
Chapter 9

Resistance and Equivariance

9.1 Resistance of Algorithm Estimators

In spite of the inconsistency of resampling algorithms that use a fixed number
K of elemental starts, these algorithms appear throughout the robustness
literature and in R/Splus software. Proposition 8.7 on p. 267 suggests that
the algorithms can be useful for small data sets.

The previous chapter used the asymptotic paradigm to show that the
algorithm estimators are inconsistent. In this paradigm, it is assumed that
the data set size n is increasing to ∞ and we want to know whether an
estimator β̂n converges to β or not.

Definition 9.1. Suppose that a subset of h cases is selected from the n
cases making up the data set. Then the subset is clean if none of the h cases
are outliers.

In this chapter we will consider the perfect classification paradigm where
the goal is to analyze a single fixed data set of n cases of which 0 ≤ d < n/2
are outliers. The remaining n− d cases are “clean.” The main assumption of
the perfect classification paradigm is that the algorithm can perfectly classify
the clean and outlying cases; ie, the outlier configuration is such that if K
subsets of size h ≥ p are selected, then the subset Jo corresponding to the fit
that minimizes the criterion Q will be clean, and the (eg OLS or L1) fit bJo

computed from the cases in Jo will perfectly classify the n − d clean cases
and d outliers. Then a separate analysis is run on each of the two groups.
Although this is a very big assumption that is almost impossible to verify,
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the paradigm gives a useful initial model for the data. The assumption is
very widely used in the literature for diagnostics and robust statistics.

Remark 9.1. Suppose that the data set contains n cases with d outliers
and n − d clean cases. Suppose that h ≥ p cases are selected at random
without replacement. Let W count the number of the h cases that were
outliers. Then W is a hypergeometric(d, n− d, h) random variable and

P (W = j) =

(
d
j

)(
n−d
h−j

)
(

n
h

) ≈
(

h

j

)
γj(1 − γ)h−j

where the contamination proportion γ = d/n and the binomial(h, ρ ≡ γ =
d/n) approximation to the hypergeometric(d, n − d, h) distribution is used.
In particular, the probability that the subset of h cases is clean = P (W =
0) ≈ (1 − γ)h which is maximized by h = p. Hence using elemental sets
maximizes the probability of getting a clean subset. Moreover, computing
the elemental fit is faster than computing the fit from h > p cases.

Remark 9.2. Now suppose that K elemental sets are chosen with re-
placement. If Wi is the number of outliers in the ith elemental set, then
the Wi are iid hypergeometric(d, n − d, p) random variables. Suppose that
it is desired to find K such that the probability P(that at least one of the
elemental sets is clean) ≡ P1 ≈ 1 − α where α = 0.05 is a common choice.
Then P1 = 1− P(none of the K elemental sets is clean)

≈ 1 − [1 − (1 − γ)p]K

by independence. Hence

α ≈ [1 − (1 − γ)p]K

or

K ≈ log(α)

log([1 − (1 − γ)p])
≈ log(α)

−(1 − γ)p
(9.1)

using the approximation log(1 − x) ≈ −x for small x. Since log(.05) ≈ −3,
if α = 0.05, then

K ≈ 3

(1 − γ)p
.

Frequently a clean subset is wanted even if the contamination proportion
γ ≈ 0.5. Then for a 95% chance of obtaining at least one clean elemental set,
K ≈ 3 (2p) elemental sets need to be drawn.
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Table 9.1: Largest p for a 95% Chance of a Clean Subsample.

K
γ 500 3000 10000 105 106 107 108 109

0.01 509 687 807 1036 1265 1494 1723 1952
0.05 99 134 158 203 247 292 337 382
0.10 48 65 76 98 120 142 164 186
0.15 31 42 49 64 78 92 106 120
0.20 22 30 36 46 56 67 77 87
0.25 17 24 28 36 44 52 60 68
0.30 14 19 22 29 35 42 48 55
0.35 11 16 18 24 29 34 40 45
0.40 10 13 15 20 24 29 33 38
0.45 8 11 13 17 21 25 28 32
0.50 7 9 11 15 18 21 24 28

Notice that number of subsets K needed to obtain a clean elemental set
with high probability is an exponential function of the number of predictors
p but is free of n. Hence if this choice of K is used in an elemental or
concentration algorithm (that uses k concentration steps), then the algorithm
is inconsistent and has (asymptotically) zero breakdown. Nevertheless, many
practitioners use a value of K that is free of both n and p (eg K = 500 or
K = 3000).

