Introduction Uniform Martin's Conjecture The Enumeration Degrees Everything Breaks Local Approach Referen 000000 000 000 0000000 	Introduction 000000	Uniform Martin's Conjecture	The Enumeration Degrees	Everything Breaks	Local Approach	Reference
---	------------------------	-----------------------------	-------------------------	-------------------	----------------	-----------

Martin's conjecture in the enumeration degrees

Antonio Nakid Cordero University of Wisconsin – Madison

Online Logic Seminar April 10, 2025

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Introduction ●00000	Uniform Martin's Conjecture	The Enumeration Degrees	Everything Breaks	Local Approach	References

Martin's Conjecture

Martin's Conjecture (informal version)

Every "natural" function in the Turing degrees is either constant, the identity or an iterate of the Turing jump (almost everywhere).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Natural functions in the Turing degrees should come from constructions of (incomputable) sets such that:

- They are definable
- They relativize
- They are Turing-invariant

Martin's Cone Theorem

Uniform Martin's Conjecture

Introduction

000000

The cone above x is the set $\nabla_x = \{y \in 2^\omega : x \leq_T y\}$

Theorem (Martin, 1968)

Assume AD. Let $\mathcal{A} \subseteq 2^{\omega}$ be closed under Turing equivalence. Either \mathcal{A} contains a cone or $2^{\omega} \setminus \mathcal{A}$ contains a cone.

The Enumeration Degrees

Everything Breaks

Local Approach

References

We can define a countably additive measure in \mathcal{D}_T :

$$\mu(\mathcal{A}) = \begin{cases} 1 & \text{if } \mathcal{A} \text{ contains a cone} \\ 0 & \text{otherwise} \end{cases}$$

Theorem (Martin's Cone Theorem 2.0)

If $\mathcal{A} \subseteq \mathcal{D}_T$ is cofinal, then \mathcal{A} contains a cone.

Introduction 000●00	Uniform Martin's Conjecture	The Enumeration Degrees	Everything Breaks	Local Approach	References
Workin	$\sigma \circ n a cone$				

We need to work on a cone to avoid getting counterexamples to Martin's conjecture by *Frankensteining* functions.

The moral of Martin's cone theorem is: if you glue together countably many Turing-invariant functions, one prevails on a cone.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Everything Breaks

ocal Approach Ref

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

References

Comparing functions on a cone

Definition

Let $f, g: 2^{\omega} \to 2^{\omega}$. We say that

- $f \leq_T^{\nabla} g$ if $f(x) \leq_T g(x)$ for all x on some cone.
- f is constant on a cone if there is $y \in 2^{\omega}$ such that $f(x) \equiv_T y$ for all x on some cone.
- f is increasing on a cone if $x \leq_T f(x)$ for all x on some cone.

Martin's Conjecture

Martin's Conjecture

Assume ZF + AD + DC.

1 Let $f: 2^{\omega} \to 2^{\omega}$ Turing-invariant. If f is not constant on a cone, then f is increasing on a cone.

2 The relation \leq_T^{∇} prevell orders the Turing-invariant functions \leq_T^{∇} -above the identity. Moreover, if $\operatorname{rank}_T^{\nabla}(f) = \alpha$, then $\operatorname{rank}_T^{\nabla}(f') = \alpha + 1$.

Where f' is defined by f'(x) = f(x)', for all $x \in 2^{\omega}$.

Introduction 000000	Uniform Martin's Conjecture ●00	The Enumeration Degrees	Everything Breaks	Local Approach	References
Dartial	Poculto				

- Part I and II for uniformly Turing-invariant functions. (Steel, 1982; Slaman and Steel, 1988)
- Part I for regressive functions. (Slaman and Steel, 1988)
- Part I for order-preserving functions. (Lutz and Siskind, 2025)
- Part II for Borel order-preserving functions. Moreover, if f is such a function, there is $\alpha < \omega_1^{CK}$ such that

 $f(x)=x^{\alpha}$ on a cone

(Slaman and Steel, 1988)

