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Preface

Statistics is, or should be, about scientific investigation and how to do it
better ....

Box (1990)

In the statistical literature the word “robust” is synonymous with “good.”
There are many classical statistical procedures such as least squares estima-
tion for multiple linear regression and the t–interval for the population mean
μ. A given classical procedure should perform reasonably well if certain as-
sumptions hold, but may be unreliable if one or more of these assumptions are
violated. A robust analog of a given classical procedure should also work well
when these assumptions hold, but the robust procedure is generally tailored
to also give useful results when a single, specific assumption is relaxed.

In this book, two assumptions are of particular interest. The first as-
sumption concerns the error distribution. Many classical statistical proce-
dures work well for independent identically distributed (iid) errors with “light
tails”, but can perform poorly for “heavy tailed” error distributions or if out-
liers are present. Distributionally robust statistics should give useful results
when the assumption of iid light tailed errors is relaxed.

The second assumption of interest is that the data follow a 1D regression
model where the response variable Y is independent of the vector of predic-
tors x given a single linear combination βT x of the predictors. Important
questions include

• how can the conditional distribution Y |βT x be visualized?

• How can β be estimated?

• What happens if a parametric 1D model is unknown or misspecified?

Answers to these important questions can be found from regression graphics
procedures for dimension reduction.

vi



Preface vii

A major goal of regression graphics and distributionally robust
statistical procedures is to reduce the amount of iteration needed
to obtain a good final model. This goal is important because lots of
iteration consumes valuable time and propagates error and subjective choices.
Classical statistical procedures will often lead to a completely inappropriate
final model if the model is misspecified or if outliers are present.

Distributionally robust statistics refers to methods that are designed to
perform well when the shape of the true underlying model deviates slightly
from the assumed parametric model, eg if outliers are present. According to
Huber (1981, p. 5), a robust statistical procedure should perform reasonably
well at the assumed model, should be impaired only slightly by small depar-
tures from the model, and should not be catastrophically impaired by some-
what larger deviations. Hampel, Ronchetti, Rousseeuw and Stahel (1986,
p. 11) add that a robust procedure should describe the structure fitting the
bulk of the data and identify deviating data points. Finding outliers, cases
that lie far away from the bulk of the data, is very important. Rousseeuw
and Leroy (1987, p. vii) declare that the main message of their book is that
robust regression is useful in identifying outliers. We should always examine
the outliers to see if they follow a pattern, are recording errors, or if they
could be explained adequately by an alternative model.

Many of the most used estimators in statistics are semiparametric. The
least squares (OLS) estimator is popular because it is a semiparametric mul-
tiple linear regression (MLR) estimator. If the errors are iid with mean 0 and
variance σ2, then there is a central limit type theorem for OLS. For multi-
variate location and dispersion (MLD), the classical estimator is the sample
mean and sample covariance matrix. Many classical procedures originally
meant for the multivariate normal (MVN) distribution are semiparametric
in that the procedures also perform well on a much larger class of elliptically
contoured (EC) distributions.

An important goal of high breakdown (HB) robust statistics is to produce
easily computed semiparametric MLR and MLD estimators that perform well
when the classical estimators perform well, but are also useful for detecting
some important types of outliers.

Two paradigms appear in the robust literature. The “perfect classification
paradigm” assumes that diagnostics or distributionally robust statistics can
be used to perfectly classify the data into a “clean” subset and a subset
of outliers. Then classical methods are applied to the clean data. These



Preface viii

methods tend to be inconsistent, but this paradigm is widely used and can
be very useful for a fixed data set that contains outliers. Consider a multiple
linear regression data set with outliers. Both case (or deletion) diagnostics
and robust estimators attempt to classify the data into outliers and non–
outliers. A robust estimator attempts to find a reasonable fit for the bulk of
the data and then uses this fit to find discrepant cases while case diagnostics
use a fit to the entire data set to find discrepant cases.