This practice suggests fixing both K and the contamination proportion γ
and then finding the largest number of predictors p that can be in the model
such that the probability of finding at least one clean elemental set is high.
Given K and γ, P (at least one of K subsamples is clean) = 0.95 ≈
1 − [1 − (1 − γ)p]K . Thus the largest value of p satisfies

3

(1 − γ)p
≈ K,

or

p ≈
⌊

log(3/K)

log(1 − γ)

⌋
(9.2)

if the sample size n is very large. Again �x� is the greatest integer function:
�7.7� = 7.
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Table 9.1 shows the largest value of p such that there is a 95% chance
that at least one of K subsamples is clean using the approximation given
by Equation (9.2). Hence if p = 28, even with one billion subsamples, there
is a 5% chance that none of the subsamples will be clean if the contamina-
tion proportion γ = 0.5. Since clean elemental fits have great variability, an
algorithm needs to produce many clean fits in order for the best fit to be
good. When contamination is present, all K elemental sets could contain
outliers. Hence basic resampling and concentration algorithms that only use
K elemental starts are doomed to fail if γ and p are large.

Remark 9.3: Breakdown. The breakdown value of concentration al-
gorithms that use K elemental starts is bounded above by K/n. (See Section
9.4 for more information about breakdown.) For example if 500 starts are
used and n = 50000, then the breakdown value is at most 1%. To cause a
regression algorithm to break down, simply contaminate one observation in
each starting elemental set so as to displace the fitted coefficient vector by a
large amount. Since K elemental starts are used, at most K points need to
be contaminated.

This is a worst-case model, but sobering results on the outlier resistance of
such algorithms for a fixed data set with d gross outliers can also be derived.
Assume that the LTA(c), LTS(c), or LMS(c) algorithm is applied to a fixed
data set of size n where n − d of the cases follow a well behaved model and
d < n/2 of the cases are gross outliers. If d > n − c, then every criterion
evaluation will use outliers, and every attractor will produce a bad fit even
if some of the starts are good. If d < n− c and if the outliers are far enough
from the remaining cases, then clean starts of size h ≥ p may result in clean
attractors that could detect certain types of outliers (that may need to be
hugely discrepant on the response scale).

Proposition 9.1. Let γo be the highest percentage of massive outliers
that a resampling algorithm can detect reliably. Then

γo ≈ min(
n − c

n
, 1 − [1 − (0.2)1/K ]1/h)100% (9.3)

if n is large.

Proof. In Remark 9.2, change p to h to show that if the contamination
proportion γ is fixed, then the probability of obtaining at least one clean
subset of size h with high probability (say 1 − α = 0.8) is given by 0.8 =
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1 − [1 − (1 − γ)h]K. Fix the number of starts K and solve this equation for
γ. QED

The value of γo depends on c > n/2 and h. To maximize γo, take c ≈ n/2
and h = p. For example, with K = 500 starts, n > 100, and h = p ≤ 20 the
resampling algorithm should be able to detect up to 24% outliers provided
every clean start is able to at least partially separate inliers from outliers.
However if h = p = 50, this proportion drops to 11%.

Remark 9.4: Hybrid Algorithms. More sophisticated algorithms use
both concentration and partitioning. Partitioning evaluates the start on a
subset of the data, and poor starts are discarded. This technique speeds
up the algorithm, but the consistency and outlier resistance still depends on
the number of starts. For example, Equation (9.3) agrees very well with the
Rousseeuw and Van Driessen (1999) simulation performed on a hybrid MCD
algorithm. (See Section 10.6.)

9.2 Advice for the Practitioner

Results from the previous section and chapter suggest several guidelines for
the practitioner. Also see Section 6.3.

1) Make a response plot of Ŷ versus Y and a residual plot of Ŷ versus r.
These plots are the most important diagnostics for multiple linear regression
(MLR), and the list of real MLR “benchmark” data sets with outlier configu-
rations that confound both plots is currently rather small. In general, do not
overlook classical (OLS and L1) procedures and diagnostics. They often suf-
fice where the errors ei and their propensity to be outlying are independent
of the predictors xi.

2) Theorem 8.8 shows how to modify elemental basic resampling and
concentration algorithms so that the easily computed modified estimator is
a
√

n consistent HB estimator. The basic idea is simple: in addition to using
K attractors from randomly selected elemental starts, also use two carefully
chosen attractors. One should be an easily computed but biased HB attractor
and the other attractor should be a

√
n consistent estimator such as β̂OLS.

