
Chapter 11

CMCD Applications

11.1 DD Plots

A basic way of designing a graphical display is to arrange for reference
situations to correspond to straight lines in the plot.

Chambers, Cleveland, Kleiner, and Tukey (1983, p. 322)

Definition 11.1: Rousseeuw and Van Driessen (1999). The DD
plot is a plot of the classical Mahalanobis distances MDi versus robust Ma-
halanobis distances RDi.

The DD plot is analogous to the RR and FF plots and is used as a
diagnostic for multivariate normality, elliptical symmetry and for outliers.
Assume that the data set consists of iid vectors from an ECp(μ,Σ, g) dis-
tribution with second moments. Then the classical sample mean and covari-
ance matrix (TM , CM ) = (x, S) is a consistent estimator for (μ, cxΣ) =
(E(X), Cov(X)). Assume that an alternative algorithm estimator (TA, CA)
is a consistent estimator for (μ, aAΣ) for some constant aA > 0. By scal-
ing the algorithm estimator, the DD plot can be constructed to follow the
identity line with unit slope and zero intercept. Let (TR, CR) = (TA, CA/τ 2)
denote the scaled algorithm estimator where τ > 0 is a constant to be deter-
mined. Notice that (TR, CR) is a valid estimator of location and dispersion.
Hence the robust distances used in the DD plot are given by

RDi = RDi(TR, CR) =
√

(xi − TR(W ))T [CR(W )]−1(xi − TR(W ))

= τ Di(TA, CA) for i = 1, ..., n.
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The following proposition shows that if consistent estimators are used to
construct the distances, then the DD plot will tend to cluster tightly about
the line segment through (0, 0) and (MDn,α, RDn,α) where 0 < α < 1 and
MDn,α is the α sample percentile of the MDi. Nevertheless, the variability in
the DD plot may increase with the distances. Let K > 0 be a constant, eg
the 99th percentile of the χ2

p distribution.

Proposition 11.1. Assume that x1, ..., xn are iid observations from a
distribution with parameters (μ,Σ) where Σ is a symmetric positive definite
matrix. Let aj > 0 and assume that (μ̂j,n, Σ̂j,n) are consistent estimators

of (μ, ajΣ) for j = 1, 2. Let Di,j ≡ Di(μ̂j,n, Σ̂j,n) be the ith Mahalanobis

distance computed from (μ̂j,n, Σ̂j,n). Consider the cases in the region R =
{i|0 ≤ Di,j ≤ K, j = 1, 2}. Let rn denote the correlation between Di,1 and
Di,2 for the cases in R (thus rn is the correlation of the distances in the “lower
left corner” of the DD plot). Then rn → 1 in probability as n → ∞.

Proof. Let Bn denote the subset of the sample space on which both Σ̂1,n

and Σ̂2,n have inverses. Then P (Bn) → 1 as n → ∞. The result follows if

D2
j

P→ (x − μ)TΣ−1(x − μ)/aj for fixed x. This convergence holds since

D2
j ≡ (x − μ̂j)

T Σ̂
−1

j (x − μ̂j) = (x − μ̂j)
T

(
Σ−1

aj
− Σ−1

aj
+ Σ̂

−1

j

)
(x − μ̂j)

= (x− μ̂j)
T

(−Σ−1

aj
+ Σ̂

−1

j

)
(x − μ̂j) + (x− μ̂j)

T

(
Σ−1

aj

)
(x − μ̂j)

=
1

aj
(x − μ̂j)

T (−Σ−1 + aj Σ̂
−1

j )(x − μ̂j) +

(x − μ + μ − μ̂j)
T

(
Σ−1

aj

)
(x − μ + μ − μ̂j)

=
1

aj
(x −μ)TΣ−1(x −μ)

+
2

aj
(x − μ)T Σ−1(μ − μ̂j) +

1

aj
(μ − μ̂j)

T Σ−1(μ − μ̂j)

+
1

aj
(x − μ̂j)

