
Chapter 8

Robust Regression Algorithms

Recall from Chapter 7 that high breakdown regression estimators such as
LTA, LTS, and LMS are impractical to compute. Hence algorithm estimators
are used as approximations. Consider the multiple linear regression model

Y = Xβ + e

where β is a p×1 vector of unknown coefficients. Assume that the regression
estimator β̂Q is the global minimizer of some criterion Q(b) ≡ Q(b|Y ,X).

In other words, Q(β̂Q) ≤ Q(b) for all b ∈ B ⊆ �p. Typically B = �p, but
occasionally B is a smaller set such as the set of OLS fits to cn ≈ n/2 of the
cases. In this case, B has a huge but finite number C(n, cn) of vectors b.
Often Q depends on Y and X only through the residuals ri(b) = Yi − xT

i b,
but there are exceptions such as the regression depth estimator.

Definition 8.1. In the multiple linear regression setting, an elemental
set is a set of p cases.

Some notation is needed for algorithms that use many elemental sets. Let

J = Jh = {h1, ..., hp}

denote the set of indices for the ith elemental set. Since there are n cases,
h1, ..., hp are p distinct integers between 1 and n. For example, if n = 7 and
p = 3, the first elemental set may use cases J1 = {1, 7, 4}, and the second
elemental set may use cases J2 = {5, 3, 6}. The data for the ith elemental set
is (Y Jh

,XJh
) where Y Jh

= (Yh1, ..., Yhp)
T is a p × 1 vector, and the p × p
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matrix

XJh
=

⎡
⎢⎢⎢⎣

xT
h1

xT
h2
...

xT
hp

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
xh1,1 xh1,2 . . . xh1,p

xh2,1 xh2,2 . . . xh2,p
...

...
. . .

...
xhp,1 xhp,2 . . . xhp,p

⎤
⎥⎥⎥⎦ .

Definition 8.2. The elemental fit from the hth elemental set Jh is

bJh
= X−1

Jh
Y Jh

provided that the inverse of XJh
exists.

Definition 8.3. Assume that the p cases in each elemental set are dis-
tinct (eg drawn without replacement from the n cases that form the data
set). Then the elemental basic resampling algorithm for approximating the
estimator β̂Q that globally minimizes the criterion Q(b) uses Kn elemental
sets J1, ..., JKn randomly drawn (eg with replacement) from the set of all
C(n, p) elemental sets. The algorithm estimator bA is the elemental fit that
minimizes Q. That is,

bA = argminh=1,...,Kn
Q(bJh

).

Several estimators can be found by evaluating all elemental sets. For
example, the LTA, L1, RLTA, LATA, and regression depth estimators can
be found this way. Given the criterion Q, the key parameter of the basic
resampling algorithm is the number Kn of elemental sets used in the algo-
rithm. It is crucial to note that the criterion Q(b) is a function of all n cases
even though the elemental fit only uses p cases. For example, assume that
Kn = 2, J1 = {1, 7, 4}, Q(bJ1) = 1.479, J2 = {5, 3, 6}, and Q(bJ2) = 5.993.
Then bA = bJ1 .

To understand elemental fits, the notions of a matrix norm and vector
norm will be useful. We will follow Datta (1995, p. 26-31) and Golub and
Van Loan (1989, p. 55-60).

Definition 8.4. The y be an n× 1 vector. Then ‖y‖ is a vector norm if
vn1) ‖y‖ ≥ 0 for every y ∈ �n with equality iff y is the zero vector,
vn2) ‖ay‖ = |a| ‖y‖ for all y ∈ �n and for all scalars a, and
vn3) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x and y in �n.
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Definition 8.5. Let G be an n× p matrix. Then ‖G‖ is a matrix norm
if
mn1) ‖G‖ ≥ 0 for every n×p matrix G with equality iff G is the zero matrix,
mn2) ‖aG‖ = |a| ‖G‖ for all scalars a, and
mn3) ‖G + H‖ ≤ ‖G‖ + ‖H‖ for all n× p matrices G and H .

Example 8.1. The q-norm of a vector y is

‖y‖q = (|y1|q + · · · + |yn|q)1/q.

In particular, ‖y‖1 = |y1| + · · · + |yn|,
the Euclidean norm ‖y‖2 =

√
y2

1 + · · · + y2
n, and

‖y‖∞ = maxi |yi|.
Given a matrix G and a vector norm ‖y‖q the q-norm or subordinate matrix
norm of matrix G is

‖G‖q = max
y �=0

‖Gy‖q

‖y‖q
.

It can be shown that the maximum column sum norm

‖G‖1 = max
1≤j≤p

n∑
i=1

|gij |,

the maximum row sum norm

‖G‖∞ = max
1≤i≤n

p∑
j=1

|gij|,

and the spectral norm

‖G‖2 =

√
maximum eigenvalue of GT G.

The Frobenius norm

‖G‖F =

√√√√ p∑
j=1

n∑
i=1

|gij|2 =

√
trace(GTG).

From now on, unless otherwise stated, we will use the spectral norm as
the matrix norm and the Euclidean norm as the vector norm.
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8.1 Inconsistency of Resampling Algorithms

We will call algorithms that approximate high breakdown (HB) regression
estimators “HB algorithms” although the high breakdown algorithm estima-
tors bA that have appeared in the literature (that are practical to compute)
are typically inconsistent low breakdown estimators. To examine the statis-
tical properties of the basic resampling algorithm, more properties of matrix
norms are needed. For the matrix XJh

, the subscript h will often be sup-
pressed.

Several useful results involving matrix norms will be used. First, for any
subordinate matrix norm,

‖Gy‖q ≤ ‖G‖q ‖y‖q.

Hence for any elemental fit bJ (suppressing q = 2),

‖bJ − β‖ = ‖X−1
J (XJβ + eJ) − β‖ = ‖X−1

J eJ‖ ≤ ‖X−1
J ‖ ‖eJ‖. (8.1)

The following results (Golub and Van Loan 1989, p. 57, 80) on the Euclidean
norm are useful. Let 0 ≤ σp ≤ σp−1 ≤ · · · ≤ σ1 denote the singular values of
XJ . Then

‖X−1
J ‖ =

σ1

σp‖XJ‖ , (8.2)

max
i,j

|xhi,j| ≤ ‖XJ‖ ≤ p max
i,j

|xhi,j|, and (8.3)

1

p maxi,j |xhi,j| ≤
1

‖XJ‖ ≤ ‖X−1
J ‖. (8.4)

The key idea for examining elemental set algorithms is eliminating ‖X−1
J ‖.

If there are reasonable conditions under which inf ‖X−1
J ‖ > d for some con-

stant d that is free of n where the infinum is taken over all C(n, p) elemental
sets, then the elemental design matrix XJ will play no role in producing
a sequence of consistent elemental fits. We will use the convention that if
the inverse X−1

J does not exist, then ‖X−1
J ‖ = ∞. The following lemma is

crucial.

Lemma 8.1. Assume that the n × p design matrix X = [xij] and that
the np entries xij are bounded:

max
i,j

|xij| ≤ M
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for some real number M > 0 that does not depend on n. Then for any
elemental set XJ ,

‖X−1
J ‖ ≥ 1

pM
. (8.5)

Proof. If XJ does not have an inverse, then by the convention ‖X−1
J ‖ =

∞, and the result holds. Assume that XJ does have an inverse. Then by
Equation (8.4),

1

pM
≤ 1

p maxi,j |xhi,j| ≤
1

‖XJ‖ ≤ ‖X−1
J ‖.

QED

In proving consistency results, there is an infinite sequence of estimators
that depend on the sample size n. Hence the subscript n will be added to
the estimators. Refer to Remark 2.4 for the definition of convergence in
probability.