(Recall that the attractor = the start for the basic resampling algorithm.)

3) For 3 or fewer variables, use graphical methods such as scatterplots
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and 3D plots to detect outliers and other model violations.

4) Make a scatterplot matrix of the predictors and the response if p is
small. Often isolated outliers can be detected in the plot. Also, removing
strong nonlinearities in the predictors with power transformations can be
very useful.

5) Use several estimators – both classical and robust. (We recommend
using OLS, L1, the CLTS estimator from Theorem 8.8, lmsreg, the tvreg

estimator from Section 11.3, mbareg and the MBA estimator using the LATA
criterion (see Problem 7.5).) Then make a scatterplot matrix of i) the resid-
uals and ii) the fitted values and response from the different fits. Also make
a scatterplot matrix of the Mahalanobis distances of xi using several of the
distances discussed in Chapter 10. If the multiple linear regression model
holds, then the subplots will be strongly linear if consistent estimators are
used. Thus these plots can be used to detect a wide variety of violations of
model assumptions.

6) Use subset refinement – concentration. Concentration may not improve
the theoretical convergence rates, but concentration gives dramatic practical
improvement in many data sets.

7) Compute the median absolute deviation of the response variable mad(yi)
and the median absolute residual med(|r|i(β̂)) from the estimator β̂. If
mad(yi) is smaller, then the constant med(yi) fits the data better than β̂
according to the median squared residual criterion.

Other techniques, such as using partitioning to screen out poor starts,
are also important. See Remark 9.4 and Woodruff and Rocke (1994). The
line search may also be a good technique. Let bb be the fit which currently
minimizes the criterion. Ruppert (1992) suggests evaluating the criterion Q
on

λbb + (1 − λ)b

where b is the fit from the current subsample and λ is between 0 and 1. Using
λ ≈ 0.9 may make sense. If the algorithm produces a good fit at some stage,
then many good fits will be examined with this technique.
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9.3 Desirable Properties of a Regression Es-

timator

There are many desirable properties for regression estimators including (per-
haps in decreasing order of importance)
a) conditions under which β̂n is a consistent estimator,
b) computability (eg in seconds, or hours, or days),
c) the limiting distribution of nδ(β̂n − β),
d) rate and tightness results (see Definition 8.7): β̂n−β 
P n−δ or β̂n−β =
OP (n−δ),
e) conditions under which the slopes (β̂2,n, ..., β̂p,n) are consistent estimators
of the population slopes (β2, ..., βp) when the errors are asymmetric,

f) conditions under which β̂n is a consistent estimator of β when heteroscedas-
ticity is present,
g) resistance of β̂n for a fixed data set of n cases of which d < n/2 are out-
liers,
h) equivariance properties of β̂n, and
i) the breakdown value of β̂n.

To some extent Chapter 8 and Remark 9.3 gave negative results: for the
typical computable HB algorithms that used a fixed number of K elemen-
tal starts, the algorithm estimator bA,n is inconsistent with an asymptotic
breakdown value of zero. Section 9.1 discussed the resistance of such al-
gorithm estimators for a fixed data set containing d outliers. Theorem 8.8
showed how to modify some of these algorithms, resulting in easily computed√

n consistent HB estimators, but the outlier resistance of the Theorem 8.8
estimators decreases rapidly as p increases.

Breakdown and equivariance properties have received considerable atten-
tion in the literature. Several of these properties involve transformations of
the data. If X and Y are the original data, then the vector of the coefficient
estimates is

β̂ = β̂(X, Y ) = T (X, Y ), (9.4)

the vector of predicted values is

Ŷ = Ŷ (X, Y ) = Xβ̂(X, Y ), (9.5)

and the vector of residuals is

r = r(X, Y ) = Y − Ŷ . (9.6)
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If the design X is transformed into W and the dependent variable Y is
transformed into Z, then (W , Z) is the new data set. Several of these im-
portant properties are discussed below, and we follow Rousseeuw and Leroy
(1987, p. 116-125) closely.

Definition 9.2. Regression Equivariance: Let u be any p×1 vector.
Then β̂ is regression equivariant if

β̂(X, Y + Xu) = T (X, Y + Xu) = T (X, Y ) + u = β̂(X, Y ) + u. (9.7)

Hence if W = X, and Z = Y + Xu, then

Ẑ = Ŷ + Xu,

and
r(W , Z) = Z − Ẑ = r(X, Y ).

