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Boolean approximations

Designated objects: propositions, subsets or properties of a system that are directly

accessible (e.g. observable, or definable in a fixed language).

We approximate Boolean objects by meets and joins of designated elements

above/below it.
Let A a complete Boolean algebra and D C A. Define

op(a) == A{d € Dla< d)
Mpy(a) := \/{d € D|d < a}.

1/32



Boolean approximations

Examples:

o M = (M, {R™},c,) a first-order model, A = P(M) and D = Def(M) the
definable subsets.

o Let A an algebra of propositions, D the observation statements. Let I" a theory.

Oplis the strongest observable prediction;

Bl is the minimal sufficient evidence for T'.

o Knowledge representation, databases, rough sets, abductive reasoning.
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@ Uniform interpolants
@ Non-objectual quantification: distributive properties [Bassett].
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Approximation models

Let Lgivenby o, ¢ == ploAY oA [ e[ Op | M.

An approximation model is a structure (A, D, [-]) with A a complete Boolean

algebra, D C A, and a valuation [-] : £ — A satisfying

[©¢] = ©n([e])
(o] = mp([e]).

A formula ¢ holds in (A, D, [-]) if and only if [¢] = T 4: we then write

(A.D,[]) I ¢

We are interested in structures (A, Op, ID) where D C A.
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What is the complete logic of approximation structures (A, D)?
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What is the complete logic of approximation structures (A, D)?

Class of substructures D Class of algebras Corresponding modal logic

c K¢ Log(Kc)

K¢ := {(A,c,k)|EIDEC,C:ODandk:ID}
Log(K) :={p € L|M |= ¢ for all M € K}
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What is the complete logic of approximation structures (A, D)?

Class of substructures D Class of algebras Corresponding modal logic
C Ke Log(Kc)

arbitrary sets ? ?

sublattices ? ?

subalgebras ? ?

complete sublattices ? ?

complete subalgebras ? ?

(representation theorem) (completeness theorem)

K¢ :={(A c,k)|IDEC, c=Cpandk = Mp}
Log(K) := {p € L|M = ¢ for all M € K}
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Closure-kernel algebras

A CK algebra is a structure (A, c, k) with c a closure operator and k a kernel
operator with c(L) = L and k(T) = T.

Closure operator: a map ¢ : A — A such that, for all a, b € A:

e a<c(a);

e c(c(a)) = c(a);
e ifa< bthenc(a) < c(b).

Kernel operator: map k : A — A such that, for every a, b € A:

o kia) <a

o k(k(a)) = k(a);
o if a< bthen k(a) < k(b).

Let D C A. Then $p is a closure operator and B p a kernel operator.
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Closure-kernel algebras

A CK algebra is a structure (A, c, k) with c a closure operator and k a kernel
operator with ¢(L) = L and k(T) = T.

Closure operator: a map ¢ : A — A such that, for all a, b € A:

o a< c(a); Me— Cp
o c(c(a)) = c(a); (4) OCp — Cp
p—Y

e ifa< bthenc(a) < c(b). S 5 o0 (Mo)

Kernel operator: map k : A — A such that, for every a, b € A:

o k(a) <a (Tm) My — ¢
o k(k(a)) = k(a); (4g) Hp — HEp
=Y

o if a < bthen k(a) < k(b). Ty (Mm)

Let D C A. Then $p is a closure operator and Mp a kernel operator.
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Modal validities for closures and kernels

Inference rules:

p =Y oY

Axioms:
o (E) Propositional tautologies and dual axioms:
(Duo) Op > =0
(Dum) ¢¢ «— —Hl-p
@ Axioms for the & modality: @ Axioms for the B modality:
(NOT (Ng) BT
Me—Op (Tm) My — ¢
4) OOp — Op (4m) My — HEp

All approximation operators validate EMNT4 @ EMNTA4.
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Approximation operators from complete sublattices

Let D a complete sublattice of A (with T 4, L 4 € D).

o Op is completely \/-distributive:

op(\/ X) = \/{on(x) |x € X}

o Mp is completely A-distributive:
(A X) = \{mbo(x)|x € x}

o We have OpMp(a) =Mp(a)
HyO)p (a) =<p (a)

8/32



Logic for complete sublattices?

