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Abstract
Robust statistics are obtained by searching the data for a “most con-

centrated set” and then applying classical methods to this set. For example,
robust regression estimators can be obtained by applying classical estimators
to the half set of observations that has the smallest sum of squared or abso-
lute residuals. Multivariate location covariance estimators can be obtained
by finding the half set of observations that minimizes the determinant of the
classical covariance estimator.

The major theoretical result of this dissertation is that many robust re-
gression and multivariate location covariance estimators in the literature are
inconsistent. For example, many regression algorithms examine K fits bi.
If bo minimizes ‖bi − β‖ and bo is not a consistent estimator of β, then the
algorithm is inconsistent. Resampling algorithms are derived such that bo is
consistent.

The least trimmed sum of absolute deviations (LTA) estimator can be
computed by examining allC(n, p) subsets of size p. Hence the LTA estimator
is easier to compute than the least median of squares estimator. Note that
‖β̂S − β‖ = OP (n−1/4) if β̂S is the LTA estimator applied to a sample of

√
n

cases.
In the location model, the sample median and median absolute deviation

can be used to estimate the two parameters of a location scale family. Crude
diagnostics for sequential methods and confidence and prediction intervals
are given.

Diagnostics for regression, multivariate location covariance estimation,
and graphical regression are given. When a model is correct, many estima-
tors will be consistent. Since there are so many ways that a model can go
wrong, several classical and robust estimators should be applied to the data.
Then a scatterplot matrix of the residuals that has nonlinearities suggests an
assumption violation. Scatterplots of Mahalanobis distances from classical
and robust estimators can be used to determine whether multivariate data
is elliptically contoured, a key assumption for graphical regression.
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Chapter 1

Introduction

1.1 What Is a Robust Statistic?

We will say that a statistic Tn is a robust estimator of θ if it downweights
observations in the tail region of the distribution, is a consistent estimator of
θ when the model assumptions hold, and has an asymptotic distribution that
does not depend on the tail behavior of the underlying distribution. To clarify
this idea, we will show three ways to obtain robust estimators in the location
model. Suppose that the data are an independent and identically distributed
(iid) sample X1, ..., Xn of size n with a probability density function (pdf) f ,
and let the lower percentile L and the upper percentile U satisfy P (X1 ≤
L) = α and P (X1 ≤ U) = β. The lower α tail of f is f(x)I(−∞,L)(x) where
the indicator function IA(x) is equal to one if x lies in the set A, and is zero
otherwise. The upper 1 − β tail is f(x)I(U,∞)(x).

The first way to obtain a robust statistic is to discard 100α% of the small-
est observations and 100(1 − β)% of the largest observations. The trimmed
mean is the sample mean applied to the remaining data. Suppose that
Y1, ..., Yn is a sample from a distribution with pdf g with the same upper
tail area 1 − β and lower tail area α as f , and that

f(x)I[L,U ](x) = g(x)I[L,U ](x).

Then the asymptotic distribution of the trimmed mean will be the same
for both f and g provided that both pdfs are positive and continuous in
neighborhoods of L and U . Thus the behavior of the lower and upper tails is
irrelevant outside of these neighborhoods. Trimmed means and Winsorized
means are discussed in chapter 4.
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A second way to create a robust estimator is to metrically trim the data.
This type of trimming discards data outside of the interval

[MED(n) − k1MAD(n),MED(n) + k2MAD(n)]

where MED(n) is the sample median, MAD(n) is the sample median absolute
deviation (mad), k1 ≥ 1, and k2 ≥ 1. The sample median is a robust estimator
of location and the mad is a robust estimator of scale. (Both estimators are
discussed later in this chapter and in chapter 2.) The amount of trimming
will depend on the distribution of the data. For example, if k1 = k2 = 5.2
and the data is normal (Gaussian), about 1% of the data will be trimmed
while if the data is Cauchy, about 24% of the data will be trimmed. Hence
the upper and lower trimming points estimate lower and upper population
percentiles L(f) and U(f). The metrically trimmed mean applies the sample
mean to the “cleaned” data (the data that was not trimmed). Suppose the
pdfs f and g satisfy

g(x)I[L(f),U (f)](x) = f(x)I[L(f),U (f)](x)

and are continuous and positive in neighborhoods of L and U . Then the
metrically trimmed means will have the same limiting distribution if the
population median and mads for f and g are the same. See chapter 4.

A third way to create a robust estimator is find a set that has the “highest
density” or is the “most concentrated” in some sense. That is, find the set of
h ≈ n/2 cases that minimizes some criterion Q. For example, apply ordinary
least squares (OLS) to each of the

C(n, h) =

(

n

h

)

=
n!

(n− h)!h!

possible subsets of h distinct cases to find the set Jo of h observations that
has the smallest OLS criterion. It can be shown that this set consists of a
permutation of h consecutive order statistics. Hence if X(1) ≤ X(2) ≤ ... ≤
X(n) are the order statistics, then the order statistics of the observations in
Jo are

X(k) ≤ X(k+1) ≤ X(k+2) ≤ ... ≤ X(k+h−1)

for some integer k such that 1 ≤ k ≤ n− h+ 1. The robust estimator is the
sample mean applied to the observations in Jo. For this type of estimator, the
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tail behavior does not affect the asymptotic theory provided that the most
concentrated region is well defined. See chapter 11.

Truncated distributions play a major role in the asymptotic theory of
robust estimators and are discussed in chapters 3 and 6. A truncated dis-
tribution is defined by discarding the lower α tail and the upper 1 − β tail
and rescaling so that the resulting pdf integrates to one. In the location
model, suppose that the pdfs f and g have the same truncated distribution
and are continuous and positive in neighborhoods of the lower and upper
truncation points L and U . Then there are robust estimators that have the
same limiting distribution when data comes from either f or g.

For the regression model, it is possible to find most concentrated sets of
observations such that the limiting distribution depends on the errors only
through the truncated error distribution. For example, we could use the
subset Jo of h ≈ n/2 cases that minimizes the OLS criterion. Computing all
C(n, h) OLS fits is impractical, but sometimes there is a trick that reduces the
number of computations. For instance, in the location model, the algorithm
only needs to compute n−h+1 OLS fits. There are also tricks for the simple
regression model. See Hössjer (1995). When the dimension p is greater
than 2, Hawkins and Stromberg derived an algorithm that uses C(n, p + 1)
Chebyshev fits, see Stromberg (1993b). Hawkins and Olive (1998b) have
an algorithm that uses C(n, p) least absolute deviations (L1) fits. These
regression methods are discussed in chapters 8 and 11.

In the multivariate location and covariance setting, we need to assume
that the data is elliptically contoured in order to obtain large sample theory.
Such distributions have highest density regions that are ellipsoids. Robust
methods try to estimate the population ellipsoid of highest 50% coverage,
and trim the data that do not fall in the estimated ellipsoid. For elliptically
contoured distributions, the “α tail” region is the area outside of the 100(1−
α)% ellipsoid of highest concentration. Again this region must be unique,
but otherwise the tail behavior will not affect the limiting distribution. See
chapters 14 and 15.

1.2 Classical Robust Statistics

In this thesis robust statistics refers to the pioneering work of Hampel, Hu-
ber, and Rousseeuw. According to Huber (1981, p. 5), a robust statistical
procedure should perform reasonably well at the assumed model, should be

3



impaired only slightly by small departures from the model, and should not
be catastrophically impaired by somewhat larger deviations. Hampel et al
(1986, p. 11) add that a robust procedure should describe the structure
fitting the bulk of the data and identify deviating data points. The term
“distributional robust statistics” refers to methods that are designed to per-
form well when the shape of the true underlying model deviates slightly from
the assumed parametric model.

In the statistical literature the word “robust” is synonymous with “good,”
but generally the robust procedure is tailored for one type of model departure.
For example, the errors could be correlated instead of independent or the
errors could be heteroskedastic instead of having constant variance. The
majority of the statistical procedures described in Hampel et al (1986), Huber
(1981), and Rousseeuw and Leroy (1987) assume that outliers are present or
that the true underlying error distribution has heavier tails than the assumed
model. However, these three references and some of the papers in Stahel and
Weisberg (1991a,b) and Maddela and Rao (1997) do discuss other departures
from the assumed model.

We will use several models for data that contains outliers. The simplest
model assumes that the data is iid from a mixture distribution. For example,
the data could be iid from a family of contaminated distributions

C(G) = {F |F (
x− µ

σ
) = (1 − γ)G(

x− µ

σ
) + γB(

x− µ

σ
), B ∈M}, (1.1)

where 0 ≤ γ < 0.5. Here µ, γ, or σ may be known, G could be constrained
to be symmetric, and M is a class of distributions such as the class of all
point masses, the class of all symmetric distributions, or the class of all
distributions.

One of the earliest models for outliers assumes that the data can be
classified as “good” and “bad” points where the good points are iid from
some nice parametric family. Parameters are then estimated by applying
classical estimators (eg maximum likelihood) using just the “good” points
as a complete sample. A problem with this model is that inferences are
made conditional on perfect classification, an assumption that is generally
not realistic. Even if all of the data are “good,” most outlier rejection rules
will reject some observations. On the other hand, the model may be useful
for developing robust Bayesian procedures.

Another model can be described as a game pitting a statistician against
a malicious opponent. For example, suppose the statistician has a regression
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method that she believes will perform well if the errors are iid normal. Then
a data set of size n is generated from the Gaussian model. The opponent
is allowed to modify d of the n cases so that the contamination proportion
γ = d/n. Then the statistician applies her procedure to the contaminated
data. Perhaps the procedure would be judged by the size of the median
absolute residual or by its ability to classify “good” and “bad” cases. Under
this model the independence assumption is no longer appropriate since the
malicious opponent could modify the observations with the smallest absolute
least squares residuals or the observations with the greatest leverages. For
this model, we cannot hope to obtain consistent estimators, but we may be
able to control the maximum bias.

We can also use the model where the data set is the population. Hence
the sample size n is fixed, and the number of outliers d is an unknown param-
eter. For theoretical purposes, we will sometimes assume that the number of
outliers is bounded above or known. If the data set has n observations and d
outliers, then we can estimate the number of outliers that will be in a subset
of h observations chosen without replacement. Since this number follows a
hypergeometric distribution, we can estimate how many subsamples should
be drawn to obtain a clean subsample (a subsample of size h without any
outliers).

There are several approaches to robust statistics. The approaches of
Huber and Hampel were developed in the 1960’s while the work of Hawkins
and Rousseeuw for regression and robust covariance and multivariate location
estimation began in the 1980’s and is still an active area of research. Huber’s
minimax approach to robust statistics chooses a location estimator T which
minimizes the worst possible asymptotic bias or variance which could occur
if T is applied to a sample from a distribution F belonging to C(G), see
Huber (1981, p. 74-76). Hampel’s approach is based on several measures of
robustness. For example, the influence function measures how an estimator
changes if a single observation is allowed to be modified by the malicious
opponent. See Hampel et al (1986). Hawkins and Rousseeuw apply classical
methods to subsets of the data, in particular, the p−subset or “elemental”
approach to regression draws many samples of size p in the hope that one of
the samples will capture the structure of the bulk of the data. For covariance
and multiple location estimation, an elemental subset has size p + 1 and
determines an ellipsoid. Some of Rousseeuw’s work is described in Rousseeuw
and Leroy (1987), and many of the ideas of Hawkins and Rousseeuw are
described throughout this dissertation.
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1.3 Outlier Rejection and Outlier....s

The concept of outliers is rather vague although Barnett and Lewis (1994),
Davies and Gather (1993), and Gather and Becker (1997) give outlier models.
Also see Beckman and Cook (1983) for history. Typing and recording errors
may create outliers, and a data set can have a large proportion of outliers if
there is an omitted categorical variable (eg gender, species, or geographical
location) where the data behaves differently for each category. Recording
errors can sometimes be corrected and omitted variables can be included,
but often there is no simple explanation for a group of data which differs
from the bulk of the data. Although outliers are often synonymous with
“bad” data, they are frequently the most important part of the data, for
example, locations of mineral deposits. Staudte and Sheather (1990, p. 32)
define an outlier to be an observation which lies far away from the bulk of
the data, and Hampel et al (1986, p. 21) define outliers to be observations
which deviate from the pattern set by the majority of the data.

Finding outliers is very important. Rousseeuw and Leroy (1987, p. vii)
declare that the main message of their book is that robust regression is useful
in identifying outliers. Huber (1981, p. 4) states that outlier resistance and
distributional robustness are synonymous while Hampel et al (1986, p. 36)
state that the first and most important step in robustification is the rejection
of distant outliers.

Outlier rejection is a subjective or objective method for deleting or chang-
ing observations which lie away from the bulk of the data. The modified data
is often called the “cleaned data.” See Rousseeuw and Leroy (1987, p. 106,
161, 254, and 270), Huber (1981, p. 4-5, and 19), and Hampel et al (1986,
p. 24, 26, and 31). Data editing, screening, truncation, censoring, Winsoriz-
ing, and trimming are all methods for data cleaning. The word “rejection”
is somewhat misleading since data should never be blindly discarded. We
should always examine the outliers to see if they follow a pattern, are record-
ing errors, or if they could be explained adequately by a more complicated
model. David (1981, ch. 8) surveys outlier rules before 1974, and Hampel
et al (1986, section 1.4) surveys some robust outlier rejection rules. Outlier
rejection rules are also discussed in Hampel (1985), Simonoff (1987a,b), and
Stigler (1973b).

Robust estimators can be obtained by applying classical methods to the
cleaned data. Huber (1981, p. 4-5, 19) says that the performance of such
methods may be more difficult to work out than that of robust estimators
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such as the M-estimators, but gives a procedure for cleaning regression data.
Staudte and Sheather (1990, p. 29, 136) state that rejection rules are the least
understood and point out that for subjective rules where the cleaned data is
assumed to be iid, one can not find an unconditional standard error estimate.
Even if the data consists of observations which are iid plus outliers, some
“good” observations will usually be deleted while some “bad” observations
will be kept.

Shorack (1974) and Shorack and Wellner (1986, section 19.3) derive the
asymptotic theory for a large class of outlier rejection rules for the location
model. They assumed that the data are iid (so the cleaned observations
are dependent) and obtained results for trimmed, Winsorized, metrically
trimmed, and Huber type skipped means. Their results are presented in
chapter 4. Some other papers on the theory of these estimators include
Bickel (1965, 1975), Csörgö and Simons (1995), Jaeckel (1971a,b), Jureckova
et al (1994), Kim (1992), and Stigler (1973a). Jureckova and Sen (1996)
contains theory for rank, L, and M estimators.

1.4 Four Essential Location Estimators

The location model
Xi = µ+ ei, i = 1, . . . , n (1.2)

is often summarized by obtaining point estimates and confidence intervals
for a location parameter and a scale parameter. We assume that we have
a sample X1, . . . , Xn of size n where the Xi are independent and identically
distributed with cumulative distribution function (cdf) F , median MED(X),
mean E(X), and variance V (X) if they exist. We also assume that F is
a distribution known up to a few parameters. For example, F could be
Gaussian, exponential, or double exponential. The location parameter µ is
often the population mean or median while the scale parameter is often the
population standard deviation

√

V (X).
Point estimation is one of the oldest problems in statistics and four of

the most important statistics for the location model are the sample mean,
median, variance, and the median absolute deviation (mad). Let X1 . . . , Xn

be the random sample. Then the sample mean is

X̄ =

∑n
i=1Xi

n
. (1.3)
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Let X(1) ≤ . . . ≤ X(n) be the order statistics. Then

MEDc(n) = X((n+1)/2) if n is odd,

and
MEDc(n) = (1 − c)X(n/2) + cX((n/2)+1) if n is even

for c ∈ [0, 1]. Note that since a statistic is a function, c needs to be fixed.
The low median corresponds to c = 0, and the high median corresponds to
c = 1. The choice of c = 0.5 will yield the sample median

MED(n) = X((n+1)/2) if n is odd, (1.4)

MED(n) =
X(n/2) +X((n/2)+1)

2
if n is even.

The sample variance is

VAR(n) = S2
n =

∑n
i=1(Xi − X̄)2

n− 1
, (1.5)

and the sample median absolute deviation or median deviation is

MAD(n) = MED(|Xi − MED(n)|, i = 1, . . . , n). (1.6)

If MED(X) is known, we will use

MD(n) = MED(|Xi − MED(X)|, i = 1, . . . , n).

Since these estimators are nonparametric estimators of the corresponding
population quantities, they are useful for a very wide range of distributions.
They are also quite old. Rey (1978, p. 2) quotes Thucydides on a technique
used by Greek besiegers in the winter of 428 B.C. They made ladders equal
to the height of the enemy’s wall by counting the layers of bricks. They
had many people count the number of bricks, and used the mode of the
counts to estimate the number of layers. The reasoning was that some of the
counters would make mistakes, but the majority were likely to hit the true
count. If the majority did hit the true count, then the sample median would
equal the mode. In a lecture, Professor Portnoy stated that in 215 A.D., an
“eggs bulk” of impurity was allowed in the ritual preparation of food, and two
Rabbis desired to know what is an average sized egg given a collection of eggs.
One said use the middle sized egg while the other said average the largest
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and smallest eggs of the collection. Hampel et al (1986, p. 65) attribute
MAD(n) to Gauss in 1816, and Stigler (1973b) gives historic references to
outlier rejection techniques, M-estimators, and to the asymptotic theory of
the median. David (1995), Field (1985), and Sheynin (1997) also contain
historical references.

1.5 A Note on Notation

We will need notation in order to distinguish between population quantities,
random quantities, and observed quantities. For population quantities, we
will often use capital letters like E(X) and MAD(X) while the estimators
will often be denoted by MED(n),MAD(n), or MED(X1, . . . , Xn). We will
use x1, . . . , xn to denote the observed sample while the estimates will often
be denoted by med(n),mad(n), or x̄n. Table 1.1 summarizes some of this
notation.

Table 1.1: Some commonly used notation.
population sample

E(X), µ, θ X̄n, E(n) µ̂, θ̂

MED(X),M MED(n), M̂
VAR(X), σ2 VAR(n), S2, σ̂2

SD(X), σ SD(n), S, σ̂
MAD(X) MAD(n)
IQR(X) IQR(n)

1.6 What Are the Contributions of This The-

sis?

This dissertation contains several ideas that may be original. Chapters 2
through 7 concentrate on the location model. In chapter 2, we define the
population analog MAD(X) of the sample median absolute deviation and
obtain some simple bounds in lemma 2.1. The asymptotic theory for MAD(n)
was first derived for general distributions (not necessarily symmetric) by Hall
and Welsh (1985). We sketch their results and provide a new result (lemma
2.7) that can be used to simplify existing almost sure convergence proofs for
MAD(n).
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Chapter 3 discusses truncated and Winsorized distributions. These dis-
tributions play an important role in the asymptotic theory of location and
regression estimators. For example, many location estimators are estimating
a population truncated mean µT rather than a median or ordinary mean,
and the asymptotic variance of some regression estimators is related to the
truncated error variance σ2

T . See chapters 4 and 11.
Chapter 4 presents the theory of randomly trimmed and Winsorized

means. The theory is due to Shorack and Wellner (1986), but by using trun-
cated and Winsorized distributions instead of integrals of quantile functions,
the interpretation of their results has been simplified. The new estimator Tn

presented at the end of section 4.1 has an easily estimated standard error
if the underlying distribution is symmetric and compares favorably with the
estimator of Kim (1992). For metrically trimmed means, corollary 4.7 may
correct an error in Shorack (1974) and Shorack and Wellner (1986, p. 683).
Moreover, the theory of Hall and Welsh (1985) and Shorack and Wellner
(1986, section 19.3) is combined to show how the randomly trimmed and
Winsorized means behave under asymmetry.

Chapter 5 presents rules for truncating or Winsorizing data from various
parametric families. We suggest that the location and scale parameters of
a location scale family can be estimated using cLMED(n) and cSMAD(n)
where cL and cS are appropriate constants. Since many distributions can be
transformed so that a location scale family is a good approximation, objec-
tive outlier rejection rules can be created for a wide variety of distributions.
Chapter 5 also gives MED(X) and MAD(X) for some of the more common
distributions.

Chapter 7 gives a taste of how the rules in chapter 5 can be used to
create diagnostics for confidence intervals, prediction intervals, and sequential
hypothesis testing. The basic idea is that if the data comes from the assumed
distribution, then the probability is high that cleaning rule will not modify
any of the observations (for moderate sample sizes). Thus we can compare
the classical procedure applied to all of the data to the classical procedure
applied to the cleaned data. If the two estimators differ, then the model
may be incorrect. This idea should only be used as a first step for finding
diagnostics and for robustifying classical procedures. Although the simple
diagnostics may help the statistician gains insights of the effects of outliers
on the classical procedure, much better diagnostics can usually be created.

Chapter 8 describes the regression model Y = Xβ + e and gives some al-
gorithms for computing robust regression estimators. In particular, the least
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trimmed sum of absolute deviations estimator (LTA) can be computed ex-
actly using C(n, p) elemental fits. This new algorithm is faster than the exact
least median of squares algorithm that uses Chebyshev fits on all C(n, p+1)
subsets of size p+ 1.

In the statistical literature, theory is given for estimators that are imprac-
tical to compute, but approximate algorithms that evaluate K subsamples
of the data are used in the software. The main theoretical result of this
dissertation is that most of the robust algorithm estimators are inconsistent.
Define the “best” subsample fit

bo = argmini=1,...,K‖bi − β‖

where bi is the fit from the ith subsample. Since the fit selected by the
criterion is worse than the “best” of the K fits, we prove that many robust
estimators are inconsistent by showing that the best fit is inconsistent. In
chapters 8 and 9 we find algorithms such that the best subsample fit bo is
consistent for β and we give convergence rates.

Chapter 10 is used to show why the inconsistent algorithms can sometimes
track the trend of the data. For the small data sets examined in the literature,
the inconsistent estimators can find a subsample that has a small criterion
value.

Chapter 11 presents the folklore for the asymptotic theory of the LTA,
the least median of squares (LMS), and the least trimmed sum of squares
(LTS) estimators. The LTS and LTA results have only been proven for the
location model, but Hössjer (1994) gives suggestions for proving the LTA
and LTS theory in the regression setting. If the folklore is true, then we
can obtain consistent estimators by computing the exact LTA estimator on
a subsample of size

√
n of the cases. This result would be useful since the

results in chapters 8 and 9 only apply to the best subset bo. If bA is the
fit from the K subsamples that minimized the criterion and if β̂GBE is the
global minimizer of the criterion Q, then we know that

Q(β̂GBE) ≤ Q(bA) ≤ Q(bo);

however, even if bo and β̂GBE are consistent estimators, we do not know if bA
is a consistent estimator.

Chapter 12 describes desirable properties of robust regression estimators.
The high breakdown and affine equivariance properties have been said to
form the “golden standard” for robust regression estimators, but chapter 12
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shows that any affine equivariant regression estimator can be approximated
by a high breakdown, affine equivariant estimator. Hence these are not the
properties that make an estimator robust. Robust estimators find the half
set of the data which is “closest” to the surface Xβ, and this property enables
them to handle a wide variety of tail behavior.

Chapter 13 discusses regression algorithm techniques and introduces some
new robust regression criteria. The least adaptively trimmed sum of absolute
deviations (LATA) estimator can be computed by examining all C(n, p) ele-
mental fits, and should have high efficiency with respect to the L1 estimator.
However, the theory for this estimator will be even more difficult than the
LTS and LTA theory since the amount of trimming is random.

Perhaps the most important application in this thesis is given in chapter
15. The DD plot is linear with slope one if the multivariate distribution of
the predictors is the target elliptically contoured distribution. Hence the DD
plot can be use to transform the predictors to multivariate normality. When
the predictors are elliptically contoured, many useful graphical regression
procedures can be justified. Since graphical regression procedures encompass
a huge variety of parametric and nonparametric procedures, the DD plot may
become an important tool.

One of the main ideas of this dissertation is that the data should be
examined with several estimators. Often there are many procedures that will
perform well when the model assumptions hold, but no single method can
dominate every other method for every type of contamination. For example,
in high dimensional settings, every elemental subset selected by the algorithm
may contain an outlier. In this case the classical estimators such as OLS may
have less bias.

The “RR plot” is a scatterplot matrix of the residuals from several re-
gression fits. Tukey (1991) notes that such a plot will be linear with slope
one if the model assumptions hold. Let the ith residual from the jth fit β̂j be

ri,j = Yi − xT
i β̂j where the superscript T denotes the transpose of the vector

and (xT
i , Yi) is the ith observation. Then

‖ri,1 − ri,2‖ = ‖xT
i (β̂1 − β̂2)‖

≤ ‖xT
i ‖ (‖β̂1 − β‖ + ‖β̂2 − β‖).

Hence if β̂1 and β̂2 have good convergence rates and if the predictors xT
i are

bounded, then the residuals will cluster tightly about the 45 degree line as
n increases to ∞. For example, plot the least squares residuals vs the L1
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residuals. Since OLS and L1 are consistent, the plot should be linear with
slope one when the regression assumptions hold, but the plot should not
have slope one if there are y−outliers since L1 resists these outliers while
OLS does not. Making a scatterplot matrix of the residuals from OLS, L1,
and several other estimators can be very informative. Figure 1.1 shows the
RR plot for the Gladstone (1905-1906) data. (See chapters 8 and 15 for a
more complete discussion of this data set.) Note that the plots suggest that
three of the methods are producing approximately the same fits while the
LMS algorithm estimator ALMS is fitting 9 of the 274 points in a different
manner. These 9 points correspond to x-outliers.

Figure 1.1: RR Plot for Gladstone data

This dissertation will show that much of the folklore for robust algorithms
is not true. We show that many algorithms are inconsistent or that consis-
tency has not been proved. We also show that the high breakdown property
can be easily achieved. Hence this property is not what makes an algorithm
robust. To end this chapter, we will show that robust regression algorithms
do not necessarily find typos or give outliers large residuals. For observation
119 of the Gladstone (1905-6) data, I inadvertently entered one variable as
109 instead of 199. Residual plots for six Splus regression estimators are
shown in figure 1.2. The six estimators are described in chapter 8. ALMS,
the default version of lmsreg, and the zero breakdown LS and L1 estimators
fail to identify observation 119 as unusual.

Figure 1.2: Gladstone data, 119 is a typo

The Buxton (1920) data has five observations that are gross outliers and
is described in chapter 15. Figure 1.3 shows that the outliers were accom-
modated by all of the Splus estimators, except KLMS. More sophisticated
algorithms such as the exact LTA estimator and feasible solution algorithms
also accommodate the outliers. A tight cluster of outliers can replace some
of the “clean” data if the cluster does not greatly degrade the fit to the bulk
of the data. (So a plot of the residuals from a fit with the outliers and a
fit without the outliers follows a line of slope one except for the outliers.)
Such a cluster will have very different predicted values than the bulk of the
data, so the cluster does show up on the residual plot, but all of the residuals
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are small. This result illustrates why LMS and LTS do not perform well
for rules that label an observation an outlier if its absolute residual is large.
For example, Hadi and Simonoff (1993) found that rules from LMS did not
perform as well as rules for regression estimators that downweight x-outliers.

Figure 1.3: Buxton data, the outliers do not have large residuals.
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Chapter 2

Properties of the Median and
the Mad

2.1 Definitions and Robustness Properties

The population median MED(X) and the population mad (or median abso-
lute deviation, or median deviation) MAD(X) are very important quantities
of a distribution. The population median is any value MED(X) such that

P (X ≤ MED(X)) ≥ 0.5 and P (X ≥ MED(X)) ≥ 0.5, (2.1)

and
MAD(X) = MED(|X − MED(X)|). (2.2)

Since MAD(X) is a median distance, at least half of the mass is within a
distance MAD(X) of MED(X) and at least half of the mass is at least a
distance MAD(X) from MED(X). In other words, MAD(X) is any value
such that

P (X ∈ [MED(X) − MAD(X),MED(X) + MAD(X)]) ≥ 0.5,

and

P (X ∈ (MED(X) − MAD(X),MED(X) + MAD(X)) ≤ 0.5.

To summarize, the median of the population is the middle value of the distri-
bution and MAD(X) is the distance from MED(X) such that at least half of
the mass is inside [MED(X)−MAD(X),MED(X) + MAD(X)] and at least
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half of the mass of the distribution in outside of the interval (MED(X) −
MAD(X),MED(X) + MAD(X)).

For any given distribution with cdf F , the median and the median ab-
solute deviation always exist, but they may not be unique. Recall that
F (x) = P (X ≤ x) and F (x−) = P (X < x). The median is unique un-
less there is a flat spot at F−1(0.5), that is, unless there exist a and b with
a < b such that F (a) = F (b) = 0.5. If the median is not unique then
MAD(X) may not be unique either (but consider the random variable X
that is a mixture of two uniforms, one U(0, 0.5) and the other U(1, 1.5).
If MED(X) is unique, then MAD(X) is unique unless F has flat spots
at both F−1(MED(X) − MAD(X)) and F−1(MED(X) + MAD(X)). More-
over, MAD(X) is unique unless there exist a1 < a2 and b1 < b2 such that
F (a1) = F (a2), F (b1) = F (b2),

P (ai ≤ X ≤ bi) = F (bi) − F (ai−) ≥ 0.5,

and
P (X ≤ ai) + P (X ≥ bi) = F (ai) + 1 − F (bi−) ≥ 0.5

for i = 1, 2.
The following lemma gives some simple bounds for MAD(X).

Lemma 2.1. Assume MED(X) and MAD(X) are unique. Then

a)min{MED(X) − F−1(0.25), F−1(0.75) − MED(X)}

≤ MAD(X) ≤ max{MED(X) − F−1(0.25), F−1(0.75) − MED(X)}. (2.3)

b) If X is symmetric about µ = F−1(0.5), then the three terms in a) are
equal.
c) If the distribution is symmetric about zero, then MAD(X) = F−1(0.75).
d) If X is symmetric and continuous with a finite second moment, then

MAD(X) ≤
√

2VAR(X).

e) Suppose X ∈ [a, b]. Then

0 ≤ MAD(X) ≤ m = min{MED(X) − a, b− MED(X)} ≤ (b− a)/2,

and the inequalities are sharp.
Proof. a) This result follows since half the mass is between the upper

and lower quartiles and the median is between the two quartiles.
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b) and c) are corollaries of a).
d) This inequality holds by Chebyshev’s inequality, since

P ( |X − E(X)| ≥ MAD(X) ) = 0.5 ≥ P ( |X − E(X)| ≥
√

2VAR(X) ),

and E(X) = MED(X) for symmetric distributions with finite second mo-
ments.

e) Note that if MAD(X) > m, then either MED(X) − MAD(X) < a
or MED(X) + MAD(X) > b. Since at least half of the mass is between a
and MED(X) and between MED(X) and b, this contradicts the definition of
MAD(X). To see that the inequalities are sharp, note that if at least half of
the mass is at some point c ∈ [a, b], than MED(X) = c and MAD(X) = 0.
If each of the points a, b, and c has 1/3 of the mass where a < c < b, then
MED(X) = c and MAD(X) = m. QED

A very important robust estimator of spread is the sample mad

MAD(n) = MED(|Xi − MED(n)|, i = 1, . . . , n).

Since MAD(n) is the median of n distances, at least half of the observations
are within a distance MAD(n) of MED(n) and at least half of the observations
are at least a distance MAD(n) away from MED(n).

Example 2.1. Let the data be 1, 2, 3, 4, 5, 6, 7, 8, 9. Then MED(n) = 5
and
MAD(n) = 2 = MED{0, 1, 1, 2, 2, 3, 3, 4, 4}.

To illustrate the outlier resistance of MAD(n) and the MED(n), consider
the following lemma.
Lemma 2.2. If X1, . . . , Xn are iid with cumulative distribution function
(cdf) G, and if m ≤ n − 1 arbitrary points Y1, . . . , Ym are added to form a
sample of size n+m, then

MED(n+m) ∈ [X(1), X(n)], (2.4)

and
0 ≤ MAD(n+m) ≤ X(n) −X(1). (2.5)

Proof. Let the order statistics of X1, . . . , Xn be X(1) ≤ . . . ≤ X(n).
By adding a single point Y , we can cause the median to shift by half an
order statistic, but since at least half of the observations are to each side
of the sample median, we need to add at least m = n − 1 points to move
MED(n + m) to X(1) or to X(n). Hence if m ≤ n − 1 points are added,
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[MED(n+m)− (X(n) −X(1)),MED(n+m)+ (X(n) −X(1))] contains at least
half of the observations and MAD(n+m) ≤ X(n) −X(1). QED

Hence if X1, . . . , Xn are a random sample with cdf G and if Y1, . . . , Yn−1

are arbitrary, then the sample median and mad of the combined sample,
MED(n+ n− 1) and MAD(n+ n− 1), are bounded by quantities from the
random sample from G. Moreover, Huber (1981, p. 74-75) and Chen (1998)
show that the median minimizes the asymptotic bias for estimating MED(X)
for the family of symmetric contaminated distributions, and Huber (1981)
concludes that since the asymptotic variance is going to zero for reasonable
estimators, MED(n) is the estimator of choice for large n. Hampel et al
(1986, p. 133-134, 142-143) contains some other optimality properties of
MED(n) and MAD(n).

Many other results for MAD(X),MAD(n), and mad(n) are possible.
For example, note that lemma 2.1 b) implies that when X is symmetric,
MAD(X) = F−1(3/4) − µ and F (µ + MAD(X)) = 3/4. Also note that
MAD(X) and the interquartile range IQR(X) are related by

2MAD(X) = IQR(X) ≡ F−1(0.75) − F−1(0.25)

when X is symmetric. Moreover, results similar to those in lemma 2.1 hold
for MAD(n) with quantiles replaced by order statistics. One way to see this
is to note that the distribution with a point mass of 1/n at each observation
X1, . . . , Xn will have a population median equal to MED(n).

Finding MED(X) and MAD(X) for symmetric distributions and location
scale families is made easier by the following well known lemma and table
2.1.
Lemma 2.3. If X = a + bU, then a) MED(X) = a + bMED(U).
b) MAD(X) = |b|MAD(U).
Proof sketch. Assume the probability density functions (pdf’s) of X and
U are positive at their respective mads and medians. Assume b > 0.
a)

1/2 = P [U ≤ MED(U)] = P [a+ bU ≤ a+ bMED(X)] = P [X ≤ MED(X)].

b)
1/2 = P [MED(U) − MAD(U) ≤ U ≤ MED(U) + MAD(U)]

= P [a+ bMED(U) − bMAD(U) ≤ a + bU ≤ a+ bMED(U) + bMAD(U)]

= P [MED(X) − bMAD(U) ≤ X ≤ MED(X) + bMAD(U)]
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= P [MED(X) − MAD(X) ≤ X ≤ MED(X) + MAD(X)].

QED
Below is a table for the population mads and medians. For the first five

distributions the parameter a is the population median, and the parameter b
is a scale parameter. The notation tp denotes a t distribution with p degrees of
freedom. These distributions are discussed in much greater detail in chapter
5.

Table 2.1: MED(X) and MAD(X) for some common random
variables.