T [ajΣ̂
−1

j −Σ−1](x− μ̂j) (11.1)

on Bn, and the last three terms converge to zero in probability. QED
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The above result implies that a plot of the MDi versus the Di(TA, CA) ≡
Di(A) will follow a line through the origin with some positive slope since
if x = μ, then both the classical and the algorithm distances should be
close to zero. We want to find τ such that RDi = τ Di(TA, CA) and
the DD plot of MDi versus RDi follows the identity line. By Proposition
11.1, the plot of MDi versus Di(A) will follow the line segment defined by
the origin (0, 0) and the point of observed median Mahalanobis distances,
(med(MDi), med(Di(A))). This line segment has slope

med(Di(A))/med(MDi)

which is generally not one. By taking τ = med(MDi)/med(Di(A)), the plot
will follow the identity line if (x, S) is a consistent estimator of (μ, cxΣ) and
if (TA, CA) is a consistent estimator of (μ, aAΣ). (Using the notation from
Proposition 11.1, let (a1, a2) = (cx, aA).) The classical estimator is consis-
tent if the population has a nonsingular covariance matrix. The algorithm
estimators (TA, CA) from Theorem 10.16 are consistent on the class of EC
distributions that have a nonsingular covariance matrix, but are biased for
non–EC distributions.

By replacing the observed median med(MDi) of the classical Mahalanobis
distances with the target population analog, say MED, τ can be chosen so
that the DD plot is simultaneously a diagnostic for elliptical symmetry and a
diagnostic for the target EC distribution. That is, the plotted points follow
the identity line if the data arise from a target EC distribution such as the
multivariate normal distribution, but the points follow a line with non-unit
slope if the data arise from an alternative EC distribution. In addition the
DD plot can often detect departures from elliptical symmetry such as outliers,
the presence of two groups, or the presence of a mixture distribution. These
facts make the DD plot a useful alternative to other graphical diagnostics for
target distributions. See Easton and McCulloch (1990), Li, Fang, and Zhu
(1997), and Liu, Parelius, and Singh (1999) for references.

Example 11.1. Rousseeuw and Van Driessen (1999) choose the multi-
variate normal Np(μ,Σ) distribution as the target. If the data are indeed iid
MVN vectors, then the (MDi)

2 are asymptotically χ2
p random variables, and

MED =
√

χ2
p,0.5 where χ2

p,0.5 is the median of the χ2
p distribution. Since the
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target distribution is Gaussian, let

RDi =

√
χ2

p,0.5

med(Di(A))
Di(A) so that τ =

√
χ2

p,0.5

med(Di(A))
. (11.2)

Note that the DD plot can be tailored to follow the identity line if the
data are iid observations from any target elliptically contoured distribution
that has nonsingular covariance matrix. If it is known that med(MDi) ≈
MED where MED is the target population analog (obtained, for example,
via simulation, or from the actual target distribution as in Equations (10.8),
(10.9) and (10.10) on p. 308), then use

RDi = τ Di(A) =
MED

med(Di(A))
Di(A). (11.3)

The choice of the algorithm estimator (TA, CA) is important, and the
HB

√
n consistent FCH estimator is a good choice. In this chapter we used

the R/Splus function cov.mcd which is basically an implementation of the
elemental MCD concentration algorithm described in the previous chapter.
The number of starts used was K = max(500, n/10) (the default is K = 500,
so the default can be used if n ≤ 5000).

Conjecture 11.1. If X1, ..., Xn are iid ECp(μ,Σ, g) and an elemental
MCD concentration algorithm is used to produce the estimator (TA,n, CA,n),
then this algorithm estimator is consistent for (μ, aΣ) for some constant
a > 0 (that depends on g) if the number of starts K = K(n) → ∞ as the
sample size n → ∞.

Notice that if this conjecture is true, and if the data is EC with 2nd
moments, then [

med(Di(A))

med(MDi)

]2

CA (11.4)

estimates Cov(X). For the DD plot, consistency is desirable but not neces-
sary. It is necessary that the correlation of the smallest 99% of the MDi and
RDi be very high. This correlation goes to 1 by Proposition 11.1 if consistent
estimators are used.

The choice of using a concentration algorithm to produce (TA, CA) is cer-
tainly not perfect, and the cov.mcd estimator should be modified by adding
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Table 11.1: Corr(RDi, MDi) for Np(0, Ip) Data, 100 Runs.

p n mean min % < 0.95 % < 0.8
3 44 0.866 0.541 81 20
3 100 0.967 0.908 24 0
7 76 0.843 0.622 97 26
10 100 0.866 0.481 98 12
15 140 0.874 0.675 100 6
15 200 0.945 0.870 41 0
20 180 0.889 0.777 100 2
20 1000 0.998 0.996 0 0
50 420 0.894 0.846 100 0

the FCH starts as shown in Theorem 10.17. There exist data sets with out-
liers or two groups such that both the classical and robust estimators produce
ellipsoids that are nearly concentric. We suspect that the situation worsens
as p increases.

