The logics of closures and kernels

Krzysztof Mierzewski

Carnegie Mellon University

Online Logic Seminar Thursday, May 8th, 2025 Designated objects: propositions, subsets or properties of a system that are directly accessible (e.g. observable, or definable in a fixed language).

We approximate Boolean objects by meets and joins of designated elements above/below it.

Let ${\mathcal A}$ a complete Boolean algebra and $D \subset {\mathcal A}.$ Define

$$\diamond_D(a) := \bigwedge \{ d \in D \mid a \le d \}$$
$$\blacksquare_D(a) := \bigvee \{ d \in D \mid d \le a \}.$$

Boolean approximations

Examples:

- $\mathfrak{M} = (\mathcal{M}, {R_i^{\mathfrak{M}}}_{i \in I})$ a first-order model, $\mathcal{A} = \mathcal{P}(\mathcal{M})$ and $D = \text{Def}(\mathcal{M})$ the definable subsets.
- Let \mathcal{A} an algebra of propositions, \mathcal{D} the *observation statements*. Let Γ a theory.

 $\Diamond_D \Gamma$ is the strongest observable prediction;

 $\blacksquare_D \Gamma$ is the minimal sufficient evidence for Γ .

• Knowledge representation, databases, rough sets, abductive reasoning.

- Uniform interpolants
- Non-objectual quantification: distributive properties [Bassett].

Boolean approximations

Examples:

- $\mathfrak{M} = (\mathcal{M}, {R_i^{\mathfrak{M}}}_{i \in I})$ a first-order model, $\mathcal{A} = \mathcal{P}(\mathcal{M})$ and $D = \text{Def}(\mathcal{M})$ the definable subsets.
- Let \mathcal{A} an algebra of propositions, \mathcal{D} the *observation statements*. Let Γ a theory.

 $\Diamond_D \Gamma$ is the strongest observable prediction;

 $\blacksquare_D \Gamma$ is the minimal sufficient evidence for Γ .

• Knowledge representation, databases, rough sets, abductive reasoning.

- Uniform interpolants
- Non-objectual quantification: distributive properties [Bassett].

 $\text{Let } \mathcal{L} \text{ given by } \varphi, \psi ::= p \, | \, \varphi \wedge \psi \, | \, \varphi \wedge \psi \, | \, \neg \varphi \, | \, \Diamond \varphi \, | \, \blacksquare \varphi.$

An *approximation model* is a structure $(\mathcal{A}, D, \llbracket \cdot \rrbracket)$ with \mathcal{A} a complete Boolean algebra, $D \subset \mathcal{A}$, and a valuation $\llbracket \cdot \rrbracket : \mathcal{L} \to \mathcal{A}$ satisfying

$$\llbracket \diamondsuit arphi
rbrace = \diamondsuit_D(\llbracket arphi
rbrace)$$

 $\llbracket \blacksquare arphi
rbrace = \blacksquare_D(\llbracket arphi
rbrace).$

A formula φ holds in $(\mathcal{A}, \mathcal{D}, \llbracket \cdot \rrbracket)$ if and only if $\llbracket \varphi \rrbracket = \top_{\mathcal{A}}$: we then write

 $(\mathcal{A}, D, \llbracket \cdot \rrbracket) \models \varphi.$

We are interested in structures $(\mathcal{A}, \diamond_D, \blacksquare_D)$ where $D \subseteq \mathcal{A}$.

What is the complete logic of approximation structures (A, D)?

What is the complete logic of approximation structures (A, D)?

Class of substructures D	Class of algebras	Corresponding modal logic
С	$\mathbb{K}_{\mathcal{C}}$	$Log(\mathbb{K}_{\mathcal{C}})$

$$\mathbb{K}_{\mathcal{C}} := \left\{ (\mathcal{A}, \mathsf{c}, \mathsf{k}) \mid \exists D \in \mathcal{C}, \ \mathsf{c} = \diamond_D \text{ and } \mathsf{k} = \blacksquare_D \right\}$$
$$\mathsf{Log}(\mathbb{K}) := \left\{ \varphi \in \mathcal{L} \mid \mathfrak{M} \models \varphi \text{ for all } \mathfrak{M} \in \mathbb{K} \right\}$$

What is the complete logic of approximation structures (A, D)?

