
Chapter 5

Multiple Linear Regression

In the multiple linear regression model,

Yi = xi,1β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei (5.1)

for i = 1, . . . , n. In matrix notation, these n equations become

Y = Xβ + e, (5.2)

where Y is an n × 1 vector of dependent variables, X is an n × p matrix
of predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1
vector of unknown errors. Equivalently,⎡⎢⎢⎢⎣
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⎡⎢⎢⎢⎣
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β2
...

βp

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
e1

e2
...
en

⎤⎥⎥⎥⎦ . (5.3)

Often the first column of X is X1 ≡ x1 = 1, the n × 1 vector of ones. The
ith case (xT

i , Yi) corresponds to the ith row xT
i of X and the ith element of

Y . If the ei are iid with zero mean and variance σ2, then regression is used
to estimate the unknown parameters β and σ2.

Definition 5.1. Given an estimate β̂ of β, the corresponding vector of
predicted or fitted values is Ŷ = Xβ̂.

Most regression methods attempt to find an estimate β̂ for β which min-
imizes some criterion function Q(b) of the residuals where the ith residual
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ri(b) = ri = Yi−xT
i b = Yi− Ŷi. The order statistics for the absolute residuals

are denoted by
|r|(1) ≤ |r|(2) ≤ · · · ≤ |r|(n).

Two of the most used classical regression methods are ordinary least squares
(OLS) and least absolute deviations (L1).

Definition 5.2. The ordinary least squares estimator β̂OLS minimizes

QOLS(b) =

n∑
i=1

r2
i (b), (5.4)

and β̂OLS = (XT X)−1XTY .

The vector of predicted or fitted values Ŷ OLS = Xβ̂OLS = HY where the
hat matrix H = X(XT X)−1XT provided the inverse exists.

Definition 5.3. The least absolute deviations estimator β̂L1
minimizes

QL1(b) =
n∑

i=1

|ri(b)|. (5.5)

Definition 5.4. The Chebyshev (L∞) estimator β̂L∞ minimizes the max-
imum absolute residual QL∞(b) = |r(b)|(n).

The location model is a special case of the multiple linear regression
(MLR) model where p = 1, X = 1 and β = μ. One very important change
in the notation will be used. In the location model, Y1, ..., Yn were assumed
to be iid with cdf F. For regression, the errors e1, ..., en will be assumed
to be iid with cdf F. For now, assume that the xT

i β are constants. Note
that Y1, ..., Yn are independent if the ei are independent, but they are not
identically distributed since if E(ei) = 0, then E(Yi) = xT

i β depends on i.
The most important regression model is defined below.

Definition 5.5. The iid constant variance symmetric error model uses
the assumption that the errors e1, ..., en are iid with a pdf that is symmetric
about zero and VAR(e1) = σ2 < ∞.

In the location model, β̂OLS = Y , β̂L1
= MED(n) and the Chebyshev

estimator is the midrange β̂L∞ = (Y(1) +Y(n))/2. These estimators are simple
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to compute, but computation in the multiple linear regression case requires a
computer. Most statistical software packages have OLS routines, and the L1

and Chebyshev fits can be efficiently computed using linear programming.
The L1 fit can also be found by examining all

C(n, p) =

(
n

p

)
=

n!

p!(n − p)!

subsets of size p where n! = n(n− 1)(n− 2) · · · 1 and 0! = 1. The Chebyshev
fit to a sample of size n > p is also a Chebyshev fit to some subsample of size
h = p+1. Thus the Chebyshev fit can be found by examining all C(n, p+1)
subsets of size p + 1. These two combinatorial facts will be very useful for
the design of high breakdown regression algorithms described in Chapters 7
and 8.

5.1 A Graphical Method for Response Trans-

formations

If the ratio of largest to smallest value of y is substantial, we usually begin
by looking at log y.

Mosteller and Tukey (1977, p. 91)

The applicability of the multiple linear regression model can be expanded
by allowing response transformations. An important class of response trans-
formation models adds an additional unknown transformation parameter λo,
such that

tλo(Yi) ≡ Y
(λo)
i = xT

i β + ei (5.6)

If λo was known, then Zi = Y
(λo)
i would follow a multiple linear regression

model with p predictors including the constant. Here, β is a p × 1 vector
of unknown coefficients depending on λo, x is a p × 1 vector of predictors
that are assumed to be measured with negligible error, and the errors ei

are assumed to be iid and symmetric about 0. A frequently used family of
transformations is given in the following definition.

Definition 5.6. Assume that all of the values of the response variable
Yi are positive. Then the power transformation family

tλ(Yi) ≡ Y
(λ)
i =

Y λ
i − 1

λ
(5.7)
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for λ �= 0 and Y
(0)
i = log(Yi). Generally λ ∈ Λ where Λ is some interval such

as [−1, 1] or a coarse subset such as Λc = {0,±1/4,±1/3,±1/2,±2/3,±1}.
This family is a special case of the response transformations considered by
Tukey (1957).

There are several reasons to use a coarse grid of powers. First, several of
the powers correspond to simple transformations such as the log, square root,
and cube root. These powers are easier to interpret than λ = .28, for example.
According to Mosteller and Tukey (1977, p. 91), the most commonly
used power transformations are the λ = 0 (log), λ = 1/2, λ = −1 and
λ = 1/3 transformations in decreasing frequency of use. Secondly, if the
estimator λ̂n can only take values in Λc, then sometimes λ̂n will converge
(eg ae) to λ∗ ∈ Λc. Thirdly, Tukey (1957) showed that neighboring power
transformations are often very similar, so restricting the possible powers to
a coarse grid is reasonable.

This section follows Cook and Olive (2001) closely and proposes a graph-
ical method for assessing response transformations under model (5.6). The
appeal of the proposed method rests with its simplicity and its ability to
show the transformation against the background of the data. The method
uses the two plots defined below.

Definition 5.7. An FFλ plot is a scatterplot matrix of the fitted values
Ŷ (λj) for j = 1, ..., 5 where λ1 = −1, λ2 = −0.5, λ3 = 0, λ4 = 0.5 and λ5 = 1.
These fitted values are obtained by OLS regression of Y (λi) on the predictors.
For λ5 = 1, we will usually replace Ŷ (1) by Ŷ and Y (1) by Y .

Definition 5.8. For a given value of λ ∈ Λc, a transformation plot is a
plot of Ŷ versus Y (λ). Since Y (1) = Y − 1, we will typically replace Y (1) by
Y in the transformation plot.

Remark 5.1. Our convention is that a plot of W versus Z means that
W is on the horizontal axis and Z is on the vertical axis. We may add fitted
OLS lines to the transformation plot as visual aids.

Application 5.1. Assume that model (5.6) is a useful approximation of
the data for some λo ∈ Λc. Also assume that each subplot in the FFλ plot is
strongly linear. To estimate λ ∈ Λc graphically, make a transformation plot
for each λ ∈ Λc. If the transformation plot is linear for λ̃, then λ̂o = λ̃. (If
more than one transformation plot is linear, contact subject matter experts
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and use the simplest or most reasonable transformation.)

By “strongly linear” we mean that a line from simple linear regression
would fit the plotted points very well, with a correlation greater than 0.95.
We introduce this procedure with the following example.

Example 5.1: Textile Data. In their pioneering paper on response
transformations, Box and Cox (1964) analyze data from a 33 experiment on
the behavior of worsted yarn under cycles of repeated loadings. The response
Y is the number of cycles to failure and a constant is used along with the
three predictors length, amplitude and load. Using the normal profile log
likelihood for λo, Box and Cox determine λ̂o = −0.06 with approximate 95
percent confidence interval −0.18 to 0.06. These results give a strong indi-
cation that the log transformation may result in a relatively simple model,
as argued by Box and Cox. Nevertheless, the numerical Box–Cox transfor-
mation method provides no direct way of judging the transformation against
the data. This remark applies also to many of the diagnostic methods for
response transformations in the literature. For example, the influence diag-
nostics studied by Cook and Wang (1983) and others are largely numerical.

To use the graphical method, we first check the assumption on the FFλ
plot. Figure 5.1 shows the FFλ plot meets the assumption. The smallest
sample correlation among the pairs in the scatterplot matrix is about 0.9995.
Shown in Figure 5.2 are transformation plots of Ŷ versus Y (λ) for four values
of λ. The plots show how the transformations bend the data to achieve a
homoscedastic linear trend. Perhaps more importantly, they indicate that
the information on the transformation is spread throughout the data in the
plot since changing λ causes all points along the curvilinear scatter in Figure
5.2a to form along a linear scatter in Figure 5.2c. Dynamic plotting using
λ as a control seems quite effective for judging transformations against the
data and the log response transformation does indeed seem reasonable.

The next example illustrates that the transformation plots can show char-
acteristics of data that might influence the choice of a transformation by the
usual Box–Cox procedure.

Example 5.2: Mussel Data. Cook and Weisberg (1999a, p. 351, 433,
447) gave a data set on 82 mussels sampled off the coast of New Zealand.
The response is muscle mass M in grams, and the predictors are the length
L and height H of the shell in mm, the logarithm log W of the shell width W,
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Figure 5.1: FFλ Plot for the Textile Data
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Figure 5.2: Four Transformation Plots for the Textile Data
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the logarithm log S of the shell mass S and a constant. With this starting
point, we might expect a log transformation of M to be needed because M
and S are both mass measurements and log S is being used as a predictor.
Using log M would essentially reduce all measurements to the scale of length.
The Box–Cox likelihood method gave λ̂0 = 0.28 with approximate 95 percent
confidence interval 0.15 to 0.4. The log transformation is excluded under this
inference leading to the possibility of using different transformations of the
two mass measurements.

The FFλ plot (not shown, but very similar to Figure 5.1) exhibits strong
linear relations, the correlations ranging from 0.9716 to 0.9999. Shown in
Figure 5.3 are transformation plots of Y (λ) versus Ŷ for four values of λ. A
striking feature of these plots is the two points that stand out in three of the
four plots (cases 8 and 48). The Box–Cox estimate λ̂ = 0.28 is evidently in-
fluenced by the two outlying points and, judging deviations from the OLS line
in Figure 5.3c, the mean function for the remaining points is curved. In other
words, the Box–Cox estimate is allowing some visually evident curvature in
the bulk of the data so it can accommodate the two outlying points. Recom-
puting the estimate of λo without the highlighted points gives λ̂o = −0.02,
which is in good agreement with the log transformation anticipated at the
outset. Reconstruction of the plots of Ŷ versus Y (λ) indicated that now the
information for the transformation is consistent throughout the data on the
horizontal axis of the plot.

The essential point of this example is that observations that influence the
choice of power transformation are often easily identified in a transformation
plot of Ŷ versus Y (λ) when the FFλ subplots are strongly linear.

The easily verified assumption that there is strong linearity in the FFλ
plot is needed since if λo ∈ [−1, 1], then

Ŷ (λ) ≈ cλ + dλŶ
(λo) (5.8)

for all λ ∈ [−1, 1]. Consequently, for any value of λ ∈ [−1, 1], Ŷ (λ) is essen-
tially a linear function of the fitted values Ŷ (λo) for the true λo, although we
do not know λo itself. However, to estimate λo graphically, we could select
any fixed value λ∗ ∈ [−1, 1] and then plot Ŷ (λ∗) versus Y (λ) for several values
of λ and find the λ ∈ Λc for which the plot is linear with constant variance.
This simple graphical procedure will then work because a plot of Ŷ (λ∗) versus
Y (λ) is equivalent to a plot of cλ∗ + dλ∗Ŷ (λo) versus Y (λ) by Equation (5.8).
Since the plot of Ŷ (1) versus Y (λ) differs from a plot of Ŷ versus Y (λ) by a
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Figure 5.3: Transformation Plots for the Mussel Data
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constant shift, we take λ∗ = 1, and use Ŷ instead of Ŷ (1). By using a single
set of fitted values Ŷ on the horizontal axis, influential points or outliers that
might be masked in plots of Ŷ (λ) versus Y (λ) for λ ∈ Λc will show up unless
they conform on all scales.

Note that in addition to helping visualize λ̂ against the data, the transfor-
mation plots can also be used to show the curvature and heteroscedasticity in
the competing models indexed by λ ∈ Λc. Example 5.2 shows that the plot
can also be used as a diagnostic to assess the success of numerical methods
such as the Box–Cox procedure for estimating λo.

There are at least two interesting facts about the strength of the linearity
in the FFλ plot. First, the FFλ correlations are frequently all quite high for
many data sets when no strong linearities are present among the predictors.
Let x = (x1, w

T )T where x1 ≡ 1 and let β = (β1, η
T )T . Then w corre-

sponds to the nontrivial predictors. If the conditional predictor expectation
E(w|wT η) is linear or if w follows an elliptically contoured distribution with
second moments, then for any λ (not necessarily confined to a selected Λ),

the population fitted values Ŷ
(λ)
pop are of the form

Ŷ (λ)
pop = αλ + τλw

T η (5.9)

so that any one set of population fitted values is an exact linear function
of any other set provided the τλ’s are nonzero. See Cook and Olive (2001).
This result indicates that sample FFλ plots will be linear when E(w|wT η) is
linear, although Equation (5.9) does not by itself guarantee high correlations.
However, the strength of the relationship (5.8) can be checked easily by
inspecting the FFλ plot.

Secondly, if the FFλ subplots are not strongly linear, and if there is non-
linearity present in the scatterplot matrix of the nontrivial predictors, then
transforming the predictors to remove the nonlinearity will often
be a useful procedure. The linearizing of the predictor relationships could
be done by using marginal power transformations or by transforming the
joint distribution of the predictors towards an elliptically contoured distri-
bution. The linearization might also be done by using simultaneous power

transformations λ = (λ2, . . . , λp)
T of the predictors so that the vector wλ

= (x
(λ2)
2 , ..., x

(λp)
p )T of transformed predictors is approximately multivariate

normal. A method for doing this was developed by Velilla (1993). (The basic
idea is the same as that underlying the likelihood approach of Box and Cox
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Figure 5.4: FFλ Plot for Mussel Data with Original Predictors

for estimating a power transformation of the response in regression, but the

likelihood comes from the assumed multivariate normal distribution of wλ.)
More will be said about predictor transformations in Sections 5.3 and 12.3.

Example 5.3: Mussel Data Again. Return to the mussel data, this
time considering the regression of M on a constant and the four untrans-
formed predictors L, H, W and S. The FFλ plot for this regression is shown
in Figure 5.4. The sample correlations in the plots range between 0.76 and
0.991 and there is notable curvature in some of the plots. Figure 5.5 shows
the scatterplot matrix of the predictors L, H, W and S. Again nonlinearity
is present. Figure 5.6 shows that taking the log transformations of W and
S results in a linear scatterplot matrix for the new set of predictors L, H,
log W , and log S. Then the search for the response transformation can be
done as in Example 5.2.
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5.2 Assessing Variable Selection

Variable selection, also called subset or model selection, is the search for a
subset of predictor variables that can be deleted without important loss of
information. This section follows Olive and Hawkins (2005) closely. A model
for variable selection in multiple linear regression can be described by

Y = xTβ + e = βTx + e = βT
SxS + βT

ExE + e = βT
SxS + e (5.10)

where e is an error, Y is the response variable, x = (xT
S , xT

E)T is a p × 1
vector of predictors, xS is a kS × 1 vector and xE is a (p − kS) × 1 vector.
Given that xS is in the model, βE = 0 and E denotes the subset of terms
that can be eliminated given that the subset S is in the model.

