
Chapter 10

Multivariate Models

Definition 10.1. An important multivariate location and dispersion model
is a joint distribution with joint pdf

f(z|μ,Σ)

for a p×1 random vector x that is completely specified by a p×1 population
location vector μ and a p×p symmetric positive definite population dispersion
matrix Σ. Thus P (x ∈ A) =

∫
A
f(z)dz for suitable sets A.

The multivariate location and dispersion model is in many ways similar
to the multiple linear regression model. The data are iid vectors from some
distribution such as the multivariate normal (MVN) distribution. The lo-
cation parameter μ of interest may be the mean or the center of symmetry
of an elliptically contoured distribution. Hyperellipsoids will be estimated
instead of hyperplanes, and Mahalanobis distances will be used instead of
absolute residuals to determine if an observation is a potential outlier.

Assume that X1, ...,Xn are n iid p × 1 random vectors and that the
joint pdf of X1 is f(z|μ,Σ). Also assume that the data X i = xi has been
observed and stored in an n× p matrix

W =

⎡
⎢⎣

xT
1
...

xT
n

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣
x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p
...

...
. . .

...
xn,1 xn,2 . . . xn,p

⎤
⎥⎥⎥⎦ =

[
w1 w2 . . . wp

]

where the ith row of W is xT
i and the jth column is wj . Each column wj of

W corresponds to a variable. For example, the data may consist of n visitors
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to a hospital where the p = 2 variables height and weight of each individual
were measured.

There are some differences in the notation used in multiple linear regres-
sion and multivariate location dispersion models. Notice that W could be
used as the design matrix in multiple linear regression although usually the
first column of the regression design matrix is a vector of ones. The n × p
design matrix in the multiple linear regression model was denoted by X and
Xi ≡ xi denoted the ith column of X. In the multivariate location dispersion
model, X and X i will be used to denote a p×1 random vector with observed
value xi, and xT

i is the ith row of the data matrix W . Johnson and Wichern
(1988, p. 7, 53) uses X to denote the n× p data matrix and a n× 1 random
vector, relying on the context to indicate whether X is a random vector or
data matrix. Software tends to use different notation. For example, R/Splus
will use commands such as

var(x)

to compute the sample covariance matrix of the data. Hence x corresponds
to W , x[,1] is the first column of x and x[4, ] is the 4th row of x.

10.1 The Multivariate Normal Distribution

Definition 10.2: Rao (1965, p. 437). A p × 1 random vector X has
a p−dimensional multivariate normal distribution Np(μ,Σ) iff tT X has a
univariate normal distribution for any p× 1 vector t.

If Σ is positive definite, then X has a pdf

f(z) =
1

(2π)p/2|Σ|1/2
e−(1/2)(z−μ)TΣ−1

(z−μ) (10.1)

where |Σ|1/2 is the square root of the determinant of Σ. Note that if p = 1,
then the quadratic form in the exponent is (z − μ)(σ2)−1(z − μ) and X has
the univariate N(μ, σ2) pdf. If Σ is positive semidefinite but not positive
definite, then X has a degenerate distribution. For example, the univariate
N(0, 02) distribution is degenerate (the point mass at 0).

Definition 10.3. The population mean of a random p × 1 vector X =
(X1, ..., Xp)

T is
E(X) = (E(X1), ..., E(Xp))

T
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and the p× p population covariance matrix

Cov(X) = E(X − E(X))(X − E(X))T = ((σi,j)).

That is, the ij entry of Cov(X) is Cov(Xi, Xj) = σi,j.

The covariance matrix is also called the variance–covariance matrix and
variance matrix. Sometimes the notation Var(X) is used. Note that Cov(X)
is a symmetric positive semidefinite matrix. If X and Y are p× 1 random
vectors, a a conformable constant vector and A and B are conformable
constant matrices, then

E(a + X) = a + E(X) and E(X + Y ) = E(X) + E(Y ) (10.2)

and
E(AX) = AE(X) and E(AXB) = AE(X)B. (10.3)

Thus
Cov(a + AX) = Cov(AX) = ACov(X)AT . (10.4)

Some important properties of MVN distributions are given in the follow-
ing three propositions. These propositions can be proved using results from
Johnson and Wichern (1988, p. 127-132).

Proposition 10.1. a) If X ∼ Np(μ,Σ), then E(X) = μ and

Cov(X) = Σ.

b) If X ∼ Np(μ,Σ), then any linear combination tTX = t1X1 + · · · +
tpXp ∼ N1(t

Tμ, tT Σt). Conversely, if tTX ∼ N1(t
Tμ, tT Σt) for every p× 1

vector t, then X ∼ Np(μ,Σ).

c) The joint distribution of independent normal random vari-
ables is MVN. If X1, ..., Xp are independent univariate normal N(μi, σ

2
i )

random vectors, then X = (X1, ..., Xp)
T is Np(μ,Σ) where μ = (μ1, ..., μp)

and Σ = diag(σ2
1, ..., σ

2
p) (so the off diagonal entries σi,j = 0 while the diag-

onal entries of Σ are σi,i = σ2
i ).

d) If X ∼ Np(μ,Σ) and if A is a q×pmatrix, then AX ∼ Nq(Aμ,AΣAT ).
If a is a p× 1 vector of constants, then a + X ∼ Np(a + μ,Σ).
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It will be useful to partition X, μ, and Σ. Let X1 and μ1 be q × 1
vectors, let X2 and μ2 be (p− q)× 1 vectors, let Σ11 be a q × q matrix, let
Σ12 be a q × (p− q) matrix, let Σ21 be a (p− q)× q matrix, and let Σ22 be
a (p− q)× (p− q) matrix. Then

X =

(
X1

X2

)
, μ =

(
μ1

μ2

)
, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Proposition 10.2. a) All subsets of a MVN are MVN: (Xk1 , ..., Xkq)
T

∼ Nq(μ̃, Σ̃) where μ̃i = E(Xki) and Σ̃ij = Cov(Xki , Xkj ). In particular,
X1 ∼ Nq(μ1,Σ11) and X2 ∼ Np−q(μ2,Σ22).

b) If X1 and X2 are independent, then Cov(X1,X2) = Σ12 =
E[(X1 − E(X1))(X2 −E(X2))

T ] = 0, a q × (p− q) matrix of zeroes.

c) If X ∼ Np(μ,Σ), then X1 and X2 are independent iff Σ12 = 0.

d) If X1 ∼ Nq(μ1,Σ11) and X2 ∼ Np−q(μ2,Σ22) are independent, then(
X1

X2

)
∼ Np

( (
μ1

μ2

)
,

(
Σ11 0
0 Σ22

) )
.

Proposition 10.3. The conditional distribution of a MVN is
MVN. If X ∼ Np(μ,Σ), then the conditional distribution of X1 given
that X2 = x2 is multivariate normal with mean μ1 + Σ12Σ

−1
22 (x2 −μ2) and

covariance Σ11 −Σ12Σ
−1
22 Σ21. That is,

X1|X2 = x2 ∼ Nq(μ1 + Σ12Σ
−1
22 (x2 − μ2),Σ11 − Σ12Σ

−1
22 Σ21).

Example 10.1. Let p = 2 and let (Y,X)T have a bivariate normal
distribution. That is,(

Y
X

)
∼ N2

( (
μY

μX

)
,

(
σ2

Y Cov(Y,X)
Cov(X, Y ) σ2

X

) )
.

Also recall that the population correlation between X and Y is given by

ρ(X, Y ) =
Cov(X, Y )√

VAR(X)
√

VAR(Y )
=

σX,Y

σXσY

if σX > 0 and σY > 0. Then Y |X = x ∼ N(E(Y |X = x),VAR(Y |X = x))
where the conditional mean

E(Y |X = x) = μY + Cov(Y,X)
1

σ2
X

(x− μX) = μY + ρ(X, Y )

√
σ2

Y

σ2
X

(x− μX)
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and the conditional variance

VAR(Y |X = x) = σ2
Y −Cov(X, Y )

1

σ2
X

Cov(X, Y )

= σ2
Y − ρ(X, Y )

√
σ2

Y

σ2
X

ρ(X, Y )
√
σ2

X

√
σ2

Y

= σ2
Y − ρ2(X, Y )σ2

Y = σ2
Y [1 − ρ2(X, Y )].

Also aX + bY is univariate normal with mean aμX + bμY and variance

a2σ2
X + b2σ2

Y + 2ab Cov(X, Y ).

Remark 10.1. There are several common misconceptions. First, it
is not true that every linear combination tT X of normal random
variables is a normal random variable, and it is not true that all
uncorrelated normal random variables are independent. The key
condition in Proposition 10.1b and Proposition 10.2c is that the joint distri-
bution of X is MVN. It is possible that X1, X2, ..., Xp each has a marginal
distribution that is univariate normal, but the joint distribution of X is not
MVN. See Seber and Lee (2003, p. 23), Kowalski (1973) and examine the
following example from Rohatgi (1976, p. 229). Suppose that the joint pdf
of X and Y is a mixture of two bivariate normal distributions both with
EX = EY = 0 and VAR(X) = VAR(Y ) = 1, but Cov(X, Y ) = ±ρ. Hence
f(x, y) =

1

2

1

2π
√

1 − ρ2
exp(

−1

2(1 − ρ2)
(x2 − 2ρxy + y2)) +

1

2

1

2π
√

1 − ρ2
exp(

−1

2(1 − ρ2)
(x2 + 2ρxy + y2)) ≡ 1

2
f1(x, y) +

1

2
f2(x, y)

where x and y are real and 0 < ρ < 1. Since both marginal distributions of
fi(x, y) are N(0,1) for i = 1 and 2 by Proposition 10.2 a), the marginal dis-
tributions of X and Y are N(0,1). Since

∫ ∫
xyfi(x, y)dxdy = ρ for i = 1 and

−ρ for i = 2, X and Y are uncorrelated, but X and Y are not independent
since f(x, y) �= fX(x)fY (y).

Remark 10.2. In Proposition 10.3, suppose that X = (Y,X2, ..., Xp)
T .

