
Chapter 4

Truncated Distributions

This chapter presents a simulation study of several of the confidence intervals
first presented in Chapter 2. Theorem 2.2 on p. 50 shows that the (α, β)
trimmed mean Tn is estimating a parameter μT with an asymptotic variance
equal to σ2

W/(β−α)2. The first five sections of this chapter provide the theory
needed to compare the different confidence intervals. Many of these results
will also be useful for comparing multiple linear regression estimators.

Mixture distributions are often used as outlier models. The following two
definitions and proposition are useful for finding the mean and variance of
a mixture distribution. Parts a) and b) of Proposition 4.1 below show that
the definition of expectation given in Definition 4.2 is the same as the usual
definition for expectation if Y is a discrete or continuous random variable.

Definition 4.1. The distribution of a random variable Y is a mixture
distribution if the cdf of Y has the form

FY (y) =
k∑

i=1

αiFWi(y) (4.1)

where 0 < αi < 1,
∑k

i=1 αi = 1, k ≥ 2, and FWi(y) is the cdf of a continuous
or discrete random variable Wi, i = 1, ..., k.

Definition 4.2. Let Y be a random variable with cdf F (y). Let h be a
function such that the expected value Eh(Y ) = E[h(Y )] exists. Then

E[h(Y )] =

∫ ∞

−∞
h(y)dF (y). (4.2)
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Proposition 4.1. a) If Y is a discrete random variable that has a pmf
f(y) with support Y, then

Eh(Y ) =

∫ ∞

−∞
h(y)dF (y) =

∑
y∈Y

h(y)f(y).

b) If Y is a continuous random variable that has a pdf f(y), then

Eh(Y ) =

∫ ∞

−∞
h(y)dF (y) =

∫ ∞

−∞
h(y)f(y)dy.

c) If Y is a random variable that has a mixture distribution with cdf FY (y) =∑k
i=1 αiFWi(y), then

Eh(Y ) =

∫ ∞

−∞
h(y)dF (y) =

k∑
i=1

αiEWi[h(Wi)]

where EWi[h(Wi)] =
∫∞
−∞ h(y)dFWi(y).

Example 4.1. Proposition 4.1c implies that the pmf or pdf of Wi is
used to compute EWi [h(Wi)]. As an example, suppose the cdf of Y is F (y) =
(1 − ε)Φ(y) + εΦ(y/k) where 0 < ε < 1 and Φ(y) is the cdf of W1 ∼ N(0, 1).
Then Φ(y/k) is the cdf of W2 ∼ N(0, k2). To find EY, use h(y) = y. Then

EY = (1 − ε)EW1 + εEW2 = (1 − ε)0 + ε0 = 0.

To find EY 2, use h(y) = y2. Then

EY 2 = (1 − ε)EW 2
1 + εEW 2

2 = (1 − ε)1 + εk2 = 1 − ε + εk2.

Thus VAR(Y ) = E[Y 2] − (E[Y ])2 = 1 − ε + εk2. If ε = 0.1 and k = 10, then
EY = 0, and VAR(Y ) = 10.9.

Remark 4.1. Warning: Mixture distributions and linear combinations
of random variables are very different quantities. As an example, let

W = (1 − ε)W1 + εW2

where ε, W1 and W2 are as in the previous example and suppose that W1

and W2 are independent. Then W , a linear combination of W1 and W2, has
a normal distribution with mean

EW = (1 − ε)EW1 + εEW2 = 0
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and variance

VAR(W ) = (1 − ε)2VAR(W1) + ε2VAR(W2) = (1 − ε)2 + ε2k2 < VAR(Y )

where Y is given in the example above. Moreover, W has a unimodal normal
distribution while Y does not follow a normal distribution. In fact, if X1 ∼
N(0, 1), X2 ∼ N(10, 1), and X1 and X2 are independent, then (X1+X2)/2 ∼
N(5, 0.5); however, if Y has a mixture distribution with cdf

FY (y) = 0.5FX1(y) + 0.5FX2(y) = 0.5Φ(y) + 0.5Φ(y − 10),

then the pdf of Y is bimodal.

Truncated distributions can be used to simplify the asymptotic theory
of robust estimators of location and regression. Sections 4.1, 4.2, 4.3, and
4.4 will be useful when the underlying distribution is exponential, double
exponential, normal, or Cauchy (see Chapter 3). Sections 4.5 and 4.6 exam-
ine how the sample median, trimmed means and two stage trimmed means
behave at these distributions.

Definitions 2.17 and 2.18 defined the truncated random variable YT (a, b)
and the Winsorized random variable YW (a, b). Let Y have cdf F and let the
truncated random variable YT (a, b) have the cdf FT (a,b). The following lemma
illustrates the relationship between the means and variances of YT (a, b) and
YW (a, b). Note that YW (a, b) is a mixture of YT (a, b) and two point masses at
a and b. Let c = μT (a, b)− a and d = b− μT (a, b).

Lemma 4.2. Let a = μT (a, b)− c and b = μT (a, b) + d. Then
a)

μW (a, b) = μT (a, b)− αc + (1 − β)d, and

b)
σ2

W (a, b) = (β − α)σ2
T (a, b) + (α − α2)c2

+[(1 − β)− (1 − β)2]d2 + 2α(1 − β)cd.

c) If α = 1 − β then

σ2
W (a, b) = (1 − 2α)σ2

T (a, b) + (α − α2)(c2 + d2) + 2α2cd.

d) If c = d then

σ2
W (a, b) = (β − α)σ2

T (a, b) + [α − α2 + 1 − β − (1 − β)2 + 2α(1 − β)]d2.
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e) If α = 1 − β and c = d, then μW (a, b) = μT (a, b) and

σ2
W (a, b) = (1 − 2α)σ2

T (a, b) + 2αd2.

Proof. We will prove b) since its proof contains the most algebra. Now

σ2
W = α(μT − c)2 + (β − α)(σ2

T + μ2
T ) + (1 − β)(μT + d)2 − μ2

W .

Collecting terms shows that

σ2
W = (β − α)σ2

T + (β − α + α + 1 − β)μ2
T + 2[(1 − β)d − αc]μT

+αc2 + (1 − β)d2 − μ2
W .