NAME X E(X) MED(X) MAD(X)
normal N(a, b2) a a b/1.483

exponential EXP (b) b log(2)b b/2.0781
Cauchy C(a, b) N/A a b

double exp. DE(a, b) a a log(2)b
Logistic L(a, b) a a log(3)b
uniform U(a, b) (a+ b)/2 (a + b)/2 (b− a)/4

t tp 0, p > 1 0 tp,3/4

For the gamma G(a, b) distribution, MED(X) ≈ b(a−1/3). This approx-
imation has small relative error if a > 3/2. Empirically,

MAD(X) ≈
√
a b

1.483
(1 − 1

9a
)2

if a > 3/2.
The following example shows how to approximate the population median

and mad under severe contamination when the “clean” observations are from
a symmetric location scale family.
Claim: Let Φ be the cdf of the standard normal, and let Φ(zα) = α. Suppose
X = (1− γ)W + γC where W ∼ N(µ, σ2) and C is a random variable far to
the right of µ. Then a)

MED(X) ≈ µ+ σz[ 1
2(1−γ)

]

and b) if 0.4285 < γ < 0.5,

MAD(X) ≈ MED(X) − µ + σz[ 1
2(1−γ)

]
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≈ 2σz[ 1
2(1−γ)

].

Proof. a) Since the pdf of C is far to the right of µ,

(1 − γ)Φ(
MED(X) − µ

σ
) ≈ 0.5,

and

Φ(
MED(X) − µ

σ
) ≈ 1

2(1 − γ)
.

b) Since the mass of C is far to the right of µ,

(1 − γ)P [MED(X) −MAD(X) < W < MED(X) + MAD(X)] ≈ 0.5.

Since the contamination is high, P (W < MED(X) + MAD(X)) ≈ 1, and

0.5 ≈ (1 − γ)P (MED(X) − MAD(X) < W )

= (1 − γ)[1 − Φ(
MED(X) − MAD(X) − µ

σ
)]. QED

2.2 Asymptotics for the Median and the Mad

The median is a sample quantile and the asymptotic theory of the quantiles
is well known. Throughout this section we will assume that X1, . . . , Xn are
iid with distribution X and cdf FX(x) = F (x) = P (X ≤ x). Let F (x−) =
P (X < x). Results A), B), and C) are typical.

A) Serfling (1980, p. 74-76): Let the sample pth quantile

ξ̂pn = inf{x : Fn(x) ≥ p} (2.6)

where Fn is the empirical cdf of X. Let 0 < p < 1. Suppose that ξp is the
unique solution x of F (x−) ≤ p ≤ F (x).
i)

ξ̂pn
ae→ ξp. (2.7)

ii) For every ε > 0,

P (sup
m≥n

|ξ̂pm − ξp| > ε) ≤ 2

1 − pε
pn

ε , (2.8)
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for all n, where pε = exp(−2δ2
ε ) and δε = min{F (ξp + ε)− p, p− F (ξp − ε)}.

B) Serfling (1980, p. 77): Let 0 < p < 1. If F is differentiable at ξp and
F ′(ξp) > 0, then

ξ̂pn − ξp
√

p(1 − p)/([F ′(ξp)]2n)
→ N(0, 1). (2.9)

C) Serfling (1980, p. 96): Let 0 < p < 1. If F is differentiable at ξp with
F ′(ξp) = f(ξp) > 0, then with probability 1,

|ξ̂pn − ξp| ≤
2(log n)1/2

f(ξp)n1/2
, (2.10)

for all n sufficiently large. Moreover, if F ′′(ξp) exists, then with probability
1,

|ξ̂pn − ξp| ≤
(log log n)1/2

f(ξp)n1/2

for all n sufficiently large.
If MED(X) is known, then MD(n) = MED(|Xi−MED(X)|, i = 1, . . . , n)

is just the sample median of Y1, . . . , Yn where Yi = |Xi − MED(X)|.
Lemma 2.4 Hall and Welsh (1985, p. 28). Assume MED(X) is unique
and let Y = |X − MED(X)|. Then for y > 0, the cdf of Y is

FY (y) = FX(MED(X) + y) − FX((MED(X) − y)−)

for y > 0.
Proof.

P (Y ≤ y) = P (|X − MED(X)| ≤ y) =

P (−y ≤ X − MED(X) ≤ MED(X) + y)

= P [MED(X) − y ≤ X ≤ MED(X) + y]

and the result follows. QED
The following three limit theorems show that MD(n) and MAD(n) con-

verge almost everywhere (ae) and have Gaussian limiting distributions. The
results for MD(n) follow from Serfling (1980, p. 74-77) while the proofs of
the results for MAD(n) are given in Hall and Welsh (1985). Let

G(x,m) = F (m+ x) − F ((m− x)−). (2.11)
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Then if MED(X) is unique, FY (x) = G(x,MED(X)), and if MAD(X) is
unique, MAD(X) = MAD(Y ). The first of the next three theorems is the ae
convergence result.
Theorem 2.5 Hall and Welsh (1985, p. 28-29). If MED(X) and
MAD(X) are unique, then
a) if MED(X) is known,

MD(n) → MAD(X) ae.

b) If F is continuous in neighborhoods of MED(X) ± MAD(X), then

MAD(n) → MAD(X) ae. (2.12)

Proof. a) This result follows by A) above. QED
The next theorem does not requireX to be symmetric, but the asymptotic

variance σ2

MAD has a long formula. Hall and Welsh (1985) use the following
notation. Let

g(x) = F ′(MED(X) + x) + F ′(MED(X) − x)

and
γ(x) =

g(x) − 2F ′(MED(X))[1 − F (MED(X) + x) − F (MED(X) − x)].

If the Y of lemma 2.4 has a pdf fY , and if F (MED(X)−x) = F ((MED(X)−
x)−), then fY (x) = g(x). Finally, let

Γ2(x) =
[F (MED(X)) − F ((MED(X) − x)−)]F ((MED(X) − x)−)

2F 2(MED(X))
+

[F (MED(X) + x) − F (MED(X)−)][1 − F (MED(X) + x)]

2[1 − F (MED(X)−)]2
.

Theorem 2.6 Hall and Welsh (1985, p. 30-33). a) Suppose g(MAD(X))
exists and is positive. Then if MED(X) is known,

√
n(MD(n) −MAD(X))

d→ N(0, σ2

MD) (2.13)

where

σ2

MD =
1

4g2(MAD(X))
.
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b) 1) Suppose F ′(MED(X)) exists and is positive.
2) Suppose F ′(MED(X) + MAD(X) + x) and F ′(MED(X)−MAD(X) + x)
exist for x in a neighborhood of the origin and are continuous at x = 0.
3) Suppose g(x) > 0 for x in a neighborhood of MAD(X).
Then √

n(MAD(n) −MAD(X))
d→ N(0, σ2

MAD) (2.14)

where

σ2

MAD =
Γ2(MAD(X))

g2(MAD(X))
+

γ2(MAD(X))

[2F ′(MED(X))g(MAD(X))]2
.

Proof. a) This result follows from the central limit theorem for quantiles,
B).

Remark 2.1. The following notation will be useful. Recall (Serfling
1980, p. 1, 8-9) that Wn = OP (1) if for every ε > 0 there exist Dε and Nε

such that
P (|Wn| > Dε) < ε

for all n ≥ Nε, and Wn = OP (n−δ) if nδWn = OP (1). In probability theory,
the sequenceWn is called “tight” ifWn = OP (1). The sequenceWn = oP (n−δ)
if nδWn = oP (1) which means that

nδWn
P→ 0.

If there exists a constant κ such that

nδ(Wn − κ) = OP (1),

we will say that Wn has convergence rate n−δ while if

nδ(Wn − κ)
P→ X

for some random variable X, we will say that Wn has convergence rate nδ.
Thus the negative sign indicates that nδWn is bounded in probability while
the positive sign indicates the stronger convergence in probability.

If MAD(n) = MAD(X) + OP (n−1/2), then MAD(n) can be used in the
theory of Shorack and Wellner (1986, section 19.3) discussed in chapter 4.
The following lemma is useful for this purpose. If MED(X) is not known,
then MD(n) is not a statistic, but the result of lemma 2.7 still holds if

MED(|Xi − MED(X)|, i = 1, ..., n) = MAD(X) +OP (n−δ).
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Note that equation 2.15 below implies that if MED(n) converges to MED(X)
ae and MD(n) converges to MAD(X) ae, then MAD(n) converges to MAD(X)
ae.
Lemma 2.7. If MED(n) = MED(X) + OP (n−δ) and MD(n) = MAD(X) +
OP (n−δ), then MAD(n) = MAD(X) +OP (n−δ).
Proof. Let Wi = |Xi −MED(n)| and let Yi = |Xi − MED(X)|. Then

Wi = |Xi − MED(X) + MED(X) −MED(n)| ≤ Yi + |MED(X) − MED(n)|,

and

MAD(n) = MED(W1, . . . ,Wn) ≤ MED(Y1, . . . , Yn) + |MED(X) − MED(n)|.

Similarly

Yi = |Xi − MED(n) + MED(n) − MED(X)| ≤Wi + |MED(n) −MED(X)|

and thus

MD(n) = MED(Y1, . . . , Yn) ≤ MED(W1, . . .Wn) + |MED(X) − MED(n)|.

Combining the two inequalities shows that

MD(n) − |MED(X) −MED(n)|

≤ MAD(n) ≤ MD(n) + |MED(X) −MED(n)|,
or

|MAD(n) − MD(n)| ≤ |MED(n) − MED(X)|. (2.15)

Adding and subtracting MAD(X) to the left hand side shows that

|MAD(n) − MAD(X) − OP (n−δ)| = OP (n−δ) (2.16)

and the result follows. QED
The last of the three limit theorems gives conditions under which IQR(n)/2,

MD(n), and MAD(n) are asymptotically equivalent where the sample in-
terquartile range

IQR(n) = X([3n/4]) −X([n/4]),

and [.] is the greatest integer function (eg [7.2] = 7). Condition 4 is satisfied
by symmetric distributions whose cdf has the two required derivatives. Note
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that part c) follows from part b) and Serfling (1980, p. 80).
Theorem 2.8 Hall and Welsh (1985, p. 34-35). Suppose the three
conditions of theorem 2.6 b) hold and that 4) F (MED(X)+MAD(X)) = 0.75
and F ′(MED(X) + MAD(X)) = F ′(MED(X) − MAD(X)). Then a)

√
n(MAD(n) − MD(n))

P→ 0. (2.17)

b) √
n(MAD(n) − (IQR(n)/2))

P→ 0. (2.18)

c) √
n(MAD(n) −MAD(X))

d→ N(0, σ2

MAD) (2.19)

where

σ2

MAD =
1

64
[

3

F ′(ξ3/4)
− 2

F ′(ξ3/4)F ′(ξ1/4)
+

3

F ′(ξ1/4)
].
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Chapter 3

Adaptively Truncated Random
Variables

Truncated random variables are important because they simplify the asymp-
totic theory of many robust location and regression estimators. See chapters 4
and 11. LetX be a random variable with cdf F and let α = F (a) < F (b) = β.
The truncated random variable XT (a, b) = XT has cdf FXT

= TF(a,b) where

FXT
(x|a, b) = G(x) =

F (x)− F (a−)

F (b)− F (a−)
(3.1)

for a ≤ x ≤ b. Also G is 0 for x < a and G is 1 for x > b. From now on we
will assume that F is continuous at a and b.

A random sample Y1, ..., Yn of iid random variables with distribution FT

can be simulated by using the rejection method. Generate X1, X2, ... from
distribution F , and discard all observations outside of the interval [a, b]. The
n observations which are retained form the sample. Note that the number nr

of X ′
is generated to produce the n Y ′

j s is a random number. This procedure
bears a striking resemblance to data cleaning procedures, except the sample
size n is fixed and the number of observations retained in the “cleaned”
sample is random.

The mean and variance of XT are

µT = µT (a, b) =

∫ ∞

−∞
xdG(x) =

∫ b

a
xdF (X)

β − α
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and

σ2
T = σ2

T (a, b) =

∫ ∞

−∞
(x− µT )2dG(x) =

∫ b

a
x2dF (X)

β − α
− µ2

T .

See Cramer (1946, p. 247).
Another type of truncated random variable is the Winsorized random

variable
XW (a, b) = XW = a,X ≤ a

= X, a ≤ X ≤ b,

= b, X ≥ b.

If the cdf of XW (a, b) = XW is FW , then

FW (x) = 0, X < a

= F (a), X = a

= F (x), a < X < b,

= 1, X ≥ b.

Since XW is a mixture distribution with a point mass at a and at b, the mean
and variance of XW are

µW = µW (a, b) = αa+ (1 − β)b+

∫ b

a

xdF (x)

and

σ2
W = σ2

W (a, b) = αa2 + (1 − β)b2 +

∫ b

a

x2dF (x)− µ2
W .

Wilcox (1997, p. 141-181) replaces ordinary population means by trun-
cated population means to create analogs of one, two, and three way anova,
multiple comparisons, random effects models, pairwise comparisons, and split
plot designs. Chapter 4 will show that there are many estimators Tn such
that

√
n(Tn − µT (a, b)) → N [0,

σ2
W

(β − α)2
].

Often Tn is the sample mean applied to cleaned data, and the asymptotic
variance is sometimes estimated by applying the usual sample variance to
the data, which estimates

σ2
T (a, b).
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If the amount of trimming is light, then this incorrect procedure may still
perform well in simulations (see chapter 7).

Remark 3.1. There are interesting relationships between the means and
variances of the random variables XT (a, b) and XW (a, b). Let a = µT − c and
b = µT + d. Then
a)

µW = µT − αc + (1 − β)d,

and b)
σ2

W = (β − α)σ2
T + (α− α2)c2

+[(1 − β)− (1 − β)2]d2 + 2α(1 − β)cd.

c) If α = 1 − β then

σ2
W = (1 − 2α)σ2

T + (α− α2)(c2 + d2) + 2α2cd.

d) If c = d then

σ2
W = (β − α)σ2

T + [α− α2 + 1 − β − (1 − β)2 + 2α(1 − β)]d2.

e) If α = 1 − β and c = d, then µW = µT and

σ2
W = (1 − 2α)σ2

T + 2αd2.

Proof. We will prove b) since its proof contains the most algebra. Now

σ2
W = α(µT − c)2 + (β − α)(σ2

T + µ2
T ) + (1 − β)(µT + d)2 − µ2

W .

Collecting terms shows that

σ2
W = (β − α)σ2

T + (β − α+ α + 1 − β)µ2
T + 2[(1 − β)d− αc]µT

+αc2 + (1 − β)d2 − µ2
W .

From a),

µ2
W = µ2

T + 2[(1 − β)d− αc]µT + α2c2 + (1 − β)2d2 − 2α(1 − β)cd,

and we find that

σ2
W = (β − α)σ2

T + (α− α2)c2 + [(1 − β) − (1 − β)2]d2 + 2α(1 − β)cd.

QED
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3.1 Truncated Data

Sometimes a statistician is presented a data set where some of the smallest
and largest observations have been discarded. If the truncation points are
estimated by statistics An and Bn where An → a ae and Bn → b ae, then we
argue that applying the sample mean to the cleaned data estimates µT (a, b)
and applying the sample variance to the cleaned data estimates σ2

T (a, b). If
the data is cleaned by a subjective rule, then the estimators from the cleaned
data are not well defined statistics.

Objectively cleaned data can be obtained from an iid sample X1, . . . , Xn

by truncating or Winsorizing the Ln smallest order statistics and the n−Un

largest order statistics where Ln and Un are integer valued random variables
depending on the data with 0 ≤ Ln < Un ≤ n. Often we will let

Ln = L(An) =

n
∑

i=1

I [Xi < An] (3.2)

and

Un = U(Bn) =
n

∑

i=1

I [Xi ≤ Bn] (3.3)

where
An → a ae,

and
Bn → b ae.

Note that X(Ln) is the largest Xi < An, and X(Un) is the largest Xi ≤ Bn.
The order statistics of the truncated data are

X(Ln+1), . . . , X(Un).

Since Ln and Un are random variables, applying classical methods to the
truncated data results in well defined statistics. In particular, the sample
mean of the truncated data is

Tn =
1

Un − Ln

Un
∑

i=Ln+1

X(i). (3.4)
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One might expect that this estimator and the sample mean of Un − Ln iid
observations with cdf TF (An, Bn) to be very similar. The sample variance
of the truncated data is

S2
Tn

=

∑Un

i=Ln+1(X(i) − T̄n)
2

Un − Ln − 1
. (3.5)

In chapter 4 we will use

An = MED(n) − kMAD(n)

and
Bn = MED(n) + kMAD(n)

where k ≥ 1, and the special case of

An ≡ a and Bn ≡ b

is implicit in Stigler (1973a).

3.2 The Approximate Conditional Distribu-

tion of

Truncated Data

One way to handle the cleaned data from outlier rejection rules or subjec-
tively cleaned data is to assume that the cleaned data is iid from a “nice”
target distribution (eg Gaussian). This assumption may make sense if prior
experience suggests a target distribution and if the probability is high that
the discarded data came from a different group than the retained data. For
example, Buxton (1920) recorded that several men were a few inches tall
with heads about six feet long. If these recording errors occurred at random,
then perhaps they can be safely discarded; however, if these recording errors
followed some pattern, biases could occur. (If all of the recording errors oc-
curred on the tallest men, then the estimate of the mean height will probably
be too low.)

The assumption that the cleaned data are iid can rarely be justified.
If the group of contaminated observations is not well separated from the
group of good observations, then the probability is high that some data that
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should have been kept will be discarded while some data that should have
been discarded will be kept. If the data is an iid mixture of two Gaussian
random variables with different means, then the probability of separating
the two groups with no mistakes will go to zero. We will give alternative
approximations to the conditional distribution of the truncated data where
we condition on an event that actually occurred rather than on the event
of perfect separation into good and bad groups. The approximations use
truncated distributions and are motivated by the following theorem.

Theorem 3.1. The conditional distribution of X(r+1), . . . , X(s) given
X(r) = a andX(s+1) = b is the distribution of the order statistics of Y1, . . . , Ys−r

which are iid truncated random variables with cdf TF(a,b).
Bickel (1965, p. 849) attributes this result to Sethuraman (1961), which

certainly uses many conditioning arguments. The result also appears in Reiss
(1989, p. 54) and (for one sided truncation) in David (1981, p. 20). Maller
(1991) contains other references and an extension to multivariate data when
trimming is done within a class of convex regions such as ellipsoids.

Remark 3.2. The approximation may be useful even if we use the data
to choose r and s. Let Ln < Un be integer valued random variables, eg

Ln =
n

∑

i=1

I(Xi < MED(n) − kMAD(n)).

Then

P (X(Ln+1) ≤ x1, ..., X(Un) ≤ xUn−Ln |Ln = r, Un = s,X(Ln) = a,X(Un+1) = b)

= P (X(r+1) ≤ x1, ..., X(s) ≤ xs−r|Ln = r, Un = s,X(r) = a,X(s+1) = b).

So except for the counts Ln and Un, the conditional distribution is the same
as when the order statistics are chosen in advance.

Random truncation can be regarded as a method to choose r and s. Note
that if X(s) 6= X(s+1) then

s =
n

∑

i=1

I(Xi ≤ X(s)).

We could take the randomly truncated sample to be a permutation of

X(r+1), . . . , X(s).
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Now we will give 3 approximations to the conditional distribution of the
truncated data. When

X(r) = an, and X(s+1) = bn,

we suggest that conditionally

X(r+1), ..., X(s)

are the order statistics of approximately iid random variables with cdf TF (L =
an, U = bn) where TF (L = an, U = bn) denotes F truncated at L and U . Sec-
ondly, if X(r) → a ae andX(s+1) → b ae, then conditionallyX(r+1), ..., X(s) are
the order statistics of approximately iid random variables with cdf TF (L =
a, U = b). Lastly, if a and b are far in the tails of F , then the outlier rejec-
tion approximation that X(r+1), ..., X(s) are the order statistics of iid random
variables with cdf F may be useful.

We will use truncated distributions and data several times in the following
chapters. Chapter 4 gives large sample theory for Tn and chapter 5 gives rules
for creating truncated data whenX1, ..., Xn are iid with cdf F. Chapter 6 gives
the population means and variances of the truncated normal, exponential,
and Cauchy distributions. Suppose there is a classical procedure that is used
when the data are assumed to be iid from a distribution with cdf F. We
suggest that a crude diagnostic for the classical procedure can be created
by applying the classical procedure to the truncated data (where the rule for
truncating the data is tailored for F ). These diagnostics may be a useful first
step for developing tools to check the assumptions of the classical procedure.
Chapter 7 gives some examples.
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Chapter 4

The Theory of Shorack and
Wellner

This chapter presents the theory of Shorack and Wellner for the limiting dis-
tribution of randomly trimmed and Winsorized means (defined in equations
4.2 and 4.3 below). They use empirical process theory in their derivations.
A key concept in empirical process theory is the quantile function

Q(t) = inf{x : F (x) ≥ t}. (4.1)

Note that Q(t) is the left continuous inverse of F and if F is strictly increasing
and continuous, then F has an inverse F−1 and F−1(t) = Q(t). See Shorack
and Wellner (1986, p. 3) and Parzen (1979). We assume throughout this
chapter that X1, . . . , Xn are iid with cdf

F (x) = P (X ≤ x).

Except for notation and using population truncated means instead of inte-
grals of the quantile function, the theories and proofs in this chapter are
due to Shorack and Wellner (1986, section 19.3). They use the following
conditions on the cdf F .

Regularity Conditions. R1) Let X1, . . . , Xn be iid with cdf F , and let
Ln and Un be integer valued random variables such that 0 ≤ Ln < Un ≤ n.
R2) Let a = Q(α) and b = Q(β).
R3) Suppose Q is continuous at α and β and that
R4)

Ln

n
= α+OP (n−1/2),
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and R5)
Un

n
= β +OP (n−1/2).

Note that R2) and R3) imply that F (a) = α and F (b) = β.
Some useful properties of the quantile function are given in the following

lemma. Part a) of the lemma comes from Parzen (1979, p. 106), part b)
comes from Shorack and Wellner (1986, p. 679), and part c) is the well
known inverse transformation (Shorack and Wellner 1986, p. 3).
Lemma 4.1. a) The expectation of a function g of X is

E[g(X)] = E[g(Q(U))] =

∫ 1

0

g(Q(t))dt.

b)
∫ β

α

Q(t)dt =

∫ b

a

xdF (x) = (β − α)µT

where µT = µT (a, b) is the population truncated mean defined in chapter 3.
c) If U is U(0, 1) then

X
d
= Q(U).

The following technical lemma is useful for proving the main result of this
chapter. We will say

Xn
a
= Yn

if Xn − Yn
P→ 0 as n→ ∞.

Lemma 4.2 Shorack and Wellner (1986, p. 681). Under the regularity
conditions,
a)

√
n

∫ Un
n

β

Q(t)dt
a
=

√
n(
Un

n
− β)Q(β).

b)
√
n

∫ α

Ln
n

Q(t)dt
a
= −

√
n(
Ln

n
− α)Q(α).

Proof. a) The following equality

√
n

∫
Un
n

β

Q(t)dt =
√
n(
Un

n
− β)Q(β) +

√
n

∫
Un
n

β

[Q(t)−Q(β)]dt
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holds since
√
n

∫
Un
n

β

Q(β)dt =
√
n(
Un

n
− β)Q(β).

Let
εn = sup |Q(t)−Q(β)|

for

t ∈ [min(β,
Un

n
),max(β,

Un

n
)].

Since Q is continuous at β, and since

Un

n
= β +OP (n−1/2),

εn
P→ 0.

Hence

|
√
n

∫ Un
n

β

[Q(t)−Q(β)]dt| ≤

√
n

∫ Un
n

β

|Q(t)−Q(β)|dt ≤

√
nεn|

Un

n
− β| = εnOP (1),

and the result follows. To prove b), multiply the integral by −1 and then
proceed as in a). QED

The next lemma is due to Shorack and Wellner (1986, p. 681) and is the
key to proving the main result. They use functionals, Fubini’s theorem, and
Brownian bridges in their proof.

Lemma 4.3. Assume that the regularity conditions hold. Then

Sn =
√
n[

1

n

Un
∑

i=Ln+1

X(i) −
∫ Un/n

Ln/n

Q(t)dt]
d→ N [0, σ2

W (a, b)].

The main result is theorem 4.4. First we give some notation. Let the
randomly trimmed mean

Tn = Tn(Ln, Un) =
1

Un − Ln

Un
∑

i=Ln+1

X(i), (4.2)
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and let the randomly Winsorized mean

Wn = Wn(Ln, Un) =
1

n
[LnX(Ln+1) +

Un
∑

i=Ln+1

X(i) + (n − Un)X(Un)]. (4.3)

Let Sn be as in lemma 4.3. Let µW and σ2
W be the mean and variance of the

random variable X Winsorized at a and b, and let µT and σ2
T be the mean

and variance of X truncated at a and b.
Theorem 4.4 Shorack and Wellner (1986, p. 678-679). Assume

that the regularity conditions hold. Then
a)

√
n(Tn−µT )

a
=

1

β − α
[Sn+(µT −a)

√
n(
Ln

n
−α)+(b−µT )

√
n(
Un

n
−β)]. (4.4)

b) If Q has a derivative at α and β, then

√
n(Wn − µW )

a
= {Sn − αQ′(α)[Zn(α) −

√
n(
Ln

n
− α)] (4.5)

−(1 − β)Q′(β)[Zn(β)−
√
n(
Un

n
− β)]}

where Zn(t) → N [0, t(1 − t)].
Proof. a) Let Sn be as in lemma 4.3. Then

Dn = Sn +
√
n[

∫ Un/n

Ln/n

Q(t)dt−
∫ β

α

Q(t)dt]−

µT

√
n[
Un − Ln

n
− (β − α)]

=
1√
n

Un
∑

i=Ln+1

X(i) −
√
n

∫ Un/n

Ln/n

Q(t)dt+
√
n

∫ Un/n

Ln/n

Q(t)dt

−
√
n

∫ β

α

Q(t)dt− µT

√
n[
Un − Ln

n
− (β − α)].

Since the second and third terms cancel,

Dn =
1√
n

Un
∑

i=Ln+1

X(i) −
√
n

∫ β

α

Q(t)dt− µT

√
n[
Un − Ln

n
− (β − α)]
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=
1√
n

Un
∑

i=Ln+1

X(i) −
√
n(β − α)µT

−µT

√
n[
Un − Ln

n
− (β − α)]

by lemma 4.1 c). Hence

Dn =
1√
n

Un
∑

i=Ln+1

X(i) −
√
nµT [β − α+

Un − Ln

n
− (β − α)]

=
1√
n

Un
∑

i=Ln+1

X(i) −
√
nµT

Un − Ln

n
.

Factoring out
Un − Ln

n

shows that

Dn =
Un − Ln

n

√
n[

1

Un − Ln

Un
∑

i=Ln+1

X(i) − µT ]

=
Un − Ln

n

√
n(Tn − µT ).

Hence √
n(Tn − µT ) =

n

Un − Ln
[Sn+

√
n(

∫ Un/n

Ln/n

Q(t)dt−
∫ β

α

Q(t)dt)− µT

√
n(
Un − Ln

n
− (β − α))]. (4.6)

Since
√
n[

∫ Un/n

Ln/n

Q(t)dt−
∫ β

α

Q(t)dt] =

√
n

∫ α

Ln
n

Q(t)dt+
√
n

∫
Un
n

β

Q(t)dt,

by lemma 4.2 we have that

√
n[

∫ Un/n

Ln/n

Q(t)dt−
∫ β

α

Q(t)dt] =
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√
n(
Un

n
− β)Q(β)−

√
n(
Ln

n
− α)Q(α) + op(1).

Thus √
n(Tn − µT ) =

n

Un − Ln
[Sn + op(1)+

√
n(
Un

n
− β)Q(β)−

√
n(
Ln

n
− α)Q(α) − µT

√
n(
Un − Ln

n
− (β − α))]

=
n

Un − Ln
[Sn +

√
n(
Un

n
−β)(Q(β)−µT)−

√
n(
Ln

n
−α)(Q(α)−µT )+op(1)].

Since
n

Un − Ln

P→ 1

β − α
,

and since Q(α) = a, and Q(β) = b, the result follows by Slutsky’s theorem.
b) See Shorack and Wellner (1986, p. 681). QED

4.1 Examples

Theorem 4.4 generalizes results for ordinary trimmed and Winsorized means.
The ordinary (α, n − β) trimmed mean trims Ln = [nα] observations from
the left and n − Un = n − [nβ] observations from the right where [.] is the
“greatest integer part” function (eg [7.7] = 7). Note that for the ordinary
trimmed mean,

Ln

n
− α = oP (n−1/2) and

Un

n
− β = oP (n−1/2).

(Recall that this notation means that
√
n(Ln −α) converges to zero in prob-

ability.) Hence if Tn is the ordinary trimmed mean,

√
n[Tn − µT (a, b)] → N(0,

σ2
W (a, b)

(β − α)2
).

For the ordinary trimmed mean, the trimming proportions α and 1 − β
do not depend on the underlying cdf while the trimming proportions α(F )
and 1−β(F ) can depend on underlying cdf F for randomly trimmed means.
For example, a randomly trimmed mean could be designed to trim 1% of the
data when the distribution is Gaussian and to trim 24% of the data when
the distribution is Cauchy. By theorem 4.4, if

Ln

n
− α = oP (n−1/2), and

Un

n
− β = oP (n−1/2),
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then the randomly trimmed mean and the ordinary (α(F ), n−β(F )) trimmed
mean have the same limiting distribution for a given F .

We can design a very robust estimator that has simple asymptotic theory
under symmetry. Let Ln be the maximum of the number of observations
which fall to the left of MED(n)−k MAD(n) and the number of observations
which fall to the right of MED(n)+k MAD(n) where k > 1 is fixed in advance.
Let Un = n − Ln. Under symmetry, theorem 4.4 implies that

√
n[Tn − µT (a, b)] → N(0,

σ2
W (a, b)

(β − α)2
).

As stated in Shorack and Wellner (1986, p. 680), a natural estimator for
the asymptotic variance is the scaled sample Winsorized variance

VA(n) =
(1/n)[LnX

2
(Ln+1) +

∑Un

i=Ln+1 X
2
(i) + (n− Un)X2

(Un)] − [Wn(Ln, Un)]
2

[(Un − Ln)/n]2

(4.7)
since

VA(n)
P→ σ2

W (a, b)

(β − α)2

if the regularity condition R3) holds and if

Ln

n
P→ α, and

Un

n
P→ β.

Also note that

VA(n) =
S2

W (n)

[Un−Ln

n
]2

if the sample Winsorized variance

S2
W (n) =

1

n

n
∑

i=1

(Yi − Ȳn)2

where
Yi = X(Ln+1)

if i ≤ Ln,
Yi = X(i)

if Ln + 1 ≤ i ≤ Un, and
Yi = X(Un)

if i > Un. See Shorack and Wellner (1986, p. 685).

39



4.2 Metrically Trimmed Means

Shorack and Wellner (1986, p. 682) define a metrically trimmed mean as
follows. Let θ̂n be an estimator of a location parameter of θ, and let DL(n)
and DU (n) be multiples of a scale estimator. Usually we will take θ =
MED(X) and

θ̂n = MED(n),

DL(n) = kLMAD(n), and DU (n) = kUMAD(n)

for some kL, kU ≥ 1. Let

Ln =
n

∑

i=1

I(Xi < θ̂n −DL(n))

and let

Un =

n
∑

i=1

I(Xi ≤ θ̂n +DU (n)).

Then Tn(Ln, Un) is a metrically trimmed mean.
Shorack and Wellner (1986, p. 682) use the following regularity condi-

tions.
M1) √

n(θ̂n − θ) = OP (1).

M2) √
n(Di(n) −Di(X)) = OP (1)

for some Di(X) = Di, i = L,U .
M3) Let

a = a(X) = θ −DL(X),

let
b = b(X) = θ +DU (X),

let α = F (a), and let β = F (b). Assume that F has a strictly positive and
continuous derivative in neighborhoods of a and b.

The following lemma can be proved with empirical process theory.
Lemma 4.5 Shorack and Wellner (1986, p. 682). Suppose R1), M1),
M2), and M3) hold. Let An = θ̂n −DL(n) and Bn = θ̂n +DU (n). Then

√
n[
Ln

n
− F (An)] → N [0, α(1 − α)],
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and √
n[
Un

n
− F (Bn)] → N [0, β(1− β)].

For lemma 4.6 below, the following notation will be useful. Let

√
n(ZLn(α) − α) → N [0, α(1 − α)],

and √
n(ZUn(β)− β) → N [0, β(1 − β)].

Note that when condition M3) holds, so do conditions R2) and R3). The
following lemma shows that R4) and R5) hold so that theorem 4.4 can be
applied.
Lemma 4.6 Shorack and Wellner (1986, p. 682-683). Under the
conditions above, a)

√
n(
Ln

n
− α)

a
=

ZLn(α) + F ′(a)
√
n(θ̂n − θ) − F ′(a)

√
n(DL(n) −DL). (4.8)

b)
√
n(
Un

n
− β)

a
=

ZUn(β) + F ′(b)
√
n(θ̂n − θ) + F ′(b)

√
n(DU (n) −DU ). (4.9)

Proof. a) Adding and subtracting
√
nF (An) shows that

√
n(
Ln

n
− α) =

√
n[
Ln

n
− F (An)] +

√
n[F (An) − α],

and we can let

ZLn(α) =
√
n[
Ln

n
− F (An)]

by lemma 4.5. Now

√
n[F (An) − α] =

√
n[F (An) − F (a)] =

√
n[F (θ̂n −DL(n)) − F (θ −DL)].

Multiplying both sides by

1 =
(θ̂n − θ) − (DL(n) −DL)

(θ̂n − θ) − (DL(n) −DL)
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shows that √
n[F (An) − α] =

F (θ̂n −DL(n)) − F (θ−DL)

(θ̂n − θ) − (DL(n) −DL)

√
n[(θ̂n − θ) − (DL(n) −DL)]. (4.10)

Since the fraction is converging to the derivative (in distribution), the result
follows by Slutsky’s theorem.
b) This proof is similar to the proof of a). QED

Now assume that Sn is as in lemma 4.3. Then if

Tn =
1

Un − Ln

Un
∑

i=Ln+1

X(i),

we obtain the following corollary.
Corollary 4.7 Shorack and Wellner (1986, p. 682-683). Under the
conditions above, a)

√
n(Tn − µT (a, b))

a
=

Sn

β − α

+
(µT − a)

β − α
ZLn(α) +

(b− µT )

β − α
ZUn(β)

+
[(µT − a)F ′(a) + (b− µT )F ′(b)]

β − α

√
n(θ̂n − θ)

−(µT − a)F ′(a)

β − α

√
n(DL(n) −DL) +

(b− µT )F ′(b)

β − α

√
n(DU (n) −DU ).

b) If θ̂n = MED(n), DL(n) = kLMAD(n), and DU (n) = kUMAD(n), then

√
n(Tn − µT (a, b))

a
=

Sn

β − α

+
(µT − a)

β − α
ZLn(α) +

(b− µT )

β − α
ZUn(β)

+
[(µT − a)F ′(a) + (b− µT )F ′(b)]

β − α

√
n(MED(n) − MED(X))

+
[(b− µT )kuF

′(b) − (µT − a)kLF
′(a)]

β − α

√
n[MAD(n) − MAD(X)]. (4.11)
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c) Let θ̂n, DL(n), and DU (n) be as in b). If kL = kU and if X is symmetric,
then DL = DU , α = 1 − β, and

√
n(Tn − MED(X))

a
=

Sn

1 − 2α

+
kLMAD(X)

1 − 2α
[ZLn(α) + ZUn(1 − α)]

+
2kLMAD(X)F ′(a)

1 − 2α

√
n[MED(n) − MED(X)]. (4.12)

Proof. a) and b) follow from theorem 4.4 a) and lemma 4.6.
c) Symmetry will cause the (MAD(n) −MAD(X)) term to drop out. QED

Shorack (1974) and Shorack and Wellner (1986, p. 682-683) leave out the
term

kLMAD(X)

1 − 2α
(ZLn(α) + ZUn(1 − α)).