Let X1 = Y and X2 = (X2, ..., Xp)
T . Then E[Y |X2] = β1+β2X2+· · ·+βpXp

and VAR[Y |X2] is a constant that does not depend on X2. Hence Y =
β1 + β2X2 + · · · + βpXp + e follows the multiple linear regression model.
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10.2 Elliptically Contoured Distributions

Definition 10.4: Johnson (1987, p. 107-108). A p×1 random vector X
has an elliptically contoured distribution, also called an elliptically symmetric
distribution, if X has density

f(z) = kp|Σ|−1/2g[(z − μ)TΣ−1(z − μ)], (10.5)

and we say X has an elliptically contoured ECp(μ,Σ, g) distribution.

If X has an elliptically contoured (EC) distribution, then the character-
istic function of X is

φX (t) = exp(itTμ)ψ(tTΣt) (10.6)

for some function ψ. If the second moments exist, then

E(X) = μ (10.7)

and
Cov(X) = cXΣ (10.8)

where
cX = −2ψ′(0).

Definition 10.5. The population squared Mahalanobis distance

U ≡ D2 = D2(μ,Σ) = (X − μ)T Σ−1(X − μ) (10.9)

has density

h(u) =
πp/2

Γ(p/2)
kpu

p/2−1g(u). (10.10)

For c > 0, an ECp(μ, cI, g) distribution is spherical about μ where I is
the p×p identity matrix. The multivariate normal distribution Np(μ,Σ) has
kp = (2π)−p/2, ψ(u) = g(u) = exp(−u/2) and h(u) is the χ2

p density.

The following lemma is useful for proving properties of EC distributions
without using the characteristic function (10.6). See Eaton (1986) and Cook
(1998a, p. 57, 130).
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Lemma 10.4. Let X be a p × 1 random vector with 1st moments; ie,
E(X) exists. Let B be any constant full rank p× r matrix where 1 ≤ r ≤ p.
Then X is elliptically contoured iff for all such conforming matrices B,

E(X|BT X) = μ + MBBT (X −μ) = aB + MBBTX (10.11)

where the p× 1 constant vector aB and the p× r constant matrix MB both
depend on B.

To use this lemma to prove interesting properties, partition X, μ, and
Σ. Let X1 and μ1 be q×1 vectors, let X2 and μ2 be (p− q)×1 vectors. Let
Σ11 be a q× q matrix, let Σ12 be a q× (p− q) matrix, let Σ21 be a (p− q)× q
matrix, and let Σ22 be a (p− q)× (p− q) matrix. Then

X =

(
X1

X2

)
, μ =

(
μ1

μ2

)
, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Also assume that the (p+1)× 1 vector (Y,XT )T is ECp+1(μ,Σ, g) where Y
is a random variable, X is a p× 1 vector, and use(

Y
X

)
, μ =

(
μY

μX

)
, and Σ =

(
ΣY Y ΣY X

ΣXY ΣXX

)
.

Another useful fact is that aB and MB do not depend on g:

aB = μ −MBBTμ = (Ip − MBBT )μ,

and
MB = ΣB(BT ΣB)−1.

See Problem 10.11. Notice that in the formula for MB, Σ can be replaced
by cΣ where c > 0 is a constant. In particular, if the EC distribution has
2nd moments, Cov(X) can be used instead of Σ.

Proposition 10.5. Let X ∼ ECp(μ,Σ, g) and assume that E(X) exists.

a) Any subset of X is EC, in particular X1 is EC.

b) (Cook 1998a p. 131, Kelker 1970). If Cov(X) is nonsingular,

Cov(X|BTX) = dg(B
TX)[Σ− ΣB(BTΣB)−1BT Σ]

where the real valued function dg(B
TX) is constant iff X is MVN.
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Proof of a). Let A be an arbitrary full rank q×r matrix where 1 ≤ r ≤ q.
Let

B =

(
A
0

)
.

Then BTX = AT X1, and

E[X|BT X] = E[

(
X1

X2

)
|ATX1] =

(
μ1

μ2

)
+

(
M 1B

M 2B

) (
AT 0T

) (
X1 − μ1

X2 − μ2

)

by Lemma 10.4. HenceE[X1|ATX1] = μ1+M 1BAT (X1−μ1). Since A was
arbitrary, X1 is EC by Lemma 10.4. Notice that MB = ΣB(BT ΣB)−1 =(

Σ11 Σ12

Σ21 Σ22

) (
A
0

)
[
(

AT 0T
)(

Σ11 Σ12

Σ21 Σ22

) (
A
0

)
]−1

=

(
M 1B

M 2B

)
.

Hence
M 1B = Σ11A(ATΣ11A)−1

and X1 is EC with location and dispersion parameters μ1 and Σ11. QED

Proposition 10.6. Let (Y,XT )T be ECp+1(μ,Σ, g) where Y is a random
variable.

a) Assume that E[(Y,XT )T ] exists. Then E(Y |X) = α + βTX where
α = μY − βT μX and

β = Σ−1
XXΣXY .

b) Even if the first moment does not exist, the conditional median

MED(Y |X) = α + βT X

where α and β are given in a).

Proof. a) The trick is to choose B so that Lemma 10.4 applies. Let

B =

(
0T

Ip

)
.
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Then BTΣB = ΣXX and

ΣB =

(
ΣY X

ΣXX

)
.

Now

E[

(
Y
X

)
| X] = E[

(
Y
X

)
| BT

(
Y
X

)
]

= μ + ΣB(BTΣB)−1BT

(
Y − μY

X − μX

)
by Lemma 10.4. The right hand side of the last equation is equal to

μ +

(
ΣY X

ΣXX

)
Σ−1

XX(X − μX) =

(
μY − ΣY XΣ−1

XXμX + ΣY XΣ−1
XXX

X

)

and the result follows since

βT = ΣY XΣ−1
XX .

b) See Croux, Dehon, Rousseeuw and Van Aelst (2001) for references.

Example 10.2. This example illustrates another application of Lemma
10.4. Suppose that X comes from a mixture of two multivariate normals
with the same mean and proportional covariance matrices. That is, let

X ∼ (1 − γ)Np(μ,Σ) + γNp(μ, cΣ)

where c > 0 and 0 < γ < 1. Since the multivariate normal distribution is
elliptically contoured (and see Proposition 4.1c),

E(X|BT X) = (1 − γ)[μ + M1B
T (X − μ)] + γ[μ + M2B

T (X − μ)]

= μ + [(1 − γ)M 1 + γM 2]B
T (X − μ) ≡ μ + MBT (X − μ).

Since MB only depends on B and Σ, it follows that M 1 = M 2 = M = MB.
Hence X has an elliptically contoured distribution by Lemma 10.4.

311



10.3 Sample Mahalanobis Distances

In the multivariate location and dispersion model, sample Mahalanobis dis-
tances play a role similar to that of residuals in multiple linear regression.
The observed data X i = xi for i = 1, ..., n is collected in an n× p matrix W
with n rows xT

1 , ...,x
T
n . Let the p × 1 column vector T (W ) be a multivari-

ate location estimator, and let the p × p symmetric positive definite matrix
C(W ) be a covariance estimator.

Definition 10.6. The ith squared Mahalanobis distance is

D2
i = D2

i (T (W ),C(W )) = (xi − T (W ))T C−1(W )(xi − T (W )) (10.12)

for each point xi. Notice that D2
i is a random variable (scalar valued).

Notice that the population squared Mahalanobis distance is

D2
x(μ,Σ) = (x − μ)T Σ−1(x − μ) (10.13)

and that the term Σ−1/2(x − μ) is the p−dimensional analog to the z-score
used to transform a univariate N(μ, σ2) random variable into a N(0, 1) ran-
dom variable. Hence the sample Mahalanobis distance Di =

√
D2

i is an
analog of the sample z-score zi = (xi−X)/σ̂. Also notice that the Euclidean
distance of xi from the estimate of center T (W ) is Di(T (W ), Ip) where Ip

is the p× p identity matrix.

Example 10.3. The contours of constant density for the Np(μ,Σ) dis-
tribution are ellipsoids defined by x such that (x − μ)TΣ−1(x − μ) = a2.
An α−density region Rα is a set such that P (X ∈ Rα) = α, and for the
Np(μ,Σ) distribution, the regions of highest density are sets of the form

{x : (x− μ)TΣ−1(x −μ) ≤ χ2
p(α)} = {x : D2

x(μ,Σ) ≤ χ2
p(α)}

where P (W ≤ χ2
p(α)) = α if W ∼ χ2

p. If the X i are n iid random vectors
each with a Np(μ,Σ) pdf, then a scatterplot of Xi,k versus Xi,j should be
ellipsoidal for k �= j. Similar statements hold if X is ECp(μ,Σ, g), but the
α-density region will use a constant Uα obtained from Equation (10.10).

The classical Mahalanobis distance corresponds to the sample mean and
sample covariance matrix

T (W ) = x =
1

n

n∑
i=1

xi,
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and

C(W ) = S =
1

n− 1

n∑
i=1

(xi − x)(xi − x)T

and will be denoted by MDi. When T (W ) and C(W ) are estimators other
than the sample mean and covariance, Di =

√
D2

i will sometimes be denoted
by RDi.

10.4 Affine Equivariance

Before defining an important equivariance property, some notation is needed.
Again assume that the data is collected in an n × p data matrix W . Let
B = 1bT where 1 is an n× 1 vector of ones and b is a p× 1 constant vector.
Hence the ith row of B is bT

i ≡ bT for i = 1, ..., n. For such a matrix B,
consider the affine transformation Z = W A+B where A is any nonsingular
p× p matrix.

Definition 10.7. Then the multivariate location and dispersion estima-
tor (T,C) is affine equivariant if

T (Z) = T (WA + B) = ATT (W ) + b, (10.14)

and
C(Z) = C(WA + B) = ATC(W )A. (10.15)

The following proposition shows that the Mahalanobis distances are in-
variant under affine transformations. See Rousseeuw and Leroy (1987, p.
252-262) for similar results.