Definition 8.6. Lehmann (1999, p. 53-54): a) A sequence of random
variables Wn is tight or bounded in probability, written Wn = OP (1), if for
every ε > 0 there exist positive constants Dε and Nε such that

P (|Wn| ≤ Dε) ≥ 1 − ε

for all n ≥ Nε. Also Wn = OP (Xn) if |Wn/Xn| = OP (1).
b) The sequence Wn = oP (n−δ) if nδWn = oP (1) which means that

nδWn
P→ 0.

c) Wn has the same order as Xn in probability, written Wn �P Xn, if for
every ε > 0 there exist positive constants Nε and 0 < dε < Dε such that

P (dε ≤
∣∣∣∣Wn

Xn

∣∣∣∣ ≤ Dε) = P (
1

Dε

≤
∣∣∣∣Xn

Wn

∣∣∣∣ ≤ 1

d ε
) ≥ 1 − ε

for all n ≥ Nε.
d) Similar notation is used for a k × r matrix A = [ai,j] if each element

ai,j has the desired property. For example, A = OP (n−1/2) if each ai,j =
OP (n−1/2).
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Definition 8.7. Let Wn = ‖β̂n − β‖.
a) If Wn �P n−δ for some δ > 0, then both Wn and β̂n have (tightness)

rate nδ.
b) If there exists a constant κ such that

nδ(Wn − κ)
D→ X

for some nondegenerate random variable X, then both Wn and β̂n have
convergence rate nδ.

IfWn has convergence rate nδ, thenWn has tightness rate nδ, and the term
“tightness” will often be omitted. Notice that if Wn �P Xn, thenXn �P Wn,
Wn = OP (Xn) and Xn = OP (Wn). Notice that if Wn = OP (n−δ), then nδ is a
lower bound on the rate of Wn. As an example, if LMS, OLS or L1 are used
for β̂, then Wn = OP (n−1/3), but Wn �P n−1/3 for LMS while Wn �P n−1/2

for OLS and L1. Hence the rate for OLS and L1 is n1/2.

To examine the lack of consistency of the basic resampling algorithm
estimator bA,n meant to approximate the theoretical estimator β̂Q,n, recall
that the key parameter of the basic resampling algorithm is the number of
elemental sets Kn ≡ K(n, p). Typically Kn is a fixed number, eg Kn ≡ K =
3000, that does not depend on n.

Example 8.2. This example illustrates the basic resampling algorithm
with Kn = 2. Let the data consist of the five (xi, yi) pairs (0,1), (1,2), (2,3),
(3,4), and (1,11). Then p = 2 and n = 5. Suppose the criterion Q is the
median of the n squared residuals and that J1 = {1, 5}. Then observations
(0, 1) and (1, 11) were selected. Since bJ1 = (1, 10)T , the estimated line
is y = 1 + 10x, and the corresponding residuals are 0,−9,−18,−27, and
0. The criterion Q(bJ1) = 92 = 81 since the ordered squared residuals are
0, 0, 81, 182, and 272. If observations (0, 1) and (3, 4) are selected next, then
J2 = {1, 4}, bJ2 = (1, 1)T , and 4 of the residuals are zero. Thus Q(bJ2) = 0
and bA = bJ2 = (1, 1)T . Hence the algorithm produces the fit y = 1 + x.

Example 8.3. In the previous example the algorithm fit was reasonable,
but in general using a fixed Kn ≡ K in the algorithm produces inconsistent
estimators. To illustrate this claim, consider the location model Yi = β + ei

where the ei are iid and β is a scalar (since p = 1 in the location model). If β
was known, the natural criterion for an estimator bn of β would be Q(bn) =
|bn − β|. For each sample size n, K elemental sets Jh,n = {hn}, h = 1, ..., K
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of size p = 1 are drawn with replacement from the integers 1, ..., n. Denote
the resulting elemental fits by

bJh,n
= Yhn

for h = 1, ..., K. Then the “best fit” Yo,n minimizes |Yhn − β|. If α > 0, then

P (|Yo,n − β| > α) ≥ [P (|Y1 − β| > α)]K > 0

provided that the errors have mass outside of [−α, α], and thus Yo,n is not
a consistent estimator. The inequality is needed since the Yhn may not be
distinct: the inequality could be replaced with equality if the Y1n, ..., YKn were
an iid sample of size K. Since α > 0 was arbitrary in the above example,
the inconsistency result holds unless the iid errors are degenerate at zero.

The basic idea is from sampling theory. A fixed finite sample can be used
to produce an estimator that contains useful information about a population
parameter, eg the population mean, but unless the sample size n increases to
∞, the confidence interval for the population parameter will have a length
bounded away from zero. In particular, if Y n(K) is a sequence of sample
means based on samples of size K = 100, then Y n(K) is not a consistent
estimator for the population mean.

The following notation is useful for the general regression setting and
will also be used for some algorithms that modify the basic resampling algo-
rithm. Let bsi,n be the ith elemental fit where i = 1, ..., Kn and let bA,n be the
algorithm estimator; that is, bA,n is equal to the bsi,n that minimized the cri-

terion Q. Let β̂Q,n denote the estimator that the algorithm is approximating,

eg β̂LTA,n. Let bos,n be the “best” of the K elemental fits in that

bos,n = argmini=1,...,Kn
‖bsi,n − β‖ (8.6)

where the Euclidean norm is used. Since the algorithm estimator is an ele-
mental fit bsi,n,

‖bA,n − β‖ ≥ ‖bos,n − β‖.
Thus an upper bound on the rate of bos,n is an upper bound on the rate of
bA,n.

Theorem 8.2. Let the number of randomly selected elemental sets
Kn → ∞ as n→ ∞. Assume that the error distribution possesses a density
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f that is positive and continuous in a neighborhood of zero and that Kn ≤
C(n, p). Also assume that the predictors are bounded in probability and that
the iid errors are independent of the predictors. Then an upper bound on
the rate of bos,n is K

1/p
n .

Proof. Let J = {i1, ..., ip} be a randomly selected elemental set. Then
Y J = XJβ+eJ where the p errors are independent, and the data (Y J ,XJ )
produce an estimator

bJ = X−1
J Y J

of β. Let 0 < δ ≤ 1. If each observation in J has an absolute error bounded
by M/nδ , then

‖bJ − β‖ = ‖X−1
J eJ‖ ≤ ‖X−1

J ‖M
√
p

nδ
.

Lemma 8.1 shows that the norm ‖X−1
J ‖ is bounded away from 0 provided

that the predictors are bounded. Thus if the predictors are bounded in
probability, then ‖bJ − β‖ is small only if all p errors in eJ are small. Now

Pn ≡ P (|ei| < M

nδ
) ≈ 2 M f(0)

nδ
(8.7)

for large n. Note that if W counts the number of errors satisfying (8.7) then
W ∼ binomial(n, Pn), and the probability that all p errors in eJ satisfy
Equation (8.7) is proportional to 1/nδp. If Kn = o(nδp) elemental sets are
used, then the probability that the best elemental fit bos,n satisfies

‖bos,n − β‖ ≤ Mε

nδ

tends to zero regardless of the value of the constant Mε > 0. Replace nδ by
K

1/p
n for the more general result. QED

Remark 8.1. It is crucial that the elemental sets were chosen randomly.
For example the cases within any elemental set could be chosen without re-
placement, and then theKn elemental sets could be chosen with replacement.
Alternatively, random permutations of the integers 1, ..., n could be selected
with replacement. Each permutation generates approximately n/p elemental
sets: the jth set consists of the cases (j − 1)p + 1, ..., jp. Alternatively g(n)
cases could be selected without replacement and then all

Kn = C(g(n), p) =

(
g(n)

p

)
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elemental sets generated. As an example where the elemental sets are not
chosen randomly, consider the L1 criterion. Since there is always an elemental
L1 fit, this fit has n1/2 convergence rate and is a consistent estimator of β.
Here we can take Kn ≡ 1, but the elemental set was not drawn randomly.
Using brain power to pick elemental sets is frequently a good idea.

It is also crucial to note that the K
1/p
n rate is only an upper bound on the

rate of the algorithm estimator bA,n. It is possible that the best elemental set
has a good convergence rate while the basic resampling algorithm estimator is
inconsistent. Notice that the following result holds regardless of the criterion
used.

Theorem 8.3. If the number Kn ≡ K of randomly selected elemental
sets is fixed and free of the sample size n, eg K = 3000, then the algorithm
estimator bA,n is an inconsistent estimator of β.

Proof. Each of the K elemental fits is an inconsistent estimator. So
regardless of how the algorithm chooses the final elemental fit, the algorithm
estimator is inconsistent.