From a),

μ2
W = μ2

T + 2[(1 − β)d − αc]μT + α2c2 + (1 − β)2d2 − 2α(1 − β)cd,

and we find that

σ2
W = (β − α)σ2

T + (α − α2)c2 + [(1− β)− (1− β)2]d2 + 2α(1 − β)cd. QED

4.1 The Truncated Exponential Distribution

Let Y be a (one sided) truncated exponential TEXP (λ, b) random variable.
Then the pdf of Y is

fY (y|λ, b) =
1
λ
e−y/λ

1 − exp(− b
λ
)

for 0 < y ≤ b where λ > 0. Let b = kλ, and let

ck =

∫ kλ

0

1

λ
e−y/λdx = 1 − e−k.

Next we will find the first two moments of Y ∼ TEXP (λ, b = kλ) for k > 0.

Lemma 4.3. If Y is TEXP (λ, b = kλ) for k > 0, then

a) E(Y ) = λ

[
1 − (k + 1)e−k

1 − e−k

]
,
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and

b) E(Y 2) = 2λ2

[
1 − 1

2
(k2 + 2k + 2)e−k

1 − e−k

]
.

See Problem 4.9 for a related result.

Proof. a) Note that

ckE(Y ) =

∫ kλ

0

y

λ
e−y/λdy

= −ye−y/λ|kλ
0 +

∫ kλ

0

e−y/λdy

(use integration by parts). So ckE(Y ) =

−kλe−k + (−λe−y/λ)|kλ
0

= −kλe−k + λ(1 − e−k).

Hence

E(Y ) = λ

[
1 − (k + 1)e−k

1 − e−k

]
.

b) Note that

ckE(Y 2) =

∫ kλ

0

y2

λ
e−y/λdy.

Since
d

dy
[−(y2 + 2λy + 2λ2)e−y/λ]

=
1

λ
e−y/λ(y2 + 2λy + 2λ2) − e−y/λ(2y + 2λ)

= y2 1

λ
e−y/λ,

we have ckE(Y 2) =
[−(y2 + 2λy + 2λ2)e−y/λ]kλ

0

= −(k2λ2 + 2λ2k + 2λ2)e−k + 2λ2.

So the result follows. QED

Since as k → ∞, E(Y ) → λ, and E(Y 2) → 2λ2, we have VAR(Y ) → λ2.
If k = 9 log(2) ≈ 6.24, then E(Y ) ≈ .998λ, and E(Y 2) ≈ 0.95(2λ2).
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4.2 The Truncated Double Exponential Dis-

tribution

Suppose that X is a double exponential DE(μ, λ) random variable. Chapter
3 states that MED(X) = μ and MAD(X) = log(2)λ. Let c = k log(2), and let
the truncation points a = μ−kMAD(X) = μ−cλ and b = μ+kMAD(X) =
μ+cλ. Let XT (a, b) ≡ Y be the truncated double exponential TDE(μ, λ, a, b)
random variable. Then the pdf of Y is

fY (y|μ, λ, a, b) =
1

2λ(1 − exp(−c))
exp(−|y − μ|/λ)

for a ≤ y ≤ b.

Lemma 4.4. a) E(Y ) = μ.

b) VAR(Y ) = 2λ2

[
1 − 1

2
(c2 + 2c + 2)e−c

1 − e−c

]
.

Proof. a) follows by symmetry and b) follows from Lemma 4.3 b) since
VAR(Y ) = E[(Y − μ)2] = E(W 2

T ) where WT is TEXP (λ, b = cλ). QED

As c → ∞, VAR(Y ) → 2λ2. If k = 9, then c = 9 log(2) ≈ 6.24 and
VAR(Y ) ≈ 0.95(2λ2).

4.3 The Truncated Normal Distribution

Now if X is N(μ, σ2) then let Y be a truncated normal TN(μ, σ2, a, b) random
variable. Then fY (y) =

1√
2πσ2

exp (−(y−μ)2

2σ2 )

Φ( b−μ
σ

) − Φ(a−μ
σ

)
I[a,b](y)

where Φ is the standard normal cdf. The indicator function

I[a,b](y) = 1 if a ≤ y ≤ b

and is zero otherwise. Let φ be the standard normal pdf.
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Lemma 4.5.

E(Y ) = μ +

[
φ(a−μ

σ
) − φ( b−μ

σ
)

Φ( b−μ
σ

) − Φ(a−μ
σ

)

]
σ,

and VAR(Y ) =

σ2

[
1 +

(a−μ
σ

)φ(a−μ
σ

) − ( b−μ
σ

)φ( b−μ
σ

)

Φ( b−μ
σ

) − Φ(a−μ
σ

)

]
− σ2

[
φ(a−μ

σ
) − φ( b−μ

σ
)

Φ( b−μ
σ

) − Φ(a−μ
σ

)

]2

.

(See Johnson and Kotz 1970a, p. 83.)

Proof. Let c =
1

Φ( b−μ
σ

) − Φ(a−μ
σ

)
.

Then

E(Y ) =

∫ b

a

yfY (y)dy.

Hence
1

c
E(Y ) =

∫ b

a

y√
2πσ2

exp (
−(y − μ)2

2σ2
)dy

=

∫ b

a

(
y − μ

σ
)

1√
2π

exp (
−(y − μ)2

2σ2
)dy +

μ

σ

1√
2π

∫ b

a

exp (
−(y − μ)2

2σ2
)dy

=

∫ b

a

(
y − μ

σ
)

1√
2π

exp (
−(y − μ)2

2σ2
)dy

+μ

∫ b

a

1√
2πσ2

exp (
−(y − μ)2

2σ2
)dy.

Note that the integrand of the last integral is the pdf of a N(μ, σ2) distribu-
tion. Let z = (y − μ)/σ. Thus dz = dy/σ, and E(Y )/c =

∫ b−μ
σ

a−μ
σ

σ
z√
2π

e−z2/2dz +
μ

c

=
σ√
2π

(−e−z2/2)|
b−μ

σ
a−μ

σ

+
μ

c
.
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Multiplying both sides by c gives the expectation result.

E(Y 2) =

∫ b

a

y2fY (y)dy.

Hence
1

c
E(Y 2) =

∫ b

a

y2

√
2πσ2

exp (
−(y − μ)2

2σ2
)dy

= σ

∫ b

a

(
y2

σ2
− 2μy

σ2
+

μ2

σ2
)

1√
2π

exp (
−(y − μ)2

2σ2
)dy

+σ

∫ b

a

2yμ − μ2

σ2

1√
2π

exp (
−(y − μ)2

2σ2
)dy

= σ

∫ b

a

(
y − μ

σ
)2 1√

2π
exp (

−(y − μ)2

2σ2
)dy + 2

μ

c
E(Y ) − μ2

c
.

