
Chapter 13

Generalized Linear Models

13.1 Introduction

Generalized linear models are an important class of parametric 1D regression
models that include multiple linear regression, logistic regression and loglin-
ear Poisson regression. Assume that there is a response variable Y and a
k × 1 vector of nontrivial predictors x. Before defining a generalized linear
model, the definition of a one parameter exponential family is needed. Let
f(y) be a probability density function (pdf) if Y is a continuous random
variable and let f(y) be a probability mass function (pmf) if Y is a discrete
random variable. Assume that the support of the distribution of Y is Y and
that the parameter space of θ is Θ.

Definition 13.1. A family of pdfs or pmfs {f(y|θ) : θ ∈ Θ} is a
1-parameter exponential family if

f(y|θ) = k(θ)h(y) exp[w(θ)t(y)] (13.1)

where k(θ) ≥ 0 and h(y) ≥ 0. The functions h, k, t, and w are real valued
functions.

In the definition, it is crucial that k and w do not depend on y and that
h and t do not depend on θ. The parameterization is not unique since, for
example, w could be multiplied by a nonzero constant m if t is divided by
m. Many other parameterizations are possible. If h(y) = g(y)IY(y), then
usually k(θ) and g(y) are positive, so another parameterization is

f(y|θ) = exp[w(θ)t(y) + d(θ) + S(y)]IY(y) (13.2)
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where S(y) = log(g(y)), d(θ) = log(k(θ)), and the support Y does not depend
on θ. Here the indicator function IY(y) = 1 if y ∈ Y and IY(y) = 0, otherwise.

Definition 13.2. Assume that the data is (Yi, xi) for i = 1, ..., n. An
important type of generalized linear model (GLM) for the data states
that the Y1, ..., Yn are independent random variables from a 1-parameter ex-
ponential family with pdf or pmf

f(yi|θ(xi)) = k(θ(xi))h(yi) exp

[
c(θ(xi))

a(φ)
yi

]
. (13.3)

Here φ is a known constant (often a dispersion parameter), a(·) is a known
function, and θ(xi) = η(α + βT xi). Let E(Yi) ≡ E(Yi|xi) = μ(xi). The
GLM also states that g(μ(xi)) = α + βT xi where the link function g is
a differentiable monotone function. Then the canonical link function is
g(μ(xi)) = c(μ(xi)) = α + βT xi, and the quantity α + βTx is called the
linear predictor.

The GLM parameterization (13.3) can be written in several ways. By
Equation (13.2),

f(yi|θ(xi)) = exp[w(θ(xi))yi + d(θ(xi)) + S(y)]IY(y)

= exp

[
c(θ(xi))

a(φ)
yi − b(c(θ(xi))

a(φ)
+ S(y)

]
IY(y)

= exp

[
νi

a(φ)
yi − b(νi)

a(φ)
+ S(y)

]
IY(y)

where νi = c(θ(xi)) is called the natural parameter, and b(·) is some known
function.

Notice that a GLM is a parametric model determined by the 1-parameter
exponential family, the link function, and the linear predictor. Since the link
function is monotone, the inverse link function g−1(·) exists and satisfies

μ(xi) = g−1(α + βT xi). (13.4)

Also notice that the Yi follow a 1-parameter exponential family where

t(yi) = yi and w(θ) =
c(θ)

a(φ)
,
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and notice that the value of the parameter θ(xi) = η(α + βT xi) depends
on the value of xi. Since the model depends on x only through the linear
predictor α+βTx, a GLM is a 1D regression model. Thus the linear predictor
is also a sufficient predictor.

The following three sections illustrate three of the most important gener-
alized linear models. After selecting a GLM, the investigator will often want
to check whether the model is useful and to perform inference. Several things
to consider are listed below.

i) Show that the GLM provides a simple, useful approximation for the
relationship between the response variable Y and the predictors x.

ii) Estimate α and β using maximum likelihood estimators.
iii) Estimate μ(xi) = diτ (xi) or estimate τ (xi) where the di are known

constants.
iv) Check for goodness of fit of the GLM with an estimated sufficient

summary plot.
v) Check for lack of fit of the GLM (eg with a residual plot).
vi) Check for overdispersion with an OD plot.
vii) Check whether Y is independent of x; ie, check whether β = 0.
viii) Check whether a reduced model can be used instead of the full model.
ix) Use variable selection to find a good submodel.
x) Predict Yi given xi.

13.2 Multiple Linear Regression

Suppose that the response variable Y is quantitative. Then the multiple
linear regression model is often a very useful model and is closely related to
the GLM based on the normal distribution. To see this claim, let f(y|μ) be
the N(μ, σ2) family of pdfs where −∞ < μ < ∞ and σ > 0 is known. Recall
that μ is the mean and σ is the standard deviation of the distribution. Then
the pdf of Y is

f(y|μ) =
1√
2πσ

exp

(−(y − μ)2

2σ2

)
.

Since

f(y|μ) =
1√
2πσ

exp(
−1

2σ2
μ2)︸ ︷︷ ︸

k(μ)≥0

exp(
−1

2σ2
y2)︸ ︷︷ ︸

h(y)≥0

exp(
μ

σ2︸︷︷︸
c(μ)/a(σ2)

y),
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this family is a 1-parameter exponential family. For this family, θ = μ =
E(Y ), and the known dispersion parameter φ = σ2. Thus a(σ2) = σ2 and
the canonical link is the identity link c(μ) = μ.

Hence the GLM corresponding to the N(μ, σ2) distribution with canonical
link states that Y1, ..., Yn are independent random variables where

Yi ∼ N(μ(xi), σ
2) and E(Yi) ≡ E(Yi|xi) = μ(xi) = α + βT xi

for i = 1, ..., n. This model can be written as

Yi ≡ Yi|xi = α + βTxi + ei

where ei ∼ N(0, σ2).
When the predictor variables are quantitative, the above model is called a

multiple linear regression (MLR) model. When the predictors are categorical,
the above model is called an analysis of variance (ANOVA) model, and when
the predictors are both quantitative and categorical, the model is called an
MLR or analysis of covariance model. The MLR model is discussed in detail
in Chapter 5, where the normality assumption and the assumption that σ is
known can be relaxed.
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Figure 13.1: SSP for MLR Data
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Figure 13.2: ESSP = Response Plot for MLR Data
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Figure 13.3: Residual Plot for MLR Data
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Figure 13.4: Response Plot when Y is Independent of the Predictors

A sufficient summary plot (SSP) of the sufficient predictor SP = α+βT xi

versus the response variable Yi with the mean function added as a visual aid
can be useful for describing the multiple linear regression model. This plot
can not be used for real data since α and β are unknown. The artificial data
used to make Figure 13.1 used n = 100 cases with k = 5 nontrivial predictors.
The data used α = −1, β = (1, 2, 3, 0, 0)T , ei ∼ N(0, 1) and x ∼ N5(0, I).

In Figure 13.1, notice that the identity line with unit mean and zero
intercept corresponds to the mean function since the identity line is the line
Y = SP = α + βT x = g(μ(x)). The vertical deviation of Yi from the line
is equal to ei = Yi − (α + βTxi). For a given value of SP , Yi ∼ N(SP, σ2).
For the artificial data, σ2 = 1. Hence if SP = 0 then Yi ∼ N(0, 1), and if
SP = 5 the Yi ∼ N(5, 1). Imagine superimposing the N(SP, σ2) curve at
various values of SP . If all of the curves were shown, then the plot would
resemble a road through a tunnel. For the artificial data, each Yi is a sample
of size 1 from the normal curve with mean α + βT xi.

The estimated sufficient summary plot (ESSP), also called a response

plot, is a plot of α̂ + β̂
T
xi versus Yi with the identity line added as a visual

aid. Now the vertical deviation of Yi from the line is equal to the residual

ri = Yi − (α̂ + β̂
T
xi). The interpretation of the ESSP is almost the same
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as that of the SSP, but now the mean SP is estimated by the estimated
sufficient predictor (ESP). This plot is used as a goodness of fit diagnostic.
The residual plot is a plot of the ESP versus ri and is used as a lack of fit
diagnostic. These two plots should be made immediately after fitting the
MLR model and before performing inference. Figures 13.2 and 13.3 show
the response plot and residual plot for the artificial data.

The response plot is also a useful visual aid for describing the ANOVA F
test (see p. 174) which tests whether β = 0, that is, whether the predictors
x are needed in the model. If the predictors are not needed in the model,
then Yi and E(Yi|xi) should be estimated by the sample mean Y . If the
predictors are needed, then Yi and E(Yi|xi) should be estimated by the ESP

Ŷi = α̂ + β̂
T
xi. The fitted value Ŷi is the maximum likelihood estimator

computed using ordinary least squares. If the identity line clearly fits the
data better than the horizontal line Y = Y , then the ANOVA F test should
have a small p–value and reject the null hypothesis Ho that the predictors x
are not needed in the MLR model. Figure 13.4 shows the response plot for the
artificial data when only X4 and X5 are used as predictors with the identity
line and the line Y = Y added as visual aids. In this plot the horizontal line
fits the data about as well as the identity line which was expected since Y is
independent of X4 and X5.

It is easy to find data sets where the response plot looks like Figure 13.4,
but the p–value for the ANOVA F test is very small. In this case, the MLR
model is statistically significant, but the investigator needs to decide whether
the MLR model is practically significant.

13.3 Logistic Regression

Multiple linear regression is used when the response variable is quantitative,
but for many data sets the response variable is categorical and takes on two
values: 0 or 1. The occurrence of the category that is counted is labelled as
a 1 or a “success,” while the nonoccurrence of the category that is counted is
labelled as a 0 or a “failure.” For example, a “success” = “occurrence” could
be a person who contracted lung cancer and died within 5 years of detection.
Often the labelling is arbitrary, eg, if the response variable is gender taking
on the two categories female and male. If males are counted then Y = 1
if the subject is male and Y = 0 if the subject is female. If females are
counted then this labelling is reversed. For a binary response variable, a
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binary regression model is often appropriate.

Definition 13.3. The binomial regression model states that Y1, ..., Yn

are independent random variables with

Yi ∼ binomial(mi, ρ(xi)).

The binary regression model is the special case where mi ≡ 1 for i =
1, ..., n while the logistic regression (LR) model is the special case of
binomial regression where

P (success|xi) = ρ(xi) =
exp(α + βTxi)

1 + exp(α + βTxi)
. (13.5)

If the sufficient predictor SP = α + βTx, then the most used binomial
regression models are such that Y1, ..., Yn are independent random variables
with

Yi ∼ binomial(mi, ρ(α + βTxi)),

or
Yi|SPi ∼ binomial(mi, ρ(SPi)). (13.6)

Note that the conditional mean function E(Yi|SPi) = miρ(SPi) and the
conditional variance function V (Yi|SPi) = miρ(SPi)(1 − ρ(SPi)). Note that
the LR model has

ρ(SP ) =
exp(SP )

1 + exp(SP )
.

To see that the binary logistic regression model is a GLM, assume that
Y is a binomial(1, ρ) random variable. For a one parameter family, take
a(φ) ≡ 1. Then the pmf of Y is

f(y) = P (Y = y) =

(
1

y

)
ρy(1 − ρ)1−y =

(
1

y

)
︸︷︷︸
h(y)≥0

(1 − ρ)︸ ︷︷ ︸
k(ρ)≥0

exp[log(
ρ

1 − ρ
)︸ ︷︷ ︸

c(ρ)

y].

Hence this family is a 1-parameter exponential family with θ = ρ = E(Y )
and canonical link

c(ρ) = log

(
ρ

1 − ρ

)
.

425



This link is known as the logit link, and if g(μ(x)) = g(ρ(x)) = c(ρ(x)) =
α + βTx then the inverse link satisfies

g−1(α + βTx) =
exp(α + βT x)

1 + exp(α + βT x)
= ρ(x) = μ(x).

Hence the GLM corresponding to the binomial(1, ρ) distribution with canon-
ical link is the binary logistic regression model.

Although the logistic regression model is the most important model for
binary regression, several other models are also used. Notice that ρ(x) =
P (S|x) is the population probability of success S given x, while 1 − ρ(x) =
P (F |x) is the probability of failure F given x. In particular, for binary
regression,

ρ(x) = P (Y = 1|x) = 1 − P (Y = 0|x).

If this population proportion ρ = ρ(α + βT x), then the model is a 1D re-
gression model. The model is a GLM if the link function g is differentiable
and monotone so that g(ρ(α + βT x)) = α + βT x and g−1(α + βT x) =
ρ(α + βTx). Usually the inverse link function corresponds to the cumula-
tive distribution function of a location scale family. For example, for logistic
regression, g−1(x) = exp(x)/(1 + exp(x)) which is the cdf of the logistic
L(0, 1) distribution. For probit regression, g−1(x) = Φ(x) which is the cdf
of the Normal N(0, 1) distribution. For the complementary log-log link,
g−1(x) = 1 − exp[− exp(x)] which is the cdf for the smallest extreme value
distribution. For this model, g(ρ(x)) = log[− log(1 − ρ(x))] = α + βT x.

