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Notions of categoricity



Definitions

Definition

A computable structure A is computably categorical if for

every computable copy B of A, there exists a computable

isomorphism between A and B.

Definition

A computable structure A is relatively computably categorical

if for every copy (not necessarily computable) B of A, there is a

B-computable isomorphism between A and B.

These notions are not equivalent in general. Gončarov [Gon77]

built the first example of a structure which was computably

categorical but not relatively computably categorical.
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Relativizing categoricity

The following relativization of categoricity appears in [DHTM21].

Definition

For a Turing degree d, a computable structure A is computably

categorical relative to d if for every d-computable copy B of A,

there is a d-computable isomorphism between A and B.

This is distinct from being d-computably categorical.

Definition

A computable structure A is d-computably categorical if for all

computable copies B of A, there exists a d-computable

isomorphism between A and B.
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Relativizing categoricity

Definition

For a Turing degree d, a computable structure A is computably

categorical relative to d if for every d-computable copy B of A,

there is a d-computable isomorphism between A and B.

It is also distinct from being relatively �0
↵-categorical.

Definition

A computable structure A is relatively �0
↵-categorical if for any

copy B of A, there is a �0
↵(B)-computable isomorphism between

A and B.
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Categoricity relative to a degree



Background

How does computable categoricity relative to a degree behave?

Fact

A computable structure A is relatively computably categorical

if for all degrees d, A is computably categorical relative to d.

We first begin with the following result.

Fact (Downey, Harrison-Trainor, Melnikov [DHTM21])

If A is a computable structure and it is computably categorical

relative to some degree d � 000, then A has a 000-computable ⌃0
1

Scott family. In particular, A is computably categorical relative

to all d � 000.
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The cone above 000

We sketch the proof of this fact. We first need the following

results.

Theorem (Ash, Knight, Manasse, and Slaman [Ash+89];

Chisholm [Chi90])

A structure is relatively computably categorical if and only if it

has a formally ⌃1 Scott family.

Theorem (Gončarov [Gon80])

If a structure is computably categorical and its 89 theory is

decidable, then it is relatively computably categorical.

We’ll use a relativized version of Gončarov’s theorem in the proof

sketch.
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The cone above 000: proof sketch

Proof sketch.

(1) Suppose A is computably categorical relative to a degree

d � 000. Since A is computable, its 89 diagram is computable

from 000 and hence from d.

(2) By the relativized version of Gončarov’s result, A has a

formally ⌃1 Scott family c.e. in d.

(3) We can use 000 to enumerate this Scott family of 9-formulas,

and so this is a formally ⌃1 Scott family relative to 000.

Using this Scott family, we can computably build isomorphisms,

and so for every d � 000, A is computably categorical relative to d.

This fact implies that for any computable structure A, either it is

computably categorical relative to all degrees above 000 or to no

degree above 000.
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Below 00

In the c.e. degrees, being computably categorical relative to a

degree is not monotonic.

Theorem (Downey, Harrison-Trainor, Melnikov [DHTM21])

There is a computable structure A and c.e. degrees

0 = d0 <T e0 <T d1 <T e1 <T . . . such that

(1) A is computably categorical relative to di for each i ,

(2) A is not computably categorical relative to ei for each i ,

(3) A is computably categorical relative to 00.

The structure they constructed to witness this was a directed

graph.
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Generalizing to partial orders of c.e. degrees

We generalize this result to partial orders of c.e. degrees.

Theorem (V. [Vil24])

Let P = (P ,) be a computable partially ordered set and let

P = P0 t P1 be a computable partition. Then, there exists a

computable directed graph G and an embedding h of P into the

c.e. degrees where

(1) G is computably categorical;

(2) G is computably categorical relative to each degree in h(P0);

and

(3) G is not computably categorical relative to each degree in

h(P1).
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Extensions of current work



Future directions: embedding a lattice

The techniques utilized in proving the poset result can also be

combined with the usual techniques to construct minimal pairs.

Theorem (V. [Vil24])

There exists a computable computably categorical directed graph

G and c.e. sets X0 and X1 such that

(1) X0 and X1 form a minimal pair,

(2) G is not computably categorical relative to X0 and to X1, and

(3) G is computably categorical relative to X0 � X1.

Question

Can you embed bigger distributive lattices into the c.e. degrees in

a manner similar to the poset result?

14



Future directions: embedding a lattice

The techniques utilized in proving the poset result can also be

combined with the usual techniques to construct minimal pairs.

Theorem (V. [Vil24])

There exists a computable computably categorical directed graph

G and c.e. sets X0 and X1 such that

(1) X0 and X1 form a minimal pair,

(2) G is not computably categorical relative to X0 and to X1, and

(3) G is computably categorical relative to X0 � X1.

Question

Can you embed bigger distributive lattices into the c.e. degrees in

a manner similar to the poset result?

