Disentangling a Triangle

Jerzy Kocik and Andrzej Solecki

1. INTRODUCTION. In his Almagest, Ptolemy inscribes triangles in a unit circle, a circle with diameter $d=1$ (see [5], pp. 90-92). This way the length of each side (now chord) represents the value of the trigonometric function sine of the opposite angle. A similar geometric interpretation of the cosine function is possible.

In Figure 1 we present Ptolemy's famous sketch, juxtaposed with a "dual" sketch that shows the values of the cosines as segments of the altitudes (see Proposition 1).

Figure 1. Ptolemy's design and its dual.

This observation-which seems to be absent in all the presentations of trigonometry known to us-proves to be a convenient tool for bringing order into the garden of trigonometric identities. As an example, see Figure 2 for ways to visualize products of sines and of cosines; they would perhaps please Napier in his experiments with such products that eventually led him to the concept of logarithm.

Figure 2. Products of trigonometric functions.

In the following we present some new proofs and visualizations. Along the way, we also prove some standard facts to make the "sine-cosine" duality transparent, and to maintain completeness, with the aim of providing a guide for a geometric path through
trigonometry. Among new items are visualizations shown on the right in Figures 1, 2, 14, and 15. Also, a simple proof of the Nine-Point Circle Theorem stands among the benefits we present.

Throughout these notes we use the term unit circle for one with unit diameter, $d=2 r=1$. We deal with acute triangles only; the case of right and obtuse triangles is handled in Section 6. It is reduced there to the former one by construction of the unit orthotetrad, the set of three vertices and the orthocenter.
2. A GOOD LOOK AT THE ALTITUDES. We use the standard notation for a triangle: letters A, B, and C denote the vertices, α, β, and γ the corresponding angles. As all the results remain valid under permutation of vertices, we state properties and conduct reasoning for a particular choice of the elements.

The altitude (see Figure 3) from vertex C is denoted by h_{C}; its foot (the point lying on the side $A B$) by C_{F}. The point on the other end of the chord containing h_{C} is denoted by \bar{C}.

The orthocenter H (its existence remains yet to be proven) divides each altitude into two segments: its ear $C H$ extends from the orthocenter to the vertex and its stem $H C_{F}$ goes from its foot to the orthocenter. The segment $C_{F} \bar{C}$ that goes beyond the triangle and reaches the circle is called a root. Recall that the midpoint of the ear is known as an Euler point.

Figure 3. The anatomy of an altitude.

Let us begin with proofs of the facts illustrated in Figure 1.
Proposition 1. Let a triangle $A B C$ be inscribed in a unit-diameter circle.
(i) [Ptolemy's theorem] The triangle sides represent sines: $|A B|=\sin \gamma$.
(ii) [It's dual] The ears represent cosines: $|\mathrm{CH}|=\cos \gamma$.
(iii) [Existence of orthocenter] The three altitudes concur in one point H.

Proof. Both angles $\gamma=\angle A C B$ and $\angle A C_{1} B$ in the left-hand side of Figure 4 are based on the same chord $A B$, so they are equal. The point C_{1} is chosen so that $A C_{1}$ forms a diameter and $\angle A B C_{1}$ is a right angle. The definition of sine implies (i).

To prove (ii), consider altitude $h_{B}=B B_{F}$. As $\triangle A C_{1} C$ is a right triangle, both $C C_{1}$ and $B B_{F}$ are perpendicular to $A C$, and therefore mutually parallel. Thus forming parallelogram $B C_{1} C H$ we get $|C H|=\left|C_{1} B\right|=\cos \gamma$ (see Figure 4).

To prove (iii), repeat the process of (ii) using A instead of B to see that H is the point where h_{C} and h_{A} meet.

Figure 4. For $\sin \gamma$, follow Ptolemy. For $\cos \gamma$, shift it to vertex C.

Scaling the figure by the factor $d \in \mathbb{R}_{+}$yields these basic trigonometric facts:
Corollary 2. If $\triangle A B C$ is inscribed in a circle of diameter d, then
(i) [The Law of Sines] $\quad \frac{|A B|}{\sin \gamma}=\frac{|B C|}{\sin \alpha}=\frac{|A C|}{\sin \beta}=d$.
(ii) [The New Law of Cosines] $\quad \frac{|A H|}{\cos \alpha}=\frac{|B H|}{\cos \beta}=\frac{|C H|}{\cos \gamma}=d$.

