
Chapter 3

Some Useful Distributions

The two stage trimmed means of Chapter 2 are asymptotically equivalent to

a classical trimmed mean provided that An = MED(n) − k1MAD(n)
D→ a,

Bn = MED(n) + k2MAD(n)
D→ b and if 100F (a−) and 100F (b) are not

integers. This result will also hold if k1 and k2 depend on n. For example take

k1 = k2 = c1 + c2/n. Then MED(n)± k1MAD(n)
D→ MED(Y )± c1MAD(Y ).

A trimming rule suggests values for c1 and c2 and depends on the distribution
of Y. Sometimes the rule is obtained by transforming the random variable Y
into another random variable W (eg transform a lognormal into a normal)
and then using the rule for W . These rules may not be as resistant to outliers
as rules that do not use a transformation. For example, an observation which
does not seem to be an outlier on the log scale may appear as an outlier on
the original scale.

Several of the trimming rules in this chapter have been tailored so that
the probability is high that none of the observations are trimmed when the
sample size is moderate. Robust (but perhaps ad hoc) analogs of classical
procedures can be obtained by applying the classical procedure to the data
that remains after trimming.

Relationships between the distribution’s parameters and MED(Y ) and
MAD(Y ) are emphasized. Note that for location–scale families, highly out-
lier resistant estimates for the two parameters can be obtained by replacing
MED(Y ) by MED(n) and MAD(Y ) by MAD(n).

Definition 3.1. The moment generating function (mgf) of a random
variable Y is

m(t) = E(etY )
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provided that the expectation exists for t in some neighborhood of 0.

Definition 3.2. The characteristic function (chf) of a random variable
Y is

c(t) = E(eitY )

where the complex number i =
√−1.

Definition 3.3. The indicator function IA(x) ≡ I(x ∈ A) = 1 if x ∈ A
and 0, otherwise. Sometimes an indicator function such as I(0,∞)(y) will be
denoted by I(y > 0).

3.1 The Binomial Distribution

If Y has a binomial distribution, Y ∼ BIN(k, ρ), then the probability mass
function (pmf) of Y is

P (Y = y) =

(
k

y

)
ρy(1 − ρ)k−y

for 0 < ρ < 1 and y = 0, 1, . . . , k.
The moment generating function m(t) = ((1− ρ) + ρet)k, and the character-
istic function c(t) = ((1 − ρ) + ρeit)k.
E(Y ) = kρ, and
VAR(Y ) = kρ(1 − ρ).

The following normal approximation is often used.

Y ≈ N(kρ, kρ(1 − ρ))

when kρ(1 − ρ) > 9. Hence

P (Y ≤ y) ≈ Φ

(
y + 0.5 − kρ√

kρ(1 − ρ)

)
.

Also

P (Y = y) ≈ 1√
kρ(1 − ρ)

1√
2π

exp

(
−1

2

(y − kρ)2

kρ(1 − ρ)

)
.

See Johnson, Kotz and Kemp (1992, p. 115). This normal approximation
suggests that MED(Y ) ≈ kρ, and MAD(Y ) ≈ 0.6745

√
kρ(1 − ρ). Hamza

(1995) states that |E(Y ) − MED(Y )| ≤ max(ρ, 1 − ρ) and shows that

|E(Y ) − MED(Y )| ≤ log(2).
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Following Olive (2008, ch. 9), let W =
∑n

i=1 Yi ∼ bin(
∑n

i=1 ki, ρ) and let
nw =

∑n
i=1 ki. Often ki ≡ 1 and then nw = n. Let P (Fd1,d2 ≤ Fd1,d2(α)) = α

where Fd1,d2 has an F distribution with d1 and d2 degrees of freedom. Then
the Clopper Pearson “exact” 100 (1 − α)% CI for ρ is(

0,
1

1 + nw F2nw,2(α)

)
for W = 0,

(
nw

nw + F2,2nw(1 − α)
, 1

)
for W = nw,

and (ρL, ρU) for 0 < W < nw with

ρL =
W

W + (nw −W + 1)F2(nw−W+1),2W (1 − α/2)

and

ρU =
W + 1

W + 1 + (nw − W )F2(nw−W ),2(W+1)(α/2)
.

Suppose Y1, ..., Yn are iid bin(1, ρ). Let ρ̂ = number of “successes”/n and
let P (Z ≤ z1−α/2) = 1 − α/2 if Z ∼ N(0, 1). Let ñ = n + z2

1−α/2 and

ρ̃ =
nρ̂ + 0.5z2

1−α/2

n + z2
1−α/2

.

Then the large sample 100 (1 − α)% Agresti Coull CI for ρ is

p̃ ± z1−α/2

√
ρ̃(1 − ρ̃)

ñ
.

Given a random sample of size n, the classical estimate of ρ is ρ̂ = ȳn/k.
If each yi is a nonnegative integer between 0 and k, then a trimming rule is
keep yi if

med(n) − 5.2(1 +
4

n
)mad(n) ≤ yi ≤ med(n) + 5.2(1 +

4

n
)mad(n).

(This rule can be very bad if the normal approximation is not good.)
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3.2 The Burr Distribution

If Y has a Burr distribution, Y ∼ Burr(φ, λ), then the probability density
function (pdf) of Y is

f(y) =
1

λ

φyφ−1

(1 + yφ)
1
λ
+1

where y, φ, and λ are all positive. The cumulative distribution function (cdf)
of Y is

F (y) = 1 − exp

[− log(1 + yφ)

λ

]
= 1 − (1 + yφ)−1/λ for y > 0.

MED(Y ) = [eλ log(2) − 1]1/φ. See Patel, Kapadia and Owen (1976, p. 195).
Assume that φ is known. Since W = log(1 + Y φ) is EXP (λ),

λ̂ =
MED(W1, ..., Wn)

log(2)

is a robust estimator. If all the yi ≥ 0 then a trimming rule is keep yi if

0.0 ≤ wi ≤ 9.0(1 +
2

n
)med(n)

where med(n) is applied to w1, . . . , wn with wi = log(1 + yφ
i ).

3.3 The Cauchy Distribution

If Y has a Cauchy distribution, Y ∼ C(μ, σ), then the pdf of Y is

f(y) =
σ

π

1

σ2 + (y − μ)2
=

1

πσ[1 + (y−μ
σ

)2]

where y and μ are real numbers and σ > 0.
The cdf of Y is F (y) = 1

π
[arctan(y−μ

σ
) + π/2]. See Ferguson (1967, p. 102).