Since S is unknown, candidate subsets will be examined. Let xI be the
vector of k terms from a candidate subset indexed by I , and let xO be the
vector of the remaining predictors (out of the candidate submodel). Then

Y = βT
I xI + βT

OxO + e. (5.11)

Definition 5.9. The model Y = βTx + e that uses all of the predictors
is called the full model. A model Y = βT

I xI + e that only uses a subset xI

of the predictors is called a submodel. The sufficient predictor (SP) is the
linear combination of the predictor variables used in the model. Hence the
full model is SP = βTx and the submodel is SP = βT

I xI .

Notice that the full model is a submodel. The estimated sufficient
predictor (ESP) is β̂

T
x and the following remarks suggest that a submodel I

is worth considering if the correlation corr(ESP, ESP (I)) ≥ 0.95. Suppose
that S is a subset of I and that model (5.10) holds. Then

SP = βTx = βT
SxS = βT

SxS + βT
(I/S)xI/S + 0TxO = βT

I xI (5.12)

where xI/S denotes the predictors in I that are not in S. Since this is true
regardless of the values of the predictors, βO = 0 and the sample correlation
corr(βT xi, β

T
I xI,i) = 1.0 for the population model if S ⊆ I .

This section proposes a graphical method for evaluating candidate sub-
models. Let β̂ be the estimate of β obtained from the regression of Y on all
of the terms x. Denote the residuals and fitted values from the full model by

ri = Yi − β̂
T
xi = Yi − Ŷi and Ŷi = β̂

T
xi respectively. Similarly, let β̂I be the
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estimate of βI obtained from the regression of Y on xI and denote the cor-

responding residuals and fitted values by rI,i = Yi − β̂
T

I xI,i and ŶI,i = β̂
T

I xI,i

where i = 1, ..., n. Two important summary statistics for a multiple linear re-
gression model are R2, the proportion of the variability of Y explained by the
nontrivial predictors in the model, and the estimate σ̂ of the error standard
deviation σ.

Definition 5.10. The “fit–fit” or FF plot is a plot of ŶI,i versus Ŷi while
a “residual–residual” or RR plot is a plot rI,i versus ri. A response plot is a

plot of ŶI,i versus Yi.

Many numerical methods such as forward selection, backward elimina-
tion, stepwise and all subset methods using the Cp(I) criterion (Jones 1946,
Mallows 1973), have been suggested for variable selection. We will use the
FF plot, RR plot, the response plots from the full and submodel, and the
residual plots (of the fitted values versus the residuals) from the full and
submodel. These six plots will contain a great deal of information about
the candidate subset provided that Equation (5.10) holds and that a good
estimator for β̂ and β̂I is used.

For these plots to be useful, it is crucial to verify that a multiple lin-
ear regression (MLR) model is appropriate for the full model. Both the
response plot and the residual plot for the full model need to be
used to check this assumption. The plotted points in the response plot
should cluster about the identity line (that passes through the origin with
unit slope) while the plotted points in the residual plot should cluster about
the horizontal axis (the line r = 0). Any nonlinear patterns or outliers in
either plot suggests that an MLR relationship does not hold. Similarly, be-
fore accepting the candidate model, use the response plot and the residual
plot from the candidate model to verify that an MLR relationship holds for
the response Y and the predictors xI . If the submodel is good, then the
residual and response plots of the submodel should be nearly identical to the
corresponding plots of the full model. Assume that all submodels contain a
constant.

Application 5.2. To visualize whether a candidate submodel using pre-
dictors xI is good, use the fitted values and residuals from the submodel and
full model to make an RR plot of the rI,i versus the ri and an FF plot of ŶI,i

versus Ŷi. Add the OLS line to the RR plot and identity line to both plots as
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visual aids. The subset I is good if the plotted points cluster tightly about
the identity line in both plots. In particular, the OLS line and the identity
line should nearly coincide near the origin in the RR plot.

To verify that the six plots are useful for assessing variable selection,
the following notation will be useful. Suppose that all submodels include
a constant and that X is the full rank n × p design matrix for the full
model. Let the corresponding vectors of OLS fitted values and residuals be
Ŷ = X(XTX)−1XTY = HY and r = (I − H)Y , respectively. Sup-
pose that XI is the n × k design matrix for the candidate submodel and
that the corresponding vectors of OLS fitted values and residuals are Ŷ I =
XI(X

T
I X I)

−1XT
I Y = H IY and rI = (I − HI)Y , respectively. For mul-

tiple linear regression, recall that if the candidate model of xI has k terms
(including the constant), then the FI statistic for testing whether the p − k
predictor variables in xO can be deleted is

FI =
SSE(I) − SSE

(n − k) − (n − p)
/

SSE

n − p
=

n − p

p − k
[
SSE(I)

SSE
− 1]

where SSE is the error sum of squares from the full model and SSE(I) is the
error sum of squares from the candidate submodel. Also recall that

Cp(I) =
SSE(I)

MSE
+ 2k − n = (p − k)(FI − 1) + k

where MSE is the error mean square for the full model. Notice that Cp(I) ≤
2k if and only if FI ≤ p/(p − k). Remark 5.3 below suggests that for subsets
I with k terms, submodels with Cp(I) ≤ 2k are especially interesting.

A plot can be very useful if the OLS line can be compared to a reference
line and if the OLS slope is related to some quantity of interest. Suppose
that a plot of w versus z places w on the horizontal axis and z on the vertical
axis. Then denote the OLS line by ẑ = a + bw. The following proposition
shows that the FF, RR and response plots will cluster about the identity
line. Notice that the proposition is a property of OLS and holds even if the
data does not follow an MLR model. Let corr(x, y) denote the correlation
between x and y.

Proposition 5.1. Suppose that every submodel contains a constant and
that X is a full rank matrix.
Response Plot: i) If w = ŶI and z = Y then the OLS line is the identity
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line.
ii) If w = Y and z = ŶI then the OLS line has slope b = [corr(Y, ŶI)]

2 = R2
I

and intercept a = Y (1 − R2
I) where Y =

∑n
i=1 Yi/n and R2

I is the coefficient
of multiple determination from the candidate model.
FF Plot: iii) If w = ŶI and z = Ŷ then the OLS line is the identity line.
Note that ESP (I) = ŶI and ESP = Ŷ .
iv) If w = Ŷ and z = ŶI then the OLS line has slope b = [corr(Ŷ , ŶI)]

2 =
SSR(I)/SSR and intercept a = Y [1 − (SSR(I)/SSR)] where SSR is the
regression sum of squares.
v) If w = r and z = rI then the OLS line is the identity line.
RR Plot: vi) If w = rI and z = r then a = 0 and the OLS slope b =
[corr(r, rI)]

2 and

corr(r, rI) =

√
SSE

SSE(I)
=

√
n − p

Cp(I) + n − 2k
=

√
n − p

(p − k)FI + n − p
.

Proof: Recall that H and HI are symmetric idempotent matrices and
that HHI = HI . The mean of OLS fitted values is equal to Y and the
mean of OLS residuals is equal to 0. If the OLS line from regressing z on w
is ẑ = a + bw, then a = z − bw and

b =

∑
(wi − w)(zi − z)∑

(wi −w)2
=

SD(z)

SD(w)
corr(z, w).

Also recall that the OLS line passes through the means of the two variables
(w, z).

(*) Notice that the OLS slope from regressing z on w is equal to one if
and only if the OLS slope from regressing w on z is equal to [corr(z, w)]2.

i) The slope b = 1 if
∑

ŶI,iYi =
∑

Ŷ 2
I,i. This equality holds since Ŷ

T

I Y =

Y T HIY = Y T HIHIY = Ŷ
T

I Ŷ I . Since b = 1, a = Y − Y = 0.

ii) By (*), the slope

b = [corr(Y, ŶI)]
2 = R2

I =

∑
(ŶI,i − Y )2∑
(Yi − Y )2

= SSR(I)/SST.

The result follows since a = Y − bY .
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iii) The slope b = 1 if
∑

ŶI,iŶi =
∑

Ŷ 2
I,i. This equality holds since

Ŷ
T
Ŷ I = Y T HHIY = Y THIY = Ŷ

T

I Ŷ I . Since b = 1, a = Y − Y = 0.

iv) From iii),

1 =
SD(Ŷ )

SD(ŶI)
[corr(Ŷ , ŶI)].

Hence

corr(Ŷ , ŶI) =
SD(ŶI)

SD(Ŷ )

and the slope

b =
SD(ŶI)

SD(Ŷ )
corr(Ŷ , ŶI) = [corr(Ŷ , ŶI)]

2.

Also the slope

b =

∑
(ŶI,i − Y )2∑
(Ŷi − Y )2

= SSR(I)/SSR.

The result follows since a = Y − bY .

v) The OLS line passes through the origin. Hence a = 0. The slope
b = rT rI/r

Tr. Since rT rI = Y T (I−H)(I−HI)Y and (I−H)(I −HI) =
I − H , the numerator rTrI = rTr and b = 1.

vi) Again a = 0 since the OLS line passes through the origin. From v),

1 =

√
SSE(I)

SSE
[corr(r, rI)].

Hence

corr(r, rI) =

√
SSE

SSE(I)

and the slope

b =

√
SSE

SSE(I)
[corr(r, rI)] = [corr(r, rI)]

2.

Algebra shows that

corr(r, rI) =

√
n − p

Cp(I) + n − 2k
=

√
n − p

(p − k)FI + n − p
. QED
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Remark 5.2. Note that for large n, Cp(I) < k or FI < 1 will force

corr(ESP,ESP(I)) to be high. If the estimators β̂ and β̂I are not the OLS
estimators, the plots will be similar to the OLS plots if the correlation of the
fitted values from OLS and the alternative estimators is high (≥ 0.95).

A standard model selection procedure will often be needed to suggest
models. For example, forward selection or backward elimination could be
used. If p < 30, Furnival and Wilson (1974) provide a technique for selecting
a few candidate subsets after examining all possible subsets.

Remark 5.3. Daniel and Wood (1980, p. 85) suggest using Mallows’
graphical method for screening subsets by plotting k versus Cp(I) for models
close to or under the Cp = k line. Proposition 5.1 vi) implies that if Cp(I) ≤ k
then corr(r, rI) and corr(ESP, ESP (I)) both go to 1.0 as n → ∞. Hence
models I that satisfy the Cp(I) ≤ k screen will contain the true model S
with high probability when n is large. This result does not guarantee that
the true model S will satisfy the screen, hence overfit is likely (see Shao
1993). Let d be a lower bound on corr(r, rI). Proposition 5.1 vi) implies that
if

Cp(I) ≤ 2k + n

[
1

d2
− 1

]
− p

d2
,

then corr(r, rI) ≥ d. The simple screen Cp(I) ≤ 2k corresponds to

dn ≡
√

1 − p

n
.

To reduce the chance of overfitting, use the Cp = k line for large values of k,
but also consider models close to or under the Cp = 2k line when k ≤ p/2.

Example 5.4. The FF and RR plots can be used as a diagnostic for
whether a given numerical method is including too many variables. Glad-
stone (1905-1906) attempts to estimate the weight of the human brain (mea-
sured in grams after the death of the subject) using simple linear regression
with a variety of predictors including age in years, height in inches, head
height in mm, head length in mm, head breadth in mm, head circumference
in mm, and cephalic index. The sex (coded as 0 for females and 1 for males)
of each subject was also included. The variable cause was coded as 1 if the
cause of death was acute, 3 if the cause of death was chronic, and coded as 2
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Figure 5.7: Gladstone data: comparison of the full model and the submodel.

otherwise. A variable ageclass was coded as 0 if the age was under 20, 1 if the
age was between 20 and 45, and as 3 if the age was over 45. Head size, the
product of the head length, head breadth, and head height, is a volume mea-
surement, hence (size)1/3 was also used as a predictor with the same physical
dimensions as the other lengths. Thus there are 11 nontrivial predictors and
one response, and all models will also contain a constant. Nine cases were
deleted because of missing values, leaving 267 cases.

Figure 5.7 shows the response plots and residual plots for the full model
and the final submodel that used a constant, size1/3, age and sex. The five
cases separated from the bulk of the data in each of the four plots correspond
to five infants. These may be outliers, but the visual separation reflects the
small number of infants and toddlers in the data. A purely numerical variable
selection procedure would miss this interesting feature of the data. We will
first perform variable selection with the entire data set, and then examine the
effect of deleting the five cases. Using forward selection and the Cp statistic
on the Gladstone data suggests the subset I5 containing a constant, (size)1/3,
age, sex, breadth, and cause with Cp(I5) = 3.199. The p–values for breadth
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Figure 5.8: Gladstone data: submodels added (size)1/3, sex, age and finally
breadth.

SRES3

F
R

E
S

-200 -100 0 100 200

-2
00

-1
00

0
10

0
20

0

a) RR Plot

SFIT3

F
F

IT

400 600 800 1000 1200 1400

40
0

60
0

80
0

10
00

12
00

14
00

b) FF Plot

Figure 5.9: Gladstone data with Predictors (size)1/3, sex, and age
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and cause were 0.03 and 0.04, respectively. The subset I4 that deletes cause
has Cp(I4) = 5.374 and the p–value for breadth was 0.05. Figure 5.8d shows
the RR plot for the subset I4. Note that the correlation of the plotted points
is very high and that the OLS and identity lines nearly coincide.

A scatterplot matrix of the predictors and response suggests that (size)1/3

might be the best single predictor. First we regressed Y = brain weight on
the eleven predictors described above (plus a constant) and obtained the
residuals ri and fitted values Ŷi. Next, we regressed Y on the subset I
containing (size)1/3 and a constant and obtained the residuals rI,i and the

fitted values ŶI,i. Then the RR plot of rI,i versus ri, and the FF plot of ŶI,i

versus Ŷi were constructed.
For this model, the correlation in the FF plot (Figure 5.8b) was very high,

but in the RR plot the OLS line did not coincide with the identity line (Figure
5.8a). Next sex was added to I , but again the OLS and identity lines did not
coincide in the RR plot (Figure 5.8c). Hence age was added to I. Figure 5.9a
shows the RR plot with the OLS and identity lines added. These two lines
now nearly coincide, suggesting that a constant plus (size)1/3, sex, and age
contains the relevant predictor information. This subset has Cp(I) = 7.372,
R2

I = 0.80, and σ̂I = 74.05. The full model which used 11 predictors and a
constant has R2 = 0.81 and σ̂ = 73.58. Since the Cp criterion suggests adding
breadth and cause, the Cp criterion may be leading to an overfit.