Proposition 10.7. If (T,C) is affine equivariant, then

D2
i (W ) ≡ D2

i (T (W ),C(W )) =

D2
i (T (Z),C(Z)) ≡ D2

i (Z). (10.16)

Proof. Since Z = W A + B has ith row

zT
i = xT

i A + bT ,
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D2
i (Z) = [zi − T (Z)]TC−1(Z)[zi − T (Z)]

= [AT (xi − T (W ))]T [AT C(W )A]−1[AT (xi − T (W ))]

= [xi − T (W )]TC−1(W )[xi − T (W )] = D2
i (W ). QED

10.5 Breakdown

This section gives a standard definition of breakdown for estimators of mul-
tivariate location and dispersion. The following notation will be useful. Let
W denote the n × p data matrix with ith row xT

i corresponding to the ith
case. Let W n

d denote the data matrix with ith row wT
i where any d of the

cases have been replaced by arbitrarily bad contaminated cases. Then the
contamination fraction is γ = d/n. Let (T (W ),C(W )) denote an estimator
of multivariate location and dispersion where the p × 1 vector T (W ) is an
estimator of location and the p × p symmetric positive semidefinite matrix
C(W ) is an estimator of dispersion.

Definition 10.8. The breakdown value of the multivariate location es-
timator T at W is

B(T,W ) = min{d
n

: sup
W n

d

‖T (W n
d)‖ = ∞}

where the supremum is over all possible corrupted samples W n
d and 1 ≤ d ≤

n. Let 0 ≤ λp(C(W )) ≤ · · · ≤ λ1(C(W )) denote the eigenvalues of the
dispersion estimator applied to data W . The estimator C breaks down if
the smallest eigenvalue can be driven to zero or if the largest eigenvalue can
be driven to ∞. Hence the breakdown value of the dispersion estimator is

B(C,W ) = min{d
n

: sup
W n

d

med[
1

λp(C(W n
d))

, λ1(C(W n
d))] = ∞}.

The following result shows that a multivariate location estimator T basi-
cally “breaks down” if the d outliers can make the median Euclidean distance
MED(‖wi−T (W n

d)‖) arbitrarily large where wT
i is the ith row of W n

d . Thus
a multivariate location estimator T will not break down if T can not be driven
out of some ball of (possibly huge) radius R about the origin.
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Proposition 10.8. If nonequivariant estimators (that have a break-
down value of greater than 1/2) are excluded, then a multivariate loca-
tion estimator has a breakdown value of dT /n iff dT is the smallest num-
ber of arbitrarily bad cases that can make the median Euclidean distance
MED(‖wi − T (W n

dT
)‖) arbitrarily large.

Proof. Note that for a fixed data set W n
d with ith row wi, if the

multivariate location estimator T (W n
d ) satisfies ‖T (W n

d)‖ = M for some
constant M , then the median Euclidean distance MED(‖wi − T (W n

d)‖) ≤
maxi=1,...,n ‖xi − T (W n

d )‖ ≤ maxi=1,...,n ‖xi‖ + M if d < n/2. Similarly, if
MED(‖wi−T (W n

d)‖) = M for some constant M , then ‖T (W n
d)‖ is bounded

if d < n/2. QED

Since the coordinatewise median MED(W ) is a HB estimator of multi-
variate location, it is also true that a multivariate location estimator T will
not break down if T can not be driven out of some ball of radius R about
MED(W ). Hence (MED(W ), Ip) is a HB estimator of MLD. The following
result shows that it is easy to find a subset J of cn ≈ n/2 cases such that the
classical estimator (xJ ,SJ) applied to J is a HB estimator of MLD.

Proposition 10.9. Let J consist of the cn cases xi such that ‖xi −
MED(W )‖ ≤ MED(‖xi−MED(W )‖). Then the classical estimator (xJ ,SJ )
applied to J is a HB estimator of MLD.

Proof. Note that xJ is HB by Proposition 10.8. From numerical linear
algebra, it is known that the largest eigenvalue of a p×p matrix C is bounded
above by pmax |ci,j| where ci,j is the (i, j) entry of C . See Datta (1995, p.
403). Denote the cn cases by z1, ..., zcn . Then the (i, j)th element ci,j of
C ≡ SJ is

ci,j =
1

cn − 1

cn∑
k=1

(zi,k − zk)(zj,k − zj).

Hence the maximum eigenvalue λ1 is bounded if fewer than half of the
cases are outliers. Unless the percentage of outliers is high (higher than
a value tending to 0.5 as n → ∞), the determinant |CMCD(cn)| of the
HB minimum covariance determinant (MCD) estimator of Definition 10.9
below is greater than 0. Thus 0 < |CMCD(cn)| ≤ |SJ | = λ1 · · · λp, and
λp > |CMCD(cn)|/λp−1

1 > 0. QED
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The determinant det(S) = |S| of S is known as the generalized sample
variance. Consider the hyperellipsoid

{z : (z − T )TC−1(z − T ) ≤ D2
(cn)} (10.17)

where D2
(cn) is the cnth smallest squared Mahalanobis distance based on

(T,C). This ellipsoid contains the cn cases with the smallest D2
i . The vol-

ume of this ellipsoid is proportional to the square root of the determinant
|C|1/2, and this volume will be positive unless extreme degeneracy is present
among the cn cases. See Johnson and Wichern (1988, p. 103-104).

10.6 Algorithms for the MCD Estimator

Definition 10.9. Consider the subset Jo of cn ≈ n/2 observations whose
sample covariance matrix has the lowest determinant among all C(n, cn) sub-
sets of size cn. Let TMCD and CMCD denote the sample mean and sample
covariance matrix of the cn cases in Jo. Then the minimum covariance de-
terminant MCD(cn) estimator is (TMCD(W ),CMCD(W )).

The MCD estimator is a high breakdown estimator, and the value cn =
�(n+ p+ 1)/2� is often used as the default. The MCD estimator is the pair

(β̂LTS, QLTS(β̂LTS)/(cn − 1))

in the location model. The population analog of the MCD estimator is closely
related to the ellipsoid of highest concentration that contains cn/n ≈ half of
the mass. The MCD estimator is a

√
n consistent HB estimator for

(μ, aMCDΣ)

where aMCD is some positive constant when the data X i are elliptically
contoured ECp(μ,Σ, g), and TMCD has a Gaussian limit. See Butler, Davies,
and Jhun (1993).

Computing robust covariance estimators can be very expensive. For ex-
ample, to compute the exact MCD(cn) estimator (TMCD, CMCD), we need to
consider the C(n, cn) subsets of size cn. Woodruff and Rocke (1994, p. 893)
note that if 1 billion subsets of size 101 could be evaluated per second, it
would require 1033 millenia to search through all C(200, 101) subsets if the
sample size n = 200.
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Hence high breakdown (HB) algorithms will again be used to approximate
the robust estimators. Many of the properties and techniques used for HB
regression algorithm estimators carry over for HB algorithm estimators of
multivariate location and dispersion. Elemental sets are the key ingredient
for both basic resampling and concentration algorithms.

Definition 10.10. Suppose that x1, ...,xn are p× 1 vectors of observed
data. For the multivariate location and dispersion model, an elemental set J
is a set of p+1 cases. An elemental start is the sample mean and sample co-
variance matrix of the data corresponding to J. In a concentration algorithm,
let (T0,j,C0,j) be the jth start (not necessarily elemental) and compute all n
Mahalanobis distances Di(T0,j,C0,j). At the next iteration, the classical es-
timator (T1,j,C1,j) = (x1,j,S1,j) is computed from the cn ≈ n/2 cases corre-
sponding to the smallest distances. This iteration can be continued for k steps
resulting in the sequence of estimators (T0,j,C0,j), (T1,j,C1,j), ..., (Tk,j,Ck,j).
The result of the iteration (Tk,j,Ck,j) is called the jth attractor. If Kn starts
are used, then j = 1, ..., Kn. The concentration estimator (TCMCD,CCMCD),
called the CMCD estimator, is the attractor that has the smallest determi-
nant det(Ck,j). The basic resampling algorithm estimator is a special case
where k = 0 so that the attractor is the start: (xk,j ,Sk,j) = (x0,j,S0,j).

This concentration algorithm is a simplified version of the algorithms
given by Rousseeuw and Van Driessen (1999) and Hawkins and Olive (1999a).
Using k = 10 concentration steps often works well.

Proposition 10.10: Rousseeuw and Van Driessen (1999, p. 214).
Suppose that the classical estimator (xi,j,Si,j) is computed from cn cases and
that the n Mahalanobis distances RDm ≡ RDm(xi,j,Si,j) are computed. If
(xi+1,j,Si+1,j) is the classical estimator computed from the cn cases with the
smallest Mahalanobis distances RDm, then the MCD criterion det(Si+1,j) ≤
det(Si,j) with equality iff (xi+1,j,Si+1,j) = (xi,j,Si,j).

As in regression, starts that use a consistent initial estimator could be
used. Kn is the number starts and k is the number of concentration steps used
in the algorithm. Lopuhaä (1999) shows that if (x1,1,S1,1) is the sample mean
and covariance matrix applied to the cases with the smallest cn Mahalanobis
distances based on the initial estimator (T0,1,C0,1), then (x1,1,S1,1) has the
same rate of convergence as the initial estimator. Assume k is fixed. If
a start (T,C) is a consistent estimator of (μ, sΣ), then the attractor is a
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consistent estimator of (μ, aΣ) where a, s > 0 are some constants. If the
start is inconsistent, then so is the attractor. Hence the rate of the best
attractor is equal to the rate of the best start.

Proposition 10.11. If K and k are fixed and free of n (eg K = 500),
then the elemental concentration algorithm estimator is inconsistent.

Proof. Following Hawkins and Olive (2002), the sample mean x com-
puted from hn randomly drawn cases is an inconsistent estimator unless
hn → ∞ as n → ∞. Thus the classical estimator applied to a randomly
drawn elemental set of hn ≡ p + 1 cases is an inconsistent estimator, so the
K starts and the K attractors are inconsistent by Lopuhaä (1999). The final
estimator is an attractor and thus inconsistent.

If concentration is iterated to convergence so that k is not fixed, then it
has not been proven that the attractor is inconsistent if elemental starts are
used. It is possible to produce consistent estimators if K ≡ Kn is allowed to
increase to ∞.

Remark 10.3. Let γo be the highest percentage of large outliers that an
elemental concentration algorithm can detect reliably. For many data sets,

γo ≈ min(
n− c

n
, 1 − [1 − (0.2)1/K ]1/h)100% (10.18)

if n is large and h = p+ 1.