Conjecture 8.1. Suppose that the errors possess a density that is posi-
tive and continuous on the real line, that ‖β̂Q,n − β‖ = OP (n−1/2) and that
Kn ≤ C(n, p) randomly selected elemental sets are used in the algorithm.

Then the algorithm estimator satisfies ‖bA,n − β‖ = OP (K
−1/2p
n ).

Remark 8.2. This rate can be achieved if the algorithm minimizing Q
over all elemental subsets is

√
n consistent (eg regression depth, see Bai and

He 1999). Randomly select g(n) cases and let Kn = C(g(n), p). Then apply
the all elemental subset algorithm to the g(n) cases. Notice that an upper
bound on the rate of bos,n is g(n) while

‖bA,n − β‖ = OP ((g(n))−1/2).

8.2 Theory for Concentration Algorithms

Newer HB algorithms use random elemental sets to generate starting trial
fits, but then refine them. One of the most successful subset refinement
algorithms is the concentration algorithm. Consider the LTA, LTS and LMS
criterion that cover c ≡ cn ≥ n/2 cases.
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Definition 8.8. A start is an initial trial fit and an attractor is the final
fit generated by the algorithm from the start. In a concentration algorithm,
let b0,j be the jth start and compute all n residuals ri(b0,j) = yi−xT

i b0,j. At
the next iteration, a classical estimator b1,j is computed from the cn ≈ n/2
cases corresponding to the smallest squared residuals. This iteration can be
continued for k steps resulting in the sequence of estimators b0,j, b1,j, ..., bk,j.
The result of the iteration bk,j is called the jth attractor. The final con-
centration algorithm estimator is the attractor that optimizes the criterion.

Sometimes the notation bsi,n = b0i,n for the ith start and bai,n = bki,n

for the ith attractor will be used. Using k = 10 concentration steps often
works well, and iterating until convergence is usually fast (in this case k = ki

depends on i). The “h–set” basic resampling algorithm uses starts that are
fits to randomly selected sets of h ≥ p cases, and is a special case of the
concentration algorithm with k = 0.

The notation CLTS, CLMS and CLTA will be used to denote concentra-
tion algorithms for LTA, LTS and LMS, respectively. Consider the LTS(cn)
criterion. Suppose the ordered squared residuals from the mth start b0m are
obtained. Then b1m is simply the OLS fit to the cases corresponding to the
cn smallest squared residuals. Denote these cases by i1, ..., icn. Then

cn∑
i=1

r2
(i)(b1m) ≤

cn∑
j=1

r2
ij
(b1m) ≤

cn∑
j=1

r2
ij
(b0m) =

cn∑
j=1

r2
(i)(b0m)

where the second inequality follows from the definition of the OLS estimator.
Convergence to the attractor tends to occur in a few steps.

A simplified version of the CLTS(c) algorithms of Ruppert (1992), Vı́̌sek
(1996), Hawkins and Olive (1999a) and Rousseeuw and Van Driessen (2000,
2002, 2006) uses Kn elemental starts. The LTS(c) criterion is

QLTS(b) =

c∑
i=1

r2
(i)(b) (8.8)

where r2
(i)(b) is the ith smallest squared residual. For each elemental start

find the exact-fit bsj to the p cases in the elemental start and then get the
c smallest squared residuals. Find the OLS fit to these c cases and find the
resulting c smallest squared residuals, and iterate for k steps. Doing this
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a) A Start for the Animal Data
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b) The Attractor for the Start

Figure 8.1: The Highlighted Points are More Concentrated about the At-
tractor

for Kn elemental starts leads to Kn (not necessarily distinct) attractors baj.

The algorithm estimator β̂ALTS is the attractor that minimizes Q. Substi-
tuting the L1 or Chebyshev fits and LTA or LMS criteria for OLS in the
concentration step leads to the CLTA or CLMS algorithm.

Example 8.4. As an illustration of the CLTA concentration algorithm,
consider the animal data from Rousseeuw and Leroy (1987, p. 57). The
response y is the log brain weight and the predictor x is the log body weight
for 25 mammals and 3 dinosaurs (outliers with the highest body weight).
Suppose that the first elemental start uses cases 20 and 14, corresponding to
mouse and man. Then the start bs,1 = b0,1 = (2.952, 1.025)T and the sum of
the c = 14 smallest absolute residuals

14∑
i=1

|r|(i)(b0,1) = 12.101.

Figure 8.1a shows the scatterplot of x and y. The start is also shown and
the 14 cases corresponding to the smallest absolute residuals are highlighted.
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b) The Corresponding Attractors

Figure 8.2: Starts and Attractors for the Animal Data

The L1 fit to these c highlighted cases is b1,1 = (2.076, 0.979)T and

14∑
i=1

|r|(i)(b1,1) = 6.990.

The iteration consists of finding the cases corresponding to the c smallest
residuals, obtaining the corresponding L1 fit and repeating. The attractor
ba,1 = b7,1 = (1.741, 0.821)T and the LTA(c) criterion evaluated at the at-
tractor is

14∑
i=1

|r|(i)(ba,1) = 2.172.

Figure 8.1b shows the attractor and that the c highlighted cases correspond-
ing to the smallest absolute residuals are much more concentrated than those
in Figure 8.1a. Figure 8.2a shows 5 randomly selected starts while Figure
8.2b shows the corresponding attractors. Notice that the elemental starts
have more variablity than the attractors, but if the start passes through an
outlier, so does the attractor.

Notation for the attractor needs to be added to the notation used for the
basic resampling algorithm. Let bsi,n be the ith start, and let bai,n be the
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ith attractor. Let bA,n be the algorithm estimator, that is, the attractor that

minimized the criterion Q. Let β̂Q,n denote the estimator that the algorithm

is approximating, eg β̂LTS,n. Let bos,n be the “best” start in that

bos,n = argmini=1,...,Kn
‖bsi,n − β‖.

Similarly, let boa,n be the best attractor. Since the algorithm estimator is an
attractor, ‖bA,n −β‖ ≥ ‖boa,n −β‖, and an upper bound on the rate of boa,n

is an upper bound on the rate of bA,n.
Typically the algorithm will use randomly selected elemental starts, but

more generally the start could use (eg OLS or L1) fits computed from hi

cases. Many algorithms will use the same number hi ≡ h of cases for all
starts. If bsi,n, b1i,n, ..., bai,n is the sequence of fits in the iteration from the
ith start to the ith attractor, typically cn cases will be used after the residuals
from the start are obtained. However, for LATx algorithms, the jth fit bji,n

in the iteration uses Cn(bj−1,i,n) cases where Cn(b) is given by Equation (7.5)
on p. 230. Since the criterion is evaluated on the attractors, using OLS as
an attractor also makes sense.

Remark 8.3. Failure of zero-one weighting. Assume that the iteration
from start to attractor is bounded by the use of a stopping rule. In other
words, ai, n ≤ M for some constant M and for all i = 1, ..., Kn and for all
n. Then the consistency rate of the best attractor is equal to the rate for
the best start for the LTS concentration algorithm if all of the start sizes
hi are bounded (eg if all starts are elemental). For example, suppose the
concentration algorithm for LTS uses elemental starts, and OLS is used in
each concentration step. If the best start satisfies ‖bos,n − β‖ = OP (n−δ)
then the best attractor satisfies ‖boa,n − β‖ = OP (n−δ). In particular, if the
number of starts Kn ≡ K is a fixed constant (free of the sample size n)
and all K of the start sizes are bounded by a fixed constant (eg p), then the
algorithm estimator bA,n is inconsistent.

This result holds because zero-one weighting fails to improve the consis-
tency rate. That is, suppose an initial fit β̂n satisfies ‖β̂n − β‖ = OP (n−δ)
where 0 < δ ≤ 0.5. If β̂cn denotes the OLS fit to the c ≈ n/2 cases with the
smallest absolute residuals, then

‖β̂cn − β‖ = OP (n−δ). (8.9)

See Ruppert and Carroll (1980, p. 834 for δ = 0.5), Dollinger and Staudte
(1991, p. 714), He and Portnoy (1992) and Welsh and Ronchetti (1993).
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These results hold for a wide variety of zero-one weighting techniques. Con-
centration uses the cases with the smallest c absolute residuals, and the pop-
ular “reweighting for efficiency” technique applies OLS to cases that have
absolute residuals smaller than some constant. He and Portnoy (1992, p.
2161) note that such an attempt to get a rate n1/2 estimator from the rate
n1/3 initial LMS fit does not in fact improve LMS’s rate.