Note that the residuals are invariant under this type of transformation, and
note that if

u = −β̂,

then regression equivariance implies that we should not find any linear struc-
ture if we regress the residuals on X. Also see Problem 9.3.

Definition 9.3. Scale Equivariance: Let c be any scalar. Then β̂ is
scale equivariant if

β̂(X, cY ) = T (X, cY ) = cT (X, Y ) = cβ̂(X, Y ). (9.8)

Hence if W = X, and Z = cY then

Ẑ = cŶ ,

and
r(X , cY ) = c r(X, Y ).

Scale equivariance implies that if the Yi’s are stretched, then the fits and the
residuals should be stretched by the same factor.

Definition 9.4. Affine Equivariance: Let A be any p×p nonsingular
matrix. Then β̂ is affine equivariant if

β̂(XA, Y ) = T (XA, Y ) = A−1T (X, Y ) = A−1β̂(X, Y ). (9.9)
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Hence if W = XA and Z = Y , then

Ẑ = Wβ̂(XA, Y ) = XAA−1β̂(X, Y ) = Ŷ ,

and
r(XA, Y ) = Z − Ẑ = Y − Ŷ = r(X, Y ).

Note that both the predicted values and the residuals are invariant under an
affine transformation of the independent variables.

Definition 9.5. Permutation Invariance: Let P be an n × n per-
mutation matrix. Then P TP = PP T = In where In is an n × n identity
matrix and the superscript T denotes the transpose of a matrix. Then β̂ is
permutation invariant if

β̂(PX, PY ) = T (PX, PY ) = T (X, Y ) = β̂(X, Y ). (9.10)

Hence if W = PX, and Z = PY , then

Ẑ = P Ŷ ,

and
r(PX , PY ) = P r(X, Y ).

If an estimator is not permutation invariant, then swapping rows of the n ×
(p + 1) augmented matrix (X, Y ) will change the estimator. Hence the case
number is important. If the estimator is permutation invariant, then the
position of the case in the data cloud is of primary importance. Resampling
algorithms are not permutation invariant because permuting the data causes
different subsamples to be drawn.

9.4 The Breakdown of Breakdown

This section gives a standard definition of breakdown and then shows that
if the median absolute residual is bounded in the presence of high contam-
ination, then the regression estimator has a high breakdown value. The
following notation will be useful. Let W denote the data matrix where the
ith row corresponds to the ith case. For regression, W is the n × (p + 1)
matrix with ith row (xT

i , Yi). Let W n
d denote the data matrix where any d

of the cases have been replaced by arbitrarily bad contaminated cases. Then
the contamination fraction is γ = d/n.
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Definition 9.6. If T (W ) is a p× 1 vector of regression coefficients, then
the breakdown value of T is

B(T, W ) = min{d

n
: sup
W n

d

‖T (W n
d)‖ = ∞}

where the supremum is over all possible corrupted samples W n
d and 1 ≤ d ≤

n.

The following result greatly simplifies some breakdown proofs and shows
that a regression estimator basically breaks down if the median absolute
residual MED(|ri|) can be made arbitrarily large. The result implies that if
the breakdown value ≤ 0.5, breakdown can be computed using the median
absolute residual MED(|ri|(W n

d)) instead of ‖T (W n
d)‖.

Suppose that the proportion of outliers is less that 0.5. If the xi are fixed,
and the outliers are moved up and down the Y axis, then for high breakdown
(HB) estimators, β̂ and MED(|ri|) will eventually be bounded. Thus if the
|Yi| values of the outliers are large enough, the |ri| values of the outliers will
be large.

If the Yi’s are fixed, arbitrarily large x-outliers tend to drive the slope
estimates to 0, not ∞. If both x and Y can be varied, then a cluster of
outliers can be moved arbitrarily far from the bulk of the data but still have
small residuals. For example, move the outliers along the regression plane
formed by the clean cases.

Proposition 9.2. If the breakdown value ≤ 0.5, computing the break-
down value using the median absolute residual MED(|ri|(W n

d )) instead of
‖T (W n

d)‖ is asymptotically equivalent to using Definition 9.6.

Proof. Consider a fixed data set W n
d with ith row (wT

i , Zi)
T . If the

regression estimator T (W n
d ) = β̂ satisfies ‖β̂‖ = M for some constant

M , then the median absolute residual MED(|Zi − β̂
T
wi|) is bounded by

maxi=1,...,n |Yi − β̂
T
xi| ≤ maxi=1,...,n[|Yi| +

∑p
j=1 M |xi,j|] if d < n/2.

