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Martin’s Conjecture

Martin’s Conjecture (informal version)

Every “natural” function in the Turing degrees is either constant,
the identity or an iterate of the Turing jump (almost everywhere).
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What does “natural” mean?

Natural functions in the Turing degrees should come from
constructions of (incomputable) sets such that:

• They are definable

• They relativize

• They are Turing-invariant
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Martin’s Cone Theorem

The cone above x is the set ∇x = {y ∈ 2ω : x ≤T y}

Theorem (Martin, 1968)

Assume AD. Let A ⊆ 2ω be closed under Turing equivalence.
Either A contains a cone or 2ω \ A contains a cone.

We can define a countably additive measure in DT :

µ(A) =

{
1 if A contains a cone

0 otherwise

Theorem (Martin’s Cone Theorem 2.0)

If A ⊆ DT is cofinal, then A contains a cone.
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Working on a cone

We need to work on a cone to avoid getting counterexamples to
Martin’s conjecture by Frankensteining functions.

The moral of Martin’s cone theorem is: if you glue together
countably many Turing-invariant functions, one prevails on a cone.
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Comparing functions on a cone

Definition

Let f, g : 2ω → 2ω. We say that

• f ≤∇
T g if f(x) ≤T g(x) for all x on some cone.

• f is constant on a cone if there is y ∈ 2ω such that f(x) ≡T y
for all x on some cone.

• f is increasing on a cone if x ≤T f(x) for all x on some cone.
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Martin’s Conjecture

Martin’s Conjecture

Assume ZF +AD +DC.

1 Let f : 2ω → 2ω Turing-invariant. If f is not constant on a
cone, then f is increasing on a cone.

2 The relation ≤∇
T prewell orders the Turing-invariant functions

≤∇
T -above the identity.

Moreover, if rank∇T (f) = α, then rank∇T (f
′) = α+ 1.

Where f ′ is defined by f ′(x) = f(x)′, for all x ∈ 2ω.
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Partial Results

• Part I and II for uniformly Turing-invariant functions. (Steel,
1982; Slaman and Steel, 1988)

• Part I for regressive functions. (Slaman and Steel, 1988)

• Part I for order-preserving functions. (Lutz and Siskind, 2025)

• Part II for Borel order-preserving functions. Moreover, if f is
such a function, there is α < ωCK

1 such that

f(x) = xα on a cone

(Slaman and Steel, 1988)

• Functions from many-one degrees to Turing degrees (Kihara
and Montalbán, 2018)

• The conjecture is false in the arithmetic degrees. (Slaman and
Steel, 2016∗)
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Uniform Martin’s Conjecture

Definition

A function f : 2ω → 2ω is uniformly Turing-invariant if there is
u : ω2 → ω2 such that for any x, y ∈ 2ω

x ≡T y via(i, j) implies that f(x) ≡T f(y) viau(i, j)

Theorem (Slaman and Steel 1988 ; Steel 1982)

1 Let f : 2ω → 2ω uniformly Turing-invariant. If f is not
constant on a cone, then f is increasing on a cone.

2 The relation ≤∇
T prewell orders the uniformly Turing-invariant

functions ≤∇
T -above the identity.

Moreover, if rank∇T (f) = α, then rank∇T (f
′) = α+ 1.

Here f ′ is defined by f ′(x) = f(x)′, for all x ∈ 2ω
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The Case for the Uniformity Assumption

Steel’s Conjecture

Under AD, if f is Turing-invariant, then there is an uniformly
Turing-invariant function g such that f ≡∇

T g.

Notice that Steel’s conjecture implies Martin’s conjecture.

Montalbán argues that all the philosophical motivation behind
Martin’s conjecture also holds for the uniform Martin’s conjecture.
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Enumeration Reduction

Definition (Friedberg and Rogers, 1959)

Let A,B ⊆ N. We say A ≤e B (via e) if

n ∈ A if and only if ⟨n,D⟩ ∈ Γe & D ⊆ B

where Γe is the eth c.e. set.

Observation

A ≤e B means that using positive information about B, we can
compute positive information about A. In contrast, A ≤T B
means that using positive and negative information about B, we
can compute positive and negative information about A.
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Enumeration Degrees

Definition

We say that A is enumeration equivalent to B, denoted by
A ≡e B, if A ≤e B and B ≤e A.

The Enumeration Degrees are the following structure:

De = (P(N)/≡e,≤)

• Upper semilattice with a least element 0e that consist of the
c.e. sets.

• The least upper bound is given by the join operator

A⊕B = {2n | n ∈ A} ∪ {2n+ 1 | n ∈ B}
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Total Degrees

Theorem

For any A,B ∈ P(N)

A ≤T B if and only if A⊕A ≤e B ⊕B

This means that the Turing degrees embed into the enumeration
degrees via

ι(A) = A⊕A
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Total and Cototal degrees

Definitions

• A set A is total if A ≤e A.
• An enumeration degree is total if it contains a total set.
• A set A is cototal if A ≤e A.
• An enumeration degree is cototal if it contains a cototal set.

• Total degrees are exactly the degrees in the range of ι.

• Every total degree is cototal.

• There is a cototal degree that is not total.

