GEOMETRIC METHODS IN PHYSICS dynamical systems |
LIE-POISSON ------------ 1998 ------------------- Cendra H. Holm DD. Hoyle MJW. Marsden JE. THE MAXWELL-VLASOV EQUATIONS IN EULER-POINCARE FORM Journal of Mathematical Physics. 39(6):3138-3157, 1998 Jun. Holm DD. Marsden JE. Ratiu TS. THE EULER-POINCARE EQUATIONS AND SEMIDIRECT PRODUCTS WITH APPLICATIONS TO CONTINUUM THEORIES [Review] Advances in Mathematics. 137(1):1-81, 1998 Jul 15. Benarous M. ON THE POISSON STRUCTURE OF THE TIME-DEPENDENT MEAN-FIELD EQUATIONS FOR SYSTEMS OF BOSONS OUT OF EQUILIBRIUM Annals of Physics. 264(1):1-12, 1998 Mar 20. ------------ 1997 ------------------- Czachor M. NAMBU-TYPE GENERALIZATION OF THE DIRAC EQUATION Physics Letters A. 225(1-3):1-12, 1997 Jan 27. Frank J. Huang WZ. Leimkuhler B. GEOMETRIC INTEGRATORS FOR CLASSICAL SPIN SYSTEMS Journal of Computational Physics. 133(1):160-172, 1997 May 1. Jurco B. Schupp P. TWISTED QUANTUM LAX EQUATIONS International Journal of Modern Physics A. 12(32):5735-5752, 1997 Dec 30. Kosmann-Schwarzbach, Y. Lie Bialgebras, Poisson Lie Groups and Dressing Transformations Lecture notes in physics. Number 495, p 104, 1997 ISSUE DESCR: Integrability of Nonlinear Systems Kowalczyk E. LIE BIALGEBRA STRUCTURES ON TWO-DIMENSIONAL GALILEI ALGEBRA AND THEIR LIE-POISSON COUNTERPARTS Acta Physica Polonica B. 28(9):1893-1906, 1997 Sep. Lyakhovsky VD. Mirolubov AM. DEFORMED LIE-POISSON STRUCTURES FOR QUANTIZED GROUPS Czechoslovak Journal of Physics. 47(1):63-70, 1997 Jan. Lyakhovsky VD. Mirolyubov AM. CONTRACTIONS IN DEFORMED LIE-POISSON STRUCTURES International Journal of Modern Physics A. 12(1):225-230, 1997 Jan 10. Ono T. DYNAMICAL ORIGIN OF QUANTUM MECHANICS Physics Letters A. 230(5-6):253-260, 1997 Jun 23. Xu P. HYPER-LIE POISSON STRUCTURES Annales Scientifiques de l Ecole Normale Superieure. 30(3):279-302, 1997. ------------ 1996 ------------------- Arutyunov, G E Graded Poisson Lie Structures on Classical Complex Lie Groups. Communications in mathematical physics. Volume 177, Number 3, 1996 , pp. 673 Bloch A. Krishnaprasad PS. Marsden JE. Ratiu TS. THE EULER-POINCARE EQUATIONS AND DOUBLE BRACKET DISSIPATION Communications in Mathematical Physics. 175(1):1-42, 1996 Jan. Cuba G. Paunov R. A NOTE ON THE SYMPLECTIC STRUCTURE ON THE DRESSING GROUP IN THE SINH-GORDON MODEL Physics Letters B. 381(1-3):255-261, 1996 Jul 18. Czachor M. LIE-NAMBU AND LIE-POISSON STRUCTURES IN LINEAR AND NONLINEAR QUANTUM MECHANICS Acta Physica Polonica B. 27(10):2319-2325, 1996 Oct. Ergenc T. Karasozen B. RUNGE-KUTTA COLLOCATION METHODS FOR RIGID BODY LIE-POISSON EQUATIONS International Journal of Computer Mathematics. 62(1-2):63-71, 1996. Reifler F. Morris R. INCLUSION OF GAUGE BOSONS IN THE TENSOR FORMULATION OF THE DIRAC THEORY Journal of Mathematical Physics. 37(7):3630-3640, 1996 Jul. Sevostyanov A. THE CLASSICAL R MATRIX METHOD FOR THE NONLINEAR SIGMA MODEL International Journal of Modern Physics A. 11(23):4241-4254, 1996 Sep 20. Sobczyk J. QUANTUM E(2) GROUPS AND LIE BIALGEBRA STRUCTURES Journal of Physics A-Mathematical & General. 29(11):2887-2893, 1996 Jun 7. Stern A. Yakushin I. LIE-POISSON DEFORMATION OF THE POINCARE ALGEBRA Journal of Mathematical Physics. 