14



Future directions: in the generic degrees

Definition

A degree d is low for isomorphism if for every pair of

computable structures A and B, A ⇠=d B if and only if A ⇠=�0
1
B.

Theorem (Franklin, Solomon [FS14])

Every 2-generic degree is low for isomorphism.

This means that there cannot be a computable structure A which

is not computably categorical but is computably categorical

relative to d for a 2-generic degree d.

Theorem

There exists a (properly) 1-generic G such that there is a

computable directed graph A where A is not computably

categorical but is computably categorical relative to G .
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Future directions: identifying pathological behavior in classes
of structures

Question

For structures other than directed graphs, can you produce an

example which witnesses the pathological behavior in the poset

result?

There are some results in the literature that give a negative result

for certain classes of structures already.

Theorem (Bazhenov [Baz14])

For every degree d < 00, a computable Boolean algebra is

d-computably categorical if and only if it is computably

categorical.
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Future directions: identifying pathological behavior in classes
of structures

Corollary (from results in [Hir+02] and [Mil+18])

For the following classes of structures, there exists a computable

example in each class which witnesses the behavior in the poset

result:

(1) symmetric, irreflexive graphs; partial orderings; lattices; rings

with zero-divisors; integral domains of arbitrary characteristic;

commutative semigroups; and 2-step nilpotent groups (by

Theorem 1.22 of [Hir+02])

(2) countable fields (by Theorem 1.8 of [Mil+18])

Currently, the full picture is yet to be determined for some classes

of structures, such as linear orderings.
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Proof sketch of the poset result



Notation

For p 2 P , we build uniformly c.e. sets Ap.

Definition

For p 2 P , we define the c.e. set

Dp =
M

qp

Aq.

Our embedding will be the map h(p) = Dp.

We also have the following notation for convenience.

Definition

Dp :=
M

q 6=p

Aq.
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Notation

We use the following notation for graphs.

Definition

• Me is the eth (partial) computable graph with domain !

where E (x , y) () �e(x , y) = 1 and

¬E (x , y) () �e(x , y) = 0.

• MDp

i is the ith (partial) Dp-computable graph with domain !

where E (x , y) () �
Dp

i (x , y) = 1 and

¬E (x , y) () �
Dp

i (x , y) = 0.
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Requirements

We have the following requirements:

• N
p
e : �

Dp
e 6= Ap,

• Se : if G ⇠= Me , then there exists a computable isomorphism

fe : G ! Me ,

• for p 2 P0, T
p
i : if G ⇠= MDp

i , then there exists a

Dp-computable isomorphism g
Dp

i : G ! MDp

i , and

• for q 2 P1, R
q
e : �

Dq
e : G ! Bq is not an isomorphism where

Bq is a Dq-computable copy of G we build.

The N
p
e requirements ensure that h is an embedding of P into the

c.e. degrees. The Se requirements ensure that G is computably

categorical. The T
p
i requirements ensure that G is computably

categorical relative to all degrees in h(P0). The R
q
e requirements

ensure that G is not computably categorical relative to any degree

in h(P1).
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i , then there exists a

Dp-computable isomorphism g
Dp

i : G ! MDp

i , and

• for q 2 P1, R
q
e : �

Dq
e : G ! Bq is not an isomorphism where

Bq is a Dq-computable copy of G we build.

The N
p
e requirements ensure that h is an embedding of P into the

c.e. degrees. The Se requirements ensure that G is computably

categorical. The T
p
i requirements ensure that G is computably

categorical relative to all degrees in h(P0). The R
q
e requirements

ensure that G is not computably categorical relative to any degree

in h(P1). 20



Building G in stages

We build the computable directed graph G in stages.

At stage s = 0, we set the domain of G to be empty.

At stage s > 0, we add two new connected components by adding

a2s and a2s+1 as root nodes. We attach 2-loop to each node.

Then, we attach a (5s + 1)-loop to a2s and a (5s + 2)-loop to

a2s+1.

Definition

The root node a2s in our graph G with its loops is the 2sth

connected component or just the 2sth component of G.
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Configuration of loops in G
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Basic strategies: Np
e

This is our basic strategy to satisfy all Np
e for p 2 P .

Let s be the current stage of the construction and let ↵ be an

N
p
e -strategy.

1. If ↵ is first eligible to act at stage s, it defines its witness x↵
to be a large unused number.

2. Check if �
Dp
e (x↵)[s] #= 0 and keep x↵ out of Ap. If not, ↵

takes no action at stage s. If so, ↵ enumerates x↵ into Ap and

restrains Ap � (use(�Dp
e (x↵)) + 1).
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Basic strategies: Se

This is our basic strategy to satisfy all Se requirements to make G
computably categorical.

Let s be the current stage of the construction and let ↵ be an

Se-strategy.

