(t), find E[Y ] = m′(0), E[Y 2] = m
′′

(0) and V (Y ) =
E[Y 2] − (E[Y ])2.

Definition 1.26. Let f(y) ≡ fY (y|θ) be the pdf or pmf of a random
variable Y . Then the set Yθ = {y|fY (y|θ) > 0} is called the support of
Y . Let the set Θ be the set of parameter values θ of interest. Then Θ is
the parameter space of Y . Use the notation Y = {y|f(y|θ) > 0} if the
support does not depend on θ. So Y is the support of Y if Yθ ≡ Y ∀θ ∈ Θ.

Definition 1.27. The indicator function IA(x) ≡ I(x ∈ A) = 1 if
x ∈ A and 0, otherwise. Sometimes an indicator function such as I(0,∞)(y)
will be denoted by I(y > 0).

Example 1.8. Often equations for functions such as the pmf, pdf or cdf
are given only on the support (or on the support plus points on the boundary
of the support). For example, suppose

f(y) = P (Y = y) =

(
k

y

)

ρy(1 − ρ)k−y

for y = 0, 1, . . . , k where 0 < ρ < 1. Then the support of Y is Y =
{0, 1, ..., k}, the parameter space is Θ = (0, 1) and f(y) = 0 for y not ∈ Y.
Similarly, if f(y) = 1 and F (y) = y for 0 ≤ y ≤ 1, then the support Y = [0, 1],
f(y) = 0 for y < 0 and y > 1, F (y) = 0 for y < 0 and F (y) = 1 for y > 1.

Since the pmf and cdf are defined for all y ∈ < = (−∞,∞) and the pdf is
defined for all but finitely many y, it may be better to use indicator functions
when giving the formula for f(y). For example,

f(y) = 1I(0 ≤ y ≤ 1)

is defined for all y ∈ <.
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1.5 The Kernel Method

Notation. Notation such as E(Y |θ) ≡ E
θ
(Y ) or fY (y|θ) is used to indicate

that the formula for the expected value or pdf are for a family of distributions
indexed by θ ∈ Θ. A major goal of parametric inference is to collect data
and estimate θ from the data.

Example 1.9. If Y ∼ N(µ, σ2), then Y is a member of the normal
family of distributions with θ = {(µ, σ)| − ∞ < µ < ∞ and σ > 0}. Then
E[Y |(µ, σ)] = µ and V (Y |(µ, σ)) = σ2. This family has uncountably many
members.

The kernel method is a widely used technique for finding E[g(Y )].

Definition 1.28. Let fY (y) be the pdf or pmf of a random variable Y
and suppose that fY (y|θ) = c(θ)k(y|θ). Then k(y|θ) ≥ 0 is the kernel of
fY and c(θ) > 0 is the constant term that makes fY sum or integrate to one.
Thus

∫ ∞

−∞
k(y|θ)dy = 1/c(θ) or

∑

y∈Y k(y|θ) = 1/c(θ).

Often E[g(Y )] is found using “tricks” tailored for a specific distribution.
The word “kernel” means “essential part.” Notice that if fY (y) is a pdf, then
E[g(Y )] =

∫ ∞

−∞
g(y)f(y|θ)dy =

∫

Y
g(y)f(y|θ)dy. Suppose that after algebra,

it is found that

E[g(Y )] = a c(θ)

∫ ∞

−∞

k(y|τ )dy

for some constant a where τ ∈ Θ and Θ is the parameter space. Then the
kernel method says that

E[g(Y )] = a c(θ)

∫ ∞

−∞

c(τ )

c(τ )
k(y|τ )dy =

a c(θ)

c(τ )

∫ ∞

−∞

c(τ )k(y|τ )dy

︸ ︷︷ ︸

1

=
a c(θ)

c(τ )
.