This family is a location–scale family that is symmetric about μ. The mo-
ments of Y do not exist, but the chf of Y is c(t) = exp(itμ − |t|σ).
MED(Y ) = μ, the upper quartile = μ + σ, and the lower quartile = μ − σ.
MAD(Y ) = F−1(3/4) − MED(Y ) = σ. For a standard normal random vari-
able, 99% of the mass is between −2.58 and 2.58 while for a standard Cauchy
C(0, 1) random variable 99% of the mass is between −63.66 and 63.66. Hence
a rule which gives weight one to almost all of the observations of a Cauchy
sample will be more susceptible to outliers than rules which do a large amount
of trimming.
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3.4 The Chi Distribution

If Y has a chi distribution, Y ∼ χp, then the pdf of Y is

f(y) =
yp−1e−y2/2

2
p
2
−1Γ(p/2)

where y ≥ 0 and p is a positive integer.
MED(Y ) ≈√p − 2/3.
See Patel, Kapadia and Owen (1976, p. 38). Since W = Y 2 is χ2

p, a trimming
rule is keep yi if wi = y2

i would be kept by the trimming rule for χ2
p.

3.5 The Chi–square Distribution

If Y has a chi–square distribution, Y ∼ χ2
p, then the pdf of Y is

f(y) =
y

p
2
−1e−

y
2

2
p
2 Γ(p

2
)

where y ≥ 0 and p is a positive integer.
E(Y ) = p.
VAR(Y ) = 2p.

Since Y is gamma G(ν = p/2, λ = 2),

E(Y r) =
2rΓ(r + p/2)

Γ(p/2)
, r > −p/2.

MED(Y ) ≈ p−2/3. See Pratt (1968, p. 1470) for more terms in the expansion
of MED(Y ). Empirically,

MAD(Y ) ≈
√

2p

1.483
(1 − 2

9p
)2 ≈ 0.9536

√
p.

Note that p ≈ MED(Y ) + 2/3, and VAR(Y ) ≈ 2MED(Y ) + 4/3. Let i be an
integer such that i ≤ w < i + 1. Then define rnd(w) = i if i ≤ w ≤ i + 0.5
and rnd(w) = i + 1 if i + 0.5 < w < i + 1. Then p ≈ rnd(MED(Y ) + 2/3),
and the approximation can be replaced by equality for p = 1, . . . , 100.

There are several normal approximations for this distribution. For p large,
Y ≈ N(p, 2p), and √

2Y ≈ N(
√

2p, 1).
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Let
α = P (Y ≤ χ2

p,α) = Φ(zα)

where Φ is the standard normal cdf. Then

χ2
p,α ≈ 1

2
(zα +

√
2p)2.

The Wilson–Hilferty approximation is(
Y

p

)1
3

≈ N(1 − 2

9p
,

2

9p
).

See Bowman and Shenton (1992, p. 6). This approximation gives

P (Y ≤ x) ≈ Φ[((
x

p
)1/3 − 1 + 2/9p)

√
9p/2],

and

χ2
p,α ≈ p(zα

√
2

9p
+ 1 − 2

9p
)3.

The last approximation is good if p > −1.24 log(α). See Kennedy and Gentle
(1980, p. 118).

Assume all yi > 0. Let p̂ = rnd(med(n) + 2/3). Then a trimming rule is
keep yi if

1

2
(−3.5 +

√
2p̂)2I(p̂ ≥ 15) ≤ yi ≤ p̂[(3.5 + 2.0/n)

√
2

9p̂
+ 1 − 2

9p̂
]3.

Another trimming rule would be to let

wi =

(
yi

p̂

)1/3

.

Then keep yi if the trimming rule for the normal distribution keeps the wi.

3.6 The Double Exponential Distribution

If Y has a double exponential distribution (or Laplace distribution), Y ∼
DE(θ, λ), then the pdf of Y is

f(y) =
1

2λ
exp

(−|y − θ|
λ

)
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where y is real and λ > 0. The cdf of Y is

F (y) = 0.5 exp

(
y − θ

λ

)
if y ≤ θ,

and

F (y) = 1 − 0.5 exp

(−(y − θ)

λ

)
if y ≥ θ.

This family is a location–scale family which is symmetric about θ.
The mgf m(t) = exp(θt)/(1 − λ2t2), |t| < 1/λ and
the chf c(t) = exp(θit)/(1 + λ2t2).
E(Y ) = θ, and
MED(Y ) = θ.
VAR(Y ) = 2λ2, and
MAD(Y ) = log(2)λ ≈ 0.693λ.
Hence λ = MAD(Y )/ log(2) ≈ 1.443MAD(Y ).
To see that MAD(Y ) = λ log(2), note that F (θ +λ log(2)) = 1−0.25 = 0.75.

The maximum likelihood estimators are θ̂MLE = MED(n) and

λ̂MLE =
1

n

n∑
i=1

|Yi − MED(n)|.

A 100(1 − α)% confidence interval (CI) for λ is(
2
∑n

i=1 |Yi −MED(n)|
χ2

2n−1,1−α
2

,
2
∑n

i=1 |Yi −MED(n)|
χ2

2n−1, α
2

)
,

and a 100(1 − α)% CI for θ is⎛
⎝MED(n) ± z1−α/2

∑n
i=1 |Yi −MED(n)|

n
√

n − z2
1−α/2

⎞
⎠

where χ2
p,α and zα are the α percentiles of the χ2

p and standard normal dis-
tributions, respectively. See Patel, Kapadia and Owen (1976, p. 194).

A trimming rule is keep yi if

yi ∈ [med(n) ± 10.0(1 +
2.0

n
)mad(n)].

Note that F (θ + λ log(1000)) = 0.9995 ≈ F (MED(Y ) + 10.0MAD(Y )).
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3.7 The Exponential Distribution

If Y has an exponential distribution, Y ∼ EXP(λ), then the pdf of Y is

f(y) =
1

λ
exp (

−y

λ
) I(y ≥ 0)

where λ > 0 and the indicator I(y ≥ 0) is one if y ≥ 0 and zero otherwise.
The cdf of Y is

F (y) = 1 − exp(−y/λ), y ≥ 0.

The mgf m(t) = 1/(1 − λt), t < 1/λ and the chf c(t) = 1/(1 − iλt).
E(Y ) = λ,
and VAR(Y ) = λ2.

Since Y is gamma G(ν = 1, λ), E(Y r) = λΓ(r + 1) for r > −1.
MED(Y ) = log(2)λ and
MAD(Y ) ≈ λ/2.0781 since it can be shown that

exp(MAD(Y )/λ) = 1 + exp(−MAD(Y )/λ).

Hence 2.0781 MAD(Y ) ≈ λ.
A robust estimator is λ̂ = MED(n)/ log(2).