In a simulation study, Np(0, Ip) data were generated and cov.mcd was
used to compute first the Di(A), and then the RDi using Equation (11.2).
The results are shown in Table 11.1. Each choice of n and p used 100 runs,
and the 100 correlations between the RDi and the MDi were computed. The
mean and minimum of these correlations are reported along with the percent-
age of correlations that were less than 0.95 and 0.80. The simulation shows
that small data sets (of roughly size n < 8p + 20) yield plotted points that
may not cluster tightly about the identity line even if the data distribution
is Gaussian.

Since every estimator of location and dispersion defines an ellipsoid, the
DD plot can be used to examine which points are in the robust ellipsoid

{x : (x − TR)TC−1
R (x − TR) ≤ RD2

(h)} (11.5)

where RD2
(h) is the hth smallest squared robust Mahalanobis distance, and

which points are in a classical ellipsoid

{x : (x− x)T S−1(x − x) ≤ MD2
(h)}. (11.6)

In the DD plot, points below RD(h) correspond to cases that are in the
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ellipsoid given by Equation (11.5) while points to the left of MD(h) are in an
ellipsoid determined by Equation (11.6).

The DD plot will follow a line through the origin closely if the two ellip-
soids are nearly concentric, eg if the data is EC. The DD plot will follow the
identity line closely if med(MDi) ≈ MED, and RD2

i =

(xi − TA)T [(
MED

med(Di(A))
)2C−1

A ](xi − TA) ≈ (xi − x)TS−1(xi − x) = MD2
i

for i = 1, ..., n. When the distribution is not EC,

(TA, CA) = (TFCH , CFCH) or (TA, CA) = (TFMCD, CFMCD)

and (x, S) will often produce ellipsoids that are far from concentric.

Application 11.1. The DD plot can be used simultaneously as a di-
agnostic for whether the data arise from a multivariate normal (MVN or
Gaussian) distribution or from another EC distribution with nonsingular
covariance matrix. EC data will cluster about a straight line through the
origin; MVN data in particular will cluster about the identity line. Thus
the DD plot can be used to assess the success of numerical transformations
towards elliptical symmetry. This application is important since many statis-
tical methods assume that the underlying data distribution is MVN or EC.

For this application, the RFCH estimator may be best. For MVN data,
the RDi from the RFCH estimator tend to have a higher correlation with
the MDi from the classical estimator than the RDi from the FCH estimator,
and the cov.mcd estimator may be inconsistent.

Figure 11.1 shows the DD plots for 3 artificial data sets using cov.mcd.
The DD plot for 200 N3(0, I3) points shown in Figure 1a resembles the
identity line. The DD plot for 200 points from the elliptically contoured
distribution 0.6N3(0, I3) + 0.4N3(0, 25 I3) in Figure 11.1b clusters about a
line through the origin with a slope close to 2.0.

A weighted DD plot magnifies the lower left corner of the DD plot by

omitting the cases with RDi ≥
√

χ2
p,.975. This technique can magnify features

that are obscured when large RDi’s are present. If the distribution of x is
EC with nonsingular Σ, Proposition 11.1 implies that the correlation of the
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Figure 11.1: 4 DD Plots

points in the weighted DD plot will tend to one and that the points will
cluster about a line passing through the origin. For example, the plotted
points in the weighted DD plot (not shown) for the non-MVN EC data of
Figure 11.1b are highly correlated and still follow a line through the origin
with a slope close to 2.0.