Remark 8.4. While the formal proofs in the literature cover OLS fitting,
it is a reasonable conjecture that the result also holds if alternative fits such
as L1 are used in the concentration steps. Heuristically, zero-one weighting
from the initial estimator results in a data set with the same “tilt” as the
initial estimator, and applying a

√
n consistent estimator to the cases with

the c smallest case distances can not get rid of this tilt.

Remarks 8.3 and 8.4 suggest that the consistency rate of the algorithm
estimator is bounded above by the rate of the best elemental start. Theorem
8.2 and the following remark show that the number of random starts is the
determinant of the actual performance of the estimator, as opposed to the
theoretical convergence rate of β̂Q,n. Suppose Kn = O(n) starts are used.

Then the rate of the algorithm estimator is no better than n1/p which drops
dramatically as the dimensionality increases.

Remark 8.5: The wide spread of subsample slopes. Some addi-
tional insights into the size h of the start come from a closer analysis of an
idealized case – that of normally distributed predictors. Assume that the
errors are iid N(0, 1) and that the xi’s are iid Np(0, I). Use h observations
(Xh,Y h) to obtain the OLS fit

b = (XT
hXh)−1XT

hY h ∼ Np(β, (X
T
hXh)−1).

Then ‖b−β‖2 = (b−β)T (b−β) is distributed as (p Fp,h−p+1)/(h− p+ 1).

Proof (due to Morris L. Eaton). Let V = XT
h Xh. Then V has the

Wishart distribution W (Ip, p, h) while V −1 has the inverse Wishart distri-
bution W−1(Ip, p, h+ p− 1). Without loss of generality, assume β = 0. Let

W ∼ W (Ip, p, h) and β̂|W ∼ Np(0,W
−1). Then the characteristic function

of β̂ is

φ(t) = E(E[exp(itT β̂)|W ]) = EW [exp(−1

2
tTW−1t)].

Let X ∼ Np(0, Ip) and S ∼ W (Ip, p, h) be independent. Let Y = S−1/2X.
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Then the characteristic function of Y is

ψ(t) = E(E[exp(i(S−1/2t)T X)|S]) = ES [exp(−1

2
tTS−1t)].

Since β̂ and Y have the same characteristic functions, they have the same
distribution. Thus ‖β̂‖2 has the same distribution as

XTS−1X ∼ (p/(h − p + 1)) Fp,h−p+1.

QED

This result shows the inadequacy of elemental sets in high dimensions.
For a trial fit to provide a useful preliminary classification of cases into inliers
and outliers requires that it give a reasonably precise slope. However if p is
large, this is most unlikely; the density of (b−β)T (b−β) varies near zero like
[(b− β)T (b − β)](

p
2
−1). For moderate to large p, this implies that good trial

slopes will be extremely uncommon and so enormous numbers of random
elemental sets will have to be generated to have some chance of finding one
that gives a usefully precise slope estimate. The only way to mitigate this
effect of basic resampling is to use larger values of h, but this negates the
main virtue elemental sets have, which is that when outliers are present, the
smaller the h the greater the chance that the random subset will be clean.

The following two propositions examine increasing the start size. The
first result (compare Remark 8.3) proves that increasing the start size from
elemental to h ≥ p results in a zero breakdown inconsistent estimator. Let
the k–step CLTS estimator be the concentration algorithm estimator for LTS
that uses k concentration steps. Assume that the number of concentration
steps k and the number of starts Kn ≡ K do not depend on n (eg k = 10
and K = 3000, breakdown is defined in Section 9.4).

Proposition 8.4. Suppose that each start uses h randomly selected cases
and that Kn ≡ K starts are used. Then
i) the (“h-set”) basic resampling estimator is inconsistent.
ii) The k–step CLTS estimator is inconsistent.
iii) The breakdown value is bounded above by K/n.

Proof. To prove i) and ii), notice that each start is inconsistent. Hence
each attractor is inconsistent by He and Portnoy (1992). Choosing from K
inconsistent estimators still results in an inconsistent estimator. To prove iii)
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replace one observation in each start by a high leverage case (with y tending
to ∞). QED

Suppose that β̂1, ..., β̂K are consistent estimators of β each with the same
rate g(n). The lemma below shows that if β̂A is an estimator obtained by
choosing one of the K estimators, then β̂A is a consistent estimator of β with
rate g(n).

Lemma 8.5: Pratt (1959). a) Let X1,n, ..., XK,n each be OP (1) where
K is fixed. Suppose Wn = Xin,n for some in ∈ {1, ..., K}. Then

Wn = OP (1). (8.10)

b) Suppose ‖Tj,n − β‖ = OP (n−δ) for j = 1, ..., K where 0 < δ ≤ 1. Let
T ∗

n = Tin,n for some in ∈ {1, ..., K} where, for example, Tin,n is the Tj,n that
minimized some criterion function. Then

‖T ∗
n − β‖ = OP (n−δ). (8.11)

Proof. a) P (max{X1,n, ..., XK,n} ≤ x) = P (X1,n ≤ x, ..., XK,n ≤ x) ≤
FWn(x) ≤ P (min{X1,n, ..., XK,n} ≤ x) = 1 − P (X1,n > x, ..., XK,n > x).

SinceK is finite, there exists B > 0 and N such that P (Xi,n ≤ B) > 1−ε/2K
and P (Xi,n > −B) > 1 − ε/2K for all n > N and i = 1, ..., K. Bonferroni’s

inequality states that P (∩K
i=1Ai) ≥

∑K
i=1 P (Ai) − (K − 1). Thus

FWn(B) ≥ P (X1,n ≤ B, ..., XK,n ≤ B) ≥
K(1 − ε/2K) − (K − 1) = K − ε/2 −K + 1 = 1 − ε/2

and
−FWn(−B) ≥ −1 + P (X1,n > −B, ..., XK,n > −B) ≥

−1 +K(1 − ε/2K) − (K − 1) = −1 +K − ε/2 −K + 1 = −ε/2.
Hence

FWn(B) − FWn(−B) ≥ 1 − ε for n > N.

b) Use with Xj,n = nδ‖Tj,n − β‖. Then Xj,n = OP (1) so by a),
nδ‖T ∗

n − β‖ = OP (1). Hence ‖T ∗
n − β‖ = OP (n−δ). QED

The consistency of the algorithm estimator changes dramatically if K
is fixed but the start size h = hn = g(n) where g(n) → ∞. In particular,
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if several starts with rate n1/2 are used, the final estimator also has rate
n1/2. The drawback to these algorithms is that they may not have enough
outlier resistance. Notice that the basic resampling result below is free of the
criterion.

Proposition 8.6. Suppose Kn ≡ K starts are used and that all starts
have subset size hn = g(n) ↑ ∞ as n → ∞. Assume that the estimator
applied to the subset has rate nδ.
i) For the hn-set basic resampling algorithm, the algorithm estimator has
rate [g(n)]δ.
ii) Under mild regularity conditions (eg given by He and Portnoy 1992), the
k–step CLTS estimator has rate [g(n)]δ.

Proof. i) The hn = g(n) cases are randomly sampled without replace-
ment. Hence the classical estimator applied to these g(n) cases has rate
[g(n)]δ. Thus all K starts have rate [g(n)]δ, and the result follows by Pratt
(1959). ii) By He and Portnoy (1992), all K attractors have [g(n)]δ rate, and
the result follows by Pratt (1959). QED

These results show that fixed Kn ≡ K elemental methods are inconsis-
tent. Several simulation studies have shown that the versions of the resam-
pling algorithm that use a fixed number of elemental starts provide fits with
behavior that conforms with the asymptotic behavior of the

√
n consistent

target estimator. These paradoxical studies can be explained by the following
proposition (a recasting of a coupon collection problem).