The classical estimator is λ̂ = Y n and the 100(1 − α)% CI for E(Y ) = λ
is (

2
∑n

i=1 Yi

χ2
2n,1−α

2

,
2
∑n

i=1 Yi

χ2
2n, α

2

)

where P (Y ≤ χ2
2n, α

2
) = α/2 if Y is χ2

2n. See Patel, Kapadia and Owen (1976,

p. 188).
If all the yi ≥ 0, then the trimming rule is keep yi if

0.0 ≤ yi ≤ 9.0(1 +
c2

n
)med(n)

where c2 = 2.0 seems to work well. Note that P (Y ≤ 9.0MED(Y )) ≈ 0.998.
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3.8 The Two Parameter Exponential Distri-

bution

If Y has a two parameter exponential distribution, Y ∼ EXP(θ, λ), then the
pdf of Y is

f(y) =
1

λ
exp

(−(y − θ)

λ

)
I(y ≥ θ)

where λ > 0 and θ is real. The cdf of Y is

F (y) = 1 − exp[−(y − θ)/λ)], y ≥ θ.

This family is an asymmetric location-scale family.
The mgf m(t) = exp(tθ)/(1 − λt), t < 1/λ and
the chf c(t) = exp(itθ)/(1 − iλt).
E(Y ) = θ + λ,
and VAR(Y ) = λ2.

MED(Y ) = θ + λ log(2)

and
MAD(Y ) ≈ λ/2.0781.

Hence θ ≈ MED(Y ) − 2.0781 log(2)MAD(Y ). See Rousseeuw and Croux
(1993) for similar results. Note that 2.0781 log(2) ≈ 1.44.

Let Dn =
∑n

i=1(Yi − Y(1)) = nλ̂. Then for n ≥ 2,(
2Dn

χ2
2(n−1),1−α/2

,
2Dn

χ2
2(n−1),α/2

)

is a 100(1 − α)% CI for λ, while

(Y(1) − λ̂[(α)−1/(n−1) − 1], Y(1))

is a 100 (1 − α)% CI for θ.
If θ is known and Tn =

∑n
i=1(Yi − θ), then a 100(1 − α)% CI for λ is(

2Tn

χ2
2n,1−α/2

,
2Tn

χ2
2n,α/2

)
.
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A trimming rule is keep yi if

med(n) − 1.44(1.0 +
c4

n
)mad(n) ≤ yi ≤

med(n) − 1.44mad(n) + 9.0(1 +
c2

n
)med(n)

where c2 = 2.0 and c4 = 2.0 may be good choices.
To see that 2.0781 MAD(Y ) ≈ λ, note that

0.5 =

∫ θ+λ log(2)+MAD

θ+λ log(2)−MAD

1

λ
exp(−(y − θ)/λ)dy

= 0.5[−e−MAD/λ + eMAD/λ]

assuming λ log(2) > MAD. Plug in MAD = λ/2.0781 to get the result.

3.9 The Gamma Distribution

If Y has a gamma distribution, Y ∼ G(ν, λ), then the pdf of Y is

f(y) =
yν−1e−y/λ

λνΓ(ν)

where ν, λ, and y are positive. The mgf of Y is

m(t) =

(
1/λ
1
λ
− t

)ν

=

(
1

1 − λt

)ν

for t < 1/λ. The chf

c(t) =

(
1

1 − iλt

)ν

.

E(Y ) = νλ.
VAR(Y ) = νλ2.

E(Y r) =
λrΓ(r + ν)

Γ(ν)
if r > −ν.

Chen and Rubin (1986) show that λ(ν − 1/3) < MED(Y ) < λν = E(Y ).
Empirically, for ν > 3/2,

MED(Y ) ≈ λ(ν − 1/3),
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and

MAD(Y ) ≈ λ
√

ν

1.483
.

This family is a scale family for fixed ν, so if Y is G(ν, λ) then cY is G(ν, cλ)
for c > 0. If W is EXP(λ) then W is G(1, λ). If W is χ2

p, then W is G(p/2, 2).
If Y and W are independent and Y is G(ν, λ) and W is G(φ, λ), then Y +W
is G(ν + φ, λ).

Some classical estimators are given next. Let

w = log

[
yn

geometric mean(n)

]

where geometric mean(n) = (y1y2 . . . yn)
1/n = exp[ 1

n

∑n
i=1 log(yi)]. Then

Thom’s estimator (Johnson and Kotz 1970a, p. 188) is

ν̂ ≈ 0.25(1 +
√

1 + 4w/3 )

w
.

Also

ν̂MLE ≈ 0.5000876 + 0.1648852w − 0.0544274w2

w

for 0 < w ≤ 0.5772, and

ν̂MLE ≈ 8.898919 + 9.059950w + 0.9775374w2

w(17.79728 + 11.968477w + w2)

for 0.5772 < w ≤ 17. If w > 17 then estimation is much more difficult, but a
rough approximation is ν̂ ≈ 1/w for w > 17. See Bowman and Shenton (1988,
p. 46) and Greenwood and Durand (1960). Finally, λ̂ = yn/ν̂. Notice that λ̂
may not be very good if ν̂ < 1/17. For some M–estimators, see Marazzi and
Ruffieux (1996).

Several normal approximations are available. For large ν, Y ≈ N(νλ, νλ2).
The Wilson–Hilferty approximation says that for ν ≥ 0.5,

Y 1/3 ≈ N

(
(νλ)1/3(1 − 1

9ν
), (νλ)2/3 1

9ν

)
.

Hence if Y is G(ν, λ) and

α = P [Y ≤ Gα],
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then

Gα ≈ νλ

[
zα

√
1

9ν
+ 1 − 1

9ν

]3

where zα is the standard normal percentile, α = Φ(zα). Bowman and Shenton
(1988, p. 101) include higher order terms.

Next we give some trimming rules. Assume each yi > 0. Assume ν ≥ 0.5.
Rule 1. Assume λ is known. Let ν̂ = (med(n)/λ) + (1/3). Keep yi if
yi ∈ [lo, hi] where

lo = max(0, ν̂λ [−(3.5 + 2/n)

√
1

9ν̂
+ 1 − 1

9ν̂
]3),

and

hi = ν̂λ [(3.5 + 2/n)

√
1

9ν̂
+ 1 − 1

9ν̂
]3.

Rule 2. Assume ν is known. Let λ̂ = med(n)/(ν − (1/3)). Keep yi if
yi ∈ [lo, hi] where

lo = max(0, νλ̂ [−(3.5 + 2/n)

√
1

9ν
+ 1 − 1

9ν
]3),

and

hi = νλ̂

[
(3.5 + 2/n)

√
1

9ν
+ 1 − 1

9ν

]3

.

Rule 3. Let d = med(n) − c mad(n). Keep yi if

dI [d ≥ 0] ≤ yi ≤ med(n) + c mad(n)

where
c ∈ [9, 15].

3.10 The Half Cauchy Distribution

If Y has a half Cauchy distribution, Y ∼ HC(μ, σ), then the pdf of Y is

f(y) =
2

πσ[1 + (y−μ
σ

)2]

82



where y ≥ μ, μ is a real number and σ > 0. The cdf of Y is

F (y) =
2

π
arctan(

y − μ

σ
)

for y ≥ μ and is 0, otherwise. This distribution is a right skewed location-
scale family.