- Functions from many-one degrees to Turing degrees (Kihara and Montalbán, 2018)
- The conjecture is false in the arithmetic degrees. (Slaman and Steel, 2016*)

The Enumeration Degrees

Everything Breaks

cal Approach References

Uniform Martin's Conjecture

Definition

A function $f:2^\omega\to 2^\omega$ is uniformly Turing-invariant if there is $u:\omega^2\to\omega^2$ such that for any $x,y\in 2^\omega$

 $x \equiv_T y \operatorname{via}(i, j)$ implies that $f(x) \equiv_T f(y) \operatorname{via} u(i, j)$

Theorem (Slaman and Steel 1988; Steel 1982)

1 Let $f: 2^{\omega} \to 2^{\omega}$ uniformly Turing-invariant. If f is not constant on a cone, then f is increasing on a cone.

2 The relation ≤[∇]_T prewell orders the uniformly Turing-invariant functions ≤[∇]_T-above the identity.
Moreover, if rank[∇]_T(f) = α, then rank[∇]_T(f') = α + 1.

Here f' is defined by f'(x) = f(x)', for all $x \in 2^{\omega}$

<ロト < @ ト < 差 ト < 差 ト 差 の < @ </p>

Introduction 000000 The Enumeration Degrees

Everything Breaks

Local Approach References

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Case for the Uniformity Assumption

Steel's Conjecture

Under AD, if f is Turing-invariant, then there is an uniformly Turing-invariant function g such that $f \equiv_T^{\nabla} g$.

Notice that Steel's conjecture implies Martin's conjecture.

Montalbán argues that all the philosophical motivation behind Martin's conjecture also holds for the uniform Martin's conjecture.

Everything Breaks

Local Approach References

Enumeration Reduction

Definition (Friedberg and Rogers, 1959)

Let $A, B \subseteq \mathbb{N}$. We say $A \leq_e B$ (via e) if

 $n \in A$ if and only if $\langle n, D \rangle \in \Gamma_e \& D \subseteq B$

where Γ_e is the *e*th c.e. set.

Observation

 $A \leq_e B$ means that using positive information about B, we can compute positive information about A. In contrast, $A \leq_T B$ means that using positive and negative information about B, we can compute positive and negative information about A.

Enumeration Degrees

Definition

We say that A is enumeration equivalent to B, denoted by $A \equiv_e B$, if $A \leq_e B$ and $B \leq_e A$.

The Enumeration Degrees are the following structure:

$$\mathcal{D}_e = (\mathcal{P}(\mathbb{N}) / \equiv_e, \leq)$$

- Upper semilattice with a least element **0**_e that consist of the c.e. sets.
- The least upper bound is given by the join operator

$$A\oplus B=\{2n\mid n\in A\}\cup\{2n+1\mid n\in B\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction 000000	Uniform Martin's Conjecture	The Enumeration Degrees	Everything Breaks	Local Approach	References
Total [Degrees				

Theorem

О

For any $A, B \in \mathcal{P}(\mathbb{N})$

$$A \leq_T B$$
 if and only if $A \oplus \overline{A} \leq_e B \oplus \overline{B}$

This means that the Turing degrees embed into the enumeration degrees via

$$\iota(A) = A \oplus \overline{A}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Everything Breaks

Local Approach References

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Total and Cototal degrees

Definitions

- A set A is total if $\overline{A} \leq_e A$.
- An enumeration degree is total if it contains a total set.
- A set A is cototal if $A \leq_e \overline{A}$.
- An enumeration degree is cototal if it contains a cototal set.
- Total degrees are exactly the degrees in the range of ι .
- Every total degree is cototal.
- There is a cototal degree that is not total.
- Not every degree is cototal.