Class of substructures D	Class of algebras	Corresponding modal logic
С	$\mathbb{K}_{\mathcal{C}}$	$Log(\mathbb{K}_{\mathcal{C}})$
arbitrary sets	?	?
sublattices	?	?
subalgebras	?	?
complete sublattices	?	?
complete subalgebras	?	?

(representation theorem)

(completeness theorem)

$$\mathbb{K}_{\mathcal{C}} := \left\{ (\mathcal{A}, \mathsf{c}, \mathsf{k}) \mid \exists D \in \mathcal{C}, \ \mathsf{c} = \diamond_D \text{ and } \mathsf{k} = \blacksquare_D \right\}$$
$$\mathsf{Log}(\mathbb{K}) := \left\{ \varphi \in \mathcal{L} \mid \mathfrak{M} \models \varphi \text{ for all } \mathfrak{M} \in \mathbb{K} \right\}$$

Closure-kernel algebras

A *CK algebra* is a structure (A, c, k) with c a closure operator and k a kernel operator with $c(\bot) = \bot$ and $k(\top) = \top$.

Closure operator: a map $c : A \to A$ such that, for all $a, b \in A$:

- $a \leq c(a);$
- c(c(a)) = c(a);
- if $a \leq b$ then $c(a) \leq c(b)$.

Kernel operator: map $k : A \to A$ such that, for every $a, b \in A$:

- $\mathbf{k}(a) \leq a;$
- k(k(a)) = k(a);
- if $a \leq b$ then $k(a) \leq k(b)$.

Let $D \subseteq A$. Then \diamond_D is a closure operator and \blacksquare_D a kernel operator.

Closure-kernel algebras

A *CK algebra* is a structure (A, c, k) with c a closure operator and k a kernel operator with $c(\bot) = \bot$ and $k(\top) = \top$.

Closure operator: a map $c : A \to A$ such that, for all $a, b \in A$:

• $a \le c(a);$ (T) $\varphi \to \Diamond \varphi$ • c(c(a)) = c(a); (4) $\Diamond \Diamond \varphi \to \Diamond \varphi$ • if $a \le b$ then $c(a) \le c(b).$ $\frac{\varphi \to \psi}{\Diamond \varphi \to \Diamond \psi}$ (M \diamond)

Kernel operator: map $k : A \to A$ such that, for every $a, b \in A$:

• $k(a) \le a;$ (T) $\mathbf{\Phi} \to \varphi$ • k(k(a)) = k(a); (4) $\mathbf{\Phi} \to \mathbf{\Phi} = \mathbf{\Phi} \varphi$ • if $a \le b$ then $k(a) \le k(b).$ $\frac{\varphi \to \psi}{\mathbf{\Phi} \varphi \to \mathbf{\Phi} \psi}$ (M)

Let $D \subseteq A$. Then \diamond_D is a closure operator and \blacksquare_D a kernel operator.

Modal validities for closures and kernels

Inference rules:

$$\frac{\varphi \quad \varphi \rightarrow \psi}{\psi} \ (\mathbf{MP}) \qquad \frac{\varphi \rightarrow \psi}{\Diamond \varphi \rightarrow \Diamond \psi} \ (\mathbf{M}_{\Diamond}) \qquad \frac{\varphi \rightarrow \psi}{\blacksquare \varphi \rightarrow \blacksquare \psi} \ (\mathbf{M}_{\blacksquare})$$

Axioms:

• (E) Propositional tautologies and dual axioms:

• Axioms for the \diamond modality: (N) $\Box \top$ (T) $\varphi \rightarrow \Diamond \varphi$ (4) $\diamond \Diamond \varphi \rightarrow \Diamond \varphi$ (A) $\Box \neg \Box \varphi \rightarrow \varphi$ (A) $\Box \varphi \rightarrow \Box \Box \varphi$

All approximation operators validate EMNT4 \oplus EMNT4.

Let \mathcal{D} a complete sublattice of \mathcal{A} (with $\top_{\mathcal{A}}$, $\perp_{\mathcal{A}} \in \mathcal{D}$).