MED(Y ) = μ + σ.
MAD(Y ) = 0.73205σ.

3.11 The Half Logistic Distribution

If Y has a half logistic distribution, Y ∼ HL(μ, σ), then the pdf of Y is

f(y) =
2 exp (−(y − μ)/σ)

σ[1 + exp (−(y − μ)/σ)]2

where σ > 0, y ≥ μ and μ are real. The cdf of Y is

F (y) =
exp[(y − μ)/σ] − 1

1 + exp[(y − μ)/σ)]

for y ≥ μ and 0 otherwise. This family is a right skewed location–scale family.
MED(Y ) = μ + log(3)σ.
MAD(Y ) = 0.67346σ.

3.12 The Half Normal Distribution

If Y has a half normal distribution, Y ∼ HN(μ, σ), then the pdf of Y is

f(y) =
2√

2π σ
exp (

−(y − μ)2

2σ2
)

where σ > 0 and y ≥ μ and μ is real. Let Φ(y) denote the standard normal
cdf. Then the cdf of Y is

F (y) = 2Φ(
y − μ

σ
) − 1

for y > μ and F (y) = 0, otherwise. This is an asymmetric location–scale
family that has the same distribution as μ + σ|Z| where Z ∼ N(0, 1).
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E(Y ) = μ + σ
√

2/π ≈ μ + 0.797885σ.

VAR(Y ) = σ2(π−2)
π

≈ 0.363380σ2 .
Note that Z2 ∼ χ2

1. Hence the formula for the rth moment of the χ2
1

random variable can be used to find the moments of Y .
MED(Y ) = μ + 0.6745σ.
MAD(Y ) = 0.3990916σ.
Thus μ̂ ≈ MED(n) − 1.6901MAD(n) and σ̂ ≈ 2.5057MAD(n).
Pewsey (2002) shows that classical inference for this distribution is simple.

The MLE of (μ, σ2) is

(μ̂, σ̂2) = (Y(1),
1

n

n∑
i=1

(Yi − Y(1))
2).

A large sample 100(1 − α)% confidence interval for σ2 is(
nσ̂2

χ2
n−1(1 − α/2)

,
nσ̂2

χ2
n−1(α/2)

)
,

while a large sample 100(1 − α)% CI for μ is

(μ̂ + σ̂ log(α) Φ−1(
1

2
+

1

2n
) (1 + 13/n2), μ̂).

Let Tn =
∑

(Yi − μ)2. If μ is known, then a 100(1 − α)% CI for σ2 is(
Tn

χ2
n(1 − α/2)

,
Tn

χ2
n(α/2)

)
.

3.13 The Largest Extreme Value Distribution

If Y has a largest extreme value distribution (or extreme value distribution
for the max, or Gumbel distribution), Y ∼ LEV(θ, σ), then the pdf of Y is

f(y) =
1

σ
exp(−(

y − θ

σ
)) exp[− exp(−(

y − θ

σ
))]

where y and θ are real and σ > 0. (Then −Y has the smallest extreme value
distribution or the log–Weibull distribution, see Section 3.24.) The cdf of Y
is

F (y) = exp[− exp(−(
y − θ

σ
))].
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This family is an asymmetric location–scale family with a mode at θ.
The mgf m(t) = exp(tθ)Γ(1 − σt) for |t| < 1/σ.
E(Y ) ≈ θ + 0.57721σ, and
VAR(Y ) = σ2π2/6 ≈ 1.64493σ2.

MED(Y ) = θ − σ log(log(2)) ≈ θ + 0.36651σ

and
MAD(Y ) ≈ 0.767049σ.

W = exp(−(Y − θ)/σ) ∼ EXP(1).
A trimming rule is keep yi if

med(n) − 2.5mad(n) ≤ yi ≤ med(n) + 7mad(n).

3.14 The Logistic Distribution

If Y has a logistic distribution, Y ∼ L(μ, σ), then the pdf of Y is

f(y) =
exp (−(y − μ)/σ)

σ[1 + exp (−(y − μ)/σ)]2

where σ > 0 and y and μ are real. The cdf of Y is

F (y) =
1

1 + exp (−(y − μ)/σ)
=

exp ((y − μ)/σ)

1 + exp ((y − μ)/σ)
.

This family is a symmetric location–scale family.
The mgf of Y is m(t) = πσteμt csc(πσt) for |t| < 1/σ, and
the chf is c(t) = πiσteiμt csc(πiσt) where csc(t) is the cosecant of t.
E(Y ) = μ, and
MED(Y ) = μ.
VAR(Y ) = σ2π2/3, and
MAD(Y ) = log(3)σ ≈ 1.0986 σ.
Hence σ = MAD(Y )/ log(3).

The estimators μ̂ = Y n and σ̂2 = 3S2/π2 where S2 = 1
n−1

∑n
i=1(Yi−Y n)

2

are sometimes used. A trimming rule is keep yi if

med(n) − 7.6(1 +
c2

n
)mad(n) ≤ yi ≤ med(n) + 7.6(1 +

c2

n
)mad(n)
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where c2 is between 0.0 and 7.0. Note that if

q = FL(0,1)(c) =
ec

1 + ec
then c = log(

q

1 − q
).

Taking q = .9995 gives c = log(1999) ≈ 7.6. To see that MAD(Y ) = log(3)σ,
note that F (μ + log(3)σ) = 0.75, while F (μ − log(3)σ) = 0.25 and 0.75 =
exp (log(3))/(1 + exp(log(3))).

3.15 The Log-Cauchy Distribution

If Y has a log–Cauchy distribution, Y ∼ LC(μ, σ), then the pdf of Y is

f(y) =
1

πσy[1 + ( log(y)−μ
σ

)2]

where y > 0, σ > 0 and μ is a real number. This family is a scale family
with scale parameter τ = eμ if σ is known.

W = log(Y ) has a Cauchy(μ, σ) distribution.
Robust estimators are μ̂ = MED(W1, ..., Wn) and σ̂ = MAD(W1, ..., Wn).

3.16 The Log-Logistic Distribution

If Y has a log–logistic distribution, Y ∼ LL(φ, τ ), then the pdf of Y is

f(y) =
φτ (φy)τ−1

[1 + (φy)τ ]2

where y > 0, φ > 0 and τ > 0. The cdf of Y is

F (y) = 1 − 1

1 + (φy)τ

for y > 0. This family is a scale family with scale parameter φ−1 if τ is
known.