Proof. Inscribe $\triangle A B C$ in a circle of some diameter d and dilate with respect to its center to a unit circle to get a "Ptolomean" triangle. The corollary may be viewed as a reformulation of Thales' theorem.

The altitudes cut a triangle into six triangles. The resulting angles are shown in Figure 5, where φ^{*} denotes the angle complementary to $\varphi\left(\varphi^{*}=\frac{\pi}{2}-\varphi\right)$.

Figure 5. Angles.

Figure 6. Four unit circles.

Proposition 3. A circle through any three of the four points A, B, C, H has the same diameter (Figure 6).

Proof. Use the Law of Sines to find the diameter $d_{A H B}$ of the circle circumscribed on $\triangle A B H$. The angle opposite $A B$ is $\alpha+\beta=\pi-\gamma$, so the diameter is

$$
d_{A H B}=\frac{|A B|}{\sin (\pi-\gamma)}=\frac{\sin \gamma}{\sin \gamma}=1 .
$$

Proposition 4. The stem and root of each altitude are of equal length.
Proof. Both angles $\angle A B C$ and $\angle A \bar{C} C$ are based on the same chord $A C$, thus $\angle A \bar{C} C=$ $\angle A B C=\beta$. On the other hand $\angle A H \bar{C}=\beta$ (see Figure 5). An analogous argument gives $\angle H \bar{C} B=\angle B H \bar{C}=\alpha$. So, $\triangle A \bar{C} B$ and $\triangle A H B$ are congruent.

Corollary 5. The reflections of the orthocenter H through the sides of $\triangle A B C$ lie on the excircle of the triangle.

This picture complements Proposition 3 on the four unit excircles. Each of the four points is the orthocenter of the triangle formed by the other three. It should also be obvious that, by Proposition 3, any pair of these circles form mutual mirror reflections through their common chord.

Figure 7. The stem and the root are equal.

Remark. Frère Gabriel-Marie gives the name of orthocentric group to such configurations, attributing the nomenclature to an article by de Longchamps from 1891 (see [2], p. 1076) and their study to Carnot (see [2], p. 142). For related material, see Chapter 2 of [3].

Let us now formulate the results displayed in Figure 2.
Proposition 6. In a triangle $A B C$ inscribed in a unit circle:
(i) The length of an altitude is the product of the sines of the angles opposite the altitude: $\left|h_{C}\right|=\sin \alpha \cdot \sin \beta$.
(ii) The length of a stem is the product of the cosines of the angles opposite the altitude that contain the stem: $\left|H C_{F}\right|=\cos \alpha \cdot \cos \beta$.

Proof. (i) $\frac{\left|h_{C}\right|}{\sin \beta}=\sin \alpha$. (ii) $\frac{\left|H C_{F}\right|}{\cos \beta}=\cos \alpha$.

Figure 8. Proof of Corollary 7: Use definitions of sine and cosine.

As a bonus we get from Figure 8 geometric representations of mixed products of sines and cosines:

Corollary 7. In a triangle $A B C$ inscribed in a unit circle, the foot of an altitude h_{C} divides the side $A B$ into segments of lengths:

$$
\left|A C_{F}\right|=\cos \alpha \sin \beta \quad \text { and } \quad\left|B C_{F}\right|=\cos \beta \sin \alpha
$$

Proof. If suffices to check Figure 8 for $\frac{\left|A C_{F}\right|}{\sin \beta}=\cos \alpha$ and for $\frac{\left|B C_{F}\right|}{\cos \beta}=\sin \alpha$.
3. REPLICAS. The orthic triangle $A_{F} B_{F} C_{F}$ is spanned by the feet of the altitudes. Interestingly, by removing it from $\triangle A B C$ we get three smaller copies of the original triangle (see Figures 9 and 10). To see this, we determine the angles of the triangles as in Figure 9 right.

There is a useful-although somewhat neglected-notion, present in older geometry textbooks. If a line cuts $B C$ in N and $A C$ in M forming $\angle N M C=\alpha$, it is parallel to $A B$. If $\angle N M C=\beta$, the line is called antiparallel to $A B$ (see [1], p. 169).

Figure 9. Orthic $\triangle A_{F} B_{F} C_{F}$ is built from antiparallels.