The proof of this remark is exactly the same as the proof of Proposition 9.1
and Equation (10.18) agrees very well with the Rousseeuw and Van Driessen
(1999) simulation performed on the hybrid FMCD algorithm that uses both
concentration and partitioning. Section 10.7 will provide more theory for the
CMCD algorithms and will show that there exists a useful class of data sets
where the elemental concentration algorithm can tolerate up to 25% massive
outliers.

10.7 Theory for CMCD Estimators

This section presents the FCH estimator to be used along with the classical
and FMCD estimators. Recall from Definition 10.10 that a concentration al-
gorithm uses Kn starts (T0,j,C0,j). Each start is refined with k concentration
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steps, resulting in Kn attractors (Tk,j,Ck,j), and the final estimator is the
attractor that optimizes the criterion.

Concentration algorithms have been used by several authors, and the basic
resampling algorithm is a special case with k = 0. Using k = 10 concentration
steps works well, and iterating until convergence is usually fast. The DGK
estimator (Devlin, Gnanadesikan and Kettenring 1975, 1981) defined below
is one example. Gnanadesikan and Kettenring (1972, p. 94–95) provide a
similar algorithm. The DGK estimator is affine equivariant since the classical
estimator is affine equivariant and Mahalanobis distances are invariant under
affine transformations by Proposition 10.7.

Definition 10.11. The DGK estimator (xk,0,Sk,0) = (TDGK ,CDGK)
uses the classical estimator computed from all n cases as the only start.

Definition 10.12. The median ball (MB) estimator (xk,50,Sk,50) =
(TMB,CMB) uses the classical estimator computed from the cn ≈ n/2 cases
with Di(MED(W ), Ip) = ‖xi − MED(W )‖ ≤ MED(Di(MED(W ), Ip)) as
a start. So the half set of cases xi closest to the coordinatewise median
MED(W ) in Euclidean distance is used. Let (x−1,50,S−1,50) = (MED(W ), Ip).
Then the MB estimator is also the attractor of (MED(W ), Ip).

Some observations on breakdown from Section 10.5 will be useful for
creating a simple robust estimator. If d of the cases have been replaced
by arbitrarily bad contaminated cases, then the contamination fraction is
γ = d/n. Then the breakdown value of a multivariate location estimator is
the smallest value of γ needed to make ‖T‖ arbitrarily large, and T will not
break down if T can not be driven out of some ball of (possibly huge) radius
R about MED(W ). The breakdown value of a dispersion estimator C is
the smallest value of γ needed to drive the smallest eigenvalue to zero or the
largest eigenvalue to ∞. Section 10.5 showed that if (T,C) is the classical
estimator (xJ ,SJ) applied to some subset J of cn ≈ n/2 cases of the data,
then the maximum eigenvalue λ1 can not get arbitrarily large if the cn cases
are all contained in some ball of radius R about the origin. Hence all of the
λi are bounded, and λp can only be driven to zero if the determinant of C
can be driven to zero. Using the above ideas suggests the following three
robust estimators which use the same two starts.
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Definition 10.13. Let the Mth start (T0,M ,C0,M) = (x0,M ,S0,M) be
the classical estimator applied after trimming the M% of cases furthest in
Euclidean distance from the coordinatewise median MED(W ) where M ∈
{0, 50}. Then concentration steps are performed resulting in the Mth attrac-
tor (Tk,M ,Ck,M ) = (xk,M ,Sk,M). The M = 0 attractor is the DGK estimator
and the M = 50 attractor is the MB estimator. The MBA estimator uses
the attractor with the smallest determinant as does the FCH estimator if
‖xk,0−MED(W )‖ ≤ MED(Di(MED(W ), Ip)). If the DGK location estima-
tor has a greater Euclidean distance from MED(W ) than half the data, then
FCH uses the median ball attractor. Let (TA,CA) be the attractor used.
Then the estimator (TF ,CF ) takes TF = TA and

CF =
MED(D2

i (TA,CA))

χ2
p,0.5

CA (10.19)

where χ2
p,0.5 is the 50th percentile of a chi–square distribution with p degrees

of freedom and F is the MBA or FCH estimator. CMVE is like FCH but the
MVE criterion [MED(Di(xk,M ,Sk,M ))]p

√
det(Sk,M ) is used instead of the

MCD criterion det(Sk,M ).

The following assumption and remark will be useful for examining the sta-
tistical properties of multivariate location and dispersion (MLD) estimators.

Assumption (E1): Assume that X1, ...,Xn are iid elliptically contoured
ECp(μ,Σ, g) with nonsingular Cov(X) = cXΣ for some constant cX > 0.

Then from Definition 10.5, the population squared Mahalanobis distance

U ≡ D2(μ,Σ) = (X − μ)TΣ−1(X − μ) (10.20)

has density

h(u) =
πp/2

Γ(p/2)
kpu

p/2−1g(u), (10.21)

and the 50% highest density region has the form of the hyperellipsoid

{z : (z − μ)TΣ−1(z − μ) ≤ U0.5}
where U0.5 is the median of the distribution of U . For example, if the X are
MVN, then U has the χ2

p distribution.
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Remark 10.4.
a) Butler, Davies and Jhun (1993): The MCD(cn) estimator is a

√
n con-

sistent HB estimator for (μ, aMCDΣ) where the constant aMCD > 0 depends
on the EC distribution.

b) Lopuhaä (1999): If (T,C) is a consistent estimator for (μ, sΣ) with
rate nδ where the constants s > 0 and δ > 0, then the classical estimator
(xM ,SM ) computed after trimming the M% (where 0 < M < 100) of cases
with the largest distances Di(T,C) is a consistent estimator for (μ, aMΣ)
with the same rate nδ where aM > 0 is some constant. Notice that applying
the classical estimator to the cn ≈ n/2 cases with the smallest distances
corresponds to M = 50.

c) Rousseeuw and Van Driessen (1999): Assume that the classical esti-
mator (xm,j,Sm,j) is computed from cn cases and that the n Mahalanobis
distances Di ≡ Di(xm,j,Sm,j) are computed. If (xm+1,j,Sm+1,j) is the clas-
sical estimator computed from the cn cases with the smallest Mahalanobis
distances Di, then the MCD criterion det(Sm+1,j) ≤ det(Sm,j) with equality
iff (xm+1,j,Sm+1,j) = (xm,j,Sm,j).

d) Pratt (1959): Let K be a fixed positive integer and let the constant
a > 0. Suppose that (T1,C1), ..., (TK,CK) are K consistent estimators of
(μ, a Σ) each with the same rate nδ. If (TA,CA) is an estimator obtained by
choosing one of the K estimators, then (TA,CA) is a consistent estimator of
(μ, a Σ) with rate nδ.

e) Olive (2002): Assume (Ti,Ci) are consistent estimators for (μ, aiΣ)
where ai > 0 for i = 1, 2. Let Di,1 and Di,2 be the corresponding distances
and let R be the set of cases with distances Di(T1,C1) ≤ MED(Di(T1,C1)).
Let rn be the correlation between Di,1 and Di,2 for the cases in R. Then
rn → 1 in probability as n→ ∞.

f) Olive (2004a): (x0,50,S0,50) is a high breakdown estimator. If the data
distribution is EC but not spherical about μ, then for m ≥ 0, Sm,50 under
estimates the major axis and over estimates the minor axis of the highest
density region. Concentration reduces but fails to eliminate this bias. Hence
the estimated highest density region based on the attractor is “shorter” in
the direction of the major axis and “fatter” in the direction of the minor axis
than estimated regions based on consistent estimators. Arcones (1995) and
Kim (2000) showed that x0,50 is a HB

√
n consistent estimator of μ.

The following remarks help explain why the FCH estimator is robust.
Using k = 5 concentration steps often works well. The scaling makes CFCH
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a better estimate of Σ if the data is multivariate normal MVN. See Equa-
tions (11.2) and (11.4). The attractor (Tk,0,Ck,0) that uses the classical
estimator (0% trimming) as a start is the DGK estimator and has good
statistical properties. By Remark 10.4f, the start (T0,50,C0,50) that uses
50% trimming is a high breakdown estimator. Since only cases xi such that
‖xi−MED(W )‖ ≤ MED(‖xi−MED(W )‖) are used, the largest eigenvalue
of C0,50 is bounded if fewer than half of the cases are outliers.

The geometric behavior of the start (T0,50,C0,50) is simple. If the data
xi are MVN (or EC) then the highest density regions of the data are hyper-
ellipsoids. The set of x closest to the coordinatewise median in Euclidean
distance is a hypersphere. For EC data the highest density ellipsoid and hy-
persphere will have approximately the same center as the hypersphere, and
the hypersphere will be drawn towards the longest axis of the hyperellipsoid.
Hence too much data will be trimmed in that direction. For example, if the
data are MVN with Σ = diag(1, 2, ..., p) then C0,50 will underestimate the
largest variance and overestimate the smallest variance. Taking k concentra-
tion steps can greatly reduce but not eliminate the bias of Ck,50 if the data
is EC, and the determinant |Ck,50| < |C0,50| unless the attractor is equal to
the start by Remark 10.4c. The attractor (Tk,50,Ck,50) is not affine equiv-
ariant but is resistant to gross outliers in that they will initially be given
weight zero if they are further than the median Euclidean distance from the
coordinatewise median. Gnanadesikan and Kettenring (1972, p. 94) suggest
an estimator similar to the attractor (Tk,50,Ck,50), also see Croux and Van
Aelst (2002).