Figure 5.9b shows the FF plot. The five cases in the southwest corner
correspond to five infants. Deleting them leads to almost the same conclu-
sions, although the full model now has R2 = 0.66 and σ̂ = 73.48 while the
submodel has R2

I = 0.64 and σ̂I = 73.89.

Example 5.5. Cook and Weisberg (1999a, p. 261, 371) describe a data
set where rats were injected with a dose of a drug approximately proportional
to body weight. The data set is included as the file rat.lsp in the Arc soft-
ware and can be obtained from the website (www.stat.umn.edu/arc/). The
response Y is the fraction of the drug recovered from the rat’s liver. The
three predictors are the body weight of the rat, the dose of the drug, and the
liver weight. The experimenter expected the response to be independent of
the predictors, and 19 cases were used. However, the Cp criterion suggests
using the model with a constant, dose and body weight, both of whose co-
efficients were statistically significant. The FF and RR plots are shown in
Figure 5.10. The identity line and OLS lines were added to the plots as visual
aids. The FF plot shows one outlier, the third case, that is clearly separated
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Figure 5.10: FF and RR Plots for Rat Data

from the rest of the data.
We deleted this case and again searched for submodels. The Cp statistic

is less than one for all three simple linear regression models, and the RR and
FF plots look the same for all submodels containing a constant. Figure 5.11
shows the RR plot where the residuals from the full model are plotted against
Y −Y , the residuals from the model using no nontrivial predictors. This plot
suggests that the response Y is independent of the nontrivial predictors.

The point of this example is that a subset of outlying cases can cause
numeric second-moment criteria such as Cp to find structure that does not
exist. The FF and RR plots can sometimes detect these outlying cases,
allowing the experimenter to run the analysis without the influential cases.
The example also illustrates that global numeric criteria can suggest a model
with one or more nontrivial terms when in fact the response is independent
of the predictors.

Numerical variable selection methods for MLR are very sensitive to “influ-
ential cases” such as outliers. For the MLR model, standard case diagnostics
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Figure 5.11: RR Plot With Outlier Deleted, Submodel Uses No Predictors

are the full model residuals ri and the Cook’s distances

CDi =
r2
i

pσ̂2(1 − hi)

hi

(1 − hi)
, (5.13)

where hi is the leverage and σ̂2 is the usual estimate of the error variance.
(See Chapter 6 for more details about these quantities.)

Definition 5.11. The RC plot is a plot of the residuals ri versus the
Cook’s distances CDi.

Though two-dimensional, the RC plot shows cases’ residuals, leverage,
and influence together. Notice that cases with the same leverage define
a parabola in the RC plot. In an ideal setting with no outliers or undue
case leverage, the plotted points should have an evenly-populated parabolic
shape. This leads to a graphical approach of making the RC plot, temporarily
deleting cases that depart from the parabolic shape, refitting the model and
regenerating the plot to see whether it now conforms to the desired shape.

The cases deleted in this approach have atypical leverage and/or devi-
ation. Such cases often have substantial impact on numerical variable se-
lection methods, and the subsets identified when they are excluded may be
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very different from those using the full data set, a situation that should cause
concern.

Warning: deleting influential cases and outliers will often lead to
better plots and summary statistics, but the cleaned data may no
longer represent the actual population. In particular, the resulting
model may be very poor for both prediction and description.

A thorough subset selection analysis will use the RC plots in conjunction
with the more standard numeric-based algorithms. This suggests running
the numerical variable selection procedure on the entire data set and on the
“cleaned data” set with the influential cases deleted, keeping track of inter-
esting models from both data sets. For a candidate submodel I , let Cp(I, c)
denote the value of the Cp statistic for the cleaned data. The following two
examples help illustrate the procedure.

Example 5.6. Ashworth (1842) presents a data set of 99 communities
in Great Britain. The response variable Y = log(population in 1841) and
the predictors are x1, x2, x3 and a constant where x1 is log(property value in
pounds in 1692), x2 is log(property value in pounds in 1841), and x3 is the
log(percent rate of increase in value). The initial RC plot, shown in Figure
5.12a, is far from the ideal of an evenly-populated parabolic band. Cases
14 and 55 have extremely large Cook’s distances, along with the largest
residuals. After deleting these cases and refitting OLS, Figure 5.12b shows
that the RC plot is much closer to the ideal parabolic shape. If case 16 had a
residual closer to zero, then it would be a very high leverage case and would
also be deleted.

Table 5.1 shows the summary statistics of the fits of all subsets using all
cases, and following the removal of cases 14 and 55. The two sets of results
are substantially different. On the cleaned data the submodel using just x2

is the unique clear choice, with Cp(I, c) = 0.7. On the full data set however,
none of the subsets is adequate. Thus cases 14 and 55 are responsible for all
indications that predictors x1 and x3 have any useful information about Y.
This is somewhat remarkable in that these two cases have perfectly ordinary
values for all three variables.

Example 5.4 (continued). Now we will apply the RC plot to the Glad-
stone data using Y = brain weight, x1 = age, x2 = height, x3 = head height,
x4 = head length, x5 = head breadth, x6 = head circumference, x7 = cephalic
index, x8 = sex, and x9 = (size)1/3. All submodels contain a constant.
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Figure 5.12: Plots for the Ashworth Population Data
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Table 5.1: Exploration of Subsets – Ashworth Data

All cases 2 removed
Subset I k SSE Cp(I) SSE Cp(I, c)
x1 2 93.41 336 91.62 406
x2 2 23.34 12.7 17.18 0.7
x3 2 105.78 393 95.17 426
x1, x2 3 23.32 14.6 17.17 2.6
x1, x3 3 23.57 15.7 17.07 2.1
x2, x3 3 22.81 12.2 17.17 2.6
All 4 20.59 4.0 17.05 4.0

Table 5.2: Some Subsets – Gladstone Brain Data

All cases Cleaned data
Subset I k SSE ×103 Cp(I) SSE×103 Cp(I, c)
x1, x9 3 1486 12.6 1352 10.8
x8, x9 3 1655 43.5 1516 42.8
x1, x8, x9 4 1442 6.3 1298 2.3
x1, x5, x9 4 1463 10.1 1331 8.7
x1, x5, x8, x9 5 1420 4.4 1282 1.2
All 10 1397 10.0 1276 10.0

Table 5.2 shows the summary statistics of the more interesting subset
regressions. The smallest Cp value came from the subset x1, x5, x8, x9, and
in this regression x5 has a t value of −2.0. Deleting a single predictor from
an adequate regression changes the Cp by approximately t2 − 2, where t
stands for that predictor’s Student’s t in the regression – as illustrated by the
increase in Cp from 4.4 to 6.3 following deletion of x5. Analysts must choose
between the larger regression with its smaller Cp but a predictor that does
not pass the conventional screens for statistical significance, and the smaller,
more parsimonious, regression using only apparently statistically significant
predictors, but (as assessed by Cp) possibly less accurate predictive ability.

Figure 5.13 shows a sequence of RC plots used to identify cases 118, 234,
248 and 258 as atypical, ending up with an RC plot that is a reasonably
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Table 5.3: Summaries for Seven Data Sets

influential cases submodel I p, Cp(I), Cp(I, c)
file, response transformed predictors

14, 55 log(x2) 4, 12.665, 0.679
pop, log(y) log(x1), log(x2), log(x3)

118, 234, 248, 258 (size)1/3, age, sex 10, 6.337, 3.044
cbrain,brnweight (size)1/3

118, 234, 248, 258 (size)1/3, age, sex 10, 5.603, 2.271
cbrain-5,brnweight (size)1/3

11, 16, 56 sternal height 7, 4.456, 2.151
cyp,height none

3, 44 x2, x5 6, 0.793, 7.501
major,height none

11, 53, 56, 166 log(LBM), log(Wt), sex 12, −1.701, 0.463

ais,%Bfat log(Ferr), log(LBM), log(Wt),
√

Ht
3 no predictors 4, 6.580, −1.700

rat,y none

evenly-populated parabolic band. Using the Cp criterion on the cleaned data
suggests the same final submodel I found earlier – that using a constant,
x1 = age, x8 = sex and x9 = size1/3.

The five cases (230, 254, 255, 256 and 257) corresponding to the five
infants were well separated from the bulk of the data and have higher leverage
than average, and so good exploratory practice would be to remove them also
to see the effect on the model fitting. The right columns of Table 5.2 reflect
making these 9 deletions. As in the full data set, the subset x1, x5, x8, x9 gives
the smallest Cp, but x5 is of only modest statistical significance and might
reasonably be deleted to get a more parsimonious regression. What is striking
after comparing the left and right columns of Table 5.2 is that, as was the
case with the Ashworth data set, the adequate Cp values for the cleaned data
set seem substantially smaller than their full-sample counterparts: 1.2 versus
4.4, and 2.3 versus 6.3. Since these Cp for the same p are dimensionless and
comparable, this suggests that the 9 cases removed are primarily responsible
for any additional explanatory ability in the 6 unused predictors.
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Multiple linear regression data sets with cases that influence numerical
variable selection methods are common. Table 5.3 shows results for seven
interesting data sets. The first two rows correspond to the Ashworth data in
Example 5.6, the next 2 rows correspond to the Gladstone Data in Example
5.4, and the next 2 rows correspond to the Gladstone data with the 5 infants
deleted. Rows 7 and 8 are for the Buxton (1920) data while rows 9 and
10 are for the Tremearne (1911) data. These data sets are available from
the book’s website as files pop.lsp, cbrain.lsp, cyp.lsp and major.lsp.
Results from the final two data sets are given in the last 4 rows. The last 2
rows correspond to the rat data described in Example 5.5. Rows 11 and 12
correspond to the Ais data that comes with Arc (Cook and Weisberg, 1999a).

The full model used p predictors, including a constant. The final sub-
model I also included a constant, and the nontrivial predictors are listed in
the second column of Table 5.3. The third column lists p, Cp(I) and Cp(I, c)
while the first column gives the set of influential cases. Two rows are pre-
sented for each data set. The second row gives the response variable and any
predictor transformations. For example, for the Gladstone data p = 10 since
there were 9 nontrivial predictors plus a constant. Only the predictor size
was transformed, and the final submodel is the one given in Example 5.4.
For the rat data, the final submodel is the one given in Example 5.5: none
of the 3 nontrivial predictors was used.

Table 5.3 and simulations suggest that if the subset I has k predictors,
then using the Cp(I) ≤ 2k screen is better than using the conventional
Cp(I) ≤ k screen. The major and ais data sets show that deleting the
influential cases may increase the Cp statistic. Thus interesting models from
the entire data set and from the clean data set should be examined.

5.3 Asymptotically Optimal Prediction Inter-

vals

This section gives estimators for predicting a future or new value Yf of
the response variable given the predictors xf , and for estimating the mean
E(Yf ) ≡ E(Yf |xf). This mean is conditional on the values of the predictors
xf , but the conditioning is often suppressed.

Warning: All too often the MLR model seems to fit the data

(Y1, x1), ..., (Yn, xn)
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well, but when new data is collected, a very different MLR model is needed
to fit the new data well. In particular, the MLR model seems to fit the data
(Yi, xi) well for i = 1, ..., n, but when the researcher tries to predict Yf for a

new vector of predictors xf , the prediction is very poor in that Ŷf is not close
to the Yf actually observed. Wait until after the MLR model has been
shown to make good predictions before claiming that the model
gives good predictions!

There are several reasons why the MLR model may not fit new data
well. i) The model building process is usually iterative. Data Z, w1, ..., wk

is collected. If the model is not linear, then functions of Z are used as a
potential response and functions of the wi as potential predictors. After trial
and error, the functions are chosen, resulting in a final MLR model using Y
and x1, ..., xp. Since the same data set was used during this process, biases
are introduced and the MLR model fits the “training data” better than it
fits new data. Suppose that Y , x1, ..., xp are specified before collecting data
and that the residual and response plots from the resulting MLR model look
good. Then predictions from the prespecified model will often be better for
predicting new data than a model built from an iterative process.

ii) If (Yf , xf ) come from a different population than the population of
(Y1, x1), ..., (Yn, xn), then prediction for Yf can be arbitrarily bad.

iii) Even a good MLR model may not provide good predictions for an xf

that is far from the xi (extrapolation).
iv) The MLR model may be missing important predictors (underfitting).
v) The MLR model may contain unnecessary predictors (overfitting).

Two remedies for i) are a) use previously published studies to select an
MLR model before gathering data. b) Do a trial study. Collect some data,
build an MLR model using the iterative process. Then use this model as the
prespecified model and collect data for the main part of the study. Better
yet, do a trial study, specify a model, collect more trial data, improve the
specified model and repeat until the latest specified model works well. Un-
fortunately, trial studies are often too expensive or not possible because the
data is difficult to collect. Also, often the population from a published study
is quite different from the population of the data collected by the researcher.
Then the MLR model from the published study is not adequate.

Definition 5.12. Consider the MLR model Y = Xβ + e and the hat
matrix H = X(XT X)−1XT . Let hi = hii be the ith diagonal element of H
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for i = 1, ..., n. Then hi is called the ith leverage and hi = xT
i (XTX)−1xi.

Suppose new data is to be collected with predictor vector xf . Then the
leverage of xf is hf = xT

f (XT X)−1xf . Extrapolation occurs if xf is far
from the x1, ..., xn.

Rule of thumb 5.1. Predictions based on extrapolation are not reliable.
A rule of thumb is that extrapolation occurs if hf > max(h1, ..., hn). This
rule works best if the predictors are linearly related in that a plot of xi versus
xj should not have any strong nonlinearities. If there are strong nonlinearities
among the predictors, then xf could be far from the xi but still have hf <
max(h1, ..., hn).

Example 5.7. Consider predicting Y = weight from x = height and a
constant from data collected on men between 18 and 24 where the minimum
height was 57 and the maximum height was 79 inches. The OLS equation
was Ŷ = −167 + 4.7x. If x = 70 then Ŷ = −167 + 4.7(70) = 162 pounds.
If x = 1 inch, then Ŷ = −167 + 4.7(1) = −162.3 pounds. It is impossible
to have negative weight, but it is also impossible to find a 1 inch man. This
MLR model should not be used for x far from the interval (57, 79).

Definition 5.13. Consider the iid error MLR model Y = xT β+ e where
E(e) = 0. Then regression function is the hyperplane

E(Y ) ≡ E(Y |x) = x1β1 + x2β2 + · · · + xpβp = xTβ. (5.14)

Assume OLS is used to find β̂. Then the point estimator of Yf given x = xf

is
Ŷf = xf,1β̂1 + · · · + xf,pβ̂p = xT

f β̂. (5.15)

The point estimator of E(Yf ) ≡ E(Yf |xf ) given x = xf is also Ŷf = xT
f β̂.