Proposition 8.7. Suppose that Kn ≡ K random starts of size h are
selected and let Q(1) ≤ Q(2) ≤ · · · ≤ Q(B) correspond to the order statistics
of the criterion values of the B = C(n, h) possible starts of size h. Let R be
the rank of the smallest criterion value from the K starts. If P (R ≤ Rα) = α,
then

Rα ≈ B[1− (1 − α)1/K ].

Proof. If Wi is the rank of the ith start, then W1, ...,WK are iid discrete
uniform on {1, ..., B} and R = min(W1, ...,WK). If r is an integer in [1, B],
then

P (R ≤ r) = 1 − (
B − r

B
)K .

Solve the above equation α = P (R ≤ Rα) for Rα. QED
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Remark 8.6. If K = 500, then with α = 50% probability about 14 in
10000 elemental sets will be better than the best elemental start found from
the elemental concentration algorithm. From Feller (1957, p. 211-212),

E(R) ≈ 1 +
B

K + 1
, and VAR(R) ≈ KB2

(K + 1)2(K + 2)
≈ B2

K2
.

Notice that the median of R is MED(R) ≈ B[1− (0.5)1/K ].

Thus simulation studies that use very small generated data sets, so the
probability of finding a good approximation is high, are quite misleading
about the performance of the algorithm on more realistically sized data sets.
For example, if n = 100, h = p = 3, and K = 3000, then B = 161700 and
the median rank is about 37. Hence the probability is about 0.5 that only
36 elemental subsets will give a smaller value of Q than the fit chosen by the
algorithm, and so using just 3000 starts may well suffice. This is not the case
with larger values of p.

If the algorithm evaluates the criterion on trial fits, then these fits will be
called the attractors. The following theorem shows that it is simple to im-
prove the CLTS estimator by adding two carefully chosen attractors. Notice
that lmsreg is an inconsistent zero breakdown estimator but the modification
to lmsreg is HB and asymptotically equivalent to OLS. Hence the modified
estimator has a

√
n rate which is higher than the n1/3 rate of the LMS esti-

mator. Let bk be the attractor from the start consisting of OLS applied to
the cn cases with Y ’s closest to the median of the Yi and let β̂k,B = 0.99bk.

Then β̂k,B is a HB biased estimator of β. (See Example 9.3. An estimator is
HB if its median absolute residual stays bounded even if nearly half of the
cases are outliers.)

Theorem 8.8. Suppose that the algorithm uses Kn ≡ K randomly
selected elemental starts (eg K = 500) with k LTS concentration steps and
the attractors β̂OLS and β̂k,B .

i) Then the resulting CLTS estimator is a
√
n consistent HB estimator

if β̂OLS is
√
n consistent, and the estimator is asymptotically equivalent to

β̂OLS .
ii) Suppose that a HB criterion is used on the K + 2 attractors such that

the resulting estimator is HB if a HB attractor is used. Also assume that
the global minimizer of the HB criterion is a consistent estimator for β (eg
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LMS). The resulting HB estimator is asymptotically equivalent to the OLS
estimator if the OLS estimator is a consistent estimator of β.

Proof. i) Chapter 9 shows that LTS concentration algorithm that uses a
HB start is HB, and that β̂k,B is a HB biased estimator. The LTS estimator

is consistent by Maš̈ıček (2004). As n → ∞, consistent estimators β̂ satisfy
QLTS(β̂)/n−QLTS(β)/n→ 0 in probability. Since β̂k,B is a biased estimator
of β, OLS will have a smaller criterion value with probability tending to one.
With probability tending to one, OLS will also have a smaller criterion value
than the criterion value of the attractor from a randomly drawn elemental
set (by Remark 8.5, Proposition 8.7 and He and Portnoy 1992). SinceK ran-
domly chosen elemental sets are used, the CLTS estimator is asymptotically
equivalent to OLS.

ii) As in the proof of i), the OLS estimator will minimize the criterion
value with probability tending to one as n→ ∞. QED

Remark 8.7. The basic resampling algorithm evaluates a HB criterion
on K randomly chosen elemental sets. Theorem 8.8 uses k LTS concentration
steps on K randomly drawn elemental sets and then evaluates the HB crite-
rion on bk1, ..., bk500, the biased HB attractor β̂k,B and β̂OLS. Hence k = 0

can be used to improve the basic resampling algorithm. If β̂OLS is replaced
by another consistent attractor, say β̂D,n, then the estimator will be HB and

asymptotically equivalent to β̂D,n. In other words, suppose there is a consis-

tent attractor β̂D,n, one biased HB attractor, and all of the otherK attractors
ba,n are such that P (‖ba,n − β‖ < ε) → 0 as ε → 0. Attractors satisfying
this requirement include randomly drawn elementals sets, randomly drawn
elemental sets after k LTS concentration steps and biased attractors. Then
with probability tending to one, the ratios Q(β̂D,n)/Q(β) and Q(β̂Q,n)/Q(β)

converge to 1 as n → ∞. Hence the probability that β̂D,n is the attractor
that minimizes Q goes to 1, and the resulting algorithm estimator is HB
and asymptotically equivalent to β̂D,n. Using β̂D,n = β̂OLS makes sense be-
cause then the resulting estimator has 100% Gaussian efficiency. Other good
choices for β̂D are L1, the Wilcoxon rank estimator, β̂k,OLS, the Mallows
GM estimator and estimators that perform well when heteroscedasticity is
present.

Remark 8.8. To use this theory for the fast LTS algorithm, which uses
500 starts, partitioning, iterates 5 starts to convergence, and then a reweight
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for efficiency step, consider the following argument. Add the consistent and
high breakdown biased attractors to the algorithm. Suppose the data set
has nD cases. Then the maximum number of concentration steps until con-
vergence is bounded by kD, say. Assume that for n > nD, no more than kD

concentration steps are used. (This assumption is not unreasonable. Asymp-
totic theory is meant to simplify matters, not to make things more complex.
Also the algorithm is supposed to be fast. Letting the maximum number of
concentration steps increase to ∞ would result in an impractical algorithm.)
Then the elemental attractors are inconsistent so the probability that the
LTS criterion picks the consistent estimator goes to one. The “weight for
efficiency step” does not change the

√
n rate by He and Portnoy (1992).

8.3 Elemental Sets Fit All Planes

The previous sections showed that using a fixed number of randomly selected
elemental sets results in an inconsistent estimator while letting the subset size
hn = g(n) where g(n) → ∞ resulted in a consistent estimator that had little
outlier resistance. Since elemental sets seem to provide the most resistance,
another option would be to use elemental sets, but let Kn → ∞. This section
provides an upper bound on the rate of such algorithms.

In the elemental basic resampling algorithm, Kn elemental sets are ran-
domly selected, producing the estimators b1,n, ..., bKn,n. Let bo,n be the “best”
elemental fit examined by the algorithm in that

bo,n = argmini=1,...,Kn
‖bi,n − β‖. (8.12)

Notice that bo,n is not an estimator since β is unknown, but since the algo-
rithm estimator is an elemental fit, ‖bA,n − β‖ ≥ ‖bo,n − β‖, and an upper
bound on the rate of bo,n is an upper bound on the rate of bA,n. Theorem 8.2

showed that the rate of the bo,n ≤ K
1/p
n , regardless of the criterion Q. This

result is one of the most powerful tools for examining the behavior of robust
estimators actually used in practice. For example, many basic resampling
algorithms use Kn = O(n) elemental sets drawn with replacement from all
C(n, p) elemental sets. Hence the algorithm estimator bA,n has a rate ≤ n1/p.

This section will show that the rate of bo,n is K
1/p
n and suggests that the

number of elemental sets bi,n that satisfy ‖bi,n − β‖ ≤ Mnδ (where M > 0
is some constant and 0 < δ ≤ 1) is proportional to np(1−δ).
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Two assumptions are used.
(A1) The errors are iid, independent of the predictors, and have a density f
that is positive and continuous in a neighborhood of zero.
(A2) Let τ be proportion of elemental sets J that satisfy ‖X−1

J ‖ ≤ B for
some constant B > 0. Assume τ > 0.

These assumptions are reasonable, but results that do not use (A2) are
given later. If the errors can be arbitrarily placed, then they could cause the
estimator to oscillate about β. Hence no estimator would be consistent for
β. Note that if ε > 0 is small enough, then P (|ei| ≤ ε) ≈ 2εf(0). Equations
(8.2) and (8.3) suggest that (A2) will hold unless the data is such that nearly
all of the elemental trial designs XJ have badly behaved singular values.