Corollary 4.7 b) shows that a metrically trimmed mean is asymptotically
equivalent to a sum of five random variables each converging to a Gaussian
limit. In particular, the first term

Sn

β − α
→ N(0,

σ2
W (a, b)

(β − α)2
). (4.13)

If E(X2
1 ) is finite, then as a → −∞ and b → ∞,

µT (a, b) → E(X)

and
σ2

W (a, b) → VAR(X).

Thus the metrically trimmed mean acts like the usual trimmed mean and
the other four terms on the right hand side of b) should become negligible.
We suggest estimating the asymptotic variance of

√
n(Tn − µT (a, b))

by the scaled sample Winsorized variance VA(n) (which was given by equation
4.7 of the previous section).

We would like the bias of VA(n) to be small. The last four terms will
have small variances if xf(x) → 0 rapidly as x → ±∞, if a2F (a) → 0
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rapidly as a → −∞, and if b2(1 − F (b)) → 0 rapidly as b → ∞. When
θ̂n = MAD(n) and D(n) = kMAD(n), this type of estimator has been called
a Huber type skipped mean. See Hampel (1985), Hampel et al (1986, p. 64),
and Rousseeuw and Leroy (1987, p. 138). In this case

2kLMAD(X)F ′(a)

1 − 2α

√
n(MED(n) − MED(X))

d→ N(0, V 2)

where

V =
kLMAD(X)F ′(MED(X) − kLMAD(X))

(1 − 2α)F ′(MED(X))
. (4.14)

If k > 5, V is small for the symmetric distributions commonly encountered.
For instance, if k = 5.2 and X is Cauchy, then V = 0.211.

These results also give insights for subjective cleaning. If the statisti-
cian discards data to the left of an and to the right of bn, then applying
the usual sample mean and variance to the cleaned data estimates the pop-
ulation truncated mean µT (an, bn) and truncated variance σ2

T (an, bn). If the
original data was iid from a distribution with finite second moment and if
the trimming was far in the tails, then σ2

T (an, bn) ≈ σ2
W (a, b) ≈ σ2. If outliers

were trimmed, then the subjective method may give less disastrous results
than the usual classical methods.

In chapter 5, we give suggestions for kL and kU for several distributions.
These suggestions lead to objective methods which have the limiting dis-
tribution given by corollary 4.7. In chapter 7, we apply the usual sample
mean and variance to the cleaned data, although we would use the scaled
Winsorized variance estimator VA(n) in practice.

Hampel et al (1986, p. 70) prefer using continuous weights to zero one
weighting, and the limiting distribution of corollary 4.8 b) below seems to
be simpler than that of corollary 4.7 b). Corollary 4.8 also shows that for
metrically Winsorized means, the sample Winsorized variance S2

W may have
small bias for the asymptotic variance if kL = kU , α = 1− β, and α is small.
Corollary 4.8 Shorack and Wellner (1986, p. 682-683). Assume
D1), M1), M2), and M3) hold. Then a)

√
n(Wn − µW )

a
= Sn + [α+ 1 − β]

√
n(θ̂n − θ)

−α
√
n(DL(n) −DL) + (1 − β)

√
n(DU (n) −DU).

b) If θ̂n = MED(n), DL(n) = kLMAD(n), and DU (n) = kUMAD(n), then
√
n(Wn − µW )

a
= Sn + [α+ 1 − β]

√
n[MED(n) −MED(X)]
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+[(1− β)kU − αkL]
√
n[MAD(n) − MAD(X)].
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Chapter 5

Properties for Certain
Distributions

This chapter gives some suggestions for cleaning rules and lists some im-
portant properties for certain distributions. Sometimes we obtain a rule by
transforming the random variable X into another random variable Y (eg
transform a lognormal into a normal) and then using the rule for Y . These
rules may not be as resistant to outliers as rules that do not use a transfor-
mation. For example, an observation which does not seem to be an outlier
on the log scale may appear as an outlier on the original scale.

Many of the distribution results used in this chapter came from Johnson
and Kotz (1970a,b) and Patel et al (1976). Ferguson (1967), Cramer (1946),
Kennedy and Gentle (1980), Lehmann (1983), Bickel and Doksom (1977),
DeGroot (1975), and Leemis (1986) also have useful results on distributions.

We emphasize the relationships between the distribution’s parameters
and
MED(X) and MAD(X). Note that for location scale families, highly out-
lier resistant estimates for the two parameters can be obtained by replacing
MED(X) by MED(n) and MAD(X) by MAD(n).

Several of the cleaning rules in this chapter have been tailored so that
the probability is high that all of the observations get weight one when the
sample size is moderate. Robust analogs of classical procedures can be ob-
tained by applying the classical procedure to the cleaned data. We assume
that X1, ..., Xn are a random sample from a distribution with cumulative
distribution function (cdf) F , and denote the ith observed value by xi. We
give some classical confidence intervals and percentile approximations that
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were used in the simulation study presented in chapter 7.

5.1 The Binomial BIN(N, p) Distribution

If X is binomial BIN(N, p) then the probability mass function (pmf) of X
is

P (X = x) =

(

N

p

)

pxqN−x

for x = 0, 1, . . . , N . Here q = 1 − p and 0 ≤ p ≤ 1.
The moment generating function (mgf) m(t) = (q + pet)N , and the charac-
teristic function (chf) c(t) = (q + peit)N .
E(X) = Np, and
VAR(X) = Npq.
The following normal approximation is often used.

X ≈ N(Np,Npq)

when Npq > 9. Hence

P (X ≤ x) ≈ Φ(
x+ 0.5 −Np√

Npq
).

Also

P (X = x) ≈ 1√
Npq

1√
2π
exp(−1

2

(x− np)2

Npq
).

See Johnson et al (1992, p. 115). This approximation suggests that MED(X) ≈
Np, and MAD(X) ≈ 0.674

√
Npq.Hamza (1995) states that |E(X)−MED(X)| ≤

max(p, 1 − p) and shows that

|E(X) − MED(X)| ≤ log(2).

Given a random sample of size n, the classical estimate of p is p̂ = x̄n. If
each xi is a nonnegative integer between 0 and N , then a cleaning rule is
keep xi if

med(n) − 5.2(1 +
4

n
)mad(n) ≤ xi ≤ med(n) + 5.2(1 +

4

n
)mad(n).

(This rule can be very bad if the normal approximation is not good.)
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5.2 The Burr BURR(λ, c) Distribution

If X is BURR(λ, c), then the probability density function (pdf) of X is

f(x) =
1

λ

cxc−1

(1 + xc)
1
λ
+1

where x, c, and λ are all positive.
See Patel et al (1976, p. 195). Since Y = log(1 +Xc) is EXP (λ), if all the
xi ≥ 0 then a cleaning rule is keep xi if

0.0 ≤ yi ≤ 9.0(1 +
2

n
)med(n)

where med(n) is applied to y1, . . . , yn with yi = log(1 + xc
i).

5.3 The Cauchy C(a, b) Distribution

If X is Cauchy C(a, b), then the pdf of X is

f(x) =
b

π

1

b2 + (x− a)2
=

1

πb[1 + (x−a
b

)2]

where x, a, and b are real numbers.
The cumulative distribution function (cdf) of X is F (x) = 1

π
[arctan(x−a

b
) +

π/2]. See Ferguson (1967, p. 102).
This family is a location scale family which is symmetric about a. The mo-
ments of X do not exist, but the chf of X is c(t) = exp(ita− |t|b).
MED(X) = a, the upper quartile = a + b, and the lower quartile = a− b.
MAD(X) = F−1(3/4) − MED(X) = b. For a standard normal random vari-
able, 99% of the mass is between −2.58 and 2.58 while for a standard Cauchy
C(0, 1) random variable 99% of the mass is between −63.66 and 63.66. Hence
a rule which gives weight one to almost all of the observations of a Cauchy
sample will be more susceptible to outliers than rules which do a large amount
of trimming.

5.4 The Chi χp Distribution

If X is chi χp, then the pdf of X is

f(x) =
xp−1e−x2/2

2
p
2
−1Γ(p/2)
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where x ≥ 0 and p is a positive integer. See Patel et al (1976, p. 38). Since
X2 is χ2

p, a cleaning rule is keep xi if yi = x2
i would be kept by the cleaning

rule for χ2
p.

5.5 The Chisquare χ2
p Distribution

If X is chisquare χ2
p then the pdf of X is

f(x) =
x

p
2
−1e−

x
2

2
p
2 Γ(p

2
)

where x ≥ 0 and p is a positive integer.
E(X) = p.
VAR(X) = 2p.
MED(X) ≈ p−2/3. See Pratt (1968, p. 1470) for more terms in the expansion
of MED(X).
Empirically,

MAD(X) ≈
√

2p

1.483
(1 − 2

9p
)2.

Note that p ≈ MED(X) + 2/3, and VAR(X) ≈ 2MED(X) + 4/3. Let i be
an integer such that i ≤ y < i+ 1. Then define rnd(y) = i if i ≤ y ≤ i+ 0.5
and rnd(y) = i + 1 if i + 0.5 < y < i + 1. Then p ≈ rnd(MED(X) + 2/3),
and the approximation can be replaced by equality for p = 1, . . . , 100.

There are several normal approximations for this distribution. For p large,
χ2

p ≈ N(p, 2p), and
√

2χ2
p ≈ N(

√

2p, 1).

Let
α = P (χ2

p ≤ χ2
p,α) = Φ(zα)

where Φ is the standard normal cdf. Then

χ2
p,α ≈ 1

2
(zα +

√

2p)2.

The Wilson-Hilferty approximation is

(
χ2

p

p
)

1
3 ≈ N(1 − 2

9p
,

2

9p
).
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See Bowman and Shenton (1992, p. 6). This approximation gives

P (χ2
p ≤ x) ≈ Φ[((

x

p
)1/3 − 1 + 2/9p)

√

9p/2],

and

χ2
p,α ≈ p(zα

√

2

9p
+ 1 − 2

9p
)3.

The last approximation is good if p > −1.24 log(α). See Kennedy and Gentle
(1980, p. 118).
Assume all xi > 0. Let p̂ = rnd(med(n) + 2/3).
Then a cleaning rule is keep xi if

1

2
(−3.5 +

√

2p̂)2I(p̂ ≤ 15) ≤ xi ≤ p̂[(3.5 + 2.0/n)

√

2

9p̂
+ 1 − 2

9p̂
]3.

Another cleaning rule would be to let

yi = (
xi

p̂
)1/3.

Then keep xi if the cleaning rule for the normal distribution keeps the yi.

5.6 The Double Exponential DE(θ, λ) Distri-

bution

If X is double exponential DE(θ, λ), then the pdf of X is

f(x) =
1

2λ
exp (−|x− θ|

λ
)

where x is real and λ > 0.
The cdf of X is

F (X) = 0.5 exp(
x− θ

λ
), if x ≤ θ,

and

F (X) = 1 − 0.5 exp(
−(x− θ)

λ
), if x ≥ θ.

This family is a location scale family which is symmetric about θ.
The mgf m(t) = exp(θt)/(1 − λ2t2), |t| < 1/λ and
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the chf c(t) = exp(θit)/(1 + λ2t2).
E(X) = θ, and
MED(X) = θ.
VAR(X) = 2λ2, and
MAD(X) = log(2)λ ≈ 0.693λ.
Hence λ = MAD(X)/ log(2) ≈ 1.443MAD(X).
To see that MAD(X) = λ log(2), note that F (θ+λ log(2)) = 1−0.25 = 0.75.

Some classical results are θ̂MLE = MED(n) and

λ̂MLE =
1

n

n
∑

i=1

|Xi − MED(n)|.

A 100(1 − α)% confidence interval (CI) for λ is

[
2
∑n

i=1 |Xi − MED(n)|
χ2

2n−1,1−α
2

,
2
∑n

i=1 |Xi − MED(n)|
χ2

2n−1, α
2

],

and a 100(1 − α)% CI for θ is

[MED(n) ± z1−α/2

∑n
i=1 |Xi − MED(n)|

n
√

n − z2
1−α/2

]

where χ2
p,α and zα are the α percentiles of the χ2

p and standard normal dis-
tributions, respectively. See Patel et al (1976, p. 194).
A cleaning rule is keep xi if

xi ∈ [med(n) ± 10.0(1 +
2.0

n
)mad(n)].

Note that F (θ + λ log(1000)) = 0.9995 ≈ F (MED(X) + 10.0MAD(X)).

5.7 The Exponential EXP (λ) Distribution

If X is exponential EXP (λ) then the pdf of X is

f(x) =
1

λ
exp (−x

λ
) I{x≥0}

where λ > 0.
The cdf of X is

F (x) = 1 − exp (−x/λ), x ≥ 0.

51



E(X) = λ,
and MED(X) = log(2)λ.
VAR(X) = λ2.
MAD(X) ≈ λ/2.0781 since it can be shown that

exp(MAD(X)/λ) = 1 + exp(−MAD(X)/λ).

Hence 2.0781 MAD(X) ≈ λ.
The classical estimator is λ̂ = X̄n and the 100(1 − α)% CI for E(X) = λ is

[

2
∑n

i=1Xi

χ2
2n,1−α

2

,
2
∑n

i=1 xi

χ2
2n, α

2

]

where P (X ≤ χ2
2n, α

2
) = α/2 if X is χ2

2n. See Patel et al (1976, p. 188).

If all the xi ≥ 0, then the cleaning rule is keep xi if

0.0 ≤ xi ≤ 9.0(1 +
c2
n

)med(n)

where c2 = 2.0 seems to work well. Note that P (X ≤ 9.0MED(X)) ≈ 0.998.

5.8 The Two Parameter Exponential Distri-

bution

If X is exponential EXP (a, λ) then the pdf of X is

f(x) =
1

λ
exp (−(x− a)

λ
) I{x≥a}

where λ > 0. This family is an asymmetric location scale family.

MED(X) = a + λ log(2)

and
2.0781MAD(X) ≈ λ.

Hence a ≈ MED(X) − 2.0781 log(2)MAD(X). See Rousseeuw and Croux
(1993) for similar results. Note that 2.0781 log(2) ≈ 1.44.
A cleaning rule is keep xi if

med(n) − 1.44(1.0 +
c4
n

)mad(n) ≤ xi ≤
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med(n) − 1.44mad(n) + 9.0(1 +
c2
n

)med(n)

where c2 = 2.0 and c4 = 2.0 may be good choices.
To see that 2.0781MAD(X) ≈ λ, note that

0.5 =

∫ a+λ log(2)+MAD

a+λ log(2)−MAD

1

λ
exp(−(x− a)/λ)dx

= 0.5[−e−MAD/λ + eMAD/λ]

assuming λ log(2) > MAD. Plug in MAD = λ/2.0781 to get the result.

5.9 The Gamma G(a, b) Distribution

If X is gamma G(a, b) then the pdf of X is

f(x) =
xa−1e−x/b

baΓ(a)

where a, b, and x are positive.
The mgf of X is

m(t) = (
1/b

1
b
− t

)a = (
1

1 − bt
)a

for t < 1/b. The chf

c(t) = (
1

1 − ibt
)a.

E(X) = ab.
VAR(X) = ab2.
Chen and Rubin (1986) show that b(a − 1/3) < MED(X) < ba = E(X).
Empirically, for a > 3/2,

MED(X) ≈ b(a− 1/3),

and

MAD(X) ≈ b
√
a

1.483
.

This family is a scale family so if X is G(a, b) then cX is G(a, cb) for c > 0. If
Y is EXP (λ) then Y is G(1, λ). If Y is χ2

p, then Y is G(p/2, 2). If X and Y
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are independent and X is G(a, b) and Y is G(d, b), then X +Y is G(a+d, b).
Some classical estimates are given next. Let

y = log[
x̄n

geometric mean(n)
]

where geometric mean(n) = (x1x2 . . . xn)
1/n. Then Thom’s estimate (Johnson

and Kotz 1970a, p. 188) is

â ≈ 0.25(1 +
√

1 + 4y/3)

y
.

Also

âMLE ≈ 0.5000876 + 0.1648852y − 0.0544274y2

y

for 0 < y < 0.5772, and

âMLE ≈ 8.898919 + 9.059950y + 0.9775374y2

y(17.79728 + 11.968477y + y2)

for 0 < y < 17. See Bowman and Shenton (1988, p. 46). Finally, b̂ = x̄n/â.
For some M-estimators, see Marazzi and Ruffieux (1996).

Several normal approximations are available. For large a,X ≈ N(ab, ab2).
The Wilson-Hilferty approximation says that for a > 1.5,

X1/3 ≈ N((ab)1/3(1 − 1

9a
), (ab)2/3 1

9a
).

Hence if X is G(a, b) and

α = P [X ≤ Gα],

then

Gα ≈ ab[zα

√

1

9a
+ 1 − 1

9a
]3

where zα is the standard normal percentile, α = Φ(zα). Bowman and Shenton
(1988, p. 101) include higher order terms.

Next we give some cleaning rules. Assume each xi > 0. Assume a > 1.5.
Rule 1. Assume b is known. Let â = (med(n)/b) + (1/3). Keep xi if
xi ∈ [lo, hi] where

lo = max(0, âb [−(3.5 + 2/n)

√

1

9â
+ 1 − 1

9â
]3),
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and

hi = âb [(3.5 + 2/n)

√

1

9â
+ 1 − 1

9â
]3.

Rule 2. Assume a is known. Let b̂ = med(n)/(a − (1/3)). Keep xi if
xi ∈ [lo, hi] where

lo = max(0, ab̂ [−(3.5 + 2/n)

√

1

9a
+ 1 − 1

9a
]3),

and

hi = ab̂ [(3.5 + 2/n)

√

1

9a
+ 1 − 1

9a
]3.

Rule 3. Let d = med(n) − c mad(n). Keep xi if

dI [d ≥ 0] ≤ xi ≤ med(n) + c mad(n)

where
c ∈ [9, 15].

5.10 The Logistic L(a, b) Distribution

If X is logistic L(a, b) then the pdf of X is

f(x) =
exp (−(x− a)/b)

b[1 + exp (−(x− a)/b)]2

where b > 0 and x is real.
The cdf of X is

F (x) =
1

1 + exp (−(x− a)/b)

=
exp ((x− a)/b)

1 + exp ((x− a)/b)
.

This family is a symmetric location scale family.
The mgf of X is m(t) = πbteat csc(πbt) for |t| < 1/b, and
the chf is c(t) = πibteiat csc(πibt), E(X) = a, and
MED(X) = a.
VAR(X) = b2π2/3, and
MAD(X) = log(3)b ≈ 1.0986 b.
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Hence b = MAD(X)/ log(3).
The estimators â = X̄n and S2

x = 1
n

∑n
i=1(Xi − X̄n)2 are sometimes used.

A cleaning rule is keep xi if

med(n) − 7.6(1 +
c2
n

)mad(n) ≤ xi ≤ med(n) + 7.6(1 +
c2
n

)mad(n)

where c2 is between 0.0 and 7.0. Note that if

q = FL(0,1)(c) =
ec

1 + ec
then c = log(

q

1 − q
).

Taking q = .9995 gives c = log(1999) ≈ 7.6.
To see that MAD(X) = log(3)b, note that F (a + log(3)b) = 0.75, F (a −
log(3)b) = 0.25, and 0.75 = exp (log(3))/(1 + exp(log(3))).

5.11 The Lognormal LN(µ, σ2) Distribution

If X is lognormal LN(µ, σ2), then the pdf of X is

f(x) =
1

x
√

2πσ2
exp (

−(log(x) − µ)2

2σ2
)

where x > 0 and σ > 0.
E(X) = exp(µ + σ2/2).
MED(X) = exp(µ).
VAR(X) = exp(σ2)(exp(σ2) − 1) exp(2µ), and
exp(µ)[1 − exp(−0.6744σ)] ≤ MAD(X) ≤ exp(µ)[1 + exp(0.6744σ)].
Note that log(X) is N(µ, σ2). Assume all xi ≥ 0. Then a cleaning rule is
keep xi if

med(n) − 5.2(1 +
c2
n

)mad(n) ≤ yi ≤ med(n) + 5.2(1 +
c2
n

)mad(n)

where c2 is between 0.0 and 7.0. Here med(n) and mad(n) are applied to
y1, . . . , yn where yi = log(xi).

5.12 The Normal N(µ, σ2) Distribution

If X is normal N(µ, σ2), then the pdf of X is

f(x) =
1√

2πσ2
exp (

−(x− µ)2

2σ2
)
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where σ > 0 and µ and x are real.
Let Φ(x) denote the standard normal cdf. Recall that Φ(x) = 1 − Φ(−x).
The cdf F (X) of X does not have a closed form, but

F (x) = Φ(
x− µ

σ
),

and
Φ(x) ≈ 0.5(1 +

√

1 − exp(−2x2/π) ).

See Johnson and Kotz (1970a, p. 57).
The moment generating function mgf is m(t) = exp(tµ+ t2σ2/2).
The characteristic function chf is c(t) = exp(itµ− t2σ2/2).
E(X) = µ.
MED(X) = µ.
VAR(X) = σ2, and

MAD(X) = Φ−1(0.75)σ ≈ 0.674σ.

Hence σ = [Φ−1(0.75)]−1MAD(X) ≈ 1.483MAD(X).
This family is a location scale family which is symmetric about µ.
Suggested estimators are

X̄n = µ̂ =
1

n

n
∑

i=1

Xi and S
2 = S2

X =
1

n− 1

n
∑

i=1

(Xi − X̄n)2.

The classical (1 − α)100% CI for µ when σ is unknown is

[X̄n − tn−1,1−α
2

Sx√
n
, X̄n + tn−1,1−α

2

Sx√
n

]

where P (t ≤ tn−1,1−α
2
) = 1 − α/2 when t is from a t distribution with n− 1

degrees of freedom.
If α = Φ(zα), then

zα ≈ m− co + c1m+ c2m
2

1 + d1m+ d2m2 + d3m3

where
m = [−2ln(1 − α)]1/2,
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c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 = 1.432788, d2 = 0.189269,
d3 = 0.001308, and 0.5 ≤ α. For 0 < α < 0.5,

zα = −z1−α.

See Kennedy and Gentle (1980, p. 95).
A cleaning rule is keep xi if

med(n) − 5.2(1 +
c2
n

)mad(n) ≤ xi ≤ med(n) + 5.2(1 +
c2
n

)mad(n)

where c2 is between 0.0 and 7.0. Using c2 = 4.0 seems to be a good choice.
Note that

P (µ− 3.5σ ≤ X ≤ µ + 3.5σ) = 0.9996.

To see that MAD(X) = Φ−1(0.75)σ, note that 3/4 = F (µ + MAD) since X
is symmetric about µ. However,

F (x) = Φ(
x− µ

σ
)

and
3

4
= Φ(

µ+ Φ−1(3/4)σ − µ

σ
).

So µ+ MAD = µ + Φ−1(3/4)σ. Cancel µ from both sides to get the result.

5.13 The Pareto PAR(a, λ) Distribution

If X is Pareto PAR(a, λ), then the pdf of X is

f(x) =
1
λ
a1/λ

x1+1/λ

where x ≥ a, a > 0, and λ > 0.
The cdf of X is F (x) = 1 − (a/x)1/λ for x > a.

This family is a scale family when λ is fixed. E(X) = a/x
(1/λ)−1

for λ < 1.

MED(X) = a2λ.
Y = log(X/a) is EXP (λ). Hence if a is known and if all the xi > a, then a
cleaning rule is keep xi if

0.0 ≤ yi ≤ 9.0(1 +
2

n
)med(n)

where med(n) is applied to y1, . . . , yn with yi = log(xi/a).
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5.14 The Poisson POIS(θ) Distribution

If X is Poisson POIS(θ), then the pmf of X is

P (X = x) =
e−θθx

x!

for x = 0, 1, . . . , where θ > 0.
The mgf of X is m(t) = exp(θ(et−1)), and the chf of X is c(t) = exp(θ(eit −
1)).
E(X) = θ, and Chen and Rubin (1986) show that
−1 < MED(X) − E(X) < 1/3.
VAR(X) = θ.
The classical estimator of θ is θ̂ = X̄n.
The approximations X ≈ N(θ, θ) and 2

√
X ≈ N(2

√
θ, 1) are sometimes

used.
Suppose each xi is a nonnegative integer. Then a cleaning rule is keep xi if
yi = 2

√
xi is kept when a normal cleaning rule is applied to the y′is. (This

rule can be very bad if the normal approximation is not good.)

5.15 The Power POW (λ) Distribution

If X is power POW (λ), then the pdf of X is

f(x) =
1

λ
x

1
λ
−1,

where λ > 0 and 0 ≤ x ≤ 1.
The cdf of X is F (x) = xλ for 0 ≤ x ≤ 1.
MED(X) = (1/2)1/λ.
Since Y = − log(X) is EXP (λ), if all the xi ∈ [0, 1], then a cleaning rule is
keep xi if

0.0 ≤ yi ≤ 9.0(1 +
2

n
)med(n)

where med(n) is applied to y1, . . . , yn with yi = − log(xi).
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5.16 The Rayleigh RAY (λ) Distribution

If X is Rayleigh RAY (λ), then the pdf of X is

f(x) =
2x

λ
exp(−x2/λ)

where λ and x are both positive. X is RAY (λ) if X is Weibull W (λ, 2).

5.17 The Student’s t tp Distribution

If X is tp then the pdf of X is

f(x) =
Γ(p+1

2
)

(pπ)1/2Γ(p/2)
(1 +

x2

p
)−( p+1

2
)

where p is a positive integer and x is real. This family is symmetric about
0. When p = 1, we get the Cauchy(0, 1) distribution. If Z is N(0, 1) and is
independent of W ∼ χ2

p, then
Z

(W
p

)1/2

is tp.
E(X) = 0 for p ≥ 2.
MED(X) = 0.
VAR(X) = p/(p − 2) for p ≥ 3, and
MAD(X) = tp,0.75 where P (tp ≤ tp,0.75) = 0.75.
If α = P (tp ≤ tp,α), then Cooke, Craven, and Clarke (1982, p. 84) suggest
the approximation

tp,α ≈
√

p[exp(
w2

α

p
) − 1)]

where

wα =
zα(8p + 3)

8p+ 1
,

zα is the standard normal cutoff: α = Φ(zα), and 0.5 ≤ α. If 0 < α < 0.5,
then

tp,α = −tp,1−α.

This approximation seems to get better as the degrees of freedom increase.
A cleaning rule for p ≥ 3 is keep xi if xi ∈ [±5.2(1 + 10/n)mad(n)].
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5.18 The Truncated Extreme Value TEV (λ)

Distribution

If X is truncated extreme value TEV (λ) then the pdf of X is

f(x) =
1

λ
exp(x− ex − 1

λ
)

where x > 0, and λ > 0.
Since Y = ex − 1 is EXP (λ), if all the xi > 0, then a cleaning rule is keep
xi if

0.0 ≤ yi ≤ 9.0(1 +
2

n
)med(n)

where med(n) is applied to y1, . . . , yn with yi = exi − 1.

5.19 The Uniform U(a, b) Distribution

If X is uniform U(a, b) then the pdf of X is

f(x) =
1

b− a
I{a≤x≤b}.

The cdf of X is F (x) = (x− a)/(b− a) for a ≤ x ≤ b.
This family is a location scale family which is symmetric about (a + b)/2.

The mgf of X is m(t) = etb−eta

(b−a)t
, and

the chf of X is c(t) = eitb−eita

(b−a)it
.

E(X) = (a + b)/2, and
MED(X) = (a + b)/2.
VAR(X) = (b− a)2/12, and
MAD(X) = (b− a)/4.
Note that a = MED(X) − 2MAD(X) and b = MED(X) + 2MAD(X).
Some classical estimates are â = x(1) and b̂ = x(n).
A cleaning rule is keep xi if

med(n) − 2.0(1 +
c2
n

)mad(n) ≤ xi ≤ med(n) + 2.0(1 +
c2
n

)mad(n)

where c2 is between 0.0 and 5.0. Replacing 2.0 by 2.00001 yields a rule for
which the cleaned data will equal the actual data for large enough n (with
probability one).
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5.20 The Weibull W (λ, c) Distribution

If X is Weibull W (λ, c), then the pdf of X is

f(x) =
c

λ
xc−1e−

xc

λ

where λ, x, and c are all positive.
The cdf of X is F (x) = 1 − exp(−xc/λ) for x > 0.
E(X) = Γ(1 + 1/c)/(1/λ)1/c.
MED(X) = (λ log(2))1/c.
VAR(X) = Γ(1 + 2/c)/(1/λ)2/c − (E(X))2.
Since Y = Xc is EXP (λ), if all the xi > 0 and if c is known, then a cleaning
rule is keep xi if

0.0 ≤ yi ≤ 9.0(1 +
2

n
)med(n)

where med(n) is applied to y1, . . . , yn with yi = xc
i .
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Chapter 6

Truncated Distributions

There is a strong relationship between the asymptotics of trimmed means
and truncated random variables, and truncated random variables are useful
in the asymptotic theory of the LTS and LTA estimators described in chapter
11. Let X have cdf F and let XT (a, b) have the cdf TF (a, b). Chapter 3
discussed the cdf TF (a, b), mean µT (a, b), and variance σ2

T (a, b) of XT (a, b).
In this chapter we discuss the truncated exponential, normal, and Cauchy
distributions.

6.1 The Truncated Exponential Distribution

Let Y be a (one sided) truncated exponential TEXP (λ, b) random variable.
Then the pdf of Y is

fY (y|λ, b) =
1
λ
e−y/λ

1 − exp(− b
λ
)

for 0 < y ≤ b. Let b = kλ, and let

ck =

∫ kλ

0

1

λ
e−y/λdx = 1 − e−k.

Next we will find the first two moments of Y ∼ TEXP (λ, b = kλ) for k > 0.
Lemma 6.2. If Y is TEXP (λ, b = kλ) for k > 0, then

a) E(Y ) = λ(
1 − (k + 1)e−k

1 − e−k
),
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and

b) E(Y 2) = 2λ2(
1 − 1

2
(k2 + 2k + 2)e−k

1 − e−k
).

Proof. a) Note that

ckE(Y ) =

∫ kλ

0

y

λ
e−y/λdy

= −ye−y/λ|kλ
0 +

∫ kλ

0

e−y/λdy

(use integration by parts). So ckE(Y ) =

−kλe−k + (−λe−y/λ)|kλ
0

= −kλe−k + λ(1 − e−k).

Hence

E(Y ) = λ(
1 − (k + 1)e−k

1 − e−k
).

b) Note that

ckE(Y 2) =

∫ kλ

0

y2

λ
e−y/λdy.

Since
d

dy
[−(y2 + 2λy + 2λ2)e−y/λ]

=
1

λ
e−y/λ(y2 + 2λy + 2λ2) − e−y/λ(2y + 2λ)

= y2 1

λ
e−y/λ,

we have ckE(Y 2) =
[−(y2 + 2λy + 2λ2)e−y/λ]kλ

0

= −(k2λ2 + 2λ2k + 2λ2)e−k + 2λ2.

So the result follows. QED
Since as k → ∞, E(Y ) → λ, and E(Y 2) → 2λ2, we have VAR(Y ) → λ2.

If k = 9 log(2) ≈ 9MEDX(n), then E(Y ) ≈ .998λ, and E(Y 2) ≈ 0.95(2λ2).
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6.2 The Truncated Normal Distribution

Now if X is N(µ, σ2) then let Y be TN(µ, σ2, a, b). Then fY (y) =

1√
2πσ2

exp (−(x−µ)2

2σ2 )

Φ( b−µ
σ

) − Φ(a−µ
σ

)
I[a,b](y)

where φ is the standard normal pdf and Φ is the standard normal cdf.
Lemma 6.3.

E(Y ) = µ +
φ(a−µ

σ
) − φ( b−µ

σ
)

Φ( b−µ
σ

) −Φ(a−µ
σ

)
σ,

and VAR(Y ) =

σ2[1 +
(a−µ

σ
)φ(a−µ

σ
) − ( b−µ

σ
)φ( b−µ

σ
)

Φ( b−µ
σ

) − Φ(a−µ
σ

)
]

−σ2[
φ(a−µ

σ
) − φ( b−µ

σ
)

Φ( b−µ
σ

) −Φ(a−µ
σ

)
]2.

(See Johnson and Kotz 1970a, p. 83.)
Proof. Let c =

1

Φ( b−µ
σ

) − Φ(a−µ
σ

)
.

Then

E(Y ) =

∫ b

a

yfY (y)dy.

Hence
1

c
E(Y ) =

∫ b

a

y√
2πσ2

exp (
−(y − µ)2

2σ2
)dy

=

∫ b

a

(
y − µ

σ
)

1√
2π

exp (
−(y − µ)2

2σ2
)dy +

µ

σ

1√
2π

∫ b

a

exp (
−(y − µ)2

2σ2
)dy

=

∫ b

a

(
y − µ

σ
)

1√
2π

exp (
−(y − µ)2

2σ2
)dy

+µ

∫ b

a

1√
2πσ2

exp (
−(y − µ)2

2σ2
)dy.
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Note that the integrand of the last integral is the pdf of a N(µ, σ2) distribu-
tion. Let z = (y − µ)/σ. Thus dz = dy/σ, and E(Y )/c =

∫
b−µ

σ

a−µ
σ

σ
z√
2π
e−z2/2dz +

µ

c

=
σ√
2π

(−e−z2/2)|
b−µ

σ
a−µ

σ

+
µ

c
.

Multiplying both sides by c gives the expectation result.

E(Y 2) =

∫ b

a

y2fY (y)dy.

Hence
1

c
E(Y 2) =

∫ b

a

y2

√
2πσ2

exp (
−(y − µ)2

2σ2
)dy

= σ

∫ b

a

(
y2

σ2
− 2µy

σ2
+
µ2

σ2
)

1√
2π

exp (
−(y − µ)2

2σ2
)dy

+σ

∫ b

a

2yµ− µ2

σ2

1√
2π

exp (
−(y − µ)2

2σ2
)dy

= σ

∫ b

a

(
y − µ

σ
)2 1√

2π
exp (

−(y − µ)2

2σ2
)dy + 2

µ

c
E(Y ) − µ2

c
.