37(4):2053-2070, 1996 Apr. ------------ 1995 ------------------- Bhaskara KH. Leahy JV. Rama K. GELFAND-DORFMAN THEOREM AND EXACT COCYCLE POISSON STRUCTURES International Journal of Theoretical Physics. 34(3):443-452, 1995 Mar. Bogoyavlenskij, O I Lie algebraic invariants of two compatible Poisson structures Comptes rendus mathematiques de l'Academie des sciences = Mathematical reports of the Academy of Science. Volume 17, Number 4 pp. 129 , 1995 Carinena JF. Ibort LA. Marmo G. Stern A. THE FEYNMAN PROBLEM AND THE INVERSE PROBLEM FOR POISSON DYNAMICS [Review] Physics Reports-Review Section of Physics Letters. 263(3):153-212, 1995 Dec. Frolov SA. GAUGE-INVARIANT HAMILTONIAN FORMULATION OF LATTICE YANG-MILLS THEORY AND THE HEISENBERG DOUBLE Modern Physics Letters A. 10(34):2619-2631, 1995 Nov 10. Figueroa-O'Farrill, J M; Stanciu, S Poisson Lie Groups And The Miura Transformation Modern physics letters A. Volume 10, Number 36 pp. 27, 1995 Gurevich, D; Rubtsov, V Quantization of Poisson Pencils and Generalized Lie Algebras Theoretical and mathematical physics. Volume 103, Number 3 pp. 713, 1995 Kasperczuk S. NORMAL FORM, LIE-POISSON STRUCTURE AND REDUCTION FOR THE HENON-HEILES SYSTEM Celestial Mechanics & Dynamical Astronomy. 63(3-4):245-253, 1995. Li S. Qin MZ. LIE-POISSON INTEGRATION FOR RIGID BODY DYNAMICS Computers & Mathematics with Applications. 30(9):105-118, 1995 Nov. Li ST. Qin MZ. A NOTE FOR LIE-POISSON HAMILTON-JACOBI EQUATION AND LIE-POISSON INTEGRATOR Computers & Mathematics with Applications. 30(7):67-74, 1995 Oct. Marmo, G.; Simoni, A.; Stern, A. Poisson Lie Group Symmetries for the Isotropic Rotator International journal of modern physics. A. Volume 10, Number 1, P 99, 1995 Mrugala, Ryszard Lie, Jacobi, Poisson and quasi-Poisson structures in Thermodynamics Tensor. Volume 56, Number 1 pp. 37, 1995 Ono, T. A Riemannian geometrical description for Lie Poisson systems and its application to idealized magnetohydrodynamics Journal of physics A: Mathematical and general. Volume 28, Number 6 1737, 1995 Rama, K; Bhaskara, K H; Leahy, John V Poisson Structures due to Lie Algebra Representations International journal of theoretical physics. Volume 34, Number 10 pp. 2031, 1995 Simoni A. Stern A. Yakushin I. LORENTZ TRANSFORMATIONS AS LIE-POISSON SYMMETRIES Journal of Mathematical Physics. 36(10):5588-5597, 1995 Oct. Voronov, Th Th On the Poisson Envelope of a Lie Algebra. "Noncommutative" Moment Space Functional analysis and its applications. Volume 29, Number 3, pp. 196, 1995 ------------ 1994 and before -------------------- Alekseevsky, D.; Grabowski, J.; Marmo, G.; Michor, P. W. Poisson structures on the cotangent bundle of a Lie group or a principle bundle and their reductions Journal of mathematical physics. Volume 35, Number 9, p 4909, 1994 Alekseev AY. Malkin AZ. SYMPLECTIC STRUCTURES ASSOCIATED TO LIE-POISSON GROUPS Communications in Mathematical Physics. 162(1):147-173, 1994 Apr. Beffa GM. A TRANSVERSE STRUCTURE FOR THE LIE-POISSON BRACKET ON THE DUAL OF THE VIRASORO ALGEBRA Pacific Journal of Mathematics. 163(1):43-72, 1994 Mar. Beffa GM. ON THE VIRASORO ALGEBRA AS REDUCED POISSON SUBMANIFOLD OF A KAC-MOODY ALGEBRA ON THE CIRCLE Proceedings of the American Mathematical Society. 122(3):859-869, 1994 Nov. Bo Yu Hou; Bo Yuan Hou; Li, Y.