Now suppose that ‖β̂‖ = ∞. Since the absolute residual is the vertical
distance of the observation from the hyperplane, the absolute residual |ri| = 0
if the ith case lies on the regression hyperplane, but |ri| = ∞ otherwise.
Hence MED(|ri|) = ∞ if fewer than half of the cases lie on the regression
hyperplane. This will occur unless the proportion of outliers d/n > (n/2 −
q)/n → 0.5 as n → ∞ where q is the number of “good” cases that lie on a
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hyperplane of lower dimension than p. In the literature it is usually assumed
that the original data is in general position: q = p − 1. QED

If the (xT
i , Yi) are in general position, then the contamination could be

such that β̂ passes exactly through p − 1 “clean” cases and d “contami-
nated” cases. Hence d + p − 1 cases could have absolute residuals equal
to zero with ‖β̂‖ arbitrarily large (but finite). Nevertheless, if T possesses
reasonable equivariant properties and ‖T (W n

d)‖ is replaced by the median
absolute residual in the definition of breakdown, then the two breakdown
values are asymptotically equivalent. (If T (W ) ≡ 0, then T is neither re-
gression nor affine equivariant. The breakdown value of T is one, but the
median absolute residual can be made arbitrarily large if the contamination
proportion is greater than n/2.)

If the Yi’s are fixed, arbitrarily large x-outliers will rarely drive ‖β̂‖ to
∞. The x-outliers can drive ‖β̂‖ to ∞ if they can be constructed so that
the estimator is no longer defined, eg so that XTX is nearly singular. The
following examples may help illustrate these points.

Example 9.1. Suppose the response values Y are near 0. Consider the
fit from an elemental set:

bJ = X−1
J Y J

and examine Equations (8.2), (8.3), and (8.4) on p. 254. Now

‖bJ‖ ≤ ‖X−1
J ‖ ‖Y J‖,

and since x-outliers make ‖XJ‖ large, x-outliers tend to drive ‖X−1
J ‖ and

‖bJ‖ towards zero not towards ∞. The x-outliers may make ‖bJ‖ large if
they can make the trial design ‖XJ‖ nearly singular. Notice that Euclidean
norm ‖bJ‖ can easily be made large if one or more of the elemental response
variables is driven far away from zero.

Example 9.2. Without loss of generality, assume that the clean Y ’s are
contained in an interval [a, f ] for some a and f . Assume that the regression
model contains an intercept β1. Then there exists an estimator bo of β such
that ‖bo‖ ≤ max(|a|, |f |) if d < n/2.

Proof. Let MED(n) = MED(Y1, ..., Yn) and MAD(n) = MAD(Y1, ..., Yn).
Take bo = (MED(n), 0, ..., 0)T . Then ‖bo‖ = |MED(n)| ≤ max(|a|, |f |). Note
that the median absolute residual for the fit bo is equal to the median absolute
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deviation MAD(n) = MED(|Yi − MAD(n)|, i = 1, ..., n) ≤ f − a if d <
�(n + 1)/2�. QED

A high breakdown regression estimator is an estimator which has a bound-
ed median absolute residual even when close to half of the observations are
arbitrary. Rousseeuw and Leroy (1987, p. 29, 206) conjecture that high
breakdown regression estimators can not be computed cheaply, and they
conjecture that if the algorithm is also affine equivariant, then the complexity
of the algorithm must be at least O(np). The following counterexample shows
that these two conjectures are false.

Example 9.3. If the model has an intercept, then a scale and affine
equivariant high breakdown estimator β̂WLS(k) can be found by computing
OLS to the set of cases that have Yi ∈ [MED(Y1, ..., Yn)± k MAD(Y1, ..., Yn)]
where k ≥ 1 (so at least half of the cases are used). When k = 1, this
estimator uses the “half set” of cases closest to MED(Y1, ..., Yn).

Proof. This estimator has a median absolute residual bounded by√
n k MAD(Y1, ..., Yn). To see this, consider the weighted least squares fit

β̂WLS(k) obtained by running OLS on the set J consisting of the nj obser-
vations which have

Yi ∈ [MED(Y1, ..., Yn) ± kMAD(Y1, ..., Yn)] ≡ [MED(n) ± kMAD(n)]

where k ≥ 1 (to guarantee that nj ≥ n/2). Consider the estimator

β̂M = (MED(n), 0, ..., 0)T

which yields the predicted values Ŷi ≡ MED(n). The squared residual

r2
i (β̂M) ≤ (k MAD(n))2

if the ith case is in J . Hence the weighted LS fit has∑
i∈J

r2
i (β̂WLS) ≤ nj(k MAD(n))2.