Similarly, if fY (y) is a pmf, then

E[g(Y )] =
∑

y:f(y)>0

g(y)f(y|θ) =
∑

y∈Y

g(y)f(y|θ)

where Y = {y : fY (y) > 0} is the support of Y . Suppose that after algebra,
it is found that

E[g(Y )] = a c(θ)
∑

y∈Y

k(y|τ )

13



for some constant a where τ ∈ Θ. Then the kernel method says that

E[g(Y )] = a c(θ)
∑

y∈Y

c(τ )

c(τ )
k(y|τ ) =

a c(θ)

c(τ )

∑

y∈Y

c(τ )k(y|τ )

︸ ︷︷ ︸

1

=
a c(θ)

c(τ )
.

The kernel method is often useful for finding E[g(Y )], especially if g(y) =
y, g(y) = y2 or g(y) = ety. The kernel method is often easier than memorizing
a trick specific to a distribution because the kernel method uses the same
trick for every distribution:

∑

y∈Y f(y) = 1 and
∫

y∈Y
f(y)dy = 1. Of course

sometimes tricks are needed to get the kernel f(y|τ ) from g(y)f(y|θ). For
example, complete the square for the normal (Gaussian) kernel.

Example 1.10. To use the kernel method to find the mgf of a gamma
(ν, λ) distribution, refer to Section 10.13 and note that

m(t) = E(etY ) =

∫ ∞

0

ety yν−1e−y/λ

λνΓ(ν)
dy =

1

λνΓ(ν)

∫ ∞

0

yν−1 exp[−y(
1

λ
− t)]dy.

The integrand is the kernel of a gamma (ν, η) distribution with

1

η
=

1

λ
− t =

1 − λt

λ
so η =

λ

1 − λt
.

Now ∫ ∞

0

yν−1e−y/λdy =
1

c(ν, λ)
= λνΓ(ν).

Hence

m(t) =
1

λνΓ(ν)

∫ ∞

0

yν−1 exp[−y/η]dy = c(ν, λ)
1

c(ν, η)
=

1

λνΓ(ν)
ηνΓ(ν) =

(η

λ

)ν

=

(
1

1 − λt

)ν

for t < 1/λ.

Example 1.11. The zeta(ν) distribution has probability mass function

f(y) = P (Y = y) =
1

ζ(ν)yν

14



where ν > 1 and y = 1, 2, 3, .... Here the zeta function

ζ(ν) =
∞∑

y=1

1

yν

for ν > 1. Hence

E(Y ) =
∞∑

y=1

y
1

ζ(ν)

1

yν

=
1

ζ(ν)
ζ(ν − 1)

∞∑

y=1

1

ζ(ν − 1)

1

yν−1

︸ ︷︷ ︸

1=sum of zeta(ν−1) pmf

=
ζ(ν − 1)

ζ(ν)

if ν > 2. Similarly

E(Y k) =

∞∑

y=1

yk 1

ζ(ν)

1

yν

=
1

ζ(ν)
ζ(ν − k)

∞∑

y=1

1

ζ(ν − k)

1

yν−k

︸ ︷︷ ︸

1=sum of zeta(ν−k) pmf

=
ζ(ν − k)

ζ(ν)

if ν − k > 1 or ν > k + 1. Thus if ν > 3, then

V (Y ) = E(Y 2) − [E(Y )]2 =
ζ(ν − 2)

ζ(ν)
−

[
ζ(ν − 1)

ζ(ν)

]2

.

Example 1.12. The generalized gamma distribution has pdf

f(y) =
φyφν−1

λφνΓ(ν)
exp(−yφ/λφ)

where ν, λ, φ and y are positive, and

E(Y k) =
λkΓ(ν + k

φ
)

Γ(ν)
if k > −φν.

To prove this result using the kernel method, note that

E(Y k) =

∫ ∞

0

yk φyφν−1

λφνΓ(ν)
exp(−yφ/λφ)dy =

∫ ∞

0

φyφν+k−1

λφνΓ(ν)
exp(−yφ/λφ)dy.