Assume that the MLR model contains a constant β1 so that x1 ≡ 1. The large
sample 100 (1 − α)% confidence interval (CI) for E(Yf |xf) = xT

f β = E(Ŷf )
is

Ŷf ± t1−α/2,n−pse(Ŷf) (5.16)

where P (T ≤ tn−p,α) = α if T has a t distribution with n − p degrees of

freedom. Generally se(Ŷf) will come from output, but

se(Ŷf) =
√

MSE hf =
√

MSE xT
f (XT X)−1xf .
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Recall the interpretation of a 100 (1 − α)% CI for a parameter μ is that
if you collect data then form the CI, and repeat for a total of k times where
the k trials are independent from the same population, then the probability
that m of the CIs will contain μ follows a binomial(k, ρ = 1−α) distribution.
Hence if 100 95% CIs are made, ρ = 0.95 and about 95 of the CIs will contain
μ while about 5 will not. Any given CI may (good sample) or may not (bad
sample) contain μ, but the probability of a “bad sample” is α.

The following theorem is analogous to the central limit theorem and the
theory for the t–interval for μ based on Y and the sample standard deviation
(SD) SY . If the data Y1, ..., Yn are iid with mean 0 and variance σ2, then Y is
asymptotically normal and the t–interval will perform well if the sample size
is large enough. The result below suggests that the OLS estimators Ŷi and
β̂ are good if the sample size is large enough. The condition max hi → 0 in
probability usually holds if the researcher picked the design matrix X or if
the xi are iid random vectors from a well behaved population. Outliers can
cause the condition to fail.

Theorem 5.2: Huber (1981, p. 157-160). Consider the MLR model
Yi = xT

i β + ei and assume that the errors are independent with zero mean
and the same variance: E(ei) = 0 and VAR(ei) = σ2. Also assume that
maxi(h1, ..., hn) → 0 in probability as n → ∞. Then

a) Ŷi = xT
i β̂ → E(Yi|xi) = xiβ in probability for i = 1, ..., n as n → ∞.

b) All of the least squares estimators aT β̂ are asymptotically normal
where a is any fixed constant p × 1 vector.

Definition 5.14. A large sample 100(1 − α)% prediction interval (PI)

has the form (L̂n, Ûn) where P (L̂n < Yf < Ûn)
P→ 1 − α as the sample size

n → ∞. For the Gaussian MLR model, assume that the random variable Yf

is independent of Y1, ..., Yn. Then the 100 (1 − α)% PI for Yf is

Ŷf ± t1−α/2,n−pse(pred) (5.17)

where P (T ≤ tn−p,α) = α if T has a t distribution with n − p degrees of
freedom. Generally se(pred) will come from output, but

se(pred) =
√

MSE (1 + hf ).
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The interpretation of a 100 (1−α)% PI for a random variable Yf is similar
to that of a CI. Collect data, then form the PI, and repeat for a total of k
times where k trials are independent from the same population. If Yfi is the
ith random variable and PIi is the ith PI, then the probability that Yfi ∈ PIi

for m of the PIs follows a binomial(k, ρ = 1 − α) distribution. Hence if 100
95% PIs are made, ρ = 0.95 and Yfi ∈ PIi happens about 95 times.

There are two big differences between CIs and PIs. First, the length of
the CI goes to 0 as the sample size n goes to ∞ while the length of the PI
converges to some nonzero number L, say. Secondly, the CI for E(Yf |xf )
given in Definition 5.13 tends to work well for the iid error MLR model if
the sample size is large while the PI in Definition 5.14 is made under the
assumption that the ei are iid N(0, σ2) and may not perform well if the
normality assumption is violated.

To see this, consider xf such that the heights Y of women between 18
and 24 is normal with a mean of 66 inches and an SD of 3 inches. A 95%
CI for E(Y |xf ) should be centered at about 66 and the length should go
to zero as n gets large. But a 95% PI needs to contain about 95% of the
heights so the PI should converge to the interval 66 ± 1.96(3). This result
follows because if Y ∼ N(66, 9) then P (Z < 66 − 1.96(3)) = P (Z > 66 +
1.96(3)) = 0.025. In other words, the endpoints of the PI estimate the 97.5
and 2.5 percentiles of the normal distribution. However, the percentiles of a
parametric error distribution depend heavily on the parametric distribution
and the parametric formulas are violated if the assumed error distribution is
incorrect.

Assume that the iid error MLR model is valid so that e is from some
distribution with 0 mean and variance σ2. Olive (2007) shows that if 1− δ is
the asymptotic coverage of the classical nominal (1−α)100% PI (5.17), then

1 − δ = P (−σz1−α/2 < e < σz1−α/2) ≥ 1 − 1

z2
1−α/2

(5.18)

where the inequality follows from Chebyshev’s inequality. Hence the asymp-
totic coverage of the nominal 95% PI is at least 73.9%. The 95% PI (5.17)
was often quite accurate in that the asymptotic coverage was close to 95% for
a wide variety of error distributions. The 99% and 90% PIs did not perform
as well.

Let ξα be the α percentile of the error e, ie, P (e ≤ ξα) = α. Let ξ̂α be
the sample α percentile of the residuals. Then the results from Theorem
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5.2 suggest that the residuals ri estimate the errors ei, and that the sample
percentiles of the residuals ξ̂α estimate ξα. For many error distributions,

E(MSE) = E

(
n∑

i=1

r2
i

n − p

)
= σ2 = E

(
n∑

i=1

e2
i

n

)
.

This result suggests that √
n

n − p
ri ≈ ei.

Using

an =

(
1 +

15

n

)√
n

n − p

√
(1 + hf ), (5.19)

a large sample semiparametric 100(1 − α)% PI for Yf is

(Ŷf + anξ̂α/2, Ŷf + anξ̂1−α/2). (5.20)

This PI is very similar to the classical PI except that ξ̂α is used instead of
σzα to estimate the error percentiles ξα. The large sample coverage 1 − δ of
this nominal 100(1 − α)% PI is asymptotically correct: 1 − δ = 1 − α.

Example 5.8. For the Buxton (1920) data suppose that the response Y
= height and the predictors were a constant, head length, nasal height, bigonal
breadth and cephalic index. Five outliers were deleted leaving 82 cases. Figure
5.14 shows a response plot of the fitted values versus the response Y with
the identity line added as a visual aid. The plot suggests that the model
is good since the plotted points scatter about the identity line in an evenly
populated band although the relationship is rather weak since the correlation
of the plotted points is not very high. The triangles represent the upper and
lower limits of the semiparametric 95% PI (5.20). Notice that 79 (or 96%)
of the Yi fell within their corresponding PI while 3 Yi did not. A plot using
the classical PI (5.17) would be very similar for this data.

When many 95% PIs are made for a single data set, the coverage tends
to be higher or lower than the nominal level, depending on whether the
difference of the estimated upper and lower percentiles for Yf is too high or
too small. For the classical PI, the coverage will tend to be higher than 95%
if se(pred) is too large (MSE > σ2), otherwise lower (MSE < σ2).
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Figure 5.14: 95% PI Limits for Buxton Data

Label Estimate Std. Error t-value p-value

Constant β̂1 se(β̂1) to,1 for Ho: β1 = 0

x2 β̂2 se(β̂2) to,2 = β̂2/se(β̂2) for Ho: β2 = 0
...

xp β̂p se(β̂p) to,p = β̂p/se(β̂p) for Ho: βp = 0

Given output showing β̂i and given xf , se(pred) and se(Ŷf), Example

5.9 shows how to find Ŷf , a CI for E(Yf |xf ) and a PI for Yf . Below Figure
5.14 is shown typical output in symbols.

Example 5.9. The Rouncefield (1995) data are female and male life
expectancies from n = 91 countries. Suppose that it is desired to predict
female life expectancy Y from male life expectancy X. Suppose that if Xf =

60, then se(pred) = 2.1285, and se(Ŷf) = 0.2241. Below is some output.

Label Estimate Std. Error t-value p-value

Constant -2.93739 1.42523 -2.061 0.0422

mlife 1.12359 0.0229362 48.988 0.0000
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a) Find Ŷf if Xf = 60.

Solution: In this example, xf = (1, Xf )T since a constant is in the output

above. Thus Ŷf = β̂1 + β̂2Xf = −2.93739 + 1.12359(60) = 64.478.

b) If Xf = 60, find a 90% confidence interval for E(Y ) ≡ E(Yf |xf ).

Solution: The CI is Ŷf ± t1−α/2,n−2se(Ŷf ) = 64.478 ± 1.645(0.2241) =
64.478 ± 0.3686 = (64.1094, 64.8466). To use the t–table on the last page of
Chapter 14, use the 2nd to last row marked by Z since d = df = n − 2 =
90 > 30. In the last row find CI = 90% and intersect the 90% column and
the Z row to get the value of t0.95,90 ≈ z.95 = 1.645.

c) If Xf = 60, find a 90% prediction interval for Yf .

Solution: The CI is Ŷf ± t1−α/2,n−2se(pred) = 64.478 ± 1.645(2.1285)
= 64.478 ± 3.5014 = (60.9766, 67.9794).

An asymptotically conservative (ac) 100(1−α)% PI has asymptotic cov-
erage 1 − δ ≥ 1 − α. We used the (ac) 100(1 − α)% PI

Ŷf ±
√

n

n − p
max(|ξ̂α/2|, |ξ̂1−α/2|)

√
(1 + hf ) (5.21)

which has asymptotic coverage

1 − δ = P [−max(|ξα/2|, |ξ1−α/2|) < e < max(|ξα/2|, |ξ1−α/2|)]. (5.22)

Notice that 1−α ≤ 1−δ ≤ 1−α/2 and 1−δ = 1−α if the error distribution
is symmetric.

In the simulations described below, ξ̂α will be the sample percentile for
the PIs (5.20) and (5.21). A PI is asymptotically optimal if it has the shortest
asymptotic length that gives the desired asymptotic coverage. If the error
distribution is unimodal, an asymptotically optimal PI can be created by
applying the shorth(c) estimator to the residuals where c = n(1−α)� and x�
is the smallest integer≥ x, e.g., 7.7� = 8. That is, let r(1), ..., r(n) be the order
statistics of the residuals. Compute r(c) − r(1), r(c+1) − r(2), ..., r(n) − r(n−c+1).

Let (r(d), r(d+c−1)) = (ξ̂α1 , ξ̂1−α2) correspond to the interval with the smallest
distance. Then the 100 (1 − α)% PI for Yf is

(Ŷf + anξ̂α1 , Ŷf + bnξ̂1−α2). (5.23)

In the simulations, we used an = bn where an is given by (5.19).
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Table 5.4: N(0,1) Errors

α n clen slen alen olen ccov scov acov ocov
0.01 50 5.860 6.172 5.191 6.448 .989 .988 .972 .990
0.01 100 5.470 5.625 5.257 5.412 .990 .988 .985 .985
0.01 1000 5.182 5.181 5.263 5.097 .992 .993 .994 .992
0.01 ∞ 5.152 5.152 5.152 5.152 .990 .990 .990 .990
0.05 50 4.379 5.167 4.290 5.111 .948 .974 .940 .968
0.05 100 4.136 4.531 4.172 4.359 .956 .970 .956 .958
0.05 1000 3.938 3.977 4.001 3.927 .952 .952 .954 .948
0.05 ∞ 3.920 3.920 3.920 3.920 .950 .950 .950 .950
0.1 50 3.642 4.445 3.658 4.193 .894 .945 .895 .929
0.1 100 3.455 3.841 3.519 3.690 .900 .930 .905 .913
0.1 1000 3.304 3.343 3.352 3.304 .901 .903 .907 .901
0.1 ∞ 3.290 3.290 3.290 3.290 .900 .900 .900 .900

Table 5.5: t3 Errors

α n clen slen alen olen ccov scov acov ocov
0.01 50 9.539 12.164 11.398 13.297 .972 .978 .975 .981
0.01 100 9.114 12.202 12.747 10.621 .978 .983 .985 .978
0.01 1000 8.840 11.614 12.411 11.142 .975 .990 .992 .988
0.01 ∞ 8.924 11.681 11.681 11.681 .979 .990 .990 .990
0.05 50 7.160 8.313 7.210 8.139 .945 .956 .943 .956
0.05 100 6.874 7.326 7.030 6.834 .950 .955 .951 .945
0.05 1000 6.732 6.452 6.599 6.317 .951 .947 .950 .945
0.05 ∞ 6.790 6.365 6.365 6.365 .957 .950 .950 .950
0.1 50 5.978 6.591 5.532 6.098 .915 .935 .900 .917
0.1 100 5.696 5.756 5.223 5.274 .916 .913 .901 .900
0.1 1000 5.648 4.784 4.842 4.706 .929 .901 .904 .898
0.1 ∞ 5.698 4.707 4.707 4.707 .935 .900 .900 .900
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Table 5.6: Exponential(1) −1 Errors

α n clen slen alen olen ccov scov acov ocov
0.01 50 5.795 6.432 6.821 6.817 .971 .987 .976 .988
0.01 100 5.427 5.907 7.525 5.377 .974 .987 .986 .985
0.01 1000 5.182 5.387 8.432 4.807 .972 .987 .992 .987
0.01 ∞ 5.152 5.293 8.597 4.605 .972 .990 .995 .990
0.05 50 4.310 5.047 5.036 4.746 .946 .971 .955 .964
0.05 100 4.100 4.381 5.189 3.840 .947 .971 .966 .955
0.05 1000 3.932 3.745 5.354 3.175 .945 .954 .972 .947
0.05 ∞ 3.920 3.664 5.378 2.996 .948 .950 .975 .950
0.1 50 3.601 4.183 3.960 3.629 .920 .945 .925 .916
0.1 100 3.429 3.557 3.959 3.047 .930 .943 .945 .913
0.1 1000 3.303 3.005 3.989 2.460 .931 .906 .951 .901
0.1 ∞ 3.290 2.944 3.991 2.303 .929 .900 .950 .900

A small simulation study compares the PI lengths and coverages for sam-
ple sizes n = 50, 100 and 1000 for several error distributions. The value
n = ∞ gives the asymptotic coverages and lengths. The MLR model with
E(Yi) = 1 + xi2 + · · · + xi8 was used. The vectors (x2, ..., x8)

T were iid
N7(0, I7). The error distributions were N(0,1), t3, and exponential(1) −1.
Also, a small sensitivity study to examine the effects of changing (1 + 15/n)
to (1+k/n) on the 99% PIs (5.20) and (5.23) was performed. For n = 50 and
k between 10 and 20, the coverage increased by roughly 0.001 as k increased
by 1.