Theorem 8.9. Assume that all C(n, p) elemental subsets are searched
and that (A1) and (A2) hold. Then ‖bo,n − β‖ = OP (n−1).

Proof. Let the random variable Wn,ε count the number of errors ei that
satisfy |ei| ≤ Mε/n for i = 1, ..., n. For fixed n, Wn,ε is a binomial random
variable with parameters n and Pn where nPn → 2f(0)Mε as n→ ∞. Hence
Wn,ε converges in distribution to a Poisson(2f(0)Mε) random variable, and
for any fixed integer k > p, P (Wn,ε > k) → 1 as Mε → ∞ and n→ ∞. Hence
if n is large enough, then with arbitrarily high probability there exists an Mε

such that at least C(k, p) elemental sets Jhn have all |ehni| ≤ Mε/n where
the subscript hn indicates that the sets depend on n. By condition (A2),
the proportion of these C(k, p) fits that satisfy ‖bJhn

− β‖ ≤ B
√
pMε/n is

greater than τ. If k is chosen sufficiently large, and if n is sufficiently large,
then with arbitrarily high probability, ‖bo,n−β‖ ≤ B

√
pMε/n and the result

follows. QED

Corollary 8.10. Assume that Hn ≤ n but Hn ↑ ∞ as n → ∞. If (A1)
and (A2) hold, and if Kn = Hp

n randomly chosen elemental sets are used,

then ‖bo,n − β‖ = OP (H−1
n ) = OP (K

−1/p
n ).

Proof. Suppose Hn cases are drawn without replacement and allC(Hn, p)
∝ Hp

n elemental sets are examined. Then by Theorem 8.9, the best elemental
set selected by this procedure has rate Hn. Hence if Kn = Hp

n randomly cho-
sen elemental sets are used and if n is sufficiently large, then the probability
of drawing an elemental set Jhn such that ‖bJhn

− β‖ ≤ MεH
−1
n goes to one

as Mε → ∞ and the result follows. QED
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Suppose that an elemental set J is “good” if ‖bJ −β‖ ≤ MεH
−1
n for some

constant Mε > 0. The preceding proof used the fact that with high probabil-
ity, good elemental sets can be found by a specific algorithm that searches
Kn ∝ Hp

n distinct elemental sets. Since the total number of elemental sets
is proportional to np, an algorithm that randomly chooses Hp

n elemental sets
will find good elemental sets with arbitrarily high probability. For example,
the elemental sets could be drawn with or without replacement from all of
the elemental sets. As another example, draw a random permutation of the
n cases. Let the first p cases be the 1st elemental set, the next p cases the
2nd elemental set, etc. Then about n/p elemental sets are generated, and
the rate of the best elemental set is n1/p.

Also note that the number of good sets is proportional to npH−p
n . In

particular, if Hn = nδ where 0 < δ ≤ 1, then the number of “good” sets
is proportional to np(1−δ). If the number of randomly drawn elemental sets
Kn = o((Hn)p), then ‖bA,n−β‖ �= OP (H−1

n ) since P (‖bo,n−β‖ ≤ H−1
n Mε) →

0 for any Mε > 0.
A key assumption to Corollary 8.10 is that the elemental sets are ran-

domly drawn. If this assumption is violated, then the rate of the best el-
emental set could be much higher. For example, the single elemental fit
corresponding to the L1 estimator could be used, and this fit has a n1/2 rate.

The following argument shows that similar results hold if the predictors
are iid with a multivariate density that is everywhere positive. For now,
assume that the regression model contains a constant: x = (1, x2, ..., xp)

T .
Construct a (hyper) pyramid and place the “corners” of the pyramid into
a p × p matrix W . The pyramid defines p “corner regions” R1, ..., Rp. The
p points that form W are not actual observations, but the fit bJ can be
evaluated on W . Define the p × 1 vector z = W β. Then β = W −1z, and
ẑ = W bJ is the fitted hyperplane evaluated at the corners of the pyramid.
If an elemental set has one observation in each corner region and if all p
absolute errors are less than ε, then the absolute deviation |δi| = |zi− ẑi| < ε,
i = 1, ..., p.

To fix ideas and notation, we will present three examples. The first two
examples consider the simple linear regression model with one predictor and
an intercept while the third example considers the multiple regression model
with two predictors and an intercept.
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Example 8.5. Suppose the design has exactly two distinct predictor
values, (1, x1,2) and (1, x2,2), where x1,2 < x2,2 and

P (Yi = β1 + β2x1,2 + ei) = P (Yi = β1 + β2x2,2 + ei) = 0.5.

Notice that
β = X−1z

where
z = (z1, z2)

T = (β1 + β2x1,2, β1 + β2x2,2)
T

and

X =

[
1 x1,2

1 x2,2

]
.

If we assume that the errors are iid N(0, 1), then P (Yi = zj) = 0 for j = 1, 2
and n ≥ 1. However,

min
i=1,...,n

|Yi − zj| = OP (n−1).

Suppose that the elemental set J = {i1, i2} is such that xij = xj and |yij −
zj| < ε for j = 1, 2. Then bJ = X−1Y J and

‖bJ − β‖ ≤ ‖X−1‖‖Y J − z‖ ≤ ‖X−1‖
√

2 ε.

Hence ‖bJ − β‖ is bounded by ε multiplied by a constant (free of n).

Example 8.6. Now assume that Yi = β1 + β2xi,2 + ei where the design
points xi,2 are iid N(0, 1). Although there are no replicates, we can still
evaluate the elemental fit at two points, say w1 and w2 where w2 > 0 is some
number (eg w2 = 1) and w1 = −w2. Since p = 2, the 1-dimensional pyramid
is simply a line segment [w1, w2] and

W =

[
1 w1

1 w2

]
.

Let region R1 = {x2 : x2 ≤ w1} and let region R2 = {x2 : x2 ≥ w2}. Now a fit
bJ will be a “good” approximation for β if J corresponds to one observation
xi1,2 from R1 and one observation xi2,2 from R2 and if both absolute errors
are small compared to w2. Notice that the observations with absolute errors
|ei| < ε fall between the two lines y = β1 + β2x2 ± ε. If the errors ei are iid
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N(0, 1), then the number of observations in regions R1 and R2 with errors
|ei| < ε will increase to ∞ as n increases to ∞ provided that

ε =
1

nδ

where 0 < δ < 1.
Now we use a trick to get bounds. Let z = W β be the true line evaluated

at w1 and w2. Thus z = (z1, z2)
T where zi = β1 + β2wi for i = 1, 2. Consider

any subset J = {i1, i2} with xij ,2 in Rj and |eij | < ε for j = 1, 2. The line
from this subset is determined by bJ = X−1

J Y J so

ẑ = WbJ

is the fitted line evaluated at w1 and w2. Let the deviation vector

δJ = (δJ,1, δJ,2)
T

where
δJ,i = zi − ẑi.

Hence
bJ = W −1(z − δJ )

and
|δJ,i| ≤ ε

by construction. Thus

‖bJ − β‖ = ‖W−1z − W−1δJ − W−1z‖

≤ ‖W −1‖‖δJ‖ ≤ ‖W −1‖
√

2 ε.

The basic idea is that if a fit is determined by one point from each region
and if the fit is good, then the fit has small deviation at points w1 and w2

because lines can’t bend. See Figure 8.3. Note that the bound is true for
every fit such that one point is in each region and both absolute errors are
less than ε. The number of such fits can be enormous. For example, if ε is a
constant, then the number of observations in region Ri with errors less than
ε is proportional to n for i = 1, 2. Hence the number of “good” fits from the
two regions is proportional to n2.
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Figure 8.3: The true line is y = x + 0.