Inference rules:

EE2Y ) 2R o) g (Mm)
Axioms:
o (E) Propositional tautologies and o Interaction axioms:
dual axioms: (Fo) Ollp «— My
(Duo) Op - =0 (Fm) Oy & Op
(Dum) 49 ¢ ~Bg
@ Axioms for the & modality: o Axioms for the Ml modality:
(NOT (Nm) BT
Me = Cp (Tw) Mo = ¢
4) OOp — Op (4m) My — HElp
(Co) O(p V) = (CpV oY) Cm) (Hp AHy) — B(p A7)

S4t is sound for the class of closure-kernel algebras generated by complete
sublattices.
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Complete Sublattices: a duality

Tarski [1955] proved the following duality result for complete meet-semilattices:

TN i
(4, c) (A fp(©p))
I (A, fp(c)) (A, ©p) I
(A (o)) (4, D)

g S g S
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Complete Sublattices: a duality

Extend Tarski’s result to a duality between pairs of operators and complete

sublattices:
m
m
(A, c k)

" (A, fp(c))
(‘A’ <>fp(c) ' .fp(c))

e S g S
This yields a representation result:

A CK algebra (A, c, k) is representable by a complete sublattice iff we have

cok =k, koc=c,and

c(\V/ X) = \V{c(x)|x € x}
k(/\X) = A\fk(x) | x € x}

11/32



Complete sublattices and tense S4

A tense algebra is a Boolean algebra A with two normal' and additive operators
p, f and their respective duals defined as h(x) := —p(—x) and g(x) := —=f (-x),
which satisfy

foralla € A, a< g(p(a)) and a < h(f(a)). (1)

An S4 tense algebra is a tense algebra where the operators p and f are both

inflationary and idempotent.

Proposition

The class of CK algebras representable by complete sublattices corresponds exactly to

complete S4 tense algebras.

'An operator m is normal if m(L) = L.
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Complete sublattices and tense S4

The logic of approximation operators generated by complete sublattices is the

tense logic S4t:
Log(CSLat) = S4t
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Representable closure-kernel algebras

What is the logic of approximation operators for arbitrary sets?

A CK algebra (A, c, k) representable if there exists some D C A such that Op = ¢
and @p = k.
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Representable closure-kernel algebras

What is the logic of approximation operators for arbitrary sets?

A CK algebra (A, c, k) representable if there exists some D C A such that Op = ¢
and @p = k.

Example: Let (X, 7) a T topological space. Then (P(X), clr, id) is a representable
CK algebra: let D consist of the closed sets.

Non-example: Let (X, 7) an non-trivial, connected topological space. Consider
the algebra (P(X), cl, int) with cl and int the closure and interior operators

generated by the topology 7.
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Representable closure-kernel algebras

Proposition (Representability Criterion)

Let (A, c, k) a CK algebra. The following are equivalent:
(1) (A, c, k) is representable;

(2) Any fixpoint is expressible by common fixpoints:

fp(c) = Mifp(c) N fp(k)]
fp(k) = J{fp(c) N fp(k)]

V.

Notation: M[F] := {A\ S| S C F} for the set of F-meets and J[F] := {\/ S| S C F}
for the F-joins.

If c and k are representable, then taking D := fp(c) N fp(k) generates ¢ and k.
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General duality for representable algebras

(A c k) (A, F(<Op, Mp))
I (A, F(e k) (A, ©Op, Hp) Ul
(A O r(c ) Mr(c ) (A, D)

N S g S

Dualities: here, F(c, k) := fp(c) N fp(k) is the set of shared fixpoints.
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Representable closure-kernel algebras

The representable algebras do not form an algebraic variety (not even closed under

subalgebras).
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Representable closure-kernel algebras

The representable algebras do not form an algebraic variety (not even closed under

subalgebras).

(a) (A, c, k) with fp(c) N fp(k) shaded. (b) A non-representable subalgebra of A.

Subnormal logic: the distributivity formula M(¢ — %) — (M@ — M%) is not valid on
representable CK algebras for M € {O, B}
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Representable closure-kernel algebras

The logic of CK algebras is EMNT4 @ EMNTA4.

Axioms for the & modality: Axioms for the ll modality:
(NOT (Nm) @T

Me = Cp (Tw) Mo = ¢

4) OOp — Op (4m) My — HEp

Does representability force any new validities?
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Representable closure-kernel algebras

The logic of CK algebras is EMNT4 @ EMNTA4.

Axioms for the & modality: Axioms for the ll modality:
(NOT (Nm) @T

Me = Cp (Tw) Mo = ¢

4) OOp — Op (4m) My — HEp

Does representability force any new validities? No.