MED(Y ) = 1/φ.
W = log(Y ) has a logistic(μ = − log(φ), σ = 1/τ ) distribution. Hence

φ = e−μ and τ = 1/σ.
Robust estimators are τ̂ = log(3)/MAD(W1, ..., Wn) and

φ̂ = 1/MED(Y1, ..., Yn) since MED(Y ) = 1/φ.
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3.17 The Lognormal Distribution

If Y has a lognormal distribution, Y ∼ LN(μ, σ2), then the pdf of Y is

f(y) =
1

y
√

2πσ2
exp

(−(log(y) − μ)2

2σ2

)

where y > 0 and σ > 0 and μ is real. The cdf of Y is

F (y) = Φ

(
log(y)− μ

σ

)
for y > 0

where Φ(y) is the standard normal N(0,1) cdf. This family is a scale family
with scale parameter τ = eμ if σ2 is known.
E(Y ) = exp(μ + σ2/2) and
VAR(Y ) = exp(σ2)(exp(σ2) − 1) exp(2μ).
For any r, E(Y r) = exp(rμ + r2σ2/2).
MED(Y ) = exp(μ) and
exp(μ)[1 − exp(−0.6744σ)] ≤ MAD(Y ) ≤ exp(μ)[1 + exp(0.6744σ)].

Inference for μ and σ is simple. Use the fact that Wi = log(Yi) ∼ N(μ, σ2)
and then perform the corresponding normal based inference on the Wi. For
example, a the classical (1 − α)100% CI for μ when σ is unknown is

(W n − tn−1,1−α
2

SW√
n

, W n + tn−1,1−α
2

SW√
n

)

where

SW =
n

n − 1
σ̂ =

√√√√ 1

n − 1

n∑
i=1

(Wi − W )2,

and P (t ≤ tn−1,1−α
2
) = 1 − α/2 when t is from a t distribution with n − 1

degrees of freedom.
Robust estimators are

μ̂ = MED(W1, ..., Wn) and σ̂ = 1.483MAD(W1, ..., Wn).

Assume all yi ≥ 0. Then a trimming rule is keep yi if

med(n) − 5.2(1 +
c2

n
)mad(n) ≤ wi ≤ med(n) + 5.2(1 +

c2

n
)mad(n)

where c2 is between 0.0 and 7.0. Here med(n) and mad(n) are applied to
w1, . . . , wn where wi = log(yi).
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3.18 The Maxwell-Boltzmann Distribution

If Y has a Maxwell–Boltzmann distribution, Y ∼ MB(μ, σ), then the pdf of
Y is

f(y) =

√
2(y − μ)2e

−1
2σ2 (y−μ)2

σ3
√

π

where μ is real, y ≥ μ and σ > 0. This is a location–scale family.

E(Y ) = μ + σ
√

2
1

Γ(3/2)
.

VAR(Y ) = 2σ2

[
Γ(5

2
)

Γ(3/2)
−
(

1

Γ(3/2)

)2
]

.

MED(Y ) = μ + 1.5381722σ and MAD(Y ) = 0.460244σ.
Note that W = (Y − μ)2 ∼ G(3/2, 2σ2).

3.19 The Normal Distribution

If Y has a normal distribution (or Gaussian distribution), Y ∼ N(μ, σ2),
then the pdf of Y is

f(y) =
1√

2πσ2
exp

(−(y − μ)2

2σ2

)

where σ > 0 and μ and y are real. Let Φ(y) denote the standard normal cdf.
Recall that Φ(y) = 1 − Φ(−y). The cdf F (y) of Y does not have a closed
form, but

F (y) = Φ

(
y − μ

σ

)
,

and
Φ(y) ≈ 0.5(1 +

√
1 − exp(−2y2/π) )

for y ≥ 0. See Johnson and Kotz (1970a, p. 57).
The moment generating function is m(t) = exp(tμ + t2σ2/2).
The characteristic function is c(t) = exp(itμ− t2σ2/2).
E(Y ) = μ and
VAR(Y ) = σ2.

E[|Y − μ|r] = σr 2r/2Γ((r + 1)/2)√
π

for r > −1.
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If k ≥ 2 is an integer, then E(Y k) = (k − 1)σ2E(Y k−2) + μE(Y k−1).
MED(Y ) = μ and

MAD(Y ) = Φ−1(0.75)σ ≈ 0.6745σ.

Hence σ = [Φ−1(0.75)]−1MAD(Y ) ≈ 1.483MAD(Y ).
This family is a location–scale family which is symmetric about μ.

Suggested estimators are

Y n = μ̂ =
1

n

n∑
i=1

Yi and S2 = S2
Y = σ̂2 =

1

n − 1

n∑
i=1

(Yi − Y n)2.

The classical (1 − α)100% CI for μ when σ is unknown is

(Y n − tn−1,1−α
2

SY√
n

, Y n + tn−1,1−α
2

SY√
n

)

where P (t ≤ tn−1,1−α
2
) = 1 − α/2 when t is from a t distribution with n − 1

degrees of freedom.
If α = Φ(zα), then

zα ≈ m − co + c1m + c2m
2

1 + d1m + d2m2 + d3m3

where
m = [−2 log(1 − α)]1/2,

c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 = 1.432788, d2 = 0.189269,
d3 = 0.001308, and 0.5 ≤ α. For 0 < α < 0.5,

zα = −z1−α.

See Kennedy and Gentle (1980, p. 95).
A trimming rule is keep yi if

med(n) − 5.2(1 +
c2

n
)mad(n) ≤ yi ≤ med(n) + 5.2(1 +

c2

n
)mad(n)

where c2 is between 0.0 and 7.0. Using c2 = 4.0 seems to be a good choice.
Note that

P (μ − 3.5σ ≤ Y ≤ μ + 3.5σ) = 0.9996.
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To see that MAD(Y ) = Φ−1(0.75)σ, note that 3/4 = F (μ + MAD) since Y
is symmetric about μ. However,

F (y) = Φ

(
y − μ

σ

)

and
3

4
= Φ

(
μ + Φ−1(3/4)σ − μ

σ

)
.

So μ + MAD = μ + Φ−1(3/4)σ. Cancel μ from both sides to get the result.

3.20 The Pareto Distribution

If Y has a Pareto distribution, Y ∼ PAR(σ, λ), then the pdf of Y is

f(y) =
1
λ
σ1/λ

y1+1/λ

where y ≥ σ, σ > 0, and λ > 0. The cdf of Y is F (y) = 1 − (σ/y)1/λ for
y > σ.

This family is a scale family when λ is fixed. E(Y ) = σ
1−λ

for λ < 1.

E(Y r) =
σr

1 − λr
for r < 1/λ.

MED(Y ) = σ2λ.
X = log(Y/σ) is EXP(λ) and W = log(Y ) is EXP(θ = log(σ), λ).
Let Dn =

∑n
i=1(Wi − W1:n) = nλ̂ where W(1) = W1:n. For n > 1, a

100(1 − α)% CI for θ is

(W1:n − λ̂[(α)−1/(n−1) − 1], W1:n).