Let z = (y − µ)/σ. Then dz = dy/σ, dy = σdz, and y = σz + µ. Hence
E(Y 2)/c =

2
µ

c
E(Y ) − µ2

c
+ σ

∫
b−µ

σ

a−µ
σ

σ
z2

√
2π
e−z2/2dz.

Next integrate by parts with w = z and dv = ze−z2/2dz. Then E(Y 2)/c =

2
µ

c
E(Y ) − µ2

c
+

σ2

√
2π

[(−ze−z2/2)|
b−µ

σ
a−µ

σ

+

∫
b−µ

σ

a−µ
σ

e−z2/2dz]

= 2
µ

c
E(Y ) − µ2

c
+ σ2[(

a− µ

σ
)φ(

a− µ

σ
) − (

b− µ

σ
)φ(

b− µ

σ
) +

1

c
].
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Using

VAR(Y ) = c
1

c
E(Y 2) − (E(Y ))2

gives the result. QED
Corollary 6.4. Let Y be TN(µ, σ2, a = µ − kσ, b = µ + kσ). Then

E(Y ) = µ and VAR(Y ) =

σ2[1 − 2kφ(k)

2Φ(k) − 1
].

Proof. Use the symmetry of φ, the fact that Φ(−x) = 1 − Φ(x), and the
above lemma to get the result. QED

Examining VAR(Y ) for several values of k shows that the TN(µ, σ2, a =
µ− kσ, b = µ+ kσ) distribution does not change much for k > 3.0. See table
6.1.
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Table 6.1: Variances for Several Truncated Normal Distributions
k VAR(Y )

2.0 0.774σ2

2.5 0.911σ2

3.0 0.973σ2

3.5 0.994σ2

4.0 0.999σ2

6.3 The Truncated Cauchy Distribution

For a Cauchy C(µ, σ) random variable, MED(X) = µ and MAD(X) = σ. If
XT ∼ TC(µ, σ, µ− aσ, µ+ bσ), then

fT (x) =
1

tan−1(b) + tan−1(a)

1

σ[1 + (x−µ
σ

)2]

for µ − aσ < x < µ+ bσ. Moreover,

E(XT ) = µ+ σ(
ln(1 + b2) − ln(1 + a2)

2[tan−1(b) + tan−1(a)]
),

and

V (XT ) = σ2[
b+ a− tan−1(b) − tan−1(a)

tan−1(b) + tan−1(a)
− (

ln(1 + b2) − ln(1 + a2)

tan−1(b) + tan−1(a)
)2].

If a = b, then E(XT ) = µ, and

V (XT ) = σ2[
b− tan−1(b)

tan−1(b)
].

See Johnson and Kotz (1970a, p. 162).
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Chapter 7

Robust Location Model
Diagnostics

In this chapter we suggest a method for creating crude diagnostics. Consider
the location model

Xi = µ + ei (7.1)

for i = 1, . . . , n where the mean or median of the e′is is zero. We assume that
we have a sample X1, . . . , Xn of size n where the X ′

is are iid with distribution
F , median MED(X), mean E(X), and variance V (X) if they exist.

Suppose that some statistical procedure is to be used and that the data
is assumed to follow some standard parametric family. Perhaps sequential
hypothesis testing is to be performed, or point estimates, confidence intervals,
or prediction intervals are to be found. Although one should make plots of
the data and other tests of the model assumptions, often people simply plug
their data into a package to obtain sample means and confidence intervals.

We would like to use robust methods for inference, but finding a robust
analog to a classical procedure that has well understood theory can be dif-
ficult. For example, try to find a robust analog to a Bayesian procedure
that produces a genuine posterior distribution. In fact, it is even difficult to
obtain a central limit theorem for M-estimators although Jureckova and Sen
(1996, p. 206-209) did show that a linear combination of an M-estimator
Mn and MAD(n) can have a central limit theorem and that the MAD(n)
term drops out under symmetry of F. If the data can be assumed to come
from a symmetric distribution, asymptotically correct confidence intervals
can be obtained by first metrically trimming the data and then making the
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trimming proportions equal (as described in chapter 4). If the assumption of
symmetry is too strong, the metrically trimmed mean and the scaled sample
Winsorized variance VA(n) may give useful “plug in” intervals, but the bias
of VA(n) for the true asymptotic variance of the metrically trimmed mean is
not well understood.

Diagnostics are used to check model assumptions. To create a robust
diagnostic for a given classical procedure, first clean the data by estimating
an upper percentile and a lower percentile of the assumed distribution F with
the sample median and mad. Ignore the data outside these two percentiles
and apply the classical procedure to the remaining data. Notice that after
cleaning the data, standard software can be used. The basic idea is that for
moderate sample size, the probability is high that none of the observations
will be given weight zero if the nominal distribution is the true distribution.
Hence the robust estimate and the classical estimate will be the same with
high probability, and the robust estimators can be used as diagnostics for
frequentist, Bayesian, and sequential methods.

Consider a robust procedure for a confidence interval (CI). When classical
and robust methods yield confidence intervals that differ greatly in size, then
perhaps the assumptions of the classical method need further examination.
It would be nice if statistical packages such as SAS and SPSS could give the
user a warning that the model assumptions may have been violated.

Another way to motivate the use of the robust estimators as diagnostics is
to consider the suggestion in chapter 3 to approximate the joint conditional
distribution of the cleaned data by the joint distribution of data from an
iid truncated distribution. However, the truncation points change with the
sample size even when the median and the mad are used. The further the
estimated upper and lower percentiles are in the tails, the less effect the jitter
will have. Of course, then outliers will have greater effect. The simulations
in this chapter may also give some insight for why estimates derived from
subjectively cleaned data sometimes yield less catastrophic results than the
classical estimators.

The crude diagnostic can be used with simulation to give some insights
on how the classical procedure is affected by outliers, but better diagnostics
can almost always be created. For example, applying the classical sample
variance estimator to the cleaned data estimates the truncated variance while
the standard error of the sample mean applied to the cleaned data may be
closer to a multiple of the square root of the Winsorized variance.

Note that data cleaning is an example of applying a classical method to
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a modified data set. See, for example, Simonoff (1987a). This type of idea is
very old. Subjective and objective outlier rejection rules do the same thing,
and Conover and Iman (1981) show that several classical procedures applied
to the rank statistics yield well known nonparametric statistics.

For the normal distribution, the cleaning rule in chapter 5 was keep xi if

med(n) − c1(1 +
c2
n

)mad(n) ≤ xi ≤ med(n) + c1(1 +
c2
n

)mad(n) (7.2)

otherwise ignore it, where c1 = 5.2 and c2 = 4.0. If the distribution is normal,
then the sample mean applied to the observations which are kept should
behave roughly like a 0.5% trimmed mean. If the true distribution is t5, then
the estimator should behave like a 1.3% trimmed mean, while if the true
distribution is Cauchy, the estimator should act like a 12.1% trimmed mean.

In the following sections, we show by simulation how the robust diag-
nostics behaved for confidence and prediction intervals and for the sequential
probability ratio test (SPRT). When the data is iidN(0, 1) the expected 95%
confidence interval and prediction interval (PI) lengths are shown in table
7.1 below. The average CI and PI lengths in the simulations are very close
to the expected lengths when the model assumptions hold.

Table 7.1: Expected 95% Interval Lengths for iid N(0,1) Data
sample size 10 20 40 100

E(CI length) 1.39 0.92 0.635 0.396
E(PI length) 4.61 4.23 4.07 3.978

7.1 Confidence Intervals

As an example of a confidence interval, suppose that the data are iidN(µ, σ2).
Then the classical 100(1 − α)% CI for µ when σ is unknown is

[x̄− tn−1,1−α
2

Sx√
n
, x̄+ tn−1,1−α

2

Sx√
n

] (7.3)

where P (t ≤ tn−1,1−α
2
) = 1−α/2, t is from a t distribution with n−1 degrees

of freedom, and

S2
x =

∑n
i=1(xi − x̄)2

n− 1
.
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To compute the robust analog, just plug in the cleaned data. In other
words, let d1, . . . , dnr be the nr x

′
is that are not ignored. Thus the robust

analog to the classical 100(1 − α)% CI for µ when σ is unknown is

[d̄− tnr−1,1−α
2

Sd√
nr
, d̄+ tnr−1,1−α

2

Sd√
nr

]. (7.4)

If the Gaussian assumption holds, then the two intervals will often be the
same for moderate n. If the robust and classical procedures differ greatly,
then the model assumptions may have been violated.

The simulation results for 1000 runs help show the properties of the robust
procedures. In tables 7.2, 7.3, and 7.4, the average length of the CI and the
percentage of times the CI contained the µ = 0 are recorded with the nominal
level equal to 95%. In table 7.2, the data was iid standard normal, and the
average interval lengths were about the same. When the sample size was 10,
the classical and robust intervals were identical for 967 of the 1000 runs while
they agreed 944 times when the sample size was 100.

Table 7.2: Robust and Classical 95% CI’s for N(0,1) Data
1 type classical robust classical robust
2 sample size 10 10 100 100
3 ave length 1.399 1.384 0.396 0.394
4 sd 0.328 0.339 0.027 0.028
5 ave noncoverage 0.044 0.051 0.044 0.044
6 sd 0.0065 0.0070 0.0065 0.0065
7 ave no. of obs’s used 10 9.959 100 99.94
8 sd 0.0 0.247 0.0 0.279

The table provides quite a lot of information. Let l1, . . . , l1000 be the
1000 classical CI lengths, and let r1, . . . , r1000 be the 1000 robust CI lengths.
Then the third row contains the sample mean of the nrun = 1000 lengths
for both intervals. The fourth row contains the square root of the sample
variance for each mean. Let cict be the number of times in the 1000 runs
that the CI did not contain the true mean 0. Then the 5th line of the table
contains these counts divided by the number of runs. Note that each run is
an iid Ber(p) trial where p is the probability that the CI will not contain
the true mean. For this output, p is nominally 0.05. If p̂ = cict/nrun, then
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since p̂ is a sample mean of nrun iid Ber(p) random variables, the estimated
(asymptotic) standard deviation of p̂ is

sd(p̂) =

√

p̂(1 − p̂)

nrun
. (7.5)

This information is contained in the 6th line of the table. The robust CI
uses a random number of observations for each trial. Let the numbers be
nr1, ..., nr1000. The 7th row give the sample mean of the sample sizes. Hence
when the sample size was 10, about 99.6% of the observations were used.

Below are some simulation results for robust and classical CI’s for data
coming from a variety of distributions, but where it was incorrectly assumed
that the data was iid Gaussian. For the Cauchy distribution with sample size
40, the average classical CI length was 19.3 with level approximately 0.988.
The average robust CI length was 1.208 with level approximately 0.927.

Table 7.3: Average 95% CI length and observed level for 1000
runs. The data comes from various contaminated normal

distributions.
sample type n = 10 n = 40 n = 100

distribution length level length level length level
N(0,1) CCI 1.399 0.956 0.636 0.948 0.396 0.956

RCI 1.384 0.949 0.633 0.949 0.394 0.956
0.9 N(0,1) CCI 2.350 0.971 1.114 0.965 0.711 0.947

+ 0.1 N(0,25) RCI 1.759 0.954 0.734 0.932 0.451 0.942
0.8 N(0,1) CCI 5.577 0.985 2.765 0.961 1.762 0.947

+ 0.2 N(0,100) RCI 2.410 0.959 0.870 0.927 0.521 0.944
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Table 7.4: Average 95% CI length and observed level for 1000
runs. The data comes from various symmetric distributions.

sample type n = 10 n = 40 n = 100
distribution length level length level length level
0.7 N(0,1) CCI 5.927 0.974 6.456 0.969 3.616 0.976

+ 0.3 Cauchy RCI 1.705 0.954 0.745 0.941 0.457 0.948
Cauchy CCI 16.506 0.978 19.322 0.988 13.495 0.987

RCI 3.072 0.947 1.208 0.927 0.720 0.923
Slash = CCI 23.957 0.985 32.017 0.981 30.387 0.983

N(0,1)/U(0,1) RCI 4.304 0.956 1.673 0.929 1.019 0.942

7.2 Prediction Intervals

If one has n observations, a prediction interval (PI) tells the statistician where
the next observation is likely to fall. If the data are iid N(µ, σ2), then the
classical (1 − α)100% PI for Yn+1 when σ is unknown is

[x̄± tn−1,1−α
2
Sx

√

1 + 1/n] (7.6)

where P (t ≤ tn−1,1−α
2
) = 1 − α/2 and t is from a t distribution with n − 1

degrees of freedom. See Whitmore (1986). Again the robust analog simply
applies the classical PI to the cleaned data.

Deciding how prediction intervals should behave is more difficult. In table
7.5 it is assumed that the data is from the stated distribution, but that the
future observations come from a N(0, 1) distribution. The robust intervals
are much shorter than the classical intervals but still contain the future value
most of the time.

74



Table 7.5: Average 95% PI length and observed level for 1000
runs. The data comes from various symmetric distributions. Fu-
ture values are N(0,1).

sample type n = 10 n = 40 n = 100
distribution length level length level length level

N(0,1) CPI 4.628 0.953 4.072 0.936 3.977 0.952
RPI 4.566 0.945 4.044 0.932 3.960 0.951

0.9 N(0,1) CPI 7.619 0.980 7.260 0.991 7.201 0.997
+ 0.1 N(0,25) RPI 5.687 0.962 4.612 0.963 4.434 0.968

0.8 N(0,1) CPI 17.906 0.992 17.824 1.000 17.953 1.000
+ 0.2 N(0,100) RPI 7.511 0.974 5.188 0.966 4.885 0.977

0.7 N(0,1) CPI 38.077 0.982 36.715 0.994 102.165 1.000
+ 0.3 Cauchy RPI 5.566 0.967 4.670 0.963 4.492 0.965

Cauchy CPI 92.071 0.996 117.459 1.000 233.130 1.000
RPI 9.821 0.984 7.247 0.996 6.848 0.995

Slash = CPI 85.866 0.999 200.704 1.000 289.166 1.000
N(0,1)/U(0,1) RPI 13.506 0.994 10.312 0.999 9.704 1.000

In table 7.6 it is assumed that both the data and the future observations
come from the same distribution. Hence the parametric iid Gaussian model
is incorrect for most of the simulations. For symmetric distributions, we
desire the robust procedure to have an interval which will not contain the
future observations in the tails of a distribution that has heavier tails than
the normal distribution. Hence the level will go down. Ideally, the robust
interval would ignore all contamination, but this will generally not happen if
the contaminating distribution overlaps the clean distribution. However, if
the contaminating distribution is in the tail of the distribution of interest, we
hope that the robust interval will not contain any of the future observations
from the contaminating distribution. When contamination is present, the
level of the robust procedure should drop.

Table 7.6: Average 95% PI length and observed level for 1000
runs. The data comes from various distributions. Future values
are from the distribution stated in the table.
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sample type n = 10 n = 40 n = 100
distribution length level length level length level

N(0,1) CPI 4.657 0.950 4.056 0.956 3.976 0.950
RPI 4.608 0.946 4.029 0.954 3.956 0.949

0.9 N(0,1) CPI 7.563 0.920 7.177 0.954 7.243 0.953
+ 0.1 N(0,25) RPI 5.789 0.901 4.568 0.907 4.420 0.906

0.8 N(0,1) CPI 17.906 0.898 17.618 0.922 17.884 0.912
+ 0.2 N(0,100) RPI 7.640 0.833 5.188 0.824 4.878 0.805

Cauchy CPI 129.812 0.912 116.405 0.950 178.175 0.966
RPI 9.927 0.844 7.245 0.817 6.788 0.809

Slash = CPI 69.895 0.899 159.866 0.940 381.068 0.965
N(0,1)/U(0,1) RPI 9.274 0.842 10.119 0.833 9.703 0.821

.75 N(0,1) CPI 14.79 0.94 12.94 0.95 12.69 0.95
+ .25 N(7,10) RPI 11.27 0.84 8.12 0.80 7.19 0.76

In table 7.6, notice that the level for the slash, Cauchy, and 20% con-
taminated distributions is about 0.80. When 25% of the observations were
N(7, 1), the robust interval has a level which drops to 0.75 as n increases.
Note that for the slash and Cauchy distributions, the length of the classical
CI varied much more than the length of the robust interval. In table 7 the
length for the Cauchy distribution was 129.8 and in table 6 the length was
92.1 for sample size 10.

Note that when the data was not Gaussian, the robust prediction inter-
vals were much shorter than the classical prediction intervals. If the future
observations were Gaussian, the robust prediction intervals had a high level.
However, when the future observations come from the same distribution as
the training data, the robust intervals did not maintain the high levels. Ta-
bles 7.6 and 7.7 demonstrate that robust procedures are highly parametric
procedures. The robust prediction interval estimates the mean and variance
of the data assuming normality. Hence if the data is heavy tailed, the es-
timated variance of the data will be biased downwards. Table 7.6 suggests
that the robust prediction intervals will contain the future observation at a
level near the nominal level if all of the future observations are Gaussian, but
if the distribution of the data is not known, a nonparametric method should
be used.
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7.3 Sequential Methods

Sequential methods are very parametric. These methods draw data sequen-
tially and use a stopping criterion to tell the statistician to stop drawing
data. The stopping criterion depends heavily on the parametric distribution.
For the sequential probability ratio test (SPRT), one might test
H0: observations are f0 = N(0, 1) vs
H1: observations are f1 = N(µ, 1) where µ > 0. The SPRT has 4 parame-
ters: a, b, f0, and f1. These parameters determine the expected sample size,
power, and level of the test. Let

Zi = log[
f1(Xi)

f0(Xi)
]

and

log(Ln) =
n

∑

i=1

Zi.

Let the stopping time N be the first n such that log(Ln) ≤ log(A) = a or
log(Ln) ≥ log(B) = b. Suppose that a type 1 error of α and a type 2 error of
β are desired. Then set

A =
β

1 − α
and B =

1 − β

α
.

If the expected value of Z1 is nonzero under both the null hypothesis H0

and the alternative hypothesis H1, then the Wald approximations for the
expected stopping times under H0 and H1 are

N̂0 =
α log(1−β

α
) + (1 − α) log( β

1−α
)

E0(Z1)

and

N̂1 =
(1 − β) log(1−β

α
) + β log( β

1−α
)

E1(Z1)
.

To test the hypotheses H0: observations are f0 = N(0, 1) vs
H1 : observations are f1 = N(µ, 1) where µ > 0, the SPRT takes

zi = xiµ− µ2

2
. (7.7)
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Accept Ho if
∑

zi ≥ log(B) and accept H1 if
∑

zi ≤ log(A). If neither
condition holds, draw another observation.

With j observations, the RSPRT diagnostic replaces zi with wizi where

wi,j = 1 if med(j) − 5.2mad(j) ≤ xi ≤ med(j) + 5.2mad(j) (7.8)

and
wi,j = 0 otherwise

for i = 1, ..., j. Also the RSPRT draws 4 observations to get a robust variance
estimate while the SPRT can end after a single observation is drawn; however
if the expected sample size is not very small, the two tests should be very
similar. We propose using the RSPRT as a diagnostic and not for inference.

Note that if the actual distribution is a contaminated distribution, a
highly outlier resistant method may be needed to avoid making incorrect
decisions. If the contamination fraction is 5%, then the probability that 2
of the first 5 observations are outliers follows a binomial(N = 5, p = 0.05)
distribution.

The RSPRT diagnostic attempts to maintain the power, level, and ex-
pected sample size of the SPRT when the assumptions of the SPRT hold, with
little change when only a small percentage of outliers are present. There seem
to be only a few papers on robust sequential methods. For Huber’s HSPRT
(see Quang 1985) the estimated level, power, and sample size cannot be pre-
dicted accurately. Geertsema (1987) describes robust sequential confidence
intervals based on M-estimators and Jureckova (1991) gives references for
other robust sequential procedures.

A problem with sequential methods is that they can run for a very long
time if model assumptions are incorrect. Let the Winsorized SPRT (WSPRT)
be a test based on a Winsorized sum. If there was a sudden shift from N(µ, 1)
data to N(µ + 1000, 1) data, then the SPRT would terminate rapidly, then
the WSPRT, and finally the RSPRT. (The median would move towards the
right and MAD(n) would increase, so the trimmed sum would move towards
the right.) If the process had occasional gross outliers, it might be expensive
to stop the system. Here the SPRT would say stop while the WSPRT and
RSPRT would give the observation weight zero. However if two outliers in
a row appeared, the process might be “out of control” and we would want
to stop. If the process has 10% gross outliers, the SPRT and WSPRT might
oscillate and take a large time to stop as compared to the RSPRT. The SPRT,
RSPRT, and WSPRT can be tailored to have similar performance when the
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SPRT assumptions hold, but each method can dominate the other two (in
terms of speed in stopping) under certain types of contamination.

Another problem with the robust diagnostic is that the median and mad
are recomputed at each step. With ordinary Winsorized sums, the sum can
be computed very rapidly with update formulas. (I recommend develop-
ing several robust or resistant procedures that can handle different types of
contamination. I would run the SPRT, RSPRT, and the WSPRT based on
update formulas at the same time. For regression, I often run five methods
with least squares.)

As an example let µ = 1.0. Then the output below is for an SPRT with
α ≈ 5%, β ≈ 1% and expected sample size ≈ 8.35 (10.54 using renewal
theory).

Table 7.7: SPRT with no outliers
type SPRT RSPRT expected

ave sample size 10.41 10.24 10.54
sd 0.189 0.175 N/A
α̂ 0.023 0.036 0.05
se 0.005 0.006 N/A

Now suppose 10% of the observations have mean 100.
Table 7.8: SPRT with outliers
type SPRT RSPRT hoped for

ave sample size 5.81 10.92 10.54
sd 0.118 0.197 N/A
α̂ 0.658 0.083 0.05
se 0.015 0.009 N/A

Note that for the RSPRT, the average sample length and level did not
change much when outliers were added.

7.4 Moving from Diagnostics to Inference

If the robust confidence intervals are to be used for inference, we need to
know what the sample mean and sample variance are estimating when they
are applied to the cleaned data, and we need to know how to estimate the
variability of the random mean. From chapter 4, the sample mean applied
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to the cleaned data is estimating µT (a, b) if MED(X) − kLMAD(X) = a
and MED(X) + kUMAD(X) = b and the cleaning is done using the sample
analogs. If µT (a, b) 6= µ, then the robust CI will be less and less likely to
contain µ as the sample size increases. If the distribution is symmetric and
kL = kU then µT (a, b) is equal to the population median. For exponential
data, µT (a, b) is not equal to the population mean, although for moderate
sample sizes, the RCI based on the cleaning rule of chapter 5 contained the
true mean at a level close to the nominal level (since the RCI was equal to
the classical CI with high probability and since |µ− µT (a, b)| is very small).

The Shorack and Wellner theory presented in chapter 4 shows that the
asymptotic distribution of the random mean is the sum of several Gaussian
random variables. The first term in the sum has the same limiting distribu-
tion as the ordinary trimmed mean. The sample variance of the cleaned data
is approximating the variance of the truncated distribution, and probably
underestimates the asymptotic variance. If the bias of the variance estima-
tor is very small, then the level of the RCI will be only slightly smaller than
the nominal level. The simulations seem to indicate that the bias is small,
but theory is needed.

There are many alternative approaches for testing and confidence inter-
vals. Guenther (1969) discusses classical confidence intervals while Gross
(1976) and Lax (1985) discuss robust confidence intervals for symmetric dis-
tributions. Basically all of the methods which truncate or Winsorize the tails
worked. Wilcox (1997, p. 75, 106) uses ordinary trimmed means for testing
while Kafadar (1982) uses the biweight M-estimator. Also see Horn (1983).

The literature on robust prediction intervals is rather brief. The methods
presented in this chapter are not very good if the true distribution is not the
nominal distribution. Horn (1988) has a partial solution. He picks several
symmetric distributions and finds constants such that his prediction inter-
vals based on the biweight perform well on all of the distributions, an idea
advocated by Morgenthaler and Tukey (1991) for many robust procedures.
The classical prediction interval targeted for normal data seems to perform
much better on exponential data than robust prediction intervals that are
targeted for symmetric data. Nonparametric intervals (Konijn 1987) may be
useful if the cdf F is not known.
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Chapter 8

Robust Regression

In the regression model,

Yi = Xi,1β1 +Xi,2β2 + ...+Xi,pβp + ei (8.1)

for i = 1, . . . , n. In matrix notation, these n equations become

Y = Xβ + e, (8.2)

where Y is an n × 1 vector of dependent variables, X is an n × p matrix
of predictors, β is a p× 1 vector of unknown coefficients, and e is an n × 1
vector of errors. Equivalently,
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. (8.3)

Often the first column X1 = 1, the n×1 vector of ones. The ith case (xT
i , yi)

corresponds to the ith row xT
i of X and the ith element of Y . If the ei are

iid with zero mean and variance σ2, then regression is used to estimate the
unknown parameters β and σ2.

Most regression methods attempt to find an estimate b for β which min-
imizes some criterion function Q(b) of the residuals where the ith residual
ri(b) = ri = yi − xT

i b. Two of the most used classical regression methods
are ordinary least squares (OLS) and least absolute deviations (L1). Least
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squares chooses β̂ to minimize

QOLS(b) =
n

∑

i=1

r2
i , (8.4)

while L1 chooses β̂ to minimize

QL1(b) =

n
∑

i=1

|ri|. (8.5)

The less frequently used Chebyshev (L∞) method minimizes the maximum
absolute residual. Algorithms for OLS are described in Datta (1995), Don-
garra et al (1979), and Golub and Van Loan (1989). See Harter (1974a,b,
1975a,b,c, 1976) for a historical account of linear regression.

The L1 and Chebyshev fits can be efficiently computed using linear pro-
gramming, but the L1 fit can also be found by examining all C(n, p) subsets
of size p. The Chebyshev fit to a sample of size n > p is also a Chebyshev fit
to some subsample of size h = p + 1. Thus the Chebyshev fit can be found
by examining all C(n, p+ 1) subsets of size p + 1. These two combinatorial
facts will be very useful for the design of high breakdown (HB) regression
algorithms. Algorithms for L1 are described in Adcock and Meade (1997),
Barrodale and Roberts (1974), Bloomfield and Steiger (1980), Dodge (1997),
Koenker (1997), Koenker and d’Orey (1987), Portnoy (1997), and Portnoy
and Koenker (1997).

Some HB robust regression methods can fit the bulk of the data even if a
cluster of outliers is present. The least quantile of squares (LQS(c)) estimator
minimizes the criterion

QLQS(b) = r2
(c) (8.6)

where r2
(c) is the cth smallest squared residual. In the literature and software,

c = [(n+ p + 1)/2] is usually used as the default. When c = cn is chosen so
that c/n→ 1/2, LQS estimator is also known as the least median of squares
(LMS(c)) estimator (so LMS usually means LQS(c = [(n + p + 1)/2]). The
least trimmed sum of squares (LTS(c)) estimator minimizes the criterion

QLTS(b) =
c

∑

i=1

r2
(i)(b), (8.7)
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and the least trimmed sum of absolute deviations (LTA(c)) estimator of
Hössjer (1991) minimizes the criterion

QLTA(b) =
c

∑

i=1

|r(b)|(i) (8.8)

where |r(b)|(i) is the ith smallest absolute residual. The LMS and LTS meth-
ods may be the most commonly used high breakdown estimators (HBE),
and several methods that use LMS or LTS as an initial estimator have been
proposed.

Several HB regression methods have exact algorithms. These exact algo-
rithms have 3 parameters: c, h, and K. The parameter c denotes the number
of cases covered, thus n − c cases are trimmed. The parameter K is the
number of subsamples of size h which are examined to compute the estima-
tor. Generally c = [(n+ p+ 1)/2] is used as the default (because this choice
maximizes the breakdown of the estimator).

Since the LMS(c) criterion is defined by a Chebyshev fit to an appropri-
ate subset of cases of size h = p + 1, the LMS estimator can be computed
exactly by searching all K = C(n, p + 1) subsets of size p + 1. See Port-
noy (1987), Stromberg (1993b), and Agulló (1997). Croux, Rousseeuw, and
Hössjer (1994) give an exact algorithm for the least quantile of differences
(LQD) estimator. Since LQD is LMS applied to a set of case differences,
LQD is also given by a Chebyshev fit to a subset of h = p+1 case differences
(Stromberg et al 1997). The LTS estimator has c = h and is defined by an
OLS fit to a subset of size h, see Hawkins (1994). Thus the exact algorithm
computes K = C(n, h) OLS fits where generally h > n/2. Other sources of
references for exact algorithms for LMS and LTS include Appa and Land
(1993), Hössjer (1995), and Stromberg (1993a). Since the LTA(c) estimator
can be found by fitting L1 to an appropriate sample of size c, Hawkins and
Olive (1998b) use an exact algorithm with h = p and K = C(n, p).

8.1 Inconsistency of Resampling Algorithms

Because of the prohibitive computation involved in generating all C(n, h)
possible subsets of size h from the n cases, resampling algorithms have been
proposed. These approximate algorithms draw subsamples of size hi for
i = 1, ..., K where the number of subsamples K is often chosen so that the
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approximate estimator can be computed in a few seconds (eg K = 3000). We
will show that many approximate estimators are inconsistent. The remainder
of this chapter follows Hawkins and Olive (1998a) closely.

The following notation will be useful. Denote the hi ≥ p cases of the ith
sample by

Ji = {j1, ..., jhi}.
Many algorithms have hi = h for every sample. Let XJi be the hi × p
submatrix (xj1, xj2, ..., xjhi

)T and let YJi = (yj1, yj2, ..., yjhi
)T . By applying

least squares to the data (XJi , YJi), an estimator

bJi = (XT
Ji
XJi)

−1XT
Ji
YJi

of β can be computed provided that the inverse exists. If the subset is
elemental (h = p) then this formula simplifies to

bJi = X−1
Ji
YJi

(regardless of whether the estimator applied to the subset is OLS, L1, or
L∞). The criterion Q(bJi) is computed from the n residuals for i = 1, ..., K
and the final estimator is the fit bJm which minimized the criterion. The
resampling algorithm PROGRESS described in Rousseeuw and Leroy (1987,
p. 29, 197-206) uses elemental subsamples.

The earliest and most widely used algorithm is the “basic resampling”
or “elemental set” method where hi ≡ p and K subsets are used. Fare-
brother (1997) sketches the history of elemental set methods. Hinich and
Talwar (1975) used nonoverlapping elemental sets as an alternative to least
squares. Rubin (1980) used elemental sets for diagnostic purposes, and
Hawkins, Bradu, and Kass (1984) used elemental sets to detect multivari-
ate outliers. Rousseeuw (1984) was the first to propose an elemental set
method (PROGRESS) to approximate a high breakdown method.

Example 8.1. This example illustrates the elemental resampling algo-
rithm PROGRESS. Let the data consist of the 5 (xi, yi) pairs (0, 1), (1, 2), (2, 3), (3, 4),
and (1, 11). Then p = 2 and n = 5. Let K = 2 and hi = h = 2. Suppose
the criterion is the median of the n squared residuals and that J1 = {1, 5}.
Then c = 3 and the observations (0, 1) and (1, 11) were selected. Since
bJ1 = (1, 10)T , the estimated line is y = 1+10x, and the corresponding resid-
uals are 0,−9,−18,−27, and 0. The criterion Q(bJ1) = 92 = 81 since the
ordered squared residuals are 0, 0, 81, 182, and 272. If observations (0, 1) and
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(3, 4) are selected next, then J2 = {1, 4}, bJ2 = (1, 1)T , and 4 of the residuals
are zero. Thus Q(bJ2) = 0 and bJm = bJ2 = (1, 1)T . Hence the algorithm
produces the fit y = 1 + x.

Often in the high breakdown regression literature, a theoretical estimator
is proposed with an inferential convergence rate of n−1/2, but the theoretical
estimator can not be computed (or the computation is impractical). In other
words, the global minimizer of the criterion β̂ satisfies

‖β̂ − β‖ = OP (n−1/2),

but an estimator from an “approximate” algorithm is used since β̂ can not
be computed in a reasonable amount of time. We call the convergence rate
of the algorithm estimator the algorithmic rate. Note that the software im-
plementation of the regression method has the algorithmic rate when the two
rates differ. Example 8.2 below shows that if the algorithm uses elemental
subsets (h = p), then the estimator will not be consistent if the number of
subsamples K is fixed.

If an exact algorithm exists but an approximate algorithm is also used,
the two estimators should be distinguished in some manner. For example
β̂LMS could denote the estimator from the exact algorithm while β̂ALMS

could denote the estimator from the approximate algorithm. In the liter-
ature this distinction is too seldomly made, but there are a few outliers.
Portnoy (1987) makes a distinction between LMS and PROGRESS LMS
while Cook and Hawkins (1990, p. 640) point out that the AMVE is not
the minimum volume ellipsoid (MVE) estimator (which is a high breakdown
estimator of dispersion sometimes used to define weights in regression al-
gorithms). Rousseeuw and Bassett (1991) find the breakdown point and
equivariance properties of the LMS algorithm that searches all C(n, p) ele-
mental sets. Woodruff and Rocke (1994, p. 889) point out that in practice
the algorithm is the estimator. Hawkins (1993a) has some results when the
fits are computed from disjoint elemental sets, and Rousseeuw (1993a, p.
126) states that the all subsets version of PROGRESS is a high breakdown
algorithm, but the random sampling versions of PROGRESS are not high
breakdown algorithms.

Example 8.2. To see that K should not be fixed, consider the location
model Yi = β + ei where the ei are iid and β is a scalar (since p = 1
in the location model). If β was known, the natural criterion would be
Q(Yi) = |Yi −β|, and the K elemental fits would be Yi1 , ..., YiK . Assume that
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these fits are distinct (this assumption maximizes the probability of a good
fit). Then the best fit Yo minimizes |Yij − β|. If α > 0, then

P (|Yo − β| > α) = [P (|Y1 − β| > α)]K > 0

provided that the errors have mass outside of [−α, α], and thus Yo is not a
consistent estimator.

Since α > 0 was arbitrary in the above example, the inconsistency result
holds unless the iid errors are degenerate at zero. If K subsamples of size
hi were drawn where hi ≤ M , applying OLS to each subsample gives the
sample mean of the observations from the subsample. If the subsamples are
randomly selected, then the probability that the subsamples are disjoint goes
to 1. Let the “best fit” bo minimize ‖b − β‖ among the K fits considered.
Since the fit selected by the criterion will be at least as bad as the “best
fit,” resampling algorithms produce inconsistent estimators for the location
model when K and the subsample sizes hi are bounded. For most regression
designs, estimating β is more difficult than in the location model. These
remarks suggest the following result.

Lemma 8.1. If the number of fits K is fixed and the subsample sizes
hi are bounded by M < ∞, then the resampling algorithm estimator is
inconsistent unless the distribution of e1 is degenerate at zero.