15



This integrand looks much like a generalized gamma pdf with parameters νk,
λ and φ where νk = ν + (k/φ) since

E(Y k) =

∫ ∞

0

φyφ(ν+k/φ)−1

λφνΓ(ν)
exp(−yφ/λφ)dy.

Multiply the integrand by

1 =
λkΓ(ν + k

φ
)

λkΓ(ν + k
φ
)

to get

E(Y k) =
λkΓ(ν + k

φ
)

Γ(ν)

∫ ∞

0

φyφ(ν+k/φ)−1

λφ(ν+k/φ)Γ(ν + k
φ
)
exp(−yφ/λφ)dy.

Then the result follows since the integral of a generalized gamma pdf with
parameters νk, λ and φ over its support is 1. Notice that νk > 0 implies
k > −φν.

1.6 Mixture Distributions

Mixture distributions are often used as outlier models. The following two
definitions and proposition are useful for finding the mean and variance of a
mixture distribution. Parts a) and b) of Proposition 1.14 below show that
the definition of expectation given in Definition 1.30 is the same as the usual
definition for expectation if Y is a discrete or continuous random variable.

Definition 1.29. The distribution of a random variable Y is a mixture
distribution if the cdf of Y has the form

FY (y) =
k∑

i=1

αiFWi
(y) (1.8)

where 0 < αi < 1,
∑k

i=1 αi = 1, k ≥ 2, and FWi
(y) is the cdf of a continuous

or discrete random variable Wi, i = 1, ..., k.

Definition 1.30. Let Y be a random variable with cdf F (y). Let h be a
function such that the expected value E[h(Y )] exists. Then

E[h(Y )] =

∫ ∞

−∞

h(y)dF (y). (1.9)
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Proposition 1.14. a) If Y is a discrete random variable that has a pmf
f(y) with support Y, then

E[h(Y )] =

∫ ∞

−∞

h(y)dF (y) =
∑

y∈Y

h(y)f(y).

b) If Y is a continuous random variable that has a pdf f(y), then

E[h(Y )] =

∫ ∞

−∞

h(y)dF (y) =

∫ ∞

−∞

h(y)f(y)dy.

c) If Y is a random variable that has a mixture distribution with cdf FY (y) =
∑k

i=1 αiFWi
(y), then

E[h(Y )] =

∫ ∞

−∞

h(y)dF (y) =
k∑

i=1

αiEWi
[h(Wi)]

where EWi
[h(Wi)] =

∫ ∞

−∞
h(y)dFWi

(y).

Example 1.13. Proposition 1.14c implies that the pmf or pdf of Wi

is used to compute EWi
[h(Wi)]. As an example, suppose the cdf of Y is

F (y) = (1 − ε)Φ(y) + εΦ(y/k) where 0 < ε < 1 and Φ(y) is the cdf of
W1 ∼ N(0, 1). Then Φ(x/k) is the cdf of W2 ∼ N(0, k2). To find E[Y ], use
h(y) = y. Then

E[Y ] = (1 − ε)E[W1] + εE[W2] = (1 − ε)0 + ε0 = 0.

To find E[Y 2], use h(y) = y2. Then

E[Y 2] = (1 − ε)E[W 2
1 ] + εE[W 2

2 ] = (1 − ε)1 + εk2 = 1 − ε + εk2.

Thus VAR(Y ) = E[Y 2] − (E[Y ])2 = 1 − ε + εk2. If ε = 0.1 and k = 10, then
EY = 0, and VAR(Y ) = 10.9.

