GEOMETRIC METHODS
IN PHYSICS
dynamical systems

LIE-POISSON

------------ 1998 -------------------

Cendra H.  Holm DD.  Hoyle MJW.  Marsden JE.
THE MAXWELL-VLASOV EQUATIONS IN EULER-POINCARE FORM
Journal of Mathematical Physics.  39(6):3138-3157, 1998 Jun.

Holm DD.  Marsden JE.  Ratiu TS.
THE EULER-POINCARE EQUATIONS AND SEMIDIRECT PRODUCTS WITH APPLICATIONS TO CONTINUUM THEORIES [Review]
Advances in Mathematics.  137(1):1-81, 1998 Jul 15.

Benarous M.
ON THE POISSON STRUCTURE OF THE TIME-DEPENDENT MEAN-FIELD EQUATIONS FOR SYSTEMS OF BOSONS OUT OF EQUILIBRIUM
Annals of Physics.  264(1):1-12, 1998 Mar 20.


------------ 1997 -------------------

Czachor M.
NAMBU-TYPE GENERALIZATION OF THE DIRAC EQUATION
Physics Letters A.  225(1-3):1-12, 1997 Jan 27.

Frank J.  Huang WZ.  Leimkuhler B.
GEOMETRIC INTEGRATORS FOR CLASSICAL SPIN SYSTEMS
Journal of Computational Physics.  133(1):160-172, 1997 May 1.

Jurco B.  Schupp P.
TWISTED QUANTUM LAX EQUATIONS
International Journal of Modern Physics A.  12(32):5735-5752, 1997 Dec 30.

Kosmann-Schwarzbach, Y.
Lie Bialgebras, Poisson Lie Groups and Dressing  Transformations
Lecture notes in physics.
Number 495, p 104, 1997
ISSUE DESCR: Integrability of Nonlinear Systems

Kowalczyk E.
LIE BIALGEBRA STRUCTURES ON TWO-DIMENSIONAL GALILEI ALGEBRA AND THEIR  LIE-POISSON COUNTERPARTS
Acta Physica Polonica B.  28(9):1893-1906, 1997 Sep.

Lyakhovsky VD.  Mirolubov AM.
DEFORMED LIE-POISSON STRUCTURES FOR QUANTIZED GROUPS
Czechoslovak Journal of Physics.  47(1):63-70, 1997 Jan.

Lyakhovsky VD.  Mirolyubov AM.
CONTRACTIONS IN DEFORMED LIE-POISSON STRUCTURES
International Journal of Modern Physics A.  12(1):225-230, 1997 Jan 10.

Ono T.
DYNAMICAL ORIGIN OF QUANTUM MECHANICS
Physics Letters A.  230(5-6):253-260, 1997 Jun 23.

Xu P.
HYPER-LIE POISSON STRUCTURES
Annales Scientifiques de l Ecole Normale Superieure.  30(3):279-302, 1997.

------------ 1996 -------------------

Arutyunov, G E
Graded Poisson Lie Structures on Classical Complex Lie Groups.
Communications in mathematical physics.
Volume 177, Number 3, 1996 , pp. 673

Bloch A.  Krishnaprasad PS.  Marsden JE.  Ratiu TS.
THE EULER-POINCARE EQUATIONS AND DOUBLE BRACKET DISSIPATION
Communications in Mathematical Physics.  175(1):1-42, 1996 Jan.

Cuba G.  Paunov R.
A NOTE ON THE SYMPLECTIC STRUCTURE ON THE DRESSING GROUP IN THE SINH-GORDON MODEL
Physics Letters B.  381(1-3):255-261, 1996 Jul 18.

Czachor M.
LIE-NAMBU AND LIE-POISSON STRUCTURES IN LINEAR AND NONLINEAR QUANTUM MECHANICS
Acta Physica Polonica B.  27(10):2319-2325, 1996 Oct.

Ergenc T.  Karasozen B.
RUNGE-KUTTA COLLOCATION METHODS FOR RIGID BODY LIE-POISSON EQUATIONS
International Journal of Computer Mathematics.  62(1-2):63-71, 1996.

Reifler F.  Morris R.
INCLUSION OF GAUGE BOSONS IN THE TENSOR FORMULATION OF THE DIRAC THEORY
Journal of Mathematical Physics.  37(7):3630-3640, 1996 Jul.

Sevostyanov A.
THE CLASSICAL R MATRIX METHOD FOR THE NONLINEAR SIGMA MODEL
International Journal of Modern Physics A.  11(23):4241-4254, 1996 Sep 20.

Sobczyk J.
QUANTUM E(2) GROUPS AND LIE BIALGEBRA STRUCTURES
Journal of Physics A-Mathematical & General.  29(11):2887-2893, 1996 Jun 7.

