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Hausdorff Measure - General Setting

Let X be a metric space, with d denoting its metric. If U ⊆ X is
nonempty, then we define the diameter of U by

|U| = sup{d(x , y) : x , y ∈ U}.

Suppose E ⊆ X is a set and δ > 0 is a real number. If {Ui}i∈ω is a
countable collection of nonempty sets, we say that {Ui}i∈ω is a δ-cover
of E if:

1 E ⊆
⋃

i∈ω Ui

2 0 ≤ |Ui | ≤ δ for all i ∈ ω
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Hausdorff Measure - General Setting

Suppose E ⊆ X is a set and s is a nonnegative number. For any δ > 0,
we define the s-dimensional Hausdorff δ-measure of E by

Hs
δ(E ) = inf

{∑
i∈ω

|Ui |s : {Ui}i∈ω is a δ-cover of E

}
.

We then define the (overall) s-dimensional Hausdorff measure of E by

Hs(E ) = lim
δ→0

Hs
δ(E ).

Note that the quantity Hs
δ(E ) is monotonically increasing in δ, so the

above limit always exists (although it may be infinite).
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Hausdorff Measure - Cantor Space

Much of the study of Hausdorff measure has been over Euclidean space,
but in this talk we will focus mainly on Cantor Space, or 2ω.

Due to the topological properties of this space, we can make some
simplifications in the definition of Hs

δ(E ) :

1 It suffices to consider δ-covers comprised of clopen cylinders, rather
than arbitrary sets Ui (follows from how the metric on 2ω is defined).

2 If E is closed, it suffices to consider finite covers by cylinders, rather
than countable (follows from 2ω being compact).

Note: This means that for closed sets, the infimum only involves a
countable search.
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Besicovitch’s Theorem

Unlike Lebesgue measure, the Hausdorff measure of a set may be infinite.
Many results involving the local structure of fractal sets only apply to
those with positive, finite Hausdorff measure.

The following theorem from Besicovitch gives us a means of “reducing”
to this nicer case.

Theorem 2.1 (Besicovitch, 1952)

Let F be a closed subset of Euclidean space with Hs(F ) = ∞. Then for
any positive number d, there exists a compact set E ⊆ F with
Hs(E ) = d .

Later the same year, this result was extended by Davies to the case when
F is analytic (and thus includes all Borel sets).
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Complexity of Besicovitch’s Proof

If we want to study the “complexity” of Besicovitch’s argument, we
might ask:

1 What weak subsystems of second-order arithmetic can this theorem
be proven in? (RCA0,ACA0, etc.) Can we obtain a reversal to prove
that such a subsystem is optimal?

2 How complex is the witnessing subset F compared to E? For
example, if E is Π0

1 in some oracle X , how many jumps of X are
necessary to compute F?
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Complexity of Besicovitch’s Proof

Examining the structure of the construction, we see that the witnessing
set F is defined as

⋂
k∈ω Fk , where E = F0 ⊇ F1 ⊇ F2 ⊇ . . . are defined

inductively.

This suggests that to compute F , we need to be able to compute
each of the Fi uniformly

To obtain Fk+1 from Fk , we need to check its s-dimensional Hausdorff
δ-measure, as well as potentially construct a subset with a specific
δ-measure

These operations are not computable from Fk , since they require
checking infinitely many potential δ-covers

This suggests that each Fk might need an additional jump to
compute, meaning our final set F would require infinitely many
jumps of our original E - doesn’t bode well for ACA0!
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Baire Category Approach

To simplify the construction, we can reframe the argument in terms of
the Baire Category Theorem, a famously “simple” result from a reverse
mathematics perspective.

First, recall two of the standard “Big 5” axiom systems of second order
arithmetic:

RCA0 : basic axioms of Peano arithmetic, plus Σ0
1-induction and

∆0
1-comprehension

ACA0: all axioms of RCA0, plus arithmetic comprehension
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Baire Category - Standard Version

To formalize Baire Category in second-order arithmetic, we need a way to
code open sets in Cantor space. We do this by associating an open set
U ⊆ 2ω with a subset V ⊆ 2<ω, such that U is the union of all cylinders
corresponding to strings in V .
(Note that V can be coded as a second-order object.)