1. If ↵ is first eligible to act at stage s, it sets its parameter

n↵ = 0. It looks for copies in Me [s] of the 2n↵th and

(2n↵ + 1)st components of G[s]. It defines f↵[s] to be the

empty map.

2. If n↵ is defined and f↵[s � 1] is defined for all m < n↵, ↵ looks

for copies of the 2n↵th and (2n↵ + 1)st components of G[s].
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Basic strategies: Se

3. If no copies of the 2n↵th and (2n↵ + 1)st components are

found, ↵ takes no additional action at stage s, retains the

value of n↵, and sets f↵[s] = f↵[s � 1].

If copies are found, ↵

extends f↵[s � 1] to f↵[s] by matching the components in G[s]
to the copies found in Me [s] and increments n↵ by 1.
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Basic strategies: T p
i

Let p 2 P0. Our basic strategy to satisfy all T p
i requirements to

make G computably categorical relative to Dp is similar to our

Se-strategy. Let ↵ be a T
p
i -strategy.

For each n, we try to find copies of the 2nth and (2n + 1)st

components of G in MDp

i . But now because Dp is a c.e. set, loops

in MDp

i or embeddings using a finite part of Dp as an oracle be

injured.
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Basic strategies: T p
i

When ↵ is next eligible to act at stage s, it will check if

Dp[t] 6= Dp[s] where t is the previous ↵-stage.

If Dp[t] 6= Dp[s], then ↵ will update its parameter n↵ accordingly

depending on what type of injury occurred. Otherwise, it will

proceed to try and match the 2n↵th and (2n↵ + 1)st components

of G for the n↵ parameter it had at the beginning of stage s.
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Basic strategies: Rq
e

Finally, for q 2 P1, we do the following to satisfy all Rq
e

requirements to make G not computably categorical relative to Dq.

We will build a Dq-computable graph Bq which is isomorphic to G
in stages, similarly to how we built G. At stage s = 0, let Bq = ;.
At stage s > 0, add two new root nodes bq2s and b

q
2s+1 and attach

to each one a 2-loop. Attach a (5s + 1)-loop to b
q
2s and a

(5s + 2)-loop to b
q
2s+1.
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Basic strategies: Rq
e

This is our diagonalization strategy to satisfy all Rq
e .

Let s be the current stage of the construction and let ↵ be an

R
q
e -strategy.

1. If ↵ is first eligible to act at stage s, it defines its parameter

n↵ to be a large unused number.

2. ↵ checks if �
Dq
e [s] maps the 2n↵th and (2n↵ + 1)st

components of G[s] to the corresponding copies in Bq[s]. If

not, ↵ takes no further action. If ↵ sees such a computation,

it defines m↵ to be the max of the uses of these computations

and restrains Dq � hm↵, qi.
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Basic strategies: Rq
e

3. ↵ attaches a (5n+ 3)-loop to a2n and b
q
2n and a (5n+ 4)-loop

to a2n+1 and b
q
2n+1.

Let v↵ be the use associated with these

loops appearing in Bq. Note that v↵ > m↵.

4. ↵ now issues a challenge to all higher priority requirements

which are Se and T
p
i : they must now extend their

embeddings, if possible, to include these new loops.
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Basic strategies: Rq
e

5. If all higher Se and T
p
i requirements can meet this challenge

and ↵ becomes eligible to act again at a later stage, it

enumerates v↵ into Aq. This makes the (5n + 3)- and

(5n + 4)-loops in Bq disappear.
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Basic strategies: Rq
e

6. ↵ reattaches a (5n + 3)-loop to b
q
2n+1 and a (5n + 4)-loop to

b
q
2n. It also attaches a (5n + 1)-loop to a2n+1 and to b

q
2n+1,

and a (5n + 2)-loop to a2n and to b
q
2n.

Our final configuration of loops in Bq is now:
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Interactions between strategies

There are several interactions and conflicts to keep note of in the

construction.

Interaction 1

The R
q
e -strategy wants to diagonalize while the Se and

T
p
i -strategies want to build embeddings: this was resolved by

having R
q
e “wait” for higher priority Se and T

p
i requirements and

the homogenizing part of step 6 in the R
q
e -strategy.

Interaction 2

The N
p
e -strategy must enumerate numbers into Ap to

achieve independence of degrees: this is resolved on a tree of

strategies and by letting T
p
i check for any changes in Dp up to a

finite part each stage.
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Interactions between strategies

The last important interaction comes from the poset ordering on P .

Interaction 3

An R
q
e -strategy � and a T

p
i -strategy ↵ when q < p in P and

T
p
i is of higher priority than R

q
e : the T

p
i -strategy needs an

additional step for when it is challenged to enumerate any uses

associated to the 2n�th and (2n� + 1)st components of G into

Ap. This lets us lift uses for T
p
i so it can succeed.
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Thanks

Thank you for your attention!

I’d be happy to answer any questions.
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