Another important binary regression model is the discriminant func-
tion model. See Hosmer and Lemeshow (2000, p. 43–44). Assume that
πj = P (Y = j) and that x|Y = j ∼ Nk(μj ,Σ) for j = 0, 1. That is,
the conditional distribution of x given Y = j follows a multivariate normal
distribution with mean vector μj and covariance matrix Σ which does not
depend on j. Notice that Σ = Cov(x|Y ) �= Cov(x). Then as for the binary
logistic regression model,

P (Y = 1|x) = ρ(x) =
exp(α + βT x)

1 + exp(α + βT x)
.

Definition 13.4. Under the conditions above, the discriminant func-
tion parameters are given by

β = Σ−1(μ1 − μ0) (13.7)
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and

α = log

(
π1

π0

)
− 0.5(μ1 − μ0)

TΣ−1(μ1 + μ0).

The logistic regression (maximum likelihood) estimator also tends to per-
form well for this type of data. An exception is when the Y = 0 cases and
Y = 1 cases can be perfectly or nearly perfectly classified by the ESP. Let

the logistic regression ESP = α̂ + β̂
T
x. Consider the ESS plot of the ESP

versus Y . If the Y = 0 values can be separated from the Y = 1 values by
the vertical line ESP = 0, then there is perfect classification. In this case the
maximum likelihood estimator for the logistic regression parameters (α, β)
does not exist because the logistic curve can not approximate a step function
perfectly. See Atkinson and Riani (2000, p. 251-254). If only a few cases
need to be deleted in order for the data set to have perfect classification, then
the amount of “overlap” is small and there is nearly “perfect classification.”

Ordinary least squares (OLS) can also be useful for logistic regression.
The ANOVA F test, change in SS F test, and OLS t tests are often asymp-
totically valid when the conditions in Definition 13.4 are met, and the OLS
ESP and LR ESP are often highly correlated. See Haggstrom (1983) and The-
orem 13.1 below. Assume that Cov(x) ≡ Σx and that Cov(x, Y ) = Σx,Y .
Let μj = E(x|Y = j) for j = 0, 1. Let Ni be the number of Ys that are equal
to i for i = 0, 1. Then

μ̂i =
1

Ni

∑
j:Yj=i

xj

for i = 0, 1 while π̂i = Ni/n and π̂1 = 1− π̂0. Notice that Theorem 13.1 holds
as long as Cov(x) is nonsingular and Y is binary with values 0 and 1. The
LR and discriminant function models need not be appropriate.

Theorem 13.1. Assume that Y is binary and that Cov(x) = Σx is
nonsingular. Let (α̂OLS, β̂OLS) be the OLS estimator found from regressing
Y on a constant and x (using software originally meant for multiple linear
regression). Then

β̂OLS =
n

n − 1
Σ̂

−1

x Σ̂xY =
n

n − 1
π̂0π̂1Σ̂

−1

x (μ̂1 − μ̂0)

D→ βOLS = π0π1Σ
−1
x (μ1 − μ0) as n → ∞.
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Proof. From Section 12.5,

β̂OLS =
n

n − 1
Σ̂

−1

x Σ̂xY
D→ βOLS as n → ∞

and

Σ̂xY =
1

n

n∑
i=1

xiYi − x Y .

Thus

Σ̂xY =
1

n

⎡
⎣ ∑

j:Yj=1

xj(1) +
∑

j:Yj=0

xj(0)

⎤
⎦ − x π̂1 =

1

n
(N1μ̂1) −

1

n
(N1μ̂1 + N0μ̂0)π̂1 = π̂1μ̂1 − π̂2

1μ̂1 − π̂1π̂0μ̂0 =

π̂1(1 − π̂1)μ̂1 − π̂1π̂0μ̂0 = π̂1π̂0(μ̂1 − μ̂0)

and the result follows. QED

The discriminant function estimators α̂D and β̂D are found by replacing
the population quantities π1, π0, μ1, μ0 and Σ by sample quantities. Also

β̂D =
n(n − 1)

N0N1
Σ̂

−1
Σ̂xβ̂OLS.

Now when the conditions of Definition 13.4 are met and if μ1 − μ0 is
small enough so that there is not perfect classification, then

βLR = Σ−1(μ1 −μ0).

Empirically, the OLS ESP and LR ESP are highly correlated for many LR
data sets where the conditions are not met, eg when some of the predictors
are factors. This suggests that βLR ≈ d Σ−1

x (μ1 − μ0) for many LR data
sets where d is some constant depending on the data.

Using Definition 13.4 makes simulation of logistic regression data straight-
forward. Set π0 = π1 = 0.5, Σ = I, and μ0 = 0. Then α = −0.5μT

1 μ1

and β = μ1. The artificial data set used in the following discussion used
β = (1, 1, 1, 0, 0)T and hence α = −1.5. Let Ni be the number of cases where
Y = i for i = 0, 1. For the artificial data, N0 = N1 = 100, and hence the
total sample size n = N1 + N0 = 200.
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Figure 13.5: SSP for LR Data
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Figure 13.6: ESS Plot for LR Data
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Again a sufficient summary plot of the sufficient predictor SP = α+βT xi

versus the response variable Yi with the mean function added as a visual aid
can be useful for describing the binary logistic regression (LR) model. The
artificial data described above was used because the plot can not be used for
real data since α and β are unknown.

Unlike the SSP for multiple linear regression where the mean function
is always the identity line, the mean function in the SSP for LR can take
a variety of shapes depending on the range of the SP. For the LR SSP, the
mean function is

ρ(SP ) =
exp(SP )

1 + exp(SP )
.

If the SP = 0 then Y |SP ∼ binomial(1,0.5). If the SP = −5, then Y |SP ∼
binomial(1,ρ ≈ 0.007) while if the SP = 5, then Y |SP ∼ binomial(1,ρ ≈
0.993). Hence if the range of the SP is in the interval (−∞,−5) then the
mean function is flat and ρ(SP ) ≈ 0. If the range of the SP is in the interval
(5,∞) then the mean function is again flat but ρ(SP ) ≈ 1. If −5 < SP < 0
then the mean function looks like a slide. If −1 < SP < 1 then the mean
function looks linear. If 0 < SP < 5 then the mean function first increases
rapidly and then less and less rapidly. Finally, if −5 < SP < 5 then the
mean function has the characteristic “ESS” shape shown in Figure 13.5.

The estimated sufficient summary plot (ESSP or ESS plot) is a plot of

ESP = α̂ + β̂
T
xi versus Yi with the estimated mean function

ρ̂(ESP ) =
exp(ESP )

1 + exp(ESP )

added as a visual aid. The interpretation of the ESS plot is almost the same
as that of the SSP, but now the SP is estimated by the estimated sufficient
predictor (ESP).

This plot is very useful as a goodness of fit diagnostic. Divide the ESP into
J “slices” each containing approximately n/J cases. Compute the sample
mean = sample proportion of the Y ’s in each slice and add the resulting
step function to the ESS plot. This is done in Figure 13.6 with J = 10
slices. This step function is a simple nonparametric estimator of the mean
function ρ(SP ). If the step function follows the estimated LR mean function
(the logistic curve) closely, then the LR model fits the data well. The plot
of these two curves is a graphical approximation of the goodness of fit tests
described in Hosmer and Lemeshow (2000, p. 147–156).
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Figure 13.7: ESS Plot When Y Is Independent Of The Predictors

The deviance test described in Section 13.5 is used to test whether β = 0,
and is the analog of the ANOVA F test for multiple linear regression. If
the LR model is a good approximation to the data but β = 0, then the
predictors x are not needed in the model and ρ̂(xi) ≡ ρ̂ = Y (the usual
univariate estimator of the success proportion) should be used instead of the
LR estimator

ρ̂(xi) =
exp(α̂ + β̂

T
xi)

1 + exp(α̂ + β̂
T
xi)

.

If the logistic curve clearly fits the step function better than the line Y = Y ,
then Ho will be rejected, but if the line Y = Y fits the step function about
as well as the logistic curve (which should only happen if the logistic curve
is linear with a small slope), then Y may be independent of the predictors.
Figure 13.7 shows the ESS plot when only X4 and X5 are used as predic-
tors for the artificial data, and Y is independent of these two predictors by
construction. It is possible to find data sets that look like Figure 13.7 where
the p–value for the deviance test is very small. Then the LR relationship
is statistically significant, but the investigator needs to decide whether the
relationship is practically significant.

For binary data the Yi only take two values, 0 and 1, and the residuals do
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not behave very well. Hence the ESS plot will be used both as a goodness of
fit plot and as a lack of fit plot.

For binomial regression, the ESS plot needs to be modified and a check for
overdispersion is needed. Let Zi = Yi/mi. Then the conditional distribution
Zi|xi of the LR binomial regression model can be visualized with an ESS

plot of the ESP = α̂ + β̂
T
xi versus Zi with the estimated mean function

ρ̂(ESP ) =
exp(ESP )

1 + exp(ESP )

added as a visual aid. Divide the ESP into J slices with approximately the
same number of cases in each slice. Then compute ρ̂s =

∑
s Yi/

∑
s mi where

the sum is over the cases in slice s. Then plot the resulting step function. For
binary data the step function is simply the sample proportion in each slice.
Either the step function or the lowess curve could be added to the ESS plot.
Both the lowess curve and step function are simple nonparametric estimators
of the mean function ρ(SP ). If the lowess curve or step function tracks the
logistic curve (the estimated mean) closely, then the LR mean function is a
reasonable approximation to the data.

Checking the LR model in the nonbinary case is more difficult because
the binomial distribution is not the only distribution appropriate for data
that takes on values 0, 1, ..., m if m ≥ 2. Hence both the mean and variance
functions need to be checked. Often the LR mean function is a good ap-
proximation to the data, the LR MLE is a consistent estimator of β, but the
LR model is not appropriate. The problem is that for many data sets where
E(Yi|xi) = miρ(SPi), it turns out that V (Yi|xi) > miρ(SPi)(1 − ρ(SPi)).
This phenomenon is called overdispersion.

A useful alternative to the binomial regression model is a beta–binomial
regression (BBR) model. Following Simonoff (2003, p. 93-94) and Agresti
(2002, p. 554-555), let δ = ρ/θ and ν = (1 − ρ)/θ, so ρ = δ/(δ + ν) and
θ = 1/(δ + ν). Let

B(δ, ν) =
Γ(δ)Γ(ν)

Γ(δ + ν)
.

If Y has a beta–binomial distribution, Y ∼ BB(m, ρ, θ), then the probability
mass function of Y is

P (Y = y) =

(
m

y

)
B(δ + y, ν + m− y)

B(δ, ν)

432



for y = 0, 1, 2, ..., m where 0 < ρ < 1 and θ > 0. Hence δ > 0 and ν > 0.
Then E(Y ) = mδ/(δ +ν) = mρ and V(Y ) = mρ(1−ρ)[1+(m−1)θ/(1+θ)].
If Y |π ∼ binomial(m, π) and π ∼ beta(δ, ν), then Y ∼ BB(m, ρ, θ).

Definition 13.5. The BBR model states that Y1, ..., Yn are independent
random variables where Yi|SPi ∼ BB(mi, ρ(SPi), θ).

The BBR model has the same mean function as the binomial regression
model, but allows for overdispersion. Note that E(Yi|SPi) = miρ(SPi) and

V (Yi|SPi) = miρ(SPi)(1 − ρ(SPi))[1 + (mi − 1)θ/(1 + θ)].

As θ → 0, it can be shown that V (π) → 0 and the BBR model converges to
the binomial regression model.

For both the LR and BBR models, the conditional distribution of Y |x
can still be visualized with an ESS plot of the ESP versus Yi/mi with the
estimated mean function

ρ̂(ESP )

and a step function or lowess curve added as visual aids.
Since binomial regression is the study of Zi|xi (or equivalently of Yi|xi),

the ESS plot is crucial for analyzing LR models. The ESS plot is a special
case of the model checking plot and emphasizes goodness of fit.

Since the binomial regression model is simpler than the BBR model,
graphical diagnostics for the goodness of fit of the LR model would be use-
ful. To check for overdispersion, we suggest using the OD plot of V̂ (Y |SP )
versus V̂ = [Y − Ê(Y |SP )]2. This plot was suggested by Winkelmann (2000,
p. 110) to check overdispersion for Poisson regression.