Proposition 8. Let $\triangle A_{F} B_{F} C_{F}$ be the orthic triangle of $\triangle A B C$. Then:
(i) The sides of the orthic triangle are antiparallel to the sides of $\triangle A B C$.
(ii) The angle of that triangle at the vertex B_{F} is $\pi-2 \beta$.
(iii) The altitudes of $\triangle A B C$ are bisectors of the angles of $\triangle A_{F} B_{F} C_{F}$.

Proof. (i) The quadrilateral $A_{F} C B_{F} H$ (see Figure 10, on the left) has two right angles at the opposite vertices A_{F} and B_{F}-so, it is cyclic. Now, $\angle A_{F} H C=\angle A_{F} B_{F} C$ as
these angles are subtended by the same chord $A_{F} C$ in the circumscribed circle. The first of them (see Figure 5) is β. Therefore the segment $A_{F} B_{F}$ lies on a line antiparallel to $A B$.
(ii) Similar reasoning applied to the quadrilateral $B_{F} A C_{F} H$ leads to the conclusion that $\angle C_{F} B_{F} A=\beta$, so $\angle A_{F} B_{F} C_{F}=\pi-2 \beta$.
(iii) Since $\angle A_{F} B_{F} C=\angle C_{F} B_{F} A$ and $H B_{F}$ is perpendicular to $A C$, line $H B_{F}$ bisects $\angle A_{F} B_{F} C_{F}$.

Figure 10. New circumcircles.

Thus, by removing $\triangle A_{F} B_{F} C_{F}$ from $\triangle A B C$ one gets three copies of the original triangle, with circumcircles that have diameters $d_{A}=\cos \alpha, d_{B}=\cos \beta$, and $d_{C}=$ $\cos \gamma$. Automatically, we obtain geometric interpretations of multiple products of at most two sines and arbitrarily many factors of cosines, as segments in a fractal-style nested family of ever smaller copies of $\triangle A B C$.

Notice that the centers of the three circles are at the midpoints of the ears of the altitudes of $\triangle A B C$.

Our sketch (Figure 11) also contains differences of angles:
Proposition 9. Let $C D$ be a diameter of the circle circumscribing $\triangle A B C$.
(i) The diameter $C D$ is orthogonal to $A_{F} B_{F}$.
(ii) If $\beta>\alpha$ then $\angle \bar{C} C D=\beta-\alpha$.

Proof. (i) By Proposition 8 we have $\angle B_{F} A_{F} C=\alpha$. On the other hand, $\angle B D C$ and $\angle B A C$ are subtended by the same chord $B C$, so $\angle B D C=\alpha$. As $C D$ is a diameter, $\triangle B C D$ is a right triangle and $\angle B C D=\alpha^{*}$, so that $\angle A_{F} C_{1} C=\pi / 2$.
(ii) In right triangles $B_{F} C_{1} C$ and $B C_{F} C$ there are angles equal to β at B_{F} and at B, respectively (see Figure 11). Thus, $\angle B_{F} C C_{1}=\angle B C C_{F}=\beta^{*}$. Now, $\angle \bar{C} C D=$ $\gamma-2 \beta^{*}=(\pi-(\alpha+\beta))-2(\pi / 2-\beta)=\beta-\alpha$.

Corollary 10. The length of the chord from a vertex along the altitude has length $C \bar{C}=\cos (\alpha-\beta)$.
4. DILATION. Two cases of dilation by factors of 2 , centered at H, are examined here.

Proposition 11. Let $\triangle A B C$ be inscribed in a unit circle centered at O. Consider the dilation δ with ratio $2: 1$ centered at H.
(i) δ carries the orthic triangle $\triangle A_{F} B_{F} C_{F}$ onto the circum-orthic triangle, whose vertices are \bar{A}, \bar{B}, and \bar{C}.
(ii) δ^{-1} carries the unit circle into the circle circumscribing the orthic triangle. Its radius is $1 / 2$ and its center is at the midpoint N of the segment $O H$.

Proof. (i) By Proposition 4, $\left|H A_{F}\right|=\left|A_{F} \overline{\bar{A}}\right|$ (see Figure 7), and similarly for the other two altitudes, hence (i) follows. (ii) $\Delta \bar{A} \bar{B} \bar{C}$ is inscribed in the circle of diameter 1 and center O, so the inverse dilation carries O to N and the circumcircle of $\triangle \bar{A} \bar{B} \bar{C}$ to the circumcircle of $\triangle A_{F} B_{F} C_{F}$ with radius $1 / 2$ (see Figure 12).