Thus

MED(|r1(β̂WLS)|, ..., |rn(β̂WLS)|) ≤ √
nj k MAD(n) < ∞.
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Hence β̂WLS is high breakdown, and it is affine equivariant since the design
is not used to choose the observations. It is scale equivariant since for c = 0,
β̂WLS = 0, and for c �= 0 the set of cases used remains the same under scale
transformations and OLS is scale equivariant. If k is huge and MAD(n) �= 0,
then this estimator and β̂OLS will be the same for most data sets. Thus high
breakdown estimators can be very nonrobust.

Proposition 9.3. If a high breakdown start is added to a LTA, LTS or
LMS concentration algorithm, then the resulting estimator is HB.

Proof. Concentration reduces the HB criterion that is based on cn ≥ n/2
absolute residuals, so the median absolute residual of the resulting estimator
is bounded as long as the criterion applied to the HB estimator is bounded.
QED

For example, consider the LTS(cn) criterion. Suppose the ordered squared
residuals from the mth start b0m = β̂WLS(1) are obtained. Then b1m is
simply the OLS fit to the cases corresponding to the cn smallest squared
residuals. Denote these cases by i1, ..., icn. Then

cn∑
i=1

r2
(i)(b1m) ≤

cn∑
j=1

r2
ij
(b1m) ≤

cn∑
j=1

r2
ij
(b0m) =

cn∑
j=1

r2
(i)(b0m)

where the second inequality follows from the definition of the OLS estimator.
Hence concentration steps reduce the LTS criterion. If cn = (n + 1)/2 for n
odd and cn = 1+n/2 for n even, then the criterion is bounded iff the median
squared residual is bounded.

Example 9.4. Consider the smallest computer number A greater than
zero and the largest computer number B. Choose k such that kA > B.
Define the estimator β̂ as above if MAD(Yi, i = 1, ..., n) is greater than A,
otherwise define the estimator to be β̂OLS. Then we can just run OLS on the
data without computing MAD(Yi, i = 1, ..., n).

Notice that if b0m = β̂WLS(1) is the m = (K + 1)th start, then the
attractor bkm found after k LTS concentration steps is also a HB regression
estimator. Let β̂k,B = 0.99bkm. Then β̂k,B is a HB biased estimator of

β (biased if β �= 0), and β̂k,B could be used as the biased HB estimator
needed in Theorem 8.8. The following result shows that it is easy to make a
HB estimator that is asymptotically equivalent to any consistent estimator,
although the outlier resistance of the HB estimator is poor.
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Proposition 9.4. Let β̂ be any consistent estimator of β and let β̂H = β̂
if MED(r2

i (β̂)) ≤ MED(r2
i (β̂k,B)). Let β̂H = β̂k,B, otherwise. Then β̂H is a

HB estimator that is asymptotically equivalent to β̂.

Proof. Since β̂ is consistent, MED(r2
i (β̂)) → MED(e2) in probability

where MED(e2) is the population median of the squared error e2. Since the
LMS estimator is consistent, the probability that β̂ has a smaller median
squared residual than the biased estimator β̂k,B goes to 1 as n → ∞. Hence

β̂H is asymptotically equivalent to β̂. QED
The affine equivariance property can be achieved for a wide variety of

algorithms. The following lemma shows that if T1, . . . , TK are K equivariant
regression estimators and if TQ is the Tj which minimizes the criterion Q,
then TQ is equivariant, too. A similar result is in Rousseeuw and Leroy (1987,
p. 117). Also see Rousseeuw and Bassett (1991).

Lemma 9.5. Let T1, . . . , TK be K regression estimators which are re-
gression, scale, and affine equivariant. Then if TQ is the estimator whose
residuals minimize a criterion which is a function Q of the absolute residuals
such that

Q(|cr1|, . . . , |crn|) = |c|dQ(|r1|, . . . , |rn|)
for some d > 0, then TQ is regression, scale, and affine equivariant.

Proof. By the induction principle, we can assume that K = 2. Since the
Tj are regression, scale, and affine equivariant, the residuals do not change
under the transformations of the data that define regression and affine equiv-
ariance. Hence TQ is regression and affine equivariant. Let ri,j be the residual
for the ith case from fit Tj. Now without loss of generality, assume that T1

is the method which minimizes Q. Hence

Q(|r1,1|, . . . , |rn,1|) < Q(|r1,2|, . . . , |rn,2|).