• \diamond_D is completely \bigvee -distributive:

$$\Diamond_D(\bigvee X) = \bigvee \{ \Diamond_D(x) \, | \, x \in X \}$$

• \blacksquare_D is completely \land -distributive:

• We have

$$\square_D(\bigwedge X) = \bigwedge \{ \square_D(x) \mid x \in X \}$$
• We have

$$\diamondsuit_D \square_D(a) = \square_D(a)$$

$$\square_D \diamondsuit_D(a) = \diamondsuit_D(a)$$

Logic for complete sublattices?

۲

۲

S4t is sound for the class of closure-kernel algebras generated by complete sublattices.

Tarski [1955] proved the following duality result for complete meet-semilattices:

Complete Sublattices: a duality

This yields a representation result:

A CK algebra (\mathcal{A},c,k) is representable by a complete sublattice iff we have $c\circ k=k,\,k\circ c=c,$ and

$$c(\bigvee X) = \bigvee \{c(x) \mid x \in X\}$$
$$k(\bigwedge X) = \bigwedge \{k(x) \mid x \in X\}$$

A *tense algebra* is a Boolean algebra A with two normal¹ and additive operators p, f and their respective duals defined as $h(x) := \neg p(\neg x)$ and $g(x) := \neg f(\neg x)$, which satisfy

for all
$$a \in \mathcal{A}$$
, $a \le g(p(a))$ and $a \le h(f(a))$. (1)

An S4 *tense algebra* is a tense algebra where the operators p and f are both inflationary and idempotent.

Proposition

The class of CK algebras representable by complete sublattices corresponds exactly to complete S4 tense algebras.

¹An operator *m* is normal if $m(\bot) = \bot$.

Theorem

The logic of approximation operators generated by complete sublattices is the tense logic S4t:

Log(CSLat) = S4t

What is the logic of approximation operators for arbitrary sets?

A CK algebra (\mathcal{A}, c, k) representable if there exists some $\mathcal{D} \subseteq \mathcal{A}$ such that $\Diamond_D = c$ and $\blacksquare_D = k$. What is the logic of approximation operators for arbitrary sets?

A CK algebra (\mathcal{A}, c, k) representable if there exists some $\mathcal{D} \subseteq \mathcal{A}$ such that $\diamond_D = c$ and $\blacksquare_D = k$.

Example: Let (X, τ) a T_1 topological space. Then $(\mathcal{P}(X), cl_{\tau}, id)$ is a representable CK algebra: let *D* consist of the closed sets.

What is the logic of approximation operators for arbitrary sets?

A CK algebra (\mathcal{A}, c, k) representable if there exists some $\mathcal{D} \subseteq \mathcal{A}$ such that $\diamond_D = c$ and $\blacksquare_D = k$.

Example: Let (X, τ) a T_1 topological space. Then $(\mathcal{P}(X), cl_{\tau}, id)$ is a representable CK algebra: let *D* consist of the closed sets.

Non-example: Let (X, τ) an non-trivial, connected topological space. Consider the algebra $(\mathcal{P}(X), cl, int)$ with cl and int the closure and interior operators generated by the topology τ .

Proposition (Representability Criterion)

Let (\mathcal{A}, c, k) a CK algebra. The following are equivalent:

- (1) (A, c, k) is representable;
- (2) Any fixpoint is expressible by common fixpoints:

$$\begin{split} fp(c) &= \mathbb{M}[fp(c) \cap fp(k)] \\ fp(k) &= \mathbb{J}[fp(c) \cap fp(k)] \end{split}$$

Notation: $\mathbb{M}[F] := \{ \bigwedge S \mid S \subseteq F \}$ for the set of *F*-meets and $\mathbb{J}[F] := \{ \bigvee S \mid S \subseteq F \}$ for the *F*-joins.

If c and k are representable, then taking $D := fp(c) \cap fp(k)$ generates c and k.

General duality for representable algebras

Dualities: here, $\mathcal{F}(c, k) := fp(c) \cap fp(k)$ is the set of shared fixpoints.

Representable closure-kernel algebras

The representable algebras do not form an algebraic variety (not even closed under subalgebras).

Representable closure-kernel algebras

The representable algebras do not form an algebraic variety (not even closed under subalgebras).

(a) (\mathcal{A}, c, k) with $fp(c) \cap fp(k)$ shaded.