Numerical summaries are also available. The deviance G2 is a statistic
used to assess the goodness of fit of the logistic regression model much as R2

is used for multiple linear regression. When the counts mi are small, G2 may
not be reliable but the ESS plot is still useful. If the mi are not small, if the
ESS and OD plots look good, and the deviance G2 satisfies G2/(n−k−1) ≈ 1,
then the LR model is likely useful. If G2 > (n− k − 1) + 3

√
n − k + 1, then

a more complicated count model may be needed.
The ESS plot is a powerful method for assessing the adequacy of the

binary LR regression model. Suppose that both the number of 0s and the
number of 1s is large compared to the number of predictors k, that the ESP
takes on many values and that the binary LR model is a good approximation
to the data. Then Y |ESP ≈ Binomial(1, ρ̂(ESP ). For example if the ESP
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= 0 then Y |ESP ≈ Binomial(1,0.5). If −5 < ESP < 5 then the estimated
mean function has the characteristic “ESS” shape of the logistic curve.

Combining the ESS plot with the OD plot is a powerful method for as-
sessing the adequacy of the LR model. To motivate the OD plot, recall that
if a count Y is not too small, then a normal approximation is good for the
binomial distribution. Notice that if Yi = E(Y |SP ) + 2

√
V (Y |SP ), then

[Yi − E(Y |SP )]2 = 4V (Y |SP ). Hence if both the estimated mean and es-
timated variance functions are good approximations, and if the counts are
not too small, then the plotted points in the OD plot will scatter about a
wedge formed by the V̂ = 0 line and the line through the origin with slope 4:
V̂ = 4V̂ (Y |SP ). Only about 5% of the plotted points should be above this
line.

If the data are binary the ESS plot is enough to check the binomial
regression assumption. When the counts are small, the OD plot is not wedge
shaped, but if the LR model is correct, the least squares (OLS) line should
be close to the identity line through the origin with unit slope.

Suppose the bulk of the plotted points in the OD plot fall in a wedge.
Then the identity line, slope 4 line and OLS line will be added to the plot as
visual aids. It is easier to use the OD plot to check the variance function than
the ESS plot since judging the variance function with the straight lines of
the OD plot is simpler than judging the variability about the logistic curve.
Also outliers are often easier to spot with the OD plot. For the LR model,
V̂ (Yi|SP ) = miρ(ESPi)(1 − ρ(ESPi)) and Ê(Yi|SP ) = miρ(ESPi). The
evidence of overdispersion increases from slight to high as the scale of the
vertical axis increases from 4 to 10 times that of the horizontal axis. There is
considerable evidence of overdispersion if the scale of the vertical axis is more
than 10 times that of the horizontal, or if the percentage of points above the
slope 4 line through the origin is much larger than 5%.

If the binomial LR OD plot is used but the data follows a beta–binomial
regression model, then V̂mod = V̂ (Yi|ESP ) ≈ miρ(ESP )(1 − ρ(ESP )) while
V̂ = [Yi−miρ(ESP )]2 ≈ (Yi−E(Yi))

2. Hence E(V̂ ) ≈ V (Yi) ≈ miρ(ESP )(1−
ρ(ESP ))[1 + (mi − 1)θ/(1 + θ)], so the plotted points with mi = m should
scatter about a line with slope ≈

1 + (m − 1)
θ

1 + θ
=

1 + mθ

1 + θ
.

The first example is for binary data. For binary data, G2 is not approx-
imately χ2 and some plots of residuals have a pattern whether the model is
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Figure 13.8: Plots for Museum Data

correct or not. For binary data the OD plot is not needed, and the plot-
ted points follow a curve rather than falling in a wedge. The ESS plot is
very useful if the logistic curve and step function of observed proportions are
added as visual aids. The logistic curve gives the estimated LR probability
of success. For example, when ESP = 0, the estimated probability is 0.5.

Example 13.1. Schaaffhausen (1878) gives data on skulls at a museum.
The 1st 47 skulls are humans while the remaining 13 are apes. The response
variable ape is 1 for an ape skull. The left plot in Figure 13.8 uses the pre-
dictor face length. The model fits very poorly since the probability of a 1
decreases then increases. The middle plot uses the predictor head height and
perfectly classifies the data since the ape skulls can be separated from the
human skulls with a vertical line at ESP = 0. Christmann and Rousseeuw
(2001) also used the ESS plot to visualize overlap. The right plot uses pre-
dictors lower jaw length, face length, and upper jaw length. None of the
predictors is good individually, but together provide a good LR model since
the observed proportions (the step function) track the model proportions
(logistic curve) closely.
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Figure 13.9: Visualizing the Death Penalty Data

Example 13.2. Abraham and Ledolter (2006, p. 360-364) describe
death penalty sentencing in Georgia. The predictors are aggravation level
from 1 to 6 (treated as a continuous variable) and race of victim coded as
1 for white and 0 for black. There were 362 jury decisions and 12 level
race combinations. The response variable was the number of death sentences
in each combination. The ESS plot in Figure 13.9a shows that the Yi/mi

are close to the estimated LR mean function (the logistic curve). The step
function based on 5 slices also tracks the logistic curve well. The OD plot
is shown in Figure 13.9b with the identity, slope 4 and OLS lines added as
visual aids. The vertical scale is less than the horizontal scale and there is
no evidence of overdispersion.

Example 13.3. Collett (1999, p. 216-219) describes a data set where
the response variable is the number of rotifers that remain in suspension in
a tube. A rotifer is a microscopic invertebrate. The two predictors were the
density of a stock solution of Ficolli and the species of rotifer coded as 1 for
polyarthra major and 0 for keratella cochlearis. Figure 13.10a shows the ESS
plot. Both the observed proportions and the step function track the logistic
curve well, suggesting that the LR mean function is a good approximation to
the data. The OD plot suggests that there is overdispersion since the vertical
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Figure 13.10: Plots for Rotifer Data

scale is about 30 times the horizontal scale. The OLS line has slope much
larger than 4 and two outliers seem to be present.

13.4 Poisson Regression

If the response variable Y is a count, then the Poisson regression model is
often useful. For example, counts often occur in wildlife studies where a
region is divided into subregions and Yi is the number of a specified type of
animal found in the subregion.

Definition 13.6. The Poisson regression model states that Y1, ..., Yn

are independent random variables with

Yi ∼ Poisson(μ(xi)).

The loglinear Poisson regression model is the special case where

μ(xi) = exp(α + βTxi). (13.8)
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To see that the loglinear regression model is a GLM, assume that Y is
a Poisson(μ) random variable. For a one parameter family, take a(φ) ≡ 1.
Then the pmf of Y is

f(y) = P (Y = y) =
e−μμy

y!
= e−μ︸︷︷︸

k(μ)≥0

1

y!︸︷︷︸
h(y)≥0

exp[log(μ)︸ ︷︷ ︸
c(μ)

y]

for y = 0, 1, . . . , where μ > 0. Hence this family is a 1-parameter exponential
family with θ = μ = E(Y ), and the canonical link is the log link

c(μ) = log(μ).

Since g(μ(x)) = c(μ(x)) = α + βTx, the inverse link satisfies

g−1(α + βT x) = exp(α + βTx) = μ(x).

Hence the GLM corresponding to the Poisson(μ) distribution with canonical
link is the loglinear regression model.
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Figure 13.11: SSP for Loglinear Regression
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Figure 13.12: Response Plot for Loglinear Regression

A sufficient summary plot of the sufficient predictor SP = α + βT xi

versus the response variable Yi with the mean function added as a visual aid
can be useful for describing the loglinear regression (LLR) model. Artificial
data needs to be used because the plot can not be used for real data since
α and β are unknown. The data used in the discussion below had n = 100,
x ∼ N5(1, I/4) and

Yi ∼ Poisson(exp(α + βTxi))

where α = −2.5 and β = (1, 1, 1, 0, 0)T .

Model (13.8) can be written compactly as Y |SP ∼ Poisson(exp(SP)).
Notice that Y |SP = 0 ∼ Poisson(1). Also note that the conditional mean
and variance functions are equal: E(Y |SP ) = V (Y |SP ) = exp(SP ). The
shape of the mean function μ(SP ) = exp(SP ) for loglinear regression de-
pends strongly on the range of the SP. The variety of shapes occurs because
the plotting software attempts to fill the vertical axis. Hence the range of
the SP is narrow, then the exponential function will be rather flat. If the
range of the SP is wide, then the exponential curve will look flat in the left
of the plot but will increase sharply in the right of the plot. Figure 13.11
shows the SSP for the artificial data.
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The estimated sufficient summary plot (ESSP or response plot or EY

plot) is a plot of the ESP = α̂ + β̂
T
xi versus Yi with the estimated mean

function
μ̂(ESP ) = exp(ESP )

added as a visual aid. The interpretation of the EY plot is almost the same
as that of the SSP, but now the SP is estimated by the estimated sufficient
predictor (ESP).

This plot is very useful as a goodness of fit diagnostic. The lowess
curve is a nonparametric estimator of the mean function called a “scatterplot
smoother.” The lowess curve is represented as a jagged curve to distinguish
it from the estimated LLR mean function (the exponential curve) in Figure
13.12. If the lowess curve follows the exponential curve closely (except possi-
bly for the largest values of the ESP), then the LLR model may fit the data
well. A useful lack of fit plot is a plot of the ESP versus the deviance
residuals that are often available from the software.

The deviance test described in Section 13.5 is used to test whether β = 0,
and is the analog of the ANOVA F test for multiple linear regression. If
the LLR model is a good approximation to the data but β = 0, then the
predictors x are not needed in the model and μ̂(xi) ≡ μ̂ = Y (the sample
mean) should be used instead of the LLR estimator

μ̂(xi) = exp(α̂ + β̂
T
xi).

If the exponential curve clearly fits the lowess curve better than the line
Y = Y , then Ho should be rejected, but if the line Y = Y fits the lowess
curve about as well as the exponential curve (which should only happen if the
exponential curve is approximately linear with a small slope), then Y may be
independent of the predictors. Figure 13.13 shows the ESSP when only X4

and X5 are used as predictors for the artificial data, and Y is independent of
these two predictors by construction. It is possible to find data sets that look
like Figure 13.13 where the p–value for the deviance test is very small. Then
the LLR relationship is statistically significant, but the investigator needs to
decide whether the relationship is practically significant.

Warning: For many count data sets where the LLR mean function
is correct, the LLR model is not appropriate but the LLR MLE is still a
consistent estimator of β. The problem is that for many data sets where
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Figure 13.13: Response Plot when Y is Independent of the Predictors

E(Y |x) = μ(x) = exp(SP ), it turns out that V (Y |x) > exp(SP ). This phe-
nomenon is called overdispersion. Adding parametric and nonparametric
estimators of the standard deviation function to the EY plot can be useful.
See Cook and Weisberg (1999a, p. 401-403). Alternatively, if the EY plot
looks good and G2/(n − k − 1) ≈ 1, then the LLR model is likely useful. If
G2/(n − k − 1) > 1 + 3/

√
n − k − 1, then a more complicated count model

may be needed. Here the deviance G2 is described in Section 13.5.

A useful alternative to the LLR model is a negative binomial regression
(NBR) model. If Y has a (generalized) negative binomial distribution, Y ∼
NB(μ, κ), then the probability mass function of Y is

P (Y = y) =
Γ(y + κ)

Γ(κ)Γ(y + 1)

(
κ

μ + κ

)κ (
1 − κ

μ + κ

)y

for y = 0, 1, 2, ... where μ > 0 and κ > 0. Then E(Y ) = μ and V(Y ) =
μ+μ2/κ. (This distribution is a generalization of the negative binomial (κ, ρ)
distribution with ρ = κ/(μ + κ) and κ > 0 is an unknown real parameter
rather than a known integer.)

Definition 13.7. The negative binomial regression (NBR) model
states that Y1, ..., Yn are independent random variables where Yi ∼ NB(μ(xi), κ)
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with μ(xi) = exp(α + βT xi). Hence Y |SP ∼ NB(exp(SP), κ), E(Y |SP ) =
exp(SP ) and

V (Y |SP ) = exp(SP )

(
1 +

exp(SP )

κ

)
.

The NBR model has the same mean function as the LLR model but allows
for overdispersion. As κ → ∞, the NBR model converges to the LLR model.

Since the Poisson regression model is simpler than the NBR model, graph-
ical diagnostics for the goodness of fit of the LLR model would be useful. To
check for overdispersion, we suggest using the OD plot of exp(SP ) versus
V̂ = [Y − exp(SP )]2 Combining the EY plot with the OD plot is a powerful
method for assessing the adequacy of the Poisson regression model.

To motivate the OD plot, recall that if a count Y is not too small,
then a normal approximation is good for both the Poisson and negative
binomial distributions. Notice that if Yi = E(Y |SP ) + 2

√
V (Y |SP ), then

[Yi − E(Y |SP )]2 = 4V (Y |SP ). Hence if both the estimated mean and es-
timated variance functions are good approximations, the plotted points in
the OD plot will scatter about a wedge formed by the V̂ = 0 line and the
line through the origin with slope 4: V̂ = 4V̂ (Y |SP ). Only about 5% of the
plotted points should be above this line.

It is easier to use the OD plot to check the variance function than the
EY plot since judging the variance function with the straight lines of the OD
plot is simpler than judging two curves. Also outliers are often easier to spot
with the OD plot.