Figure 11. Angle differences.

Figure 12. Orthic and circum-orthic triangle. Unit circle and 9-point circle.

Among the circles associated with a triangle one is exceptionally famous: the circumcircle of the orthic triangle. It is called the nine-point circle, as it also contains the midpoints of the sides and the Euler points. Three different proofs of this property, appearing in the first pages of Chapter I of [6], stress the elementary nature of the proposition. It also surfaces here as a natural consequence of our trigonometric considerations.

Proposition 12 (Nine-Point Circle Theorem). The circle centered at N with radius $1 / 2$ contains all midpoints of sides of $\triangle A B C$, feet of its altitudes, and midpoints of ears of the altitudes.

Proof. Assume that $\alpha \neq \beta$. Reduce the triangle $C \bar{C} D$ by a factor of 2 by contraction δ^{-1} centered at H (see Figure 13). The vertices are mapped as follows: $\bar{C} \rightarrow C_{F}$ and $C \rightarrow M_{C H}$ (midpoint of the ear). The third vertex, D, maps to the midpoint $M_{A B}$ of $A B$. To see this, notice that a translation of $C O$, half the diameter, along the altitude carries it to the hypotenuse of the smaller triangle. Since $M_{A B}$ is the perpendicular projection of O onto $A B$, it halves the chord. The midpoint of $M_{C H} M_{A B}$ is the intersection point of the diagonals of the parallelogram $H M_{A B} O M_{C H}$. It is also the center of the circumcircle of $\triangle C_{F} M_{A B} M_{C H}$. Neither its radius $1 / 2$ nor its center N depend on the choice of the altitude, so the claim holds.

Figure 13. Nine-point circle.
5. IDENTITIES. Putting together the sides and altitudes of $\triangle A B C$ yields trigonometric identities for compound angles:

1. $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\sin \beta \cos \alpha$
2. $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$
3. $\cos (\alpha-\beta)=\sin \alpha \sin \beta+\cos \alpha \cos \beta$
4. $2 \cos \alpha \cos \beta=\cos (\alpha-\beta)+\cos (\alpha+\beta)$
5. $\tan \alpha+\tan \beta=\frac{\sin (\alpha+\beta)}{\cos \alpha \cos \beta}$
6. $\cot \alpha+\cot \beta=\frac{\sin (\alpha+\beta)}{\sin \alpha \sin \beta}$

Proof. For $\gamma=\pi-(\alpha+\beta)$ we have $\sin \gamma=\sin (\alpha+\beta)$ and $\cos \gamma=-\cos (\alpha+\beta)$, so a look at Figure 14 makes it clear that (1) and (2) hold. Identities (3) and (4) are illustrated in Figure 15. (The lengths of respective segments are given by Proposition 6 and Corollary 7, while $\cos (\alpha-\beta)$ may be read off from Figure 11.)

$\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$

Figure 14. Two identities visualized in the unit circle.

For (5), use the first part of Proposition 6 and Figure 5, and to get (6) use the second part of Proposition 6:

$\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$

$\cos (\alpha-\beta)+\cos (\alpha+\beta)=2 \cos \alpha \cos \beta$

Figure 15. More indentities.
5. $\tan \beta+\tan \alpha=\frac{\left|A C_{F}\right|}{\left|C_{F} H\right|}+\frac{\left|C_{F} B\right|}{\left|C_{F} H\right|}=\frac{|A B|}{\left|C_{F} H\right|}=\frac{\sin (\alpha+\beta)}{\cos \alpha \cos \beta}$.
6. $\cot \alpha+\cot \beta=\frac{\left|A C_{F}\right|}{\left|C_{F} C\right|}+\frac{\left|C_{F} B\right|}{\left|C_{F} C\right|}=\frac{|A B|}{\left|C_{F} C\right|}=\frac{\sin (\alpha+\beta)}{\sin \alpha \sin \beta}$.
6. CODA. The three vertices of a triangle and its orthocenter form a quartet of points that catches the essence of triangle geometry: each of these four points is the orthocenter of the triangle formed by the other three. This fact will allow us to unify some of our results, as well as to answer the last pending question.