Figures 11.1c and 11.1d illustrate how to use the weighted DD plot. The
ith case in Figure 11.1c is (exp(xi,1), exp(xi,2), exp(xi,3))

T where xi is the
ith case in Figure 11a; ie, the marginals follow a lognormal distribution.
The plot does not resemble the identity line, correctly suggesting that the
distribution of the data is not MVN; however, the correlation of the plotted
points is rather high. Figure 11.1d is the weighted DD plot where cases with

RDi ≥
√

χ2
3,.975 ≈ 3.06 have been removed. Notice that the correlation of the

plotted points is not close to one and that the best fitting line in Figure 11.1d
may not pass through the origin. These results suggest that the distribution
of x is not EC.
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Figure 11.2: DD Plots for the Buxton Data

It is easier to use the DD plot as a diagnostic for a target distribution
such as the MVN distribution than as a diagnostic for elliptical symmetry.
If the data arise from the target distribution, then the DD plot will tend
to be a useful diagnostic when the sample size n is such that the sample
correlation coefficient in the DD plot is at least 0.80 with high probability.
As a diagnostic for elliptical symmetry, it may be useful to add the OLS line
to the DD plot and weighted DD plot as a visual aid, along with numerical
quantities such as the OLS slope and the correlation of the plotted points.

Numerical methods for transforming data towards a target EC distribu-
tion have been developed. Generalizations of the Box–Cox transformation
towards a multivariate normal distribution are described in Velilla (1993).
Alternatively, Cook and Nachtsheim (1994) offer a two-step numerical pro-
cedure for transforming data towards a target EC distribution. The first step
simply gives zero weight to a fixed percentage of cases that have the largest
robust Mahalanobis distances, and the second step uses Monte Carlo case
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reweighting with Voronoi weights.

Example 11.2. Buxton (1920, p. 232-5) gives 20 measurements of 88
men. We will examine whether the multivariate normal distribution is a plau-
sible model for the measurements head length, nasal height, bigonal breadth,
and cephalic index where one case has been deleted due to missing values.
Figure 11.2a shows the DD plot. Five head lengths were recorded to be
around 5 feet and are massive outliers. Figure 11.2b is the DD plot com-
puted after deleting these points and suggests that the normal distribution
is plausible. (The recomputation of the DD plot means that the plot is not
a weighted DD plot which would simply omit the outliers and then rescale
the vertical axis.)

The DD plot complements rather than replaces the numerical procedures.
For example, if the goal of the transformation is to achieve a multivariate
normal distribution and if the data points cluster tightly about the identity
line, as in Figure 11.1a, then perhaps no transformation is needed. For the
data in Figure 11.1c, a good numerical procedure should suggest coordinate-
wise log transforms. Following this transformation, the resulting plot shown
in Figure 11.1a indicates that the transformation to normality was successful.

Application 11.2. The DD plot can be used to detect multivariate
outliers. See Figures 10.2 and 11.2a.

11.2 Robust Prediction Regions

Suppose that (TA, CA) denotes the algorithm estimator of location and dis-
persion. Section 11.1 showed that if X is multivariate normal Np(μ,Σ), TA

estimates μ and CA/τ 2 estimates Σ where τ is given in Equation (11.2).
Then (TR, CR) ≡ (TA, CA/τ 2) is an estimator of multivariate location and
dispersion. Given an estimator (T, C), a 95% covering ellipsoid for MVN
data is the ellipsoid

{z : (z − T )TC−1(z − T ) ≤ χ2
p,0.95}. (11.7)

This ellipsoid is a large sample 95% prediction region if the data is Np(μ,Σ)
and if (T, C) is a consistent estimator of (μ,Σ).
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Figure 11.3: Artificial Bivariate Data
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Figure 11.4: Artificial Data
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Figure 11.5: Ellipsoid is Inflated by Outliers
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Figure 11.6: Ellipsoid Ignores Outliers
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Example 11.3. An artificial data set consisting of 100 iid cases from a

N2

( (
0
0

)
,

(
1.49 1.4
1.4 1.49

) )

distribution and 40 iid cases from a bivariate normal distribution with mean
(0,−3)T and covariance I2. Figure 11.3 shows the classical covering ellipsoid
that uses (T, C) = (x, S). The symbol “1” denotes the data while the symbol
“2” is on the border of the covering ellipse. Notice that the classical ellipsoid
covers almost all of the data. Figure 11.4 displays the resistant covering
ellipse. The resistant covering ellipse contains most of the 100 “clean” cases
and excludes the 40 outliers. Problem 11.5 recreates similar figures with the
classical and the resistant R/Splus cov.mcd estimators.