Let z = (y − μ)/σ. Then dz = dy/σ, dy = σdz, and y = σz + μ. Hence
E(Y 2)/c =

2
μ

c
E(Y ) − μ2

c
+ σ

∫ b−μ
σ

a−μ
σ

σ
z2

√
2π

e−z2/2dz.

Next integrate by parts with w = z and dv = ze−z2/2dz. Then E(Y 2)/c =

2
μ

c
E(Y ) − μ2

c
+

σ2

√
2π

[(−ze−z2/2)|
b−μ

σ
a−μ

σ

+

∫ b−μ
σ

a−μ
σ

e−z2/2dz]

= 2
μ

c
E(Y ) − μ2

c
+ σ2

[
(
a − μ

σ
)φ(

a − μ

σ
) − (

b − μ

σ
)φ(

b − μ

σ
) +

1

c

]
.

Using

VAR(Y ) = c
1

c
E(Y 2) − (E(Y ))2

gives the result. QED

Corollary 4.6. Let Y be TN(μ, σ2, a = μ − kσ, b = μ + kσ). Then
E(Y ) = μ and VAR(Y ) =

σ2

[
1 − 2kφ(k)

2Φ(k) − 1

]
.
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Table 4.1: Variances for Several Truncated Normal Distributions

k VAR(Y )
2.0 0.774σ2

2.5 0.911σ2

3.0 0.973σ2

3.5 0.994σ2

4.0 0.999σ2

Proof. Use the symmetry of φ, the fact that Φ(−x) = 1−Φ(x), and the
above lemma to get the result. QED

Examining VAR(Y ) for several values of k shows that the TN(μ, σ2, a =
μ−kσ, b = μ+kσ) distribution does not change much for k > 3.0. See Table
4.1.

4.4 The Truncated Cauchy Distribution

If X is a Cauchy C(μ, σ) random variable, then MED(X) = μ and MAD(X) =
σ. If Y is a truncated Cauchy TC(μ, σ, μ− aσ, μ+ bσ) random variable, then

fY (y) =
1

tan−1(b) + tan−1(a)

1

σ[1 + (y−μ
σ

)2]

for μ − aσ < y < μ + bσ. Moreover,

E(Y ) = μ + σ

(
log(1 + b2) − log(1 + a2)

2[tan−1(b) + tan−1(a)]

)
,

and VAR(Y ) =

σ2

[
b + a − tan−1(b)− tan−1(a)

tan−1(b) + tan−1(a)
−
(

log(1 + b2) − log(1 + a2)

tan−1(b) + tan−1(a)

)2
]

.

Lemma 4.7. If a = b, then E(Y ) = μ, and

VAR(Y ) = σ2

[
b − tan−1(b)

tan−1(b)

]
.

112



See Johnson and Kotz (1970a, p. 162) and Dahiya, Staneski and Chaganty
(2001).

4.5 Asymptotic Variances for Trimmed Means

The truncated distributions will be useful for finding the asymptotic vari-
ances of trimmed and two stage trimmed means. Assume that Y is from a
symmetric location–scale family with parameters μ and σ and that the trun-
cation points are a = μ − zσ and b = μ + zσ. Recall that for the trimmed
mean Tn, √

n(Tn − μT (a, b))
D→ N(0,

σ2
W (a, b)

(β − α)2
).

Since the family is symmetric and the truncation is symmetric, α = F (a) =
1 − β and μT (a, b) = μ.

Definition 4.3. Let Y1, ..., Yn be iid random variables and let Dn ≡
Dn(Y1, ..., Yn) be an estimator of a parameter μD such that

√
n(Dn − μD)

D→ N(0, σ2
D).

Then the asymptotic variance of
√

n(Dn − μD) is σ2
D and the asymptotic

variance (AV) of Dn is σ2
D/n. If S2

D is a consistent estimator of σ2
D, then the

(asymptotic) standard error (SE) of Dn is SD/
√

n.

Remark 4.2. In the literature, usually either σ2
D or σ2

D/n is called the
asymptotic variance of Dn. The parameter σ2

D is a function of both the
estimator Dn and the underlying distribution F of Y1. Frequently nVAR(Dn)
converges in distribution to σ2

D, but not always. See Staudte and Sheather
(1990, p. 51) and Lehmann (1999, p. 232).

Example 4.2. If Y1, ..., Yn are iid from a distribution with mean μ and
variance σ2, then by the central limit theorem,

√
n(Y n − μ)

D→ N(0, σ2).

Recall that VAR(Y n) = σ2/n = AV (Y n) and that the standard error SE(Y n)
= Sn/

√
n where S2

n is the sample variance.
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Remark 4.3. Returning to the trimmed mean Tn where Y is from a
symmetric location–scale family, take μ = 0 since the asymptotic variance
does not depend on μ. Then

n AV (Tn) =
σ2

W (a, b)

(β − α)2
=

σ2
T (a, b)

1 − 2α
+

2α(F−1(α))2

(1 − 2α)2
.

See, for example, Bickel (1965). This formula is useful since the variance of
the truncated distribution σ2

T (a, b) has been computed for several distribu-
tions in the previous sections.

Definition 4.4. An estimator Dn is a location and scale equivariant
estimator if

Dn(α + βY1, ..., α + βYn) = α + βDn(Y1, ..., Yn)

where α and β are arbitrary real constants.

Remark 4.4. Many location estimators such as the sample mean, sample
median, trimmed mean, metrically trimmed mean, and two stage trimmed
means are equivariant. Let Y1, ..., Yn be iid from a distribution with cdf
FY (y) and suppose that Dn is an equivariant estimator of μD ≡ μD(FY ) ≡
μD(FY (y)). If Xi = α + βYi where β 
= 0, then the cdf of X is FX(y) =
FY ((y − α)/β). Suppose that

μD(FX) ≡ μD[FY (
y − α

β
)] = α + βμD[FY (y)]. (4.3)

Let Dn(Y ) ≡ Dn(Y1, ..., Yn). If

√
n[Dn(Y ) − μD(FY (y))]

D→ N(0, σ2
D),

then

√
n[Dn(X) − μD(FX)] =

√
n[α + βDn(Y ) − (α + βμD(FY ))]

D→ N(0, β2σ2
D).