Example 8.7. Now assume that p = 3 and Yi = β1 + β2xi,2 + β3xi,3 + ei

where the predictors (xi,2, xi,3) are scattered about the origin, eg iidN(0, I2).
Now we need a matrix W and three regions with many observations that
have small errors. Let

W =

⎡
⎣ 1 a −a/2

1 −a −a/2
1 0 a/2

⎤
⎦

for some a > 0 (eg a = 1). Note that the three points (a,−a/2)T , (−a,−a/2)T ,
and (0, a/2)T determine a triangle. Use this triangle as the pyramid. Then
the corner regions are formed by extending the three lines that form the
triangle and using points that fall opposite of a corner of the triangle. Hence

R1 = {(x2, x3)
T : x3 < −a/2 and x2 > a/2 − x3},

R2 = {(x2, x3)
T : x3 < −a/2 and x2 < x3 − a/2}, and

R3 = {(x2, x3)
T : x3 > x2 + a/2 and x3 > a/2 − x2}.

See Figure 8.4.
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Figure 8.4: The Corner Regions for Two Predictors and a Constant.

Now we can bound certain fits in a manner similar to that of Example
8.6. Again let z = Wβ. The notation x ∈ Ri will be used to indicate
that (x2, x3)

T ∈ Ri. Consider any subset J = {i1, i2, i3} with xij in Rj and
|eij | < ε for j = 1, 2, and 3. The plane from this subset is determined by
bJ = X−1

J Y J so
ẑ = WbJ

is the fitted plane evaluated at the corners of the triangle. Let the deviation
vector

δJ = (δJ,1, δJ,2, δJ,3)
T

where
δJi = zi − ẑi.

Hence
bJ = W −1(z − δJ )

and
|δJ,i| ≤ ε

by construction. Thus

‖bJ − β‖ = ‖W−1z − W−1δJ − W−1z‖
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≤ ‖W −1‖‖δJ‖ ≤ ‖W −1‖
√

3 ε.

For Example 8.7, there is a prism shaped region centered at the triangle
determined by W . Any elemental subset J with one point in each corner
region and with each absolute error less than ε produces a plane that cuts
the prism. Hence each absolute deviation at the corners of the triangle is less
than ε.

The geometry in higher dimensions uses hyperpyramids and hyperprisms.
When p = 4, the p = 4 rows that form W determine a 3–dimensional
pyramid. Again we have 4 corner regions and only consider elemental subsets
consisting of one point from each region with absolute errors less than ε.
The resulting hyperplane will cut the hyperprism formed by extending the
pyramid into 4 dimensions by a distance of ε. Hence the absolute deviations
will be less than ε.

We use the pyramids to insure that the fit from the elemental set is
good. Even if all p cases from the elemental set have small absolute errors,
the resulting fit can be very poor. Consider a typical scatterplot for simple
linear regression. Many pairs of points yield fits almost orthogonal to the
“true” line. If the 2 points are separated by a distance d, and the errors are
very small compared to d, then the fit is close to β. The separation of the
p cases in p−space by a (p − 1)–dimensional pyramid is sufficient to insure
that the elemental fit will be good if all p of the absolute errors are small.

Now we describe the pyramids in a bit more detail. Since our model
contains a constant, if p = 2, then the 1–dimensional pyramid is simply a
line segment. If p = 3, then the 2–dimensional pyramid is a triangle, and in
general the (p− 1)–dimensional pyramid is determined by p points. We also
need to define the p corner regions Ri. When p = 2, the two regions are to
the left and right of the line segment. When p = 3, the corner regions are
formed by extending the lines of the triangle. In general, there are p corner
regions, each formed by extending the p−1 surfaces of the pyramid that form
the corner. Hence each region looks like a pyramid without a base. (Drawing
pictures may help visualizing the geometry.)

The pyramid determines a p × p matrix W . Define the p × 1 vector
z = W β. Hence

β = W −1z.

Note that the p points that determine W are not actual observations, but
W will be useful as a tool to obtain a bound as in Examples 8.6 and 8.7.
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The notation x ∈ Ri will be used to indicate that (x2, ..., xp)
T ∈ Ri.

Lemma 8.11. Fix the pyramid that determines (z,W ) and consider any
elemental set (XJ ,Y J) with each point (xT

hi, yhi) such that xhi ∈ a corner
region Ri and each absolute error |yhi − xT

hiβ| ≤ ε. Then the elemental set
produces a fit bJ = X−1

J Y J such that

‖bJ − β‖ ≤ ‖W−1‖ √
p ε. (8.13)

Proof. Let the p × 1 vector z = Wβ, and consider any subset J =
{h1, h2, ..., hp} with xhi in Ri and |ehi| < ε for i = 1, 2, ..., p. The fit from
this subset is determined by bJ = X−1

J Y J so ẑ = W bJ . Let the p × 1 de-
viation vector δ = (δ1, ..., δp)

T where δi = zi − ẑi. Then bJ = W −1(z − δ)
and |δi| ≤ ε by construction. Thus ‖bJ − β‖ = ‖W −1z − W−1δ − W−1z‖
≤ ‖W −1‖‖δ‖ ≤ ‖W−1‖√p ε. QED

Remark 8.9. When all elemental sets are searched, Theorem 8.2 showed
that the rate of bo,n ≤ n. Also, the rate of bo,n ∈ [n1/2, n] since the L1

estimator is elemental and provides the lower bound.

Next we will consider all C(n, p) elemental sets and again show that best
elemental fit bo,n satisfies ‖bo,n − β‖ = OP (n−1). To get a bound, we need
to assume that the number of observations in each of the p corner regions
is proportional to n. This assumption is satisfied if the nontrivial predictors
are iid from a distribution with a joint density that is positive on the entire
(p − 1)−dimensional Euclidean space. We replace (A2) by the following
assumption.

(A3) Assume that the probability that a randomly selected x ∈ Ri is
bounded below by αi > 0 for large enough n and i = 1, ..., p.

If Ui counts the number of cases (xT
j , yj) that have xj ∈ Ri and |ei| <

Mε/Hn, then Ui is a binomial random variable with success probability pro-
portional to Mε/Hn, and the number Gn of elemental fits bJ satisfying Equa-
tion (8.13) with ε replaced by Mε/Hn satisfies

Gn ≥
p∏

i=1

Ui ∝ np(
Mε

Hn
)p.

Hence the probability that a randomly selected elemental set bJ that satisfies
‖bJ − β‖ ≤ ‖W−1‖ √

p Mε/Hn is bounded below by a probability that is
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proportional to (Mε/Hn)p. If the number of randomly selected elemental sets
Kn = Hp

n, then

P (‖bo,n − β‖ ≤ ‖W−1‖ √
p
Mε

Hn
) → 1

as Mε → ∞. Notice that one way to choose Kn is to draw Hn ≤ n cases
without replacement and then examine all Kn = C(Hn, p) elemental sets.
These remarks prove the following corollary.

Corollary 8.12. Assume that (A1) and (A3) hold. Let Hn ≤ n and
assume that Hn ↑ ∞ as n → ∞. If Kn = Hp

n elemental sets are randomly
chosen then

‖bo,n − β‖ = OP (H−1
n ) = OP (K−1/p

n ).

In particular, if all C(n, p) elemental sets are examined, then ‖bo,n−β‖ =
OP (n−1). Note that Corollary 8.12 holds as long as the bulk of the data
satisfies (A1) and (A3). Hence if a fixed percentage of outliers are added to
clean cases, rather than replacing clean cases, then Corollary 8.12 still holds.
The following result shows that elemental fits can be used to approximate
any p× 1 vector c. Of course this result is asymptotic, and some vectors will
not be well approximated for reasonable sample sizes.

Theorem 8.13. Assume that (A1) and (A3) hold and that the error
density f is positive and continuous everywhere. Then the closest elemental
fit bc,n to any p× 1 vector c satisfies ‖bc,n − c‖ = OP (n−1).