Remark 8.1. In the above lemma, we need some constraint on the
design. For example, the probability that a randomly selected observation
is in a (huge) ball about the origin should not go to zero. A design where
all the mass is escaping to ∞, eg simple regression with Xi = (−1)i2i, may
produce reasonable estimates even for fixed K.

Remark 8.2. Ruppert (1992) introduces the algorithms SURREAL and
RANDDIR. The RANDDIR algorithm also takes subsamples i = 1, ..., K,
but a linear combination bLCi of the current fit bJi and the fit bi−1,Q that has
the smallest criterion value among the fits considered so far is also evaluated.
The new “best” fit bi,Q is bi−1,Q, bJi, or bLCi, depending on which of the three
candidate fits minimizes the criterion. (Here the “best” fit minimizes Q and
can thus be computed. The fit that minimizes ‖bi−β‖ can not be computed
since β is unknown.) If the best fit so far is good, many more good fits
are examined than under the basic resampling algorithm (eg PROGRESS).
However, Ruppert’s suggestion of using K = 20p elemental fits will yield
an inconsistent estimator. SURREAL is a concentration algorithm and is
discussed in section 8.3.
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8.2 Suggestions for the Number of Samples

K

Let
J = {j1, ..., jp}

be an elemental set. Then YJ = XJβ + eJ , and the data (YJ , XJ ) produce
an estimator

bJ = X−1
J YJ

of β. Since the fit bJ passes through the p observations, one way to choose
K is to estimate the number of elemental sets that have p observations with
small errors. Let 0 < δ < 1. If each observation in J has an absolute error
bounded by c/nδ, then

‖bJ − β‖ = ‖X−1
J eJ‖ ≤ ‖X−1

J ‖c
√
p

nδ
.

We will call such a subset “good,” but since

‖X−1
J ‖

could be large, a subset with p small errors can give a poor fit. Now

P (|ei| <
c

nδ
) ≈ 2 c f(0)

nδ
(8.9)

for large n, and about O(n1−δ) observations will have small absolute errors.
So the probability of a good subset of size p is proportional to 1/nδp, and
O(nδp) samples are needed to get one sample of size p with all of the absolute
errors small.

The only assumption is that the iid errors have a density f which is
positive and continuous near zero. For example, the density could be a
mixture distribution. We could also assume that the proportion of iid errors
having density f is 1 − γ, and make appropriate changes.

Remark 8.4. If one desires the basic resampling algorithm to produce
an estimator β̂A such that

‖β̂A − β‖ = OP (n−δ) (8.10)

with 0 < δ ≤ 1/2, take at least K = O(nδp) samples. If 1/3 < δ ≤ 1/2,
then the LTS criterion should be used instead of the LMS criterion since the
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theoretical convergence rate for LMS is n−1/3. Perhaps O(nδp) samples is far
too small, since even if a good subsample is generated, the criterion Q may
not select it.

Again, looking at the location model is informative. Let Y come from a
distribution with pdf f which is continuous and positive in a neighborhood
of zero. Take nτ samples where 0 < τ < δ ≤ 1. Then

P [ min
j=1,...,nτ

|Yij | ≥M/nδ ] ≥ (P [|Y1| ≥ M/nδ ])nτ

(8.11)

where the inequality is strict unless there are no ties. For large n the right
hand side is approximately

(1 − 2 M f(0)

nδ
)nτ

= [(1 − 2 M f(0)

nδ
)nδ

](n
τ/nδ) → 1.

Since M > 0 was arbitrary,

min
j=1,...,nτ

|Yij | 6= OP (n−δ).

8.3 Subset Refinement Algorithms

Section 8.2 showed that if the subset size was fixed, convergence required that
the number of subsets increase with n. In this section we consider algorithms
that use a fixed number K of fits bJ1, ..., bJK

but will allow the number of
observations hi used for each fit to grow with n, say hi > n/q for some q.
This result may be useful for subset refinement methods. For example, the
exact LTS algorithm uses more than half the data for each fit and so its h
grows linearly with n.

Conditions for asymptotic normality for OLS are well known. See Sen
and Singer (1993, p. 280). Note that ||β̂n−β|| = OP (n−1/2) if

√
n(β̂n−β) →

Np(0, V
−1).

Lemma 8.2, Pratt (1959). Let X1,n, ..., XK,n each be OP (1) where K
is fixed. Suppose Wn = Xin,n for some in ∈ {1, ..., K} where Xin,n minimizes
some criterion Q. Then

Wn =
K

∑

i=1

Xi,nI [Xi,n = Wn] = OP (1). (8.12)
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Proof.

P (max{X1,n, ..., XK,n} ≤ x) = P (X1,n ≤ x, ..., XK,n ≤ x) ≤

FWn(x) ≤ P (min{X1,n, ..., XK,n} ≤ x) = 1 − P (X1,n > x, ..., XK,n > x).

SinceK is finite, there exists B > 0 and N such that P (Xi,n ≤ B) > 1−ε/2K
and P (Xi,n > −B) > 1 − ε/2K for n > N and i = 1, ..., K. Hence by
Bonferroni’s inequality, see Casella and Berger (1990, p. 13),

FWn(B)− FWn(−B) ≥ 1 − ε for n > N. QED

Theorem 8.3. Assume hi > n/q for i = 1, ..., K where q and K are
fixed.
a) Suppose ‖bJi,n − β‖ = OP (n−δ) for i = 1, ..., K where δ > 0. Then

‖β̂A,n − β‖ = OP (n−δ). (8.13)

b) Suppose bJi,n
ae→ β for i = 1, ..., K. Then

β̂A,n
ae→ β. (8.14)

Proof. a) follows from lemma 8.2 with Xi,n =
√
n‖bJi,n − β‖ and b) holds

since K is finite. QED

8.3.1 The Feasible Solution Algorithm with Interchanges

One version of the feasible solution algorithm (FSA) selects a sample of size
h, computes the OLS fit, and then performs casewise swaps to improve the
criterion. Suppose K random starts are used, and that bi,n is the OLS fit

from the ith random start. Let β̂A,n = β̂FSA,n be the FSA estimator.
Corollary 8.4. Assume h > n/q for i = 1, ..., K where q and K are

fixed.
Suppose ‖bi,n − β‖ = OP (n−1/2) for i = 1, ..., K. If

‖β̂FSA,n − β‖ ≤ M max
i

‖bi,n − β‖ (8.15)

for n ≥ N for some M and N , then

‖β̂FSA,n − β‖ = OP (n−1/2).
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Note that if ‖β̂LS,n − β‖ = OP (n−1/2), then ‖bi,n − β‖ = OP (n−1/2) since

the efficiency of bi,n will be 1/q. Equation 8.15 holds if β̂FSA,n is a better
approximation than the worst random start. In particular, equation 8.15
will hold if β̂FSA,n is closer to β than the random start which maximizes the
criterion Q. In principle one could choose an estimator other than OLS to
compute β̂A,n. Since the criterion Q used to select β̂A was not used in the
proof, a wide variety of criteria could be used.

8.3.2 Concentration Algorithms

A concentration algorithm takes an initial fit, finds the smallest c residuals,
computes a classical fit to these c cases, and then finds the smallest c resid-
uals again. This may be repeated until convergence and with many random
starts. Often elemental fits are used as the initial fits. OLS is used for LTS,
Chebyshev for LMS, and L1 could be used to compute the least trimmed ab-
solute deviations (LTA) estimator of Hössjer (1991). Ruppert (1992, p. 258)
describes his SURREAL concentration algorithms for LTS and LMS. For
small data sets where the exact estimate can be computed, concentration
algorithms often find the global minimizer very quickly.

He and Portnoy (1992) give strong evidence that if an initial fit b satisfies

‖b− β‖ = OP (n−δ),

then
‖bRWT − β‖ = OP (n−δ) (8.16)

where bRWT is obtained by deleting the observations with the largest absolute
residuals and computing a classical fit (with convergence rate of n−1/2) on
the remaining observations. If we compute residuals from an inconsistent
estimator, give zero weight to the observations which have large absolute
residuals and compute OLS on the remaining residuals, then the resulting
estimator will still be inconsistent. Thus the phrase “reweight for efficiency”
should be viewed with suspicion. Heuristically, too many good points get
weight zero, so the tilt of the OLS estimator is of the same order as the tilt
of the initial estimator. This result is asymptotic. Another way to motivate
reweighting is to assume that the weights perfectly classify the cases into iid
cases and outliers. Moreover, other types of reweighting such as taking one
Newton Raphson step from an initial fit can improve the initial rate from
n−1/4 to n−1/2. See Simpson et al (1992).
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Suppose the concentration algorithm usesK starts b0,1, ..., b0,K. Since each
concentration step decreases the criterion and since there are only C(n, c)
subsets of size c, each start b0,j will converge to a fit ba,j in a finite number of
steps (less than C(n, c) and often less than 20) where a stands for “attractor.”
The He and Portnoy result suggests the following lemma.

Lemma 8.5. If K initial starts are used for a concentration algorithm
and if equation 8.16 holds for each concentration step, then the consistency
rate of the best attractor

boa = argmini=1,...,K‖ba,j − β‖

is equal to the consistency rate of the best initial start

bo = argmini=1,...,K‖b0,j − β‖.

This lemma suggests that concentration algorithms which only use el-
emental starts produce consistent estimators provided that the number of
starts increases to infinity. We may need to use at least K ∝ nδp starts if an
estimator β̂A such that

‖β̂A − β‖ = OP (n−δ/2)

is desired. The lemma also suggests that n−1/2 consistent starts such as
OLS, L1, and easily computed M-estimators for regression should be used.
Perhaps the estimates from Atkinson and Weisberg (1991), Atkinson (1994),
Hadi and Simonoff (1994), Marazzi (1991), and Marazzi (1993) would also
make good starts.

Remark 8.5. Algorithms which use one interchange on elemental sets
may be competitive. Heuristically, only p − 1 of the observations in the
elemental set need small absolute errors since the best interchange would be
with the observation in the set with a large error and an observation outside
of the set with a very small absolute error. Hence K ∝ nδ(p−1) starts are
needed. Since finding the best interchange requires p(n−p) comparisons, the
run time should be competitive with the concentration algorithm. Another
idea is to repeat the interchange step until convergence. We do not know
how many starts are needed for this algorithm to produce good results.

Figure 8.1 below is used to illustrate the subsamples considered by a
concentration algorithm. The data set is the animal data found in Rousseeuw
and Leroy (1987, p. 58). The scatterplot consists of pairs (X, Y ) = (log body
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weight, log brain weight) of selected mammals, except the three observations
with the largest body weight were dinosaurs. The left side of figure 8.1 shows
five fits from five elemental starts while the right side shows the corresponding
attractors. The attractor will often pass through outliers if the starting fit
did. Note that each plot has a line that passes through the dinosaurs. The
other four attractors show less variability than their corresponding elemental
starts.

Figure 8.1: Animal data: The elemental starts are on the left, and their
corresponding attractors are on the right.

8.4 Estimators Using an Initial HBE

Some high breakdown regression algorithms use an initial consistent high
breakdown estimator as the starting point of an iteration to some “better”
estimator. Simpson, Ruppert, and Carroll (1992, p. 439) point out that the
estimators of Yohai (1987) and Yohai and Zamar (1988) do not have bounded
influence functions and report that one step generalized M (GM) estimators
based on Newton-Raphson or scoring need weights based on location and
scatter estimators with high breakdown points. They suggest that the min-
imum volume ellipsoid (MVE) be used, and Coakley and Hettmansperger
(1993) also use weights based on the MVE. Davies (1993, p. 1861) states
that the MVE may not work, and suggests another dispersion estimator;
however, high breakdown dispersion estimators are extremely expensive to
compute. Note that we need to know both the sample size for which the
asymptotic theory of a GM estimator gives a good approximation and the
sample size for which the initial estimator give a good step. The latter sam-
ple size could be far larger than the data set size, especially if the initial
estimator is not n−1/2 consistent.

Again, examining the location model is useful. Clarke (1986) examines
the probability that the M-estimator converges to the root closest to the
sample median when the sample median is used as a start. For symmetric
one parameter location families, the sample size needed to guarantee con-
vergence to the desired root with specified probability can be found. One
example used a redescending M-estimator with Cauchy data and needed a
sample size n > 118. In the practical cases where the scale is unknown,
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convergence to the root closest to the median can be guaranteed to a spec-
ified probability if the sample size is large enough, but no indications of
“how large is large” were given. It may be that M-estimator theory is “too
asymptotic” for the asymptotic distribution to give useful approximations for
actual sample sizes, and the situation must become worse in the regression
and covariance settings.

Davies (1993, p. 1888-9) points out that the efficiency arguments of
Jureckova and Portnoy (1987), Yohai (1987), and Yohai and Zamar (1988)
use a second moment assumption on the design that “effectively excludes
arbitrarily large leverage points.” Morgenthaler (1989), Simpson, Ruppert,
and Carroll (1992, p. 440), and Stefanski (1991) question whether a high
breakdown estimator can have high efficiency with respect to least squares.
Davies (1993, p. 1849, p. 1889, p. 1891) shows that the answer depends
on how efficiency and breakdown are defined, as well as on continuity of the
regression functional. Huber (1987, 1997) gives designs for which no high
breakdown estimator exists.

8.5 Examples

In the literature, there are four common suggestions for the number of sub-
samples K for PROGRESS. These suggestions are use linear growth with
p, eg 20p ≤ K ≤ 80p; use all subsets; use K fixed and free of n and p, eg
K = 3000; and use K such that at least one elemental subset will be “clean”
with probability 1 − α. (When a data set contains outliers, a subsample is
clean if none of the observations in the subsample is an outlier.) This lat-
ter choice is K ≈ − log(α)2p or 3(2p) for α ≈ .05 if protection against 50%
contamination is desired (Rousseeuw 1993a).

The last three choices may be due to Rousseeuw and Leroy (1987), who
tend to use all C(n, p) elemental subsets in their examples. If C(n, p) is large,
Rousseeuw and Leroy (1987, p. 198) suggest using K ≈ 3(2p) so that with
95% probability at least one of the K subsamples will be clean even if almost
half of the observations are outliers. If the number of predictors p < 10, then
3(2p) < 3000. The first choice may be due to Ruppert (1992) although this
recommendation was for SURREAL rather than for PROGRESS.

Splus implements PROGRESS in the function lmsreg. The default for
lmsreg is K = 3000 if C(n, p) > 3000. The option “samples” allows the
user to select K. See Rousseeuw and Hubert (1997) for a recent description
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of PROGRESS. The Splus function ltsreg uses a genetic algorithm with a
default of K = 50p starts, 50p+ 15p2 “births” and one other parameter. We
examined two data sets with six Splus estimators: OLS, L1, ALMS = the
default versions of lmsreg, ALTS = the default version of ltsreg, KLMS
= lmsreg with the option “all” which makes K = min(C(n, p), 30000), and
KLTS = ltsreg with K = 100000.

Example 8.3. This example shows that increasing the number of random
starts from 3000 to 30000 does not necessarily decrease the criterion value
produced by the algorithm. Gladstone (1905-6) attempts to predict brain
weight with five head measurements (head height, length, breadth, size, and
circumference) as predictors. He also records age, cephalic index, gender,
and cause of death. Gladstone used one predictor at a time, but we used
a model with intercept, cephalic index, and the five head measurements as
predictors. The original data has 276 cases, but we deleted cases 188 and
239 since they had missing values. Figure 8.2 shows that all of the fits except
ALMS have accommodated observations 238 and 263-266, which correspond
to babies less than 7 months old. We found that ALMS had an objective
function of 52.7 while KLMS had an objective function of 114.7 although
KLMS used ten times as many subsamples. Using a FSA on the data shows
two competing fits. One fit gives large residuals to the five babies, and
the other fit accommodates the babies while giving rather large residuals to
toddlers.

Figure 8.2: Gladstone data

Example 8.4. “High breakdown” algorithms do not necessarily detect
outliers that could be detected simply by examining the data. Maronna
and Yohai (1989) give an artificial data set with 50 cases, 2 predictors, and
an intercept. The last 7 observations are planted outliers and the first 43
are generated with β = (0, 0, 0)T . Figure 8.3 shows that all 6 estimators
accommodated the outliers. For KLMS, all 19600 elemental subsets were
generated. Since the data consists of 2 spheres separated by about 10 units,
a fit passing through the center of both spheres may be reasonable, but
methods that downweight high leverage points would give the outliers large
absolute residuals.

Figure 8.3: Marrona-Yohai artificial data
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We also examined some of the literature implementations. Yohai (1987,
p. 646) and Yohai and Zamar (1988) need a consistent initial estimator and
recommend all elemental subset LMS and PROGRESS LMS. Simpson, Rup-
pert, and Carroll (1992, p. 445) use lmsreg as an initial start although the
theory needs an n−1/4 convergent initial high breakdown estimator. Coakley
and Hettmansperger (1993) need an n−1/2 convergent initial high breakdown
estimator, but use PROGRESS or RANDDIR. The estimators of the last
two papers also need weights estimated from a high breakdown dispersion
estimator such as the minimum volume ellipsoid (MVE) estimator. Both
papers use PROGRESS to estimate the MVE. Fung (1993, p. 515) uses
PROGRESS to estimate LMS and the MVE. Maronna and Yohai (1993) use
PROGRESS LMS withK = 200 samples in their simulations. Hössjer (1994)
uses PROGRESS with K = 10000 samples. Croux, Rousseeuw, and Hössjer
(1994, p. 1276) suggest using all elemental subsets or O(n) samples. Velilla
(1995, p. 949) suggests using Ruppert (1992) to detect multivariate outliers.

Since high breakdown estimators are rather new, many recent results have
been negative. As a rule of thumb, if the estimator has rigorous theory, it
can not be computed, and for the subsample sizes K implemented in the
software, the algorithms are neither consistent nor high breakdown.
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Chapter 9

Subsample Behavior

This chapter contains several results concerning the subsamples considered
by a robust regression algorithm. We will show that the best elemental subset
from nδ randomly selected cases has convergence rate n−δ where 0 < δ. Next
we will give extensions of Hawkins (1993a) and examine the behavior of
individual subsample fits.

In the regression model
Y = Xβ + e, (9.1)

we assume at first that the model contains an intercept and that the errors
are iid from a distribution with a pdf f which is positive on the entire real
line. In order to obtain convergence results, we also assume that the errors
are independent of the predictors. This model allows heavy tails, x−outliers,
and mixture models, but eliminates games against malicious opponents. In
a game, the opponent could run OLS and then modify a proportion γ of the
observations with the smallest absolute residuals. Then the results of this
chapter would not hold.

As in the previous chapter, an “elemental set” algorithm for regression
involves generating subsets of size p, finding the exact fit to the subset, and
using this fit to calculate the criterion function Q for the entire sample. If
the ith elemental subset is

Ji = {i1, ..., ip},

then the data (XJi , YJi) produce an estimator

bJi = X−1
Ji
YJi
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of β.
We will show that many elemental subsets approximate β and that the

closest elemental fit bc to any p× 1 vector c satisfies

‖bc − c‖ = OP (n−1).

Hawkins (1993a) observed that the algorithms which examine all elemental
sets yield good approximations except for very small n and also obtained
some results for disjoint elemental sets.

Remark 9.1. For the location model, consider using all n elemental
subsets. Then

P (n‖bc − c‖ ≤M) = P (n min
i=1,...,n

|Yi − c| ≤ M) = 1 −
n

∏

i=1

P (|Yi − c| > M/n)

= 1− [P (|Y1 − c| > M/n)]n ≈ 1− (1− 2Mf(c)

n
)n → 1− exp(−2Mf(c)) → 1

as M → ∞. Hence in the location model, bc has convergence rate n−1 if all
subsets are used.

9.1 Elemental Sets Fit All Planes

To fix ideas and notation, we will present three examples. The first two
examples consider the simple linear regression model with one predictor and
an intercept while the third example considers the multiple regression model
with two predictors and an intercept.

Example 9.1. Suppose the design has exactly two distinct predictor
values, (1, x1) and (1, x2) where x1 < x2 and

P (Yi = β1 + β2x1 + ei) = P (Yi = β1 + β2x2 + ei) = 0.5.

Notice that
β = X−1z

where
z = (z1, z2)

T = (β1 + β2x1, β1 + β2x2)
T

and

X =

[

1 x1

1 x2

]

.
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If we assume that the errors are iid N(0, 1), then P (Yi = zj) = 0 for j = 1, 2
and n ≥ 1. However,

min
i=1,...,n

|Yi − zj| = OP (n−1)

by remark 9.1. Suppose that the elemental set J = {i1, i2} is such that
xij = xj and |yij − zj| < ε for j = 1, 2. Then bJ = X−1YJ and

‖bJ − β‖ ≤ ‖X−1‖‖YJ − z‖ ≤ ‖X−1‖
√

2 ε.

Hence ‖bJ − β‖ is bounded by ε multiplied by a constant (free of n).
Example 9.2. This example will show how to get bounds similar to

those in example 9.1 when the design points xi are iid N(0, 1). Although
there are no replicates, we can still evaluate the elemental fit at two points,
say w1 and w2 where w2 > 0 is some number (eg w2 = 1) and w1 = −w2. Let
region R1 = {xi : xi ≤ w1} and let region R2 = {xi : xi ≥ w2}. Now a fit bJ
will be a “good” approximation for β if J corresponds to one observation xi1

from R1 and one observation xi2 from R2 and if both absolute errors are small
compared to w2. Notice that the observations with absolute errors |ei| < ε
fall between the two lines y = β1 + β2x ± ε. If the errors ei are iid N(0, 1),
then the number of observations in regions R1 and R2 with errors |ei| < ε
will increase to ∞ as n increases to ∞ provided that

ε =
1

nδ

where 0 < δ < 1.
Now we use a trick to get bounds. Let z = Wβ be the true line evaluated

at w1 and w2 where

W =

[

1 w1

1 w2

]

.

Thus z = (z1, z2)
T where zi = β1 + β2wi for i = 1, 2. Consider any subset

J = {i1, i2} with xij in Rj and |eij | < ε for j = 1, 2. The line from this subset
is determined by bJ = X−1

J YJ so

ẑ = WbJ

is the fitted line evaluated at w1 and w2. Let the deviation vector

δJ = (δJ,1, δJ,2)
T
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where
δJ,i = zi − ẑi.

Hence
bJ = W−1(z − δJ)

and
|δJ,i| ≤ ε

by construction. Thus

‖bJ − β‖ = ‖W−1z −W−1δJ −W−1z‖

≤ ‖W−1‖‖δJ‖ ≤ ‖W−1‖
√

2 ε.

The basic idea is that if a fit is determined by one point from each region
and if the fit is good, then the fit has small deviation at points w1 and w2

because lines can’t bend. See figure 9.1. Note that the bound is true for
every fit such that one point is in each region and both absolute errors are
less than ε. The number of such fits can be enormous. For example, if ε is a
constant, then the number of observations in region Ri with errors less than
ε is proportional to n for i = 1, 2. Hence the number of “good” fits from the
two regions is proportional to n2.

Figure 9.1: The true line is y = x + 0.

Example 9.3. Since hyperplanes can’t bend, we can get similar results
when there are two predictors and an intercept. Assume that the predictors
(xi,1, xi,2) are iid N(0, I2). Now we need a matrix W and three regions with
many observations that have small errors. Let

W =





1 a −a/2
1 −a −a/2
1 0 a/2





for some a > 0 (eg a = 1). Note that the three points (a,−a/2)T , (−a,−a/2)T ,
and (0, a/2)T determine an equilateral triangle. We will extend the three
lines that form the triangle and use points that fall opposite of a corner of
the triangle. These corner regions are

R1 = {(x1, x2)
T : x2 < −a/2 and x1 > a/2 − x2},
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R2 = {(x1, x2)
T : x2 < −a/2 and x1 < x2 − a/2},

and
R3 = {(x1, x2)

T : x2 > x1 + a/2 and x2 > a/2 − x1}.
See figure 9.2.

Figure 9.2: The Corner Regions for Two Predictors and a Constant

Now we can bound certain fits in a manner similar to that of example
9.2. Again let z = Wβ. Consider any subset J = {i1, i2, i3} with xij in Rj

and |eij | < ε for j = 1, 2, and 3. The plane from this subset is determined
by bJ = X−1

J YJ so
ẑ = WbJ

is the fitted plane evaluated at the corners of the triangle. Let the deviation
vector

δJ = (δJ,1, δJ,2, δJ,3)
T

where
δJi = zi − ẑi.

Hence
bJ = W−1(z − δJ)

and
|δJ,i| ≤ ε

by construction. Thus

‖bJ − β‖ = ‖W−1z −W−1δJ −W−1z‖

≤ ‖W−1‖‖δJ‖ ≤ ‖W−1‖
√

3 ε.

For example 9.3, there is a prism shaped region centered at the equilateral
triangle determined by W with length 2ε. Any elemental subset J with one
point in each corner region and with each absolute error less than ε produces
a plane that cuts the prism. Hence each absolute deviation at the corners of
the triangle is less than ε.

The geometry in higher dimensions uses hyperpyramids and hyperprisms.
When p = 3, the p + 1 = 4 rows that form W determine an equilateral
pyramid. Again we have 4 corner regions and only consider elemental subsets
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consisting of one point from each region with absolute errors less than ε.
The resulting hyperplane will cut the hyperprism formed by extending the
pyramid into 4 dimensions by a distance of ε. Hence the absolute deviations
will be less than ε.

We use the pyramids to insure that the fit from the elemental set is
good. Even if all p cases from the elemental set have small absolute errors,
the resulting fit can be very poor. Consider a typical scatterplot for simple
linear regression. Many pairs of points yield fits almost orthogonal to the
“true” line. If the 2 points are separated by a distance d, and the errors are
very small compared to d, then the fit is close to β. The separation of the
p cases in p−space by a (p− 1)-dimensional equilateral pyramid is sufficient
to insure that the elemental fit will be good if all p of the absolute errors are
small.

Now we describe the pyramids in a bit more detail. Since our model
contains a constant, if p = 2, then the 1-dimensional equilateral pyramid
with edge length d is simply a line segment of length d. If p = 3, then the
pyramid is an equilateral triangle, in general the pyramid is determined by
p points all of which are a distance d from the other points. Hence any three
corners from the pyramid form an equilateral triangle with edge length d.
We also need to define the p corner regions Ri. When p = 2, the two regions
are to the left and right of the line segment. When p = 3, the corner regions
are formed by extending the lines of the triangle. In general, there are p
corner regions, each formed by extending the p− 1 surfaces of the pyramid
that form the corner. Hence each region looks like a pyramid without a base.
(Drawing pictures may help visualizing the geometry.)

The pyramid determines a p × p matrix W . Define the p × 1 vector
z = Wβ. Hence

β = W−1z.

Note that the p points that determine W are not actual observations, but W
will be useful as a tool to obtain a bound as in examples 9.2 and 9.3.
Lemma 9.1. Fix the pyramid that determines (z,W ) and consider any
elemental set (XJ , YJ ) with each point (xT

i , yi) ∈ a corner region Ri such
that each absolute error

|yi − xT
i β| ≤ ε.

Then the elemental set produces a fit bJ = X−1
J YJ such that

‖bJ − β‖ ≤ √
p ‖W−1‖ ε. (9.2)
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Proof. The proof is just an extension of example 9.3. We let the p × 1
vector z = Wβ, and consider any subset J = {i1, i2, ..., ip} with xij in Rj

and |eij | < ε for j = 1, 2, ..., p. The fit from this subset is determined by
bJ = X−1

J YJ so
ẑ = WbJ

is the fitted hyperplane evaluated at the corners of the hyperpyramid. Let
the p× 1 deviation vector

δJ = (δJ,1, ..., δJ,p)
T

where
δJi = zi − ẑi.

Hence
bJ = W−1(z − δJ)

and
|δJ,i| ≤ ε

by construction. Thus

‖bJ − β‖ = ‖W−1z −W−1δJ −W−1z‖

≤ ‖W−1‖‖δJ‖ ≤ ‖W−1‖√p ε.
QED

Next we will show that the closest elemental fit bo to the p× 1 vector β
satisfies

‖bo − β‖ = OP (n−1).

Since an elemental fit b passes through the p cases, a necessary condition
for b to approximate β well is that all p errors be small. Hence no “good”
approximations will be lost when we consider only the cases with |ei| < ε. If
the errors are iid, then for small ε > 0, case i has

P (|ei| < ε) ≈ 2 ε f(0).

Hence if ε = 1/n(1−δ), where 0 ≤ δ < 1, approximately

2 nδ f(0)

cases have small errors.
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Remark 9.2. Since the L1 fit is elemental, the L1 elemental subset
should have p small errors for many models. If β̂L1 satisfies a central limit
theorem, then

‖bo − β‖ ≤ ‖β̂L1 − β‖ = OP (n−1/2).

To get a bound, we need to assume that the number of observations in
each of the p corner regions is proportional to n. This assumption is satisfied
if the rows of the design (ignoring the constant) are iid from a distribution
with a joint density that is positive on the entire (p − 1)−dimensional Eu-
clidean space. We assume that the probability that a case falls in region Ri

is bounded below by pi > 0 for large enough n. Hence the expected number
of elemental fits b with

‖b− β‖ ≤
√
p

n1−δ
‖W−1‖

is bounded below by

[2 f(0) nδ]p
p

∏

i=1

pi ∝ nδp. (9.3)

This is a crude bound. We can rotate the pyramid so that each corner goes
through a face of the original pyramid. Then the new corner regions would
be disjoint from the original regions. (For p = 3 the two pyramids would
be a six cornered star.) By moving the center of the pyramid we would
obtain more good fits, and we are ignoring good fits from sets that were not
separated by a distance d. Hence as n gets large, the probability of at least
one “good” elemental fit goes to 1.
Corollary 9.2. The best elemental fit bo satisfies

‖bo − β‖ = OP (n−(1−δ))

for any δ > 0.
Less immediate is the following result.

Corollary 9.3. The best elemental fit bo satisfies

‖bo − β‖ = OP (n−1).

Proof. Fix α, 0 < α < 1. We need to find Mα such that

P (n‖bo − β‖ ≤Mα) ≥ 1 − α.
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If Tα is a positive constant, then

P (|ei| ≤
Tα

n
) ≈ 2Tα

n
f(0)

for large n. Hence we expect to have 2Tαf(0) such points. Since this expec-
tation is free of n, we can choose Tα so large that the probability that all p
regions Ri have at least one |ei| ≤ Tα/n is greater than 1 − α. Thus taking
Mα =

√
p ‖W−1‖2 Tα gives the result. QED

Remark 9.3. The proof of corollary 9.3 only assumes that the number
of cases in each region Ri with absolute errors less than ε is proportional to
nε. Let h(n) be an integer function of n which increases to ∞ as n increases
to ∞. For example, h(n) = [log(n) + 1], or h(n) = [

√
n + 1] would work. If

a sample of size h(n) cases is chosen without replacement from the n cases
and all C(h(n), p) elemental subsets of these h(n) cases are evaluated, then
the elemental set bh from this sample that is closest to β satisfies

‖bh − β‖ = OP (−h(n)).

Theorem 9.4. The closest elemental fit bc to any p× 1 vector c satisfies

‖bc − c‖ = OP (n−1).

Proof sketch. The proof is essentially the same. Sandwich the plane deter-
mined by c by only considering points such that

|fi| = |yi − xT
i c| < ε.

But now the probability that a given point has such an fi depends on xT
i .

Since the e′is have positive density, we can consider a compact set and bound
P (|fi| < ε) > pε > 0 on the compact set. Also the pyramid needs to lie on
the c-plane and the corner regions will have smaller probabilities. By placing
the pyramid so that W is in the “center” of the X space, we may assume that
these probabilities are positive, and make Tα so large that the probability
that each of the p regions has a “good” point is larger than 1 − α. QED

Similar results hold if outliers are present and if the contamination pro-
portion is γ. We assume that the outliers are independent of the clean ob-
servations since the results do not hold if the outliers are allowed to replace
the observations with the smallest absolute errors. Under this assumption,

P (all p points are clean and good) = P (all p are good|all p are clean)P (all are clean)
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∝ [
1 − γ

n1−δ
]p.

Hence the results still hold, but the amount of sampling needed to get a clean
and good subset increases (by a factor of 2p for heavy contamination).

Normally we will only be interested in insuring that many elemental fits
are close to β. If the errors have a pdf which is positive only in a neighbor-
hood of 0, eg uniform(−1, 1), then a result like corollary 9.3 will hold, but
some slope intercept combinations cannot be realized. If the errors are not
symmetric about 0, then many fits may be close to β, but estimating the con-
stant term without bias may not be possible. If the model does not contain
a constant, then results similar to corollary 9.3 and theorem 9.4 hold, but a
p dimensional pyramid is used in the proofs instead of a (p− 1)-dimensional
pyramid.

9.2 Extensions of Hawkins (1993a)

In this section we give an analytic proof that the best elemental subset has
a n−1/p convergence rate if the errors are Gaussian and K = [n/p] disjoint
elemental subsets are used. Note that the results from the preceding section
do not apply since we are not considering all subsets of the K subsamples.
We will also consider algorithms that use disjoint subsamples of size h ≥ p.
The last two sections of this chapter will show that the mth component of the
subsample fit bJ (a p× 1 vector) behaves like a th−p+1 random variable while
the squared norm ‖bJ − β‖2 behaves like a scaled Fp,h−p+1 random variable.
In the regression model

Y = Xβ + e, (9.4)

we first assume that the errors are iid Gaussian, and later we will assume
that the design matrix X is Gaussian.

Hawkins (1993a) obtained some results on disjoint elemental sets for the
Gaussian regression model. Suppose we choose K = [n/p] nonoverlapping
elemental sets from the n cases, and let

Ji = {j1, ..., jp}

be the ith of these. Let bJ1,m, . . . , bJK ,m be the K coefficients for the mth
predictor variable among the K fits obtained from these disjoint elemental
sets.
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Let
vki = 1/

√

Ai,kk

be the inverse of the square root of the kth diagonal element of Ai =
(XT

Ji
XJi)

−1. We make the following two assumptions on the Gaussian re-
gression model.
H1) Assume Ai is nonsingular for i = 1, ..., K.
2) Let q ≥ p. Assume that [n/q] of the vki satisfy

0 < a ≤ vki ≤ b.

These assumptions are slightly different than those of Hawkins (1993a) so
that the proof of the following lemma follows from the proof of theorem 9.7.
Lemma 9.5 (Hawkins 1993a). Under H1) and 2), for any real number
cm,

dm ≡ min
i=1,...,K

|bJi,m − cm| = OP (n−1).

If all p components of bJi satisfied the above equation, and if the compo-
nents were independent, then

do ≡ min
i=1,...,K

‖bJi − c‖ = OP (n−1/p) (9.5)

where the mth component of the p× 1 vector c is cm. In particular, if c = β,
then the best fit obtained from the disjoint elemental sets may have a very
poor rate. Hence the rate for the fit selected by the algorithm would be even
worse.