(b) A non-representable subalgebra of \mathcal{A} .

Subnormal logic: the distributivity formula $M(\varphi \rightarrow \psi) \rightarrow (M\varphi \rightarrow M\psi)$ is not valid on representable CK algebras for $M \in \{\Box, \blacksquare\}$.

The logic of CK algebras is EMNT4 \oplus EMNT4.

Axioms for the \diamond modality: (N) $\Box T$ (T) $\varphi \rightarrow \Diamond \varphi$ (4) $\diamond \Diamond \varphi \rightarrow \Diamond \varphi$ Axioms for the \blacksquare modality: (N_{\blacksquare}) $\blacksquare \top$ (T_{\blacksquare}) $\blacksquare \varphi \rightarrow \varphi$ (4_{\blacksquare}) $\blacksquare \varphi \rightarrow \blacksquare \blacksquare \varphi$

Does representability force any new validities?

The logic of CK algebras is EMNT4 \oplus EMNT4.

Axioms for the \diamond modality:	
(N) □⊤	
(T) $\varphi ightarrow \diamondsuit \varphi$	
$(4) \diamond \diamond \varphi \to \diamond \varphi$	

Does representability force any new validities? No.

Proof idea: showing that every complete CK algebra is isomorphically embeddable into a representable CK algebra.

Embedding Lemma:

Every complete CK algebra is isomorphically embeddable into a representable CK algebra.

- c-defective elements $N_c := fp(c) \setminus \mathbb{M}[\mathcal{F}(c, k)]$
- k-defective elements $N_k := fp(k) \setminus \mathbb{J}[\mathcal{F}(c, k)]$

Take the direct product $\mathcal{A} \otimes \mathcal{A}$ and let

$$D := \{(x, x) \mid x \in \mathcal{F}(c, k)\} \cup \{(x, \top), (\top, x) \mid x \in N_c\}$$
$$\cup \{(x, \bot), (\bot, x) \mid x \in N_k\}.$$

The diagonal map $\theta : a \mapsto (a, a)$ embeds the full algebra (\mathcal{A}, c, k) into the representable algebra $(\mathcal{A} \otimes \mathcal{A}, \diamond_D, \blacksquare_D)$.

Theorem

The logic EMNT4 \oplus EMNT4 is sound and complete with respect to representable CK algebras.

Step 1: For any non-theorem, get a countermodel \mathfrak{M} by taking a canonical *neighbourhood* model (routine).

Step 2: Switching perspectives, the canonical model gives us a complete CK algebra $\mathcal{A}_{\mathfrak{M}}$. So we have a countermodel based on a CK-algebra.

Step 3: By the embedding lemma, the embedding $\mathcal{A}_{\mathfrak{M}} \otimes \mathcal{A}_{\mathfrak{M}}$ with the obvious valuation gives a countermodel based on a representable CK-algebra.

Now consider the case where D is a sublattice.

• The fusion S4 ⊕ S4 is sound with respect to sublattice-generated approximation structures.

Axioms for the \diamond modality:Axioms for the \blacksquare modality:(N) $\Box \top$ (N) $\blacksquare \top$ (T) $\varphi \rightarrow \Diamond \varphi$ (T) $\blacksquare \varphi \rightarrow \varphi$ (4) $\diamond \Diamond \varphi \rightarrow \Diamond \varphi$ (4) $\blacksquare \varphi \rightarrow \blacksquare \blacksquare \varphi$ (C_{\diamond}) $\Diamond (\varphi \lor \psi) \rightarrow (\Diamond \varphi \lor \Diamond \psi)$ (C_{\bullet}) (\blacksquare \varphi \land \blacksquare \psi) \rightarrow \blacksquare (\varphi \land \psi)

Consider

$$\varphi = \Diamond p \land \neg \blacksquare \Diamond p$$

Note that $\Diamond p \to \blacksquare \Diamond p$ is valid on any complete sublattice model. But any sublattice of a finite lattice is complete sublattice, so φ has no sublattice-countermodel based on any finite algebra.

Yet φ is satisfiable: take $(\mathcal{P}(\mathbb{R}), \mathcal{O})$ where \mathcal{O} are the standard opens, and set V(p) = [0, 1].