Winkelmann (2000, p. 110) suggested that the plotted points in the OD
plot should scatter about identity line through the origin with unit slope and
that the OLS line should be approximately equal to the identity line if the
LLR model is appropriate. The evidence of overdispersion increases from
slight to high as the scale of the vertical axis increases from 4 to 10 times
that of the horizontal axis. There is considerable evidence of overdispersion
if the scale of the vertical axis is more than 10 times that of the horizontal,
or if the percentage of points above the slope 4 line through the origin is
much larger than 5%. (A percentage greater than 5% + 43%/

√
n would be

unusual.)
Judging the mean function from the EY plot may be rather difficult for

large counts since the mean function is curved and lowess does not track
the exponential function very well for large counts. Simple diagnostic plots
for the Poisson regression model can be made using weighted least squares
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(WLS). To see this, assume that all n of the counts Yi are large. Then

log(μ(xi)) = log(μ(xi)) + log(Yi) − log(Yi) = α + βTxi,

or
log(Yi) = α + βT xi + ei

where

ei = log

(
Yi

μ(xi)

)
.

The error ei does not have zero mean or constant variance, but if μ(xi) is
large

Yi − μ(xi)√
μ(xi)

≈ N(0, 1)

by the central limit theorem. Recall that log(1 + x) ≈ x for |x| < 0.1. Then,
heuristically,

ei = log

(
μ(xi) + Yi − μ(xi)

μ(xi)

)
≈ Yi − μ(xi)

μ(xi)
≈

1√
μ(xi)

Yi − μ(xi)√
μ(xi)

≈ N

(
0,

1

μ(xi)

)
.

This suggests that for large μ(xi), the errors ei are approximately 0 mean
with variance 1/μ(xi). If the μ(xi) were known, and all of the Yi were large,
then a weighted least squares of log(Yi) on xi with weights wi = μ(xi) should
produce good estimates of (α, β). Since the μ(xi) are unknown, the estimated
weights wi = Yi could be used. Since P (Yi = 0) > 0, the estimators given in
the following definition are used. Let Zi = Yi if Yi > 0, and let Zi = 0.5 if
Yi = 0.

Definition 13.8. The minimum chi–square estimator of the param-
eters (α, β) in a loglinear regression model are (α̂M , β̂M ), and are found from
the weighted least squares regression of log(Zi) on xi with weights wi = Zi.
Equivalently, use the ordinary least squares (OLS) regression (without inter-
cept) of

√
Zi log(Zi) on

√
Zi(1, x

T
i )T .

The minimum chi–square estimator tends to be consistent if n is fixed
and all n counts Yi increase to ∞ while the loglinear regression maximum
likelihood estimator tends to be consistent if the sample size n → ∞. See
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Agresti (2002, p. 611-612). However, the two estimators are often close for
many data sets. This result and the equivalence of the minimum chi–square
estimator to an OLS estimator suggest the following diagnostic plots. Let
(α̃, β̃) be an estimator of (α, β).

Definition 13.9. For a loglinear Poisson regression model, a weighted

fit response plot is a plot of
√

ZiESP =
√

Zi(α̃+β̃
T
xi) versus

√
Zi log(Zi).

The weighted residual plot is a plot of
√

Zi(α̃ + β̃
T
xi) versus the WMLR

residuals rWi =
√

Zi log(Zi) −
√

Zi(α̃ + β̃
T
xi).

If the loglinear regression model is appropriate and if the minimum chi–
square estimators are reasonable, then the plotted points in the weighted
fit response plot should follow the identity line. Cases with large WMLR
residuals may not be fit very well by the model. When the counts Yi are
small, the WMLR residuals can not be expected to be approximately normal.
Notice that a resistant estimator for (α, β) can be obtained by replacing OLS
(in Definition 13.9) with a resistant MLR estimator.

Example 13.4. For the Ceriodaphnia data of Myers, Montgomery and
Vining (2002, p. 136-139), the response variable Y is the number of Ceri-
odaphnia organisms counted in a container. The sample size was n = 70
and seven concentrations of jet fuel (x1) and an indicator for two strains
of organism (x2) were used as predictors. The jet fuel was believed to im-
pair reproduction so high concentrations should have smaller counts. Figure
13.14 shows the 4 plots for this data. In the EY plot of Figure 13.14a, the
lowess curve is represented as a jagged curve to distinguish it from the es-
timated LLR mean function (the exponential curve). The horizontal line
corresponds to the sample mean Y . The OD plot in Figure 13.14b suggests
that there is little evidence of overdispersion. These two plots as well as
Figures 13.14c and 13.14d suggest that the LLR Poisson regression model is
a useful approximation to the data.

Example 13.5. For the crab data, the response Y is the number of
satellites (male crabs) near a female crab. The sample size n = 173 and the
predictor variables were the color, spine condition, caparice width and weight
of the female crab. Agresti (2002, p. 126-131) first uses Poisson regression,
and then uses the NBR model with κ̂ = 0.98 ≈ 1. Figure 13.15a suggests that
there is one case with an unusually large value of the ESP. The lowess curve
does not track the exponential curve all that well. Figure 13.15b suggests

444



1.5 2.5 3.5 4.5
0

40
10

0

ESP

Y

a) ESSP

20 40 60 80

0
30

0

Ehat

V
ha

t

b) OD Plot

0 10 30

0
20

40

MWFIT

sq
rt

(Z
) 

* 
lo

g(
Z

)

c) WFRP Based on MLE

0 10 30
−

2
0

2

MWFIT

M
W

R
E

S

d) WRP Based on MLE

Figure 13.14: Plots for Ceriodaphnia Data
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Figure 13.15: Plots for Crab Data
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Figure 13.16: Plots for Popcorn Data

that overdispersion is present since the vertical scale is about 10 times that of
the horizontal scale and too many of the plotted points are large and greater
than the slope 4 line. Figure 13.15c also suggests that the Poisson regression
mean function is a rather poor fit since the plotted points fail to cover the
identity line. Although the exponential mean function fits the lowess curve
better than the line Y = Y , an alternative model to the NBR model may fit
the data better. In later chapters, Agresti uses binomial regression models
for this data.

Example 13.6. For the popcorn data of Myers, Montgomery and Vining
(2002, p. 154), the response variable Y is the number of inedible popcorn
kernels. The sample size was n = 15 and the predictor variables were tem-
perature (coded as 5, 6 or 7), amount of oil (coded as 2, 3 or 4) and popping
time (75, 90 or 105). One batch of popcorn had more than twice as many
inedible kernels as any other batch and is an outlier. Ignoring the outlier in
Figure 13.16a suggests that the line Y = Y will fit the data and lowess curve
better than the exponential curve. Hence Y seems to be independent of the
predictors. Notice that the outlier sticks out in Figure 13.16b and that the
vertical scale is well over 10 times that of the horizontal scale. If the outlier
was not detected, then the Poisson regression model would suggest that tem-
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perature and time are important predictors, and overdispersion diagnostics
such as the deviance would be greatly inflated.

13.5 Inference

This section gives a very brief discussion of inference for the logistic regression
(LR) and loglinear regression (LLR) models. Inference for these two models
is very similar to inference for the multiple linear regression (MLR) model.
For all three of these models, Y is independent of the k×1 vector of predictors
x = (x1, ..., xk)

T given the sufficient predictor α + βTx:

Y x|(α + βTx).

Response = Y
Coefficient Estimates

Label Estimate Std. Error Est/SE p-value
Constant α̂ se(α̂) zo,0 for Ho: α = 0

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) for Ho: β1 = 0
...

...
...

...
...

xk β̂k se(β̂k) zo,k = β̂k/se(β̂k) for Ho: βk = 0

Number of cases: n

Degrees of freedom: n - k - 1

Pearson X2:

Deviance: D = G^2

-------------------------------------

Binomial Regression

Kernel mean function = Logistic

Response = Status

Terms = (Bottom Left)

Trials = Ones

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -389.806 104.224 -3.740 0.0002

Bottom 2.26423 0.333233 6.795 0.0000

Left 2.83356 0.795601 3.562 0.0004
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Scale factor: 1.

Number of cases: 200

Degrees of freedom: 197

Pearson X2: 179.809

Deviance: 99.169

To perform inference for LR and LLR, computer output is needed. Above
is shown output using symbols and Arc output from a real data set with k = 2
nontrivial predictors. This data set is the banknote data set described in Cook
and Weisberg (1999a, p. 524). There were 200 Swiss bank notes of which
100 were genuine (Y = 0) and 100 counterfeit (Y = 1). The goal of the
analysis was to determine whether a selected bill was genuine or counterfeit
from physical measurements of the bill.

Point estimators for the mean function are important. Given values of
x = (x1, ..., xk)

T , a major goal of binary logistic regression is to estimate the
success probability P (Y = 1|x) = ρ(x) with the estimator

ρ̂(x) =
exp(α̂ + β̂

T
x)

1 + exp(α̂ + β̂
T
x)

. (13.9)

Similarly, a major goal of loglinear regression is to estimate the mean
E(Y |x) = μ(x) with the estimator

μ̂(x) = exp(α̂ + β̂
T
x). (13.10)

For tests, the p–value is an important quantity. Recall that Ho is rejected
if the p–value < δ. A p–value between 0.07 and 1.0 provides little evidence
that Ho should be rejected, a p–value between 0.01 and 0.07 provides moder-
ate evidence and a p–value less than 0.01 provides strong statistical evidence
that Ho should be rejected. Statistical evidence is not necessarily practical
evidence, and reporting the p–value along with a statement of the strength
of the evidence is more informative than stating that the p–value is less
than some chosen value such as δ = 0.05. Nevertheless, as a homework
convention, use δ = 0.05 if δ is not given.

Investigators also sometimes test whether a predictor Xj is needed in the
model given that the other k − 1 nontrivial predictors are in the model with
a 4 step Wald test of hypotheses:
i) State the hypotheses Ho: βj = 0 Ha: βj �= 0.
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ii) Find the test statistic zo,j = β̂j/se(β̂j) or obtain it from output.
iii) The p–value = 2P (Z < −|zoj|) = 2P (Z > |zoj|). Find the p–value from
output or use the standard normal table.
iv) State whether you reject Ho or fail to reject Ho and give a nontechnical
sentence restating your conclusion in terms of the story problem.

If Ho is rejected, then conclude that Xj is needed in the GLM model for
Y given that the other k− 1 predictors are in the model. If you fail to reject
Ho, then conclude that Xj is not needed in the GLM model for Y given that
the other k − 1 predictors are in the model. Note that Xj could be a very
useful GLM predictor, but may not be needed if other predictors are added
to the model.

The Wald confidence interval (CI) for βj can also be obtained from the

output: the large sample 100 (1 − δ) % CI for βj is β̂j ± z1−δ/2 se(β̂j).

The Wald test and CI tend to give good results if the sample size n
is large. Here 1 − δ refers to the coverage of the CI. Recall that a 90%
CI uses z1−δ/2 = 1.645, a 95% CI uses z1−δ/2 = 1.96, and a 99% CI uses
z1−δ/2 = 2.576.

For a GLM, often 3 models are of interest: the full model that uses all k
of the predictors xT = (xT

R, xT
O), the reduced model that uses the r predic-

tors xR, and the saturated model that uses n parameters θ1, ..., θn where
n is the sample size. For the full model the k + 1 parameters α, β1, ..., βk are
estimated while the reduced model has r +1 parameters. Let lSAT (θ1, ..., θn)
be the likelihood function for the saturated model and let lFULL(α, β) be the
likelihood function for the full model. Let

LSAT = log lSAT (θ̂1, ..., θ̂n)

be the log likelihood function for the saturated model evaluated at the max-
imum likelihood estimator (MLE) (θ̂1, ..., θ̂n) and let

LFULL = log lFULL(α̂, β̂)

be the log likelihood function for the full model evaluated at the MLE (α̂, β̂).
Then the deviance

D = G2 = −2(LFULL − LSAT ).
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The degrees of freedom for the deviance = dfFULL = n − k − 1 where n is
the number of parameters for the saturated model and k + 1 is the number
of parameters for the full model.

The saturated model for logistic regression states that Y1, ..., Yn are inde-
pendent binomial(mi, ρi) random variables where ρ̂i = Yi/mi. The saturated
model is usually not very good for binary data (all mi = 1) or if the mi are
small. The saturated model can be good if all of the mi are large or if ρi is
very close to 0 or 1 whenever mi is not large.

The saturated model for loglinear regression states that Y1, ..., Yn are in-
dependent Poisson(μi) random variables where μ̂i = Yi. The saturated model
is usually not very good for Poisson data, but the saturated model may be
good if n is fixed and all of the counts Yi are large.

If X ∼ χ2
d then E(X) = d and VAR(X) = 2d. An observed value of

x > d + 3
√

d is unusually large and an observed value of x < d − 3
√

d is
unusually small.