Remark 1.2. Warning: Mixture distributions and linear combinations
of random variables are very different quantities. As an example, let

W = (1 − ε)W1 + εW2

where ε, W1 and W2 are as in the previous example and suppose that W1

and W2 are independent. Then W , a linear combination of W1 and W2, has
a normal distribution with mean

E[W ] = (1 − ε)E[W1] + εE[W2] = 0

17
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Figure 1.1: PDF f of (W1 + W2)/2 and f = 0.5f1(y) + 0.5f2(y)
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and variance

VAR(W ) = (1 − ε)2VAR(W1) + ε2VAR(W2) = (1 − ε)2 + ε2k2 < VAR(Y )

where Y is given in the example above. Moreover, W has a unimodal nor-
mal distribution while Y does not follow a normal distribution. In fact,
if W1 ∼ N(0, 1), W2 ∼ N(10, 1), and W1 and W2 are independent, then
(W1 + W2)/2 ∼ N(5, 0.5); however, if Y has a mixture distribution with cdf

FY (y) = 0.5FW1
(y) + 0.5FW2

(y) = 0.5Φ(y) + 0.5Φ(y − 10),

then the pdf of Y is bimodal. See Figure 1.1.

1.7 Complements

Kolmogorov’s definition of a probability function makes a probability func-
tion a normed measure. Hence many of the tools of measure theory can be
used for probability theory. See, for example, Ash and Doleans-Dade (1999),
Billingsley (1995), Dudley (2002), Durrett (1995), Feller (1971) and Resnick
(1999). Feller (1957) and Tucker (1984) are good references for combina-
torics.

Referring to Chapter 10, memorize the pmf or pdf f , E(Y ) and V (Y )
for the following 10 RVs. You should recognize the mgf of the bi-

nomial, χ2
p, exponential, gamma, normal and Poisson distributions.

You should recognize the cdf of the exponential and of the normal

distribution.

1) beta(δ, ν)

f(y) =
Γ(δ + ν)

Γ(δ)Γ(ν)
yδ−1(1 − y)ν−1

where δ > 0, ν > 0 and 0 ≤ y ≤ 1.

E(Y ) =
δ

δ + ν
.

VAR(Y ) =
δν

(δ + ν)2(δ + ν + 1)
.
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2) Bernoulli(ρ) = binomial(k = 1, ρ) f(y) = ρ(1 − ρ)1−y for y = 0, 1.
E(Y ) = ρ.
VAR(Y ) = ρ(1 − ρ).

m(t) = [(1 − ρ) + ρet].

3) binomial(k, ρ)

f(y) =

(
k

y

)

ρy(1 − ρ)k−y

for y = 0, 1, . . . , k where 0 < ρ < 1.
E(Y ) = kρ.
VAR(Y ) = kρ(1 − ρ).

m(t) = [(1 − ρ) + ρet]k.

4) Cauchy(µ, σ)

f(y) =
1

πσ[1 + (y−µ
σ

)2]

where y and µ are real numbers and σ > 0.
E(Y ) = ∞ = VAR(Y ).

5) chi-square(p) = gamma(ν = p/2, λ = 2)

f(y) =
y

p

2
−1e−

y

2

2
p

2 Γ(p
2
)

E(Y ) = p.
VAR(Y ) = 2p.

m(t) =

(
1

1 − 2t

)p/2

= (1 − 2t)−p/2

for t < 1/2.
6) exponential(λ)= gamma(ν = 1, λ)

f(y) =
1

λ
exp (−y

λ
) I(y ≥ 0)

where λ > 0.
E(Y ) = λ,
VAR(Y ) = λ2.

m(t) = 1/(1 − λt)
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for t < 1/λ.
F (y) = 1 − exp(−y/λ), y ≥ 0.

7) gamma(ν, λ)

f(y) =
yν−1e−y/λ

λνΓ(ν)

where ν, λ, and y are positive.
E(Y ) = νλ.
VAR(Y ) = νλ2.

m(t) =

(
1

1 − λt

)ν

for t < 1/λ.
8) N(µ, σ2)

f(y) =
1√

2πσ2
exp

(−(y − µ)2

2σ2

)

where σ > 0 and µ and y are real.
E(Y ) = µ. VAR(Y ) = σ2.

m(t) = exp(tµ + t2σ2/2).