This result is especially useful when F is a cdf from a location–scale family
with parameters μ and σ. In this case, Equation (4.3) holds when μD is the
population mean, population median, and the population truncated mean
with truncation points a = μ−z1σ and b = μ+z2σ (the parameter estimated
by trimmed and two stage trimmed means).
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Recall the following facts about two stage trimmed means from Chap-
ter 2. Let a = MED(Y ) − k1MAD(Y ) and b = MED(Y ) + k2MAD(Y )
where MED(Y ) and MAD(Y ) are the population median and median ab-
solute deviation respectively. Usually we will take k1 = k2 = k. Assume
that the underlying cdf F is continuous. Let α = F (a) and let αo ∈ C =
{0, 0.01, 0.02, ..., 0.49, 0.50} be the smallest value in C such that αo ≥ α. Sim-
ilarly, let β = F (b) and let 1 − βo ∈ C be the smallest value in the index set
C such that 1 − βo ≥ 1 − β. Let αo = F (ao), and let βo = F (bo). Let L(Mn)
count the number of Yi < â = MED(n) − k1MAD(n) and let n − U(Mn)
count the number of Yi > b̂ = MED(n) + k2MAD(n). Let αo,n ≡ α̂o be the

smallest value in C such that αo,n ≥ L(Mn)/n, and let 1 − βo,n ≡ 1 − β̂o

be the smallest value in C such that 1 − βo,n ≥ 1 − (U(Mn)/n). Then the
robust estimator TA,n is the (αo,n, 1 − βo,n) trimmed mean while TS,n is the
max(αo,n, 1−βo,n)100% trimmed mean. The asymmetrically trimmed TA,n is
asymptotically equivalent to the (αo, 1−βo) trimmed mean and the symmet-
rically trimmed mean TS,n is asymptotically equivalent to the max(αo, 1−βo)
100% trimmed mean. Then from Corollary 2.5,

√
n[TA,n − μT (ao, bo)]

D→ N(0,
σ2

W (ao, bo)

(βo − αo)2
),

and √
n[TS,n − μT (aM , bM)]

D→ N(0,
σ2

W (aM , bM)

(βM − αM )2
).

If the distribution of Y is symmetric then TA,n and TS,n are asymptotically
equivalent. It is important to note that no knowledge of the unknown distri-
bution and parameters is needed to compute the two stage trimmed means
and their standard errors.

The next three lemmas find the asymptotic variance for trimmed and two
stage trimmed means when the underlying distribution is normal, double
exponential and Cauchy, respectively. Assume a = MED(Y ) − kMAD(Y )
and b = MED(Y ) + kMAD(Y ).

Lemma 4.8. Suppose that Y comes from a normal N(μ, σ2) distribution.
Let Φ(x) be the cdf and let φ(x) be the density of the standard normal. Then
for the α trimmed mean,

n AV =

(
1 − 2zφ(z)

2Φ(z)−1

1 − 2α
+

2αz2

(1 − 2α)2

)
σ2 (4.4)
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where α = Φ(−z), and z = kΦ−1(0.75). For the two stage estimators, round
100α up to the nearest integer J. Then use αJ = J/100 and zJ = −Φ−1(αJ )
in Equation (4.4).

Proof. If Y follows the normal N(μ, σ2) distribution, then a = μ −
kMAD(Y ) and b = μ+kMAD(Y ) where MAD(Y ) = Φ−1(0.75)σ. It is enough
to consider the standard N(0,1) distribution since n AV (Tn, N(μ, σ2)) =
σ2 n AV (Tn, N(0, 1)). If a = −z and b = z, then by Corollary 4.6,

σ2
T (a, b) = 1 − 2zφ(z)

2Φ(z) − 1
.

Use Remark 4.3 with z = kΦ−1(0.75), and α = Φ(−z) to get Equation (4.4).

Lemma 4.9. Suppose that Y comes from a double exponential DE(0,1)
distribution. Then for the α trimmed mean,

n AV =

2−(z2+2z+2)e−z

1−e−z

1 − 2α
+

2αz2

(1 − 2α)2
(4.5)

where z = k log(2) and α = 0.5 exp(−z). For the two stage estimators,
round 100α up to the nearest integer J. Then use αJ = J/100 and let zJ =
− log(2αJ ).

Proof Sketch. For the DE(0, 1) distribution, MAD(Y ) = log(2). If the
DE(0,1) distribution is truncated at −z and z, then use Remark 4.3 with

σ2
T (−z, z) =

2 − (z2 + 2z + 2)e−z

1 − e−z
.

Lemma 4.10. Suppose that Y comes from a Cauchy (0,1) distribution.
Then for the α trimmed mean,

n AV =
z − tan−1(z)

(1 − 2α) tan−1(z)
+

2α(tan[π(α− 1
2
)])2

(1 − 2α)2
(4.6)

where z = k and

α =
1

2
+

1

π
tan−1(z).

For the two stage estimators, round 100α up to the nearest integer J. Then
use αJ = J/100 and let zJ = tan[π(αJ − 0.5)].
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Proof Sketch. For the C(0, 1) distribution, MAD(Y ) = 1. If the C(0,1)
distribution is truncated at −z and z, then use Remark 4.3 with

σ2
T (−z, z) =

z − tan−1(z)

tan−1(z)
.

4.6 Simulation

In statistics, simulation uses computer generated pseudo-random variables in
place of real data. This artificial data can be used just like real data to pro-
duce histograms and confidence intervals and to compare estimators. Since
the artificial data is under the investigator’s control, often the theoretical
behavior of the statistic is known. This knowledge can be used to estimate
population quantities (such as MAD(Y )) that are otherwise hard to compute
and to check whether software is running correctly.

Example 4.3. The R/Splus software is especially useful for generating
random variables. The command

Y <- rnorm(100)

creates a vector Y that contains 100 pseudo iid N(0,1) variables. More gen-
erally, the command

Y <- rnorm(100,10,sd=4)

creates a vector Y that contains 100 pseudo iid N(10, 16) variables since
42 = 16. To study the sampling distribution of Y n, we could generate K
N(0, 1) samples of size n, and compute Y n,1, ..., Y n,K where the notation
Y n,j denotes the sample mean of the n pseudo-variates from the jth sample.
The command

M <- matrix(rnorm(1000),nrow=100,ncol=10)

creates a 100 × 10 matrix containing 100 samples of size 10. (Note that
100(10) = 1000.) The command

M10 <- apply(M,1,mean)
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creates the vector M10 of length 100 which contains Y n,1, ..., Y n,K where
K = 100 and n = 10. A histogram from this vector should resemble the pdf
of a N(0, 0.1) random variable. The sample mean and variance of the 100
vector entries should be close to 0 and 0.1, respectively.