The logic EMNT4 @ EMNT4 is sound and complete with respect to representable
CK algebras.

Proof idea: showing that every complete CK algebra is isomorphically embeddable

into a representable CK algebra.
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Representable closure-kernel algebras

Embedding Lemma:
Every complete CK algebra is isomorphically embeddable into a representable

CK algebra.

o c-defective elements N¢ := fp(c) \ M[F(c, k)]
o k-defective elements Ny := fp(k) \ J[F(c, k)]
Take the direct product A ® A and let

D:= {(x,x) |x € .F(c,k)}U{(X,T),(T,X) ‘X € Nc}
U{(x, L), (L, x)|x € N}

The diagonal map 6 : a — (a, a) embeds the full algebra (A, c, k) into the
representable algebra (A ® A, Op, lp).
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Completeness for arbitrary set approximations

The logic EMNT4 @ EMNT4 is sound and complete with respect to representable
CK algebras.

Step 1: For any non-theorem, get a countermodel 91 by taking a canonical

neighbourhood model (routine).

Step 2: Switching perspectives, the canonical model gives us a complete CK algebra

Agn. So we have a countermodel based on a CK-algebra.

Step 3: By the embedding lemma, the embedding Agn ® Agx with the obvious

valuation gives a countermodel based on a representable CK-algebra.
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Sublattice-based approximation operators

Now consider the case where D is a sublattice.

@ The fusion S4 @ S4 is sound with respect to sublattice-generated

approximation structures.

Axioms for the & modality: Axioms for the ll modality:
(NOT (Nm) ET

(Me = Op (Tw) Wy = ¢

(4) OCp — Op (4m) My —» Hlp

(Co) O(pV ) = (O V o) (Cm) (W A HY) — B(pAY)
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Sublattices: finite algebraic models?

Consider
p=CpA-ROp
Note that Op — B<Cpis valid on any complete sublattice model. But any

sublattice of a finite lattice is complete sublattice, so ¢ has no

sublattice-countermodel based on any finite algebra.

Yet ¢ is satisfiable: take (P(IR), ©) where O are the standard opens, and set
V(p) = [0,1].

Observation

The logic S4 & S4 does not have the finite model property with respect to
sublattice-based CK algebras.
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Sublattices: finite algebraic models?

A slightly less trivial example: the convergence formula Cllp — B,

For sublattice-based approximations, this holds in any finite approximation
structure.

But it fails for sublattice-based approximations in general. Consider the structure
(P(N), D) where
D := COF[1] UP<cw(IN\{1,2})

D is the sublattice of P(IN) consisting of all cofinite sets containing 1 and all finite

sets containing neither 1 nor 2. Now let A := {2n|n € N}.

omA= (A\{2})U{1}
BOA = A\ {2}
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Sublattices: a topological connection

A bitopological space is a structure (X, 71, 72) where both 71 and 7, are topologies

on X. The representability criterion gives us:

A bitopological space (X, T1, T2) is pairwise zero-dimensional if and only if the

algebra (P(X), clr,, intr,) is sublattice-representable.

The algebra (P(X), clry, intr,) is representable exactly if:

fp(clr,) = M(fp(clr,) N fp(intr,)) Ci=M(Cin0O,)
fp(intr,) = J(fp(clr ) N fp(intr,)) O, =J(C1NOy)

i.e., 71 admits a basis of T-closed sets, and vice-versa.’

o For Alexandrov bitopologies generated by a Kripke frame, this means
C1 = O;. For S4 @ S4 frames, this means R; = RZ_]. So we cannot obtain

completeness via canonical Kripke frames.

Notion introduced by I. L Reilly [1973].
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Sublattices: a topological connection

Let 7 the standard subspace topology on Q inherited from IR.

The horizontal-vertical bitopology on Q x Q is given by the horizontal topology H
generated by the basis { B x {q}| q € Q, B € 7} and the vertical topology V
generated by {{q} x B|q€ Q, BE T}.

Theorem (Van Benthem, Bezhanishvili, Sarenac, ten Cate 2006)

S4 @ S4 is topologically complete with respect to the space Q x Q equipped with the
horizontal-vertical bitopology.

25/32



Sublattices: a topological connection

S4 @ S4 is complete with respect to sublattice-representable CK algebras.