The “asymptotic paradigm” assumes that the data are iid and develops
the large sample properties of the estimators. Unfortunately, many robust
estimators that have rigorously proven asymptotic theory are impractical to
compute. In the robust literature for multiple linear regression and for multi-
variate location and dispersion, often no distinction is made between the two
paradigms: frequently the large sample properties for an impractical estima-
tor are derived, but the examples and software use an inconsistent “perfect
classification” procedure. In this text, some practical MLR and MLD es-
timators that have good statistical properties are developed (see Theorems
8.8, 10.16, 10.17 and 10.18), and some effort has been made to state whether
the “perfect classification” or “asymptotic” paradigm is being used.

The majority of the statistical procedures described in Hampel, Ronchetti,
Rousseeuw and Stahel (1986), Huber (1981), and Rousseeuw and Leroy
(1987) assume that outliers are present or that the true underlying error
distribution has heavier tails than the assumed model. However, these three
references and some of the papers in Stahel and Weisberg (1991a,b) and
Maddela and Rao (1997) do discuss other departures from the assumed
model. Other texts on distributional robustness include Andersen (2007),
Atkinson and Riani (2000), Atkinson, Riani and Cerioli (2004), Dell’Aquila
(2006), Hettmansperger and McKean (1998), Hoaglin, Mosteller and Tukey
(1983), Insightful (2002), Jurečková and Picek (2005), Jureckova and Sen
(1996), Marazzi (1993), Maronna, Martin and Yohai (2006), Morgenthaler,
Ronchetti, and Stahel (1993), Morgenthaler and Tukey (1991), Müller (1997),
Rey (1978), Rieder (1996), Shevlyakov and Vilchevski (2002), Staudte and
Sheather (1990) and Wilcox (2005). Diagnostics and outliers are discussed
in Atkinson (1985), Barnett and Lewis (1994), Belsley, Kuh, and Welsch
(1980), Chatterjee and Hadi (1988), Cook and Weisberg (1982), Fox (1991),
Hawkins (1980) and Iglewicz and Hoaglin (1993).

Several textbooks on statistical analysis and theory also discuss robust
methods. For example, see Dodge and Jureckova (2000), Gentle (2002),
Gnanadesikan (1997), Hamilton (1992), Seber and Lee (2003), Thode (2002),
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Venables and Ripley (2003) and Wilcox (2001, 2003).

Besides distributional robustness, this book also considers regression graph-
ics procedures that are useful even when the 1D regression model is unknown
or misspecified. 1D regression and regression graphics procedures are de-
scribed in Cook and Weisberg (1999a), Cook (1998a) and Li (2000).

A unique feature of this text is the discussion of the interrelationships be-
tween distributionally robust procedures and regression graphics with focus
on 1D regression. A key assumption for regression graphics is that the predic-
tor distribution is approximately elliptically contoured. Ellipsoidal trimming
(based on robust estimators of multivariate location and dispersion) can be
used to induce this condition. An important regression graphics technique is
dimension reduction: assume that there are p predictors collected in a p × 1
vector x. Then attempt to reduce the dimension of the predictors from p to
1 by finding a linear combination w = βTx of the predictors such that Y is
independent of x given βTx. This technique is extremely important since the

plot of β̂
T
x versus Y can be used to visualize the conditional distribution of

Y |βT x in the 1D regression model.

The study of robust statistics is useful for anyone who handles random
data. Applications can be found in statistics, economics, engineering, infor-
mation technology, psychology, and in the biological, environmental, geolog-
ical, medical, physical and social sciences.

The book begins by describing the 1D regression model. Then some ex-
amples are presented to illustrate why robust procedures are needed. Chapter
2 presents the location model with an emphasis on the median, the median
absolute deviation and the trimmed mean. Chapter 3 is simply a list of prop-
erties for certain univariate distributions, and Chapter 4 shows how to find
the mean and variance of Y if the population is a mixture distribution or a
truncated distribution. Chapter 4 ends by presenting a simulation study of
confidence intervals that use the sample mean, median and trimmed mean.
Chapter 5 presents multiple linear regression and includes graphical meth-
ods for response transformations and variable selection. Chapter 6 considers
diagnostics while Chapter 7 covers robust and resistant procedures for multi-
ple linear regression. Chapter 8 shows that commonly used robust regression
estimators such as the Splus function lmsreg are inconsistent, but a simple
modification to existing algorithms for LMS and LTS results in easily com-
puted