Example 4.4. Similarly the command

M <- matrix(rexp(1000),nrow=100,ncol=10)

creates a 100 × 10 matrix containing 100 samples of size 10 exponential(1)
(pseudo) variates. (Note that 100(10) = 1000.) The command

M10 <- apply(M,1,mean)

gets the sample mean for each (row) sample of 10 observations. The command

M <- matrix(rexp(10000),nrow=100,ncol=100)

creates a 100× 100 matrix containing 100 samples of size 100 exponential(1)
(pseudo) variates. (Note that 100(100) = 10000.) The command

M100 <- apply(M,1,mean)

gets the sample mean for each (row) sample of 100 observations. The com-
mands

hist(M10) and hist(M100)

will make histograms of the 100 sample means. The first histogram should
be more skewed than the second, illustrating the central limit theorem.

Example 4.5. As a slightly more complicated example, suppose that
it is desired to approximate the value of MAD(Y ) when Y is the mixture
distribution with cdf F (y) = 0.95Φ(y)+0.05Φ(y/3). That is, roughly 95% of
the variates come from a N(0, 1) distribution and 5% from a N(0, 9) distribu-
tion. Since MAD(n) is a good estimator of MAD(Y ), the following R/Splus
commands can be used to approximate MAD(Y ).

contam <- rnorm(10000,0,(1+2*rbinom(10000,1,0.05)))

mad(contam,constant=1)

Running these commands suggests that MAD(Y ) ≈ 0.70. Now F (MAD(Y )) =
0.75. To find F (0.7), use the command
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0.95*pnorm(.7) + 0.05*pnorm(.7/3)

which gives the value 0.749747. Hence the approximation was quite good.

Definition 4.5. Let T1,n and T2,n be two estimators of a parameter τ
such that

nδ(T1,n − τ )
D→ N(0, σ2

1(F ))

and
nδ(T2,n − τ )

D→ N(0, σ2
2(F )),

then the asymptotic relative efficiency of T1,n with respect to T2,n is

ARE(T1,n, T2,n) =
σ2

2(F )

σ2
1(F )

=
AV (T2,n)

AV (T1,n)
.

This definition brings up several issues. First, both estimators must have
the same convergence rate nδ. Usually δ = 0.5. If Ti,n has convergence rate
nδi, then estimator T1,n is judged to be better than T2,n if δ1 > δ2. Secondly,
the two estimators need to estimate the same parameter τ. This condition
will often not hold unless the distribution is symmetric about μ. Then τ = μ
is a natural choice. Thirdly, robust estimators are often judged by their
Gaussian efficiency with respect to the sample mean (thus F is the normal
distribution). Since the normal distribution is a location–scale family, it is
often enough to compute the ARE for the standard normal distribution. If
the data come from a distribution F and the ARE can be computed, then
T1,n is judged to be a better estimator at the data than T2,n if the ARE > 1.

In simulation studies, typically the underlying distribution F belongs to a
symmetric location–scale family. There are at least two reasons for using such
distributions. First, if the distribution is symmetric, then the population
median MED(Y ) is the point of symmetry and the natural parameter to
estimate. Under the symmetry assumption, there are many estimators of
MED(Y ) that can be compared via their ARE with respect to the sample
mean or maximum likelihood estimator (MLE). Secondly, once the ARE is
obtained for one member of the family, it is typically obtained for all members
of the location–scale family. That is, suppose that Y1, ..., Yn are iid from a
location–scale family with parameters μ and σ. Then Yi = μ + σZi where
the Zi are iid from the same family with μ = 0 and σ = 1. Typically

AV [Ti,n(Y )] = σ2AV [Ti,n(Z)],

119



Table 4.2: Simulated Scaled Variance, 500 Runs, k = 5

F n Y MED(n) 1% TM TS,n

N(0,1) 10 1.116 1.454 1.116 1.166
N(0,1) 50 0.973 1.556 0.973 0.974
N(0,1) 100 1.040 1.625 1.048 1.044
N(0,1) 1000 1.006 1.558 1.008 1.010
N(0,1) ∞ 1.000 1.571 1.004 1.004

DE(0,1) 10 1.919 1.403 1.919 1.646
DE(0,1) 50 2.003 1.400 2.003 1.777
DE(0,1) 100 1.894 0.979 1.766 1.595
DE(0,1) 1000 2.080 1.056 1.977 1.886
DE(0,1) ∞ 2.000 1.000 1.878 1.804

so
ARE[T1,n(Y ), T2,n(Y )] = ARE[T1,n(Z), T2,n(Z)].

Example 4.6. If T2,n = Y , then by the central limit theorem σ2
2(F ) = σ2

when F is the N(μ, σ2) distribution. Then ARE(TA,n, Y n) = σ2/(nAV )
where nAV is given by Equation (4.4). Note that the ARE does not depend
on σ2. If k ∈ [5, 6], then J = 1, and ARE(TA,n, Y n) ≈ 0.996. Hence TS,n and
TA,n are asymptotically equivalent to the 1% trimmed mean and are almost
as good as the optimal sample mean at Gaussian data.

Example 4.7. If F is the DE(0, 1) cdf, then the asymptotic efficiency
of TA,n with respect to the mean is ARE = 2/(nAV ) where nAV is given
by Equation (4.5). If k = 5, then J = 2, and ARE(TA,n, Y n) ≈ 1.108.
Hence TS,n and TA,n are asymptotically equivalent to the 2% trimmed mean
and perform better than the sample mean. If k = 6, then J = 1, and
ARE(TA,n, Y n) ≈ 1.065.

The results from a small simulation are presented in Table 4.2. For each
sample size n, 500 samples were generated. The sample mean Y , sample
median, 1% trimmed mean, and TS,n were computed. The latter estimator
was computed using the trimming parameter k = 5. Next the sample vari-
ance S2(T ) of the 500 values T1, ..., T500 was computed where T is one of the
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four estimators. The value in the table is nS2(T ). These numbers estimate
n times the actual variance of the estimators. Suppose that for n ≥ N, the
tabled numbers divided by n are close to the asymptotic variance. Then the
asymptotic theory may be useful if the sample size n ≥ N and if the distri-
bution corresponding to F is a reasonable approximation to the data (but
see Lehmann 1999, p. 74). The scaled asymptotic variance σ2

D is reported
in the rows n = ∞. The simulations were performed for normal and double
exponential data, and the simulated values are close to the theoretical values.