Recall that the sample median MED(Yi) = Y ((n + 1)/2) is the middle
order statistic if n is odd. Thus if n = m + d where m is the number of
clean cases and d = m − 1 is the number of outliers so γ ≈ 0.5, then the
sample median can be driven to the max or min of the clean cases. The
jth element of MED(W ) is the sample median of the jth predictor. Hence
with m−1 outliers, MED(W ) can be driven to the “coordinatewise covering
box” of the m clean cases. The boundaries of this box are at the min and
max of the clean cases from each predictor, and the lengths of the box edges
equal the ranges Ri of the clean cases for the ith variable. If d ≈ m/2 so
that γ ≈ 1/3, then the MED(W ) can be moved to the boundary of the
much smaller “coordinatewise IQR box” corresponding the 25th and 75th
percentiles of the clean date. Then the edge lengths are approximately equal
to the interquartile ranges of the clean cases.
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Note thatDi(MED(W ), Ip) = ‖xi−MED(W )‖ is the Euclidean distance
of xi from MED(W ). Let C denote the set of m clean cases. If d ≤ m−1, then
the minimum distance of the outliers is larger than the maximum distance
of the clean cases if the distances for the outliers satisfy Di > B where

B2 = max
i∈C

‖xi − MED(X)‖2 ≤
p∑

i=1

R2
i ≤ p(maxR2

i ).

Example 10.4. Tremearne (1911) recorded height = x[,1] and height
while kneeling = x[,2] of 112 people. Figure 10.1a shows a scatterplot of the
data. Case 3 has the largest Euclidean distance of 214.767 from MED(W ) =
(1680, 1240)T , but if the distances correspond to the contours of a covering
ellipsoid, then case 44 has the largest distance. The start (x0,50,S0,50) is
the classical estimator applied to the “half set” of cases closest to MED(W )
in Euclidean distance. The circle (hypersphere for general p) centered at
MED(W ) that covers half the data is small because the data density is high
near MED(W ). The median Euclidean distance is 59.661 and case 44 has
Euclidean distance 77.987. Hence the intersection of the sphere and the data
is a highly correlated clean ellipsoidal region. Figure 10.1b shows the DD plot
of the classical distances vs the MB distances. Notice that both the classical
and MB estimators give the largest distances to cases 3 and 44. Notice that
case 44 could not be detected using marginal methods.

As the dimension p gets larger, outliers that can not be detected by
marginal methods (case 44 in Example 10.4) become harder to detect. When
p = 3 imagine that the clean data is a baseball bat with one end at the SW
corner of the bottom of the box (corresponding to the coordinate axes) and
one end at the NE corner of the top of the box. If the outliers are a ball,
there is much more room to hide them in the box than in a covering rectangle
when p = 2.

The MB estimator has outlier resistance similar to (MED(W ), Ip) for
distant outliers but, as shown in Example 10.4, can be much more effective
for detecting certain types of outliers that can not be found by marginal
methods. For EC data, the MB estimator is best if the data is spherical
about μ or if the data is highly correlated with the major axis of the highest
density region {xi : D2

i (μ,Σ) ≤ d2}.
Next, we will compare several concentration algorithms with theory and

simulation. Let the CMCD algorithm use k > 1 concentration steps where
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Figure 10.1: Plots for Major Data

the final estimator is the attractor that has the smallest determinant (the
MCD criterion). We recommend k = 10 for the DGK estimator and k = 5
for the CMVE, FCH and MBA estimators.

To investigate the consistency and rate of robust estimators of multivari-
ate location and dispersion, the following extension of Definitions 8.6 and
8.7 will be used. Let g(n) ≥ 1 be an increasing function of the sample size
n: g(n) ↑ ∞, eg g(n) =

√
n. See White (1984, p. 15). Notice that if a

p×1 random vector T −μ converges to a nondegenerate multivariate normal
distribution with convergence rate

√
n, then T has (tightness) rate

√
n.

Definition 10.14. Let A = [ai,j] be an r × c random matrix.
a) A = OP (Xn) if ai,j = OP (Xn) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
b) A = op(Xn) if ai,j = op(Xn) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
c) A �P (1/(g(n)) if ai,j �P (1/(g(n)) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
d) Let A1 = T − μ and A2 = C − cΣ for some constant c > 0. If A1 �P

(1/(g(n)) and A2 �P (1/(g(n)), then (T,C) has (tightness) rate g(n).

In MLR, if the start is a consistent estimator for β, then so is the attrac-
tor. Hence all attractors are estimating the same parameter. The following
proposition shows that MLD concentration estimators with k ≥ 1 are esti-
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mating (μ, aMCDΣ). Hence Remark 10.4 b) and d) can be combined with
d = aMCD to provide simple proofs for MLD concentration algorithms.

Proposition 10.12. Assume that (E1) holds and that (T,C) is a con-
sistent estimator of for (μ, aΣ) with rate nδ where the constants a > 0 and
δ > 0. Then the classical estimator (xm,j,Sm,j) computed after trimming
the cn ≈ n/2 of cases with the largest distances Di(T,C) is a consistent es-
timator for (μ, aMCDΣ) with the same rate nδ. Hence MED(D2

i (xm,j ,Sm,j))
is a consistent estimator of U0.5/aMCD.

Proof. The result follows by Remark 10.4b if a50 = aMCD. But by
Remark 10.4e the overlap of cases used to compute (xm,j ,Sm,j) and (TMCD,
CMCD) goes to 100% as n→ ∞. Hence the two sample covariance matrices
Sm,j and CMCD both estimate the same quantity aMCDΣ. QED

The following proposition proves that the elemental concentration and
“h–set” basic resampling algorithms produce inconsistent zero breakdown
estimators.

Proposition 10.13. Suppose that each start uses h ≥ p + 1 randomly
selected cases and that the number of starts Kn ≡ K does not depend on n
(eg, K = 500). Then
i) the (“h-set”) basic resampling estimator is inconsistent.
ii) The k–step CMCD concentration algorithm is inconsistent.
iii) For the basic resampling algorithm, the breakdown value is bounded
above by K/n.
iv) For CMCD the breakdown value is bounded above by K(h− p)/n.

Proof. To prove i) and ii), notice that each start is inconsistent. Hence
each attractor is inconsistent by Lopuhaä (1999) for CMCD. Choosing from
K inconsistent estimators still results in an inconsistent estimator. iii) Re-
place one case in each start by a case with a value tending to ∞. iv). If
h ≥ p+1, replace h− p cases so that the start is singular and the covariance
matrix can not be computed. QED

We certainly prefer to use consistent estimators whenever possible. When
the start subset size hn ≡ h and the number of starts Kn ≡ K are both fixed,
the estimator is inconsistent. The situation changes dramatically if the start
subset size hn = g(n) → ∞ as n→ ∞. The conditions in Proposition 10.14i
hold, for example, if the classical estimator is applied to hn cases randomly
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drawn from a distribution with a covariance matrix Cov(X) = cXΣ. Then
each of the K starts estimates (μ, cXΣ) with rate [hn]1/2.

Proposition 10.14. Suppose Kn ≡ K starts are used and that all starts
have subset size hn = g(n) ↑ ∞ as n → ∞. Assume that the estimator
applied to the subset has rate nδ.
i) If each of the K estimators (Ti,Ci) is a [g(n)]δ consistent estimator for
(μ, aΣ) (ie, ai ≡ a for i = 1, ..., K), then the MLD hn-set basic resampling
algorithm estimator has rate [g(n)]δ.
ii) The CMCD estimator has rate [g(n)]δ if assumption (E1) holds.
iii) The DGK estimator has rate n1/2 if assumption (E1) holds.
iv) The MBA and FCH estimators have rate n1/2 if (E1) holds and the
distribution is spherical about μ.

Proof. i) The result follows by Pratt (1959). ii) By Lopuhaä (1999), all
K attractors have [g(n)]δ rate, and the result follows by Proposition 10.12
and Pratt (1959). iii) The DGK estimator uses K = 1 and hn = n, and the
k concentration steps are performed after using the classical estimator as a
start. Hence the result follows by Lopuhaä (1999). iv) Each of the K = 2
starts is

√
n consistent (if M = 50 then the (MED(W ), Ip) = (T−1,C−1)

can be regarded as the start). Hence the result follows by Proposition 10.12
and Pratt (1959). QED

Suppose that the concentration algorithm covers cn cases. Then Remark
10.3 suggested that concentration algorithms using K starts each consisting
of h cases can handle roughly a percentage γo of huge outliers where

γo ≈ min(
n− cn
n

, 1 − [1 − (0.2)1/K ]1/h)100% (10.22)

if n is large. Empirically, this value seems to give a rough approximation for
many simulated data sets.

However, if the data set is multivariate and the bulk of the data falls in one
compact ellipsoid while the outliers fall in another hugely distant compact
ellipsoid, then a concentration algorithm using a single start can sometimes
tolerate nearly 25% outliers. For example, suppose that all p+1 cases in the
elemental start are outliers but the covariance matrix is nonsingular so that
the Mahalanobis distances can be computed. Then the classical estimator
is applied to the cn ≈ n/2 cases with the smallest distances. Suppose the
percentage of outliers is less than 25% and that all of the outliers are in
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this “half set.” Then the sample mean applied to the cn cases should be
closer to the bulk of the data than to the cluster of outliers. Hence after a
concentration step, the percentage of outliers will be reduced if the outliers
are very far away. After the next concentration step the percentage of outliers
will be further reduced and after several iterations, all cn cases will be clean.

In a small simulation study, 20% outliers were planted for various values
of p. If the outliers were distant enough, then the minimum DGK distance for
the outliers was larger than the maximum DGK distance for the nonoutliers.
Hence the outliers would be separated from the bulk of the data in a DD plot
of classical versus robust distances. For example, when the clean data comes
from the Np(0, Ip) distribution and the outliers come from the Np(2000 1, Ip)
distribution, the DGK estimator with 10 concentration steps was able to
separate the outliers in 17 out of 20 runs when n = 9000 and p = 30. With
10% outliers, a shift of 40, n = 600 and p = 50, 18 out of 20 runs worked.
Olive (2004a) showed similar results for the Rousseeuw and Van Driessen
(1999) FMCD algorithm and that the MBA estimator could often correctly
classify up to 49% distant outliers. The following proposition shows that it
is very difficult to drive the determinant of the dispersion estimator from a
concentration algorithm to zero.

Proposition 10.15. Consider the CMCD and MCD estimators that
both cover cn cases. For multivariate data, if at least one of the starts is
nonsingular, then the CMCD estimator CA is less likely to be singular than
the high breakdown MCD estimator CMCD.