The simulation compared coverages and lengths of the classical (5.17),
semiparametric (5.20), asymptotically conservative (5.21) and asymptotically
optimal (5.23) PIs. The latter 3 intervals are asymptotically optimal for sym-
metric unimodal error distributions in that they have the shortest asymptotic
length that gives the desired asymptotic coverage. The semiparametric PI
gives the correct asymptotic coverage if the unimodal errors are not symmet-
ric while the PI (5.21) gives higher coverage (is conservative). The simulation
used 5000 runs and gave the proportion p̂ of runs where Yf fell within the
nominal 100(1−α)% PI. The count mp̂ has a binomial(m = 5000, p = 1−δn)
distribution where 1 − δn converges to the asymptotic coverage (1 − δ). The
standard error for the proportion is

√
p̂(1 − p̂)/5000 = 0.0014, 0.0031 and
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0.0042 for p = 0.01, 0.05 and 0.1, respectively. Hence an observed coverage
p̂ ∈ (.986, .994) for 99%, p̂ ∈ (.941, .959) for 95% and p̂ ∈ (.887, .913) for 90%
PIs suggests that there is no reason to doubt that the PI has the nominal
coverage.

Tables 5.4–5.6 show the results of the simulations for the 3 error distri-
butions. The letters c, s, a and o refer to intervals (5.17), (5.20), (5.21) and
(5.23) respectively. For the normal errors, the coverages were about right
and the semiparametric interval tended to be rather long for n = 50 and 100.
The classical PI asymptotic coverage 1 − δ tended to be fairly close to the
nominal coverage 1 − α for all 3 distributions and α = 0.01, 0.05, and 0.1.

5.4 A Review of MLR

The simple linear regression (SLR) model is Yi = β1 + β2Xi + ei where
the ei are iid with E(ei) = 0 and VAR(ei) = σ2 for i = 1, ..., n. The Yi and
ei are random variables while the Xi are treated as known constants.
The parameters β1, β2 and σ2 are unknown constants that need to be
estimated. (If the Xi are random variables, then the model is conditional on
the Xi’s. Hence the Xi’s are still treated as constants.)

The normal SLR model adds the assumption that the ei are iid N(0, σ2).
That is, the error distribution is normal with zero mean and constant variance
σ2.

The response variable Y is the variable that you want to predict while
the predictor (or independent or explanatory) variable X is the variable used
to predict the response.

A scatterplot is a plot of W versus Z with W on the horizontal axis
and Z on the vertical axis and is used to display the conditional dis-
tribution of Z given W . For SLR the scatterplot of X versus Y is often
used.

For SLR, E(Yi) = β1+β2Xi and the line E(Y ) = β1+β2X is the regression
function. VAR(Yi) = σ2.

For SLR, the least squares estimators β̂1 and β̂2 minimize the least
squares criterion Q(η1, η2) =

∑n
i=1(Yi − η1 − η2Xi)

2. For a fixed η1 and η2, Q
is the sum of the squared vertical deviations from the line Y = η1 + η2X.

The least squares (OLS) line is Ŷ = β̂1 + β̂2X where

β̂2 =

∑n
i=1(Xi − X)(Yi − Y )∑n

i=1(Xi −X)2
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and β̂1 = Y − β̂2X.
By the chain rule,

∂Q

∂η1
= −2

n∑
i=1

(Yi − η1 − η2Xi)

and
d2Q

dη2
1

= 2n.

Similarly,
∂Q

∂η2
= −2

n∑
i=1

Xi(Yi − η1 − η2Xi)

and
d2Q

dη2
1

= 2
n∑

i=1

X2
i .

The OLS estimators β̂1 and β̂2 satisfy the normal equations:

n∑
i=1

Yi = nβ̂1 + β̂2

n∑
i=1

Xi and

n∑
i=1

XiYi = β̂1

n∑
i=1

Xi + β̂2

n∑
i=1

X2
i .

For SLR, Ŷi = β̂1 + β̂2Xi is called the ith fitted value (or predicted value)
for observation Yi while the ith residual is ri = Yi − Ŷi.

The error (residual) sum of squares SSE =
n∑

i=1

(Yi − Ŷi)
2 =

n∑
i=1

r2
i .

For SLR, the mean square error MSE = SSE/(n − 2) is an unbiased
estimator of the error variance σ2.

Properties of the OLS line:
i) the residuals sum to zero:

∑n
i=1 ri = 0.

ii)
∑n

i=1 Yi =
∑n

i=1 Ŷi.
iii) The independent variable and residuals are uncorrelated:

n∑
i=1

Xiri = 0.
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iv) The fitted values and residuals are uncorrelated:
∑n

i=1 Ŷiri = 0.

v) The least squares line passes through the point (X, Y ).
Knowing how to use output from statistical software packages is impor-

tant. Shown below is an output only using symbols and an actual Arc output.

Coefficient Estimates where the Response = Y

Label Estimate Std. Error t-value p-value

Constant β̂1 se(β̂1) to,1 for Ho: β1 = 0

x β̂2 se(β̂2) to,2 = β̂2/se(β̂2) for Ho: β2 = 0

R Squared: R^2

Sigma hat: sqrt{MSE}

Number of cases: n

Degrees of freedom: n-2

Summary Analysis of Variance Table

Source df SS MS F p-value

Regression 1 SSR MSR Fo=MSR/MSE p-value for beta_2

Residual n-2 SSE MSE

-----------------------------------------------------------------

Response = brnweight

Terms = (size)

Coefficient Estimates

Label Estimate Std. Error t-value p-value

Constant 305.945 35.1814 8.696 0.0000

size 0.271373 0.00986642 27.505 0.0000

R Squared: 0.74058

Sigma hat: 83.9447

Number of cases: 267

Degrees of freedom: 265

Summary Analysis of Variance Table

Source df SS MS F p-value

Regression 1 5330898. 5330898. 756.51 0.0000

Residual 265 1867377. 7046.71
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Let the p × 1 vector β = (β1, ..., βp)
T and let the p × 1 vector xi =

(1, Xi,2, ..., Xi,p)
T . Notice that Xi,1 ≡ 1 for i = 1, ..., n. Then the multiple

linear regression (MLR) model is

Yi = β1 + β2Xi,2 + · · · + βpXi,p + ei = xT
i β + ei

for i = 1, ..., n where the ei are iid with E(ei) = 0 and VAR(ei) = σ2 for
i = 1, ..., n. The Yi and ei are random variables while the Xi are treated
as known constants. The parameters β1, β2, ..., βp and σ2 are unknown
constants that need to be estimated.

In matrix notation, these n equations become

Y = Xβ + e,

where Y is an n × 1 vector of dependent variables, X is an n × p matrix
of predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1
vector of unknown errors. Equivalently,⎡⎢⎢⎢⎣

Y1

Y2
...

Yn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 X1,2 X1,3 . . . X1,p

1 X2,2 X2,3 . . . X2,p
...

...
...

. . .
...

1 Xn,2 Xn,3 . . . Xn,p

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

β1

β2
...

βp

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
e1

e2
...
en

⎤⎥⎥⎥⎦ .

The first column of X is 1, the n×1 vector of ones. The ith case (xT
i , Yi)

corresponds to the ith row xT
i of X and the ith element of Y . If the ei

are iid with zero mean and variance σ2, then regression is used to estimate
the unknown parameters β and σ2. (If the Xi are random variables, then
the model is conditional on the Xi’s. Hence the Xi’s are still treated as
constants.)

The normal MLR model adds the assumption that the ei are iid N(0, σ2).
That is, the error distribution in normal with zero mean and constant vari-
ance σ2. Simple linear regression is a special case with p = 2.

The response variable Y is the variable that you want to predict while
the predictor (or independent or explanatory) variables X1, X2, ..., Xp are the
variables used to predict the response. Since X1 ≡ 1, sometimes X2, ..., Xp

are called the predictor variables.
For MLR, E(Yi) = β1 + β2Xi,2 + · · · + βpXi,p = xT

i β and the hyperplane
E(Y ) = β1+β2X2 + · · ·+βpXp = xTβ is the regression function. VAR(Yi) =
σ2.
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The least squares estimators β̂1, β̂2, ..., β̂p minimize the least squares
criterion Q(η) =

∑n
i=1(Yi − η1 − η2Xi,2 − · · · − ηpXi,p)

2 =
∑n

i=1 r2
i (η). For a

fixed η, Q is the sum of the squared vertical deviations from the hyperplane
H = η1 + η2X2 + · · · + ηpXp.

The least squares estimator β̂ satisfies the MLR normal equations

XT Xβ̂ = XTY

and the least squares estimator is

β̂ = (XTX)−1XTY .

The vector of predicted or fitted values is Ŷ = Xβ̂ = HY where the hat
matrix H = X(XTX)−1XT . The ith entry of Ŷ is the ith fitted value (or
predicted value) Ŷi = β̂1+β̂2Xi,2+· · ·+β̂pXi,p = xT

i β̂ for observation Yi while

the ith residual is ri = Yi − Ŷi. The vector of residuals is r = (I −H)Y .

The (residual) error sum of squares SSE =
n∑

i=1

(Yi − Ŷi)
2 =

n∑
i=1

r2
i . For

MLR, the MSE = SSE/(n−p) is an unbiased estimator of the error variance
σ2.

After obtaining the least squares equation from computer output, predict
Y for a given x = (1, X2, ..., Xp)

T : Ŷ = β̂1 + β̂2X2 + · · · + β̂pXp = xT β̂.

Know the meaning of the least squares multiple linear regression output.
Shown on the next page is an output only using symbols and an actual Arc
output.

The 100 (1 − α) % CI for βk is β̂k ± t1−α/2,n−p se(β̂k). If ν = n − p > 30,
use the N(0,1) cutoff z1−α/2. The corresponding 4 step t–test of hypotheses
has the following steps, and makes sense if there is no interaction.
i) State the hypotheses Ho: βk = 0 Ha: βk �= 0.
ii) Find the test statistic to,k = β̂k/se(β̂k) or obtain it from output.
iii) Find the p–value from output or use the t–table: p–value =

2P (tn−p < −|to,k|).
Use the normal table or ν = ∞ in the t–table if the degrees of freedom
ν = n − p > 30.
iv) State whether you reject Ho or fail to reject Ho and give a nontechnical
sentence restating your conclusion in terms of the story problem.
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Response = Y
Coefficient Estimates

Label Estimate Std. Error t-value p-value

Constant β̂1 se(β̂1) to,1 for Ho: β1 = 0

x2 β̂2 se(β̂2) to,2 = β̂2/se(β̂2) for Ho: β2 = 0
...

xp β̂p se(β̂p) to,p = β̂p/se(β̂p) for Ho: βp = 0

R Squared: R^2

Sigma hat: sqrt{MSE}

Number of cases: n

Degrees of freedom: n-p

Summary Analysis of Variance Table

Source df SS MS F p-value
Regression p-1 SSR MSR Fo=MSR/MSE for Ho:
Residual n-p SSE MSE β2 = · · · = βp = 0

Response = brnweight

Coefficient Estimates

Label Estimate Std. Error t-value p-value

Constant 99.8495 171.619 0.582 0.5612

size 0.220942 0.0357902 6.173 0.0000

sex 22.5491 11.2372 2.007 0.0458

breadth -1.24638 1.51386 -0.823 0.4111

circum 1.02552 0.471868 2.173 0.0307

R Squared: 0.749755

Sigma hat: 82.9175

Number of cases: 267

Degrees of freedom: 262

Summary Analysis of Variance Table

Source df SS MS F p-value

Regression 4 5396942. 1349235. 196.24 0.0000

Residual 262 1801333. 6875.32
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Recall that Ho is rejected if the p–value < α. As a benchmark for this
textbook, use α = 0.05 if α is not given. If Ho is rejected, then conclude that
Xk is needed in the MLR model for Y given that the other p − 2 nontrivial
predictors are in the model. If you fail to reject Ho, then conclude that Xk

is not needed in the MLR model for Y given that the other p − 2 nontrivial
predictors are in the model. Note that Xk could be a very useful individual
predictor, but may not be needed if other predictors are added to the model.
It is better to use the output to get the test statistic and p–value than to use
formulas and the t–table, but exams may not give the relevant output.

Be able to perform the 4 step ANOVA F test of hypotheses:
i) State the hypotheses Ho: β2 = · · · = βp = 0 Ha: not Ho
ii) Find the test statistic Fo = MSR/MSE or obtain it from output.
iii) Find the p–value from output or use the F–table: p–value =

P (Fp−1,n−p > Fo).

iv) State whether you reject Ho or fail to reject Ho. If Ho is rejected, conclude
that there is a MLR relationship between Y and the predictors X2, ..., Xp. If
you fail to reject Ho, conclude that there is not a MLR relationship between
Y and the predictors X2, ..., Xp.

Be able to find i) the point estimator Ŷf = xT
f Y of Yf given x = xf =

(1, Xf,2, ..., Xf,p)
T and

ii) the 100 (1 − α)% CI for E(Yf ) = xT
f β = E(Ŷf ). This interval is

Ŷf ± t1−α/2,n−pse(Ŷf). Generally se(Ŷf ) will come from output.

Suppose you want to predict a new observation Yf where Yf is indepen-
dent of Y1, ..., Yn. Be able to find
i) the point estimator Ŷf = xT

f β̂ and the
ii) the 100 (1 − α)% prediction interval (PI) for Yf . This interval is

Ŷf ± t1−α/2,n−pse(pred). Generally se(pred) will come from output. Note that
Yf is a random variable not a parameter.

Full model

Source df SS MS Fo and p-value
Regression p − 1 SSR MSR Fo=MSR/MSE

Residual dfF = n − p SSE(F) MSE(F) for Ho:β2 = · · · = βp = 0
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Reduced model

Source df SS MS Fo and p-value
Regression q SSR MSR Fo=MSR/MSE

Residual dfR = n − q SSE(R) MSE(R) for Ho: β2 = · · · = βq = 0

Summary Analysis of Variance Table for the Full Model

Source df SS MS F p-value

Regression 6 260467. 43411.1 87.41 0.0000

Residual 69 34267.4 496.629

Summary Analysis of Variance Table for the Reduced Model

Source df SS MS F p-value

Regression 2 94110.5 47055.3 17.12 0.0000

Residual 73 200623. 2748.27

Know how to perform the 4 step change in SS F test. Shown is an
actual Arc output and an output only using symbols. Note that both the
full and reduced models must be fit in order to perform the change in SS
F test. Without loss of generality, assume that the Xi corresponding to
the βi for i ≥ q are the terms to be dropped. Then the full MLR model
is Yi = β1 + β2Xi,2 + · · · + βpXi,p + ei while the reduced model is Yi =
β1 +β2Xi,2 + · · ·+βqXi,q + ei. Then the change in SS F test has the following
4 steps:
i) Ho: the reduced model is good Ha: use the full model
ii) FR = [

SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F )

iii) p–value = P(FdfR−dfF ,dfF
> FR). (Here dfR − dfF = p − q = number of

parameters set to 0, and dfF = n − p).
iv) Reject Ho if the p–value < α and conclude that the full model should be
used. Otherwise, fail to reject Ho and conclude that the reduced model is
good.

Given two of SSTO =
∑n

i=1(Yi − Y )2, SSE =
∑n

i=1(Yi − Ŷi)
2 =

∑n
i=1 r2

i ,

and SSR =
∑n

i=1(Ŷi − Y )2, find the other sum of squares using the formula
SSTO = SSE + SSR.