A small simulation study was used to compare some simple randomly
trimmed means. The N(0, 1), 0.75N(0, 1) + 0.25N(100, 1) (shift), C(0,1),
DE(0,1) and exponential(1) distributions were considered. For each distri-
bution K = 500 samples of size n = 10, 50, 100, and 1000 were generated.
Six different CIs

Dn ± td,.975SE(Dn)

were used. The degrees of freedom d = Un − Ln − 1, and usually SE(Dn) =
SERM(Ln, Un). See Definition 2.16 on p. 45.
(i) The classical interval used Dn = Y , d = n−1 and SE = S/

√
n. Note that

Y is a 0% trimmed mean that uses Ln = 0, Un = n and SERM(0, n) = S/
√

n.
(ii) This robust interval used Dn = TA,n with k1 = k2 = 6 and SE =
SERM(Ln, Un) where Un and Ln are given by Definition 2.15.
(iii) This resistant interval used Dn = TS,n with k1 = k2 = 3.5, and SE =
SERM(Ln, Un) where Un and Ln are given by Definition 2.14.
(iv) This resistant interval used Dn = MED(n) with Un = n − Ln where
Ln = �n/2
 − �√n/4 �. Note that d = Un − Ln − 1 ≈ √

n. Following Bloch
and Gastwirth (1968), SE(MED(n)) = 0.5(Y(Un) − Y(Ln+1)). See Application
2.2.
(v) This resistant interval again used Dn = MED(n) with Un = n−Ln where
Ln = �n/2
 − �√n/4 �, but SE(MED(n)) = SERM(Ln, Un) was used. Note
that MED(n) is the 50% trimmed mean and that the percentage of cases
used to compute the SE goes to 0 as n → ∞.
(vi) This resistant interval used the 25% trimmed mean for Dn and SE =
SERM(Ln, Un) where Un and Ln are given by Ln = �0.25n
 and Un = n−Ln.

In order for a location estimator to be used for inference, there must exist
a useful SE and a useful cutoff value td where the degrees of freedom d is
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Table 4.3: Simulated 95% CI Coverages, 500 Runs

F and n Y TA,n TS,n MED (v) 25% TM
N(0,1) 10 0.960 0.942 0.926 0.948 0.900 0.938
N(0,1) 50 0.948 0.946 0.930 0.936 0.890 0.926
N(0,1) 100 0.932 0.932 0.932 0.900 0.898 0.938
N(0,1) 1000 0.942 0.934 0.936 0.940 0.940 0.936
DE(0,1) 10 0.966 0.954 0.950 0.970 0.944 0.968
DE(0,1) 50 0.948 0.956 0.958 0.958 0.932 0.954
DE(0,1) 100 0.956 0.940 0.948 0.940 0.938 0.938
DE(0,1) 1000 0.948 0.940 0.942 0.936 0.930 0.944

C(0,1) 10 0.974 0.968 0.964 0.980 0.946 0.962
C(0,1) 50 0.984 0.982 0.960 0.960 0.932 0.966
C(0,1) 100 0.970 0.996 0.974 0.940 0.938 0.968
C(0,1) 1000 0.978 0.992 0.962 0.952 0.942 0.950
EXP(1) 10 0.892 0.816 0.838 0.948 0.912 0.916
EXP(1) 50 0.938 0.886 0.892 0.940 0.922 0.950
EXP(1) 100 0.938 0.878 0.924 0.930 0.920 0.954
EXP(1) 1000 0.952 0.848 0.896 0.926 0.922 0.936

SHIFT 10 0.796 0.904 0.850 0.940 0.910 0.948
SHIFT 50 0.000 0.986 0.620 0.740 0.646 0.820
SHIFT 100 0.000 0.988 0.240 0.376 0.354 0.610
SHIFT 1000 0.000 0.992 0.000 0.000 0.000 0.442

a function of n. Two criteria will be used to evaluate the CIs. First, the
observed coverage is the proportion of the K = 500 runs for which the CI
contained the parameter estimated by Dn. This proportion should be near
the nominal coverage 0.95. Notice that if W is the proportion of runs where
the CI contains the parameter, then KW is a binomial random variable.
Hence the SE of W is

√
p̂(1 − p̂)/K ≈ 0.013 for the observed proportion

p̂ ∈ [0.9, 0.95], and an observed coverage between 0.92 and 0.98 suggests that
the observed coverage is close to the nominal coverage of 0.95.

The second criterion is the scaled length of the CI =
√

n CI length =

√
n(2)(td,0.975)(SE(Dn)) ≈ 2(1.96)(σD)
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Table 4.4: Simulated Scaled CI Lengths, 500 Runs

F and n Y TA,n TS,n MED (v) 25% TM
N(0,1) 10 4.467 4.393 4.294 7.803 6.030 5.156
N(0,1) 50 4.0135 4.009 3.981 5.891 5.047 4.419
N(0,1) 100 3.957 3.954 3.944 5.075 4.961 4.351
N(0,1) 1000 3.930 3.930 3.940 5.035 4.928 4.290
N(0,1) ∞ 3.920 3.928 3.928 4.913 4.913 4.285

DE(0,1) 10 6.064 5.534 5.078 7.942 6.120 5.742
DE(0,1) 50 5.591 5.294 4.971 5.360 4.586 4.594
DE(0,1) 100 5.587 5.324 4.978 4.336 4.240 4.404
DE(0,1) 1000 5.536 5.330 5.006 4.109 4.021 4.348
DE(0,1) ∞ 5.544 5.372 5.041 3.920 3.920 4.343
C(0,1) 10 54.590 10.482 9.211 12.682 9.794 9.858
C(0,1) 50 94.926 10.511 8.393 7.734 6.618 6.794
C(0,1) 100 243.4 10.782 8.474 6.542 6.395 6.486
C(0,1) 1000 515.9 10.873 8.640 6.243 6.111 6.276
C(0,1) ∞ ∞ 10.686 8.948 6.157 6.157 6.255
EXP(1) 10 4.084 3.359 3.336 6.012 4.648 3.949
EXP(1) 50 3.984 3.524 3.498 4.790 4.105 3.622
EXP(1) 100 3.924 3.527 3.503 4.168 4.075 3.571
EXP(1) 1000 3.914 3.554 3.524 3.989 3.904 3.517

SHIFT 10 184.3 18.529 24.203 203.5 166.2 189.4
SHIFT 50 174.1 7.285 9.245 18.686 16.311 180.1
SHIFT 100 171.9 7.191 29.221 7.651 7.481 177.5
SHIFT 1000 169.7 7.388 9.453 7.278 7.123 160.6
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where the approximation holds if d > 30, if
√

n(Dn − μD)
D→ N(0, σ2

D), and
if SE(Dn) is a good estimator of σD/

√
n for the given value of n.