With that coding, consider the following formulation of Baire Category:

Theorem 3.1 (Baire Category Standard)

Let {Un}n∈ω be a sequence of dense open sets in 2ω, with a respective
sequence of open codes {Vn}n∈ω. Then the set

⋂
n∈ω Un is dense in 2<ω.
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Baire Category - Standard Version

Theorem 3.2

Baire Category Standard is provable in RCA0.

Proof (Informal):

Given an arbitrary τ ∈ 2<ω, construct a sequence
τ ⊊ σ0 ⊊ σ1 ⊊ σ2 ⊊ . . . inductively

With σn−1 defined, enumerate through its proper extensions until we
find a string with a prefix in Vn - this must happen eventually since
each Un is dense

Define X ∈ 2ω as the limit of the sequence {σn}n∈ω

Remark: Formally, this argument uses the primitive recursion and
minimization principles provable in RCA0.
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Baire Category for Closed Sets

In classical analysis, the Baire Category Theorem can be applied to any
complete metric space. This includes subspaces of complete metric
spaces induced by closed sets. This motivates the following.

Definition 3.1

Let F ⊆ 2ω be a closed set. We define a set U to be dense in F if for
every open cylinder set N ⊆ 2ω with N ∩ F ̸= ∅, there exists an element
X ∈ F ∩ N ∩ U.

Theorem 3.3 (Baire Category Theorem - Closed Sets (BCTC))

Let F ⊆ 2ω be a nonempty closed set, and let {Un}n∈ω be a sequence of
open sets in 2ω, each of which is dense in F . Then

⋂
n∈ω Un is dense in

F .
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Baire Category Theorem for Closed Sets - Proof

To formalize BCTC in second-order arithmetic, we can code the dense
open sets as before, but now we must also code the closed set F as a
tree T ⊆ 2<ω:

X ∈ F ⇐⇒ ∀n X ↾n ∈ T .

We could try to adapt the proof of the standard version, only restricting
our searches to strings σ ∈ T .

BUT at some point our inductive construction could place us on a “dead
end,” i.e. a string σ ∈ T with no infinite extension in [T ] = F . And we
can’t determine if a string has an infinite extension in a c.e. way.
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Baire Category Theorem for Closed Sets - Proof

Fortunately, this issue is solved if we have arithmetic comprehension.

Theorem 3.4 (G. , 2025)

BCTC is provable in ACA0.

Proof:
Given the tree T coding the closed set F , use arithmetic comprehension
to define:

T̃ = {σ ∈ T : ∀n ≥ |σ|,∃τ ⊇ σ, |τ | = n ∧ τ ∈ T}.

Observe that:

[T̃ ] = [T ] = F

For σ ∈ T : σ ∈ T̃ ⇐⇒ ∃X ∈ F , σ ⊆ X ⇐⇒ Nσ ∩ F ̸= ∅
Now we can mimic the proof of the standard Baire Category theorem,
but where we only consider the strings in T̃ .
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More on BCTC

Do we actually need ACA0 to prove BCTC? As it turns out, yes:

Theorem 3.5 (G., 2025)

Over RCA0, BCTC is equivalent to ACA0.

Proof Idea: Given an arbitrary function f : ω → ω, define a closed set F
and a sequence of dense open sets {Un}n∈ω such that any
X ∈ F ∩

⋂
n∈ω Un can compute the range of f .

Nonetheless, note that the proof of BCTC used relatively little of ACA0’s
power; only one instance of Π0

1 comprehension using the tree T .

In other words, given an oracle Z for computing T , we can compute a
witnessing element X ∈ F ∩

⋂
n∈ω Un from Z ′.
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Topology on Closed Subsets

To use BCTC to prove Besicovitch’s Theorem, we need to define a
topology on the space of closed subsets of our given set F ⊆ 2ω.

So consider TF ⊆ 2ω as a tree representation for F .