Be able to find R2 = SSR/SSTO = (sample correlation of Yi and Ŷi)
2.
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Know i) that the covariance matrix of a random vector Y is Cov(Y ) =
E[(Y − E(Y ))(Y − E(Y ))T ].
ii) E(AY ) = AE(Y ).
iii) Cov(AY ) = ACov(Y )AT .

Given the least squares model Y = Xβ + e, be able to show that
i) E(β̂) = β and
ii) Cov(β̂) = σ2(XTX)−1.

A matrix A is idempotent if AA = A.

An added variable plot (also called a partial regression plot) is used to
give information about the test Ho : βi = 0. The points in the plot cluster
about a line with slope = β̂i. If there is a strong trend then Xi is needed in
the MLR for Y given that the other predictors X2, ..., Xi−1, Xi+1, ..., Xp are
in the model. If there is almost no trend, then Xi may not be needed in the
MLR for Y given that the other predictors X2, ..., Xi−1, Xi+1, ..., Xp are in
the model.

The response plot of Ŷi versus Y is used to check whether the MLR
model is appropriate. If the MLR model is appropriate, then the plot-
ted points should cluster about the identity line. The squared correlation
[corr(Yi, Ŷi)]

2 = R2. Hence the clustering is tight if R2 ≈ 1. If outliers are
present or if the plot is not linear, then the current model or data need to
be changed or corrected. Know how to decide whether the MLR model is
appropriate by looking at a response plot.

The residual plot of Ŷi versus ri is used to detect departures from the
MLR model. If the model is good, then the plot should be ellipsoidal with
no trend and should be centered about the horizontal axis. Outliers and
patterns such as curvature or a fan shaped plot are bad. Be able to tell a
good residual plot from a bad residual plot.

Know that for any MLR, the above two plots should be made.

Other residual plots are also useful. Plot X i,j versus ri for each nontrivial
predictor variable Xj ≡ xj in the model and for any potential predictors Xj

not in the model. Let r[t] be the residual where [t] is the time order of the
trial. Hence [1] was the 1st and [n] was the last trial. Plot the time order t
versus r[t] if the time order is known. Again, trends and outliers suggest that
the model could be improved. A box shaped plot with no trend suggests that
the MLR model is good.
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The FF plot of ŶI,i versus Ŷi and the RR plot of rI,i versus ri can be
used to check whether a candidate submodel I is good. The submodel is
good if the plotted points in the FF and RR plots cluster tightly about the
identity line. In the RR plot, the OLS line and identity line can be added to
the plot as visual aids. It should be difficult to see that the OLS and identity
lines intersect at the origin in the RR plot (the OLS line is the identity line
in the FF plot). If the FF plot looks good but the RR plot does not, the
submodel may be good if the main goal of the analysis is to predict Y. The
two plots are also useful for examining the reduced model in the change in SS
F test. Note that if the candidate model seems to be good, the usual MLR
checks should still be made. In particular, the response plot and residual
plot (of ŶI,i versus rI,i) need to be made for the submodel.

The plot of the residuals Yi − Y versus ri is useful for the Anova F test
of Ho : β2 = · · · = βp = 0 versus Ha: not Ho. If Ho is true, then the plotted
points in this special case of the RR plot should cluster tightly about the
identity line.

A scatterplot of x versus Y is used to visualize the conditional distri-
bution of Y |x. A scatterplot matrix is an array of scatterplots. It is used
to examine the marginal relationships of the predictors and response. It is
often useful to transform predictors if strong nonlinearities are apparent in
the scatterplot matrix.

For the graphical method for choosing a response transformation, the
FFλ plot should have very high correlations. Then the transformation plots
can be used. Choose a transformation such that the transformation plot
is linear. Given several transformation plots, you should be able to find the
transformation corresponding to the linear plot.

There are several guidelines for choosing power transformations.
First, suppose you have a scatterplot of two variables xλ1

1 versus xλ2
2 where

both x1 > 0 and x2 > 0. Also assume that the plotted points follow a
nonlinear one to one function. Consider the ladder of powers

−1, −2/3, −0.5, −1/3, −0.25, 0, 0.25, 1/3, 0.5, 2/3, and 1.

To spread small values of the variable, make λi smaller. To spread large
values of the variable, make λi larger. See Cook and Weisberg (1999a, p.
86).

177



For example, in the plot of shell versus height in Figure 5.5, small values
of shell need spreading since if the plotted points were projected on the
horizontal axis, there would be too many points at values of shell near 0.
Similarly, large values of height need spreading.

Next, suppose that all values of the variable w to be transformed are
positive. The log rule says use log(w) if max(wi)/min(wi) > 10. This rule
often works wonders on the data and the log transformation is the most used
(modified) power transformation. If the variable w can take on the value of
0, use log(w + c) where c is a small constant like 1, 1/2, or 3/8.

The unit rule says that if Xi and Y have the same units, then use the
same transformation of Xi and Y . The cube root rule says that if w is a
volume measurement, then the cube root transformation w1/3 may be useful.
Consider the ladder of powers. No transformation (λ = 1) is best, then the
log transformation, then the square root transformation, then the reciprocal
transformation.

Theory, if available, should be used to select a transformation. Frequently
more than one transformation will work. For example if Y = weight and X1

= volume = X2 ∗ X3 ∗ X4, then Y versus X
1/3
1 and log(Y ) versus log(X1) =

log(X2)+log(X3)+log(X4) may both work. Also if Y is linearly related with
X2, X3, X4 and these three variables all have length units mm, say, then the
units of X1 are (mm)3. Hence the units of X

1/3
1 are mm.

There are also several guidelines for building a MLR model. Suppose
that variable Z is of interest and variables W2, ..., Wr have been collected
along with Z. Make a scatterplot matrix of W2, ..., Wr and Z. (If r is large,
several matrices may need to be made. Each one should include Z.) Remove
or correct any gross outliers. It is often a good idea to transform the Wi

to remove any strong nonlinearities from the predictors. Eventually
you will find a response variable Y = tZ(Z) and nontrivial predictor variables
X2, ..., Xp for the full model. Interactions such as Xk = WiWj and powers
such as Xk = W 2

i may be of interest. Indicator variables are often used in
interactions, but do not transform an indicator variable. The response plot
for the full model should be linear and the residual plot should be ellipsoidal
with zero trend. Find the OLS output. The statistic R2 gives the proportion
of the variance of Y explained by the predictors and is of some importance.

Variable selection is closely related to the change in SS F test. You
are seeking a subset I of the variables to keep in the model. The submodel I
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will always contain a constant and will have k−1 nontrivial predictors where
1 ≤ k ≤ p. Know how to find candidate submodels from output.

Forward selection starts with a constant = W1 = X1. Step 1) k = 2:
compute Cp for all models containing the constant and a single predictor Xi.
Keep the predictor W2 = Xj , say, that corresponds to the model with the
smallest value of Cp.
Step 2) k = 3: Fit all models with k = 3 that contain W1 and W2. Keep the
predictor W3 that minimizes Cp. ...
Step j) k = j +1: Fit all models with k = j +1 that contains W1, W2, ..., Wj.
Keep the predictor Wj+1 that minimizes Cp. ...
Step p − 1): Fit the full model.

Backward elimination: All models contain a constant = U1 = X1.
Step 1) k = p: Start with the full model that contains X1, ..., Xp. We will
also say that the full model contains U1, ..., Up where U1 = X1 but Ui need
not equal Xi for i > 1.
Step 2) k = p− 1: fit each model with p− 1 predictors including a constant.
Delete the predictor Up, say, that corresponds to the model with the smallest
Cp. Keep U1, ..., Up−1.
Step 3) k = p−2: fit each model with p−2 predictors and a constant. Delete
the predictor Up−1 that corresponds to the smallest Cp. Keep U1, ..., Up−2. ...
Step j) k = p − j + 1: fit each model with p − j + 1 predictors and a
constant. Delete the predictor Up−j+2 that corresponds to the smallest Cp.
Keep U1, ..., Up−j+1. ...
Step p− 1) k = 2. The current model contains U1, U2 and U3. Fit the model
U1, U2 and the model U1, U3. Assume that model U1, U2 minimizes Cp. Then
delete U3 and keep U1 and U2.

Rule of thumb for variable selection (assuming that the cost of each
predictor is the same): find the submodel Im with the minimum Cp. If Im uses
km predictors, do not use any submodel that has more than km predictors.
Since the minimum Cp submodel often has too many predictors, also look
at the submodel Io with the smallest value of k, say ko, such that Cp ≤ 2k
and ko ≤ km. This submodel may have too few predictors. So look at
the predictors in Im but not in Io and see if they can be deleted or not. (If
Im = Io, then it is a good candidate for the best submodel.)

Assume that the full model has p predictors including a constant and that
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the submodel I has k predictors including a constant. Then we would like
properties i) – xi) below to hold. Often we can not find a submodel where
i) – xi) all hold simultaneously. Given that i) holds, ii) to xi) are listed in
decreasing order of importance with ii) – v) much more important than vi)
– xi).

i) Want k ≤ p < n/5.
ii) The response plot and residual plots from both the full model and the
submodel should be good. The corresponding plots should look similar.
iii) Want k small but Cp(I) ≤ 2k.

iv) Want corr(Ŷ , ŶI) ≥ 0.95.
v) Want the change in SS F test using I as the reduced model to have p-value
≥ 0.01. (So use α = 0.01 for the change in SS F test applied to models chosen
from variable selection. Recall that there is very little evidence for rejecting
Ho if p-value ≥ 0.05, and only moderate evidence if 0.01 ≤ p-value < 0.05.)

vi) Want R2
I > 0.9R2 and R2

I > R2 − 0.07.
vii) Want MSE(I) to be smaller than or not much larger than the MSE from
the full model.
viii) Want hardly any predictors with p-value ≥ 0.05.
xi) Want only a few predictors to have 0.01 < p-value < 0.05.

Influence is roughly (leverage)(discrepancy). The leverages hi are the
diagonal elements of the hat matrix H and measure how far xi is from the
sample mean of the predictors. See Chapter 6.

5.5 Complements

Chapters 2–4 of Olive (2007d) covers MLR in much more detail.
Algorithms for OLS are described in Datta (1995), Dongarra, Moler,

Bunch and Stewart (1979), and Golub and Van Loan (1989). Algorithms for
L1 are described in Adcock and Meade (1997), Barrodale and Roberts (1974),
Bloomfield and Steiger (1980), Dodge (1997), Koenker (1997), Koenker and
d’Orey (1987), Portnoy (1997), and Portnoy and Koenker (1997). See Har-
ter (1974a,b, 1975a,b,c, 1976) for a historical account of linear regression.
Draper (2000) provides a bibliography of more recent references.

Early papers on transformations include Bartlett (1947) and Tukey (1957).
In a classic paper, Box and Cox (1964) developed numerical methods for es-
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timating λo in the family of power transformations. It is well known that the
Box–Cox normal likelihood method for estimating λo can be sensitive to re-
mote or outlying observations. Cook and Wang (1983) suggested diagnostics
for detecting cases that influence the estimator, as did Tsai and Wu (1992),
Atkinson (1986), and Hinkley and Wang (1988). Yeo and Johnson (2000)
provide a family of transformations that does not require the variables to be
positive.

According to Tierney (1990, p. 297), one of the earliest uses of dynamic
graphics was to examine the effect of power transformations. In particular,
a method suggested by Fowlkes (1969) varies λ until the normal probability
plot is straight. McCulloch (1993) also gave a graphical method for finding

response transformations. A similar method would plot Y (λ) vs β̂
T

λ x for
λ ∈ Λ. See Example 1.5. Cook and Weisberg (1982, section 2.4) surveys
several transformation methods, and Cook and Weisberg (1994) described
how to use an inverse response plot of fitted values versus Y to visualize the
needed transformation.

The literature on numerical methods for variable selection in the OLS
multiple linear regression model is enormous. Three important papers are
Jones (1946), Mallows (1973), and Furnival and Wilson (1974). Chatterjee
and Hadi (1988, p. 43-47) give a nice account on the effects of overfitting
on the least squares estimates. Also see Claeskins and Hjort (2003), Hjort
and Claeskins (2003) and Efron, Hastie, Johnstone and Tibshirani (2004).
Some useful ideas for variable selection when outliers are present are given
by Burman and Nolan (1995), Ronchetti and Staudte (1994), and Sommer
and Huggins (1996).

In the variable selection problem, the FF and RR plots can be highly
informative for 1D regression models as well as the MLR model. Results
from Li and Duan (1989) suggest that the FF and RR plots will be useful
for variable selection in models where Y is independent of x given βT x (eg
GLMs), provided that no strong nonlinearities are present in the predictors
(eg if x = (1, wT )T and the nontrivial predictors w are iid from an elliptically
contoured distribution). See Section 12.4.

Chapters 11 and 13 of Cook and Weisberg (1999a) give excellent discus-
sions of variable selection and response transformations, respectively. They
also discuss the effect of deleting terms from the full model on the mean and
variance functions. It is possible that the full model mean function E(Y |x)
is linear while the submodel mean function E(Y |xI) is nonlinear.
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Several authors have used the FF plot to compare models. For example,
Collett (1999, p. 141) plots the fitted values from a logistic regression model
versus the fitted values from a complementary log–log model to demonstrate
that the two models are producing nearly identical estimates.

Section 5.3 followed Olive (2007) closely. See Di Bucchianico, Einmahl,
and Mushkudiani (2001) for related intervals for the location model and
Preston (2000) for related intervals for MLR. For a review of prediction
intervals, see Patel (1989). Cai, Tian, Solomon and Wei (2008) show that
the Olive intervals are not optimal for symmetric bimodal distributions. For
theory about the shorth, see Grübel (1988). Some references for PIs based
on robust regression estimators are given by Giummolè and Ventura (2006).

5.6 Problems

Problems with an asterisk * are especially important.

5.1. Suppose that the regression model is Yi = 7+βXi +ei for i = 1, ..., n
where the ei are iid N(0, σ2) random variables. The least squares criterion

is Q(η) =

n∑
i=1

(Yi − 7 − ηXi)
2.

a) What is E(Yi)?

b) Find the least squares estimator β̂ of β by setting the first derivative
d

dη
Q(η) equal to zero.

c) Show that your β̂ is the global minimizer of the least squares criterion

Q by showing that the second derivative
d2

dη2
Q(η) > 0 for all values of η.

5.2. The location model is Yi = μ + ei for i = 1, ..., n where the ei are iid
with mean E(ei) = 0 and constant variance VAR(ei) = σ2. The least squares

estimator μ̂ of μ minimizes the least squares criterion Q(η) =
n∑

i=1

(Yi − η)2.

To find the least squares estimator, perform the following steps.

a) Find the derivative
d

dη
Q, set the derivative equal to zero and solve for
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η. Call the solution μ̂.

b) To show that the solution was indeed the global minimizer of Q, show

that
d2

dη2
Q > 0 for all real η. (Then the solution μ̂ is a local min and Q is

convex, so μ̂ is the global min.)