Introduction 000000	Uniform Martin's Conjecture	The Enumeration Degrees 0000●	Everything Breaks	Local Approach	References
Jump	and Skip				

Definition

- The enumeration jump is the map $A \mapsto \underline{K^A} \oplus \overline{K^A} = A'$
- The enumeration skip is the map $A \mapsto \overline{K^A} = A^\diamond$

Theorem (AGKLMSS, 2019)

A <_e A[◊] if and only if deg_e(A) is cototal. Another way to say this, deg_e(A) is cototal iff A' = A[◊].

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

• There is some A such that $A = (A^\diamond)^\diamond$

Introduction 000000	Uniform Martin's Conjecture	The Enumeration Degrees 0000●	Everything Breaks	Local Approach	References
Jump	and Skip				

Definition

- The enumeration jump is the map $A \mapsto \underline{K^A} \oplus \overline{K^A} = A'$
- The enumeration skip is the map $A \mapsto \overline{K^A} = A^\diamond$

Theorem (AGKLMSS, 2019)

A <_e A[◊] if and only if deg_e(A) is cototal. Another way to say this, deg_e(A) is cototal iff A' = A[◊].

• There is some A such that A = (A[◊])[◊]

The skip is a uniformly enumeration-invariant function that is neither increasing nor constant on any cone!

Martin's cone theorem completely fails in the enumeration degrees.

- The total, nontotal cototal, and the noncototal degrees are 3 disjoint cofinal classes of enumeration degrees.
- You can *frankenstein* different functions along this classes and all of them prevail in a cone.
- For example,

$$f(A) = \begin{cases} A & \text{if } A \text{ has cototal degree} \\ A^{\diamond} & \text{otherwise} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Everything Breaks

Local Approach R 00000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

References

Martin's conjecture fails catastrophically

Theorem (N. C.)

Given any countable family $\{f_n\}_{n\in\mathbb{N}}$ of uniformly enumeration-invariant functions, there is a uniformly invariant function f that is not comparable with any f_n on a cone.

Theorem (Jacobsen-Grocott)

There is a Borel uniformly enumeration-invariant function $f: 2^{\omega} \rightarrow 2^{\omega}$ such that for every X there are continuum many B and pairwise disjoint cofinal sets C_B with

f(Y) = B for all $Y \in C_X(B)$

Bard (2020) gave a new proof of Part 1 of the uniform Martin's conjecture using a local approach.

Theorem (Bard, 2020)

Assume ZF. Let $x \in 2^{\omega}$ and $f : \deg_T(x) \to 2^{\omega}$ be uniformly Turing-invariant. Then, either $x \leq_T f(x)$ or f is constant (literally!).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A Local Approach

Theorem (Bard, 2020)

Assume ZF. Let $x \in 2^{\omega}$ and $f : \deg_T(x) \to 2^{\omega}$ be uniformly Turing-invariant. Then, either $x \leq_T f(x)$ or f is constant (literally!).

Corollary (Bard, 2020)

Under ZF + TD, part I of the uniform Martin's conjecture holds.

Turing Determinacy (TD) is the statement "every set of Turing degrees either contains a cone, or is disjoint from a cone".

The Enumeration Degrees

Everything Breaks

Local Approach

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

References

Local Result in the enumeration degrees

Lemma

Every uniformly enumeration-invariant function has a computable uniformity function.

Theorem (N. C.)

Let $A \in \mathcal{P}(\mathbb{N})$. If $f : \deg_e(A) \to \mathcal{P}(\mathbb{N})$ is uniformly enumeration-invariant and non-constant, then

$$A \leq_e f(A)$$
 or $A^\diamond \leq_e f(A)$.

The Enumeration Degrees

Everything Breaks

Local Approach References

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Consequences

Corollary

Part 1 of Martin's Conjecture holds for Turing-to-enumeration uniformly invariant functions.

Theorem (N. C.)

There is a Borel enumeration-invariant function $f : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ that is not uniformly enumeration-invariant on any upper cone.

 \mathcal{K} -pairs are a powerful tool in the enumeration degrees. They were introduced by Kalimullin as a generalization of semicomputable sets.