F (y) = Φ

(
y − µ

σ

)

.

9) Poisson(θ)

f(y) =
e−θθy

y!

for y = 0, 1, . . . , where θ > 0.
E(Y ) = θ = VAR(Y ).

m(t) = exp(θ(et − 1)).

10) uniform(θ1, θ2)

f(y) =
1

θ2 − θ1
I(θ1 ≤ y ≤ θ2).

E(Y ) = (θ1 + θ2)/2.
VAR(Y ) = (θ2 − θ1)

2/12.
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The terms sample space S, events, disjoint, partition, probability func-
tion, sampling with and without replacement, conditional probability, Bayes’
theorem, mutually independent events, random variable, cdf, continuous RV,
discrete RV, identically distributed, pmf and pdf are important.

1.8 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-

FUL. Refer to Chapter 10 for the pdf or pmf of the distributions

in the problems below.

1.1∗. For the Binomial(k, ρ) distribution,
a) find E Y .
b) Find Var Y .
c) Find the mgf m(t).

1.2∗. For the Poisson(θ) distribution,
a) find E Y .
b) Find Var Y . (Hint: Use the kernel method to find E Y (Y − 1).)
c) Find the mgf m(t).

1.3∗. For the Gamma(ν, λ) distribution,
a) find E Y .
b) Find Var Y .
c) Find the mgf m(t).

1.4∗. For the Normal(µ, σ2) (or Gaussian) distribution,
a) find the mgf m(t). (Hint: complete the square to get a Gaussian kernel.)
b) Use the mgf to find E Y .
c) Use the mgf to find Var Y .

1.5∗. For the Uniform(θ1, θ2) distribution
a) find E Y .
b) Find Var Y .
c) Find the mgf m(t).

1.6∗. For the Beta(δ, ν) distribution,
a) find E Y .
b) Find Var Y .

22



1.7∗. See Mukhopadhyay (2000, p. 39). Recall integrals by u-substitution:

I =

∫ b

a

f(g(x))g′(x)dx =

∫ g(b)

g(a)

f(u)du =

∫ d

c

f(u)du =

F (u)|dc = F (d) − F (c) = F (u)|g(b)
g(a) = F (g(x))|ba = F (g(b)) − F (g(a))

where F ′(x) = f(x), u = g(x), du = g′(x)dx, d = g(b), and c = g(a).

This problem uses the Gamma function and u-substitution to show that
the normal density integrates to 1 (usually shown with polar coordinates).
When you perform the u-substitution, make sure you say what u = g(x),
du = g′(x)dx, d = g(b), and c = g(a) are.

a) Let f(x) be the pdf of a N(µ, σ2) random variable. Perform u-
substitution on

I =

∫ ∞

−∞

f(x)dx

with u = (x − µ)/σ.

b) Break the result into two parts,

I =
1√
2π

∫ 0

−∞

e−u2/2du +
1√
2π

∫ ∞

0

e−u2/2du.

Then perform u-substitution on the first integral with v = −u.

c) Since the two integrals are now equal,

I =
2√
2π

∫ ∞

0

e−v2/2dv =
2√
2π

∫ ∞

0

e−v2/2 1

v
vdv.

Perform u-substitution with w = v2/2.

d) Using the Gamma function, show that I = Γ(1/2)/
√

π = 1.

1.8. Let X be a N(0, 1) (standard normal) random variable. Use inte-
gration by parts to show that EX2 = 1. Recall that integration by parts
is used to evaluate

∫
f(x)g′(x)dx =

∫
udv = uv −

∫
vdu where u = f(x),

dv = g′(x)dx, du = f ′(x)dx and v = g(x). When you do the integration,
clearly state what these 4 terms are (eg u = x).
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1.9. Verify the formula for the cdf F for the following distributions. That
is, either show that F ′(y) = f(y) or show that

∫ y

−∞
f(t)dt = F (y) ∀y ∈ <.

a) Cauchy (µ, σ).
b) Double exponential (θ, λ).
c) Exponential (λ).
d) Logistic (µ, σ).
e) Pareto (σ, λ).
f) Power (λ).
g) Uniform (θ1, θ2).
h) Weibull W (φ, λ).