Identify ω with 2<ω via the standard length-lexicographic enumeration.
Then define a new tree TP ⊆ 2<ω, computable from TF , by setting
ν ∈ TP iff:

1 For all σ < |ν| with ν(σ) = 1, we have ν(τ) = 1 for all τ ⊆ ν

2 For all σ < |ν| with ν(σ) = 1, we have σ ∈ TF .

Let PF denote the set of infinite paths through TP .
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Topology on Closed Subsets

Consider Z ∈ PF , and associate a subset TZ ⊆ 2<ω by taking all σ with
Z (σ) = 1. Then the conditions for TZ guarantee that:

1 TZ is a tree

2 TZ is a subtree of TF

Therefore, the closed set EZ ⊆ 2ω corresponding to TZ will be a subset
of F .

We can now work with the usual topology on 2ω, but restricted to the
elements in the closed set PF .
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Coding Hausdorff Measure

We now want to associate subsets of F having particular Hausdorff
δ-measures with certain open and closed subsets of PF . Assume for the
rest of the talk that s ≥ 0 is fixed.

Suppose n ∈ ω and d > 0. Define

Sd
n = {Z ∈ PF : Hs

2−n(EZ ) ≥ d},

where EZ ⊆ F is the closed set associated to Z ∈ PF .
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Coding Hausdorff Measure

Lemma 4.1

The set Sd
n is closed in 2ω, and the corresponding tree is computable in

TF , s, and d.

Proof Sketch:

By definition, we have Hs
2−n(EZ ) ≥ d if and only if∑

|Ni |s ≥ d

for all 2−n-covers of EZ by cylinders.

By compactness, we only need to verify this bound for finite covers,
so we only have a countable collection of covers to check.
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Coding Hausdorff Measure

For any cover {Ni} of EZ , we will determine that it is valid using
only finitely many bits of the code Z , since eventually all strings in
TZ of a fixed length will be covered by some cylinder Ni

We can use this idea to define a tree coding Sd
n : take all ν ∈ TP

such that for all 2−n-covers {Ni} which are valid for the tree
“approximated” by ν, we have∑

|Ni |s ≥ d .

Remark: This also means that the complement Ud
n = 2ω \ Sd

n is open
and is generated by the strings NOT in the above tree.
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Baire Category Outline

Theorem 5.1 (G., 2025)

Over RCA0, Besicovitch’s Theorem is provable from BCTC.

Recall that we start with a set F ⊆ 2ω with Hs(F ) = ∞, and we want to
find a closed subset E ⊆ F satisfying Hs(E ) = d . The high-level
overview:

1 Choose n0 ∈ ω large enough that Hs
2−n0

(F ) ≥ d ; then the

corresponding closed set Sd
n0 will be nonempty

2 Prove that each open set Udn
n is dense in Sd

n0 , where (dn) is a strictly
decreasing sequence converging downward to d

3 Use BCTC to find an element Z ∈ Sd
n0 ∩

⋂
n∈ω Udn

n
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Baire Category Outline

Let’s check: does the closed set EZ from Step 3 satisfy Hs(EZ ) = d?

First, Z ∈ Sd
n0 =⇒ Hs

2−n0
(EZ ) ≥ d =⇒ Hs(EZ ) ≥ d .

Then for any ϵ > 0, dn < d + ϵ for all n sufficiently large:

Z ∈ Udn
n =⇒ Hs

2−n(EZ ) < dn < d + ϵ

Since this applies to all sufficiently large n: Hs(EZ ) ≤ d + ϵ

Since ϵ was arbitrary: Hs(EZ ) ≤ d .
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Density of the open sets Udn
n

Proving the density of the relevant sets is the trickiest step. We wish to
show the following:

Lemma 5.2

Let 0 < d < c, and let n0 ∈ ω be such that Sd
n0 is nonempty. Then for all

n ∈ ω, U c
n is dense in Sd

n0 .

We can prove this result by induction on n. Note that it suffices to start
with n0 as the base case, since any element Z ∈ Sd

n0 ∩ U c
n0 is also in U c

k

for k < n0.
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Density Argument - Base Case

Claim: U c
n0 is dense in Sd

n0 .

Proof (Informal): Fairly straightforward, if technical. In this case, we are
only working with a single Hausdorff δ-measure, i.e. Hs

2−n0
.