Observation

The logic S4 \oplus S4 does not have the finite model property with respect to sublattice-based CK algebras.

A slightly less trivial example: the convergence formula $\Diamond \blacksquare \varphi \rightarrow \blacksquare \Diamond \varphi$.

For sublattice-based approximations, this holds in any *finite* approximation structure.

But it fails for sublattice-based approximations in general. Consider the structure $(\mathcal{P}(\mathbb{N}), D)$ where

$$D := \operatorname{COF}[1] \cup \mathcal{P}_{<\omega}(\mathbb{N} \setminus \{1, 2\})$$

D is the sublattice of $\mathcal{P}(\mathbb{N})$ consisting of all cofinite sets containing 1 and all finite sets containing neither 1 nor 2. Now let $A := \{2n \mid n \in \mathbb{N}\}$.

$$\diamond \blacksquare A = (A \setminus \{2\}) \cup \{1\}$$
$$\blacksquare \diamond A = A \setminus \{2\}$$

Sublattices: a topological connection

A bitopological space is a structure (X, τ_1, τ_2) where both τ_1 and τ_2 are topologies on *X*. The representability criterion gives us:

Lemma

A bitopological space (X, τ_1, τ_2) is pairwise zero-dimensional if and only if the algebra $(\mathcal{P}(X), cl_{\tau_1}, int_{\tau_2})$ is sublattice-representable.

The algebra $(\mathcal{P}(X), cl_{\tau_1}, int_{\tau_2})$ is representable exactly if:

$$\begin{split} fp(cl_{\tau_1}) &= \mathbb{M}\big(fp(cl_{\tau_1}) \cap fp(int_{\tau_2})\big) & \mathcal{C}_1 &= \mathbb{M}(\mathcal{C}_1 \cap \mathcal{O}_2) \\ fp(int_{\tau_2}) &= \mathbb{J}\big(fp(cl_{\tau_1}) \cap fp(int_{\tau_2})\big) & \mathcal{O}_2 &= \mathbb{J}(\mathcal{C}_1 \cap \mathcal{O}_2) \end{split}$$

i.e., au_1 admits a basis of au_2 -closed sets, and vice-versa.²

• For Alexandrov bitopologies generated by a Kripke frame, this means $C_1 = O_2$. For S4 \oplus S4 frames, this means $R_1 = R_2^{-1}$. So we cannot obtain completeness via canonical Kripke frames.

²Notion introduced by I. L Reilly [1973].

Let τ the standard subspace topology on $\mathbb Q$ inherited from $\mathbb R$.

The *horizontal-vertical bitopology* on $\mathbb{Q} \times \mathbb{Q}$ is given by the *horizontal* topology \mathcal{H} generated by the basis $\{B \times \{q\} | q \in \mathbb{Q}, B \in \tau\}$ and the *vertical* topology \mathcal{V} generated by $\{\{q\} \times B | q \in \mathbb{Q}, B \in \tau\}$.

Theorem (Van Benthem, Bezhanishvili, Sarenac, ten Cate 2006)

S4 \oplus S4 is topologically complete with respect to the space $\mathbb{Q} \times \mathbb{Q}$ equipped with the horizontal-vertical bitopology.

Sublattices: a topological connection

Theorem

 $S4 \oplus S4$ is complete with respect to sublattice-representable CK algebras.

From any topological countermodel on $(\mathbb{Q} \times \mathbb{Q}, \mathcal{H}, \mathcal{V})$ we obtain an algebraic countermodel $(\mathcal{P}(\mathbb{Q} \times \mathbb{Q}), cl_{\mathcal{H}}, int_{\mathcal{V}})$. To show this sublattice-representable, enough to observe that $(\mathbb{Q} \times \mathbb{Q}, \mathcal{H}, \mathcal{V})$ is pairwise zero-dimensional.

$$\begin{array}{c} \mathbf{z} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{$$

Corollary

S4 \oplus S4 is complete with respect to pairwise zero-dimensional bitopological spaces.

When *D* is a subalgebra of *A*, the operators \Diamond_D and \blacksquare_D become duals:

$$\Diamond_D(a) = \neg \blacksquare_D(\neg a)$$

- S5 is the complete logic of approximation structures (A, D) where D is a complete subalgebra of A.
- (2) The complete logic of subalgebra-generated approximation operators is monomodal S4.