When the saturated model is good, a rule of thumb is that the logistic
or loglinear regression model is ok if G2 ≤ n − k − 1 (or if G2 ≤ n − k −
1 + 3

√
n − k − 1). For binary LR, the χ2

n−k+1 approximation for G2 is rarely
good even for large sample sizes n. For LR, the ESS plot is often a much
better diagnostic for goodness of fit, especially when ESP = α +βTxi takes
on many values and when k + 1 << n. For LLR, both the EY plot and
G2 ≤ n − k − 1 + 3

√
n − k − 1 should be checked.

The Arc output on the following page, shown in symbols and for a real
data set, is used for the deviance test described below. Assume that the
estimated sufficient summary plot has been made and that the logistic or
loglinear regression model fits the data well in that the nonparametric step
or lowess estimated mean function follows the estimated model mean function
closely and there is no evidence of overdispersion. The deviance test is used
to test whether β = 0. If this is the case, then the predictors are not needed
in the GLM model. If Ho : β = 0 is not rejected, then for loglinear regression
the estimator μ̂ = Y should be used while for logistic regression

ρ̂ =

n∑
i=1

Yi/

n∑
i=1

mi

should be used. Note that ρ̂ = Y for binary logistic regression.
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The 4 step deviance test is
i) Ho : β1 = · · · = βk = 0 HA : not Ho

ii) test statistic G2(o|F ) = G2
o − G2

FULL

iii) The p–value = P (χ2 > G2(o|F )) where χ2 ∼ χ2
k has a chi–square

distribution with k degrees of freedom. Note that k = k + 1 − 1 = dfo −
dfFULL = n − 1 − (n − k − 1).

iv) Reject Ho if the p–value < δ and conclude that there is a GLM
relationship between Y and the predictors X1, ..., Xk. If p–value ≥ δ, then
fail to reject Ho and conclude that there is not a GLM relationship between
Y and the predictors X1, ..., Xk.

Response = Y
Terms = (X1, ..., Xk)
Sequential Analysis of Deviance

Total Change
Predictor df Deviance df Deviance

Ones n − 1 = dfo G2
o

X1 n − 2 1
X2 n − 3 1
...

...
...

...
Xk n − k − 1 = dfFULL G2

FULL 1

-----------------------------------------

Data set = cbrain, Name of Fit = B1

Response = sex

Terms = (cephalic size log[size])

Sequential Analysis of Deviance

Total Change

Predictor df Deviance | df Deviance

Ones 266 363.820 |

cephalic 265 363.605 | 1 0.214643

size 264 315.793 | 1 47.8121

log[size] 263 305.045 | 1 10.7484

The output shown on the following page, both in symbols and for a real
data set, can be used to perform the change in deviance test. If the reduced
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Response = Y Terms = (X1, ..., Xk) (Full Model)

Label Estimate Std. Error Est/SE p-value
Constant α̂ se(α̂) zo,0 for Ho: α = 0

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) for Ho: β1 = 0
...

...
...

...
...

xk β̂k se(β̂k) zo,k = β̂k/se(β̂k) for Ho: βk = 0
Degrees of freedom: n - k - 1 = dfFULL

Deviance: D = G2
FULL

Response = Y Terms = (X1, ..., Xr) (Reduced Model)

Label Estimate Std. Error Est/SE p-value
Constant α̂ se(α̂) zo,0 for Ho: α = 0

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) for Ho: β1 = 0
...

...
...

...
...

xr β̂r se(β̂r) zo,r = β̂k/se(β̂r) for Ho: βr = 0
Degrees of freedom: n - r - 1 = dfRED

Deviance: D = G2
RED

(Full Model) Response = Status, Terms = (Diagonal Bottom Top)

Label Estimate Std. Error Est/SE p-value

Constant 2360.49 5064.42 0.466 0.6411

Diagonal -19.8874 37.2830 -0.533 0.5937

Bottom 23.6950 45.5271 0.520 0.6027

Top 19.6464 60.6512 0.324 0.7460

Degrees of freedom: 196

Deviance: 0.009

(Reduced Model) Response = Status, Terms = (Diagonal)

Label Estimate Std. Error Est/SE p-value

Constant 989.545 219.032 4.518 0.0000

Diagonal -7.04376 1.55940 -4.517 0.0000

Degrees of freedom: 198

Deviance: 21.109
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model leaves out a single variable Xi, then the change in deviance test be-
comes Ho : βi = 0 versus HA : βi �= 0. This test is a competitor of the Wald
test. This change in deviance test is usually better than the Wald test if the
sample size n is not large, but the Wald test is currently easier for software
to produce. For large n the test statistics from the two tests tend to be very
similar (asymptotically equivalent tests).

If the reduced model is good, then the EE plot of ESP (R) = α̂R+β̂
T

RxRi

versus ESP = α̂ + β̂
T
xi should be highly correlated with the identity line

with unit slope and zero intercept.

After obtaining an acceptable full model where

SP = α + β1x1 + · · · + βkxk = α + βTx = α + βT
RxR + βT

OxO

try to obtain a reduced model

SP = α + βR1xR1 + · · · + βRrxRr = αR + βT
RxR

where the reduced model uses r of the predictors used by the full model and
xO denotes the vector of k − r predictors that are in the full model but not
the reduced model. For logistic regression, the reduced model is Yi|xRi ∼
independent Binomial(mi, ρ(xRi)) while for loglinear regression the reduced
model is Yi|xRi ∼ independent Poisson(μ(xRi)) for i = 1, ..., n.

Assume that the ESS plot looks good. Then we want to test Ho: the
reduced model is good (can be used instead of the full model) versus HA:
use the full model (the full model is significantly better than the reduced
model). Fit the full model and the reduced model to get the deviances
G2

FULL and G2
RED.

The 4 step change in deviance test is
i) Ho: the reduced model is good HA: use the full model
ii) test statistic G2(R|F ) = G2

RED − G2
FULL

iii) The p–value = P (χ2 > G2(R|F )) where χ2 ∼ χ2
k−r has a chi–square

distribution with k degrees of freedom. Note that k is the number of non-
trivial predictors in the full model while r is the number of nontrivial pre-
dictors in the reduced model. Also notice that k − r = (k + 1) − (r + 1) =
dfRED − dfFULL = n − r − 1 − (n − k − 1).

iv) Reject Ho if the p–value < δ and conclude that the full model should
be used. If p–value ≥ δ, then fail to reject Ho and conclude that the reduced
model is good.
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Interpretation of coefficients: if x1, ..., xi−1, xi+1, ..., xk can be held fixed,
then increasing xi by 1 unit increases the sufficient predictor SP by βi units.
As a special case, consider logistic regression. Let ρ(x) = P (success|x) =
1−P(failure|x) where a “success” is what is counted and a “failure” is what
is not counted (so if the Yi are binary, ρ(x) = P (Yi = 1|x)). Then the
estimated odds of success is

Ω̂(x) =
ρ̂(x)

1 − ρ̂(x)
= exp(α̂ + β̂

T
x).

In logistic regression, increasing a predictor xi by 1 unit (while holding all
other predictors fixed) multiplies the estimated odds of success by a factor
of exp(β̂i).

13.6 Variable Selection

This section gives some rules of thumb for variable selection for logistic and
loglinear regression. Before performing variable selection, a useful full model
needs to be found. The process of finding a useful full model is an iterative
process. Given a predictor x, sometimes x is not used by itself in the full
model. Suppose that Y is binary. Then to decide what functions of x should
be in the model, look at the conditional distribution of x|Y = i for i = 0, 1.
The rules shown in Table 13.1 are used if x is an indicator variable or if x is
a continuous variable. See Cook and Weisberg (1999a, p. 501) and Kay and
Little (1987).

The full model will often contain factors and interactions. If w is a nom-
inal variable with J levels, make w into a factor by using use J − 1 (indica-
tor or) dummy variables x1,w, ..., xJ−1,w in the full model. For example, let
xi,w = 1 if w is at its ith level, and let xi,w = 0, otherwise. An interaction
is a product of two or more predictor variables. Interactions are difficult to
interpret. Often interactions are included in the full model, and then the
reduced model without any interactions is tested. The investigator is often
hoping that the interactions are not needed.

A scatterplot of x versus Y is used to visualize the conditional distri-
bution of Y |x. A scatterplot matrix is an array of scatterplots and is used
to examine the marginal relationships of the predictors and response. Place
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Table 13.1: Building the Full Logistic Regression Model

distribution of x|y = i variables to include in the model
x|y = i is an indicator x
x|y = i ∼ N(μi, σ

2) x
x|y = i ∼ N(μi, σ

2
i ) x and x2

x|y = i has a skewed distribution x and log(x)
x|y = i has support on (0,1) log(x) and log(1 − x)

Y on the top or bottom of the scatterplot matrix. Variables with outliers,
missing values or strong nonlinearities may be so bad that they should not be
included in the full model. Suppose that all values of the variable x are posi-
tive. The log rule says add log(x) to the full model if max(xi)/min(xi) > 10.
For the binary logistic regression model, it is often useful to mark the plotted
points by a 0 if Y = 0 and by a + if Y = 1.

To make a full model, use the above discussion and then make an EY
plot to check that the full model is good. The number of predictors in the
full model should be much smaller than the number of data cases n. Suppose
that the Yi are binary for i = 1, ..., n. Let N1 =

∑
Yi = the number of 1’s and

N0 = n−N1 = the number of 0’s. A rough rule of thumb is that the full model
should use no more than min(N0, N1)/5 predictors and the final submodel
should have r predictor variables where r is small with r ≤ min(N0, N1)/10.
For loglinear regression, a rough rule of thumb is that the full model should
use no more than n/5 predictors and the final submodel should use no more
than n/10 predictors.

Variable selection, also called subset or model selection, is the search for
a subset of predictor variables that can be deleted without important loss of
information. A model for variable selection for a GLM can be described by

SP = α + βT x = α + βT
SxS + βT

ExE = α + βT
SxS (13.11)

where x = (xT
S , xT

E)T is a k× 1 vector of nontrivial predictors, xS is a rS × 1
vector and xE is a (k − rS) × 1 vector. Given that xS is in the model,
βE = 0 and E denotes the subset of terms that can be eliminated given that
the subset S is in the model.
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Since S is unknown, candidate subsets will be examined. Let xI be the
vector of r terms from a candidate subset indexed by I , and let xO be the
vector of the remaining terms (out of the candidate submodel). Then

SP = α + βT
I xI + βT

OxO. (13.12)

Definition 13.10. The model with SP = α + βT x that uses all of the
predictors is called the full model. A model with SP = α + βT

I xI that only
uses the constant and a subset xI of the nontrivial predictors is called a
submodel.

Suppose that S is a subset of I and that model (13.11) holds. Then

SP = α + βT
SxS = α + βT

SxS + βT
(I/S)xI/S + 0T xO = α + βT

I xI (13.13)

where xI/S denotes the predictors in I that are not in S. Since this is true
regardless of the values of the predictors, βO = 0 if the set of predictors S is
a subset of I. Let (α̂, β̂) and (α̂I , β̂I) be the estimates of (α, β) and (α, βI)
obtained from fitting the full model and the submodel, respectively. Denote

the ESP from the full model by ESP = α̂ + β̂
T
xi and denote the ESP from

the submodel by ESP (I) = α̂I + β̂IxIi.

Definition 13.11. An EE plot is a plot of ESP (I) versus ESP .

Variable selection is closely related to the change in deviance test for
a reduced model. You are seeking a subset I of the variables to keep in
the model. The AIC(I) statistic is used as an aid in backward elimination
and forward selection. The full model and the model Imin found with the
smallest AIC are always of interest. Burnham and Anderson (2004) suggest
that if Δ(I) = AIC(I)− AIC(Imin), then models with Δ(I) ≤ 2 are good,
models with 4 ≤ Δ(I) ≤ 7 are borderline, and models with Δ(I) > 10 should
not be used as the final submodel. Create a full model. The full model has
a deviance at least as small as that of any submodel. The final submodel
should have an EE plot that clusters tightly about the identity line. As a
rough rule of thumb, a good submodel I has corr(ESP (I), ESP ) ≥ 0.95.
Look at the submodel Il with the smallest number of predictors such that
Δ(Il) ≤ 2, and also examine submodels I with fewer predictors than Il with
Δ(I) ≤ 7.
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Backward elimination starts with the full model with k nontrivial vari-
ables, and the predictor that optimizes some criterion is deleted. Then there
are k − 1 variables left, and the predictor that optimizes some criterion is
deleted. This process continues for models with k − 2, k − 3, ..., 2 and 1
predictors.

Forward selection starts with the model with 0 variables, and the pre-
dictor that optimizes some criterion is added. Then there is 1 variable in the
model, and the predictor that optimizes some criterion is added. This process
continues for models with 2, 3, ..., k − 2 and k − 1 predictors. Both forward
selection and backward elimination result in a sequence, often different, of k
models {x∗

1}, {x∗
1, x

∗
2}, ..., {x∗

1, x
∗
2, ..., x

∗
k−1}, {x∗

1, x
∗
2, ..., x

∗
k} = full model.