1.10. Verify the formula for the expected value E(Y ) for the following
distributions. a) Double exponential (θ, λ).
b) Exponential (λ).
c) Logistic (µ, σ). (Hint from deCani and Stine (1986): Let Y = [µ+σW ] so
E(Y ) = µ + σE(W ) where W ∼ L(0, 1). Hence

E(W ) =

∫ ∞

−∞

y
ey

[1 + ey]2
dy.

Use substitution with

u =
ey

1 + ey
.

Then

E(W k) =

∫ 1

0

[log(u)− log(1 − u)]kdu.

Also use the fact that
lim
v→0

v log(v) = 0

to show E(W ) = 0.)
d) Lognormal (µ, σ2).
e) Pareto (σ, λ).
f) Weibull (φ, λ).
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1.11. Verify the formula for the variance VAR(Y ) for the following dis-
tributions.
a) Double exponential (θ, λ).
b) Exponential (λ).
c) Logistic (µ, σ). (Hint from deCani and Stine (1986): Let Y = [µ + σX] so
V (Y ) = σ2V (X) = σ2E(X2) where X ∼ L(0, 1). Hence

E(X2) =

∫ ∞

−∞

y2 ey

[1 + ey]2
dy.

Use substitution with

v =
ey

1 + ey
.

Then

E(X2) =

∫ 1

0

[log(v)− log(1 − v)]2dv.

Let w = log(v)− log(1 − v) and du = [log(v) − log(1 − v)]dv. Then

E(X2) =

∫ 1

0

wdu = uw|10 −
∫ 1

0

udw.

Now
uw|10 = [v log(v) + (1 − v) log(1 − v)] w|10 = 0

since
lim
v→0

v log(v) = 0.

Now

−
∫ 1

0

udw = −
∫ 1

0

log(v)

1 − v
dv −

∫ 1

0

log(1 − v)

v
dv = 2π2/6 = π2/3

using
∫ 1

0

log(v)

1 − v
dv =

∫ 1

0

log(1 − v)

v
dv = −π2/6.)

d) Lognormal (µ, σ2).
e) Pareto (σ, λ).
f) Weibull (φ, λ).
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Problems from old quizzes and exams.

1.12. Suppose the random variable X has cdf FX(x) = 0.9 Φ(x − 10) +
0.1 FW (x) where Φ(x − 10) is the cdf of a normal N(10, 1) random variable
with mean 10 and variance 1 and FW (x) is the cdf of the random variable
W that satisfies P (W = 200) = 1.
a) Find E W.
b) Find E X.

1.13. Suppose the random variable X has cdf FX(x) = 0.9 FZ(x) +
0.1 FW (x) where FZ is the cdf of a gamma(α = 10, β = 1) random variable
with mean 10 and variance 10 and FW (x) is the cdf of the random variable
W that satisfies P (W = 400) = 1.
a) Find E W.
b) Find E X.

1.14. Suppose the cdf FX(x) = (1 − ε)FZ(x) + εFW (x) where 0 ≤ ε ≤ 1,
FZ is the cdf of a random variable Z, and FW is the cdf of a random variable
W. Then E g(X) = (1− ε)EZ g(X)+ εEW g(X) where EZ g(X) means that
the expectation should be computed using the pmf or pdf of Z. Suppose the
random variable X has cdf FX(x) = 0.9 FZ(x) + 0.1 FW (x) where FZ is the
cdf of a gamma(α = 10, β = 1) random variable with mean 10 and variance
10 and FW (x) is the cdf of the RV W that satisfies P (W = 400) = 1.

a) Find E W.
b) Find E X.