Proof. If all of the starts are singular, then the Mahalanobis distances
cannot be computed and the classical estimator can not be applied to cn
cases. Suppose that at least one start was nonsingular. Then CA and CMCD

are both sample covariance matrices applied to cn cases, but by definition
CMCD minimizes the determinant of such matrices. Hence 0 ≤ det(CMCD) ≤
det(CA). QED

Next we will show that it is simple to modify existing elemental con-
centration algorithms such that the resulting CMCD estimators have good
statistical properties. These CMCD estimators satisfy i) 0 < det(CCMCD) <
∞ even if nearly half of the cases are outliers, and if (E1) holds then ii)
CMCD−MCD = OP (n−1/2), and iii) the CMCD estimators are asymptoti-
cally equivalent to the DGK estimator if (E1) holds but the data distribution
is not spherical about μ.
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We will be interested in the attractor that minimizes the MCD criterion
det(Sk,M) and in the attractor that minimizes the MVE criterion

[MED(Di)]
p

√
det(Sk,M ), (10.23)

(see Rousseeuw and Leroy 1987, p. 259) which is proportional to the volume
of the hyperellipsoid

{z : (z − xk,M )TS−1
k,M (z − xk,M ) ≤ d2} (10.24)

where d2 = MED(D2
i (xk,M ,Sk,M)). The following two theorems show how

to produce
√
n consistent robust estimators from starts that use O(n) cases.

The following theorem shows that the MBA and FCH estimators have good
statistical properties.

Theorem 10.16. Suppose (E1) holds.
a) If (TA,CA) is the attractor that minimizes the MVE criterion (10.23),

then (TA,CA) is a HB
√
n consistent estimator of (μ, aMCDΣ).

b) If (TA,CA) is the attractor that minimizes det(Sk,M ), then (TA,CA) is
a HB

√
n consistent estimator of (μ, aMCDΣ). The MBA and FCH estimators

are HB
√
n consistent estimators of (μ, cΣ) where c = 1 for MVN data.

Proof. a) The estimator is HB since (x0,50,S0,50) is a high breakdown
estimator and hence has a bounded volume if up to nearly 50% of the cases
are outliers. If the distribution is spherical about μ then the result follows
by Proposition 10.14iv. Otherwise, the hyperellipsoid corresponding to the
highest density region has at least one major axis and at least one minor axis.
The estimators with M > 0 trim too much data in the direction of the major
axis and hence the resulting attractor is not estimating the highest density
region. But the DGK estimator (M = 0) is estimating the highest density
region. Thus the probability that the DGK estimator is the attractor that
minimizes the volume goes to one as n→ ∞, and (TA,CA) is asymptotically
equivalent to the DGK estimator (Tk,0,Ck,0). QED

b) Under (E1) the FCH and MBA estimators are asymptotically equiva-
lent since ‖Tk,0 −MED(W )‖ → 0 in probability. The estimator is HB since
0 < det(CMCD) ≤ det(CA) ≤ det(S0,50) <∞ if up to nearly 50% of the cases
are outliers. If the distribution is spherical about μ then the result follows
by Proposition 10.14iv. Otherwise, the estimators with M > 0 trim to much
data in the direction of the major axis and hence the resulting attractor is not
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estimating the highest density region. Hence Sk,M is not estimating aMCDΣ.
But the DGK estimator Sk,0 is a

√
n consistent estimator of aMCDΣ and

‖CMCD − Sk,0‖ = OP (n−1/2). Thus the probability that the DGK attractor
minimizes the determinant goes to one as n → ∞, and (TA,CA) is asymp-
totically equivalent to the DGK estimator (Tk,0,Ck,0). The scaling (10.19)
makes c = 1 for MVN data. QED

The proof for CMVE is nearly identical: the CMVE volume is bounded
by that of MVE (the minimum volume ellipsoid estimator) and MB, and the
DGK estimator can be used to estimate the highest density minimum volume
region while MB volume is too large for nonspherical EC distributions.

The following theorem shows that fixing the inconsistent zero breakdown
elemental CMCD algorithm is simple. Just add the two FCH starts.

Theorem 10.17. Suppose that (E1) holds and that the CMCD algo-
rithm uses Kn ≡ K randomly selected elemental starts (eg, K = 500),
the start (T0,0,C0,0) and the start (T0,50,C0,50). The elemental attractor
(xk,j,Sk,j) or the DGK estimator (Tk,0,Ck,0) ≡ (xk,0,Sk,0) is not used if

‖xk,j − MED(W )‖ > MED(Di(MED(W ), Ip)). (10.25)

Then this CMCD estimator is a HB
√
n consistent estimator. If the EC

distribution is not spherical about μ, then the CMCD estimator is asymp-
totically equivalent to the DGK estimator.

Proof. The estimator is HB since 0 < det(CMCD) ≤ det(CCMCD) ≤
det(S0,50) < ∞ if up to nearly 50% of the cases are outliers. Notice that
the DGK estimator (Tk,0,Ck,0) is the attractor for (T0,0,C0,0). Under (E1),
the probability that the attractor from a randomly drawn elemental set gets
arbitrarily close to the MCD estimator goes to zero as n→ ∞. But DGK −
MCD = OP (n−1/2). Since the number of randomly drawn elemental sets
K does not depend on n, the probability that the DGK estimator has a
smaller criterion value than that of the best elemental attractor also goes
to one. Hence if the distribution is spherical about μ then (with probability
going to one) one of the FCH attractors will minimize the criterion value and
the result follows. If (E1) holds and the distribution is not spherical about
μ, then the probability that the DGK attractor minimizes the determinant
goes to one as n → ∞, and (TCMCD,CCMCD) is asymptotically equivalent
to the DGK estimator (Tk,0,Ck,0). Using the location criterion to eliminate
attractors does not affect the results since under (E1), the probability that
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‖Tk,0 − MED(W )‖ ≤ MED(Di(MED(W ), Ip)) goes to one. QED

Definition 10.14. Compute D2
i (TF ,CF ) where F is the MBA, FCH or

CMVE estimator. i) Then compute the classical estimator from the cases
with D2

i ≤ χ2
p,0.975 and ii) scale for normality using the right hand side of

(10.19). Repeat steps i) and ii). The resulting estimator is the RMBA,
RFCH or RCMVE estimator.

Theorem 10.18. The RMBA, RFCH and RCMVE estimators are
√
n

consistent HB MLD estimators.

Proof. Since the MBA, FCH and CMVE estimators are
√
n consistent

and HB, so are the RMBA, RFCH and RCMVE estimators by Lopuhaä
(1999). The reweighting step is commonly used and is known to not change
the breakdown value, although the maximum amount of bias does change.

To compare (TMBA,CMBA), (TRMBA,CRMBA) and (TFMCD,CFMCD), we
used simulated data with n = 100 cases and computed the FMCD estimator
with the R/Splus function cov.mcd. Initially the data sets had no outliers,
and all 100 cases were MVN with zero mean vector and Σ = diag(1,2, ...,
p). We generated 500 runs of this data with p = 4. The averaged diagonal
elements of CMBA were 1.196, 2.223, 3.137 and 4.277. (In the simulations,
the scale factor in Equation (10.19) appeared to be slightly too large for
small n but slowly converged to the correct factor as n increased.) The
averaged diagonal elements of CRMBA were 1.002, 2.001, 2.951 and 4.005.
The averaged diagonal elements of CFMCD were 0.841, 1.655, 2.453, and
3.387. The approximation 1.2CFMCD ≈ Σ was good. For all three matrices,
all off diagonal elements had average values less than 0.047 in magnitude.

Next data sets with 40% outliers were generated. The last 60 cases were
MVN with zero mean vector and Σ = diag(1,2, ..., p). The first 40 cases were
MVN with the same Σ, but the p×1 mean vector μ = (10, 10

√
2, ..., 10

√
p)T .

We generated 500 runs of this data using p = 4. Shown below are the averages
of CMBA, CRMBA and CFMCD . Notice that CFMCD performed extremely
well while the CMBA entries were over inflated by a factor of about 2 since
the outliers inflate the scale factor MED(D2

i (TA,CA))/χ2
p,0.5.
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Figure 10.2: The FMCD Estimator Failed
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Figure 10.3: The Outliers are Large in the MBA DD Plot
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MBA ⎡
⎢⎢⎣

2.107 −0.001 0.014 −0.082
−0.011 4.151 −0.053 −0.093
0.014 −0.053 6.085 −0.045
−0.082 −0.093 −0.045 8.039

⎤
⎥⎥⎦

RMBA ⎡
⎢⎢⎣

1.879 0.004 −0.010 −0.061
0.004 3.790 0.015 0.014
−0.010 0.015 5.649 0.092
−0.061 0.014 0.092 7.480

⎤
⎥⎥⎦

FMCD ⎡
⎢⎢⎣

0.979 0.005 −0.009 −0.032
0.005 1.971 0.012 0.004
−0.009 0.012 2.953 0.046
−0.032 0.004 0.046 3.893

⎤
⎥⎥⎦

The DD plot of MDi versus RDi is useful for detecting outliers. The
resistant estimator will be useful if (T,C) ≈ (μ, cΣ) where c > 0 since
scaling by c affects the vertical labels of the RDi but not the shape of the
DD plot. For the outlier data, the MBA estimator is biased, but the outliers
in the MBA DD plot will have large RDi since CMBA ≈ 2CFMCD ≈ 2Σ.

When p is increased to 8, the cov.mcd estimator was usually not useful
for detecting the outliers for this type of contamination. Figure 10.2 shows
that now the FMCD RDi are highly correlated with the MDi. The DD plot
based on the MBA estimator detects the outliers. See Figure 10.3.

Remark 10.5. Assume assumption (E1) holds, and consider modifying
the FMCD algorithm by adding the 2 MBA starts. The FMCD estimator
uses 500 elemental starts and partitioning and also iterates 5 starts to con-
vergence. Suppose the data set has nD cases. Then the maximum number
of concentration steps until convergence is bounded by kD, say. Assume that
for n > nD, no more than kD concentration steps are used. (This assumption
is not unreasonable. Asymptotic theory is meant to simplify matters, not to
make things more complex. Also the algorithm is supposed to be fast. Let-
ting the maximum number of concentration steps increase to ∞ would result
in an impractical algorithm.) Then the elemental attractors are inconsistent
and for EC data that is not spherical about μ, the best attractor will be
asymptotically equivalent with the DGK estimator. The modified FMCD
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“weight for efficiency step” does not change the
√
n rate by Lopuhaä (1999).