• Not every degree is cototal.
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Jump and Skip

Definition

• The enumeration jump is the map A 7→ KA ⊕KA = A′

• The enumeration skip is the map A 7→ KA = A⋄

Theorem (AGKLMSS, 2019)

• A <e A
⋄ if and only if dege(A) is cototal. Another way to say

this, dege(A) is cototal iff A′ = A⋄.
• There is some A such that A = (A⋄)⋄

The skip is a uniformly enumeration-invariant function that is
neither increasing nor constant on any cone!
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Jump and Skip
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No cone theorem

Martin’s cone theorem completely fails in the enumeration degrees.

• The total, nontotal cototal, and the noncototal degrees are 3
disjoint cofinal classes of enumeration degrees.

• You can frankenstein different functions along this classes and
all of them prevail in a cone.

• For example,

f(A) =

{
A if A has cototal degree

A⋄ otherwise
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Martin’s conjecture fails catastrophically

Theorem (N. C.)

Given any countable family {fn}n∈N of uniformly
enumeration-invariant functions, there is a uniformly invariant
function f that is not comparable with any fn on a cone.

Theorem (Jacobsen-Grocott)

There is a Borel uniformly enumeration-invariant function
f : 2ω → 2ω such that for every X there are continuum many B
and pairwise disjoint cofinal sets CB with

f(Y ) = B for all Y ∈ CX(B)
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A Local Approach

Bard (2020) gave a new proof of Part 1 of the uniform Martin’s
conjecture using a local approach.

Theorem (Bard, 2020)

Assume ZF . Let x ∈ 2ω and f : degT (x) → 2ω be uniformly
Turing-invariant. Then, either x ≤T f(x) or f is constant
(literally!).
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A Local Approach

Theorem (Bard, 2020)

Assume ZF . Let x ∈ 2ω and f : degT (x) → 2ω be uniformly
Turing-invariant. Then, either x ≤T f(x) or f is constant
(literally!).

Corollary (Bard, 2020)

Under ZF + TD, part I of the uniform Martin’s conjecture holds.

Turing Determinacy (TD) is the statement “every set of Turing
degrees either contains a cone, or is disjoint from a cone”.
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Local Result in the enumeration degrees

Lemma

Every uniformly enumeration-invariant function has a computable
uniformity function.

Theorem (N. C.)

Let A ∈ P(N). If f : dege(A) → P(N) is uniformly
enumeration-invariant and non-constant, then

A ≤e f(A) or A⋄ ≤e f(A).
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Consequences

Corollary

Part 1 of Martin’s Conjecture holds for Turing-to-enumeration
uniformly invariant functions.

Theorem (N. C.)

There is a Borel enumeration-invariant function f : P(N) → P(N)
that is not uniformly enumeration-invariant on any upper cone.
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K-pairs

K-pairs are a powerful tool in the enumeration degrees. They were
introduced by Kalimullin as a generalization of semicomputable
sets.

Definition (Kalimullin)

The pair {A,B} forms a (nontrivial) KU -pair if for all X ≥e U

dege(X) = dege(A⊕X) ∧ dege(B ⊕X)

They have been used in many structural results about the
enumeration degrees

• Definability of the jump. (Kalimullin, 2003)

• Definability of the total degrees. (CGLMS, 2016)

• Every degree is either almost total or half of some nontrivial
KU -pair. (GKMS, 2022)
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Properties of K-pairs

Theorem (Kalimullin 2003)

Let {A,B} be a nontrivial KU -pair. Then

• A⊕ U and B ⊕ U are quasiminimal covers of U . That is, if
X ≤e A⊕ U is total, then X ≤e U .

• The set of KU -partners of A form an enumeration-ideal.

• A ≤e B
⋄ ⊕ U and A⋄ ≤e B ⊕ U⋄
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Non-uniformly invariance

Lemma

For any enumeration degrees a, b, and u such that {a, b} is a
nontrivial Ku-pair, every uniformly e-invariant function f : a → b
is constant.

Assume towards a contradiction that f is uniformly e-invariant and
not constant. By the local theorem, a ≤ b or a⋄ ≤ b.

1 If a ≤ b, then u = (a ∨ u) ∧ (b ∨ u) = a ∨ u. This means
that a ≤ u, so {a, b} is a trivial Ku-pair.

2 If instead a⋄ ≤ b, then

u < u′ = u⋄ ∨ u ≤ a⋄ ∨ u ≤ b ∨ u.

Since u′ is total, we have contradicted the fact that b ∨ u is a
quasiminimal cover of u.
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From Local to Global

Theorem (N. C.)

There is a Borel enumeration-invariant function f : P(N) → P(N)
that is not uniformly enumeration-invariant on any upper cone.

• You would like to map A 7→ B whenever {A,B} are a
nontrivial KU -pair. However, for each A there are many
choices for U and B.

• If U is total, any nontrivial K-pair can be extended to a
maximal KU -pair.

• If you are a nontrivial KU -pair relative to a total U and you
are strictly above U , the choice of U is unique!

• So, for A half of a maximal KU -pair, map it to B in the other
half, ensuring that some C ≡e A goes to D ≡e B but D ̸= B.
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