1.15. Let A and B be positive integers. A hypergeometric random
variable X = W1 + W2 + · · · + Wn where the random variables Wi are iden-
tically distributed random variables with P (Wi = 1) = A/(A + B) and
P (Wi = 0) = B/(A + B).

a) Find E(W1).
b) Find E(X).

1.16. Suppose P (X = xo) = 1 for some constant xo.

a) Find E g(X) in terms of xo.
b) Find the moment generating function m(t) of X.

c) Find m(n)(t) =
dn

dtn
m(t). (Hint: find m(n)(t) for n = 1, 2, and 3. Then

the pattern should be apparent.)
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1.17. Suppose P (X = 1) = 0.5 and P (X = −1) = 0.5. Find the moment
generating function of X.

1.18. Suppose that X is a discrete random variable with pmf f(x) =
P (X = x) for x = 0, 1, ..., n so that the moment generating function of X is

m(t) =
n∑

x=0

etxf(x).

a) Find
d

dt
m(t) = m′(t).

b) Find m′(0).

c) Find m′′(t) =
d2

dt2
m(t).

d) Find m′′(0).

e) Find m(k)(t) =
dk

dtk
m(t). (Hint: you found m(k)(t) for k = 1, 2, and the

pattern should be apparent.)

1.19. Suppose that the random variable W = eX where X ∼ N(µ, σ2).
Find E(W r) = E[(eX)r] by recognizing the relationship of E[(eX)r] with the
moment generating function of a normal(µ, σ2) random variable.

1.20. Let X ∼ N(µ, σ2) so that EX = µ and Var X = σ2.

a) Find E(X2).
b) If k ≥ 2 is an integer, then E(Xk) = (k − 1)σ2E(Xk−2) + µE(Xk−1).

Use this recursion relationship to find E(X3).

1.21∗. Let X ∼ gamma(ν, λ). Using the kernel method, find EXr where
r > −ν.

1.22. Find

∫ ∞

−∞

exp(−1

2
y2)dy.

(Hint: the integrand is a Gaussian kernel.)

1.23. Let X have a Pareto (σ, λ = 1/θ) pdf

f(x) =
θσθ

xθ+1

where x > σ, σ > 0 and θ > 0. Using the kernel method, find EXr where
θ > r.
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1.24. Let Y ∼ beta (δ, ν). Using the kernel method, find EY r where
r > −δ.

1.25. Use the kernel method to find the mgf of the logarithmic (θ)
distribution.

1.26. Suppose that X has pdf

f(x) =
h(x)eθx

λ(θ)

for x ∈ X and for −∞ < θ < ∞ where λ(θ) is some positive function of θ
and h(x) is some nonnegative function of x. Find the moment generating
function of X using the kernel method. Your final answer should be written
in terms of λ, θ and t.

1.27. Use the kernel method to find E(Y r) for the chi (p, σ) distribution.
(See Section 10.6.)

1.28. Suppose the cdf FX(x) = (1 − ε)FZ(x) + εFW (x) where 0 ≤ ε ≤ 1,
FZ is the cdf of a random variable Z, and FW is the cdf of a random variable
W. Then E g(X) = (1− ε)EZ g(X)+ εEW g(X) where EZ g(X) means that
the expectation should be computed using the pmf or pdf of Z.

Suppose the random variable X has cdf FX(x) = 0.9 FZ(x) + 0.1 FW (x)
where FZ is the cdf of a gamma(ν = 3, λ = 4) random variable and FW (x)
is the cdf of a Poisson(10) random variable.

a) Find E X.

b) Find E X2.

1.29. If Y has an exponential distribution truncated at 1, Y ∼ TEXP (θ, 1),
then the pdf of Y is

f(y) =
θ

1 − e−θ
e−θy

for 0 < y < 1 where θ > 0. Find the mgf of Y using the kernel method.
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