√
n consistent high breakdown estimators. Chapter 9 shows that the
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concept of breakdown is not very useful while Chapter 10 covers multivari-
ate location and dispersion and covers the multivariate normal and other
elliptically contoured distributions. The easily computed HB

√
n consistent

CMCD, CMVE and FCH estimators are also introduced. It is shown that
the cov.mcd estimator is a zero breakdown inconsistent estimator, but a sim-
ple modification to the cov.mcd estimator results in an easily computed

√
n

consistent HB estimator. Chapter 11 provides applications of these CMCD
estimators including a graph for detecting multivariate outliers and for de-
termining whether the data distribution is multivariate normal. Chapter 12
covers 1D regression. Plots for visualizing the 1D regression model and for
assessing variable selection are presented. Chapter 13 gives graphical aids for
generalized linear models while Chapter 14 provides information on software
and suggests some projects for the students.

Background
This course assumes that the student has had considerable exposure to

statistics, but is at a much lower level than most texts on distributionally
robust statistics. Calculus and a course in linear algebra are essential. Fa-
miliarity with least squares regression is also assumed and could come from
econometrics or numerical linear algebra, eg Weisberg (2005), Datta (1995),
Golub and Van Loan (1989) or Judge, Griffiths, Hill, Lütkepohl and Lee
(1985). The matrix representation of the multiple linear regression model
should be familiar. An advanced course in statistical inference, especially
one that covered convergence in probability and distribution, is needed for
several sections of the text. Casella and Berger (2002), Olive (2008), Poor
(1988) and White (1984) easily meet this requirement.

There are other courses that would be useful but are not required. An
advanced course in least squares theory or linear models can be met by Seber
and Lee (2003) in statistics, White (1984) in economics, and Porat (1993) in
electrical engineering. Knowledge of the multivariate normal distribution at
the level of Johnson and Wichern (1988) would be useful. A course in pattern
recognition, eg Duda, Hart and Stork (2000), also covers the multivariate
normal distribution.

If the students have had only one calculus based course in statistics (eg
DeGroot and Schervish 2001 or Wackerly, Mendenhall and Scheaffer 2008),
then cover Ch. 1, 2.1–2.5, 4.6, Ch. 5, Ch. 6, 7.6, part of 8.2, 9.2, 10.1, 10.2,
10.3, 10.6, 10.7, 11.1, 11.3, Ch. 12 and Ch. 13. (This will cover the most
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important material in the text. Many of the remaining sections are for PhD
students and experts in robust statistics.)

Some of the applications in this text include the following.

• An RR plot is used to detect outliers in multiple linear regression. See
p. 6–7, 210, and 246.

• Prediction intervals in the Gaussian multiple linear regression model in
the presence of outliers are given on p. 11–13.

• Using plots to detect outliers in the location model is shown on p. 25.

• Robust parameter estimation using the sample median and the sample
median absolute deviation is described on p. 34–36 and in Chapter 3.

• Inference based on the sample median is proposed on p. 37.

• Inference based on the trimmed mean is proposed on p. 38.

• Two graphical methods for selecting a response transformation for mul-
tiple linear regression are given on p. 14–15 and Section 5.1.

• A graphical method for assessing variable selection for the multiple
linear regression model is described in Section 5.2.

• An asymptotically optimal prediction interval for multiple linear re-
gression using the shorth estimator is given in Section 5.3.

• Using an FF plot to detect outliers in multiple linear regression and to
compare the fits of different fitting procedures is discussed on p. 210.

• Section 6.3 shows how to use the response plot to detect outliers and
to assess the adequacy of the multiple linear regression model.

• Section 6.4 shows how to use the FY plot to detect outliers and to
assess the adequacy of very general regression models of the form y =
m(x) + e.

• Section 7.6 provides the resistant mbareg estimator for multiple linear
regression which is useful for teaching purposes.
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• Section 8.2 shows how to modify the inconsistent zero breakdown esti-
mators for LMS and LTS (such as lmsreg) so that the resulting modifi-
cation is an easily computed

√
n consistent high breakdown estimator.