Example 11.4. Buxton (1920) gives various measurements on 88 men
including height and nasal height. Five heights were recorded to be about
19mm and are massive outliers. Figure 11.5 shows that the classical covering
ellipsoid is quite large but does not include any of the outliers. Figure 11.6
shows that the resistant covering ellipsoid is not inflated by the outliers.

11.3 Resistant Regression

Ellipsoidal trimming can be used to create resistant multiple linear regression
(MLR) estimators. To perform ellipsoidal trimming, an estimator (T, C) is
computed and used to create the squared Mahalanobis distances D2

i for each
vector of observed predictors xi. If the ordered distance D(j) is unique, then
j of the xi’s are in the ellipsoid

{x : (x − T )TC−1(x − T ) ≤ D2
(j)}. (11.8)

The ith case (yi, x
T
i )T is trimmed if Di > D(j). Then an estimator of β is

computed from the remaining cases. For example, if j ≈ 0.9n, then about
10% of the cases are trimmed, and OLS or L1 could be used on the cases
that remain.

Recall that a response plot is a plot of the fitted values Ŷi versus the
response Yi and is very useful for detecting outliers. If the MLR model holds
and the MLR estimator is good, then the plotted points will scatter about
the identity line that has unit slope and zero intercept. The identity line is
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added to the plot as a visual aid, and the vertical deviations from the identity
line are equal to the residuals since Yi − Ŷi = ri.

The resistant trimmed views estimator combines ellipsoidal trimming and
the response plot. First compute (T, C), perhaps using the FCH estimator
or the R/Splus function cov.mcd. Trim the M% of the cases with the largest
Mahalanobis distances, and then compute the MLR estimator β̂M from the
remaining cases. Use M = 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90 to generate

ten response plots of the fitted values β̂
T

Mxi versus yi using all n cases. (Fewer
plots are used for small data sets if β̂M can not be computed for large M .)
These plots are called “trimmed views.”

Definition 11.2. The trimmed views (TV) estimator β̂T,n corresponds
to the trimmed view where the bulk of the plotted points follow the identity
line with smallest variance function, ignoring any outliers.

Example 11.4 (continued). For the Buxton (1920) data, height was
the response variable while an intercept, head length, nasal height, bigonal
breadth, and cephalic index were used as predictors in the multiple linear
regression model. Observation 9 was deleted since it had missing values.
Five individuals, cases 61–65, were reported to be about 0.75 inches tall with
head lengths well over five feet! OLS was used on the cases remaining after
trimming, and Figure 11.7 shows four trimmed views corresponding to 90%,
70%, 40% and 0% trimming. The OLS TV estimator used 70% trimming
since this trimmed view was best. Since the vertical distance from a plotted
point to the identity line is equal to the case’s residual, the outliers had
massive residuals for 90%, 70% and 40% trimming. Notice that the OLS
trimmed view with 0% trimming “passed through the outliers” since the
cluster of outliers is scattered about the identity line.

The TV estimator β̂T,n has good statistical properties if an estimator
with good statistical properties is applied to the cases (XM,n, Y M,n) that
remain after trimming. Candidates include OLS, L1, Huber’s M–estimator,
Mallows’ GM–estimator or the Wilcoxon rank estimator. See Rousseeuw
and Leroy (1987, p. 12-13, 150). The basic idea is that if an estimator with
OP (n−1/2) convergence rate is applied to a set of nM ∝ n cases, then the
resulting estimator β̂M,n also has OP (n−1/2) rate provided that the response

y was not used to select the nM cases in the set. If ‖β̂M,n −β‖ = OP (n−1/2)

for M = 0, ..., 90 then ‖β̂T,n − β‖ = OP (n−1/2) by Pratt (1959).
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Figure 11.7: 4 Trimmed Views for the Buxton Data

Let Xn = X0,n denote the full design matrix. Often when proving asymp-

totic normality of an MLR estimator β̂0,n, it is assumed that

XT
nXn

n
→ W−1.