Theorem 9.7 below will show that equation 9.5 holds even if the vector
components are not independent provided that the sizes hi of the disjoint
subsets are bounded. We will choose at least [n/r] nonoverlapping sets of
size hi, p ≤ hi ≤ r, from the n cases, and we will let

Ji,n = Ji = {j1, ..., jhi}

be the ith of these. Let

Ai,n = Ai = (XT
Ji
XJi)

−1,

and let
Bi,n = Bi = XT

Ji
XJi . (9.6)
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Note that Ai and Bi are p × p matrices and that the jth diagonal element
Bi,jj is bounded if the jth predictor is bounded. If we bound det(Bi) from
below and the largest diagonal element of Bi from above, we will be able to
bound fbJi

(x) from below when x falls in a bounded closed set.
We add one assumption to the Gaussian regression model.

A1) Let K = [n/q] where q ≥ r. Assume that there is an N such that for
n ≥ N, at least K of the XJi are disjoint and satisfy 0 < a ≤

√

det(Bi),
maxk,j |XJi,kj| ≤ L, and p ≤ hi ≤ r.

This assumption says that if n > N , then some percentage of the disjoint
sets Ji have a determinant det(Bi) that is bounded below by some positive
number a2. So for elemental sets, the condition becomes 0 < a < det(XJi).
The main purpose of assumption A1) is to bound the density corresponding
to the fit bJi in some neighborhood of a fixed p-vector c. If a is a number
between 0 and the smallest positive computer number, then the first part
of A1) must hold or the estimator can not be computed. In other words, if
det(Bi) is too close to zero, then the fit bJi can not be computed numerically.
The second part of A1) implies that some fraction of the cases have predictors
that are bounded from above. Since Bi is a symmetric positive definite
matrix if det(Bi) > 0, the element of Bi with the largest magnitude lies on
the diagonal. Moreover, the jth diagonal element of Bi is the sum of hi

squared observations from the jth predictor. Hence the magnitudes of these
elements are bounded above by D = rL2 if XJi satisfies A1).

Lemma 9.6. Suppose XJi satisfies condition A1). Let c be a p-dimensional
vector, and let 0 < δ. If the vector x is contained in a cube centered at c

with edge length 2δ, that is, if xi ∈ [ci − δ, ci + δ] for i = 1, ..., p, then

fbJi
(x) ≥ a

σp(2π)p/2
exp[−hδD]

where D = rL2 and

hδ →
p2

2σ2
max

i
(ci − βi)

2

as δ → 0.
Proof. As noted by Hawkins (1993a),

Y ∼ Nn(Xβ, σ
2In),

and
YJi ∼ Nhi(XJiβ, σ

2Ihi).
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Hence
bJi = (XT

Ji
XJi)

−1XT
Ji
YJi ∼ Np(β, σ

2Ai).

Thus

fbJi
(x) =

√

det(Bi)

σp(2π)p/2
exp[− 1

2σ2
(x− β)TBi(x− β)]

=

√

det(Bi)

σp(2π)p/2
exp[− 1

2σ2

p
∑

k=1

p
∑

j=1

(xk − βk)(xj − βj)Bi,kj].

Since Bi is positive definite and symmetric,

|Bi,kj| ≤ max(Bi,kk, Bi,jj) ≤ max
j
Bi,jj.

See Datta (1995, p. 23).
Since xk ∈ [ck ± δ],

| 1

2σ2

p
∑

k=1

p
∑

j=1

(xk − βk)(xj − βj)Bi,kj| ≤

1

2σ2

p
∑

k=1

p
∑

j=1

max
k,xk∈[ck±δ]

|xk − βk| max
j,xj∈[cj±δ]

|xj − βj|max
j
Bi,jj ≤

p2

2σ2
[ max
k,xk∈[ck±δ]

|xk − βk|]2D = hδD

where D = rL2. Hence

exp[− 1

2σ2

p
∑

k=1

p
∑

j=1

(xk − βk)(xj − βj)Bi,kj] ≥ exp[−hδD]

for xk ∈ [ck − δ, ck + δ] where

hδ →
p2

2σ2
max

k
(ck − βk)

2

as δ → 0, and

fbJi
(x) ≥ a

σp(2π)p/2
exp[−hδD].

QED
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Theorem 9.7. Suppose the regression model with iid Gaussian errors
holds. If A1) holds and c is a p-dimensional vector, then

do = min
i=1,...,K

‖bJi − c‖ = OP (n− 1
p ). (9.7)

Proof. Relabel the XJi such that the first K bJi satisfy condition A1).
If the vector x is contained in a sphere of radius δ centered at c, then x is
contained in the cube of lemma 9.6 and

fbJi
(x) ≥ a

σp(2π)p/2
exp[−hδD].

The independence of the bJi implies that

P (n1/pdo > γ) =
K
∏

i=1

P (‖bJi − c‖ > γ/n1/p)

=

K
∏

i=1

[1 − P (‖bJi − c‖ ≤ γ/n1/p)]

≤
K
∏

i=1

[1 −
∫ c1+ γ

√

2n1/p

c1− γ
√

2n1/p

. . .

∫ cp+ γ
√

2n1/p

cp− γ
√

2n1/p

fbJi
(w1, . . . , wp)dw1 . . . dwp]

since if bJi is in a sphere centered at c with radius γ/n1/p, then bJi is in a
cube centered at c with edge length

√
2γ/n1/p. For large enough n, lemma

9.6 can be applied and hence

P (n1/pdo > γ) ≤
K
∏

i=1

[1 − ae−hδD

σp(2π)p/2
(

√
2γ

n1/p
)p]

= [1 −
ae−hδD

σp(2π)p/2 (
√

2γ)p

n
]K = [1 −

K
n

ae−hδD

σp(2π)p/2 (
√

2γ)p

K
]K

→ exp[− ae−hδD

qσp(2π)p/2
(
√

2γ)p]

which can be made arbitrarily small by making γ large. QED
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9.3 Component Behavior of a Subset Fit

Hawkins (1993a) points out that elemental subsets give fits which are widely
dispersed but most concentrated at β. We will show that even if the errors
are Gaussian and the rows of the design matrix X are iidN(0,Σ), a clean ele-
mental subset J produces a fit whose coordinates behave like Cauchy random
variables. Hence most “clean” elemental subsets are not good. Increasing
the subset size to h ≥ p will cause more of the subsets to be good because the
resulting fits will have components that behave like th−p+1 random variables.

Assume h observations (Yh, Xh) are used to obtain the fit b, where given
X,

b = (XT
h Xh)

−1XT
h Yh ∼ Np(β, σ

2(XT
h Xh)

−1).

Let V = (XT
h Xh)

−1. Then V −1 = XT
h Xh ∼ W (Σ, p, h) while V has the inverse

Wishart distribution W−1(Σ−1, p, h+p−1). Hence for a fixed nonzero vector
a,

aTΣ−1a

aTV a
∼ χ2

h−p+1,

see Styan (1989, p. 284). In particular,

Σ−1
jj

vjj
∼ χ2

h−p+1.

Theorem 9.8. Under the conditions above,

E[P (|bj − βj| > c|V )] = P (F1,h−p+1 ≥
c2(h− p+ 1)

σ2Σ−1
jj

). (9.8)

Proof Sketch. GivenX, the jth component of b satisfies bj ∼ N(βj, σ
2vjj).

Thus
P (|bj − βj| > c|V ) = 2[1 − Φ(

c

σ
√
vjj

)]

where Φ is the standard normal cdf. Hence

E[P (|bj − βj| > c|V )] = 2 − 2E[Φ(
c

σ
√

Σ−1
jj

√

Σ−1
jj

vjj
)]

= 2 − 2E[g(W )]
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where
g(w) = Φ(

c

σ
√

Σ−1
jj

√
w),

and W ∼ χ2
h−p+1. Let f be the pdf of a χ2

h−p+1 random variable and let φ be
the standard normal pdf. Then

EW [g(W )] =

∫ ∞

0

Φ(
c

σ
√

Σ−1
jj

√
w)f(w)dw =

∫ ∞

0

∫ ∞

−∞
I
(−∞, c

√

w

σ
√

Σ−1
jj

)
(z)φ(z)dzf(w)dw =

0.5 +

∫ ∞

0

∫ ∞

0

I
(

σ2Σ−1
jj

z2

c2
,∞)

(w)f(w)dwφ(z)dz

by Fubini. Hence E(g(W )) =

0.5 + 0.5EZ [1 − Fχ2
h−p+1

(
σ2Σ−1

jj

c2
Z2)]

where Z has a half normal distribution. Hence

E[P (|bj − βj| > c|V )] = E[Fχ2
h−p+1

(
σ2Σ−1

jj

c2
Z2)] =

E[P (χ2
h−p+1 <

σ2Σ−1
jj

c2
χ2

1)]

= P (Fh−p+1,1 ≤
σ2Σ−1

jj

c2(h− p+ 1)
)

= P (F1,h−p+1 ≥
c2(h− p + 1)

σ2Σ−1
jj

).

QED
Since the square root of an F1,h−p+1 is a th−p+1, if h = p this is a Cauchy

probability. Increasing h from p will result in a “nicer” t distribution, and
Σ−1

jj will tend to decrease as h increases.
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9.4 Vector Behavior of a Subset Fit

We can also show that the squared norm ‖bJ − β‖2 behaves like a scaled
F random variable when the rows of X are iid N(0,Σ). I am grateful to
Dr. Morris L. Eaton for valuable discussion of this result. Assume Ji has
h randomly selected observations and that the data (YJi , XJi) are used to
obtain the fit bJi. Let Vi = (XT

Ji
XJi)

−1. Then V −1
i = XT

Ji
XJi ∼ W (Σ, p, h)

while Vi has the inverse Wishart distribution W−1(Σ−1, p, h + p− 1). Hence

bJi|Vi ∼ Np(β, σ
2Vi).

Let

Zi = V
−1/2
i

bJi − β

σ
.

Then Zi|Vi ∼ Np(0, Ip) and the joint density

fZi,Vi(zi, vi) = fZi|Vi(zi|vi)fVi(vi) = g(zi)fVi(vi)

where g(zi) is the Np(0, Ip) density and fVi(vi) is an inverse Wishart density.
Hence Zi and Vi are independent, see Casella and Berger (1990, p. 142), and
Zi ∼ Np(0, Ip). Note that

(bJi − β)T (bJi − β)

σ2
= ZT

i ViZi

where Zi and Vi are independent. If Σ = Ip, then

hZT
i ViZi ∼

ph

h− p + 1
Fp,h−p+1,

see Mardia, Kent, and Bibby (1979, p. 74). Thus

D2
i ≡ ‖bJi − β‖2 = (bJi − β)T (bJi − β) ∼ pσ2

h− p+ 1
Fp,h−p+1.

Note that

E(D2
i ) =

pσ2

h − p + 1

for h − p > 1 and

VAR(D2
i ) =

2p(h − 1)σ4

(h− p− 1)2(h− p− 3)
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for h − p > 3. So under the Gaussian model with strong conditions on the
design, the squared norm of the elemental fits follows a scaled F distribution.
The fits are iid provided that disjoint subsets are used to form the fits. That
is, randomly partition the data into [n/h] sets.

Notice that the behavior of a subsample fit bi depends on the subsample
size h. Increasing h causes E(D2

i ) and VAR(D2
i ) to decrease rapidly. When

h is very close to p, the D2
i vary greatly. On the other hand, if the contam-

ination proportion is γ, then the probability of obtaining a clean subsample
is proportional to (1 − γ)h which is maximized by h = p.
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Chapter 10

Algorithms and Feller, Vol. 1

In this chapter we will show why the inconsistent algorithms that use a fixed
numberK of elemental subsets do not necessarily give catastrophic results. In
fact, such algorithms have been widely used in the high breakdown literature
to create simulation studies and to produce attractive residual plots where
the outliers have large absolute residuals. We will assume that we have a
fixed data set where d of the n cases are outliers.

We will also consider partitioning algorithms that divide the data into C
cells. This idea could be useful if the algorithm is practical to compute for
a sample size of n/10, say, but not for the full sample size. If C is fixed, we
will show that the proportion of outliers in each cell stays near the overall
contamination proportion. We also give a formula for the number of clean
cells when the number of cells C grows at a certain rate.

Since the algorithms are combinatorial, many results in Feller (1957) are
useful for examining subsample behavior when the data set is fixed. For
example, if d = nγ, then the number j of outliers in a sample of size h has
a hypergeometric(d, n − d, h) distribution, and if n is large compared to h,
then the number of outliers is approximately binomial(h, γ).

10.1 Another Interpretation of PROGRESS

Although the regression algorithms that use a fixed number K of elemental
subsamples are inconsistent, they can track the majority trend and give out-
liers large residuals if the data set is small. We will rank the elemental fits
from best to worst (in terms of criterion value), and approximate the median
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rank when K subsamples are used. Let Q(1) ≤ Q(2) ≤ ... ≤ Q(M ) correspond
to the order statistics of the criterion values of the M = C(n, p) elemental
fits. When K elemental sets are drawn with replacement, we can make an
analogy between K balls falling into M boxes. If there are no ties, then the
K fits divide the M criterion values into K + 1 parts. Hence about 1/K of
the samples will produce a criterion value below the 1/(K+1) quantile of the
Q’s. Even in the Cauchy(0,1) location model with K = 1, the probability is
0.5 that the observation is within [−1, 1].

Let R be the rank of the smallest criterion value observed whenK samples
are drawn with replacement. If R = 1, then Q(1) was observed and the best
elemental fit was found. If L is the rank of the largest criterion value observed,
then L and M + 1 − R have the same distribution. From Feller (1957, p.
211-212),

P (R ≤ r) = 1 − (
M − r

M
)K ,

E(R) ≈ 1 +
M

K + 1
, V (R) ≈ KM2

(K + 1)2(K + 2)
,

and the median of R is

MED(R) ≈ M [1 − (0.5)1/K ].

For example, if n = 100, p = 3, and K = 3000, then M = 161700 and the
median rank is about 37. Hence the probability is about 0.5 that only 36
elemental subsets will give a smaller value of Q than the fit chosen by the
algorithm. Thus the choice K = 3000 does capture the majority trend for
many of the small data sets used as examples in the literature.

If we want R = 1 and K is the number of samples, then from the “key in
the lock” problem,

E(K) = M

and
VAR(K) = (M − 1)M.

The median number of samples is log(2)M. See Feller (1957, p. 224). (The
coupon’s collector’s problem tells how many samples K are needed before
all M subsamples are examined. Then E(K) ≈ M log(M), and VAR(K) ≈
M2π2/6. See Cook and Hawkins (1990), Feller (1957, p. 224), and Whittle
(1991, p. 52).)
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When contamination is present, all K elemental sets could contain out-
liers. Table 10.1 below shows the largest value of p such that there is a 95%
chance that at least one of K subsamples is clean (assuming that the sample
size n is very large). Hence if p = 28, even with one billion subsamples, there
is a 5% chance that none of the subsamples will be clean if the contamina-
tion proportion γ = 0.5. Since clean elemental fits have great variability, an
algorithm needs to produce many clean fits in order for the best fit to be
good. Hence elemental methods are doomed to fail if γ and p are large.

Given K and γ, P (at least one of K subsamples is clean) = 0.95 ≈
1 − [1 − (1 − γ)p]K . Thus the largest value of p satisfies

3

(1 − γ)p
≈ K,

or

p ≈ [
log(3/K)

log(1 − γ)
].
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Table 10.1: Largest p for a 95% Chance of a Clean Subsample

K
γ 3000 10000 1E05 1E06 1E07 1E08 1E09

0.01 687 807 1036 1265 1494 1723 1952
0.05 134 158 203 247 292 337 382
0.10 65 76 98 120 142 164 186
0.15 42 49 64 78 92 106 120
0.20 30 36 46 56 67 77 87
0.25 24 28 36 44 52 60 68
0.30 19 22 29 35 42 48 55
0.35 16 18 24 29 34 40 45
0.40 13 15 20 24 29 33 38
0.45 11 13 17 21 25 28 32
0.50 9 11 15 18 21 24 28

10.2 Partitioning

Partitioning is sometimes used if evaluating all C(n, p) elemental subsets is
impractical. If the data is randomly assigned to two groups of equal size,
then sampling theory suggests that both subgroups will be similar to the full
data set. However, the group size is half the population size, and one group
may have a smaller proportion of outliers than the other. We will partition
the data into C cells each of size n/C . Suppose the total number of outliers
in the data set is d. Then the expected number of outliers in any cell is d/C.
We will show that the cell with the smallest number of outliers still has about

d

C
− k

√

d

C
≈ d

C

outliers when d is large and C is fixed. Hence if d is large compared to
C , then even the cleanest of the C partitions has a level of contamination
broadly commensurate with that of the full sample.

First we give some notation. Suppose d of the n cases are contaminated.
Then the proportion of contaminated cases is

γ =
d

n
.

If d identical balls are placed randomly into C urns, and if di denotes the
number of balls in the ith urn, then the joint distribution of (d1, ..., dC) is
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multinomial(d, 1/C, ..., 1/C). Since we are constraining each cell to have
n/C cases, the distribution of the C cells will not be multinomial, but a
multinomial approximation may be good if

C <
n(1 − γ)2

16γ

or
7C < n.

Johnson and Young (1960) argue that the joint distribution

1
√

d
C

C−1
C

(d1 −
d

C
, ..., dC − d

C
)

≈
√

C

C − 1
(Z1 − Z̄C , ..., ZC − Z̄C)

where Z1, ..., ZC are iid standard normal. Thus the largest number of outliers
in a cell

d(C)

and
d

C
+

√

d

C
(Z(C) − Z̄C)

D
=

d

C
+

√

d

C
(Z̄C − Z(1))

have approximately the same distribution. One approximation for the upper
100α percentage point of d(C) from a symmetric multinomial distribution is

d

C
+
d

C

√

C − 1

d
Φ−1(1 − α

C
) (10.1)

where Φ is the standard normal cdf. See equation 5 of Johnson and Young
(1960) combined with equation 23 of Nair (1948), David (1981, p. 113), and
Kozelka (1956). For the exact distribution and other approximations, see
Freeman (1979). Hence the upper 100(1 − α) percentage point of d(1), the
fewest number of outliers in a cell, is approximately

[max(
d

C
− d

C

√

C − 1

d
Φ−1(1 − α

C
), 0)]. (10.2)
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From Johnson and Young (1960) and Kozelka (1956), the approximation
should be useful for α = 0.05 or α = 0.01 and for

C ≤ min(15,
n

7
).

Note that if α = 0.05, then equation 10.2 is equal to 0 when

n ≤ (C − 1)[Φ−1(1 − 0.05
C

)]2

γ
.

A small simulation of 1000 partitions was performed. The 0.05 percentile
and the 0.01 percentile of d(1) were close for each value of C, n, and γ used in
the simulation. Table 10.2 compares (10.2) with the observed 0.05 percentile
of d(1) when 1000 partitions were generated. Although the approximation
(10.2) had small error, replacing α by α/5 in (10.2) gave better empirical
results.

For algorithm design, note that if we partition the data into C cells M
times where 1/M = α, we might find one cell with a contamination propor-
tion as low as

γ −√
γ

√

C − 1

n
Φ−1(1 − α

C
). (10.3)

The above approximations are used when the number of cells C is small.
When C is large, the probability that j cells are clean has an approximate
Poisson(λ) distribution with

λ = C exp(
−d
C

).

See Feller (1957, p. 92-94). Hence

1 − exp(−C exp(
−n
2C

)) ≤ 1 − exp(−C exp(
−d
C

)) ≈ P (d(1) = 0).

With d outliers and C cells, we expect about

C(1 − 1

C
)d

of the cells to be clean. See Feller (1957, p. 226).
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Table 10.2: Observed 0.05 Percentile for d(1) vs (10.2)

C
n γ d 4 4 6 6 12 12

obs (10.2) obs (10.2) obs (10.2)
24 .042 1 0 0 0 0 0 0
24 .125 3 0 0 0 0 0 0
24 .25 6 0 0 0 0 0 0
24 .5 12 1 0 0 0 0 0

48 .042 2 0 0 0 0 0 0
48 .125 6 0 0 0 0 0 0
48 .25 12 0 0 0 0 0 0
48 .5 24 3 1 1 0 0 0

96 .042 4 0 0 0 0 0 0
96 .125 12 0 0 0 0 0 0
96 .25 24 2 1 1 0 0 0
96 .5 48 7 5 4 1 1 0
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Table 10.2 continued
C

n γ d 4 4 6 6 12 12
obs (10.2) obs (10.2) obs (10.2)

240 .042 10 0 0 0 0 0 0
240 .125 30 3 2 1 0 0 0
240 .25 60 9 7 4 3 1 0
240 .5 120 22 19 13 10 5 2

480 .042 20 1 0 0 0 0 0
480 .125 60 8 7 4 3 1 0
480 .25 120 21 19 12 10 4 2
480 .5 240 49 44 30 26 12 8

960 .042 40 4 3 2 1 0 0
960 .125 120 21 19 11 10 3 2
960 .25 240 47 44 28 26 11 8
960 .5 480 105 98 66 60 28 24

10.3 Curvature and the Arc Sine Law

Cook, Hawkins, and Weisberg (1992) consider the problem of detecting cur-
vature in the absence of outliers. They claim that residual plots based on
OLS residuals are sometimes more effective than plots based on residuals
from high breakdown estimators. McKean, Sheather, and Hettmansperger
(1993) agree, while Davies (1994) and Rousseeuw (1994) claim robust resid-
ual plots do detect curvature. Simpson and Chang (1997) claim that their
residual plots suggest that the model is incorrect when curvature is present.

To explore the issues, suppose Yi = |Xi| where the Xi are iid uniform
U(−1, 1). Consider fitting OLS and LMS as the sample size increases. The
OLS fit will have approximately zero slope and the residuals will be negative
for Xi near zero and positive for |Xi| near 1. Hence the residual plot should
approximate a parabola. If there are more negative X ′

is than positive, the
LMS slope should be near −1, otherwise the LMS slope should be near +1
(exactly ±1 if the exact fit conditions are met). Hence the residual plot
should take two shapes, the first shape the reflection of the second about the
Y -axis. The arc sine law (Feller, 1957, p. 80) gives the fraction of time that
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there are more positive X ′
is than negative X ′

is and implies that if we make
residual plots for n = 10, 11, 12, ... then the 2 shapes of the plots will not
appear in equal proportions.

Figure 10.1 displays two examples. On the left are the OLS residual plot,
lmsreg residual plot, and the RR plot for the model Yi = |Xi| where the Xi

are iid uniform U(−100, 100). The sample size n = 100, and Y was regressed
on X with a constant. The right hand side has the corresponding plots for
the model Yi = (Xi,1 − Xi,2)

2 where X1 and X2 are independent and both
X1 and X2 are iid U(−1, 1). For this model, Y was regressed on X1 and X2

with a constant. Note that when Y = |X|, the OLS predicted values range
from 44 to 57 while the lmsreg predicted values range from -100 to 100. For
the second model, it is impossible for a plane to fit the curve, but the OLS
residual plot is more symmetric than the lmsreg plot. The OLS predicted
values were Ŷ = 0.782+0.237X1−0.205X2 while the lmsreg predicted values
were Ŷ = 0.094−0.472X1 +0.586X2. Hence lmsreg had more “tilt,” but the
surface still cut the “top” of the parabola off (rather that passing through
the origin).

Figure 10.1: Left Y = |X|, Right Y = (X1 −X2)
2

The behavior of OLS residual plot diagnostics for curvature is familiar
while the behavior for plots based on robust fits is not. One way to use
residuals from robust fits is to plot them against the OLS residuals. If the
linear regression assumption holds and both estimators are consistent, the
plot should be linear with slope one and intercept zero. Tukey (1991) suggests
that the differences of the residuals should be plotted against the correspond-
ing sums.
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Chapter 11

LMS, LTA, and LTS

11.1 The LTA Estimator

The LMS, LTA, and LTS regression estimators were described in chapter 8.
In this chapter, we give the breakdown properties of the three estimators
and the asymptotic distribution of LTS and LTA. (The folklore of robustness
literature is that the breakdown value is the amount of contamination an
estimator can tolerate before it becomes useless, but see chapter 12.)

Recall that LMS, LTA, and LTS all depend on a parameter c, the number
of “covered” cases. The remaining n − c cases are given weight zero. The
choice c = [(n+p+1)/2] yields the maximum breakdown estimator. If c = cn
is a sequence of integers such that c/n → τ, then 1 − τ is the approximate
amount of trimming. The LTA(τ ) estimator β̂LTA is the fit that minimizes

QLTA(b) =
c

∑

i=1

|r(b)|(i) (11.1)

where |r(b)|(i) is the ith smallest absolute residual from fit b. Several authors
have examined the LTA estimator in the location model. Bassett (1991)
gives an algorithm, and Tableman (1994a,b) derives the influence function
and asymptotics. In the regression model LTA is a special case of the R-
estimators of Hössjer (1991, 1994).
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11.1.1 Breakdown of LTA, LMS, and LTS

LMS(τ ), LTS(τ ), and LTA(τ ) have breakdown value

min(1 − τ, τ ).

See Hössjer (1994, p. 151). Breakdown proofs in Rousseeuw and Bassett
(1991) and Niinimaa, Oja, and Tableman (1990) could also be modified to
give the result.

11.1.2 Asymptotic Variances of LTA and LTS, Folklore

Many regression estimators β̂R satisfy

√
n(β̂R − β) → N(0, V (R,F ) W )

when
XTX

n
→W−1,

and the errors ei are iid with zero median and have a distribution F with
symmetric, unimodal density f . (We will also assume that the errors are
independent of the predictors xT

i . Hence the probability that the error with
the largest magnitude occurs at the highest leverage predictor is 1/n.) When
R is OLS and VAR(ei) exists,

V (OLS, F ) = VAR(ei) = σ2.

When R is L1,

V (L1, F ) =
1

4f2(0)
.

See Koenker and Bassett (1978) and Bassett and Koenker (1978).
Although LMS(τ ) converges at a cubed root rate to a non-Gaussian limit

(Davies 1990, Kim and Pollard 1990, and Davies 1993, p. 1897), both LTS(τ )
and LTA(τ ) are believed to be asymptotically normal with asymptotic vari-
ance determined by the influence function. (However, rigorous proofs have
only been given for the location model. See section 11.2.) Tableman (1994b)
derives the asymptotics for LTA in the location model, and Tableman (1994a)
remarks that Butler (1982) derives the LTS asymptotics. In the multiple re-
gression setting, Hössjer (1991) defines a large class of R-estimators which
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includes LTA and LTS as special cases, see Tableman (1994b, p. 388), and
Hössjer (1994, p. 150) gives suggestions for proving the consistency and
asymptotic normality of this class. Remark 2.7 of Stromberg, Hawkins, and
Hössjer (1997) also sketches proof techniques for LTS.

Let the iid errors ei have a cdf F that is continuous and strictly increasing
on its interval support with a symmetric, unimodal, differentiable density f .
Also assume that MED(e1) = 0. Then the asymptotic variance of LTS(τ ) is

V (LTS(τ ), F ) =

∫ F−1(1/2+τ/2)

F−1(1/2−τ/2)
w2dF (w)

[τ − 2F−1(1 + τ/2)f(F−1(1 + τ/2))]2
. (11.2)

See Rousseeuw and Leroy (1987, p. 180, p. 191), and Tableman (1994a, p.
337). From Tableman (1994b, p. 392), the asymptotic variance for LTA(τ )
is

V (LTA(τ ), F ) =
τ

4[f(0) − f(F−1(1/2 + τ/2))]2
. (11.3)

As τ → 1, the efficiency of LTS approaches that of OLS and the efficiency
of LTA approaches that of L1. Hence for τ close to 1, LTA will be more
efficient than LTS when the errors come from a distribution for which the
sample median is more efficient than the sample mean (Koenker and Bassett,
1978). The results of Oosterhoff (1994) suggest that when τ = 0.5, LTA will
be more efficient than LTS only for sharply peaked distributions such as the
double exponential.

To simplify computations for the asymptotic variance of LTS, we will use
truncated random variables (see chapter 3 and chapter 6). Let W have cdf
F and pdf f . If we discard all observations where w ≤ a and w > b, then
WT is truncated and has cdf

FWT
(x|a < W ≤ b) = FT (w) =

F (w)− F (a)

F (b)− F (a)

for a < w ≤ b. FT is 0 for w ≤ a and FT is 1 for w > b and (Cramer 1946, p.
247) the pdf of WT is

fWT
(w) = fT (w) =

f(w)
∫ b

a
f(t)dt

I(a,b](w)

=
f(w)

F (b)− F (a)
I(a < w ≤ b).
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If W is symmetric about zero and has been truncated at a = −k and b = k,
we will denote the variance of the truncated random variable WT by

VAR(WT ) = σ2
TF (−k, k).

Hence

V (LTS(τ ), F ) =
τσ2

TF(−k, k)
[τ − 2kf(k)]2

(11.4)

and
V (LTA(τ ), F ) =

τ

4[f(0) − f(k)]2
(11.5)

where
k = F−1(0.5 + τ/2). (11.6)

The normal case. If YT is a N(µ, σ2) truncated at a = µ − kσ and
b = µ + kσ, then

YT ∼ TN(µ, σ2, a = µ − kσ, b = µ + kσ).

From Johnson and Kotz (1970a, p. 83), E(YT ) = µ and VAR(YT ) =

σ2[1 − 2kφ(k)

2Φ(k) − 1
].

Hence the asymptotic variance of LTS(τ ) at the standard normal is

V (LTS(τ ),Φ) =
1

τ − 2kφ(k)
(11.7)

where φ is the standard normal pdf and

k = Φ−1(0.5 + τ/2).

Thus for τ ≥ 1/2, LTS(τ ) has breakdown value of 1 − τ and Gaussian effi-
ciency

1

V (LTS(τ ),Φ)
= τ − 2kφ(k). (11.8)

The 50% breakdown estimator LTS(0.5) has a Gaussian efficiency of 7.1%.
If it is appropriate to reduce the amount of trimming, we can use the 25%
breakdown estimator LTS(0.75) which has a much higher Gaussian efficiency
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of 27.6% as reported in Ruppert (1992, p. 255). Also see the column labeled
“Normal” in table 1 of Hössjer (1994).

The double-exponential case. The double exponential (Laplace) distribu-
tion is interesting since the L1 estimator corresponds to maximum likelihood
and so L1 beats OLS, reversing the comparison of the normal case. For a
double exponential DE(0, 1) random variable,

V (LTS(τ ), DE(0, 1)) =
2 − (2 + 2k + k2) exp(−k)

[τ − k exp(−k)]2

while

V (LTA(τ ), DE(0, 1)) =
τ

4[0.5 − 0.5 exp(−k)]2 =
1

τ

where k = − log(1− τ ). Note that LTA(0.5) and OLS have the same asymp-
totic efficiency at the double exponential distribution. See Tableman (1994a,b).

The Cauchy case. Although the L1 estimator and the trimmed estima-
tors have finite variance when the errors are Cauchy, the OLS estimator has
infinite variance (because the Cauchy distribution has infinite variance). If
XT is a Cauchy C(0, 1) random variable symmetrically truncated at −k and
k, then E(XT ) = 0 and

VAR(XT ) =
k − tan−1(k)

tan−1(k)
.

See Johnson and Kotz (1970a, p. 162). Hence

V (LTS(τ ), C(0, 1)) =
2k − πτ

π[τ − 2k
π(1+k2)

]2

and
V (LTA(τ ), C(0, 1)) =

τ

4[ 1
π
− 1

π(1+k2)
]2

where k = tan(πτ/2). The LTA sampling variance converges to a finite value
as τ → 1 while that of LTS increases without bound. LTS(0.5) is slightly
more efficient than LTA(0.5), but LTA pulls ahead of LTS if the amount of
trimming is very small.

We simulated LTA and LTS for the location model using the above three
models. For the location model, find the order statistics Y(1) ≤ Y(2) ≤ . . . ≤
Y(n) of the data, and evaluate the LTS and LTA criteria of each of the n−c+1
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“c-samples” Y(i), . . . , Y(i+c−1), for i = 1, . . . , n − c + 1. The minimum across
these samples then defines the LTA and LTS estimates. For the general
regression model, exact algorithms for LMS, LTA, and LTS were described
in chapter 8. The exact LTA algorithm is the fastest.

We computed the sample standard deviations of the resulting location
estimate from 1000 runs of each sample size studied. The results are shown
in tables 11.2, 11.3, and 11.4 along with the asymptotic standard errors
evaluated using the expressions of table 11.1.

Table 11.1: Asymptotic Standard Errors

OLS L1 LTA(0.5) LTS(0.5) MLE

N(0, 1)
√

1/n
√

1.57/n
√

18.97/n
√

14.02/n
√

1/n

C(0, 1) ∞
√

2.467/n
√

4.935/n
√

4.139/n
√

2/n

DE(0, 1)
√

2/n
√

1/n
√

2/n
√

2.83/n
√

1/n

Table 11.2: Monte Carlo SE’s for N(0, 1) Data

OLS L1 LTA(0.5) LTS(0.5)
n MC ASY MC ASY MC ASY MC ASY
20 .223 .224 .274 .280 .492 .974 .473 .837
40 .159 .158 .191 .198 .405 .689 .381 .592
100 .099 .100 .124 .125 .313 .436 .294 .374
400 .049 .050 .061 .063 .192 .218 .167 .187
600 .041 .041 .051 .051 .158 .178 .135 .153

Table 11.3: Monte Carlo SE’s for C(0, 1) Data

OLS L1 LTA(0.5) LTS(0.5)
n MC ASY MC ASY MC ASY MC ASY
20 132.7 ∞ .373 .351 .463 .497 .428 .455
40 469.4 ∞ .257 .248 .330 .351 .315 .322
100 73.6 ∞ .165 .157 .224 .222 .203 .203
400 69.7 ∞ .081 .079 .109 .111 .099 .102
600 21.4 ∞ .063 .064 .089 .091 .081 .083
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Table 11.4: Monte Carlo SE’s for DE(0, 1) Data

OLS L1 LTA(0.5) LTS(0.5)
n MC ASY MC ASY MC ASY MC ASY
20 .314 .316 .251 .224 .385 .316 .354 .376
40 .220 .224 .174 .158 .273 .224 .266 .266
100 .141 .141 .105 .100 .174 .141 .170 .168
400 .070 .071 .053 .050 .082 .071 .086 .084
600 .059 .058 .043 .041 .064 .058 .070 .069

Table 11.5: Monte Carlo OLS Relative Efficiencies

dist n L1 LTA(0.5) LTS(0.5) LTA(0.75)
N(0, 1) 20 .668 .206 .223 .377
N(0, 1) 40 .692 .155 .174 .293
N(0, 1) 100 .634 .100 .114 .230
N(0, 1) 400 .652 .065 .085 .209
N(0, 1) 600 .643 .066 .091 .209
N(0, 1) ∞ .637 .053 .071 .199
DE(0, 1) 20 1.560 .664 .783 1.157
DE(0, 1) 40 1.596 .648 .686 1.069
DE(0, 1) 100 1.788 .656 .684 1.204
DE(0, 1) 400 1.745 .736 .657 1.236
DE(0, 1) 600 1.856 .845 .709 1.355
DE(0, 1) ∞ 2.000 1.000 .71 1.500

11.2 Why are the Asymptotics “Folklore”?

Rigorous proofs for the asymptotic theory of LTS and LTA have not been
given except for the location model. The rate of convergence of the coverage
cn needs to be fast, ie an assumption like

cn
n

− τ = op(n
−1/2)

is needed. (If we were truncating the largest squared errors, the theory of
Shorack and Wellner described in chapter 4 would apply, but we are trun-
cating residuals so things should be even worse.) Since cn = [(n+ p+ 1)τ ] is
a common choice, the above assumption may not be critical.