5.3. The normal error model for simple linear regression through the
origin is

Yi = βXi + ei

for i = 1, ..., n where e1, ..., en are iid N(0, σ2) random variables.

a) Show that the least squares estimator for β is

β̂ =

∑n
i=1 XiYi∑n
i=1 X2

i

.

b) Find E(β̂).

c) Find VAR(β̂).

(Hint: Note that β̂ =
∑n

i=1 kiYi where the ki depend on the Xi which are
treated as constants.)

Output for Problem 5.4

Full Model Summary Analysis of Variance Table

Source df SS MS F p-value

Regression 6 265784. 44297.4 172.14 0.0000

Residual 67 17240.9 257.327

Reduced Model Summary Analysis of Variance Table

Source df SS MS F p-value

Regression 1 264621. 264621. 1035.26 0.0000

Residual 72 18403.8 255.608

5.4. Assume that the response variable Y is height, and the explanatory
variables are X2 = sternal height, X3 = cephalic index, X4 = finger to ground,
X5 = head length, X6 = nasal height, X7 = bigonal breadth. Suppose that
the full model uses all 6 predictors plus a constant (= X1) while the reduced
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model uses the constant and sternal height. Test whether the reduced model
can be used instead of the full model using the above output. The data set
had 74 cases.

Output for Problem 5.5

Full Model Summary Analysis of Variance Table

Source df SS MS F p-value

Regression 9 16771.7 1863.52 1479148.9 0.0000

Residual 235 0.29607 0.0012599

Reduced Model Summary Analysis of Variance Table

Source df SS MS F p-value

Regression 2 16771.7 8385.85 6734072.0 0.0000

Residual 242 0.301359 0.0012453

Coefficient Estimates, Response = y, Terms = (x2 x2^2)

Label Estimate Std. Error t-value p-value

Constant 958.470 5.88584 162.843 0.0000

x2 -1335.39 11.1656 -119.599 0.0000

x2^2 421.881 5.29434 79.685 0.0000

5.5. The above output comes from the Johnson (1996) STATLIB data
set bodyfat after several outliers are deleted. It is believed that Y = β1 +
β2X2 + β3X

2
2 + e where Y is the person’s bodyfat and X2 is the person’s

density. Measurements on 245 people were taken and are represented by
the output above. In addition to X2 and X2

2 , 7 additional measurements
X4, ..., X10 were taken. Both the full and reduced models contain a constant
X1 ≡ 1.

a) Predict Y if X2 = 1.04. (Use the reduced model Y = β1 + β2X2 +
β3X

2
2 + e.)

b) Test whether the reduced model can be used instead of the full model.

5.6. Suppose that the regression model is Yi = 10+2Xi2 +β3Xi3 + ei for
i = 1, ..., n where the ei are iid N(0, σ2) random variables. The least squares

criterion is Q(η3) =
n∑

i=1

(Yi − 10 − 2Xi2 − η3Xi3)
2. Find the least squares es-
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timator β̂3 of β3 by setting the first derivative
d

dη3

Q(η3) equal to zero. Show

that your β̂3 is the global minimizer of the least squares criterion Q by show-

ing that the second derivative
d2

dη2
3

Q(η3) > 0 for all values of η3.

5.7. Show that the hat matrix H = X(XT X)−1XT is idempotent, that
is, show that HH = H2 = H .

5.8. Show that I − H = I − X(XTX)−1XT is idempotent, that is,
show that (I − H)(I − H) = (I − H)2 = I − H .

Output for Problem 5.9

Label Estimate Std. Error t-value p-value

Constant -5.07459 1.85124 -2.741 0.0076

log[H] 1.12399 0.498937 2.253 0.0270

log[S] 0.573167 0.116455 4.922 0.0000

R Squared: 0.895655 Sigma hat: 0.223658 Number of cases: 82

(log[H] log[S]) (4 5)

Prediction = 2.2872, s(pred) = 0.467664,

Estimated population mean value = 2.2872, s = 0.410715

5.9. The output above was produced from the file mussels.lsp in Arc.
Let Y = log(M) where M is the muscle mass of a mussel. Let X1 ≡ 1, X2 =
log(H) where H is the height of the shell, and let X3 = log(S) where S is
the shell mass. Suppose that it is desired to predict Yf if log(H) = 4 and

log(S) = 5, so that x′
f = (1, 4, 5). Assume that se(Ŷf ) = 0.410715 and that

se(pred) = 0.467664.

a) If x′
f = (1, 4, 5) find a 99% confidence interval for E(Yf ).

b) If x′
f = (1, 4, 5) find a 99% prediction interval for Yf .

5.10∗. a) Show Cp(I) ≤ k iff FI ≤ 1.

b) Show Cp(I) ≤ 2k iff FI ≤ p/(p − k).
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Output for Problem 5.11 Coefficient Estimates Response = height

Label Estimate Std. Error t-value p-value

Constant 227.351 65.1732 3.488 0.0008

sternal height 0.955973 0.0515390 18.549 0.0000

finger to ground 0.197429 0.0889004 2.221 0.0295

R Squared: 0.879324 Sigma hat: 22.0731

Summary Analysis of Variance Table

Source df SS MS F p-value

Regression 2 259167. 129583. 265.96 0.0000

Residual 73 35567.2 487.222

5.11. The output above is from the multiple linear regression of the
response Y = height on the two nontrivial predictors sternal height = height
at shoulder and finger to ground = distance from the tip of a person’s middle
finger to the ground.

a) Consider the plot with Yi on the vertical axis and the least squares
fitted values Ŷi on the horizontal axis. Sketch how this plot should look if
the multiple linear regression model is appropriate.

b) Sketch how the residual plot should look if the residuals ri are on the
vertical axis and the fitted values Ŷi are on the horizontal axis.

c) From the output, are sternal height and finger to ground useful for
predicting height? (Perform the ANOVA F test.)

5.12. Suppose that it is desired to predict the weight of the brain (in
grams) from the cephalic index measurement. The output below uses data
from 267 people.

predictor coef Std. Error t-value p-value

Constant 865.001 274.252 3.154 0.0018

cephalic 5.05961 3.48212 1.453 0.1474

Do a 4 step test for β2 �= 0.
5.13. Suppose that the scatterplot of X versus Y is strongly curved

rather than ellipsoidal. Should you use simple linear regression to predict Y
from X? Explain.
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5.14. Suppose that the 95% confidence interval for β2 is (−17.457, 15.832).
Suppose only a constant and X2 are in the MLR model. Is X2 a useful linear
predictor for Y ? If your answer is no, could X2 be a useful predictor for Y ?
Explain.

5.15∗. a) For λ �= 0, expand f(λ) = yλ in a Taylor series about λ = 1.
(Treat y as a constant.)

b) Let

g(λ) = y(λ) =
yλ − 1

λ
.

Assuming that
y [log(y)]k ≈ ak + bky,

show that

g(λ) ≈ [
∑∞

k=o(ak + bky) (λ−1)k

k!
] − 1

λ

= [(
1

λ

∞∑
k=o

ak
(λ − 1)k

k!
) − 1

λ
] + (

1

λ

∞∑
k=o

bk
(λ − 1)k

k!
)y

= aλ + bλy.

c) Often only terms k = 0, 1, and 2 are kept. Show that this 2nd order
expansion is

yλ − 1

λ
≈
[

(λ − 1)a1 + (λ−1)2

2
a2 − 1

λ

]
+

[
1 + b1(λ − 1) + b2

(λ−1)2

2

λ

]
y.

Output for problem 5.16.

Current terms: (finger to ground nasal height sternal height)

df RSS | k C_I

Delete: nasal height 73 35567.2 | 3 1.617

Delete: finger to ground 73 36878.8 | 3 4.258

Delete: sternal height 73 186259. | 3 305.047

5.16. From the output from backward elimination given above, what are
two good candidate models for predicting Y ? (When listing terms, DON’T
FORGET THE CONSTANT!)
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Output for Problem 5.17.
L1 L2 L3 L4

# of predictors 10 6 4 3
# with 0.01 ≤ p-value ≤ 0.05 0 0 0 0

# with p-value > 0.05 6 2 0 0
R2

I 0.774 0.768 0.747 0.615

corr(Ŷ , ŶI) 1.0 0.996 0.982 0.891
Cp(I) 10.0 3.00 2.43 22.037√
MSE 63.430 61.064 62.261 75.921

p-value for change in F test 1.0 0.902 0.622 0.004

5.17. The above table gives summary statistics for 4 MLR models con-
sidered as final submodels after performing variable selection. The forward
response plot and residual plot for the full model L1 was good. Model L3
was the minimum Cp model found. Which model should be used as the final
submodel? Explain briefly why each of the other 3 submodels should not be
used.

Output for Problem 5.18.
L1 L2 L3 L4

# of predictors 10 5 4 3
# with 0.01 ≤ p-value ≤ 0.05 0 1 0 0

# with p-value > 0.05 8 0 0 0
R2

I 0.655 0.650 0.648 0.630

corr(Ŷ , ŶI) 1.0 0.996 0.992 0.981
Cp(I) 10.0 4.00 5.60 13.81√
MSE 73.548 73.521 73.894 75.187

p-value for change in F test 1.0 0.550 0.272 0.015

5.18∗. The above table gives summary statistics for 4 MLR models con-
sidered as final submodels after performing variable selection. The forward
response plot and residual plot for the full model L1 was good. Model L2
was the minimum Cp model found. Which model should be used as the final
submodel? Explain briefly why each of the other 3 submodels should not be
used.
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Output for Problem 5.19.

ADJUSTED 99 cases 2 outliers

k CP R SQUARE R SQUARE RESID SS MODEL VARIABLES

-- ----- -------- -------- --------- --------------

1 760.7 0.0000 0.0000 185.928 INTERCEPT ONLY

2 12.7 0.8732 0.8745 23.3381 B

2 335.9 0.4924 0.4976 93.4059 A

2 393.0 0.4252 0.4311 105.779 C

3 12.2 0.8748 0.8773 22.8088 B C

3 14.6 0.8720 0.8746 23.3179 A B

3 15.7 0.8706 0.8732 23.5677 A C

4 4.0 0.8857 0.8892 20.5927 A B C

ADJUSTED 97 cases after deleting the 2 outliers

k CP R SQUARE R SQUARE RESID SS MODEL VARIABLES

-- ----- -------- -------- --------- --------------

1 903.5 0.0000 0.0000 183.102 INTERCEPT ONLY

2 0.7 0.9052 0.9062 17.1785 B

2 406.6 0.4944 0.4996 91.6174 A

2 426.0 0.4748 0.4802 95.1708 C

3 2.1 0.9048 0.9068 17.0741 A C

3 2.6 0.9043 0.9063 17.1654 B C

3 2.6 0.9042 0.9062 17.1678 A B

4 4.0 0.9039 0.9069 17.0539 A B C

5.19. The output above is from software that does all subsets variable
selection. The data is from Ashworth (1842). The predictors were A =
log(1692 property value), B = log(1841 property value) and C = log(percent
increase in value) while the response variable is Y = log(1841 population).

a) The top output corresponds to data with 2 small outliers. From this
output, what is the best model? Explain briefly.

b) The bottom output corresponds to the data with the 2 outliers re-
moved. From this output, what is the best model? Explain briefly.
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Problems using R/Splus.

Warning: Use the command source(“A:/rpack.txt”) to download
the programs. See Preface or Section 14.2. Typing the name of the
rpack function, eg Tplt, will display the code for the function. Use the args

command, eg args(Tplt), to display the needed arguments for the function.

5.20∗. a) Download the R/Splus function Tplt that makes the transfor-
mation plots for λ ∈ Λc.

b) Download the R/Splus function ffL that makes a FFλ plot.

c) Use the following R/Splus command to make a 100 × 3 matrix. The
columns of this matrix are the three nontrivial predictor variables.

nx <- matrix(rnorm(300),nrow=100,ncol=3)

Use the following command to make the response variable Y.

y <- exp( 4 + nx%*%c(1,1,1) + 0.5*rnorm(100) )

This command means the MLR model log(Y ) = 4 + X2 + X3 + X4 + e
will hold where e ∼ N(0, 0.25).

To find the response transformation, you need the programs ffL and
Tplt given in a) and b). Type ls() to see if the programs were downloaded
correctly.

To make an FFλ plot, type the following command.

ffL(nx,y)

Include the FFλ plot in Word by pressing the Ctrl and c keys simulta-
neously. This will copy the graph. Then in Word use the menu commands
“File>Paste”.

d) To make the transformation plots type the following command.

Tplt(nx,y)

The first plot will be for λ = −1. Move the curser to the plot and hold
the rightmost mouse key down (and in R, highlight stop) to go to the
next plot. Repeat these mouse operations to look at all of the plots. When
you get a plot that clusters about the OLS line which is included in each

190



plot, include this transformation plot in Word by pressing the Ctrl and c
keys simultaneously. This will copy the graph. Then in Word use the menu
commands “File>Paste”. You should get the log transformation.

e) Type the following commands.

out <- lsfit(nx,log(y))

ls.print(out)

Use the mouse to highlight the created output and include the output in
Word.

f) Write down the least squares equation for ̂log(Y ) using the output in
e).

5.21. a) Download the R/Splus functions piplot and pisim.

b) The command pisim(n=100, type = 1)will produce the mean length
of the classical, semiparametric, conservative and asymptotically optimal PIs
when the errors are normal, as well as the coverage proportions. Give the
simulated lengths and coverages.

c) Repeat b) using the command pisim(n=100, type = 3). Now the
errors are EXP(1) - 1.

d) Download robdata.txt and type the command
piplot(cbrainx,cbrainy). This command gives the semiparametric PI
limits for the Gladstone data. Include the plot in Word.

e) The infants are in the lower left corner of the plot. Do the PIs seem
to be better for the infants or the bulk of the data. Explain briefly.

Problems using ARC

To quit Arc, move the cursor to the x in the northeast corner and click.
Problems 5.22–5.27 use data sets that come with Arc (Cook and Weisberg
1999a).

5.22∗. a) In Arc enter the menu commands “File>Load>Data>ARCG”
and open the file big-mac.lsp. Next use the menu commands “Graph&Fit>
Plot of” to obtain a dialog window. Double click on TeachSal and then
double click on BigMac. Then click on OK. These commands make a plot of
X = TeachSal = primary teacher salary in thousands of dollars versus Y =
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BigMac = minutes of labor needed to buy a Big Mac and fries. Include the
plot in Word.

Consider transforming Y with a (modified) power transformation

Y (λ) =

{
(Y λ − 1)/λ, λ �= 0

log(Y ), λ = 0

b) Should simple linear regression be used to predict Y from X? Explain.

c) In the plot, λ = 1. Which transformation will increase the linearity of
the plot, log(Y ) or Y (2)? Explain.