The algorithm can be further improved by not using attractors satisfying
Equation (10.25).

A simple simulation for outlier resistance is to generate outliers and count
the percentage of times the minimum distance of the outliers is larger than
the maximum distance of the clean cases. Then the outliers can be separated
from the clean cases with a horizontal line in the DD plot. The simulation
used 100 runs and n = 200. If γ = 0.2 then the first 40 cases were outliers.
The clean cases were MVN: x ∼ Np(0, diag(1, 2, ..., p)). Outlier types were 1)
a point mass (0, ..., 0, pm)T at the major axis, 2) a point mass (pm, 0, ..., 0)T

at the minor axis and 3) x ∼ Np(pm1, diag(1, 2, ..., p)) where 1 = (1, ..., 1)T .
Maronna and Zamar (2002) suggest that a point mass orthogonal to the

major axis may be least favorable for OGK, but for FAST-MCD and MBA a
point mass at the major axis will cause a lot of difficulty because an ellipsoid
with very small volume can cover half of the data by putting the outliers at
one end of the ellipsoid and the clean data in the other end. This half set
will produce a classical estimator with very small determinant by (10.23).
Rocke and Woodruff (1996) suggest that outliers with a mean shift are hard
to detect. A point mass is used although for large γ and moderate p the
point mass causes numerical difficulties in that the R software will declare
that the sample covariance matrix is singular.

Notice that the clean data can be transformed to a Np(0, Ip) distribution
by multiplying xi by diag(1, 1/

√
2, ..., 1/

√
p). The counts for affine equivari-

ant estimators such as DGK and FAST-MCD will not be changed. Notice
that the point mass at the minor axis (pm, 0, ..., 0)T is not changed by the
transformation, but the point mass at the major axis becomes
(0, ..., 0, pm/

√
p)T , which is much harder to detect.

The results of the simulation are shown in Table 10.1. The counts for the
classical estimator were always 0 and thus omitted. As expected, the MCD
criterion has trouble with a tight cluster of outliers. For p = 20, γ = .2
and a point mass at the major axis, FAST-MCD needed PM = 4000 and
MBA needed PM = 10000 before having a small chance of giving the outliers
large distances. Combining information from location and dispersion was
effective. The point mass outliers make the DGK determinant small (though
larger than the MCD determinant by definition), but pull the DGK location
estimator away from MED(W ). Note that FCH performance dominated
MBA and was sometimes better than OGK and sometimes worse. CMVE
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Table 10.1: Percentage of Times Outliers Were Detected

p γ type PM MBA FCH DGK OGK FMCD CMVE MB
5 .2 1 15 0 100 0 0 0 100 100
10 .2 1 20 0 4 0 0 0 16 96
20 .2 1 30 0 0 0 0 0 1 61
20 .2 1 50 0 100 0 0 0 100 100
20 .2 1 100 0 100 0 22 0 100 100
20 .2 1 4000 0 100 0 100 31 100 100
20 .2 1 10000 24 100 0 100 100 100 100
5 .2 2 15 97 100 0 71 100 100 100
10 .2 2 20 0 58 0 71 0 97 100
20 .2 2 30 0 0 0 99 0 76 100
20 .2 2 50 0 100 0 100 0 100 100
20 .2 2 100 0 100 0 100 0 100 100
20 .2 2 4000 96 100 0 100 100 100 100
5 .2 3 5 88 88 87 5 97 92 91
10 .2 3 5 92 92 84 2 100 92 94
20 .2 3 5 85 85 1 0 99 66 85
40 .4 3 20 38 38 0 0 0 40 100
40 .4 3 30 77 97 0 59 0 91 100
40 .4 3 40 91 100 0 100 0 100 100

was nearly always better than OGK. For a mean shift and small p and γ the
elemental FAST-MCD estimator was somewhat better than CMVE, MB,
MBA and FCH. If γ is large enough then CMVE, MBA, FCH and MB
dominate FAST-MCD. MB was never worse than OGK, but OGK did seem
to behave like a HB estimator in that it could detect distant outliers.

The simulation suggests that marginal methods for detecting outliers
should not be abandoned. We suggest making a DD plot with the

√
n con-

sistent HB FCH estimator as an EC diagnostic. Make the MB DD plot to
check for outliers. Other methods that do not have proven theory can also
be used as outlier diagnostics. For p ≤ 10 make a scatterplot matrix of the
variables. The plots should be ellipsoidal if the EC assumption is reason-
able. Dot plots of individual predictors with superimposed histograms are
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also useful. For large n the histograms should be approximately symmetric
if the EC assumption is reasonable.

Software

The robustbase library was downloaded from (www.r-project.org/#doc).∮
14.2 explains how to use the source command to get the rpack func-

tions in R and how to download a library from R. Type the commands
library(MASS) and library(robustbase) to compute the FAST-MCD and
OGK estimators with the cov.mcd and covOGK functions.

The rpack function
mldsim(n=200,p=5,gam=.2,runs=100,outliers=1,pm=15)
can be used to simulate the first line in Table 10.1. Change outliers to 0 to
examine the average of μ̂ and Σ̂. The function mldsim5 is similar but does
not need the library command since it compares the FCH, RFCF, CMVE,
RCMVE and MB estimators. The command
sctplt(n=200,p=10,gam=.2,outliers=3, pm=5)
will make 1 data set corresponding to 5th line from the bottom of Table 10.1.
Then the FCH and MB DD plots are made (click on the right mouse button
and highlight stop to go to the next plot) and then the scatterplot matrix.
The scatterplot matrix can be used to determine whether the outliers are
hard to detect with bivariate or univariate methods. If p > 10 the bivariate
plots may be too small.

The function covsim2 can be modified to show that the R implementation
of FCH is much faster than OGK which is much faster than FAST-MCD. The
function corrsim can be used to simulate the correlations of robust distances
with classical distances. The RCMVE, RMBA and RFCH are reweighted
versions of CMVE, MBA and FCH that may perform better for small n. For
MVN data, the command corrsim(n=200,p=20,nruns=100,type=5) suggests
that the correlation of the RFCH distances with the classical distances is
about 0.97. Changing type to 4 suggests that FCH needs n = 800 before the
correlation is about 0.97. The function corrsim2 uses a wider variety of EC
distributions.

Functions covdgk, covmba and rmba compute the scaled DGK, MBA and
RMBA estimators while covfch and cmve are used to compute FCH, RFCH,
CMVE and RCMVE.
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10.8 Complements

The theory for concentration algorithms is due to Hawkins and Olive (2002)
and Olive and Hawkins (2007b,2008). The MBA estimator is due to Olive
(2004a). The computational and theoretical simplicity of the FCH estima-
tor makes it one of the most useful robust estimators ever proposed. An
important application of the robust algorithm estimators and of case diag-
nostics is to detect outliers. Sometimes it can be assumed that the analysis
for influential cases and outliers was completely successful in classifying the
cases into outliers and good or “clean” cases. Then classical procedures can
be performed on the good cases. This assumption of perfect classification is
often unreasonable, and it is useful to have robust procedures, such as the
FCH estimator, that have rigorous asymptotic theory and are practical to
compute. Since the FCH estimator is about an order of magnitude faster
than alternative robust estimators, the FCH estimator may be useful for
computationally intensive applications.

The RFCH estimator takes slightly longer to compute than the FCH
estimator, and should have slightly less resistance to outliers.

In addition to concentration and randomly selecting elemental sets, three
other algorithm techniques are important. He and Wang (1996) suggest
computing the classical estimator and a consistent robust estimator. The
final cross checking estimator is the classical estimator if both estimators are
“close,” otherwise the final estimator is the robust estimator. The second
technique was proposed by Gnanadesikan and Kettenring (1972, p. 90).
They suggest using the dispersion matrix C = [ci,j] where ci,j is a robust
estimator of the covariance of Xi and Xj . Computing the classical estimator
on a subset of the data results in an estimator of this form. The identity

ci,j = Cov(Xi,Xj) = [VAR(Xi + Xj) − VAR(Xi − Xj)]/4

where VAR(X) = σ2(X) suggests that a robust estimator of dispersion can
be created by replacing the sample standard deviation σ̂ by a robust estima-
tor of scale. Maronna and Zamar (2002) modify this idea to create a fairly
fast high breakdown consistent OGK estimator of multivariate location and
dispersion. This estimator may be the leading competitor of the FCH es-
timator. Also see Alqallaf, Konis, Martin and Zamar (2002) and Mehrotra
(1995). Woodruff and Rocke (1994) introduced the third technique, parti-
tioning, which evaluates a start on a subset of the cases. Poor starts are
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discarded, and L of the best starts are evaluated on the entire data set. This
idea is also used by Rocke and Woodruff (1996) and by Rousseeuw and Van
Driessen (1999).

There certainly exist types of outlier configurations where the FMCD
estimator outperforms the robust FCH estimator. The FCH estimators is
vulnerable to outliers that lie inside the hypersphere based on the median
Euclidean distance from the coordinatewise median. Although the FCH es-
timator should not be viewed as a replacement for the FMCD estimator,
the FMCD estimator should be modified as in Theorem 10.17. Until this
modification appears in the software, both estimators can be used for outlier
detection by making a scatterplot matrix of the Mahalanobis distances from
the FMCD, FCH and classical estimators.

The simplest version of the MBA estimator only has two starts. A simple
modification would be to add additional starts as in Problem 10.18.

Johnson and Wichern (1988) and Mardia, Kent and Bibby (1979) are
good references for multivariate statistical analysis based on the multivariate
normal distribution. The elliptically contoured distributions generalize the
multivariate normal distribution and are discussed (in increasing order of
difficulty) in Johnson (1987), Fang, Kotz and Ng (1990), Fang and Anderson
(1990), and Gupta and Varga (1993). Fang, Kotz and Ng (1990) sketch the
history of elliptically contoured distributions while Gupta and Varga (1993)
discuss matrix valued elliptically contoured distributions. Cambanis, Huang
and Simons (1981), Chmielewski (1981) and Eaton (1986) are also important
references. Also see Muirhead (1982, p. 30–42).