Stern A.  Yakushin I.
LIE-POISSON DEFORMATION OF THE POINCARE ALGEBRA
Journal of Mathematical Physics.  37(4):2053-2070, 1996 Apr.


------------ 1995 -------------------

Bhaskara KH.  Leahy JV.  Rama K.
GELFAND-DORFMAN THEOREM AND EXACT COCYCLE POISSON STRUCTURES
International Journal of Theoretical Physics.  34(3):443-452, 1995 Mar.

Bogoyavlenskij, O I
Lie algebraic invariants of two compatible Poisson structures
Comptes rendus mathematiques de l'Academie des sciences = 
    Mathematical reports of the Academy of Science.
Volume 17, Number 4 pp. 129 , 1995

Carinena JF.  Ibort LA.  Marmo G.  Stern A.
THE FEYNMAN PROBLEM AND THE INVERSE PROBLEM FOR POISSON DYNAMICS [Review]
Physics Reports-Review Section of Physics Letters.  263(3):153-212, 1995 Dec.

Frolov SA.
GAUGE-INVARIANT HAMILTONIAN FORMULATION OF LATTICE YANG-MILLS THEORY AND THE HEISENBERG DOUBLE
Modern Physics Letters A.  10(34):2619-2631, 1995 Nov 10.

Figueroa-O'Farrill, J M; Stanciu, S
Poisson Lie Groups And The Miura Transformation
Modern physics letters A.
Volume 10, Number 36 pp. 27, 1995

Gurevich, D; Rubtsov, V
Quantization of Poisson Pencils and Generalized Lie Algebras
Theoretical and mathematical physics. 
Volume 103, Number 3 pp. 713, 1995

Kasperczuk S.
NORMAL FORM, LIE-POISSON STRUCTURE AND REDUCTION FOR THE HENON-HEILES SYSTEM
Celestial Mechanics & Dynamical Astronomy.  63(3-4):245-253, 1995.

Li S.  Qin MZ.
LIE-POISSON INTEGRATION FOR RIGID BODY DYNAMICS
Computers & Mathematics with Applications.  30(9):105-118, 1995 Nov.

Li ST.  Qin MZ.
A NOTE FOR LIE-POISSON HAMILTON-JACOBI EQUATION AND LIE-POISSON INTEGRATOR
Computers & Mathematics with Applications.  30(7):67-74, 1995 Oct.

Marmo, G.; Simoni, A.; Stern, A.
Poisson Lie Group Symmetries for the Isotropic Rotator
International journal of modern physics. A.
Volume 10, Number 1, P 99, 1995

Mrugala, Ryszard
Lie, Jacobi, Poisson and quasi-Poisson structures in Thermodynamics
Tensor.
Volume 56, Number 1 pp. 37, 1995

Ono, T.
A Riemannian geometrical description for Lie Poisson systems and its application to idealized magnetohydrodynamics
Journal of physics A: Mathematical and general.
Volume 28, Number 6  1737, 1995

Rama, K; Bhaskara, K H; Leahy, John V
Poisson Structures due to Lie Algebra Representations
International journal of theoretical physics.
Volume 34, Number 10 pp. 2031, 1995

Simoni A.  Stern A.  Yakushin I.
LORENTZ TRANSFORMATIONS AS LIE-POISSON SYMMETRIES
Journal of Mathematical Physics.  36(10):5588-5597, 1995 Oct.

Voronov, Th Th
On the Poisson Envelope of a Lie Algebra. "Noncommutative" Moment Space
Functional analysis and its applications.
Volume 29, Number 3, pp. 196, 1995



------------ 1994 and before --------------------

Alekseevsky, D.; Grabowski, J.; Marmo, G.; Michor, P. W.
Poisson structures on the cotangent bundle of a Lie group or a principle bundle and their reductions
Journal of mathematical physics.
Volume 35, Number 9, p 4909, 1994

Alekseev AY.  Malkin AZ.
SYMPLECTIC STRUCTURES ASSOCIATED TO LIE-POISSON GROUPS
Communications in Mathematical Physics.  162(1):147-173, 1994 Apr.

Beffa GM.
A TRANSVERSE STRUCTURE FOR THE LIE-POISSON BRACKET ON THE DUAL OF THE VIRASORO ALGEBRA
Pacific Journal of Mathematics.  163(1):43-72, 1994 Mar.

Beffa GM.
ON THE VIRASORO ALGEBRA AS REDUCED POISSON SUBMANIFOLD OF A KAC-MOODY ALGEBRA ON THE CIRCLE
Proceedings of the American Mathematical Society.  122(3):859-869, 1994 Nov.