Thus
Q(|cr1,1|, . . . , |crn,1|) = |c|dQ(|r1,1|, . . . .|rn,1|) <

|c|dQ(|r1,2|, . . . , |rn,2|) = Q(|cr1,2|, . . . , |crn,2|),
and TQ is scale equivariant. QED

Since least squares is regression, scale, and affine equivariant, the fit from
an elemental or subset refinement algorithm that uses OLS also has these
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properties provided that the criterion Q satisfies the condition in Lemma
9.2. If

Q = MED(r2
i ),

then d = 2. If

Q =
h∑

i=1

(|r|(i))τ

or

Q =
n∑

i=1

wi|ri|τ

where τ is a positive integer and wi = 1 if

|ri|τ < k MED(|ri|τ),
then d = τ .

Remark 9.5. Similar breakdown results hold for multivariate location
and dispersion estimators. See Section 10.5.

Remark 9.6. There are several important points about breakdown that
do not seem to be well known. First, a breakdown result is weaker than even
a result such as an estimator being asymptotically unbiased for some popula-
tion quantity such as β. This latter property is useful since if the asymptotic
distribution of the estimator is a good approximation to the sampling dis-
tribution of the estimator, and if many independent samples can be drawn
from the population, then the estimator can be computed for each sample
and the average of all the different estimators should be close to the pop-
ulation quantity. The breakdown value merely gives a yes or no answer to
the question of whether the median absolute residual can be made arbitrarily
large when the contamination proportion is equal to γ, and having a bounded
median absolute residual does not imply that the high breakdown estimator
is asymptotically unbiased or in any way useful.

Secondly, the literature implies that the breakdown value is a measure of
the global reliability of the estimator and is a lower bound on the amount
of contamination needed to destroy an estimator. These interpretations are
not correct since the complement of complete and total failure is not global
reliability. The breakdown value dT /n is actually an upper bound on the
amount of contamination that the estimator can tolerate since the estimator
can be made arbitrarily bad with dT maliciously placed cases.
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In particular, the breakdown value of an estimator tells nothing about
more important properties such as consistency or asymptotic normality. Cer-
tainly we are reluctant to call an estimator robust if a small proportion of
outliers can drive the median absolute residual to ∞, but this type of estima-
tor failure is very simple to prevent. Notice that Example 9.3 suggests that
many classical regression estimators can be approximated arbitrarily closely
by a high breakdown estimator: simply make k huge and apply the classical
procedure to the cases that have Yi ∈ [MED(n) ± k MAD(n)]. Of course
these high breakdown approximations may perform very poorly even in the
presence of a single outlier.

Remark 9.7. The breakdown values of the LTx, RLTx, and LATx esti-
mators was given by Proposition 7.5 on p. 236.

Since breakdown is a very poor measure of resistance, alternative mea-
sures are needed. The following description of resistance expands on remarks
in Rousseeuw and Leroy (1987, p. 24, 70). Suppose that the data set consists
of a cluster of clean cases and a cluster of outliers. Set β = 0 and let the
dispersion matrix of the “clean” cases (xT

i , yi)
T be the identity matrix Ip+1.

Assume that the dispersion matrix of the outliers is cIp+1 where 0 ≤ c ≤ 1
and that γ is the proportion of outliers. Then the mean vectors of the clusters
can be chosen to make the outliers bad leverage points. (This type of data set
is frequently used in simulations where the affine and regression equivariance
of the estimators is used to justify these choices.) It is well known that the
LMS(cn), LTA(cn) and LTS(cn) are defined by the “narrowest strip” covering
cn of the cases where the width of the strip is measured in the vertical di-
rection with the L∞, L1, and L2 criterion, respectively. We will assume that
cn ≈ n/2 and focus on the LMS estimator since the narrowness of the strip
is simply the vertical width of the strip.