Exponentiate the endpoints for a 100(1 − α)% CI for σ. A 100(1 − α)% CI
for λ is (

2Dn

χ2
2(n−1),1−α/2

,
2Dn

χ2
2(n−1),α/2

)
.

Let θ̂ = MED(W1, ..., Wn)−1.440MAD(W1, ..., Wn). Then robust estima-
tors are

σ̂ = eθ̂ and λ̂ = 2.0781MAD(W1, ..., Wn).
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A trimming rule is keep yi if

med(n) − 1.44mad(n) ≤ wi ≤ 10med(n) − 1.44mad(n)

where med(n) and mad(n) are applied to w1, . . . , wn with wi = log(yi).

3.21 The Poisson Distribution

If Y has a Poisson distribution, Y ∼ POIS(θ), then the pmf of Y is

P (Y = y) =
e−θθy

y!

for y = 0, 1, . . . , where θ > 0. The mgf of Y is m(t) = exp(θ(et − 1)), and
the chf of Y is c(t) = exp(θ(eit − 1)).
E(Y ) = θ, and Chen and Rubin (1986) and Adell and Jodrá (2005) show
that −1 < MED(Y ) −E(Y ) < 1/3.
VAR(Y ) = θ.

The classical estimator of θ is θ̂ = Y n. Let W =
∑n

i=1 Yi and suppose
that W = w is observed. Let P (T < χ2

d(α)) = α if T ∼ χ2
d. Then an “exact”

100 (1 − α)% CI for θ is (
χ2

2w(α
2
)

2n
,
χ2

2w+2(1 − α
2
)

2n

)
for w 
= 0 and (

0,
χ2

2(1 − α)

2n

)
for w = 0.

The approximations Y ≈ N(θ, θ) and 2
√

Y ≈ N(2
√

θ, 1) are sometimes
used.

Suppose each yi is a nonnegative integer. Then a trimming rule is keep
yi if wi = 2

√
yi is kept when a normal trimming rule is applied to the w′

is.
(This rule can be very bad if the normal approximation is not good.)

3.22 The Power Distribution

If Y has a power distribution, Y ∼ POW(λ), then the pdf of Y is

f(y) =
1

λ
y

1
λ
−1,
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where λ > 0 and 0 < y ≤ 1. The cdf of Y is F (y) = y1/λ for 0 < y ≤ 1.
MED(Y ) = (1/2)λ.

W = − log(Y ) is EXP(λ).
Let Tn = −∑ log(Yi). A 100(1 − α)% CI for λ is(

2Tn

χ2
2n,1−α/2

,
2Tn

χ2
2n,α/2

)
.

If all the yi ∈ [0, 1], then a cleaning rule is keep yi if

0.0 ≤ wi ≤ 9.0(1 +
2

n
)med(n)

where med(n) is applied to w1, . . . , wn with wi = − log(yi). See Problem 3.7
for robust estimators.

3.23 The Rayleigh Distribution

If Y has a Rayleigh distribution, Y ∼ R(μ, σ), then the pdf of Y is

f(y) =
y − μ

σ2
exp

[
−1

2

(
y − μ

σ

)2
]

where σ > 0, μ is real, and y ≥ μ. See Cohen and Whitten (1988, Ch. 10).
This is an asymmetric location–scale family. The cdf of Y is

F (y) = 1 − exp

[
−1

2

(
y − μ

σ

)2
]

for y ≥ μ, and F (y) = 0, otherwise.
E(Y ) = μ + σ

√
π/2 ≈ μ + 1.253314σ.

VAR(Y ) = σ2(4 − π)/2 ≈ 0.429204σ2 .
MED(Y ) = μ + σ

√
log(4) ≈ μ + 1.17741σ.

Hence μ ≈ MED(Y ) − 2.6255MAD(Y ) and σ ≈ 2.230MAD(Y ).
Let σD = MAD(Y ). If μ = 0, and σ = 1, then

0.5 = exp[−0.5(
√

log(4) −D)2] − exp[−0.5(
√

log(4) + D)2].

Hence D ≈ 0.448453 and MAD(Y ) ≈ 0.448453σ.
It can be shown that W = (Y − μ)2 ∼ EXP(2σ2).

Other parameterizations for the Rayleigh distribution are possible. See
Problem 3.9.
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3.24 The Smallest Extreme Value Distribu-

tion

If Y has a smallest extreme value distribution (or log-Weibull distribution),
Y ∼ SEV (θ, σ), then the pdf of Y is

f(y) =
1

σ
exp(

y − θ

σ
) exp[− exp(

y − θ

σ
)]

where y and θ are real and σ > 0. The cdf of Y is

F (y) = 1 − exp[− exp(
y − θ

σ
)].

This family is an asymmetric location-scale family with a longer left tail than
right.

E(Y ) ≈ θ − 0.57721σ, and
VAR(Y ) = σ2π2/6 ≈ 1.64493σ2.
MED(Y ) = θ − σ log(log(2)).
MAD(Y ) ≈ 0.767049σ.
If Y has a SEV(θ, σ) distribution, then W = −Y has an LEV(−θ, σ)

distribution.

3.25 The Student’s t Distribution

If Y has a Student’s t distribution, Y ∼ tp, then the pdf of Y is

f(y) =
Γ(p+1

2
)

(pπ)1/2Γ(p/2)
(1 +

y2

p
)−( p+1

2
)

where p is a positive integer and y is real. This family is symmetric about
0. The t1 distribution is the Cauchy(0, 1) distribution. If Z is N(0, 1) and is
independent of W ∼ χ2

p, then
Z

(W
p

)1/2

is tp.
E(Y ) = 0 for p ≥ 2.
MED(Y ) = 0.
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VAR(Y ) = p/(p − 2) for p ≥ 3, and
MAD(Y ) = tp,0.75 where P (tp ≤ tp,0.75) = 0.75.

If α = P (tp ≤ tp,α), then Cooke, Craven, and Clarke (1982, p. 84) suggest
the approximation

tp,α ≈
√

p[exp(
w2

α

p
) − 1)]

where

wα =
zα(8p + 3)

8p + 1
,

zα is the standard normal cutoff: α = Φ(zα), and 0.5 ≤ α. If 0 < α < 0.5,
then

tp,α = −tp,1−α.

This approximation seems to get better as the degrees of freedom increase.
A trimming rule for p ≥ 3 is keep yi if yi ∈ [±5.2(1 + 10/n)mad(n)].

3.26 The Truncated Extreme Value Distribu-

tion

If Y has a truncated extreme value distribution, Y ∼ TEV(λ), then the pdf
of Y is

f(y) =
1

λ
exp

(
y − ey − 1

λ

)
where y > 0 and λ > 0. The cdf of Y is

F (y) = 1 − exp

[−(ey − 1)

λ

]

for y > 0.
MED(Y ) = log(1 + λ log(2)).