Rousseeuw (1984) introduced the MCD and the minimum volume ellip-
soid MVE(cn) estimator. For the MVE estimator, T (W ) is the center of
the minimum volume ellipsoid covering cn of the observations and C(W )
is determined from the same ellipsoid. TMV E has a cube root rate and the
limiting distribution is not Gaussian. See Davies (1992). Bernholdt and
Fisher (2004) show that the MCD estimator can be computed with O(nv)
complexity where v = 1 + p(p + 3)/2 if x is a p× 1 vector.

Rocke and Woodruff (1996, p. 1050) claim that any affine equivariant
location and shape estimation method gives an unbiased location estimator
and a shape estimator that has an expectation that is a multiple of the
true shape for elliptically contoured distributions. Hence there are many
candidate robust estimators of multivariate location and dispersion. See
Cook, Hawkins and Weisberg (1993) for an exact algorithm for the MVE.
Other papers on robust algorithms include Hawkins (1993b, 1994), Hawkins
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and Olive (1999a), Hawkins and Simonoff (1993), He and Wang (1996), Olive
(2004a), Olive and Hawkins (2007b, 2008), Rousseeuw and Van Driessen
(1999), Rousseeuw and van Zomeren (1990), Ruppert (1992), and Woodruff
and Rocke (1993). Rousseeuw and Leroy (1987,

∮
7.1) also describes many

methods.
The discussion by Rocke and Woodruff (2001) and by Hubert (2001) of

Peña and Prieto (2001) stresses the fact that no one estimator can domi-
nate all others for every outlier configuration. These papers and Wisnowski,
Simpson, and Montgomery (2002) give outlier configurations that can cause
problems for the FMCD estimator.

Papers on robust distances include Olive (2002) and Garćıa-Escudero and
Gordaliza (2005).

10.9 Problems

10.1∗. Suppose that⎛
⎜⎜⎝

X1

X2

X3

X4

⎞
⎟⎟⎠ ∼ N4

⎛
⎜⎜⎝

⎛
⎜⎜⎝

49
100
17
7

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

3 1 −1 0
1 6 1 −1
−1 1 4 0
0 −1 0 2

⎞
⎟⎟⎠

⎞
⎟⎟⎠ .

a) Find the distribution of X2.

b) Find the distribution of (X1, X3)
T .

c) Which pairs of random variables Xi and Xj are independent?

d) Find the correlation ρ(X1, X3).

10.2∗. Recall that if X ∼ Np(μ,Σ), then the conditional distribution of
X1 given that X2 = x2 is multivariate normal with mean μ1 +Σ12Σ

−1
22 (x2−

μ2) and covariance matrix Σ11 − Σ12Σ
−1
22 Σ21.

Let σ12 = Cov(Y,X) and suppose Y and X follow a bivariate normal
distribution (

Y
X

)
∼ N2

( (
49
100

)
,

(
16 σ12

σ12 25

) )
.
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a) If σ12 = 0, find Y |X. Explain your reasoning.

b) If σ12 = 10 find E(Y |X).

c) If σ12 = 10, find Var(Y |X).

10.3. Let σ12 = Cov(Y,X) and suppose Y and X follow a bivariate
normal distribution(

Y
X

)
∼ N2

( (
15
20

)
,

(
64 σ12

σ12 81

) )
.

a) If σ12 = 10 find E(Y |X).

b) If σ12 = 10, find Var(Y |X).

c) If σ12 = 10, find ρ(Y,X), the correlation between Y and X.

10.4. Suppose that

X ∼ (1 − γ)ECp(μ,Σ, g1) + γECp(μ, cΣ, g2)

where c > 0 and 0 < γ < 1. Following Example 10.2, show that X has
an elliptically contoured distribution assuming that all relevant expectations
exist.

10.5. In Proposition 10.5b, show that if the second moments exist, then
Σ can be replaced by Cov(X).

crancap hdlen hdht Data for 10.6

1485 175 132

1450 191 117

1460 186 122

1425 191 125

1430 178 120

1290 180 117

90 75 51

10.6∗. The table (W ) above represents 3 head measurements on 6 people
and one ape. Let X1 = cranial capacity, X2 = head length and X3 = head
height. Let x = (X1, X2, X3)

T . Several multivariate location estimators,
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including the coordinatewise median and sample mean, are found by applying
a univariate location estimator to each random variable and then collecting
the results into a vector. a) Find the coordinatewise median MED(W ).

b) Find the sample mean x.

10.7. Using the notation in Proposition 10.6, show that if the second
moments exist, then

Σ−1
XXΣXY = [Cov(X)]−1Cov(X, Y ).

10.8. Using the notation under Lemma 10.4, show that if X is elliptically
contoured, then the conditional distribution of X1 given that X2 = x2 is
also elliptically contoured.

10.9∗. Suppose Y ∼ Nn(Xβ, σ2I). Find the distribution of
(XTX)−1XTY if X is an n× p full rank constant matrix.

10.10. Recall that Cov(X,Y ) = E[(X − E(X))(Y − E(Y ))T ]. Using
the notation of Proposition 10.6, let (Y,XT )T be ECp+1(μ,Σ, g) where Y is
a random variable. Let the covariance matrix of (Y,XT ) be

Cov((Y,XT )T ) = c

(
ΣY Y ΣY X

ΣXY ΣXX

)
=

(
VAR(Y ) Cov(Y,X)

Cov(X, Y ) Cov(X)

)

where c is some positive constant. Show that E(Y |X) = α + βT X where

α = μY − βTμX and

β = [Cov(X)]−1Cov(X, Y ).

10.11. (Due to R.D. Cook.) Let X be a p × 1 random vector with
E(X) = 0 and Cov(X) = Σ. Let B be any constant full rank p× r matrix
where 1 ≤ r ≤ p. Suppose that for all such conforming matrices B,

E(X|BT X) = MBBT X

where MB a p× r constant matrix that depend on B.
Using the fact that ΣB = Cov(X,BTX) = E(XXTB) =

E[E(XXTB|BTX)], compute ΣB and show that MB = ΣB(BTΣB)−1.
Hint: what acts as a constant in the inner expectation?

R/Splus Problems
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Use the command source(“A:/rpack.txt”) to download the func-
tions and the command source(“A:/robdata.txt”) to download the data.
See Preface or Section 14.2. Typing the name of the rpack function, eg
covmba, will display the code for the function. Use the args command, eg
args(covmba), to display the needed arguments for the function.

10.12. a) Download the maha function that creates the classical Maha-
lanobis distances.

b) Enter the following commands and check whether observations 1–40
look like outliers.

> simx2 <- matrix(rnorm(200),nrow=100,ncol=2)

> outx2 <- matrix(10 + rnorm(80),nrow=40,ncol=2)

> outx2 <- rbind(outx2,simx2)

> maha(outx2)

10.13. Download the rmaha function that creates the robust Mahalanobis
distances. Obtain outx2 as in Problem 10.12 b). R users need to enter
the command library(MASS). Enter the command rmaha(outx2) and check
whether observations 1–40 look like outliers.

10.14. a) Download the covmba function.

b) Download the program rcovsim.

c) Enter the command rcovsim(100) three times and include the output
in Word.

d) Explain what the output is showing.

10.15∗. a) Assuming that you have done the two source commands above
Problem 10.12 (and in R the library(MASS) command), type the command
ddcomp(buxx). This will make 4 DD plots based on the DGK, FCH, FMCD
and median ball estimators. The DGK and median ball estimators are the
two attractors used by the FCH estimator. With the leftmost mouse button,
move the cursor to each outlier and click. This data is the Buxton (1920)
data and cases with numbers 61, 62, 63, 64, and 65 were the outliers with
head lengths near 5 feet. After identifying the outliers in each plot, hold the
rightmost mouse button down (and in R click on Stop) to advance to the
next plot. When done, hold down the Ctrl and c keys to make a copy of the
plot. Then paste the plot in Word.
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b) Repeat a) but use the command ddcomp(cbrainx). This data is the
Gladstone (1905-6) data and some infants are multivariate outliers.

c) Repeat a) but use the command ddcomp(museum[,-1]). This data
is the Schaaffhausen (1878) skull measurements and cases 48–60 were apes
while the first 47 cases were humans.

10.16∗. (Perform the source(“A:/rpack.txt”) command if you have not
already done so.) The concmv function illustrates concentration with p = 2
and a scatterplot ofX1 versusX2. The outliers are such that the median ball,
MBA and FCH estimators can not always detect them. Type the command
concmv(). Hold the rightmost mouse button down (and in R click on Stop)
to see the DD plot after one concentration step. Repeat 4 more times to see
the DD plot based on the attractor. The outliers have large values of X2

and the highlighted cases have the smallest distances. Repeat the command
concmv() several times. Sometimes the start will contain outliers but the
attractor will be clean (none of the highlighted cases will be outliers), but
sometimes concentration causes more and more of the highlighted cases to
be outliers, so that the attractor is worse than the start. Copy one of the
DD plots where none of the outliers are highlighted into Word.

10.17∗. (Perform the source(“A:/rpack.txt”) command if you have not
already done so.) The ddmv function illustrates concentration with the DD
plot. The first graph is the DD plot after one concentration step. Hold
the rightmost mouse button down (and in R click on Stop) to see the DD
plot after two concentration steps. Repeat 4 more times to see the DD plot
based on the attractor. In this problem, try to determine the proportion
of outliers gam that the DGK estimator can detect for p = 2, 4, 10 and 20.
Make a table of p and gam. For example the command ddmv(p=2,gam=.4)
suggests that the DGK estimator can tolerate nearly 40% outliers with p = 2,
but the command ddmv(p=4,gam=.4) suggest that gam needs to be lowered
(perhaps by 0.1 or 0.05). Try to make 0 < gam < 0.5 as large as possible.

10.18. (Perform the source(“A:/rpack.txt”) command if you have not
already done so.) A simple modification of the MBA estimator adds starts
trimming M% of cases furthest from the coordinatewise median MED(x).
For example use M ∈ {98, 95, 90, 80, 70, 60, 50}. Obtain the program cmba2
from rpack.txt and try the MBA estimator on the data sets in Problem
10.15.
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