Proof sketch. The proof is essentially the same. Sandwich the plane
determined by c by only considering points such that |gi| ≡ |yi − xT

i c| < α.
Since the ei’s have positive density, P (|gi| < α) ∝ 1/α) (at least for xi in
some ball of possibly huge radius R about the origin). Also the pyramid needs
to lie on the c-plane and the corner regions will have smaller probabilities.
By placing the pyramid so that W is in the “center” of the X space, we may
assume that these probabilities are bounded away from zero, and make Mε

so large that the probability of a “good” elemental set is larger than 1 − ε.
QED

This result proves that elemental sets can be useful for projection pursuit
as conjectured by Rousseeuw and Leroy (1987, p. 145). Normally we will
only be interested in insuring that many elemental fits are close to β. If the
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errors have a pdf which is positive only in a neighborhood of 0, eg uniform(-1,
1), then Corollary 8.12 holds, but some slope intercept combinations cannot
be realized. If the errors are not symmetric about 0, then many fits may
be close to β, but estimating the constant term without bias may not be
possible. If the model does not contain a constant, then results similar to
Corollary 8.12 and Theorem 8.13 hold, but a p dimensional pyramid is used
in the proofs instead of a (p− 1) dimensional pyramid.

8.4 Complements

Olive first proved that the elemental basic resampling algorithm is incon-
sistent in 1996. My current proof is simple: for a randomly selected set of
size hn to produce a consistent estimator of β, the size hn must go to ∞ as
n→ ∞. An elemental set uses hn = p for MLR. Thus each elemental fit is an
inconsistent estimator of β, and an algorithm that chooses from K elemental
fits is also inconsistent.

For MLR where Yi = xT
i β + ei and β is a p × 1 coefficient vector, an

elemental fit bJ is the exact fit to p randomly drawn cases. The p cases
scatter about the regression plane xTβ, so a randomly drawn elemental fit
bJn will be a consistent estimator of β only if all p absolute errors |ei| go to
zero as n → ∞. For iid errors with a pdf, the probability that a randomly
drawn case has |ei| < ε goes to 0 as ε → 0. Hence if bJn is the fit from a
randomly drawn elemental set, then P (‖bJn − β‖ > ε) becomes arbitrarily
close to 1 as ε→ 0.

The widely used basic resampling and concentration algorithms that use
a fixed number K of randomly drawn elemental sets are inconsistent, because
each attractor is inconsistent. Theorem 8.8 shows that it is easy to modify
some of these algorithms so that the easily computed modified estimator is a√
n consistent high breakdown (HB) estimator. The basic idea is to evaluate

the criterion on K elemental attractors as well as on a
√
n consistent estima-

tor such as OLS and on an easily computed HB but biased estimator such
as β̂k,B. Similar ideas will be used to create easily computed

√
n consistent

HB estimators of multivariate location and dispersion. See Section 10.7.
This chapter followed Hawkins and Olive (2002) and Olive and Hawkins

(2007ab, 2008) closely. The “basic resampling”, or “elemental set” method
was used for finding outliers in the regression setting by Rousseeuw (1984),
Siegel (1982), and Hawkins, Bradu and Kass (1984). Farebrother (1997)
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sketches the history of elemental set methods. Also see Mayo and Gray
(1997). Hinich and Talwar (1975) used nonoverlapping elemental sets as an
alternative to least squares. Rubin (1980) used elemental sets for diagnostic
purposes. The “concentration” technique may have been introduced by De-
vlin, Gnanadesikan and Kettenring (1975) although a similar idea appears
Gnanadesikan and Kettenring (1972, p. 94). The concentration technique
for regression was used by Ruppert (1992) and Hawkins and Olive (1999a).

A different generalization of the elemental set method uses for its starts
subsets of size greater than p (Atkinson and Weisberg 1991). Another possi-
ble refinement is a preliminary partitioning of the cases (Woodruff and Rocke,
1994, Rocke, 1998, Rousseeuw and Van Driessen, 1999, 2002).

If an exact algorithm exists but an approximate algorithm is also used,
the two estimators should be distinguished in some manner. For example
β̂LMS could denote the estimator from the exact algorithm while β̂ALMS

could denote the estimator from the approximate algorithm. In the literature
this distinction is too seldomly made, but there are a few outliers. Portnoy
(1987) makes a distinction between LMS and PROGRESS LMS while Cook
and Hawkins (1990, p. 640) point out that the AMVE is not the minimum
volume ellipsoid (MVE) estimator (which is a high breakdown estimator of
multivariate location and dispersion that is sometimes used to define weights
in regression algorithms). Rousseeuw and Bassett (1991) find the breakdown
point and equivariance properties of the LMS algorithm that searches all
C(n, p) elemental sets. Woodruff and Rocke (1994, p. 889) point out that in
practice the algorithm is the estimator. Hawkins (1993a) has some results
when the fits are computed from disjoint elemental sets, and Rousseeuw
(1993, p. 126) states that the all subsets version of PROGRESS is a high
breakdown algorithm, but the random sampling versions of PROGRESS are
not high breakdown algorithms.

Algorithms which use one interchange on elemental sets may be compet-
itive. Heuristically, only p − 1 of the observations in the elemental set need
small absolute errors since the best interchange would be with the observa-
tion in the set with a large error and an observation outside of the set with a
very small absolute error. HenceK ∝ nδ(p−1) starts are needed. Since finding
the best interchange requires p(n − p) comparisons, the run time should be
competitive with the concentration algorithm. Another idea is to repeat the
interchange step until convergence. We do not know how many starts are
needed for this algorithm to produce good results.

Theorems 8.2 and 8.9 are a correction and extension of Hawkins (1993a,
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p. 582) which states that if the algorithm uses O(n) elemental sets, then at
least one elemental set b is likely to have its jth component bj close to the
jth component βj of β.

Note that one-step estimators can improve the rate of the initial estima-
tor. For example, see Simpson, Ruppert, and Carroll (1992). Although the
theory for the estimators in this paper requires an initial high breakdown
estimator with at least an n1/4 rate of convergence, implementations often
use an initial inconsistent, low breakdown algorithm estimator. Instead of
using lmsreg or ltsreg as the initial estimator, use the CLTS estimator of
Theorem 8.8 (or the MBA or trimmed views estimators of Sections 7.6 and
11.3). The CLTS estimator can also be used to create an asymptotically
efficient high breakdown cross checking estimator, but replacing OLS by an
efficient estimator as in Remark 8.7 is a better option.

The Rousseeuw and Leroy (1987) data sets are available from the follow-
ing website

(www.uni-koeln.de/themen/Statistik/data/rousseeuw/).

Good websites for Fortran programs of algorithm estimators include

(www.agoras.ua.ac.be/) and

(www.stat.umn.edu/ARCHIVES/archives.html).

8.5 Problems

8.1. Since an elemental fit b passes through the p cases, a necessary condition
for b to approximate β well is that all p errors be small. Hence no “good”
approximations will be lost when we consider only the cases with |ei| < ε. If
the errors are iid, then for small ε > 0, case i has

P (|ei| < ε) ≈ 2 ε f(0).

Hence if ε = 1/n(1−δ), where 0 ≤ δ < 1, find how many cases have small
errors.

8.2. Suppose that e1, ..., e100 are iid and that α > 0. Show that

P ( min
i=1,...,100

|ei| > α) = [P (|e1| > α)]100.
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Splus Problems

For problems 8.3 and 8.4, if the animal or Belgian telephone data sets
(Rousseeuw and Leroy 1987) are not available, use the following commands.

> zx <- 50:73

> zy <- -5.62 +0.115*zx + 0.25*rnorm(24)

> zy[15:20] <- sort(rnorm(6,mean=16,sd=2))

Warning: Use the command source(“A:/rpack.txt”) to download
the programs. See Preface or Section 14.2. Typing the name of the
rpack function, eg conc2, will display the code for the function. Use the args
command, eg args(conc2), to display the needed arguments for the function.

8.3. a) Download the Splus function conc2. This function does not work
in R.

b) Include the output from the following command in Word.

conc2(zx,zy)

8.4. a) Download the Splus function attract that was used to produce
Figure 8.2. This function does not work in R.

b) Repeat the following command five times.

> attract(zx,zy)

c) Include one of the plots from the command in b) in Word.

8.5. This problem will not work in R. a) Repeat the following commands
five times.

> zx <- rnorm(1000)

> zy <- 1 + 4*zx + rnorm(1000,sd=1)

> attract(zx,zy)

b) Include one of the plots from the command in a) in Word.
The elemental starts are inconsistent, but the attractors are iterated until

convergence, and the attractors look good when there are no outliers. It is
not known whether a randomly selected elemental set produces a consistent
attractor when the iteration is until convergence. Changing sd=1 to sd=5
and sd=10 is informative.
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