W = eY − 1 is EXP(λ).
Let Tn =

∑
(eYi − 1). A 100(1 − α)% CI for λ is(

2Tn

χ2
2n,1−α/2

,
2Tn

χ2
2n,α/2

)
.
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If all the yi > 0, then a trimming rule is keep yi if

0.0 ≤ wi ≤ 9.0(1 +
2

n
)med(n)

where med(n) is applied to w1, . . . , wn with wi = eyi −1. See Problem 3.8 for
robust estimators.

3.27 The Uniform Distribution

If Y has a uniform distribution, Y ∼ U(θ1, θ2), then the pdf of Y is

f(y) =
1

θ2 − θ1
I(θ1 ≤ y ≤ θ2).

The cdf of Y is F (y) = (y − θ1)/(θ2 − θ1) for θ1 ≤ y ≤ θ2.
This family is a location-scale family which is symmetric about (θ1 + θ2)/2.
By definition, m(0) = c(0) = 1. For t 
= 0, the mgf of Y is

m(t) =
etθ2 − etθ1

(θ2 − θ1)t
,

and the chf of Y is

c(t) =
eitθ2 − eitθ1

(θ2 − θ1)it
.

E(Y ) = (θ1 + θ2)/2, and
MED(Y ) = (θ1 + θ2)/2.
VAR(Y ) = (θ2 − θ1)

2/12, and
MAD(Y ) = (θ2 − θ1)/4.
Note that θ1 = MED(Y ) − 2MAD(Y ) and θ2 = MED(Y ) + 2MAD(Y ).

Some classical estimators are θ̂1 = Y(1) and θ̂2 = Y(n). A trimming rule is
keep yi if

med(n) − 2.0(1 +
c2

n
)mad(n) ≤ yi ≤ med(n) + 2.0(1 +

c2

n
)mad(n)

where c2 is between 0.0 and 5.0. Replacing 2.0 by 2.00001 yields a rule for
which the cleaned data will equal the actual data for large enough n (with
probability increasing to one).
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3.28 The Weibull Distribution

If Y has a Weibull distribution, Y ∼ W (φ, λ), then the pdf of Y is

f(y) =
φ

λ
yφ−1e−

yφ

λ

where λ, y, and φ are all positive. For fixed φ, this is a scale family in
σ = λ1/φ. The cdf of Y is F (y) = 1 − exp(−yφ/λ) for y > 0.
E(Y ) = λ1/φ Γ(1 + 1/φ).
VAR(Y ) = λ2/φΓ(1 + 2/φ) − (E(Y ))2.

E(Y r) = λr/φ Γ(1 +
r

φ
) for r > −φ.

MED(Y ) = (λ log(2))1/φ. Note that

λ =
(MED(Y ))φ

log(2)
.

Since W = Y φ is EXP(λ), if all the yi > 0 and if φ is known, then a
cleaning rule is keep yi if

0.0 ≤ wi ≤ 9.0(1 +
2

n
)med(n)

where med(n) is applied to w1, . . . , wn with wi = yφ
i .

W = log(Y ) has a smallest extreme value SEV(θ = log(λ1/φ), σ = 1/φ)
distribution.

See Olive (2006) and Problem 3.10c for robust estimators of φ and λ.

3.29 Complements

Many of the distribution results used in this chapter came from Johnson and
Kotz (1970ab) and Patel, Kapadia and Owen (1976). Bickel and Doksum
(2007), Castillo (1988), Cohen and Whitten (1988), Cramér (1946), DeG-
root and Schervish (2001), Ferguson (1967), Hastings and Peacock (1975)
Kennedy and Gentle (1980), Leemis and McQuestion (2008), Lehmann (1983),
Meeker and Escobar (1998), Abuhassan and Olive (2008) and Olive (2008)
also have useful results on distributions. Also see articles in Kotz and Johnson
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(1982ab,1983ab, 1985ab, 1986, 1988ab) and Armitrage and Colton (1998a-
f). Often an entire book is devoted to a single distribution, see for example,
Bowman and Shenton (1988).

Many of the robust point estimators in this chapter are due to Olive
(2006). These robust estimators are usually inefficient, but can be used as
starting values for iterative procedures such as maximum likelihood and as a
quick check for outliers. These estimators can also be used to create a robust
fully efficient cross checking estimator.

If no outliers are present and the sample size is large, then the robust
and classical methods should give similar estimates. If the estimates differ,
then outliers may be present or the assumed distribution may be incorrect.
Although a plot is the best way to check for univariate outliers, many users
of statistics plug in data and then take the result from the computer without
checking assumptions. If the software would print the robust estimates be-
sides the classical estimates and warn that the assumptions might be invalid
if the robust and classical estimates disagree, more users of statistics would
use plots and other diagnostics to check model assumptions.

3.30 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

3.1. Verify the formula for the cdf F for the following distributions.
a) Cauchy (μ, σ).
b) Double exponential (θ, λ).
c) Exponential (λ).
d) Logistic (μ, σ).
e) Pareto (σ, λ).
f) Power (λ).
g) Uniform (θ1, θ2).
h) Weibull W (φ, λ).

3.2∗. Verify the formula for MED(Y ) for the following distributions.
a) Exponential (λ).
b) Lognormal (μ, σ2). (Hint: Φ(0) = 0.5.)
c) Pareto (σ, λ).
d) Power (λ).
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e) Uniform (θ1, θ2).
f) Weibull (φ, λ).

3.3∗. Verify the formula for MAD(Y ) for the following distributions.
(Hint: Some of the formulas may need to be verified numerically. Find the
cdf in the appropriate section of Chapter 3. Then find the population median
MED(Y ) = M . The following trick can be used except for part c). If the
distribution is symmetric, find U = y0.75. Then D = MAD(Y ) = U − M.)
a) Cauchy (μ, σ).
b) Double exponential (θ, λ).
c) Exponential (λ).
d) Logistic (μ, σ).
e) Normal (μ, σ2).
f) Uniform (θ1, θ2).

3.4. Verify the formula for the expected value E(Y ) for the following
distributions.
a) Binomial (k, ρ).
b) Double exponential (θ, λ).
c) Exponential (λ).
d) gamma (ν, λ).
e) Logistic (μ, σ). (Hint from deCani and Stine (1986): Let Y = [μ+σW ] so
E(Y ) = μ + σE(W ) where W ∼ L(0, 1). Hence

E(W ) =

∫ ∞

−∞
y

ey

[1 + ey]2
dy.

Use substitution with

u =
ey

1 + ey
.

Then

E(W k) =

∫ 1

0

[log(u)− log(1 − u)]kdu.

Also use the fact that
lim
v→0

v log(v) = 0

to show E(W ) = 0.)
f) Lognormal (μ, σ2).
g) Normal (μ, σ2).

98



h) Pareto (σ, λ).
i) Poisson (θ).
j) Uniform (θ1, θ2).
k) Weibull (φ, λ).