If β̂0,n has OP (n−1/2) rate and if for big enough n all of the diagonal elements
of (

XT
M,nXM,n

n

)−1

are all contained in an interval [0, B) for some B > 0, then ‖β̂M,n − β‖ =

OP (n−1/2).
The distribution of the estimator β̂M,n is especially simple when OLS is

used and the errors are iid N(0, σ2). Then

β̂M,n = (XT
M,nXM,n)−1XT

M,nY M,n ∼ Np(β, σ2(XT
M,nXM,n)

−1)

and
√

n(β̂M,n−β) ∼ Np(0, σ2(XT
M,nXM,n/n)−1). Notice that this result does

not imply that the distribution of β̂T,n is normal.
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Table 11.2: Summaries for Seven Data Sets, the Correlations of the Residuals
from TV(M) and the Alternative Method are Given in the 1st 5 Rows

Method Buxton Gladstone glado hbk major nasty wood
MBA 0.997 1.0 0.455 0.960 1.0 -0.004 0.9997

LMSREG -0.114 0.671 0.938 0.977 0.981 0.9999 0.9995
LTSREG -0.048 0.973 0.468 0.272 0.941 0.028 0.214

L1 -0.016 0.983 0.459 0.316 0.979 0.007 0.178
OLS 0.011 1.0 0.459 0.780 1.0 0.009 0.227

outliers 61-65 none 119 1-10 3,44 2,6,...,30 4,6,8,19
n 87 247 247 75 112 32 20
p 5 7 7 4 6 5 6
M 70 0 30 90 0 90 20

Table 11.2 compares the TV, MBA (for MLR), lmsreg, ltsreg, L1 and
OLS estimators on 7 data sets available from the text’s website. The column
headers give the file name while the remaining rows of the table give the
sample size n, the number of predictors p, the amount of trimming M used by
the TV estimator, the correlation of the residuals from the TV estimator with
the corresponding alternative estimator, and the cases that were outliers.
If the correlation was greater than 0.9, then the method was effective in
detecting the outliers, and the method failed, otherwise. Sometimes the
trimming percentage M for the TV estimator was picked after fitting the
bulk of the data in order to find the good leverage points and outliers.

Notice that the TV, MBA and OLS estimators were the same for the
Gladstone data and for the major data (Tremearne 1911) which had two
small y–outliers. For the Gladstone data, there is a cluster of infants that are
good leverage points, and we attempt to predict brain weight with the head
measurements height, length, breadth, size and cephalic index. Originally, the
variable length was incorrectly entered as 109 instead of 199 for case 119, and
the glado data contains this outlier. In 1997, lmsreg was not able to detect
the outlier while ltsreg did. Due to changes in the Splus 2000 code, lmsreg
now detects the outlier but ltsreg does not.

The TV estimator can be modified to create a resistant weighted MLR
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estimator. To see this, recall that the weighted least squares (WLS) estima-
tor using weights Wi can be found using the ordinary least squares (OLS)
regression (without intercept) of

√
WiYi on

√
Wixi. This idea can be used

for categorical data analysis since the minimum chi-square estimator is often
computed using WLS. See Section 13.4 for an illustration of Application 11.3
below. Let xi = (1, xi,2, ..., xi,p)

T , let Yi = xT
i β+ei and let β̃ be an estimator

of β.

Definition 11.3. For a multiple linear regression model with weights
Wi, a weighted response plot is a plot of

√
Wix

T
i β̃ versus

√
WiYi. The

weighted residual plot is a plot of
√

Wix
T
i β̃ versus the WMLR residuals

rWi =
√

WiYi −
√

Wix
T
i β̃.

Application 11.3. For resistant weighted MLR, use the WTV estimator
which is selected from ten weighted response plots.

11.4 Robustifying Robust Estimators

Many papers have been written that need a HB consistent estimator of MLD.
Since no practical HB estimator was available, inconsistent zero breakdown
estimators were often used in implementations, resulting in zero breakdown
estimators that were often inconsistent (although perhaps useful as diagnos-
tics).