All subsets variable selection can be performed with the following
procedure. Compute the ESP of the GLM and compute the OLS ESP found
by the OLS regression of Y on x. Check that |corr(ESP, OLS ESP)| ≥ 0.95.
This high correlation will exist for many data sets. Then perform multiple
linear regression and the corresponding all subsets OLS variable selection
with the Cp(I) criterion. If the sample size n is large and Cp(I) ≤ 2(r + 1)
where the subset I has r + 1 variables including a constant, then corr(OLS
ESP, OLS ESP(I)) will be high by the proof of Proposition 5.1, and hence
corr(ESP, ESP(I)) will be high. In other words, if the OLS ESP and GLM
ESP are highly correlated, then performing multiple linear regression and
the corresponding MLR variable selection (eg forward selection, backward
elimination or all subsets selection) based on the Cp(I) criterion may provide
many interesting submodels.

Know how to find good models from output. The following rules of thumb
(roughly in order of decreasing importance) may be useful. It is often not
possible to have all 11 rules of thumb to hold simultaneously. Let submodel I
have rI +1 predictors, including a constant. Do not use more predictors than
submodel Il, which has no more predictors than the minimum AIC model.
It is possible that Il = Imin = Ifull. Then the submodel I is good if
i) the EY plot for the submodel looks like the EY plot for the full model.
ii) corr(ESP,ESP(I)) ≥ 0.95.
iii) The plotted points in the EE plot cluster tightly about the identity line.
iv) Want the p-value ≥ 0.01 for the change in deviance test that uses I as
the reduced model.
v) For LR want rI + 1 ≤ min(N1, N0)/10. For LLR, want rI + 1 ≤ n/10.
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vi) The plotted points in the VV plot cluster tightly about the identity line.
vii) Want the deviance G2(I) close to G2(full) (see iv): G2(I) ≥ G2(full)
since adding predictors to I does not increase the deviance).
viii) Want AIC(I) ≤ AIC(Imin) + 7 where Imin is the minimum AIC model
found by the variable selection procedure.
ix) Want hardly any predictors with p-values > 0.05.
x) Want few predictors with p-values between 0.01 and 0.05.
xi) Want G2(I) ≤ n − rI − 1 + 3

√
n − rI − 1.

Heuristically, backward elimination tries to delete the variable that will
increase the deviance the least. An increase in deviance greater than 4 (if the
predictor has 1 degree of freedom) may be troubling in that a good predictor
may have been deleted. In practice, the backward elimination program may
delete the variable such that the submodel I with j predictors has a) the
smallest AIC(I), b) the smallest deviance G2(I) or c) the biggest p–value
(preferably from a change in deviance test but possibly from a Wald test)
in the test Ho βi = 0 versus HA βi �= 0 where the model with j + 1 terms
from the previous step (using the j predictors in I and the variable x∗

j+1) is
treated as the full model.

Heuristically, forward selection tries to add the variable that will decrease
the deviance the most. A decrease in deviance less than 4 (if the predictor has
1 degree of freedom) may be troubling in that a bad predictor may have been
added. In practice, the forward selection program may add the variable such
that the submodel I with j nontrivial predictors has a) the smallest AIC(I),
b) the smallest deviance G2(I) or c) the smallest p–value (preferably from a
change in deviance test but possibly from a Wald test) in the test Ho βi = 0
versus HA βi �= 0 where the current model with j terms plus the predictor
xi is treated as the full model (for all variables xi not yet in the model).

Suppose that the full model is good and is stored in M1. Let M2, M3,
M4 and M5 be candidate submodels found after forward selection, backward
elimination, etc. Make a scatterplot matrix of the ESPs for M2, M3, M4,
M5 and M1. Good candidates should have estimated sufficient predictors
that are highly correlated with the full model estimated sufficient predictor
(the correlation should be at least 0.9 and preferably greater than 0.95). For
binary logistic regression, mark the symbols (0 and +) using the response
variable Y .
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The final submodel should have few predictors, few variables with large
Wald p–values (0.01 to 0.05 is borderline), a good EY plot and an EE plot
that clusters tightly about the identity line. If a factor has I − 1 dummy
variables, either keep all I − 1 dummy variables or delete all I − 1 dummy
variables, do not delete some of the dummy variables.

13.7 Complements

GLMs were introduced by Nelder and Wedderburn (1972). Books on gen-
eralized linear models (in roughly decreasing order of difficulty) include Mc-
Cullagh and Nelder (1989), Fahrmeir and Tutz (2001), Myers, Montgomery
and Vining (2002), Dobson and Barnett (2008) and Olive (2007d). Also
see Hardin and Hilbe (2007), Hilbe (2007), Hoffman (2003), Hutcheson and
Sofroniou (1999) and Lindsey (2000). Cook and Weisberg (1999, ch. 21-
23) also has an excellent discussion. Texts on categorical data analysis that
have useful discussions of GLMs include Agresti (2002), Le (1998), Lindsey
(2004), Simonoff (2003) and Powers and Xie (2000) who give econometric
applications. Collett (1999) and Hosmer and Lemeshow (2000) are excellent
texts on logistic regression. See Christensen (1997) for a Bayesian approach
and see Cramer (2003) for econometric applications. Cameron and Trivedi
(1998) and Winkelmann (2008) cover Poisson regression.

Barndorff-Nielsen (1982) is a very readable discussion of exponential fam-
ilies. Also see Olive (2007e, 2008ab). Many of the distributions in Chapter
3 belong to a 1-parameter exponential family.

The EY and ESS plots are a special case of model checking plots. See
Cook and Weisberg (1997, 1999a, p. 397, 514, and 541). Cook and Weisberg
(1999, p. 515) add a lowess curve to the ESS plot.

The ESS plot is essential for understanding the logistic regression model
and for checking goodness and lack of fit if the estimated sufficient predictor

α̂+ β̂
T
x takes on many values. Some other diagnostics include Cook (1996),

Eno and Terrell (1999), Hosmer and Lemeshow (1980), Landwehr, Pregibon
and Shoemaker (1984), Menard (2000), Pardoe and Cook (2002), Pregibon
(1981), Simonoff (1998), Su and Wei (1991), Tang (2001) and Tsiatis (1980).
Hosmer and Lemeshow (2000) has additional references. Also see Cheng and
Wu (1994), Kauermann and Tutz (2001) and Pierce and Schafer (1986).

The EY plot is essential for understanding the Poisson regression model
and for checking goodness and lack of fit if the estimated sufficient predictor
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α̂ + β̂
T
x takes on many values. Goodness of fit is also discussed by Spinelli,

Lockart and Stephens (2002).
Olive (2007bc) discusses plots for Binomial and Poisson regression. The

ESS plot can also be used to measure overlap in logistic regression. See
Christmann and Rousseeuw (2001) and Rousseeuw and Christmann (2003).

For Binomial regression and BBR, and for Poisson regression and NBR,
the OD plot can be used to complement tests and diagnostics for overdis-
persion such as those given in Breslow (1990), Cameron and Trevedi (1998),
Collett (1999, ch. 6), Dean (1992), Ganio and Schafer (1992), Lambert and
Roeder (1995) and Winkelmann (2000).

Olive and Hawkins (2005) give a simple all subsets variable selection
procedure that can be applied to logistic regression and Poisson regression
using readily available OLS software. The procedures of Lawless and Singhai
(1978) and Nordberg (1982) are much more complicated.

Variable selection using the AIC criterion is discussed in Burnham and
Anderson (2004), Cook and Weisberg (1999a) and Hastie (1987).

The existence of the logistic regression MLE is discussed in Albert and
Andersen (1984) and Santer and Duffy (1986).

Results from Haggstrom (1983) suggest that if a binary regression model
is fit using OLS software for MLR, then a rough approximation is β̂LR ≈
β̂OLS/MSE.

A possible method for resistant binary regression is to use trimmed views
but make the ESS plot. This method would work best if x came from an
elliptically contoured distribution. Another possibility is to substitute robust
estimators for the classical estimators in the discrimination estimator.

Some robust and resistant methods include Cantoni and Ronchetti (2001),
Christmann (1994), Morgenthaler (1992), Pregibon (1982),

13.8 Problems

PROBLEMS WITH AN ASTERISK * ARE USEFUL.
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Output for problem 13.1: Response = sex

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -18.3500 3.42582 -5.356 0.0000

circum 0.0345827 0.00633521 5.459 0.0000

13.1. Consider trying to estimate the proportion of males from a popu-
lation of males and females by measuring the circumference of the head. Use
the above logistic regression output to answer the following problems.

a) Predict ρ̂(x) if x = 550.0.

b) Find a 95% CI for β.

c) Perform the 4 step Wald test for Ho : β = 0.

Output for Problem 13.2

Response = sex

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -19.7762 3.73243 -5.298 0.0000

circum 0.0244688 0.0111243 2.200 0.0278

length 0.0371472 0.0340610 1.091 0.2754

13.2∗. Now the data is as in Problem 13.1, but try to estimate the pro-
portion of males by measuring the circumference and the length of the head.
Use the above logistic regression output to answer the following problems.

a) Predict ρ̂(x) if circumference = x1 = 550.0 and length = x2 = 200.0.

b) Perform the 4 step Wald test for Ho : β1 = 0.

c) Perform the 4 step Wald test for Ho : β2 = 0.
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Output for problem 13.3

Response = ape

Terms = (lower jaw, upper jaw, face length)

Trials = Ones

Sequential Analysis of Deviance

All fits include an intercept.

Total Change

Predictor df Deviance | df Deviance

Ones 59 62.7188 |

lower jaw 58 51.9017 | 1 10.8171

upper jaw 57 17.1855 | 1 34.7163

face length 56 13.5325 | 1 3.65299

13.3∗. A museum has 60 skulls of apes and humans. Lengths of the
lower jaw, upper jaw and face are the explanatory variables. The response
variable is ape (= 1 if ape, 0 if human). Using the output above, perform
the four step deviance test for whether there is a LR relationship between
the response variable and the predictors.
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Output for Problem 13.4.

Full Model

Response = ape

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant 11.5092 5.46270 2.107 0.0351

lower jaw -0.360127 0.132925 -2.709 0.0067

upper jaw 0.779162 0.382219 2.039 0.0415

face length -0.374648 0.238406 -1.571 0.1161

Number of cases: 60

Degrees of freedom: 56

Pearson X2: 16.782

Deviance: 13.532

Reduced Model

Response = ape

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant 8.71977 4.09466 2.130 0.0332

lower jaw -0.376256 0.115757 -3.250 0.0012

upper jaw 0.295507 0.0950855 3.108 0.0019

Number of cases: 60

Degrees of freedom: 57

Pearson X2: 28.049

Deviance: 17.185

13.4∗. Suppose the full model is as in Problem 13.3, but the reduced
model omits the predictor face length. Perform the 4 step change in deviance
test to examine whether the reduced model can be used.
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The following three problems use the possums data from Cook and Weis-
berg (1999a).

Output for Problem 13.5

Data set = Possums, Response = possums

Terms = (Habitat Stags)

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -0.652653 0.195148 -3.344 0.0008

Habitat 0.114756 0.0303273 3.784 0.0002

Stags 0.0327213 0.00935883 3.496 0.0005

Number of cases: 151 Degrees of freedom: 148

Pearson X2: 110.187

Deviance: 138.685

13.5∗. Use the above output to perform inference on the number of
possums in a given tract of land. The output is from a loglinear regression.

a) Predict μ̂(x) if habitat = x1 = 5.8 and stags = x2 = 8.2.

b) Perform the 4 step Wald test for Ho : β1 = 0.

c) Find a 95% confidence interval for β2.

Output for Problem 13.6

Response = possums Terms = (Habitat Stags)

Total Change

Predictor df Deviance | df Deviance

Ones 150 187.490 |

Habitat 149 149.861 | 1 37.6289

Stags 148 138.685 | 1 11.1759

13.6∗. Perform the 4 step deviance test for the same model as in Problem
13.5 using the output above.
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Output for Problem 13.7

Terms = (Acacia Bark Habitat Shrubs Stags Stumps)

Label Estimate Std. Error Est/SE p-value

Constant -1.04276 0.247944 -4.206 0.0000

Acacia 0.0165563 0.0102718 1.612 0.1070

Bark 0.0361153 0.0140043 2.579 0.0099

Habitat 0.0761735 0.0374931 2.032 0.0422

Shrubs 0.0145090 0.0205302 0.707 0.4797

Stags 0.0325441 0.0102957 3.161 0.0016

Stumps -0.390753 0.286565 -1.364 0.1727

Number of cases: 151

Degrees of freedom: 144

Deviance: 127.506

13.7∗. Let the reduced model be as in Problem 13.5 and use the output
for the full model be shown above. Perform a 4 step change in deviance test.