Definition (Kalimullin)

The pair $\{A, B\}$ forms a (nontrivial) \mathcal{K}_U -pair if for all $X \ge_e U$

$$\deg_e(X) = \deg_e(A \oplus X) \land \deg_e(B \oplus X)$$

They have been used in many structural results about the enumeration degrees

- Definability of the jump. (Kalimullin, 2003)
- Definability of the total degrees. (CGLMS, 2016)
- Every degree is either *almost total* or half of some nontrivial \mathcal{K}_U -pair. (GKMS, 2022)

The Enumeration Degrees

Everything Breaks

Local Approach Re 00000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

References

Properties of \mathcal{K} -pairs

Theorem (Kalimullin 2003)

Let $\{A, B\}$ be a nontrivial \mathcal{K}_U -pair. Then

- $A \oplus U$ and $B \oplus U$ are quasiminimal covers of U. That is, if $X \leq_e A \oplus U$ is total, then $X \leq_e U$.
- The set of \mathcal{K}_U -partners of A form an enumeration-ideal.

•
$$A \leq_e B^\diamond \oplus U$$
 and $A^\diamond \leq_e B \oplus U^\diamond$

Non-uniformly invariance

Lemma

For any enumeration degrees a, b, and u such that $\{a, b\}$ is a nontrivial \mathcal{K}_u -pair, every uniformly e-invariant function $f : a \to b$ is constant.

References

Assume towards a contradiction that f is uniformly e-invariant and not constant. By the local theorem, $a \leq b$ or $a^{\diamond} \leq b$.

1 If $a \leq b$, then $u = (a \lor u) \land (b \lor u) = a \lor u$. This means that $a \leq u$, so $\{a, b\}$ is a trivial \mathcal{K}_u -pair.

2 If instead $a^\diamond \leq b$, then

$$\boldsymbol{u} < \boldsymbol{u}' = \boldsymbol{u}^{\diamond} \lor \boldsymbol{u} \leq \boldsymbol{a}^{\diamond} \lor \boldsymbol{u} \leq \boldsymbol{b} \lor \boldsymbol{u}.$$

Since u' is total, we have contradicted the fact that $b \lor u$ is a quasiminimal cover of u.

From Local to Global

Theorem (N. C.)

There is a Borel enumeration-invariant function $f : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ that is not uniformly enumeration-invariant on any upper cone.

- You would like to map $A \mapsto B$ whenever $\{A, B\}$ are a nontrivial \mathcal{K}_{U} -pair. However, for each A there are many choices for U and B.
- If U is total, any nontrivial \mathcal{K} -pair can be extended to a maximal \mathcal{K}_U -pair.
- If you are a nontrivial \mathcal{K}_U -pair relative to a total U and you are strictly above U, the choice of U is unique!
- So, for A half of a maximal \mathcal{K}_U -pair, map it to B in the other half, ensuring that some $C \equiv_e A$ goes to $D \equiv_e B$ but $D \neq B$.

Introduction 000000	Uniform Martin's Conjecture	The Enumeration Degrees	Everything Breaks	Local Approach	References
Refere	nces l				

- Uri Andrews et al. "On cototality and the skip operator in the enumeration degrees". In: *Transactions of the American Mathematical Society* 372.3 (2019). ISSN: 0002-9947. DOI: 10.1090/tran/7604.
- [2] Vittorio Bard. "Uniform Martin's Conjecture, Locally". In: Proceedings of the American Mathematical Society 148.12 (2020). DOI: 10.1090/proc/15159. URL: https: //www.ams.org/journals/proc/2020-148-12/S0002-9939-2020-15159-3/S0002-9939-2020-15159-3.pdf.
- [3] Theodore A. Slaman and John R. Steel. "Definable Functions on Degrees". In: Cabal Seminar 81–85. Ed. by Alexander Sotirios Kechris, Donald Anthony Martin, and John Robert Steel. Springer Berlin Heidelberg, 1988, pp. 37–55. DOI: 10.1007/BFb0084969. URL: https://doi.org/10.1007/BFb0084969.