Applications of the robust
√

n consistent CMCD and FCH estimators
are numerous. For example, robustify the ideas in the following papers by
using the FCH estimator instead of the FMCD, MCD or MVE estimator.
Binary regression: see Croux and Haesbroeck (2003). Canonical correlation
analysis: see Branco, Croux, Filzmoser, and Oliviera (2005). Discriminant
analysis: see Hubert and Van Driessen (2004). Factor analysis: see Pison,
Rousseeuw, Filzmoser, and Croux (2003). Generalized partial linear models:
see He, Fung and Zhu (2005). Analogs of Hotelling’s T 2 test: see Willems,
Pison, Rousseeuw, and Van Aelst (2002). Longitudinal data analysis: see He,
Cui and Simpson (2004). Multivariate analysis diagnostics: the DD plot of
classical Mahalanobis distances versus FCH distances should be used for mul-
tivariate analysis much as Cook’s distances are used for MLR. Multivariate
regression: see Agulló, Croux and Van Aelst (2008). Principal components:
see Hubert, Rousseeuw, and Vanden Branden (2005) and Croux, Filzmoser,
and Oliveira (2007). Efficient estimators of MLD: see He and Wang (1996).
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Also see Hubert, Rousseeuw and Van Aelst (2008) for references. Their
FMCD and FLTS estimators do not compute the MCD and LTS estimators,
and need to be modified as in Remarks 8.8 and 10.5.

Regression via Dimension Reduction: Regression is the study of the
conditional distribution of the response Y given the vector of predictors
x = (1, wT )T where w is the vector of nontrivial predictors. Make a DD
plot of the classical Mahalanobis distances versus the robust distances com-
puted from w. If w comes from an elliptically contoured distribution, then
the plotted points in the DD plot should follow a straight line through the
origin. Give zero weight to cases in the DD plot that do not cluster tightly
about “the best straight line” through the origin (often the identity line with
unit slope), and run a weighted regression procedure. This technique can
increase the resistance of regression procedures such as sliced inverse regres-
sion (SIR, see Li, 1991) and MAVE (Xia, Tong, Li, and Zhu, 2002). Also
see Chang and Olive (2007), Cook and Nachtsheim (1994) and Li, Cook and
Nachtsheim (2004).

Visualizing 1D Regression: A 1D regression is a special case of regression
where the response Y is independent of the predictors x given βTx. Gen-
eralized linear models and single index models are important special cases.
Resistant methods for visualizing 1D regression are given in Olive (2002,
2004b). Also see Chapters 12 and 13.

11.5 Complements

The first section of this chapter followed Olive (2002) closely. The DD plot
can be used to diagnose elliptical symmetry, to detect outliers, and to assess
the success of numerical methods for transforming data towards an ellipti-
cally contoured distribution. Since many statistical methods assume that
the underlying data distribution is Gaussian or EC, there is an enormous
literature on numerical tests for elliptical symmetry. Bogdan (1999), Czörgö
(1986) and Thode (2002) provide references for tests for multivariate normal-
ity while Koltchinskii and Li (1998) and Manzotti, Pérez and Quiroz (2002)
have references for tests for elliptically contoured distributions.

The TV estimator was proposed by Olive (2002, 2005) and is similar to an
estimator proposed by Rousseeuw and van Zomeren (1992). Although both
the TV and MBA estimators have the good OP (n−1/2) convergence rate,
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their efficiency under normality may be very low. Chang and Olive (2008)
suggest a method of adaptive trimming such that the resulting estimator
is asymptotically equivalent to the OLS estimator. Also see Section 12.5.
High breakdown estimators that have high efficiency tend to be impractical
to compute, but exceptions include the estimators from Theorem 8.8 and
Remark 8.7.

The ideas used in Section 11.3 have the potential for making many meth-
ods resistant. First, suppose that the MLR model holds but Cov(e) = σ2Σ
and Σ = V V ′ where V is known and nonsingular. Then V −1Y = V −1Xβ+
V −1e, and the TV and MBA MLR estimators can be applied to Ỹ = V −1Y
and X̃ = V −1X provided that OLS is fit without an intercept.

Secondly, many 1D regression models (where Yi is independent of xi given
the sufficient predictor xT

i β) can be made resistant by making EY plots
of the estimated sufficient predictor xT

i β̂M versus Yi for the 10 trimming
proportions. Since 1D regression is the study of the conditional distribution
of Yi given xT

i β, the EY plot is used to visualize this distribution and needs
to be made anyway. See Chapter 12.

Thirdly, for nonlinear regression models of the form Yi = m(xi, β) + ei,
the fitted values are Ŷi = m(xi, β̂) and the residuals are ri = Yi − Ŷi. The
points in the FY plot of the fitted values versus the response should follow
the identity line. The TV estimator would make FY and residual plots for
each of the trimming proportions. The MBA estimator with the median
squared residual criterion can also be used for many of these models.