5.23. In Arc enter the menu commands “File>Load>Data>ARCG” and
open the file mussels.lsp.

The response variable Y is the mussel muscle mass M, and the explanatory
variables are X2 = S = shell mass, X3 = H = shell height, X4 = L = shell
length and X5 = W = shell width.

Enter the menu commands “Graph&Fit>Fit linear LS” and fit the model:
enter S, H, L, W in the “Terms/Predictors” box, M in the “Response” box
and click on OK.

a) To get a response plot, enter the menu commands “Graph&Fit>Plot
of” and place L1:Fit-Values in the H–box and M in the V–box. Copy the
plot into Word.

b) Based on the response plot, does a linear model seem reasonable?

c) To get a residual plot, enter the menu commands “Graph&Fit>Plot
of” and place L1:Fit-Values in the H–box and L1:Residuals in the V–box.
Copy the plot into Word.

d) Based on the residual plot, what MLR assumption seems to be vio-
lated?

e) Include the regression output in Word.

f) Ignoring the fact that an important MLR assumption seems to have
been violated, do any of predictors seem to be needed given that the other
predictors are in the model? CONTINUED
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g) Ignoring the fact that an important MLR assumption seems to have
been violated, perform the ANOVA F test.

5.24∗. In Arc enter the menu commands “File>Load>Data>ARCG”
and open the file mussels.lsp. Use the commands “Graph&Fit>Scatterplot
Matrix of.” In the dialog window select H, L, W, S and M (so select M last).
Click on “OK” and include the scatterplot matrix in Word. The response M
is the edible part of the mussel while the 4 predictors are shell measurements.
Are any of the marginal predictor relationships nonlinear? Is E(M |H) linear
or nonlinear?

5.25∗. The file wool.lsp has data from a 33 experiment on the behavior
of worsted yarn under cycles of repeated loadings. The response Y is the
number of cycles to failure and the three predictors are the length, amplitude
and load. Make an FFλ plot by using the following commands.

From the menu “Wool” select “transform” and double click on Cycles.
Select “modified power” and use p = −1,−0.5, 0 and 0.5. Use the menu
commands “Graph&Fit>Fit linear LS” to obtain a dialog window. Next fit
LS five times. Use Amp, Len and Load as the predictors for all 5 regres-
sions, but use Cycles−1, Cycles−0.5, log[Cycles], Cycles0.5 and Cycles as the
response.

Next use the menu commands “Graph&Fit>Scatterplot-matrix of” to
create a dialog window. Select L5:Fit-Values, L4:Fit-Values, L3:Fit-Values,
L2 :Fit-Values, and L1:Fit-Values. Then click on “OK.” Include the resulting
FFλ plot in Word.

b) Use the menu commands “Graph&Fit>Plot of” to create a dialog win-
dow. Double click on L5:Fit-Values and double click on Cycles−1, Cycles−0.5,
log[Cycles], Cycles0.5 or Cycles until the resulting plot in linear. Include the

plot of Ŷ versus Y (λ) that is linear in Word. Use the OLS fit as a visual aid.
What response transformation do you end up using?

5.26. In Arc enter the menu commands “File>Load>Data>ARCG” and
open the file bcherry.lsp. The menu Trees will appear. Use the menu com-
mands “Trees>Transform” and a dialog window will appear. Select terms
Vol, D, and Ht. Then select the log transformation. The terms log Vol, log D
and log H should be added to the data set. If a tree is shaped like a cylinder
or a cone, then V ol ∝ D2Ht and taking logs results in a linear model.
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a) Fit the full model with Y = log V ol, X2 = log D and X3 = log Ht.
Add the output that has the LS coefficients to Word.

b) Fitting the full model will result in the menu L1. Use the commands
“L1>AVP–All 2D.” This will create a plot with a slider bar at the bottom
that says log[D]. This is the added variable plot for log(D). To make an added
variable plot for log(Ht), click on the slider bar. Add the OLS line to the AV
plot for log(Ht) by moving the OLS slider bar to 1 and include the resulting
plot in Word.

c) Fit the reduced model that drops log(Ht). Make an RR plot with
the residuals from the full model on the V axis and the residuals from the
submodel on the H axis. Add the LS line and the identity line as visual aids.
(Click on the Options menu to the left of the plot and type “y=x” in the
resulting dialog window to add the identity line.) Include the plot in Word.

d) Similarly make an FF plot using the fitted values from the two models.
Add the two lines. Include the plot in Word.

e) Next put the residuals from the submodel on the V axis and log(Ht)
on the H axis. Include this residual plot in Word.

f) Next put the residuals from the submodel on the V axis and the fitted
values from the submodel on the H axis. Include this residual plot in Word.

g) Next put log(Vol) on the V axis and the fitted values from the submodel
on the H axis. Include this response plot in Word.

h) Does log(Ht) seem to be an important term? If the only goal is to
predict volume, will much information be lost if log(Ht) is omitted? Remark
on the information given by each of the 6 plots. (Some of the plots
will suggest that log(Ht) is needed while others will suggest that log(Ht) is
not needed.)

5.27∗. a) In this problem we want to build a MLR model to predict
Y = g(BigMac) for some power transformation g. In Arc enter the menu
commands “File>Load>Data>Arcg” and open the file big-mac.lsp. Make
a scatterplot matrix of the variate valued variables and include the plot in
Word.

b) The log rule makes sense for the BigMac data. From the scatterplot,
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use the “Transformations” menu and select “Transform to logs”. Include the
resulting scatterplot in Word.

c) From the “Mac” menu, select “Transform”. Then select all 10 vari-
ables and click on the “Log transformations” button. Then click on “OK”.
From the “Graph&Fit” menu, select “Fit linear LS.” Use log[BigMac] as the
response and the other 9 “log variables” as the Terms. This model is the full
model. Include the output in Word.

d) Make a response plot (L1:Fit-Values in H and log(BigMac) in V) and
residual plot (L1:Fit-Values in H and L1:Residuals in V) and include both
plots in Word.

e) Using the “L1” menu, select “Examine submodels” and try forward
selection and backward elimination. Using the Cp ≤ 2k rule suggests that the
submodel using log[service], log[TeachSal] and log[TeachTax] may be good.
From the “Graph&Fit” menu, select “Fit linear LS”, fit the submodel and
include the output in Word.

f) Make a response plot (L2:Fit-Values in H and log(BigMac) in V) and
residual plot (L2:Fit-Values in H and L2:Residuals in V) for the submodel
and include the plots in Word.

g) Make an RR plot (L2:Residuals in H and L1:Residuals in V) and
FF plot (L2:Fit-Values in H and L1:Fit-Values in V) for the submodel and
include the plots in Word.

h) Do the plots and output suggest that the submodel is good? Explain.

Warning: The following problems uses data from the book’s
webpage. Save the data files on a disk. Get in Arc and use the menu
commands “File > Load” and a window with a Look in box will appear. Click
on the black triangle and then on 3 1/2 Floppy(A:). Then click twice on the
data set name.

5.28∗. (Scatterplot in Arc.) Activate the cbrain.lsp dataset with the
menu commands “File > Load > 3 1/2 Floppy(A:) > cbrain.lsp.” Scroll up
the screen to read the data description.

a) Make a plot of age versus brain weight brnweight. The commands
“Graph&Fit > Plot of” will bring down a menu. Put age in the H box and
brnweight in the V box. Put sex in the Mark by box. Click OK. Make the
lowess bar on the plot read .1. Open Word.
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In Arc, use the menu commands “Edit > Copy.” In Word, use the menu
commands “Edit > Paste.” This should copy the graph into the Word doc-
ument.

b) For a given age, which gender tends to have larger brains?

c) At what age does the brain weight appear to be decreasing?

5.29. (SLR in Arc.) Activate cbrain.lsp. Brain weight and the cube
root of size should be linearly related. To add the cube root of size to the
data set, use the menu commands “cbrain > Transform.” From the window,
select size and enter 1/3 in the p: box. Then click OK. Get some output
with commands “Graph&Fit > Fit linear LS.” In the dialog window, put
brnweight in Response, and (size)1/3 in terms.

a) Cut and paste the output (from Coefficient Estimates to Sigma hat)
into Word. Write down the least squares equation Ŷ = β̂1 + β̂2x.

b) If (size)1/3 = 15, what is the estimated brnweight?

c) Make a plot of the fitted values versus the residuals. Use the commands
“Graph&Fit > Plot of” and put “L1:Fit-values” in H and “L1:Residuals” in
V. Put sex in the Mark by box. Put the plot into Word. Does the plot look
ellipsoidal with zero mean?

d) Make a plot of the fitted values versus y = brnweight. Use the com-
mands “Graph&Fit > Plot of” and put “L1:Fit-values in H and brnweight in
V. Put sex in Mark by. Put the plot into Word. Does the plot look linear?

5.30∗. The following data set has 5 babies that are “good leverage
points:” they look like outliers but should not be deleted because they follow
the same model as the bulk of the data.

a) In Arc enter the menu commands “File>Load>3 1/2 Floppy(A:)” and
open the file cbrain.lsp. Select transform from the cbrain menu, and add
size1/3 using the power transformation option (p = 1/3). From
Graph&Fit, select Fit linear LS. Let the response be brnweight and as terms
include everything but size and Obs. Hence your model will include size1/3.
This regression will add L1 to the menu bar. From this menu, select Examine
submodels. Choose forward selection. You should get models including k =
2 to 12 terms including the constant. Find the model with the smallest
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Cp(I) = CI statistic and include all models with the same k as that model
in Word. That is, if k = 2 produced the smallest CI , then put the block
with k = 2 into Word. Next go to the L1 menu, choose Examine submodels
and choose Backward Elimination. Find the model with the smallest CI and
include all of the models with the same value of k in Word.

b) What model was chosen by forward selection?

c) What model was chosen by backward elimination?

d) Which model do you prefer?

e) Give an explanation for why the two models are different.

f) Pick a submodel and include the regression output in Word.

g) For your submodel in f), make an RR plot with the residuals from the
full model on the V axis and the residuals from the submodel on the H axis.
Add the OLS line and the identity line y=x as visual aids. Include the RR
plot in Word.

h) Similarly make an FF plot using the fitted values from the two models.
Add the two lines. Include the FF plot in Word.

i) Using the submodel, include the response plot (of Ŷ versus Y ) and
residual plot (of Ŷ versus the residuals) in Word.

j) Using results from f)-i), explain why your submodel is a good model.

5.31. a) In Arc enter the menu commands “File>Load>3 1/2 Floppy(A:)”
and open the file cyp.lsp. This data set consists of various measurements
taken on men from Cyprus around 1920. Let the response Y = height and
X = cephalic index = 100(head breadth)/(head length). Use Arc to get the
least squares output and include the relevant output in Word.

b) Intuitively, the cephalic index should not be a good predictor for a
person’s height. Perform a 4 step test of hypotheses with Ho: β2 = 0.

5.32. a) In Arc enter the menu commands “File>Load>3 1/2 Floppy(A:)”
and open the file cyp.lsp.

The response variable Y is height, and the explanatory variables are a
constant, X2 = sternal height (probably height at shoulder) and X3 = finger
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to ground.
Enter the menu commands “Graph&Fit>Fit linear LS” and fit the model:

enter sternal height and finger to ground in the “Terms/Predictors” box,
height in the “Response” box and click on OK.

Include the output in Word. Your output should certainly include the
lines from “Response = height” to the ANOVA table.

b) Predict Y if X2 = 1400 and X3 = 650.

c) Perform a 4 step ANOVA F test of the hypotheses with
Ho: β2 = β3 = 0.

d) Find a 99% CI for β2.

e) Find a 99% CI for β3.

f) Perform a 4 step test for β2 = 0.

g) Perform a 4 step test for β3 = 0.

h) What happens to the conclusion in g) if α = 0.01?

i) The Arc menu “L1” should have been created for the regression. Use
the menu commands “L1>Prediction” to open a dialog window. Enter 1400
650 in the box and click on OK. Include the resulting output in Word.

j) Let Xf,2 = 1400 and Xf,3 = 650 and use the output from i) to find a

95% CI for E(Yf ). Use the last line of the output, that is, se = S(Ŷf ).

k) Use the output from i) to find a 95% PI for Yf . Now se(pred) = s(pred).

l) Make a residual plot of the fitted values vs the residuals and make the
response plot of the fitted values versus Y . Include both plots in Word.

m) Do the plots suggest that the MLR model is appropriate? Explain.

5.33. In Arc enter the menu commands “File>Load>3 1/2 Floppy(A:)”
and open the file cyp.lsp.

The response variable Y is height, and the explanatory variables are
X2 = sternal height (probably height at shoulder) and X3 = finger to ground.

Enter the menu commands “Graph&Fit>Fit linear LS” and fit the model:
enter sternal height and finger to ground in the “Terms/Predictors” box,
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height in the “Response” box and click on OK.

a) To get a response plot, enter the menu commands “Graph&Fit>Plot
of” and place L1:Fit-Values in the H–box and height in the V–box. Copy the
plot into Word.

b) Based on the response plot, does a linear model seem reasonable?

c) To get a residual plot, enter the menu commands “Graph&Fit>Plot
of” and place L1:Fit-Values in the H–box and L1:Residuals in the V–box.
Copy the plot into Word.

d) Based on the residual plot, does a linear model seem reasonable?

5.34. In Arc enter the menu commands “File>Load>3 1/2 Floppy(A:)”
and open the file cyp.lsp.

The response variable Y is height, and the explanatory variables are X2

= sternal height, X3 = finger to ground, X4 = bigonal breadth X5 = cephalic
index X6 = head length and X7 = nasal height. Enter the menu commands
“Graph&Fit>Fit linear LS” and fit the model: enter the 6 predictors (in
order: X2 1st and X7 last) in the “Terms/Predictors” box, height in the
“Response” box and click on OK. This gives the full model. For the reduced
model, only use predictors 2 and 3.

a) Include the ANOVA tables for the full and reduced models in Word.

b) Use the menu commands “Graph&Fit>Plot of...” to get a dialog win-
dow. Place L2:Fit-Values in the H–box and L1:Fit-Values in the V–box.
Place the resulting plot in Word.

c) Use the menu commands “Graph&Fit>Plot of...” to get a dialog win-
dow. Place L2:Residuals in the H–box and L1:Residuals in the V–box. Place
the resulting plot in Word.

d) Both plots should cluster tightly about the identity line if the reduced
model is about as good as the full model. Is the reduced model good?

e) Perform the 4 step change in SS F test (of Ho: the reduced model is
good) using the 2 ANOVA tables from part (a). The test statistic is given
in Section 5.4.
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5.35. Activate the cyp.lsp data set. Choosing no more than 3 nonconstant
terms, try to predict height with multiple linear regression. Include a plot
with the fitted values on the horizontal axis and height on the vertical axis. Is
your model linear? Also include a plot with the fitted values on the horizontal
axis and the residuals on the vertical axis. Does the residual plot suggest that
the linear model may be inappropriate? (There may be outliers in the plot.
These could be due to typos or because the error distribution has heavier
tails than the normal distribution.) State which model you use.
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