A unit orthotetrad (see [7]) is a system of four planar points, P, Q, R, S, such that any three of them form a triangle with unit excircle and any coupling of points into pairs creates two orthogonal segments (see Figure 6). We shall use the following general notation: $\triangle P:=\triangle Q R S$ for triangles and $\angle Q P:=\angle R Q S$ for angles. Moreover, $[P Q, R S]$ stands for a segment the meaning of which depends on the context: it is the altitude in $\triangle P$ from vertex Q towards side $R S$, which is equivalent to the stem in $\triangle Q$ from P, and which is also the "pedal segment" $Q S_{F}$ of side $P Q$ in $\triangle R$.

A look at Figure 5 reveals that either $\angle P Q=\angle Q P$ or $\angle P Q=\pi-\angle Q P$. All characteristic elements (15 angles, 6 sides/ears, and 12 altitudes/stems/pedal segments) follow these two rules:

1. sides or ears: $|R S|=\sin \angle P Q=\sin \angle Q P$.
2. other segments: $\quad[P Q, R S]=(\sin \angle P Q) \cdot(\sin \angle R S)$.

Recall that the results of this paper were all derived for acute triangles. They are naturally transfered to any obtuse triangle when one embeds it into the associated orthotetrad. Note also that any two mutually orthogonal segments in the orthotetrad correspond to the sine and cosine of an angle.

Various other geometric facts easily follow as corollaries from the path advocated in this paper. Below, we present several of them and invite the reader to extend the list. Hints for their proofs may be found at [4].

Additional geometrical facts.

1. The area of a triangle is $(A B C)=\frac{1}{2} \sin \alpha \sin \beta \sin \gamma$.
2. $4 \sin \alpha \sin \beta \sin \gamma<\pi$.
3. The power of H in the circumcircle of $\triangle A B C$ (product of any two parts of a chord passing through the point) is $2 \cos \alpha \cos \beta \cos \gamma$.
4. The distance of the antipodal point of C from $A B$ is equal to the root h_{C}.
5. The circle inscribed in the orthic triangle has radius $\cos \alpha \cos \beta \cos \gamma$ and center H.
6. The orthocenters of $\triangle A C_{F} B_{F}, \triangle B A_{F} C_{F}$, and $\triangle C B_{F} A_{F}$ lie on the sides of the circum-orthic triangle.
7. The distance $u=|O H|$ satisfies $u^{2}=1 / 4-2 \cos \alpha \cos \beta \cos \gamma$.
8. For $\alpha+\beta+\gamma=\pi$ one has $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+2 \cos \alpha \cos \beta \cos \gamma=$ 1.
9. The heights of a triangle obey the inequality

$$
\frac{1}{\left|h_{A}\right|}+\frac{1}{\left|h_{B}\right|}>\frac{1}{\left|h_{C}\right|} .
$$

10. The inradius r of $\triangle A B C$ satisfies

$$
\frac{1}{r}=\frac{1}{\left|h_{A}\right|}+\frac{1}{\left|h_{B}\right|}+\frac{1}{\left|h_{C}\right|} .
$$

11. The centers of the circumcircles of $\triangle A B H, \triangle B C H$, and $\triangle C A H$ form a triangle $O_{A B} O_{B C} O_{C A}$ congruent to the triangle $A B C$ and they are interchanged by a half-turn around N.

Another interesting exercise is to rewrite the whole story in terms of complex numbers.

ACKNOWLEDGMENTS. We are grateful to our referees for their valuable comments; the reader is their principal beneficiary. We also thank Paul Otterson for reading the manuscript and sharing his remarks.

REFERENCES

1. J. Casey, A Sequel to the First Six Books of the Elements of Euclid, Longmans, Green, London, 1888.
2. F. Gabriel-Marie, Exercices de Géometrie, Maison A. Mame et Fils, Tours, France, 1912.
3. R. Honsberger, Episodes in Nineteenth and Twentieth Century Euclidean Geometry, Mathematical Association of America, Washington, DC, 1995.
4. J. Kocik, http://www.math.siu.edu/kocik/triangle.htm.
5. E. Maor, Trigonometric Delights, Princeton University Press, Princeton, NJ, 1998.
6. D. Pedoe, Circles: A Mathematical View, 2nd ed., Mathematical Association of America, Washington, DC, 1997.
7. , Geometry: A Comprehensive Course, Dover, New York, 1988.

Department of Mathematics, Southern Illinois University, Carbondale, IL 62901
jkocik@math.siu.edu
Depto. de Matemática, Universidade Federal, Florianópolis, SC, Brazil
andsol@andsol.org