Figure 9.1 will be useful for examining the resistance of the LMS estima-
tor. The data set consists of 300 N2(0, I2) clean cases and 200

N2((9, 9)
T , 0.25I2)

cases. Then the narrowest strip that covers only clean cases covers 1/[2(1−γ)]
of the clean cases. For the artificial data, γ = 0.4, and 5/6 of the clean cases
are covered and the width of the strip is approximately 2.76. The strip
shown in Figure 9.1 consists of two parallel lines with y-intercepts of ±1.38
and covers approximately 250 cases. As this strip is rotated counterclockwise
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Narrowest Band Interpretation of Resistance

Figure 9.1: 300 N(0, I2) cases and 200 N((9, 9)T , 0.25I2) cases

about the origin until it is parallel to the y-axis, the vertical width of the
strip increases to ∞. Hence LMS will correctly produce a slope near zero
if no outliers are present. Next, stop the rotation when the center of the
strip passes through the center of both clusters, covering nearly 450 cases.
The vertical width of the strip can be decreased to a value less than 2.76
while still covering 250 cases. Hence the LMS fit will accommodate the
outliers, and with 40% contamination, an outlying cluster can tilt the LMS
fit considerably. As c → 0, the cluster of outliers tends to a point mass and
even greater tilting is possible.

Also notice that once the narrowest band that determines the LMS esti-
mator is established, the cluster of outliers can be moved along the band in
such a way that the LMS estimator does not change. Hence masking will oc-
cur for the cluster even if the cluster of outliers is arbitrarily far from
the bulk of the data. Notice that the response plot and the residual plot
of fitted values versus residuals can be used to detect outliers with distant
Y ’s. Since LMS is a HB estimator, if the x’s of the outliers are fixed and the
Y ’s go to ∞, then LMS will eventually give the outliers 0 weight, even if the
outliers form a 40% point mass.

Next suppose that the 300 distinct clean cases lie exactly on the line
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through the origin with zero slope. Then an “exact fit” to at least half of the
data occurs and any rotation from this line can cover at most 1 of the clean
cases. Hence a point mass will not be able to rotate LMS unless it consists
of at least 299 cases (creating 300 additional exact fits). Similar results hold
for the LTA and LTS estimators.

These remarks suggest that the narrowest band interpretation of the LTx
estimators gives a much fuller description of their resistance than their break-
down value. Also, setting β = 0 may lead to misleading simulation studies.

The band interpretation can also be used to describe the resistance of
the LATx estimators. For example, the LATS(4) estimator uses an adaptive
amount of coverage, but must cover at least half of the cases. Let b be the
center of a band covering cn cases. Then the LATS criterion inflates the
band to cover Cn(b) cases. If b passes through the center of both clusters
in Figure 9.1, then nearly 100% of the cases will be covered. Consider the
band with the x-axis as its center. The LATS criterion inflates the band
to cover all of the clean cases but none of the outliers. Since only 60% of
the cases are covered, the LATS(4) criterion is reduced and the outliers have
large residuals. Although a large point mass can tilt the LATx estimators
if the point mass can make the median squared residual small, the LATx
estimators have a very strong tendency to give outlying clusters zero weight.
In fact, the LATx estimator may tilt slightly to avoid a cluster of “good
leverage” points if the cluster is far enough from the bulk of the data.

Problem 7.5 helps illustrate this phenomenon with the MBA estimators
that use the MED(r2

i ) and LATA criteria. We suggest that the residuals
and fitted values from these estimators (and from OLS and L1) should be
compared graphically with the RR and FF plots of Sections 6.3 and 7.6.

9.5 Complements

Feller (1957) is a great source for examining subsampling behavior when the
data set is fixed. Hampel, Ronchetti, Rousseeuw and Stahel (1986, p. 96-98)
and Donoho and Huber (1983) provide some history for breakdown. Maguluri
and Singh (1997) have interesting examples on breakdown. Morgenthaler
(1989) and Stefanski (1991) conjectured that high breakdown estimators with
high efficiency are not possible. These conjectures have been shown to be
false.
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9.6 Problems

9.1 a) Enter or download the following R/Splus function

pifclean <- function(k, gam){

p <- floor(log(3/k)/log(1 - gam))

list(p = p) }

b) Include the output from the commands below that are used to produce
the second column of Table 9.1.

> zgam <- c(.01,.05,.1,.15,.2,.25,.3,.35,.4,.45,.5)

> pifclean(3000,zgam)

9.2. a) To get an idea for the amount of contamination a basic resam-
pling or concentration algorithm can tolerate, enter or download the gamper

function (with the source(“A:/rpack.txt”) command) that evaluates Equation
(9.3) at different values of h = p.

b) Next enter the following commands and include the output in Word.

> zh <- c(10,20,30,40,50,60,70,80,90,100)

> for(i in 1:10) gamper(zh[i])

9.3. Assume that the model has a constant β1 so that the first column of
X is 1. Show that if the regression estimator is regression equivariant, then
adding 1 to Y changes β̂1 but does not change the slopes β̂2, ..., β̂p.
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