B1 B2 B3 B4
df 945 956 968 974

# of predictors 54 43 31 25
# with 0.01 ≤ Wald p-value ≤ 0.05 5 3 2 1

# with Wald p-value > 0.05 8 4 1 0
G2 892.96 902.14 929.81 956.92
AIC 1002.96 990.14 993.81 1008.912

corr(B1:ETA’U,Bi:ETA’U) 1.0 0.99 0.95 0.90
p-value for change in deviance test 1.0 0.605 0.034 0.0002

13.8∗. The above table gives summary statistics for 4 models considered
as final submodels after performing variable selection. (Several of the predic-
tors were factors, and a factor was considered to have a bad Wald p-value >
0.05 if all of the dummy variables corresponding to the factor had p-values >
0.05. Similarly the factor was considered to have a borderline p-value with
0.01 ≤ p-value ≤ 0.05 if none of the dummy variables corresponding to the
factor had a p-value < 0.01 but at least one dummy variable had a p-value
between 0.01 and 0.05.) The response was binary and logistic regression was
used. The ESS plot for the full model B1 was good. Model B2 was the
minimum AIC model found. There were 1000 cases: for the response, 300
were 0’s and 700 were 1’s.
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a) For the change in deviance test, if the p-value ≥ 0.07, there is little
evidence that Ho should be rejected. If 0.01 ≤ p-value < 0.07 then there is
moderate evidence that Ho should be rejected. If p-value < 0.01 then there
is strong evidence that Ho should be rejected. For which models, if any, is
there strong evidence that “Ho: reduced model is good” should be rejected.

b) For which plot is “corr(B1:ETA’U,Bi:ETA’U)” (using notation from
Arc) relevant?

c) Which model should be used as the final submodel? Explain briefly
why each of the other 3 submodels should not be used.

Arc Problems

The following four problems use data sets from Cook and Weisberg (1999a).

13.9. Activate the banknote.lsp dataset with the menu commands
“File > Load > Data > Arcg > banknote.lsp.” Scroll up the screen to read
the data description. Twice you will fit logistic regression models and include
the coefficients in Word. Print out this output when you are done and include
the output with your homework.

From Graph&Fit select Fit binomial response. Select Top as the predictor,
Status as the response and ones as the number of trials.

a) Include the output in Word.

b) Predict ρ̂(x) if x = 10.7.

c) Find a 95% CI for β.

d) Perform the 4 step Wald test for Ho : β = 0.

e) From Graph&Fit select Fit binomial response. Select Top and Diagonal
as predictors, Status as the response and ones as the number of trials. Include
the output in Word.

f) Predict ρ̂(x) if x1 = Top = 10.7 and x2 = Diagonal = 140.5.

g) Find a 95% CI for β1.

h) Find a 95% CI for β2.
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i) Perform the 4 step Wald test for Ho : β1 = 0.

j) Perform the 4 step Wald test for Ho : β2 = 0.

13.10∗. Activate banknote.lsp in Arc. with the menu commands
“File > Load > Data > Arcg > banknote.lsp.” Scroll up the screen to read the
data description. From Graph&Fit select Fit binomial response. Select Top
and Diagonal as predictors, Status as the response and ones as the number
of trials.

a) Include the output in Word.

b) From Graph&Fit select Fit linear LS. Select Diagonal and Top for
predictors, and Status for the response. From Graph&Fit select Plot of and
select L2:Fit-Values for H, B1:Eta’U for V, and Status for Mark by. Include

the plot in Word. Is the plot linear? How are α̂OLS + β̂
T

OLSx and α̂logistic +

β̂
T

logisticx related (approximately)?

13.11∗. Activate possums.lsp in Arc with the menu commands
“File > Load > Data > Arcg > possums.lsp.” Scroll up the screen to read
the data description.

a) From Graph&Fit select Fit Poisson response. Select y as the response
and select Acacia, bark, habitat, shrubs, stags and stumps as the predictors.
Include the output in Word. This is your full model.

b) EY plot: From Graph&Fit select Plot of. Select P1:Eta’U for the H
box and y for the V box. From the OLS popup menu select Poisson and
move the slider bar to 1. Move the lowess slider bar until the lowess curve
tracks the exponential curve well. Include the EY plot in Word.

c) From Graph&Fit select Fit Poisson response. Select y as the response
and select bark, habitat, stags and stumps as the predictors. Include the
output in Word.

d) EY plot: From Graph&Fit select Plot of. Select P2:Eta’U for the H
box and y for the V box. From the OLS popup menu select Poisson and
move the slider bar to 1. Move the lowess slider bar until the lowess curve
tracks the exponential curve well. Include the EY plot in Word.

e) Deviance test. From the P2 menu, select Examine submodels and click
on OK. Include the output in Word and perform the 4 step deviance test.
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f) Perform the 4 step change of deviance test.

g) EE plot. From Graph&Fit select Plot of. Select P2:Eta’U for the H
box and P1:Eta’U for the V box. Move the OLS slider bar to 1. Click on
the Options popup menu and type “y=x”. Include the plot in Word. Is the
plot linear?

13.12∗. In this problem you will find a good submodel for the possums
data.

Activate possums.lsp in Arc with the menu commands
“File > Load > Data > Arcg> possums.lsp.” Scroll up the screen to read
the data description.

From Graph&Fit select Fit Poisson response. Select y as the response
and select Acacia, bark, habitat, shrubs, stags and stumps as the predictors.

In Problem 13.11, you showed that this was a good full model.

a) Using what you have learned in class find a good submodel and include
the relevant output in Word.

(Hints: Use forward selection and backward elimination and find a model
that discards a lot of predictors but still has a deviance close to that of the full
model. Also look at the model with the smallest AIC. Either of these models
could be your initial candidate model. Fit this candidate model and look
at the Wald test p–values. Try to eliminate predictors with large p–values
but make sure that the deviance does not increase too much. You may have
several models, say P2, P3, P4 and P5 to look at. Make a scatterplot matrix
of the Pi:ETA’U from these models and from the full model P1. Make the
EE and EY plots for each model. The correlation in the EE plot should be at
least 0.9 and preferably greater than 0.95. As a very rough guide for Poisson
regression, the number of predictors in the full model should be less than
n/5 and the number of predictors in the final submodel should be less than
n/10.)

b) Make an EY plot for your final submodel, say P2. From Graph&Fit
select Plot of. Select P2:Eta’U for the H box and y for the V box. From
the OLS popup menu select Poisson and move the slider bar to 1. Move
the lowess slider bar until the lowess curve tracks the exponential curve well.
Include the EY plot in Word.
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c) Suppose that P1 contains your full model and P2 contains your final
submodel. Make an EE plot for your final submodel: from Graph&Fit select
Plot of. Select P1:Eta’U for the V box and P2:Eta’U, for the H box. After
the plot appears, click on the options popup menu. A window will appear.
Type y = x and click on OK. This action adds the identity line to the plot.
Also move the OLS slider bar to 1. Include the plot in Word.

d) Using a), b), c) and any additional output that you desire (eg AIC(full),
AIC(min) and AIC(final submodel), explain why your final submodel is good.

Warning: The following problems use data from the book’s web-
page. Save the data files on a disk. Get in Arc and use the menu com-
mands “File > Load” and a window with a Look in box will appear. Click
on the black triangle and then on 3 1/2 Floppy(A:). Then click twice on the
data set name.

13.13∗. (ESS Plot): Activate cbrain.lsp in Arc with the menu commands
“File > Load > 3 1/2 Floppy(A:) > cbrain.lsp.” Scroll up the screen to read
the data description. From Graph&Fit select Fit binomial response. Select
brnweight, cephalic, breadth, cause, size, and headht as predictors, sex as the
response and ones as the number of trials. Perform the logistic regression
and from Graph&Fit select Plot of. Place sex on V and B1:Eta’U on H. From
the OLS popup menu, select Logistic and move the slider bar to 1. From the
lowess popup menu select SliceSmooth and move the slider bar until the fit is
good. Include your plot in Word. Are the slice means (observed proportions)
tracking the logistic curve (fitted proportions) very well?

13.14∗. Suppose that you are given a data set, told the response, and
asked to build a logistic regression model with no further help. In this prob-
lem, we use the cbrain data to illustrate the process.

a) Activate cbrain.lsp in Arc with the menu commands
“File > Load > 1/2 Floppy(A:) > cbrain.lsp.” Scroll up the screen to read
the data description. From Graph&Fit select Scatterplot-matrix of. Place
sex in the Mark by box. Then select age, breadth, cause, cephalic, circum,
headht, height, length, size, and sex. Include the scatterplot matrix in Word.

b) Use the menu commands “cbrain>Make factors” and select cause.
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This makes cause into a factor with 2 degrees of freedom. Use the menu
commands “cbrain>Transform” and select age and the log transformation.

Why was the log transformation chosen?

c) From Graph&Fit select Plot of and select size in H. Also place sex
in the Mark by box. A plot will come up. From the GaussKerDen menu
(the triangle to the left) select Fit by marks, move the sliderbar to 0.9, and
include the plot in Word.

d) Use the menu commands “cbrain>Transform” and select size and the
log transformation. From Graph&Fit select Fit binomial response. Select
age, log(age), breadth, {F}cause, cephalic, circum, headht, height, length, size
and log(size) as predictors, sex as the response and ones as the number of
trials. This is the full model B1. Perform the logistic regression and include
the relevant output for testing in Word.

e) From Graph&Fit select Plot of. Place sex on V and B1:Eta’U on
H. From the OLS popup menu, select Logistic and move the slider bar to 1.
From the lowess popup menu select SliceSmooth and move the slider bar until
the fit is good. Include your plot in Word. Are the slice means (observed
proportions) tracking the logistic curve (fitted proportions) fairly well?

f) From B1 select Examine submodels and select Add to base model (For-
ward Selection). Include the output with the header “Base terms: ...” and
from “Add: length 259” to “Add: {F}cause 258” in Word.

g) From B1 select Examine submodels and select Delete from full model
(Backward Elimination). Include the output with df corresponding to the
minimum AIC model in Word. What predictors does this model use?

h) As a final submodel B2, use the model from f): from Graph&Fit select
Fit binomial response. Select age, log(age), circum, height, length, size and
log(size) as predictors, sex as the response and ones as the number of trials.
Perform the logistic regression and include the relevant output for testing in
Word.

i) Put the EE plot H B2:ETA’U versus V B1:ETA’U in Word. Is the plot
linear?

j) From Graph&Fit select Plot of. Place sex on V and B2:Eta’U on H.
From the OLS popup menu, select Logistic and move the slider bar to 1.
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From the lowess popup menu select SliceSmooth and move the slider bar until
the fit is good. Include your plot in Word. Are the slice means (observed
proportions) tracking the logistic curve (fitted proportions) fairly well?

k) Perform the 4 step change in deviance test using the full model in d)
and the reduced submodel in h).

Now act as if the final submodel is the full model.

l) From B2 select Examine submodels click OK and include the output
in Word. Then use the output to perform a 4 step deviance test on the
submodel.

m) From Graph&Fit select Inverse regression. Select age, log(age), cir-
cum, height, length, size, and log(size) as predictors, and sex as the response.
From Graph&Fit select Plot of. Place I3.SIR.p1 on the H axis and B2.Eta’U
on the V axis. Include the plot in Word. Is the plot linear?

13.15∗. In this problem you will find a good submodel for the ICU data
obtained from STATLIB.

Activate ICU.lsp in Arc with the menu commands
“File > Load > 1/2 Floppy(A:) > ICU.lsp.” Scroll up the screen to read the
data description.

Use the menu commands “ICU>Make factors” and select loc and race.

a) From Graph&Fit select Fit binomial response. Select STA as the re-
sponse and ones as the number of trials. The full model will use every
predictor except ID, LOC and RACE (the latter 2 are replaced by their fac-
tors): select AGE, Bic, CAN, CPR, CRE, CRN, FRA, HRA, INF, {F}LOC ,
PCO, PH, PO2 , PRE , {F}RACE, SER, SEX, SYS and TYP as predictors.
Perform the logistic regression and include the relevant output for testing in
Word.

b) Make the ESS plot for the full model: from Graph&Fit select Plot of.
Place STA on V and B1:Eta’U on H. From the OLS popup menu, select
Logistic and move the slider bar to 1. From the lowess popup menu select
SliceSmooth and move the slider bar until the fit is good. Include your plot
in Word. Is the full model good?

c) Using what you have learned in class find a good submodel and include
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the relevant output in Word.
[Hints: Use forward selection and backward elimination and find a model

that discards a lot of predictors but still has a deviance close to that of the full
model. Also look at the model with the smallest AIC. Either of these models
could be your initial candidate model. Fit this candidate model and look
at the Wald test p–values. Try to eliminate predictors with large p–values
but make sure that the deviance does not increase too much. WARNING:
do not delete part of a factor. Either keep all 2 factor dummy variables or
delete all I-1=2 factor dummy variables. You may have several models, say
B2, B3, B4 and B5 to look at. Make the EE and ESS plots for each model.
WARNING: if a factor is in the full model but not the reduced model, then
the EE plot may have I = 3 lines. See part f) below.]

d) Make an ESS plot for your final submodel.

e) Suppose that B1 contains your full model and B5 contains your final
submodel. Make an EE plot for your final submodel: from Graph&Fit select
Plot of. Select B1:Eta’U for the V box and B5:Eta’U, for the H box. After
the plot appears, click on the options popup menu. A window will appear.
Type y = x and click on OK. This action adds the identity line to the plot.
Include the plot in Word.