• Sections 10.6 and 10.7 provide the easily computed robust
√

n consis-
tent HB FCH estimator for multivariate location and dispersion. It is
also shown how to modify the inconsistent zero breakdown cov.mcd

estimator so that the resulting modification is an easily computed
√

n
consistent high breakdown estimator. Application are numerous.

• Section 11.1 shows that the DD plot can be used to detect multivariate
outliers and as a diagnostic for whether the data is multivariate nor-
mal or from some other elliptically contoured distribution with second
moments.

• Section 11.2 shows how to produce a resistant 95% covering ellipsoid
for multivariate normal data.

• Section 11.3 suggests the resistant tvreg estimator for multiple linear
regression that can be modified to create a resistant weighted MLR
estimator if the weights wi are known.

• Section 11.4 suggests how to “robustify robust estimators.” The basic
idea is to replace the inconsistent zero breakdown estimators (such as
lmsreg and cov.mcd) used in the “robust procedure” with the eas-
ily computed

√
n consistent high breakdown robust estimators from

Sections 8.2 and 10.7.

• The resistant trimmed views methods for visualizing 1D regression
models graphically are discussed on p. 16–17 and Section 12.2. Al-
though the OLS view is emphasized, the method can easily be gen-
eralized to other fitting methods such as SIR, PHD, SAVE and even
lmsreg.

• Rules of thumb for selecting predictor transformations are given in
Section 12.3.

• Fast methods for variable selection (including all subsets, forward selec-
tion, backward elimination and stepwise methods) for multiple linear
regression are extended to the 1D regression model in Section 12.4.
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Also see Example 1.6. Plots for comparing a submodel with the full
model after performing variable selection are also given.

• Section 12.5 shows that several important hypothesis tests for an im-
portant class of 1D regression models can be done using OLS output
originally meant for multiple linear regression.

• Graphical aids for binomial regression models such as logistic regression
are given in Section 13.3.

• Graphical aids for Poisson regression models such as loglinear regression
are given in Section 13.4.

• Throughout the book there are goodness of fit and lack of fit plots for
examining the model. The response plot is especially important.

The website (www.math.siu.edu/olive/ol-bookp.htm) for this book pro-
vides more than 29 data sets for Arc, and over 90 R/Splus programs in the
file rpack.txt. The students should save the data and program files on a
disk. Section 14.2 discusses how to get the data sets and programs into the
software, but the following commands will work.

Downloading the book’s R/Splus functions rpack.txt into R or
Splus:

Download rpack.txt onto a disk. Enter R and wait for the curser to appear.
Then go to the File menu and drag down Source R Code. A window should
appear. Navigate the Look in box until it says 3 1/2 Floppy(A:). In the Files
of type box choose All files(*.*) and then select rpack.txt. The following line
should appear in the main R window.

> source("A:/rpack.txt")

If you use Splus, the above “source command” will enter the functions
into Splus. Creating a special workspace for the functions may be useful.

Type ls(). Over 90 R/Splus functions from rpack.txt should appear. In
R, enter the command q(). A window asking “Save workspace image?” will
appear. Click on No to remove the functions from the computer (clicking on
Yes saves the functions on R, but you have the functions on your disk).

Similarly, to download the text’s R/Splus data sets, save robdata.txt on a
disk and use the following command.
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> source("A:/robdata.txt")

Why Many of the Best Known High Breakdown Estimators are
not in this Text

Robust statistics “lacks success stories” because the published literature
for HB MLR or MLD estimators contains one or more major flaws: either
i) the estimator is impractical to compute or ii) the estimator is practical to
compute but has not been shown to be both high breakdown and consistent!

Most of the literature for high breakdown robust regression and multi-
variate location and dispersion can be classified into four categories: a) the
statistical properties for HB estimators that are impractical to compute, b)
the statistical properties for two stage estimators that need an initial HB
consistent estimator, c) “plug in estimators” that use an inconsistent zero
breakdown estimator in place of the impractical HB estimator and d) ad hoc
techniques for outlier detection that have little theoretical justification other
than the ability to detect outliers on some “benchmark data sets.”