Rousseeuw and Leroy (1987, p. 180) only assume that the iid errors have
0 median and a cdf F that is continuous and symmetric. To see that this
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assumption is not strong enough, consider the following lemma.
Lemma 11.1. If the errors ei are iid U(−a, a) then LMS, LTS, and LTA are
inconsistent.
Proof. These three estimators are “mode” type estimators in that they
attempt to find the most concentrated region of the error distribution. In the
location model, any value between −a/2 and a/2 is a reasonable candidate.
Consider simple linear regression with uniform errors and τ = 0.5. Also
suppose that the predictors xi are iid U(−a, a) and independent of the errors.
If the true line is the X-axis, then any line which stays in the box with corners
(−a, a/2), (−a,−a/2), (a, a/2), and (a,−a/2) is a reasonable candidate,
asymptotically. Thus the criteria cannot lead to a consistent estimator.

Remark 11.1. Note that the asymptotic variance of the LTA method
increases as the underlying error density gets flatter near the origin (that is,
as f(0) − f(k) → 0).

Remark 11.2. Under arbitrary contamination, no estimator is consis-
tent. To see this, assume that the contamination proportion γ > 0. Place
the contaminated points to one side of the surface for a while and then on
the other side. For example, in the location model, put M points to the left
of µ, then 2M to the right, then 4M to the left, etc. Then the estimates will
oscillate slightly away from the true surface.

If a limiting distribution is desired, then the errors should have an iid
mixture distribution. If the model has the majority of the data iid with the
(possibly dependent) minority contamination far from the most concentrated
half region, then a limiting distribution may also exist. For example, if 80%
of the errors are iid N(0, 1) and 20% of the errors are dependent uniform
U(99, 100), then the most concentrated region should consist entirely of nor-
mal observations for large enough sample size. Again the errors need to be
independent of the predictors. Also note that if the iid error distribution
is not symmetric, then the estimator may be consistent for something other
than β.

Under arbitrary contamination, the best that we can hope for is a finite
(and hopefully small) asymptotic bias. Yohai and Zamar (1993, p. 1832
for LTA) show that LMS, LTA, and LTS have some desirable asymptotic
bias properties. In particular, the LTA(τ ) estimator has finite maximum
asymptotic bias when the contamination proportion γ is less than 1 − τ
where 0.5 < τ < 1.
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Chapter 12

Desirable Properties for
Algorithms

In this chapter we discuss desirable properties of a robust regression estima-
tor. Several of these properties involve transformations of the data. If X and
Y are the original data, then the vector of the coefficient estimates is

β̂ = β̂(X, Y ) = T (X, Y ), (12.1)

the vector of predicted values is

Ŷ = Ŷ (X, Y ) = Xβ̂(X, Y ), (12.2)

and the vector of residuals is

r = r(X, Y ) = Y − Ŷ . (12.3)

If the design X is transformed into W and the dependent variable Y is trans-
formed into Z, then (W,Z) is the new data set. Seven important properties
are discussed below. We follow Rousseeuw and Leroy (1987, p. 116-125)
closely.

12.1 Desirable Properties of a Regression Es-

timator

12.1.1 Consistency

There should be enough statistical theory to do inference with the estima-
tor. Consistency is generally considered to be a necessary property for any
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estimator.

12.1.2 Computability

The estimator should be computable in some acceptable amount of time (eg
days or hours). If the estimator has nice theoretical properties but can not
be computed, then the results have no applied value. Unfortunately, many
robust estimators are impractical to compute.

12.1.3 Regression Equivariance

Let v be any p× 1 vector. Then β̂ is regression equivariant if

β̂(X, Y +Xv) = T (X, Y +Xv) = T (X, Y ) + v = β̂(X, Y ) + v. (12.4)

Hence if W = X, and Z = Y +Xv, then

Ẑ = Ŷ +Xv,

and
r(W,Z) = Z − Ẑ = r(X, Y ).

Note that the residuals are invariant under this type of transformation, and
note that if

v = −β̂,
then regression equivariance implies that we should not find any linear struc-
ture if we regress the residuals on X.

12.1.4 Scale Equivariance

Let c be any constant. Then β̂ is scale equivariant if

β̂(X, cY ) = T (X, cY ) = cT (X, Y ) = cβ̂(X, Y ). (12.5)

Hence if W = X, and Z = cY then

Ẑ = cŶ ,

and
r(X, cY ) = c r(X, Y ).

Scale equivariance implies that if the Y ’s are stretched, then the fits and the
residuals should be stretched by the same factor.
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12.1.5 Affine Equivariance

Let A be any p× p nonsingular matrix. Then β̂ is affine equivariant if

β̂(XA, Y ) = T (XA, Y ) = A−1T (X, Y ) = A−1β̂(X, Y ). (12.6)

Hence if W = XA and Z = Y, then

Ẑ = Wβ̂(XA, Y ) = XAA−1β̂(X, Y ) = Ŷ ,

and
r(XA, Y ) = Z − Ẑ = Y − Ŷ = r(X, Y ).

Note that both the predicted values and the residuals are invariant under an
affine transformation of the independent variables.

12.1.6 Permutation Invariance

Let P be an n × n permutation matrix. Then P TP = PP T = In where In

is an n× n identity matrix and the superscript T denotes the transpose of a
matrix. Then β̂ is permutation invariant if

β̂(PX, PY ) = T (PX, PY ) = T (X, Y ) = β̂(X, Y ). (12.7)

Hence if W = PX, and Z = PY , then

Ẑ = PŶ ,

and
r(PX, PY ) = P r(X, Y ).

If an estimator is not permutation invariant, then swapping rows of the aug-
mented matrix (X, Y ) will change the estimator. Hence the case number is
important. If the estimator is permutation invariant, then only the position
of the case matters, rather than the position and the label. Resampling al-
gorithms are not permutation invariant because permuting the data causes
different subsamples to be drawn.
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12.1.7 Breakdown

In the literature, the robustness of a regression estimator is often judged by its
breakdown point and Gaussian efficiency. We will show that the breakdown
point is really a y-outlier property. The breakdown point of an estimator T is
roughly the proportion of contamination that can be in a data set before the
estimate produced by T becomes arbitrarily large, and a breakdown point
of 1/2 is desirable. (Consider a data set of size n. If another n observations
are added to form a translated replicate of the original n, then reasonable
estimators will not be able to tell which group of data is the replicate. Thus
the contamination proportion is usually assumed to be less than 1/2.) See
Hampel et al (1986, p. 96-98) and Donoho and Huber (1983) for some history.

Breakdown is generally defined for two types of contamination. Suppose
one has an observed sample of “good” observations Z = {z1, . . . , zn}. Here
zi = (xT

i , yi) for the regression model. With replacing contamination, one re-
places any d of the z′is with “bad” observations to obtain a corrupted sample
C = {c1, . . . , cn}, and the contamination fraction γ = d/n. With adjoin-
ing contamination, we simply add d bad observations to obtain a corrupted
sample of size n+ d, and the contamination fraction

γ =
d

n+ d

where d ≤ n. In the literature, replacing contamination seems to be pre-
ferred. See Rousseeuw and Leroy (1987, p. 117-118) for some good reasons.
Adjoining contamination insures that the bulk of the data consists of inde-
pendent cases while replacing contamination can destroy the independence.
(Suppose the statistician is playing a game against an omniscient opponent.
Then the cases with the highest leverage or the smallest absolute errors could
be replaced.) Donoho and Huber (1983, p. 160) define the bias for replacing
contamination to be

B(γ;Z, T ) = sup ‖T (C)− T (Z)‖

where the supremum is taken over all corrupted samples with contamination
fraction γ. Then the breakdown point

γ∗ = inf[γ : B(γ;Z, T ) = ∞].

Hampel et al (1986, p. 98) use B = sup ‖T (C)‖. Since Z is fixed both
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definitions are equivalent, and

γ∗ =
d∗

n

for some integer d∗ between 1 and n. Often we can get a limit as n increases
to ∞. For example, by changing one observation we can make the sample
mean arbitrarily large, and the breakdown point = 1/n → 0. In the location
model, breakdown occurs only if the estimator becomes unbounded. In the
regression model, breakdown occurs only if at least one of the coefficients can
be driven to ∞.

12.2 Some Notes on Breakdown and Affine

Equivariance

The following observation may make the concept of breakdown easier to
understand. In the regression model, T (C) = β̂ where the estimator β̂ is
computed from the corrupted sample C. Note that if d is such that breakdown
cannot occur, then ‖β̂‖ is finite and the median of the squared residuals will
be bounded. On the other hand, if we can make the median squared residual
arbitrarily large with d contaminated cases, then the norm can be made
arbitrarily large. Hence sup ‖T (C)− T (Z)‖ can be replaced by

sup med(r2
i )

in the definition of breakdown if n > 2p− 1.
Remark 12.1. A useful check for regression estimators is available. Note

that if the sample median is used as the regression estimator, then

med(|ri|2) = [mad(yi)]
2.

If the estimate β̂ has

med(|ri(β̂)|) > k mad(yi),

then the constant med(yi) fits the data better than β̂ according to the median
squared residual criterion. In the location model, using 1 ≤ k ≤ 10 may
make sense, but when nonconstant predictors are used, we take k = 1. If the
estimate cannot fit half of the data better than a constant, then perhaps there
is no strong regression relationship or perhaps outliers affected the estimate.
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A high breakdown regression estimator is an estimator which has a bounded
median absolute residual even when close to half of the observations are ar-
bitrary. Rousseeuw and Leroy (1987, p. 29, 206) conjecture that high break-
down regression estimators can not be computed cheaply, and they conjec-
ture that if the algorithm is also affine equivariant, then the complexity of
the algorithm must be at least O(np).

Counterexample 12.1. Suppose the model has an intercept. Consider
the weighted least squares fit β̂WLS(k) obtained by running OLS on the set
S consisting of the nj observations which have

Yi ∈ [MED(Yi, i = 1, . . . , n) ± kMAD(Yi, i = 1, . . . , n)]

where k ≥ 1 (to guarantee that nj ≥ n/2). Consider the plane

β̂M = (MED(Yi), 0, ..., 0)
T

which yields the predicted values Ŷi ≡ MED(Yi). The squared residual

r2
i (β̂M) ≤ (k MAD(Yi))

2

if the ith case is in S. Hence the weighted LS fit has
∑

i∈S

r2
i (β̂WLS) ≤ nj(k MAD(Yi))

2.

Thus

MED(|r1(β̂WLS)|, ..., |rn(β̂WLS)|) ≤ √
nj k MAD(Yi) <∞.

Hence β̂WLS is high breakdown, and it is affine equivariant since the design
is not used to choose the observations. If k is huge and MAD(Yi) 6= 0, then
this estimator and β̂OLS will be the same for most data sets. Thus high
breakdown estimators can be very nonrobust.

Example 12.2. Consider the smallest computer number A greater than
zero and the largest computer number B. Choose k such that kA > B.
Define the estimator β̂ as above if MAD(Yi, i = 1, ..., n) is greater than A,
otherwise define the estimator to be β̂OLS. Then we can just run OLS on the
data without computing MAD(Yi, i = 1, ..., n).

The affine equivariance property can be achieved for a wide variety of
algorithms. The following lemma shows that if T1, . . . , TK are K equivari-
ant regression estimators and if TQ is the Tj which minimizes the criterion
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Q, then TQ is equivariant, too. A similar result is in Rousseeuw and Leroy
(1987, p. 117). Also see Rousseeuw and Bassett (1991).
Lemma 12.1. Let T1, . . . , TK be K regression estimators which are regres-
sion, scale, and affine equivariant. Then if TQ is the estimator whose residuals
minimize a criterion which is a function Q of the absolute residuals such that

Q(|cr1|, . . . , |crn|) = |c|dQ(|r1|, . . . , |rn|)

for some d > 0, then TQ is regression, scale, and affine equivariant.
Proof. By the induction principle, we can assume that K = 2. Since the Tj

are regression, scale, and affine equivariant, the residuals do not change under
the transformations of the data that define regression and affine equivariance.
Hence TQ is regression and affine equivariant. Let ri,j be the residual for the
ith case from fit Tj. Now without loss of generality, assume that T1 is the
method which minimizes Q. Hence

Q(|r1,1|, . . . , |rn,1|) < Q(|r1,2|, . . . , |rn,2|).

Thus
Q(|cr1,1|, . . . , |crn,1|) = |c|dQ(|r1,1|, . . . .|rn,1|) <
|c|dQ(|r1,2|, . . . , |rn,2|) = Q(|cr1,2|, . . . , |crn,2|),

and TQ is scale equivariant. QED
Since least squares is regression, scale, and affine equivariant, the fit from

an elemental or subset refinement algorithm that uses OLS also has these
properties provided that the criterion Q satisfies the condition in lemma
12.1. If

Q = med(r2
i ),

then d = 2. If

Q =
h

∑

i=1

(|r|(i))τ

or

Q =
n

∑

i=1

wi|ri|τ

where τ is a positive integer and wi = 1 if

|ri|τ < k med(|ri|τ),
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then d = τ .
Corollary 12.2. Any low breakdown affine equivariant estimator can be

approximated by a high breakdown affine equivariant estimator.
Proof. Let β̂ be the low breakdown estimator, and let

β̂approx = β̂ if med(r2
i [β̂]) ≤ k1 med(r2

i [β̂WLS(k2)]),

β̂approx = β̂WLS(k2),

otherwise. If k1 > 1 is large, the approximation will be good. QED
Robust estimators are able to handle a wide variety of tail behavior. In

the location model, the sample median depends on the center observations
while trimmed means discard the leftmost and rightmost observations. In
the regression model, the LMS, LTA, and LTS regression estimators try to
find the c cases with the smallest absolute errors. We will see in chapter
14 that robust multivariate location and dispersion estimators attempt to
find the most concentrated ellipsoid. Observations outside of the ellipsoid
are given weight one. The ability to truncate large “tail” regions while still
estimating the parameters consistently is what makes an estimator robust.
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Chapter 13

Robust Algorithm Techniques

To compute estimators, approximate algorithms are used. There are many
robust techniques, perhaps the most important techniques are classical: ex-
amine the scatterplot of the response and the predictors, make appropriate
transformations, fit OLS, examine the residual plots, and compute standard
diagnostics to find leverage points and outliers. There are more recent tech-
niques such as reweighting for efficiency and using an initial robust fit for a
one step estimator, but these techniques seem to be less important than the
five which follow.

Key Algorithm Ingredients

1. Use a robust criterion that can handle a wide variety of tail behavior.

2. Use a random elemental fit as a starting point.

3. Use concentration to find c cases with small residuals.

4. Use pairwise swapping to improve the criterion value.

5. Partition the data.

These techniques are essential building blocks for robust regression al-
gorithms, but the partitioning and concentration techniques have only just
begun to appear in the software. The early algorithms used the first two
techniques, but randomly chosen elemental subsets tend to contain outliers
if the number of predictors is large and the contamination proportion is not
small (recall table 10.1). Moreover, the early algorithms did not use enough
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elemental fits. We now know that the estimator produced by an elemen-
tal algorithm is inconsistent unless the number of elemental subsamples K
increases to ∞ as the sample size n increases.

If the contamination proportion is not small, then the algorithm needs
to find very atypical subsets. Hence many of the more recent algorithms
have gotten away from random sampling. Let bb be the fit which currently
minimizes the criterion. Ruppert (1992) suggests evaluating the criterion Q
on

λbb + (1 − λ)b

where b is the fit from the current subsample and λ is between 0 and 1. Using
λ ≈ 0.1 may make sense. If the algorithm produces a good fit at some stage,
then many good fits will be examined with this technique.

13.1 Robust Criteria: LATA and LATS

Rousseeuw (1984) introduced the LMS and LTS criteria. A slight general-
ization is criteria of the form

Q(b) =
Un
∑

i=Ln+1

r2
(i)(b) =

n
∑

i=1

wi(b)r
2
i = (Y −Xb)TDb(Y −Xb)

where Ln < Un, Db = diag(w1, ..., wn), and

wi = wi(b) = I(a ≤ r2
i (b) ≤ u)

for some a and u. For example LMS(c) has Ln = Un − 1 = c− 1 where

a = u = r2
(c).

LTS(c) has Ln = 0, Un = c, a = 0, and

u = r2
(c)

(assuming r2
(c) is unique). If the squared residual is changed to an absolute

residual, then Q(b) can be written as the first two sums but not as the
quadratic form. The LTA(c) criterion has Ln = 0, Un = c, a = 0, and

u = |r|(c).
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The choice of c = [(n+p+1)/2] maximizes the breakdown. These estimators
were discussed in chapter 11.

Three new estimators can be defined by taking k ≥ 1, u = k med(r2
i ),

and

Un =
n

∑

i=1

I(r2
(i) ≤ u).

The least adaptive quantile of squares (LAQS(k)) estimator minimizes

Q(b) = r2
(Un)

while the least adaptively trimmed sum of squares (LATS(k)) estimator min-
imizes

Q(b) =
Un
∑

i=1

r2
(i).

An exact algorithm for β̂LATS would compute the OLS fit to each subset of
size greater than n/2 requiring

n
∑

h=n/2

C(n, h)

fits. Similarly, the least adaptively trimmed sum of absolute deviations
(LATA(k)) estimator minimizes the criterion

Q(b) =
Un
∑

i=1

|r|(i).

The LATA(k) estimator can be computed by examining all C(n, p) elemental
fits since the estimator is an L1 fit to some subset containing at least half of
the data. When k = 1, LATS and LATA have the same asymptotic theory
as the highest breakdown versions of LTS and LTA, but with k = 36 the
LATS and LATA estimators maintain a high breakdown point and should
have high Gaussian efficiency with respect to OLS and L1 respectively.

The key to obtaining robust fits is to use the entire data set to find a
“best” half set with small residuals. Then this half set may be used to find
more cases, but few cases will be added in high contamination situations.
That is, use Un ≈ n/2 or use

u = k med(r2
i )

with 25 ≤ k ≤ 49.
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13.2 Elemental Subsets

The 1984 algorithm PROGRESS (see Rousseeuw and Leroy 1987, p. 29,
197-201) was the first algorithm to use elemental subsets to approximate
a high breakdown regression estimator. A randomly selected elemental set
maximizes the probability that a randomly selected set of size h ≥ p is
clean. Woodruff and Rocke (1993) and Bradu and Hawkins (1993) have
emphasized the importance that an elemental subset be both good and clean.
The following three techniques attempt to find elemental subsets that are
both good and clean.

13.3 Concentration

This technique is a special case of the “local improvement” step of the SUR-
REAL algorithms of Ruppert (1992). (Rousseeuw and Van Driessen 1997 use
concentration in the multivariate location setting, see chapter 14.) Suppose
we have a candidate fit b (eg from an initial random elemental start) and
have computed the LTS criterion

Q(b) =

c
∑

i=1

r2
(i)(b)

where c = [(n+p+1)/2], then the OLS fit to the c > n/2 cases corresponding
to these residuals produces a fit bc such that

Q(bc) ≤ Q(b). (13.1)

The technique is called “concentration” since the cases with the c smallest
residuals are used. We can iterate until concentrating no longer improves the
criterion.

Similarly, if we have a candidate fit b and have computed the LTA criterion

Q(b) =
c

∑

i=1

|r(b)|(i)

where c = [(n + p + 1)/2], then the L1 fit to c cases corresponding to these
residuals produces a fit bc such that

Q(bc) ≤ Q(b). (13.2)
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The L1 method is more resistant to outliers than OLS. For general p, OLS
will not be able to handle a cluster of y-outliers, but Hampel et al (1986, p.
328), claim that L1 can tolerate about 25% y-outliers if the predictors follows
a normal or uniform distribution. Hence concentrating with L1 could swap
many y−outliers with clean points in one step. Since L1 has about 64%
Gaussian efficiency (see Rousseeuw and Leroy 1987, p. 143) and since L1

is more efficient that OLS when the errors follow a distribution for which
the median is more efficient than the sample mean (see Koenker and Bassett
1978, p. 46 and Bassett and Koenker 1978), an L1 fit may be more likely to
produce a good fit in a concentration algorithm than an OLS fit.

Consider simple regression where p = 2. If the initial elemental set J0

contains an outlier, then the outlier will be in the concentrated c-set J1

(since its residual from the elemental fit is zero). If the outlier is influential,
it will have one of the c > n/2 smallest residuals and it will stay in the
concentrated c-sets even after iteration. Although the pairwise swapping
technique described in the next section can handle one outlier in the starting
set, concentration needs a clean starting set.

We would like to guarantee that the algorithm considers many good fits.
He and Portnoy (1992) claim that if the initial estimator is n−δ convergent,
then the fit computed on the observations with the smallest residuals is also
n−δ convergent. (Also see Welsh and Ronchetti 1993.) If δ ≤ 0.5 and if we
use OLS and L1 as initial estimators and then concentrate, the resulting two
fits will be n−δ convergent for many iid error models and for the LTA and
LTS criteria. (Using at least one n−1/2 convergent start may be essential for
the multivariate location and covariance algorithms described in chapter 14.)

13.4 Swapping

Pairwise swapping is used to improve an initially random subset J0 = {i1, ..., ih},
see Hawkins (1993b, 1994). Denote the uncovered cases by U0 = {ih+1, ..., in}.
After the h-case fit is made and the residuals are calculated from the full data
set, the criterion is computed. Next, compute the criterion for the h(n − h)
possible pairwise swaps with one case from J0 and one case from U0, make
the swap that gives the greatest criterion improvement, and then examine
the new J1 and U1. Continue swapping as long as the criterion improves.
If termination occurs at the Mth step, we call JM the “attractor” of the
starting set J0. Note that Jk+1 contains the best subset of size h which con-
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tains at least h − 1 cases from Jk, a very nonrandom set. A new random
start is selected after the attractor is reached. Using h = p minimizes the
number of comparisons and maximizes the probability that the starting set
will be clean. These algorithms are especially attractive when rapid testing
and updating of the criterion is possible, eg for the LTS criterion.

Often many starts will have the same attractor. For example, there are
C(n, c) possible starts for the LTA(c) estimator where c ≈ n/2, but the
number of attractors is bounded by C(n, p). The “domain of attraction” of
a subset J∗ is the collection of starts for which J∗ is the attractor.

Note that the probability pB that the random start will find the best
subset of size h is bounded below by

1

C(n, h)
+
C(h, h− 1)C(n− h, 1)

C(n, h)

since if the random start J0 differs from the best set by at most one point,
then the attractor of the start is the best set, and thus

pB ≥ h![1 + h(n− h)]

n(n− 1)...(n− h+ 1)
≈ h(h!)

nh−1

for large n. If the initial set contains one gross outlier, then it should be
swapped with a clean point. When 3000 random elemental starts are used,
the probability is high that at least one attractor will be clean for subset size
h ≤ 14.

13.5 Partitioning

Woodruff and Rocke (1994) and Rocke and Woodruff (1996) use partitioning.
Partitioning divides the data into random subsets. A random subset of size
M < n should be very similar to the population if M is large enough. This is
the main idea of sampling theory. Hence a clean and good elemental subset
from the subset of size M may be clean and good for the entire data set, but
finding clean and good candidates for M cases may be orders of magnitude
faster than finding clean and good candidates for n cases.

Partitioning can be used to guarantee that the best elemental subset
considered has a desired convergence rate. We can also guarantee that the
actual estimator selected by the algorithm has a desired convergence rate if
the LTA criterion is used. From chapter 9, we know that the elemental fit
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bo closest to β satisfies ‖bo − β‖ = OP (n−1). If we take a random sample of
nδ cases and compute all C(nδ, p) elemental subsets from the sample, then
the elemental fit bS closest to β will satisfy ‖bS − β‖ = OP (n−δ). If we want
δ = 0.5 or 0.25, computing C(nδ, p) ∝ npδ fits is much faster than computing
all C(n, p) ∝ np fits. Since LTA is an elemental method, computing LTA on
the random sample of size nδ produces an estimator β̂LTA,S such that

‖β̂LTA,S − β‖ = OP (n−δ/2). (13.3)

13.6 Subset Improvement Algorithms

The three most important subset improvement algorithms are the feasible
solution algorithms (FSA), concentration algorithms, and the elemental im-
provement algorithms (EIA). The EIA’s use h = p and therefore minimize
both the probability that an initial start will be contaminated and the num-
ber of criterion computations to move from subset Jk to Jk+1. Swapping is
performed on the random elemental start. The swapping can be done once
or until the criterion can no longer be minimized by a pairwise swap. When
the iteration is performed until convergence, the resulting elemental set JM

is called the “attractor.” Results from chapter 9 suggest that there may be
many good attractors.

The FSA’s are used when the estimator is characterized by a suitable fit to
a subset of size h. Suppose c > n/2, then the LTS(c) estimator uses h = c and
the OLS fit, the LMS(c) estimator uses h = p+1 and the Chebyshev fit, while
the LTA(c) estimator uses h = p and the L1 fit. When only concentration
is used, a random elemental set is generated, the c smallest residuals are
found, the fit is computed on the corresponding c cases, then the c smallest
residuals are found again. This step is repeated until the criterion can not
be improved. The resulting subset JM is the attractor and has size c. When
only swapping is used, the Hawkins (1994) FSA for LTS(c) draws a subset of
size h = c and then performs pairwise swaps until convergence. For LTA(c),
swapping can be done on elemental sets since the L1 fit on a subset of size c
is elemental. Similarly, swapping can be done on sets of size p + 1 for LMS
(Hawkins 1993b). The FSA can also combine swapping and concentration.
One such algorithm would perform swapping only after the concentration
step has converged. (See Hawkins’ website.)

A FSA iterates from a start to an attractor while some concentration
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algorithms do not iterate the concentration step until convergence. For ex-
ample, the concentration algorithm could draw an initial elemental set, do
a single concentration step, and then draw a new elemental starting set. A
concentration algorithm that iterates from a start to an attractor is not nec-
essarily a FSA since a solution is “feasible” if it satisfies a necessary condition
to be a global minimizer and if it is an attractor. For example, an elemental
concentration algorithm for LMS is not a FSA since the LMS solution is a fit
to a subset of size p+1 (so no elemental fit can minimize the LMS criterion).
Concentration may become popular because the concentration technique is
much cheaper than swapping for large n and p.
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Chapter 14

Covariance Estimation

The multiple location and covariance model is in many ways similar to the
regression model. The data are iid vectors from some distribution such as
the multivariate normal distribution. The location parameter µ of interest
may be the mean or the center of symmetry of an elliptically contoured
distribution. We will estimate hyperellipsoids instead of planes, and we will
use Mahalanobis distances instead of absolute residuals to determine if an
observation is a potential outlier. Also elemental sets have size p+ 1 instead
of p.

In this chapter, we will define Mahalanobis distances, give two criteria for
finding robust multiple location and covariance estimators and discuss some
key algorithm techniques. In the next chapter we will discuss elliptically
contoured distributions and show that if the data is elliptically contoured,
then the graph obtained by plotting Mahalanobis distances from robust fits
vs the distances from classical fits is linear.

14.1 Sample Mahalanobis Distances

Let X be an n×p matrix with rows xT
1 , ..., x

T
n where the rows are 1×p vectors.

Let the p×1 column vector T (X) be a multivariate location estimator, and let
the p×p symmetric positive definite matrix C(X) be a covariance estimator.
Then we will define the ith squared Mahalanobis distance to be the scalar

D2
i = D2

i (T (X), C(X)) = (xi − T (X))TC−1(X)(xi − T (X)) (14.1)

for each point xT
i .
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The classical Mahalanobis distance corresponds to the sample mean and
sample covariance matrix

T (X) = x̄ =
1

n

n
∑

i=1

xi,

and

C(X) = S =
1

n

n
∑

i=1

(xi − T (X))(xi − T (X))T

and will be denoted by MD2
i . When T (X) and C(X) are alternative estima-

tors, D2
i will sometimes be denoted by RD2

i .
Two of the most popular robust estimators are the minimum volume el-

lipsoid MVE(c) estimator and the minimum covariance determinant MCD(c)
estimator. For the MVE T (X) is the center of the minimum volume ellip-
soid covering c of the observations and C(X) is determined from the same
ellipsoid. The MCD finds the subset J of c observations whose classical co-
variance matrix has the lowest determinant. Then T and C are the classical
mean and covariance matrix of these c observations. See Rousseeuw and Van
Driessen (1997), Rousseeuw and Van Zomeren (1990), and Rousseeuw and
Leroy (1987, p. 262-263). Generally c ≈ n/2 and the population analogs of
these two estimators seek the c/n ellipsoid of highest concentration. These
estimators are consistent estimators for µ and bΣ where b is some positive
constant when x is elliptically contoured. The highest density regions of el-
liptically contoured distributions are concentric ellipsoids. The multivariate
normal distribution is an elliptically contoured distribution, and these dis-
tributions are discussed further in the next chapter. If the data are iid from
an elliptically contoured distribution, then TMCD has a Gaussian limit while
TMV E has neither a Gaussian limit nor a square root rate. See Davies (1987)
and Butler, Davies, and Jhun (1993).

When the data are multivariate normal, D2
1 , ..., D

2
n are approximately

scaled χ2
p if consistent estimators for µ and bΣ are used. Suppose J is the

index set of the c cases used to compute the RD′
is. Then for the MCD

estimator
1

c

∑

i∈J

RD2
i =

1

c
tr

∑

i∈J

(xi − T )TC−1(xi − T ) =

1

c
tr

∑

i∈J

C−1(xi − T )(xi − T )T = trC−1C = p. (14.2)
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See Rousseeuw and Van Driessen (1997, p. 28). Hence the RDi are depen-
dent, and only when c = n is the sample mean of the RD2

i equal to p. From
the above equation, we see that the RD2

i need to be scaled to have an ap-
proximate χ2

p distribution. We will use the DD plot to derive the appropriate
scaling factor in the next chapter.

14.2 Algorithms

Computing robust covariance estimators is very expensive. For example, to
compute the exact MCD(c) estimator (TMCD, CMCD), we need to consider
the C(n, c) subsets of size c. Woodruff and Rocke (1994, p. 893) note that if
1 billion subsets of size 101 could be evaluated per second, it would require
1033 millenia to search through all C(200, 101) subsets if the sample size
n = 200. See Cook, Hawkins, and Weisberg (1993) for an exact algorithm
for the MVE. Rocke and Woodruff (1996, p. 1050) claim that any affine
equivariant location and shape estimation method gives an unbiased location
estimator and a shape estimator that has an expectation a multiple of the
true shape for elliptically contoured distributions. Hence there are many
candidate estimators. Rousseeuw and Leroy (1987) and Woodruff and Rocke
(1993) describe many methods. Also see Hawkins (1997) and Ruppert (1992)
for references.

Rousseeuw and Van Zomeren (1990, p. 638) describe a basic resampling
algorithm AMVE(c) for approximating the MVE. We draw K samples of
size p + 1 where the ith sample is indexed by Ji = {i1, ..., ip+1}. Then the
estimate from the ith sample is (TJi, CJi) where

TJi =
1

p + 1

p+1
∑

j=1

xij , (14.3)

and

CJi =
1

p

p+1
∑

j=1

(xij − TJi)(xij − TJi)
T . (14.4)

Next we compute
RD2

(c), (14.5)

the cth order statistic of the squared distances computed with TJi and CJi.
Note that the ellipsoid

{x : (x− TJi)
TC−1

Ji
(x− TJi) ≤ RD2

(c)} (14.6)
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contains the c observations corresponding to

RD2
(1), ..., RD

2
(c).

If RD(c) is unique, then these are the only observations contained in the
ellipsoid.

Let j be such that (TJj , CJj) minimizes the criterion

RD2p
(c)det(CJi). (14.7)

Then the AMVE(c) estimator is

(TAMV E , CAMV E) = (TJj , kCJj ) (14.8)

where we may take k = 1,

k =
RD2

(c)

χ2
p,0.5

,

or

k =
(1 + 15

n−p
)2RD2

(c)

χ2
p,0.5

and
χ2

p,0.5

is the median of a χ2
p distribution. The term

(1 +
15

n − p
)2

can be viewed as a correction factor for small n. Note that

{x : (x− T )TC−1
AMV E(x− T ) < a2} =

{x : (x− T )TC−1
Jj

(x− T ) < ka2}.
This algorithm yields inconsistent estimators if the number of starts is

fixed. He and Wang (1996) claim that in the 1 dimensional model, reweight-
ing from a start that converges at rate n−1/3 and then computing the classical
estimator will not increase the convergence rate. Lopuhaä (1998) claims that
if the initial estimator converges at rate n−δ, then the classical estimator com-
puted from the observations with the smallest RDi’s also converges at rate
n−δ.

Recently there have been some breakthroughs in computing robust esti-
mators. The five key steps are the same as in chapter 13.
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1. Use a robust criterion such as MCD that can tolerate a wide variety
of tail behavior but produces consistent estimators for elliptically con-
toured distributions.

2. Use a random elemental fit as a starting point.

3. Use concentration to find c cases with small D′
is.

4. Use pairwise swapping to improve the criterion value.

5. Partition the data.

14.2.1 Concentration

Concentration for the MCD is described for the FMCD algorithm in Rousseeuw
and Van Driessen (1997). Suppose we have a candidate set of size c and have
computed the MCD criterion. Then the classical fit to the c cases corre-
sponding to the c smallest distances will yield a criterion value that is at
least as small. Rousseeuw and Van Driessen (1997) state that FMCD is very
likely to compute the exact MCD for small data sets, and can handle data
sets of size 50000 in a few minutes. (Since the default uses 500 elemental
starts, the default algorithm is inconsistent.) They claim that their program
is orders of magnitude faster than previous algorithms. The technical report
and the FMCD program are available from the following web site.
http://win-www.uia.ac.be/u/statis/

Hawkins (1997) compares his new feasible solution algorithm which uses
concentration to his previous algorithms which only used swapping. On a
moderate sized data set, the old MCD algorithm took 4 seconds per start
while the new algorithm takes one second per start. The old MVE algorithm
took 18 hours per start but now takes 5 minutes per start. Hawkins’ feasible
solution algorithms for MCD, MVE, LMS, LTS, and LTA are at the following
website (go to the software icon).
http://www.stat.umn.edu

Usually there is a nonrobust algorithm which will perform well on most
data sets. Sequentially deleting the largest distance and recomputing the es-
timator is recommended, see Cook and Hawkins (1990). Poston et al (1997)
have such an algorithm. The nonrobust algorithms may be useful for com-
puting the DD plot of the next chapter.
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If the Lopuhaä (1998) claim is true and if the best elemental set has a
convergence rate of n−1/p, then the estimator produced by a concentration
algorithm that only uses elemental sets as starts will have a convergence rate
no better than n−1/p. If a start with a convergence rate n−1/2 is used, the fit
from each step of the iteration will also have convergence rate n−1/2. Hence
the classical covariance estimator and M-estimators should be used as starts
as well as elemental sets.