Tables 4.3 and 4.4 can be used to examine the six different interval esti-
mators. A good estimator should have an observed coverage p̂ ∈ [.92, .98],
and a small scaled length. In Table 4.3, coverages were good for N(0, 1)
data, except the interval (v) where SERM (Ln, Un) is slightly too small for
n ≤ 100. The coverages for the C(0,1) and DE(0,1) data were all good even
for n = 10.

For the mixture 0.75N(0, 1) + 0.25N(100, 1), the “coverage” counted the
number of times 0 was contained in the interval and divided the result by 500.
These rows do not give a genuine coverage since the parameter μD estimated
by Dn is not 0 for any of these estimators. For example Y estimates μ = 25.
Since the median, 25% trimmed mean, and TS,n trim the same proportion of
cases to the left as to the right, MED(n) is estimating MED(Y ) ≈ Φ−1(2/3) ≈
0.43 while the parameter estimated by TS,n is approximately the mean of a
truncated standard normal random variable where the truncation points are
Φ−1(.25) and ∞. The 25% trimmed mean also has trouble since the number
of outliers is a binomial(n, 0.25) random variable. Hence approximately half
of the samples have more than 25% outliers and approximately half of the
samples have less than 25% outliers. This fact causes the 25% trimmed mean
to have great variability. The parameter estimated by TA,n is zero to several
decimal places. Hence the coverage of the TA,n interval is quite high.

The exponential(1) distribution is skewed, so the central limit theorem
is not a good approximation for n = 10. The estimators Y , TA,n, TS,n, MED(n)
and the 25% trimmed mean are estimating the parameters 1, 0.89155, 0.83071,
log(2) and 0.73838 respectively. Now the coverages of TA,n and TS,n are
slightly too small. For example, TS,n is asymptotically equivalent to the 10%
trimmed mean since the metrically trimmed mean truncates the largest 9.3%
of the cases, asymptotically. For small n, the trimming proportion will be
quite variable and the mean of a truncated exponential distribution with
the largest γ percent of cases trimmed varies with γ. This variability of the
truncated mean does not occur for symmetric distributions if the trimming
is symmetric since then the truncated mean μT is the point of symmetry
regardless of the amount of truncation.

Examining Table 4.4 for N(0,1) data shows that the scaled lengths of the
first 3 intervals are about the same. The rows labeled ∞ give the scaled
length 2(1.96)(σD) expected if

√
nSE is a good estimator of σD. The median
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interval and 25% trimmed mean interval are noticeably larger than the clas-
sical interval. Since the degrees of freedom d ≈ √

n for the median intervals,
td,0.975 is considerably larger than 1.96 = z0.975 for n ≤ 100.

The intervals for the C(0,1) and DE(0,1) data behave about as expected.
The classical interval is very long at C(0,1) data since the first moment of
C(0,1) data does not exist. Notice that for n ≥ 50, all of the resistant
intervals are shorter on average than the classical intervals for DE(0,1) data.

For the mixture distribution, examining the length of the interval should
be fairer than examining the “coverage.” The length of the 25% trimmed
mean is long since about half of the time the trimmed data contains no
outliers while half of the time the trimmed data does contain outliers. When
n = 100, the length of the TS,n interval is quite long. This occurs because
the TS,n will usually trim all outliers, but the actual proportion of outliers
is binomial(100, 0.25). Hence TS,n is sometimes the 20% trimmed mean and
sometimes the 30% trimmed mean. But the parameter μT estimated by the
γ % trimmed mean varies quite a bit with γ. When n = 1000, the trimming
proportion is much less variable, and the CI length is shorter.

For exponential(1) data, 2(1.96)(σD) = 3.9199 for Y and MED(n). The
25% trimmed mean appears to be the best of the six intervals since the scaled
length is the smallest while the coverage is good.

4.7 Complements

Several points about resistant location estimators need to be made. First, by
far the most important step in analyzing location data is to check
whether outliers are present with a plot of the data. Secondly, no sin-
gle procedure will dominate all other procedures. In particular, it is unlikely
that the sample mean will be replaced by a robust estimator. The sample
mean often works well for distributions with second moments. In particu-
lar, the sample mean works well for many skewed and discrete distributions.
Thirdly, the mean and the median should usually both be computed. If a
CI is needed and the data is thought to be symmetric, several resistant CIs
should be computed and compared with the classical interval. Fourthly, in
order to perform hypothesis testing, plausible values for the unknown param-
eter must be given. The mean and median of the population are fairly simple
parameters even if the population is skewed while the truncated population
mean is considerably more complex.
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With some robust estimators, it very difficult to determine what the es-
timator is estimating if the population is not symmetric. In particular, the
difficulty in finding plausible values of the population quantities estimated
by M, L, and R estimators may be one reason why these estimators are not
widely used. For testing hypotheses, the following population quantities are
listed in order of increasing complexity.

1. The population median MED(Y ).

2. The population mean E(Y ).

3. The truncated mean μT as estimated by the α trimmed mean.

4. The truncated mean μT as estimated by the (α, β) trimmed mean.

5. The truncated mean μT as estimated by the TS,n.

6. The truncated mean μT as estimated by the TA,n.

Bickel (1965), Prescott (1978), and Olive (2001) give formulas similar to
Equations (4.4) and (4.5). Gross (1976), Guenther (1969) and Lax (1985) are
useful references for confidence intervals. Andrews, Bickel, Hampel, Huber,
Rogers and Tukey (1972) is a well known simulation study for robust location
estimators.

In Section 4.6, only intervals that are simple to compute by hand for
sample sizes of ten or so were considered. The interval based on MED(n)
(see Application 2.2 and the column “MED” in Tables 4.3 and 4.4) is even
easier to compute than the classical interval, kept its coverage pretty well,
and was frequently shorter than the classical interval.

Stigler (1973a) showed that the trimmed mean has a limiting normal
distribution even if the population is discrete provided that the asymptotic
truncation points a and b have zero probability; however, in finite samples
the trimmed mean can perform poorly if there are gaps in the distribution
near the trimming proportions.