From any topological countermodel on (Q x Q, H, V) we obtain an algebraic
countermodel (’P(Q x Q), cly, inty). To show this sublattice-representable,

enough to observe that (Q xQ,H, V) is pairwise zero-dimensional.

| ~

b)) %11y

S4 @ S4 is complete with respect to pairwise zero-dimensional bitopological spaces.
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Subalgebras: the collapse of modalities

When D is a subalgebra of A, the operators ¢p and Bp become duals:

Op(a) = ~Mp(—a)

(1) S5 is the complete logic of approximation structures (A, D) where D is a

complete subalgebra of A.

(2) The complete logic of subalgebra-generated approximation operators is

monomodal S4.
(1): immediate via (taking the complex algebras of) Kripke frames.

(2): by completeness of S4 with respect to Q.

S4 and S5 can be seen as logics of approximation through subalgebras.
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Summary of results

Class of (A, D) structures  Duality?  Representation for Corresponding modal
(A, c k) logic
[No duality with (A, D) no c closure, k kernel, EMNT4o @ EMNT4g
structures] c(l)y=Lk(T)=T
All quasi as above, plus EMNT4c @ EMNT4g
fp(c) € M[fp(c) Nfp(k)]
fp(k) C J[fp(c) Nfp(k)]
[representable algebras]
D is a sublattice with quasi representable additive CK S46 54
1, TeD algebras (add distributivity axioms)
D is a subalgebra quasi as above, plus S4

k(a) = =c(—a)

(S4o with By — ~O-gp)

D is a complete sublattice
with L, T € D

IR

CK algebras with
cok=k, koc=c,
c(VX) = Vyexcl),
k(AX) = Avexk(x)

S4t = (S4o @ S4m) ®
{OMp « Hp, BOp « Op}

D is a complete subalgebra

IR

as above, plus

k(a) = =c(—a)

S5
(S50 with By < ~O-gp)
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Conclusion

(A, c k)
) (A F(e k)
(A, O F(ci Br(ci)

We determined the modal logics of approximation for the most salient types of

approximation structures: in each case, we identified the corresponding class of
algebras.

@ The emergence of various modal laws traced to simple structural features of
the generating set;

@ We recovered several well-known bimodal logics as logics of approximation;

o Interplay of algebraic and topological methods in modal logic:

o Duality between CK algebras and approximation structures;
o Bitopological spaces.
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Other directions?

@ Multimodal case: algebra of substructures.
<Op, Wp (D € D) given by a class D of substructures D C A, itself equipped with
its own algebraic operations for merging or combining approximating sets. E.g.
operations on partitions. Interaction laws between operators Ory art,, B, v,

etc.
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@ Multimodal case: algebra of substructures.
<Op, Wp (D € D) given by a class D of substructures D C A, itself equipped with
its own algebraic operations for merging or combining approximating sets. E.g.
operations on partitions. Interaction laws between operators Ory art,, B, v,
etc.

@ Uniform Interpolation
Take the Lindenbaum algebra of a locally tabular logic. Let D(A) the collection of
(equivalence classes of) formulas in the sublanguage generated by
A ={q ..., qn}. Then Opp)([9]) = A{[¥] € D(A)| F ¢ — ¥} isthe
(equivalence class of) the uniform post-interpolant of ¢, and M, yields the
uniform pre-interpolant.

o Stone-type dualities:
There is a natural duality between complete-sublattice-representable CK algebras
(i.e. tense S4 algebras) and bicompact, strongly pairwise-zero-dimensional
bitopologies [Bezhanishvili et al., 2010]. Is there a natural Stone duality for
sublattice-representable CK algebras?

Thank you!
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Modal systems for closures and kernels

Inference rules:

— — -
EEZY ) I (M) gy (Mm)
Axioms:
o (E) Propositional tautologies and o Axioms for the M modality:
dual axioms: (Ng)ET
(Duo) Op > =Ogp (Tm)Mp — ¢
(Dum) #¢ < —H—p (4m) Mo — HElp
@ Axioms for the & modality: Cm) (Mo A HY) — B(p A )
(NOT @ Interaction axioms:
Me = Cp (Fo) Ollp « Mo
4) OCp — Cp (Fm) BCp & Op
(Co) O(p V) = (CpV oY)
Systems:

@ S4t: all rules and axioms above.

e S4@ S4 = ECMNT4@ ECMNT4 = S4t\ {Fo, Fm}
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