Bo Yu Hou; Bo Yuan Hou; Li, Y.-W.; Wu, B.
The Poisson Lie structure of nonlinear O(N) -model by using the moving-frame method
Journal of physics A: Mathematical and general.
Volume 27, Number 21, p 7209, 1994

CariTHena, J. F.; Ibort, A.; Marmo, G.; Perelomov, A.
On the geometry of Lie algebras and Poisson tensors
Journal of physics A: Mathematical and general.
Volume 27, Number 22,  p 7425, 1994

Damiani, I.; De Concini, C.
Quantum Groups and Poisson Groups
Pitman research notes in mathematics series.
Number 311,  p1, 1994
ISSUE DESCR: Representations of Lie groups and quantum groups [Research notes in mathematics]

Maslanka P.
THE E(Q)(2) GROUP VIA DIRECT QUANTIZATION OF THE LIE-POISSON STRUCTURE AND ITS LIE ALGEBRA
Journal of Mathematical Physics.  35(4):1976-1983, 1994 Apr.

Prykarpatsky AK.  Samoilenko VH.  Andrushkiw RI.  Mitropolsky YO.  Prytula MM.
ALGEBRAIC STRUCTURE OF THE GRADIENT-HOLONOMIC ALGORITHM FOR LAX INTEGRABLE NONLINEAR DYNAMICAL SYSTEMS
Journal of Mathematical Physics.  35(4):1763-1777, 1994 Apr.

Reich S.
MOMENTUM CONSERVING SYMPLECTIC INTEGRATORS
Physica D.  76(4):375-383, 1994 Sep 15.

Reifler F.  Morris R.
FERMI QUANTIZATION OF TENSOR SYSTEMS
International Journal of Modern Physics A.  9(31):5507-5515, 1994 Dec 20.

Scovel C.  Weinstein A.
FINITE DIMENSIONAL LIE-POISSON APPROXIMATIONS TO VLASOV-POISSON EQUATIONS
Communications on Pure & Applied Mathematics.  47(5):683-709, 1994 May.

Semenov-Tian-Shansky, M. A.
Poisson Lie groups, quantum duality principle, and the quantum double
Contemporary mathematics.  (AMS)
Volume 175,  219, 1994
ISSUE DESCR: Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups

Soloviev OA.
LIE-POISSON STRUCTURE OF CONFORMAL NON-ABELIAN THIRRING MODELS
Modern Physics Letters A.  9(6):483-489, 1994 Feb 28.

Touma J.  Wisdom J.
LIE-POISSON INTEGRATORS FOR RIGID BODY DYNAMICS IN THE SOLAR SYSTEM
Astronomical Journal.  107(3):1189-1202, 1994 Mar.



===================================



Bordemann, M.; Forger, M.; Laartz, J.; Schaper, U.
The Lie-Poisson Structure of Integrable Classical Non-Linear Sigma Models.
Communications in mathematical physics.
Volume 152, Number 1, 167, 1993

Christiansen PL.  Jorgensen MF.  Kuznetsov VB.
ON INTEGRABLE SYSTEMS CLOSE TO THE TODA LATTICE
Letters in Mathematical Physics.  29(3):165-173, 1993 Nov.

Lizzi F.  Marmo G.  Sparano G.  Vitale P.
DYNAMICAL ASPECTS OF LIE-POISSON STRUCTURES
Modern Physics Letters A.  8(31):2973-2987, 1993 Oct 10.


Ginzburg, Viktor L.; Weinstein, Alan
Lie-Poisson structure on some Poisson Lie groups.
Journal of the American Mathematical Society /
Volume 5, Number 2, p 445, 1992



Liu, Z.-J.; Qian, M.
Generalized Yang-Baxter equations, Koszul operators and Poisson Lie groups.
Journal of differential geometry.
Volume 35, Number 2, p 399-414, 1992

Baez, John C.
R-Commutative Geometry and Quantization of Poisson Algebras.
Advances in mathematics.
Volume 95, Number 1, p 61, 1992


Ovsienko, V.; Roger, C.
Deformations of Poisson brackets and extensions of Lie algebras of contact vector fields.
Russian mathematical surveys = Usp mat nauk.
Volume 47, Number 6, pp 141-194, 1992


Holm, D.; Wolf, K. B.
Lie--Poisson description of Hamiltonian ray optics.
Physica D. Nonlinear phenomena.
Volume 51, Number 1-3, 189-199, 1991

Rieffel, Marc A.
Lie group convolution algebras as deformation quantizations of linear Poisson structures.
American journal of mathematics.
Volume 112, Number 4, 657, 1990

Top of this page