(1): immediate via (taking the complex algebras of) Kripke frames.(2): by completeness of S4 with respect to Q.

S4 and S5 can be seen as logics of approximation through subalgebras.

Class of (A, D) structures	Duality?	Representation for	Corresponding modal
		(A, c, k)	logic
[No duality with (A, D)	no	c closure, k kernel,	EMNT4◇ ⊕ EMNT4
structures]		$c(\bot)=\bot, k(\top)=\top$	
All	quasi	as above, plus	EMNT4◇ ⊕ EMNT4
		$fp(c)\subseteq \mathbb{M}\big[fp(c)\cap fp(k)\big]$	
		$fp(k)\subseteq \mathbb{J}\big[fp(c)\cap fp(k)\big]$	
		[representable algebras]	
D is a sublattice with	quasi	representable additive CK	S4 ⊕ S4
$\bot, \top \in D$		algebras	(add distributivity axioms)
D is a subalgebra	quasi	as above, plus	S4
		$k(a) = \neg c(\neg a)$	(S4 \diamond with $\blacksquare \varphi \leftrightarrow \neg \Diamond \neg \varphi$)
D is a complete sublattice	≅	CK algebras with	$S4t = (S4_{\Diamond} \oplus S4_{\blacksquare}) \oplus$
with $\bot, \top \in D$		$c\circ k=k,\ k\circ c=c,$	$\{ \Diamond \blacksquare \varphi \leftrightarrow \blacksquare \varphi, \blacksquare \Diamond \varphi \leftrightarrow \Diamond \varphi \}$
		$\mathbf{c}(\bigvee X) = \bigvee_{x \in X} \mathbf{c}(x),$	
		$k(\bigwedge X) = \bigwedge_{x \in X} k(x)$	
D is a complete subalgebra	≅	as above, plus	\$5
		$k(a) = \neg c(\neg a)$	(S5 \diamond with $\blacksquare \varphi \leftrightarrow \neg \Diamond \neg \varphi$)

Conclusion

We determined the modal logics of approximation for the most salient types of approximation structures: in each case, we identified the corresponding class of algebras.

- The emergence of various modal laws traced to simple structural features of the generating set;
- We recovered several well-known bimodal logics as logics of approximation;
- Interplay of algebraic and topological methods in modal logic:
 - Duality between CK algebras and approximation structures;
 - Bitopological spaces.

• Multimodal case: algebra of substructures.

 \diamond_D , \blacksquare_D ($D \in \mathbb{D}$) given by a class \mathbb{D} of substructures $D \subseteq \mathcal{A}$, itself equipped with its own algebraic operations for merging or combining approximating sets. E.g. operations on partitions. Interaction laws between operators $\diamond_{\Pi_1 \wedge \Pi_2}$, $\blacksquare_{\Pi_1 \vee \Pi_2}$, etc.

• Multimodal case: algebra of substructures.

 \diamond_D , \blacksquare_D ($D \in \mathbb{D}$) given by a class \mathbb{D} of substructures $D \subseteq \mathcal{A}$, itself equipped with its own algebraic operations for merging or combining approximating sets. E.g. operations on partitions. Interaction laws between operators $\diamond_{\Pi_1 \wedge \Pi_2}$, $\blacksquare_{\Pi_1 \vee \Pi_2}$, etc.

Uniform Interpolation

Take the Lindenbaum algebra of a locally tabular logic. Let $\mathcal{D}(\Lambda)$ the collection of (equivalence classes of) formulas in the sublanguage generated by $\Lambda = \{q_1, ..., q_n\}$. Then $\diamond_{\mathcal{D}(\Lambda)}([\varphi]) = \bigwedge \{[\psi] \in \mathcal{D}(\Lambda) \mid \vdash \varphi \rightarrow \psi\}$ is the (equivalence class of) the *uniform post-interpolant* of φ , and $\blacksquare_{\mathcal{D}(\Lambda)}$ yields the *uniform pre-interpolant*.

• Multimodal case: algebra of substructures.