The estimators TS,n and TA,n depend on a parameter k. Smaller values of
k should have smaller CI lengths if the data has heavy tails while larger values
of k should perform better for light tailed distributions. In simulations, TS,n

performed well for k > 1, but the variability of TA,n was too large for n ≤ 100
for Gaussian data if 1 < k < 5. These estimators also depend on the grid
C of trimming proportions. Using C = {0, 0.01, 0.02, ..., 0.49, 0.5} makes the
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estimators easy to compute, but TS,n will perform better if the much coarser
grid Cc = {0, 0.01, 0.10, 0.25, 0.40, 0.49, 0.5} is used. The performance does
not change much for symmetric data, but can improve considerably if the
data is skewed. The estimator can still perform rather poorly if the data is
asymmetric and the trimming proportion of the metrically trimmed mean is
near one of these allowed trimming proportions. For example if k = 3.5 and
the data is exponential(1), the metrically trimmed mean trims approximately
9.3% of the cases. Hence the TS,n is often the 25% and the 10% trimmed
mean for small n. When k = 4.5, TS,n with grid Cc is usually the 10%
trimmed mean and hence performs well on exponential(1) data.

TA,n is the estimator most like high breakdown M–estimators proposed
in the literature. These estimators basically use a random amount of trim-
ming and work well on symmetric data. Estimators that give zero weight to
distant outliers (“hard rejection”) can work well on “contaminated normal”
populations such as (1 − ε)N(0, 1) + εN(μs, 1). Of course ε ∈ (0, 0.5) and μs

can always be chosen so that these estimators perform poorly. Stigler (1977)
argues that complicated robust estimators are not needed.

4.8 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

4.1∗. Suppose the random variable X has cdf FX(x) = 0.9 Φ(x − 10) +
0.1 FW (x) where Φ(x − 10) is the cdf of a normal N(10, 1) random variable
with mean 10 and variance 1 and FW (x) is the cdf of the random variable
W that satisfies P (W = 200) = 1.
a) Find E(W ).
b) Find E(X).

4.2. Suppose the random variable X has cdf FX(x) = 0.9 FZ(x) +
0.1 FW (x) where FZ is the cdf of a gamma(ν = 10, λ = 1) random variable
with mean 10 and variance 10 and FW (x) is the cdf of the random variable
W that satisfies P (W = 400) = 1.
a) Find E(W ).
b) Find E(X).

4.3. a) Prove Lemma 4.2 a).
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b) Prove Lemma 4.2 c).
c) Prove Lemma 4.2 d).
d) Prove Lemma 4.2 e).

4.4. Suppose that F is the cdf from a distribution that is symmetric
about 0. Suppose a = −b and α = F (a) = 1 − β = 1 − F (b). Show that

σ2
W (a, b)

(β − α)2
=

σ2
T (a, b)

1 − 2α
+

2α(F−1(α))2

(1 − 2α)2
.

4.5. Recall that L(Mn) =
∑n

i=1 I [Yi < MED(n) − k MAD(n)] and n −
U(Mn) =

∑n
i=1 I [Yi > MED(n) + k MAD(n)] where the indicator variable

I(A) = 1 if event A occurs and is zero otherwise. Show that TS,n is a
randomly trimmed mean. (Hint: round

100max[L(Mn), n − U(Mn)]/n

up to the nearest integer, say Jn. Then TS,n is the Jn% trimmed mean with
Ln = �(Jn/100) n
 and Un = n − Ln.)

4.6. Show that TA,n is a randomly trimmed mean. (Hint: To get Ln,
round 100L(Mn)/n up to the nearest integer Jn. Then Ln = �(Jn/100) n
.
Round 100[n − U(Mn)]/n up to the nearest integer Kn. Then Un = �(100 −
Kn)n/100
.)

4.7∗. Let F be the N(0, 1) cdf. Show that the ARE of the sample median
MED(n) with respect to the sample mean Y n is ARE ≈ 0.64.

4.8∗. Let F be the DE(0, 1) cdf. Show that the ARE of the sample
median MED(n) with respect to the sample mean Y n is ARE ≈ 2.0.

4.9. If Y is TEXP (λ, b = kλ) for k > 0, show that a)

E(Y ) = λ

[
1 − k

ek − 1

]
.

b)

E(Y 2) = 2λ2

[
1 − (0.5k2 + k)

ek − 1

]
.
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R/Splus problems

Warning: Use the command source(“A:/rpack.txt”) to download
the programs. See Preface or Section 14.2. Typing the name of the
rpack function, eg rcisim, will display the code for the function. Use the
args command, eg args(rcisim), to display the needed arguments for the
function.

4.10. a) Download the R/Splus function nav that computes Equation
(4.4) from Lemma 4.8.

b) Find the asymptotic variance of the α trimmed mean for α = 0.01, 0.1,
0.25 and 0.49.

c) Find the asymptotic variance of TA,n for k = 2, 3, 4, 5 and 6.

4.11. a) Download the R/Splus function deav that computes Equation
(4.5) from Lemma 4.9.

b) Find the asymptotic variance of the α trimmed mean for α = 0.01, 0.1,
0.25 and 0.49.

c) Find the asymptotic variance of TA,n for k = 2, 3, 4, 5 and 6.

4.12. a) Download the R/Splus function cav that finds n AV for the
Cauchy(0,1) distribution.

b) Find the asymptotic variance of the α trimmed mean for α = 0.01, 0.1,
0.25 and 0.49.

c) Find the asymptotic variance of TA,n for k = 2, 3, 4, 5 and 6.
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4.13. a) Download the R/Splus function rcisim to reproduce Tables
4.3 and 4.4. Two lines need to be changed with each CI. One line is the
output line that calls the CI and the other line is the parameter estimated
for exponential(1) data. The default is for the classical interval. Thus the
program calls the function cci used in Problem 2.21. The functions medci,
tmci, atmci, stmci, med2ci, cgci and bg2ci given in Problems 2.22 – 2.28
are also interesting.

b) Enter the following commands, obtain the output and explain what
the output shows.
i) rcisim(n,type=1) for n = 10, 50, 100
ii) rcisim(n,type=2) for n = 10, 50, 100
iii) rcisim(n,type=3) for n = 10, 50, 100
iv) rcisim(n,type=4) for n = 10, 50, 100
v) rcisim(n,type=5) for n = 10, 50, 100

4.14. a) Download the R/Splus functions cisim and robci. Download
the data set cushny. That is, use the source command twice to download
rpack.txt and robdata.txt.

b) An easier way to reproduce Tables 4.3 and 4.4 is to evaluate the six CIs
on the same data. Type the command cisim(100) and interpret the results.

c) To compare the six CIs on the Cushny Peebles data described in Prob-
lem 2.11, type the command robci(cushny).
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