If the EE plot is good and there are one or more factors in the full model
that are not in the final submodel, then the bulk of the data will cluster
tightly about the identity line, but some points may be far away from the
identity line (often lying on some other line) due to the deleted factors.

f) Using c), d), e) and any additional output that you desire (eg AIC(full),
AIC(min) and AIC(final submodel), explain why your final submodel is good.

13.16. In this problem you will examine the museum skull data.

Activate museum.lsp in Arc with the menu commands
“File > Load > 3 1/2 Floppy(A:) > museum.lsp.” Scroll up the screen to
read the data description.

a) From Graph&Fit select Fit binomial response. Select ape as the re-
sponse and ones as the number of trials. Select x5 as the predictor. Perform
the logistic regression and include the relevant output for testing in Word.

b) Make the ESS plot and place it in Word (the response variable is ape
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not y). Is the LR model good?

Now you will examine logistic regression when there is perfect classifica-
tion of the sample response variables. Assume that the model used in c)–g)
is in menu B2.

c) From Graph&Fit select Fit binomial response. Select ape as the re-
sponse and ones as the number of trials. Select x3 as the predictor. Perform
the logistic regression and include the relevant output for testing in Word.

d) Make the ESS plot and place it in Word (the response variable is ape
not y). Is the LR model good?

e) Perform the Wald test for Ho : β = 0.

f) From B2 select Examine submodels and include the output in Word.
Then use the output to perform a 4 step deviance test on the submodel used
in part c).

g) The tests in e) and f) are both testing Ho : β = 0 but give different
results. Why are the results different and which test is correct?

13.17. In this problem you will find a good submodel for the credit data
from Fahrmeir and Tutz (2001).

Activate credit.lsp in Arc with the menu commands
“File > Load > Floppy(A:) > credit.lsp.” Scroll up the screen to read the
data description. This is a big data set and computations may take several
minutes.

Use the menu commands “credit>Make factors” and select x1, x3, x4, x6,
x7, x8, x9, x10, x11, x12, x14, x15, x16, and x17. Then click on OK.

a) From Graph&Fit select Fit binomial response. Select y as the response
and ones as the number of trials. Select {F}x1, x2, {F}x3, {F}x4, x5, {F}x6,
{F}x7, {F}x8, {F}x9, {F}x10, {F}x11, {F}x12, x13, {F}x14, {F}x15, {F}x16,
{F}x17, x18, x19 and x20 as predictors. Perform the logistic regression and
include the relevant output for testing in Word. You should get 1000 cases,
df = 945, and a deviance of 892.957

b) Make the ESS plot for the full model: from Graph&Fit select Plot
of. Place y on V and B1:Eta’U on H. From the OLS popup menu, select
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Logistic and move the slider bar to 1. From the lowess popup menu select
SliceSmooth and move the slider bar until the fit is good. Include your plot
in Word. Is the full model good?

c) Using what you have learned in class find a good submodel and include
the relevant output in Word.

[Hints: Use forward selection and backward elimination and find a model
that discards a lot of predictors but still has a deviance close to that of the full
model. Also look at the model with the smallest AIC. Either of these models
could be your initial candidate model. Fit this candidate model and look
at the Wald test p–values. Try to eliminate predictors with large p–values
but make sure that the deviance does not increase too much. WARNING:
do not delete part of a factor. Either keep all 2 factor dummy variables or
delete all I-1=2 factor dummy variables. You may have several models, say
B2, B3, B4 and B5 to look at. Make the EE and ESS plots for each model.
WARNING: if a factor is in the full model but not the reduced model, then
the EE plot may have I = 3 lines. See part f) below.]

d) Make an ESS plot for your final submodel.

e) Suppose that B1 contains your full model and B5 contains your final
submodel. Make an EE plot for your final submodel: from Graph&Fit select
Plot of. Select B1:Eta’U for the V box and B5:Eta’U, for the H box. Place
y in the Mark by box. After the plot appears, click on the options popup
menu. A window will appear. Type y = x and click on OK. This action adds
the identity line to the plot. Also move the OLS slider bar to 1. Include the
plot in Word.

f) Using c), d), e) and any additional output that you desire (eg AIC(full),
AIC(min) and AIC(final submodel), explain why your final submodel is good.

13.18∗. a) This problem uses a data set from Myers, Montgomery and
Vining (2002). Activate popcorn.lsp in Arc with the menu commands
“File > Load > Floppy(A:) > popcorn.lsp.” Scroll up the screen to read the
data description. From Graph&Fit select Fit Poisson response. Use oil, temp
and time as the predictors and y as the response. From Graph&Fit select
Plot of. Select P1:Eta’U for the H box and y for the V box. From the OLS
popup menu select Poisson and move the slider bar to 1. Move the lowess
slider bar until the lowess curve tracks the exponential curve. Include the
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EY plot in Word.

b) From the P1 menu select Examine submodels, click on OK and include
the output in Word.

c) Test whether β1 = β2 = β3 = 0.
d) From the popcorn menu, select Transform and select y. Put 1/2 in the

p box and click on OK. From the popcorn menu, select Add a variate and type
yt = sqrt(y)*log(y) in the resulting window. Repeat three times adding the
variates oilt = sqrt(y)*oil, tempt = sqrt(y)*temp and timet = sqrt(y)*time.
From Graph&Fit select Fit linear LS and choose y1/2, oilt, tempt and timet
as the predictors, yt as the response and click on the Fit intercept box to
remove the check. Then click on OK. From Graph&Fit select Plot of. Select
L2:Fit-Values for the H box and yt for the V box. A plot should appear.
Click on the Options menu and type y = x to add the identity line. Include
the weighted fit response plot in Word.

e) From Graph&Fit select Plot of. Select L2:Fit-Values for the H box and
L2:Residuals for the V box. Include the weighted residual response plot in
Word.

f) For the plot in e), highlight the case in the upper right corner of the
plot by using the mouse to move the arrow just above and to the left the
case. Then hold the rightmost mouse button down and move the mouse to
the right and down. From the Case deletions menu select Delete selection
from data set, then from Graph&Fit select Fit Poisson response. Use oil,
temp and time as the predictors and y as the response. From Graph&Fit
select Plot of. Select P3:Eta’U for the H box and y for the V box. From
the OLS popup menu select Poisson and move the slider bar to 1. Move the
lowess slider bar until the lowess curve tracks the exponential curve. Include
the EY plot in Word.

g) From the P3 menu select Examine submodels, click on OK and include
the output in Word.

h) Test whether β1 = β2 = β3 = 0.

i) From Graph&Fit select Fit linear LS. Make sure that y1/2, oilt, tempt
and timet are the predictors, yt is the response, and that the Fit intercept
box does not have a check. Then click on OK From Graph&Fit select Plot
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of. Select L4:Fit-Values for the H box and yt for the V box. A plot should
appear. Click on the Options menu and type y = x to add the identity line.
Include the weighted fit response plot in Word.

j) From Graph&Fit select Plot of. Select L4:Fit-Values for the H box and
L4:Residuals for the V box. Include the weighted residual response plot in
Word.

k) Is the deleted point influential? Explain briefly.

l) From Graph&Fit select Plot of. Select P3:Eta’U for the H box and
P3:Dev-Residuals for the V box. Include the deviance residual response plot
in Word.

m) Is the weighted residual plot from part j) a better lack of fit plot than
the deviance residual plot from part m)? Explain briefly.

R/Splus problems

Download functions with the command source(“A:/rpack.txt”). See
Preface or Section 14.2. Typing the name of the rpack function, eg lrdata,
will display the code for the function. Use the args command, eg args(lrdata),
to display the needed arguments for the function.

13.19.
Obtain the function lrdata from rpack.txt. Enter the commands

out <- lrdata()

x <- out$x

y <- out$y

Obtain the function lressp from rpack.txt. Enter the commands
lressp(x,y) and include the resulting plot in Word.

13.20. Obtain the function llrdata from rpack.txt. Enter the com-
mands

out <- llrdata()

x <- out$x

y <- out$y

a) Obtain the function llressp from rpack.txt. Enter the commands
llressp(x,y) and include the resulting plot in Word.
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b) Obtain the function llrplot from rpack.txt. Enter the commands
llrplot(x,y) and include the resulting plot in Word.

The following problem uses SAS and Arc.

13.21∗. SAS–all subsets: On the webpage (http://www.math.siu.edu/
olive/students.htm) there are 2 files cbrain.txt and hw10d2.sas that will be
used for this problem. The first file contains the cbrain data (that you have
analyzed in Arc several times) without the header that describes the data.

i) Using Netscape or Internet Explorer, go to the webpage and click on
cbrain.txt. After the file opens, copy and paste the data into Notepad. (In
Netscape, the commands “Edit>Select All” and “Edit>copy” worked.) Then
open Notepad and enter the commands “Edit>paste” to make the data set
appear.

ii) SAS needs an “end of file” marker to determine when the data ends.
SAS uses a period as the end of file marker. Add a period on the line after
the last line of data in Notepad and save the file as cbrain.dat on your disk
using the commands “File>Save as.” A window will appear, in the top box
make 3 1/2 Floppy (A:) appear while in the File name box type cbrain.dat.
In the Save as type box, click on the right of the box and select All Files.
Warning: make sure that the file has been saved as cbrain.dat, not
as cbrain.dat.txt.

iii) As described in i), go to the webpage and click on hw10d2.sas. After
the file opens, copy and paste the SAS program for 13.21 into Notepad. Use
the commands “File>Save as.” A window will appear, in the top box make
3 1/2 Floppy (A:) appear while in the File name box type hw13d21.sas. In
the Save as type box, click on the right of the box and select All Files, and
the file will be saved on your disk. Warning: make sure that the file
has been saved as hw13d21.sas, not as hw13d21.sas.txt.

iv) Get into SAS, and from the top menu, use the “File> Open” com-
mand. A window will open. Use the arrow in the NE corner of the win-
dow to navigate to “3 1/2 Floppy(A:)”. (As you click on the arrow, you
should see My Documents, C: etc, then 3 1/2 Floppy(A:).) Double click
on hw13d21.sas. (Alternatively cut and paste the program into the SAS
editor window.) To execute the program, use the top menu commands
“Run>Submit”. An output window will appear if successful. Warning:
if you do not have the two files on A drive, then you need to

477



change the infile command in hw13d21.sas to the drive that you are us-
ing, eg change infile “a:cbrain.dat”; to infile “f:cbrain.dat”; if you are using
F drive.

a) To copy and paste relevant output into Word, click on the output
window and use the top menu commands “Edit>Select All” and then the
menu commands “Edit>Copy”.

Interesting models have C(p) ≤ 2k where k = “number in model.”
The only SAS output for this problem that should be included

in Word are two header lines (Number in model, R-square, C(p), Variables
in Model) and the first line with Number in Model = 6 and C(p) = 7.0947.
You may want to copy all of the SAS output into Notepad, and then cut and
paste the relevant two lines of output into Word.

b) Activate cbrain.lsp in Arc with the menu commands
“File > Load > Data > mdata > cbrain.lsp.” From Graph&Fit select Fit
binomial response. Select age = X2, breadth = X6, cephalic = X10, circum
= X9, headht = X4, height = X3, length = X5 and size = X7 as predictors,
sex as the response and ones as the number of trials. This is the full logistic
regression model. Include the relevant output in Word. (A better full model
was used in Problem 13.14.)

c) ESS plot. From Graph&Fit select Plot of. Place sex on V and B1:Eta’U
on H. From the OLS popup menu, select Logistic and move the slider bar
to 1. From the lowess popup menu select SliceSmooth and move the slider
bar until the fit is good. Include your plot in Word. Are the slice means
(observed proportions) tracking the logistic curve (fitted proportions) fairly
well?

d) From Graph&Fit select Fit binomial response. Select breadth = X6,
cephalic = X10, circum = X9, headht = X4, height = X3, and size = X7 as
predictors, sex as the response and ones as the number of trials. This is the
“best submodel.” Include the relevant output in Word.

e) Put the EE plot H B2 ETA’U versus V B1 ETA’U in Word. Is the
plot linear?

f) From Graph&Fit select Plot of. Place sex on V and B2:Eta’U on
H. From the OLS popup menu, select Logistic and move the slider bar to 1.
From the lowess popup menu select SliceSmooth and move the slider bar until
the fit is good. Include your plot in Word. Are the slice means (observed
proportions) tracking the logistic curve (fitted proportions) fairly well?
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