Given a code Z ∈ Sd
n0 , we can just start “shaving off” sufficiently small

cylinder sets until the measure of the remaining set EY satisfies
d ≤ Hs

2−n0
(EY ) < c , giving a code Y ∈ Sd

n0 ∩ U c
n0 .

Remark: The code Y is computable from Z , since the changes made
can be specified with finite instructions. However, the computability is
not uniform in c .
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Density Argument - Inductive Step

Assume now that U c
n is dense in Sd

n0 for some n ≥ n0.

This means that given any Z ∈ Sd
n0 and τ ⊆ Z , we can find Y ⊇ τ with

Y ∈ Sd
n0 ∩ U c

n .

In particular, there is some 2−n-cover {Ni} of EY with∑
i

|Ni |s < c .

Note that if all cylinders in the cover have diameter < 2−(n+1), then that
would witness Hs

2−(n+1)(EY ) < c putting Y ∈ Uc
n+1, and we’d be done.
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Thin Elements

If that isn’t true for this cover, then the next best case would be to know
that any cylinders of diameter 2−n were unnecessary.

That is, they could be replaced with cylinders of smaller diameter, still
covering the appropriate portion of EY , but without significantly
increasing the overall cover’s weight.

Capturing this idea, define Z ∈ PF to be n-thin if for all σ ∈ 2n :

Hs
2−(n+1)(EZ ∩ Nσ) ≤ 2−sn.

Let Tn denote the n-thin elements of PF .
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Finding Thin Elements

Claim: If Z ∈ Uc
n ∩ Tn, then Z ∈ Uc

n+1

Proof: Straightforward - essentially outlined above.

While the element Y from our inductive assumption may not be n-thin
itself, it turns out that n-thin elements are sufficiently numerous within
Sd
n0 :

Lemma 5.3

If Sd
n0 is nonempty, then for all n ≥ n0 we have Tn dense in Sd

n0 .
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Density of Thin Elements - Proof Sketch

If we have an element Z ∈ Sd
n0 which is NOT n-thin, we want to trim it

down “as little as possible.”

For each cylinder N of diameter 2−n:

If Hs
2−(n+1)(EZ ∩ N) ≤ 2−ns , do nothing

Otherwise, replace EZ ∩ N with a subset E ′ ⊆ EZ ∩ N satisfying
Hs

2−(n+1)(E
′) = 2−ns

(Note: This step uses another application of BCTC!)

One can show that with these adjustments, the new set is n-thin (by
definition) but is still an element of Sd

n0 .
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Finishing the Proof

Now to complete the inductive step:

1 Let Z ∈ Sd
n0 and let τ ⊆ Z . By the inductive hypothesis, there is

some Y ⊇ τ with Y ∈ Sd
n0 ∩ U c

n .

2 Let τ ′ ⊆ Y be sufficiently long that τ ′ ⊇ τ and Nτ ′ ⊆ Uc
n (possible

since U c
n is open)

3 Choose an element W ⊇ τ ′ with W ∈ Sd
n0 ∩ Tn. Then since

W ∈ Uc
n , it follows that W ∈ Uc

n+1 as desired.
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What’s the Difference?

Ultimately, this argument uses a lot of Besicovitch’s original ideas. Each
of the closed sets in his inductive construction is essentially obtained by
trimming down the previous set to be appropriately “thin”.

However, without showing that the “thin” elements are dense, one needs
to keep track of each sequence in the construction and apply a new jump
each time.

With the Baire Category argument, one only needs to apply a jump once:
to determine which strings in the tree for Sd

n0 have infinite extensions.
After that point, the construction can proceed in a computable manner.
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Refining the Strength

We’ve now shown that Besicovitch’s Theorem is provable from BCTC,
and that BCTC is equivalent to ACA0. But is Besicovitch’s Theorem
itself equivalent to ACA0/BCTC?

From Kolmogorov Complexity considerations, we know that
Besicovitch’s Theorem is not provable in RCA0

Also, an analog to Besicovitch’s Theorem for Lebesgue measure is
sufficient to prove WWKL0

Current conjecture: uncertain - if a proof of ACA0 from BCTC
exists, it appears nontrivial
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