-W.; Wu, B. The Poisson Lie structure of nonlinear O(N) -model by using the moving-frame method Journal of physics A: Mathematical and general. Volume 27, Number 21, p 7209, 1994 CariTHena, J. F.; Ibort, A.; Marmo, G.; Perelomov, A. On the geometry of Lie algebras and Poisson tensors Journal of physics A: Mathematical and general. Volume 27, Number 22, p 7425, 1994 Damiani, I.; De Concini, C. Quantum Groups and Poisson Groups Pitman research notes in mathematics series. Number 311, p1, 1994 ISSUE DESCR: Representations of Lie groups and quantum groups [Research notes in mathematics] Maslanka P. THE E(Q)(2) GROUP VIA DIRECT QUANTIZATION OF THE LIE-POISSON STRUCTURE AND ITS LIE ALGEBRA Journal of Mathematical Physics. 35(4):1976-1983, 1994 Apr. Prykarpatsky AK. Samoilenko VH. Andrushkiw RI. Mitropolsky YO. Prytula MM. ALGEBRAIC STRUCTURE OF THE GRADIENT-HOLONOMIC ALGORITHM FOR LAX INTEGRABLE NONLINEAR DYNAMICAL SYSTEMS Journal of Mathematical Physics. 35(4):1763-1777, 1994 Apr. Reich S. MOMENTUM CONSERVING SYMPLECTIC INTEGRATORS Physica D. 76(4):375-383, 1994 Sep 15. Reifler F. Morris R. FERMI QUANTIZATION OF TENSOR SYSTEMS International Journal of Modern Physics A. 9(31):5507-5515, 1994 Dec 20. Scovel C. Weinstein A. FINITE DIMENSIONAL LIE-POISSON APPROXIMATIONS TO VLASOV-POISSON EQUATIONS Communications on Pure & Applied Mathematics. 47(5):683-709, 1994 May. Semenov-Tian-Shansky, M. A. Poisson Lie groups, quantum duality principle, and the quantum double Contemporary mathematics. (AMS) Volume 175, 219, 1994 ISSUE DESCR: Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups Soloviev OA. LIE-POISSON STRUCTURE OF CONFORMAL NON-ABELIAN THIRRING MODELS Modern Physics Letters A. 9(6):483-489, 1994 Feb 28. Touma J. Wisdom J. LIE-POISSON INTEGRATORS FOR RIGID BODY DYNAMICS IN THE SOLAR SYSTEM Astronomical Journal. 107(3):1189-1202, 1994 Mar. =================================== Bordemann, M.; Forger, M.; Laartz, J.; Schaper, U. The Lie-Poisson Structure of Integrable Classical Non-Linear Sigma Models. Communications in mathematical physics. Volume 152, Number 1, 167, 1993 Christiansen PL. Jorgensen MF. Kuznetsov VB. ON INTEGRABLE SYSTEMS CLOSE TO THE TODA LATTICE Letters in Mathematical Physics. 29(3):165-173, 1993 Nov. Lizzi F. Marmo G. Sparano G. Vitale P. DYNAMICAL ASPECTS OF LIE-POISSON STRUCTURES Modern Physics Letters A. 8(31):2973-2987, 1993 Oct 10. Ginzburg, Viktor L.; Weinstein, Alan Lie-Poisson structure on some Poisson Lie groups. Journal of the American Mathematical Society / Volume 5, Number 2, p 445, 1992 Liu, Z.-J.; Qian, M. Generalized Yang-Baxter equations, Koszul operators and Poisson Lie groups. Journal of differential geometry. Volume 35, Number 2, p 399-414, 1992 Baez, John C. R-Commutative Geometry and Quantization of Poisson Algebras. Advances in mathematics. Volume 95, Number 1, p 61, 1992 Ovsienko, V.; Roger, C. Deformations of Poisson brackets and extensions of Lie algebras of contact vector fields. Russian mathematical surveys = Usp mat nauk. Volume 47, Number 6, pp 141-194, 1992 Holm, D.; Wolf, K. B. Lie--Poisson description of Hamiltonian ray optics. Physica D. Nonlinear phenomena. Volume 51, Number 1-3, 189-199, 1991 Rieffel, Marc A. Lie group convolution algebras as deformation quantizations of linear Poisson structures. American journal of mathematics. Volume 112, Number 4, 657, 1990 Top of this page