This is an applied text and does not cover in detail high breakdown
estimators for regression and multivariate location and dispersion that are
impractical to compute. Bernholt (2006) suggests that the LMS, LQS, LTS,
LTA, MCD, MVE, CM, projection depth and Stahel-Donoho estimators are
hard to compute. In the published literature, MLR or MLD estimators that
have been shown to be both high breakdown and consistent also have com-
putational complexity O(np) or higher where n is the sample size and p is the
number of predictors. If n = 100, the complexity is np and the computer can
perform 107 operations per second, then the algorithm takes 102p−7 seconds
where 104 seconds is about 2.8 hours, 1 day is slightly less than 105 seconds,
106 seconds is slightly less than 2 weeks and 109 seconds is about 30 years.
Hence fast algorithms for these estimators will not produce good approxima-
tions except for tiny data sets. The GS, LQD, projection, repeated median
and S estimators are also impractical.

Two stage estimators that need an initial high breakdown estimator from
the above list are even less practical to compute. These estimators include
the cross checking, MM, one step GM, one step GR, REWLS, tau and t
type estimators. Also, although two stage estimators tend to inherit the
breakdown value of the initial estimator, their outlier resistance as measured
by maximal bias tends to decrease sharply. Typically the implementations
for these estimators are not given, impractical to compute, or result in a
zero breakdown estimator that is often inconsistent. The inconsistent zero
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breakdown implementations and ad hoc procedures should usually only be
used as diagnostics for outliers and other model misspecifications, not for
inference.

Many of the ideas in the HB literature are good, but the ideas were prema-
ture for applications without a computational and theoretical breakthrough.
This text, Olive(2004a) and Olive and Hawkins (2007b, 2008) provide this
breakthrough and show that simple modifications to elemental basic resam-
pling or concentration algorithms result in the easily computed HB

√
n con-

sistent CMCD estimator for multivariate location and dispersion (MLD) and
CLTS estimator for multiple linear regression (MLR). The FCH estimator is
a special case of the CMCD estimator and is much faster than the inconsis-
tent zero breakdown Rousseeuw and Van Driessen (1999) FMCD estimator.
The Olive (2005) resistant MLR estimators also have good statistical prop-
erties. See Sections 7.6, 8.2, 10.7, 11.4, Olive (2004a, 2005), Hawkins and
Olive (2002) and Olive and Hawkins (2007b, 2008).

As an illustration for how the CMCD estimator improves the ideas from
the HB literature, consider the He and Wang (1996) cross checking estimator
that uses the classical estimator if it is close to the robust estimator, and uses
the robust estimator otherwise. The resulting estimator is an HB asymptot-
ically efficient estimator if a consistent HB robust estimator is used. He and
Wang (1997) show that the all elemental subset approximation to S estima-
tors is a consistent HB MLD estimator that could be used in the cross check-
ing estimator, but then the resulting cross checking estimator is impractical
to compute. If the FMCD estimator is used, then the cross checking esti-
mator is practical to compute but has zero breakdown since the FMCD and
classical estimators both have zero breakdown. Since the FMCD estimator
is inconsistent and highly variable, the probability that the FMCD estima-
tor and classical estimator are close does not go to one as n → ∞. Hence
the cross checking estimator is also inconsistent. Using the HB

√
n consis-

tent FCH estimator results in an HB asymptotically efficient cross checking
estimator that is practical to compute.

The bias of the cross checking estimator is greater than that of the robust
estimator since the probability that the robust estimator is chosen when
outliers are present is less than one. However, few two stage estimators
will have performance that rivals the statistical properties and simplicity of
the cross checking estimator when correctly implemented (eg with the FCH

estimator for multivariate location and dispersion).
This text also tends to ignore most robust location estimators because the
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cross checking technique can be used to create a very robust asymptotically
efficient estimator if the data are iid from a location–scale family (see Olive
2006). In this setting the cross checking estimators of location and scale based
on the sample median and median absolute deviation are

√
n consistent and

should have very high resistance to outliers. An M-estimator, for example,
will have both lower efficiency and outlier resistance than the cross checking
estimator.
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