 \diamond_D , \blacksquare_D ($D \in \mathbb{D}$) given by a class \mathbb{D} of substructures $D \subseteq \mathcal{A}$, itself equipped with its own algebraic operations for merging or combining approximating sets. E.g. operations on partitions. Interaction laws between operators $\diamond_{\Pi_1 \wedge \Pi_2}$, $\blacksquare_{\Pi_1 \vee \Pi_2}$, etc.

Uniform Interpolation

Take the Lindenbaum algebra of a locally tabular logic. Let $\mathcal{D}(\Lambda)$ the collection of (equivalence classes of) formulas in the sublanguage generated by $\Lambda = \{q_1, ..., q_n\}$. Then $\diamond_{\mathcal{D}(\Lambda)}([\varphi]) = \bigwedge \{[\psi] \in \mathcal{D}(\Lambda) \mid \vdash \varphi \rightarrow \psi\}$ is the (equivalence class of) the *uniform post-interpolant* of φ , and $\blacksquare_{\mathcal{D}(\Lambda)}$ yields the *uniform pre-interpolant*.

• Stone-type dualities:

There is a natural duality between complete-sublattice-representable CK algebras (i.e. tense S4 algebras) and bicompact, strongly pairwise-zero-dimensional bitopologies [Bezhanishvili et al., 2010]. Is there a natural Stone duality for sublattice-representable CK algebras?

• Multimodal case: algebra of substructures.

 \diamond_D , \blacksquare_D ($D \in \mathbb{D}$) given by a class \mathbb{D} of substructures $D \subseteq \mathcal{A}$, itself equipped with its own algebraic operations for merging or combining approximating sets. E.g. operations on partitions. Interaction laws between operators $\diamond_{\Pi_1 \wedge \Pi_2}$, $\blacksquare_{\Pi_1 \vee \Pi_2}$, etc.

Uniform Interpolation

Take the Lindenbaum algebra of a locally tabular logic. Let $\mathcal{D}(\Lambda)$ the collection of (equivalence classes of) formulas in the sublanguage generated by $\Lambda = \{q_1, ..., q_n\}$. Then $\diamond_{\mathcal{D}(\Lambda)}([\varphi]) = \bigwedge \{[\psi] \in \mathcal{D}(\Lambda) \mid \vdash \varphi \rightarrow \psi\}$ is the (equivalence class of) the *uniform post-interpolant* of φ , and $\blacksquare_{\mathcal{D}(\Lambda)}$ yields the *uniform pre-interpolant*.

• Stone-type dualities:

There is a natural duality between complete-sublattice-representable CK algebras (i.e. tense S4 algebras) and bicompact, strongly pairwise-zero-dimensional bitopologies [Bezhanishvili et al., 2010]. Is there a natural Stone duality for sublattice-representable CK algebras?

Thank you!

References

- BASSETT, R., PhD Dissertation (manuscript), Stanford University.
- van Benthem, J., G. Bezhanishvili, B. ten Cate, and D. Sarenac, Multimodal Logics of Products of Topologies, *Studia Logica*, vol. 84 (2006), pp. 369–392.
- BEZHANISHVILI, G., BEZHANISHVILI, N., GABELAIA, D., KURZ, A., Bitopological duality for distributive lattices and Heyting algebras. *Mathematical Structures in Computer Science*, 20(3) (2010), pp. 359-393.
- Lin, F., "On strongest necessary and weakest sufficient conditions," *Artificial Intelligence*, vol. 128 (2001), pp. 143–159.
- KELLY, J. C., "Bitopological spaces," Proceedings of the London Mathematical Society, vol. 13 (1963), pp. 71–89.
 - REILLY, I. L., "Zero dimensional bitopological spaces," *Indag. Math.*, vol. 35 (1973), pp. 127–131.
- ТАRSKI, A., "A lattice theoretical fixpoint theorem and its application," Pacific Journal of Mathematics, vol. 5 (1955), pp. 285–310.

SEGERBERG, K., "Modal Logics with Linear Alternative Relations," *Theoria*, vol. 36 (1970), pp. 301–322.

Modal systems for closures and kernels

Systems:

S4t: all rules and axioms above.

1

• $S4 \oplus S4 = ECMNT4 \oplus ECMNT4 = S4t \setminus \{F_{\diamondsuit}, F_{\blacksquare}\}$