14.2.2 Swapping

Pairwise swapping is used to improve an initially random subset J0 = {i1, ..., ih}.
Denote the uncovered cases by U0 = {ih+1, ..., in}. After the h-case fit is made
and the RD′

is calculated from the full data set, the criterion is computed.
Next, compute the criterion for the h(n − h) possible pairwise swaps with
one case from J0 and one case from U0, make the swap that gives the great-
est criterion improvement, and then examine the new J1 and U1. Continue
swapping as long as the criterion improves. If termination occurs at the Mth
step, we call JM the “attractor” of the starting set J0. Note that Jt+1 contains
the best subset of size h which contains at least h − 1 cases from Jt, a very
nonrandom set. (Here the “best” subset has the smallest criterion value.) A
new random start is selected after the attractor is reached. Using elemental
sets (h = p+1) minimizes the number of swaps, maximizes the probability of
getting a clean start, and may yield adequate approximations to the c−case
criteria, c > n/2.

To see that swapping can tolerate one outlier in the starting set, consider
p = 2, and draw two disjoint ellipses. If they each contain about half of the
data, then most subsets of size 3 will have 2 observations from one ellipse
and one observation from the other ellipse. By pairwise swapping, we can
get all 3 points from the same ellipse. Thus the initial start can tolerate one
outlier. Without swapping the estimator will behave like MDi if no start has
all observations in one ellipse.

14.3 Affine Equivariance

We generally desire (T, C) to be affine equivariant. Suppose that B = 1bT

where 1 is an n × 1 vector of ones and b
T is a 1 × p row vector. Hence the

ith row of B is bTi ≡ bT for i = 1, ..., n. For such a matrix B, consider the
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affine transformation W = XA+B where A is any nonsingular p×p matrix.
Then the location covariance estimator (T, C) is affine equivariant if

T (W ) = T (XA +B) = ATT (X) + b, (14.9)

and
C(W ) = C(XA+B) = ATC(X)A. (14.10)

The following lemma shows that the Mahalanobis distances are invariant
under affine transformations. See Rousseeuw and Leroy (1987, p. 252-262)
for similar results.

Lemma 14.1. If (T, C) is affine equivariant, then

D2
i (X) ≡ D2

i (T (X), C(X)) =

D2
i (T (W ), C(W )) ≡ D2

i (W ). (14.11)

Proof. Since W = AX +B has ith row

wT
i = AxT

i + bT ,

D2
i (W ) = [wi − T (W )]TC−1(W )[wi − T (W )]

= [AT (xi − T (X))]T [ATC(X)A]−1[AT(xi − T (X))]

= [xi − T (X)]TC−1(X)[xi − T (X)] = D2
i (X). QED

Let a2(X) = g(D2
1(X), ..., D2

n(X)) be any function of the n distances.
Then by lemma 14.1,

a2(X) = a2(W ) ≡ a2. (14.12)

Hence the following corollary holds.
Corollary 14.2. Let dT be any 1 × p row vector. Then if (T, C) is affine
equivariant,

E1 ≡ {i|(xi − d)TC−1(X)(xi − d) ≤ a2(X)} = E2

≡ {i|(ATxi+b−(ATd+b))TC−1(W )(ATxi+b−(ATd+b)) ≤ a2(W )}. (14.13)

Proof. First note that if d = T (X), then

E1 = E2 = {i|D2
i ≤ a2}.
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For general d the result holds since

(ATxi + b− (ATd+ b))TC−1(XA +B)(ATxi + b− (ATd+ b)) =

(xi − d)TAA−1C−1(X)(AT )−1AT (xi − d). QED

Corollary 14.3. (TAMV E, CAMV E) is affine equivariant.
Proof. Since (TJi, CJi) is affine equivariant, we only need to show that if

(TJj(X), CJj (X)) = argmini=1,...,KD
2p
(c)det(CJi(X)),

then

(TJj(XA+B), CJj(XA+B)) = argmini=1,...,KD
2p
(c)det(CJi(XA+B)). (14.14)

This is true since

D2p
(c)det(CJi(XA +B)) = D2p

(c)det(A
T )det(A)det(CJi(X)),

and
D2p

(c)det(A
T )det(A)

is a positive constant. QED
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Chapter 15

DD Plots for Graphical
Regression

The DD plot of Rousseeuw and Van Driessen (1997) plots the classical Ma-
halanobis distance against a robust Mahalanobis distance and is used as a
diagnostic for multivariate normality and for outliers. Let (TM , CM) denote
the classical location and covariance estimators, and let (TR, CR) denote the
location and covariance estimators produced by the robust algorithm. The
DD plot can be used to show which points are closest to a target elliptically
contoured distribution and which points are inside the ellipsoid

{x : (x− TR(x))TC−1
R (x− TR(x)) ≤ RD2

(h)} (15.1)

where RD2
(h) is the hth smallest squared robust Mahalanobis distance.

The DD plot can also be used to graphically transform data into a tar-
get elliptically contoured distribution or to test the success of other methods
for obtaining such transformations. Numerically or graphically transforming
predictors to a target elliptically contoured distribution often simplifies the
analysis and is an important step in graphical regression (see Cook 1997, p.
24-28). Cook and Nachtsheim (1994) discuss reweighting to achieve ellipti-
cally contoured covariates. In particular, they use the MVE to trim data and
then use Voronoi weighting.

15.1 Elliptically Contoured Distributions

The elliptically contoured distributions generalize the multivariate normal
distribution and are discussed (in increasing order of difficulty) in Johnson
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(1987), Fang, Kotz, and Ng (1990), Fang and Anderson (1990), and Gupta
and Varga (1993). Fang, Kotz, and Ng (1990) sketch the history of ellipti-
cally contoured distributions while Gupta and Varga (1993) discuss matrix
valued elliptically contoured distributions. We will only be concerned with
the vector subclass and will follow Johnson (1987, p. 107-108). If a p × 1
column vector x has density

f(x) = kp|Σ|−1/2g[(x− µ)T Σ−1(x− µ)], (15.2)

then we say x has an elliptically contoured ECp(µ,Σ, g) distribution. The
characteristic function of x − µ is

φx−µ(t) = exp(itTµ)ψ(tTΣt) (15.3)

for some function ψ. If the second moments exist, then

E(x) = µ (15.4)

and
Cov(x) = cxΣ (15.5)

where
cx = −2ψ′(0).

The population squared Mahalanobis distance

D2 = D2(µ,Σ) = (x− µ)T Σ−1(x− µ) (15.6)

has density

h(w) =
πp/2

Γ(p/2)
kpw

p/2−1g(w). (15.7)

A spherically symmetric distribution is an ECp(0, I, g) distribution, and
the multivariate normal distribution Np(µ,Σ) has kp = (2π)−p/2, g(t) =
exp(−t/2), and h(w) is the χ2

p density.
For regression graphics, a key assumption is that the conditional expec-

tation
E(x|φTx) be a linear function of φTx, that is,

E(x|φTx) = µ+MφTx (15.8)

where
MφT = P T

φ(Σ) = Σφ(φT Σφ)−1φT ,
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see Cook (1997, p. 66). When this assumption holds, the residual plot {r, x}
has 1D structure for the semi-parametric model (Cook 1997, p. 65-67), and
the Li-Duan proposition can be used (Cook 1997, p. 174). Moreover, inverse
regression plots, SIR, and residuals all provide information about the central
subspace when this assumption holds (see Cook 1997, p. 226-227, 243, 247,
265, 267, and 270). This key assumption can be difficult to verify, but if the
predictors x are elliptically contoured the condition holds since x is elliptically
contoured iff

E(x|φTx) = µ + P T
φ(Σ)(x− µ) (15.9)

for all conforming matrices φ, see Cook (1997, p. 159).
As an example, suppose that x comes from a mixture of two multivariate

normals with the same mean and proportional covariance matrices. That is,
let

x ∼ (1 − γ)Np(µ,Σ) + γNp(µ, cΣ)

where c > 0. Since the multivariate normal distribution is elliptically con-
toured,

E(x|φTx) = (1 − γ)[µ+M1φ
T (x− µ)] + γ[µ+M2φ

T (x− µ)]

= µ+ [(1 − γ)M1 + γM2]φ
T (x− µ).

Hence x has an elliptically contoured distribution.

15.2 The DD Plot

The DD plot is simply a plot of MDi vs RDi, but it contains a great deal
of information. The points below RD(h) correspond to cases that are in
the ellipsoid given by equation 15.1. Points to the left of MD(h) are in
an ellipsoid determined by the classical location and covariance estimators.
Rousseeuw and Van Driessen (1997) compute the RDi from a concentration
algorithm that uses the MCD(c) criterion with the subsample size c ≈ n/2.
The covariance estimator from the algorithm is scaled so that if all of the
points are iid multivariate normal, then the plot should be linear with slope
1. If cases were plotted, we would have a simultaneous case-MDi case-RDi

plot analogous to the case-Cook’s distance plot (eg Cook 1997, p. 195).
The plot can be divided into four regions that are appropriate if the data

is multivariate normal. The southwest corner corresponds to points that
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neither distance tags as an outlier while the northeast corner corresponds
to points that both plots tag. The northwest region corresponds to points
that are tagged by the robust distance but not by the classical while the
southeast corner corresponds to points tagged by the classical distance but
not the robust distance.

First consider the DD plot where the robust covariance matrix has not
been scaled. Note that the plot will be linear only if the location estimators
TR and TM are approximately the same and if CR ≈ b CM where b > 0. We
should have 0 < b < 1 since the MCD algorithms attempt to use the densest
half region. To see this consider two predictors. If the two estimated ellipses
are not concentric, then the distances will differ greatly in different regions.
Hence the plot will not be linear. If the two ellipses are concentric then we
plot MDi vs RDi where

MD2
i ≈ a2

M(xi − µ)T Σ−1(xi − µ) (15.10)

and

RD2
i ≈ a2

R

a2
M

a2
M

(xi − µ)TΣ−1(xi − µ) (15.11)

where aR > aM > 0. Hence we obtain a plot which approximates a line
through zero with slope aR/aM . Thus the DD plot is similar to a quantile
quantile plot, except that we plot two sets of estimated quantiles rather than
a set of estimated quantiles and a set of population quantiles. In particular,
when the data are elliptically contoured, the plot should resemble a line
through the points (0, 0) and (med(MDi),med(RDi)).

Now we will derive the scaling to achieve a slope 1 line if the data are
multivariate normal. For multivariate normal data, aM ≈ 1 and

med(MDi) ≈
√

χ2
p,0.5 ≈

√

p− 2/3

where χ2
p,0.5 is the median of a χ2

p distribution. By multiplying the RDi by

√

χ2
p,0.5

med(RDi)
,

the slope should be one. Since the MD2
i are approximately χ2

p, so are the
RD2

i , as claimed in the previous chapter. Note that the scaling brings in
information from the target population quantiles. If the data is elliptically
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contoured but not Gaussian, then the plot tailored for Gaussian data will
still be linear, but the slope will generally not be equal to one. Hence the
tailored plot is simultaneously a test for whether the distribution is elliptically
contoured and if the distribution is from the target family.

Note that the DD plot can be tailored to any target elliptically contoured
distribution in a similar manner. If we know that med(MDi) ≈ MED where
MED is the population analog (eg use simulation or equation 15.7), then
multiply RDi by

MED

med(RDi)
.

If the data come from the target distribution, the distances should follow a
slope 1 line through the origin.

If the data are elliptically contoured and if the robust algorithm gives a
consistent estimator for (µ, b Σ), then the order statistics MD(i) and RD(i)

should match up well if n is large and the DD plot should be linear. We con-
jecture that the MCD concentration algorithms of Hawkins and Rousseeuw
and Van Driessen (1997) yield consistent estimators provided that enough
random elemental starts are used.

On the other hand, if the estimator used to produce the RDi is too
similar to the classical MDi, then the plot will be linear for all distributions.
Certainly a plot ofMDi vsMDi is always a straight line. For a fixed data set,
both the classical and robust estimators could be influenced by the outliers
in the same manner. Then the DD plot could be linear and fail to show
any outliers. If an exact algorithm for the MCD(c) is used, then the plot
will only be linear if the most concentrated c set of points and the classical
estimators yield proportional shapes and the same location. This will happen
for elliptically contoured distributions, but for many other distributions there
will be departures from linearity in the DD plot.

The DD plot shows multivariate outliers and gives a test for multivariate
normality. By placing a sheet of paper over the top of the plot and moving
the sheet downwards, we can see what zero one weighting with the AMVE
or AMCD does. This gives a simple graphical explanation of what is done in
Cook and Nachtsheim (1994). Perhaps giving points that are far away from
the slope one line would give somewhat better zero one weighting.
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15.3 Examples

We now try to clarify some of the ideas with figures and examples. The DD
plots have been tailored for normal data. Figure 15.1 shows DD plots for the
modified octane data from Atkinson (1994) and for the nitrogen data from
Croux et al (1994). DD plots are also given for 200 iid trivariate N(0, I3)
points and for 200 iid observations from a (non-Gaussian) trivariate ellipti-
cally contoured distribution. Note that the DD plot for the normal data is
linear and has slope one. The DD plot for the elliptically contoured data is
linear, but the slope is about two.

Figure 15.1: 4 DD Plots

The next two figures show that the scaling of the axes is important. Figure
15.2 shows a DD plot for 200 iid trivariate lognormal observations. The plot
appears to be linear because of the observations that had both large MD′

is
and large RD′

is. If the target distribution is Gaussian, then the RDi in the
DD plot are related to the RDA,i from the robust algorithm by the equation

RDi =

√

χ2
p,0.5

med(RDA,i)
RDA,i.

This scaling is equivalent to reweighting the covariance matrix and then
computing the Mahalanobis distances. If the observations were iid Gaussian,
then the RD2

i ≈ χ2
p. Thus if we only plot cases that have

RD2
i ≤ χ2

p,0.975,

then the scaling of the axes should be similar. If the data is Gaussian,
few points will be deleted, but if the data is from another distribution, the
collinearity of the plot may be reduced. Note that the weighted DD plot
brings in more information from the target population quantiles. Figure 15.3
shows the weighted DD plot for the lognormal data used in figure 15.2.

Figure 15.2: DD Plot for iid Trivariate Lognormal Data

Figure 15.4 gives four different plots for the 3 predictors of the famous
stackloss data (see Dodge 1996). The plot in the northwest corner used
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Figure 15.3: Weighted DD Plot for the iid Trivariate Lognormal Data

the FMCD algorithm of Rousseeuw and Van Driessen (1997) and may have
tagged too many points as outliers. The plot in the northeast corner uses
cov.mve from Splus while the southwest corner plots MD2

i vs RD2
i . The

plot in the southeast corner used RD′
is computed by trimming the half set

of cases with the largest MD′
is and then recomputing the classical location

and covariance estimators from the untrimmed data. Note that this plot was
quite poor because the trimmed estimators are highly correlated with the
untrimmed estimators. The estimators from good robust algorithms tend to
produce RD′

is that are not highly correlated with the MD′
is unless the data

is elliptically contoured (or if there are enough outliers to cause the robust
algorithm to reproduce the classical ellipsoid).

Figure 15.4: DD Plots for the Stackloss Data

Figure 15.5 illustrates how to use the DD plot to reduce the nonlinearity
of the predictors. Figure 15.5 shows a scatterplot matrix of the mussel data
(Cook 1997), the RD′

is, and the MD′
is. The predictors show strong non-

linearities. The cases marked by open circles were given weight zero by the
FMCD algorithm. The remaining points are much more linear. The weighted
transformation could be improved by linking the DD plot with the scatter-
plot of the predictors. Then decide which points are given weight zero by
examining the DD plot rather than using a χ2

p cutoff. Using smooth weights
instead of zero one weights may also improve the transformation. We could
also use the zero one weights as a starting point for the Voronoi weighting
discussed in Cook and Nachtsheim (1994).

Figure 15.5: Scatterplot for Mussel Data, o Corresponds to Weight Zero

Figure 15.6 shows DD plots for some old data sets. The plot for the
Gladstone (1905-6) data is for the predictors used in regression example
discussed in chapters one and eight. Observations 238, 263, 264, 265, and
266 correspond to the babies less than 7 months old.

The Buxton (1920, p. 232-5) data has 20 measurements of 88 men, and
five of the observations are gross outliers. We decided to predict stature using
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an intercept, head length, nasal height, bigonal breadth, and cephalic index.
Observation 9 was deleted since it had missing values. For five observations,
62-66, Buxton apparently recorded stature under head length and the integer
18 or 19 under stature, making these cases high leverage outliers. In chapter
1, it was shown that several robust regression algorithms were unable to
give these outliers large absolute residuals. Figure 15.6 contains the DD
plot for the 4 nontrivial predictors. Since the outliers have massive RDi,
the regression estimators that downweight x-outliers should give these cases
large residuals.

The “museum data” comes from Schaaffhausen (1878). Observations 48-
60 were apes while the first 47 observations were humans. The data set
consists of 10 variables: nine skull measurements and cranial capacity. The
“major data” comes from Tremearne (1911) who was an army major. The
data used in the figure consists of 112 cases and 6 variables: height while
standing, height while sitting, height while kneeling, head length, span, and
nasal breadth. If we regress “height while standing” on the other predictors,
observations 3 and 44 seem to be outliers, but they did not tilt the OLS fit.

Figure 15.6: DD Plots for 4 Old Data Sets

We also tested the DD plot using the genetic algorithm cov.mve found in
Splus. We used a loop to draw 20 DD plots (tailored for Gaussian data) in
rapid succession from various distributions. With n = 20 and p = 3 many of
the plots were rather wild even with all iid normal data. Rousseeuw and Van
Zomeren (1991, p. 199) show that the QQ plot for theRDi vs χ2

p quantiles has
a sharp bend that decreases rapidly with sample size when RDi is computed
from the MVE resampling algorithm discussed in chapter 14. They used a
small sample correction factor to compensate. The current FMCD algorithm
is faster and more accurate, but for small samples the covariance estimator
could vary greatly due to over fitting noise.

When the sample size was 100 or more, the DD plots had slope one and
were very linear for iid normal data. We also simulated iid trivariateEXP (1),
χ2

1, and lognormal data. These gave DD plots with high collinearity, but had
a tight cluster of points near the origin, were heteroskedastic, and had slope
greater than one. The lognormal plots usually had the two tails that show
in figure 15.2. Again the collinearity of the plots was due to the MD′

is and
the RD′

is being large in the same regions.
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The weighted DD plot may be easier to use. This plot is created by
deleting observations which are greater than a target cutoff, eg delete case i
from the plot if RD2

i > χ2
p,.975. The weighting should force the scaling of the

two axes to be similar and uses more information from the target distribution
than the unweighted DD plot. Also checking the slope one condition may
be simpler. The weighted DD plots still show collinearity, but the lognormal
data was much more variable than normal data. We suggest that both the
unweighted and weighted plots be generated. If they are similar and if the
MDi approximate the expected quantiles of the target distribution, then
transformation may not be necessary. If the plots do not have slope 1 and
do not have a tight linear fit, if the DD plot and the weighted DD plot differ,
and if the order statistics of the MDi do not match up with the expected
quantiles, transformation may be needed. Giving zero weight to points far
from the slope 1 line and then using Voronoi reweighting may work.

The DD plot is a valuable tool for exploratory analysis. For regression, it
can be used to detect clusters of x-outliers and to check whether the predic-
tors come from an elliptically contoured distribution. We can also generate
RR plots, plot leverages vs residuals (Barrett and Gray, 1992), and plot resid-
uals vs RD′

is (Rousseeuw and Van Zomeren, 1990). Gray (1985) also gives
a plot for accessing pairs of jointly influential points.

In the multivariate location and covariance setting, the DD plot can be
used as an outlier test and to check whether the data come from a target
elliptically contoured distribution. Johnson and Wichern (1988, p. 152)
suggest plotting the MD2

(i) vs the χ2
p quantiles, and Rocke and Woodruff

(1996, p. 1058) plot log(RD2
(i)) vs the logarithm of the expected χ2

p order
statistics. If the target elliptically contoured distribution is not Gaussian,
the population quantiles could be computed via simulation or from equation
15.7. We also suggest making a scatterplot of the Mahalanobis distances
from several location covariance estimators.
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Chapter 16

Conjectures

There is an enormous amount of work left to do in the field of robust statistics.
Estimators with theory tend to be impractical to compute (MCD, MVE, S-
estimators, and some of Hössjer’s rank estimators) while estimators with
exact algorithms do not have rigorous theory (LTS, LTA) or converge at a
cubed root rate (LMS). The all elemental subsets algorithm produces the
global minimizer for elemental methods (LTA, LATA), but for other robust
methods, nearly nothing is known. (Of course, the all elemental subsets
algorithm is known to preserve breakdown and affine equivariance for some
estimators.)

In the location model, what is the joint distribution of MAD(n) and
MED(n)? When these two estimators are used to metrically trim or Win-
sorize the data, is the limiting sum of the Shorack and Wellner theory Gaus-
sian and can the standard error be estimated with small bias? The Huber
M-estimator has been shown to converge to a Gaussian with root n rate,
but much of the M-estimator theory is for the one parameter location fam-
ily or a symmetric family. These assumptions greatly restrict the type of
contamination that can be present.

In the regression model very little is known. If the criterion is smooth then
the asymptotic theory can be derived for S-estimators and R-estimators, but
the estimators can not be computed. If the criterion uses zero one weighting,
then sometimes the estimator can be computed, but only the LMS estimator
has rigorous asymptotic theory. It is not known if the folklore asymptotic
distributions of LTA and LTS are correct, and the LMS estimator has a cubed
root convergence rate. It is not known if concentration algorithms or feasi-
ble solution algorithms produce consistent estimators, and it is not known

164



whether the all elemental subsets algorithms produce consistent estimators
(except for the L1 criterion, and hopefully LTA and LATA are consistent).

In the multivariate location and covariance problem, the MVE and MCD
have been shown to be consistent, but the exact algorithms are impractical.
Claims for computable consistent robust estimators generally assume that
a fast initial estimator is available, but it is not known whether the FSA
estimators or the concentration estimators are consistent.

16.1 Conjectures for the Location Model

In chapter 2, the formula for the asymptotic variance of MAD(n) was greatly
simplified under symmetry. Are there other situations where the asymptotic
variance σ2

MAD is simple or where there are simple upper and lower bounds
for σ2

MAD? Since linear combinations of MED(n) and MAD(n) are used
to estimate upper and lower percentiles, the joint distribution of the two
statistics would be useful. Rivest (1982, p. 231) claims that MED(n) and
MAD(n) are asymptotically independent under symmetry.

Conjecture 16.1. a) MED(n) and MD(n) are uncorrelated.
b) MAD(n) and MED(n) are asymptotically uncorrelated.
c)

√
n

( (

MED(n)
MAD(n)

)

−
(

MED(X)
MAD(X)

) )

d→

N

( (

0
0

)

,

(

σ2
MED 0
0 σ2

MAD

) )

(16.1)

where under the conditions of theorem 2.6,

σ2
MED =

1

4[F ′(MED(X))]2
,

and

σ2
MAD =

1

64
[

3

F ′(ξ3/4)
− 2

F ′(ξ3/4)F ′(ξ1/4)
+

3

F ′(ξ1/4)
].

From chapter 4, we know that the joint distribution of metrically trimmed
and Winsorized random variables is a sum of Gaussian random variables, but
we do not know the covariances of the terms in the sum. We conjecture that
estimating the variance of just the first term in the limit will give small bias
for many parametric families.
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In chapter 7, we would like to move from diagnostics to inference, but the
methods of chapter 7 relied on the theory in chapter 4. We do not know if
the high breakdown methods can compete with methods based on ordinary
trimmed and Winsorized means.

16.2 Conjectures for the Regression Model

In chapters 8 and 9, we showed that the elemental fit bo closest to β satisfies

‖bo − β‖ = OP (n−1),

but we do not know if this is the best rate. For bounded predictors, this
should be the best rate since the number of cases with |ei| < ε is proportional
to nε. For example, in simple linear regression, if two observations have
absolute errors that are less than ε, then the best fit will occur by putting
these two observations as far apart as possible. If the predictors follow a
Gaussian or Cauchy distribution, the predictors are not bounded. How fast
can the predictors go to ∞ before a better rate occurs?

We want to know that the fit β̂A produced by the algorithm is consistent.
Suppose the algorithm uses criterion Q and that β̂GBE, the globally best es-
timator for Q, has well behaved asymptotic theory. For example, suppose
β̂GBE has n−1/2 convergence rate and that bo is the closest fit to β consid-
ered by the algorithm. Usually we can compute neither β̂GBE nor bo, but
sometimes we can find their convergence rates. If the algorithm evaluates all
elemental sets, then

Q(β̂GBE) ≤ Q(β̂A) ≤ Q(bo)

and by the triangular inequality and chapter 9,

‖β̂GBE − bo‖ = OP (n−1/2).

Although robust criteria Q are not convex, they usually are continuous as a
function of the fit b. However, continuity is not enough to prove that β̂A is
consistent.

The only algorithm (known to the author) that produces a consistent
estimator that can be computed and handle a wide variety of tail behavior is
to take a random sample of kn cases and then perform an exact algorithm on
the kn cases. For example, take a sample S of size

√
n of the cases without
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replacement and find the exact LTA estimator β̂LTA,S for the sample S. Then

‖β̂LTA,S − β‖ = OP (n−1/4)

by the limit theorem for LTA given in chapter 11. (But this theorem is
folklore, and LMS takes too long to compute!)

We need a stronger constraint than continuity of Q to get rates for β̂A. We
would like to compute β̂A with elemental methods and show that it has the
same limit theorem as β̂GBE . Perhaps good criteria such as LTS and LATS
satisfy a Lipschitz condition. The following conjecture is true for elemental
methods such as LTA and LATA since then β̂GBE = β̂A.

Conjecture 16.2. Let β̂GBE be the global minimizer of some criterion
Q. Suppose all elemental fits are computed and β̂A is the elemental fit that
minimizes Q. If

nδ[β̂GBE − β] → Z

for some random variable Z, then

nδ[β̂A − β] → Z.

Next we conjecture that the LATA and LATS estimators of chapter 13
have a Gaussian limiting distribution. The exact algorithm for LATS is
more expensive than the algorithm for LTS, but if conjecture 16.2 is true,
asymptotically equivalent elemental approximations can be computed. The
high efficiency should hold without moment assumptions on the design and
without comparing two measures of scale like the crosschecking estimator of
He and Wang (1996) and the estimator of Davies (1993). The work of Welsh
(1986) on the behavior of MAD(n) applied to the residuals may be useful
for the conjecture below. The work of Shorack and Wellner suggests the last
part of the conjecture. As in section 11.1.2, assume that the design matrix
Xn = X satisfies

XTX

n
→W−1.

Conjecture 16.3. If the errors are iid F where F is smooth, then

Un

n
= τF +OP (n−1/2),

and a)
β̂LAQS(k)

a
= β̂LQS(τF ).
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b) √
n(β̂LATS − β) → N [0, V (LATS(k), F ) W ]

where V (LATS(k), F ) → V (OLS, F ) as k → ∞.
c) √

n(β̂LATA − β) → N [0, V (LATA(k), F ) W ]

where V (LATA(k), F ) → V (L1, F ) as k → ∞.
Moreover,

V (LTS(τF ), F ) < V (LATS(k), F ), V (LTA(τF ), F ) < V (LATA(k), F ),

but for τF > 0.95, the inequality is approximately an equality.
We would like to broaden the results of He and Portnoy (1992) to show

that steepest descent algorithms do not produce an attractor with a worse
rate than the start. We would also like to show that the estimators produced
by steepest descent methods are consistent.

Conjecture 16.4. Assume that the globally best estimator β̂GBE for
criterion Q satisfies

‖β̂GBE − β‖ = OP (n−1/2)

and that the initial estimator b0 satisfies

‖b0 − β‖ = OP (n−1/2).

If an algorithm produces a sequence of fits b1, b2, ... such that

Q(b0) ≥ Q(b1) ≥ Q(b2) ≥ ... ≥ Q(β̂GBE),

then for i ≥ 0,
‖bi − β‖ = OP (n−1/2).

If this conjecture is true, use OLS and L1 as initial estimators for concentra-
tion and swapping algorithms and make sure that the final estimator has a
smaller criterion value.

Taking time to find a small criterion value may also improve branch and
bound algorithms for robust estimators (Agulló, 1997). A branch and bound
algorithm uses a tree to keep track of the C(n, c) fits with coverage c and
keeps track of the current best criterion value. Going up a branch corresponds
to adding observations, but many regression criteria are nondecreasing as ob-
servations are added. If the h-case criterion value at a given branch level h
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ever exceeds the current best c-case criterion value, then all c-case criterion
values further along the branch will also exceed that value. Hence the algo-
rithm “leaps” to another branch, never checking a possibly huge number of
potential fits.

For example, consider the LMS estimator which corresponds to Cheby-
shev fits to the C(n, c) fits with coverage c > n/2. The LMS estimator is
also a Chebyshev fit to some subset of p + 1 cases. If a good initial approx-
imation can be found, most branches will be pruned after examining p + 1
cases. Hence the algorithm could be quite fast. For the LMS, LTS, and LTA
criteria, one could fit OLS and L1, concentrate, and then use the smaller cri-
terion value of the two attractors as the initial criterion value. Agulló (1997)
starts with criterion value = ∞, but it may take a long search until a small
criterion value can be found.

We conjecture that the RR and DD plots will become important tools.
They will help explain robust methods to consulting clients and help statis-
ticians determine the influential cases. We hope that the interplay between
robust methods and graphical methods increases. Robust methods can be
used to ensure that the predictors do not have strong nonlinearities while
graphical methods can be used to reduce the dimension of the predictor
space. This reduction would make robust methods faster to compute.

16.3 Elemental Sets Approximate All Ellip-

soids

Since robust methods such as the MCD and the MVE are very computer
intensive to compute, many approximate algorithms have been suggested.
See Rocke and Woodruff (1996), Woodruff and Rocke (1994), and Woodruff
and Rocke (1993) for references. In this section we argue that the αth highest
density p−dimensional ellipsoid can be approximated by many elemental sets,
but the best elemental set has convergence rate OP (n−1/p). If this conjecture
is true, elemental improvement algorithms and concentration algorithms may
not have a rate better than OP (n−1/p), and one step estimators that need a
starting estimator with rate OP (n−1/4) may not be practical to compute.

For the multivariate location and covariance model, we will assume that
the observations xT

i are iid from a distribution that has a joint pdf f which
is positive on the entire p−dimensional Euclidean space. Suppose that there
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are p variables and that the iid data xT
i are rows in an n × p matrix X. For

multivariate location and covariance estimation, an elemental set has size
p + 1. We will argue that the center TBEE of the best elemental ellipsoid
satisfies

‖TBEE − µ‖ = OP (n−1/p)

where µ is the center of the target ellipsoid.
The basic idea is that a target ellipsoid can only be approximated by an

elemental set if the p + 1 points fall within a shell of thickness 2ε centered
at the surface of the target ellipsoid. Since the volume of the shell is propor-
tional to εp and since there are only n points, the rate of the best elemental
approximation is slow for large p. On the other hand, if an elemental ellip-
soid estimates an ellipsoid that is concentric to the target ellipsoid, using the
half set of cases corresponding to the smallest Mahalanobis distances may
produce a good estimator. Since the number of ellipsoids concentric to any
target is uncountably infinite, the n−1/p rate may not be the rate of the best
subsample considered by an algorithm that refines c−subsets after using an
elemental start.

As in chapter 9, we use pyramids to argue that elemental sets approximate
ellipsoids. First we will assume that the target ellipsoid is a p−dimensional
sphere S(r, µ) with radius r and center µ where µ is p × 1. Note that S is
determined by the p + 1 corner points of any inscribed equilateral pyramid
since the average of the pyramid points equals the center of the sphere and
each point is a distance r from the center. Combine these points into a
(p + 1) × (p + 1) matrix W. With one predictor both the sphere and the
pyramid are line segments. In two dimensions the sphere is a circle and the
pyramid an equilateral triangle, and in three dimensions we get a sphere
and an inscribed pyramid. Recall that the volume of an ellipsoid {x : (x −
T (x))TC−1(x− T (x)) ≤ a2}

=
2πp/2

pΓ(p/2)
|C|1/2ap

(Johnson and Wichern 1988, p. 103). Hence the volume of an ellipsoid is
proportional to the square root of the determinant of the covariance matrix
which determines the ellipsoid, and the volume of the sphere S is propor-
tional to rp where r is the radius of the sphere. If the radius is small, many
observations are needed to ensure that one falls in the sphere.
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Next we obtain an elemental set that approximates the sphere S. Let the
p + 1 corner regions be balls of radius ε about each of the pyramid points,
and take one data point from each ball to produce an elemental set

Ji = {xi1, ..., xip+1} ≡ {d1, ..., dp+1}.

We conjecture that the ellipsoid passing through the points in Ji has a center
d̄ and a volume that is bounded below by the volume of the sphere S(r−ε, µ)
and above by the volume of the sphere S(r+ε, µ). (I think that the surface of
the ellipsoid is completely contained between the surfaces of the two spheres,
but ellipsoids bend a lot more than hyperplanes, so I could be mistaken.)

If this conjecture is true, then the squared norm of the difference of the
two centers satisfies

‖d̄− µ‖2 ≤ pε2. (16.2)

Again to show that the elemental approximations are good, we want to have
the number of points in the corner regions to increase as n increases. Since
the density of the x′is is positive on the entire p−dimensional Euclidean space
the number of points in each of the p + 1 ε−balls will increase to ∞ as n
increases if

ε = 1/n(1−δ) (16.3)

where 0 < (p− 1)/p < δ < 1.
By letting

ε =
M

n1/p

and making M large, we can ensure that the probability that all p+1 ε−balls
contain a data point is arbitrarily close to one for large enough n. Hence the
difference in centers and volumes of the best approximating elemental ellip-
soid and the target sphere are both OP (n−1/p). Since an ellipsoid is obtained
by taking 2 opposite points of a sphere and stretching, or more formally by
an affine transformation of a sphere, the difference in centers and volumes of
the best approximating elemental ellipsoid and any target ellipsoid are also
both OP (n−1/p). The probabilities of data falling in the ε−balls could be too
small to be useful if the target ellipsoid is far from the center of the data.

If the majority of the data come from an elliptically contoured distribu-
tion
EC(µ,Σ, g) with mean µ and covariance proportional to Σ, and if the out-
liers are far away, then good elemental set approximations to the highest α
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density ellipsoid should be computable in low dimensions when α is some-
what less than the contamination proportion. Note that a good elemental set
approximation will exist for large n if the density of the predictors is positive
near the corners of the transformed pyramid.
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