Mφller, von Frese and Bro (2005) is a good illustration of the widespread
use of inconsistent zero breakdown estimators plugged in place of classical
estimators in an attempt to make the multivariate method robust.

11.6 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

11.1∗. If X and Y are random variables, show that

Cov(X, Y) = [Var(X + Y) − Var(X − Y)]/4.

R/Splus Problems
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Warning: Use the command source(“A:/rpack.txt”) to download
the programs. See Preface or Section 14.2. Typing the name of the
rpack function, eg ddplot, will display the code for the function. Use the
args command, eg args(ddplot), to display the needed arguments for the
function.

11.2. a) Download the program ddsim. (In R, type the command li-
brary(MASS).)

b) Using the function ddsim for p = 2, 3, 4, determine how large the
sample size n should be in order for the DD plot of n Np(0, Ip) cases to
be cluster tightly about the identity line with high probability. Table your
results. (Hint: type the command ddsim(n=20,p=2) and increase n by 10
until most of the 20 plots look linear. Then repeat for p = 3 with the n that
worked for p = 2. Then repeat for p = 4 with the n that worked for p = 3.)

11.3. a) Download the program corrsim. (In R, type the command
library(MASS).)

b) A numerical quantity of interest is the correlation between the MDi

and RDi in a DD plot that uses n Np(0, Ip) cases. Using the function corrsim
for p = 2, 3, 4, determine how large the sample size n should be in order for
9 out of 10 correlations to be greater than 0.9. (Try to make n small.) Table
your results. (Hint: type the command corrsim(n=20,p=2,nruns=10) and
increase n by 10 until 9 or 10 of the correlations are greater than 0.9. Then
repeat for p = 3 with the n that worked for p = 2. Then repeat for p = 4
with the n that worked for p = 3.)

11.4∗. a) Download the ddplot function. (In R, type the command
library(MASS).)

b) Using the following commands to make generate data from the EC
distribution (1 − ε)Np(0, Ip) + εNp(0, 25 Ip) where p = 3 and ε = 0.4.

n <- 400

p <- 3

eps <- 0.4

x <- matrix(rnorm(n * p), ncol = p, nrow = n)

zu <- runif(n)

x[zu < eps,] <- x[zu < eps,]*5

c) Use the command ddplot(x) to make a DD plot and include the plot
in Word. What is the slope of the line followed by the plotted points?
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11.5. a) Download the ellipse function.

b) Use the following commands to create a bivariate data set with outliers
and to obtain a classical and robust covering ellipsoid. Include the two plots
in Word. (In R, type the command library(MASS).)

> simx2 <- matrix(rnorm(200),nrow=100,ncol=2)

> outx2 <- matrix(10 + rnorm(80),nrow=40,ncol=2)

> outx2 <- rbind(outx2,simx2)

> ellipse(outx2)

> zout <- cov.mcd(outx2)

> ellipse(outx2,center=zout$center,cov=zout$cov)

11.6. a) Download the function mplot.

b) Enter the commands in Problem 11.4b to obtain a data set x. The
function mplot makes a plot without the RDi and the slope of the resulting
line is of interest.

c) Use the command mplot(x) and place the resulting plot in Word.

d) Do you prefer the DD plot or the mplot? Explain.

11.7 a) Download the function wddplot.

b) Enter the commands in Problem 11.4b to obtain a data set x.

c) Use the command wddplot(x) and place the resulting plot in Word.

11.8. a) In addition to the source(“A:/rpack.txt”) command, also use
the source(“A:/robdata.txt”) command (and in R, type the library(MASS)
command).

b) Type the command tvreg(buxx,buxy,ii=1). Click the rightmost mouse
button (and in R, highlight Stop). The forward response plot should appear.
Repeat 10 times and remember which plot percentage M (say M = 0) had
the best forward response plot. Then type the command tvreg2(buxx,buxy, M
= 0) (except use your value of M, not 0). Again, click the rightmost mouse
button (and in R, highlight Stop). The forward response plot should appear.
Hold down the Ctrl and c keys to make a copy of the plot. Then paste the
plot in Word.

c) The estimated coefficients β̂TV from the best plot should have appeared
on the screen. Copy and paste these coefficients into Word.
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