3.5. Verify the formula for the variance VAR(Y ) for the following distri-
butions.
a) Binomial (k, ρ).
b) Double exponential (θ, λ).
c) Exponential (λ).
d) gamma (ν, λ).
e) Logistic (μ, σ). (Hint from deCani and Stine (1986): Let Y = [μ + σX] so
V (Y ) = σ2V (X) = σ2E(X2) where X ∼ L(0, 1). Hence

E(X2) =

∫ ∞

−∞
y2 ey

[1 + ey]2
dy.

Use substitution with

v =
ey

1 + ey
.

Then

E(X2) =

∫ 1

0

[log(v)− log(1 − v)]2dv.

Let w = log(v)− log(1 − v) and du = [log(v) − log(1 − v)]dv. Then

E(X2) =

∫ 1

0

wdu = uw|10 −
∫ 1

0

udw.

Now
uw|10 = [v log(v) + (1 − v) log(1 − v)] w|10 = 0

since
lim
v→0

v log(v) = 0.

Now

−
∫ 1

0

udw = −
∫ 1

0

log(v)

1 − v
dv −

∫ 1

0

log(1 − v)

v
dv = 2π2/6 = π2/3

using ∫ 1

0

log(v)

1 − v
dv =

∫ 1

0

log(1 − v)

v
dv = −π2/6.)
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f) Lognormal (μ, σ2).
g) Normal (μ, σ2).
h) Pareto (σ, λ).
i) Poisson (θ).
j) Uniform (θ1, θ2).
k) Weibull (φ, λ).

3.6. Assume that Y is gamma (ν, λ). Let

α = P [Y ≤ Gα].

Using

Y 1/3 ≈ N((νλ)1/3(1 − 1

9ν
), (νλ)2/3 1

9ν
),

show that

Gα ≈ νλ[zα

√
1

9ν
+ 1 − 1

9ν
]3

where zα is the standard normal percentile, α = Φ(zα).

3.7. Suppose that Y1, ..., Yn are iid from a power (λ) distribution. Suggest
a robust estimator for λ

a) based on Yi and

b) based on Wi = − log(Yi).

3.8. Suppose that Y1, ..., Yn are iid from a truncated extreme value
TEV(λ) distribution. Find a robust estimator for λ

a) based on Yi and

b) based on Wi = eYi − 1.

3.9. Other parameterizations for the Rayleigh distribution are possible.
For example, take μ = 0 and λ = 2σ2. Then W is Rayleigh RAY(λ), if the
pdf of W is

f(w) =
2w

λ
exp(−w2/λ)

where λ and w are both positive.
The cdf of W is F (w) = 1 − exp(−w2/λ) for w > 0.
E(W ) = λ1/2 Γ(1 + 1/2).
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VAR(W ) = λΓ(2) − (E(W ))2.

E(W r) = λr/2 Γ(1 +
r

2
) for r > −2.

MED(W ) =
√

λ log(2).
W is RAY(λ) if W is Weibull W (λ, 2). Thus W 2 ∼ EXP(λ). If all wi > 0,
then a trimming rule is keep wi if 0 ≤ wi ≤ 3.0(1 + 2/n)MED(n).

a) Find the median MED(W ).

b) Suggest a robust estimator for λ.

3.10. Suppose Y has a smallest extreme value distribution, Y ∼ SEV (θ, σ).
See Section 3.24.

a) Find MED(Y ).

b) Find MAD(Y ).

c) If X has a Weibull distribution, X ∼ W (φ, λ), then Y = log(X) is
SEV(θ, σ) with parameters

θ = log(λ
1
φ ) and σ = 1/φ.

Use the results of a) and b) to suggest estimators for φ and λ.

3.11. Suppose that Y has a half normal distribution, Y ∼ HN(μ, σ).

a) Show that MED(Y ) = μ + 0.6745σ.

b) Show that MAD(Y ) = 0.3990916σ numerically.

3.12. Suppose that Y has a half Cauchy distribution, Y ∼ HC(μ, σ). See
Section 3.10 for F (y).

a) Find MED(Y ).

b) Find MAD(Y ) numerically.

3.13. If Y has a log–Cauchy distribution, Y ∼ LC(μ, σ), then W =
log(Y ) has a Cauchy(μ, σ) distribution. Suggest robust estimators for μ and
σ based on an iid sample Y1, ..., Yn.

3.14. Suppose Y has a half logistic distribution, Y ∼ HL(μ, σ). See
Section 3.11 for F (y). Find MED(Y ).
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3.15. Suppose Y has a log–logistic distribution, Y ∼ LL(φ, τ ), then
W = log(Y ) has a logistic(μ = − log(φ), σ = 1/τ ) distribution. Hence
φ = e−μ and τ = 1/σ. See Kalbfleisch and Prentice (1980, p. 27-28).

a) Using F (y) = 1 − 1

1 + (φy)τ
for y > 0, find MED(Y ).

b) Suggest robust estimators for τ and φ.

3.16. If Y has a geometric distribution, Y ∼ geom(p), then the pmf of
Y is P (Y = y) = p(1 − p)y for y = 0, 1, 2, ... and 0 ≤ p ≤ 1. The cdf for Y
is F (y) = 1 − (1 − p)�y+1� for y ≥ 0 and F (y) = 0 for y < 0. Use the cdf to
find an approximation for MED(Y ).

3.17. Suppose Y has a Maxwell–Boltzmann distribution, Y ∼ MB(μ, σ).
Show that MED(Y ) = μ + 1.5381722σ and MAD(Y ) = 0.460244σ.

3.18 If Y is Fréchet (μ, σ, φ), then the cdf of Y is

F (y) = exp

[
−
(

y − μ

σ

)−φ
]

for y ≥ μ and 0 otherwise where σ, φ > 0. Find MED(Y ).

3.19. If Y has an F distribution with degrees of freedom p and n − p,
then

Y
D
=

χ2
p/p

χ2
n−p/(n − p)

≈ χ2
p/p

if n is much larger than p (n >> p). Find an approximation for MED(Y ) if
n >> p.

3.20. If Y has a Topp–Leone distribution, Y ∼ TL(φ), then the cdf of
Y is F (y) = (2y − y2)φ for φ > 0 and 0 < y < 1. Find MED(Y ).

3.21. If Y has a one sided stable distribution (with index 1/2), then the
cdf

F (y) = 2

[
1 − Φ

(√
σ

y

)]

for y > 0 where Φ(x) is the cdf of a N(0, 1) random variable. Find MED(Y ).
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3.22. If Y has a two parameter power distribution, then the pdf

f(y) =
1

τλ

(y

τ

) 1
λ
−1

for 0 < y ≤ τ where λ > 0 and τ > 0. Suggest robust estimators for τ and λ
using W = − log(Y ) ∼ EXP (− log(τ ), λ).
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