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Boolean approximations

Designated objects: propositions, subsets or properties of a system that are directly

accessible (e.g. observable, or definable in a fixed language).

We approximate Boolean objects by meets and joins of designated elements

above/below it.

Let A a complete Boolean algebra and D � A. Define

3D(a) :=
∧
fd 2 D j a � dg

�D(a) :=
∨
fd 2 D j d � ag.
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Boolean approximations

Examples:

M = (M, fRMi gi2I) a first-order model, A = P(M) and D = Def(M) the

definable subsets.

Let A an algebra of propositions, D the observation statements. Let Γ a theory.

3DΓ is the strongest observable prediction;

�DΓ is the minimal sufficient evidence for Γ.

Knowledge representation, databases, rough sets, abductive reasoning.

Uniform interpolants

Non-objectual quantification: distributive properties [Bassett].
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Approximation models

Let L given by ', ::= p j'^ j'^ j :' j3' j�'.

An approximation model is a structure (A,D, [[�]]) with A a complete Boolean

algebra, D � A, and a valuation [[�]] : L ! A satisfying

[[3']] = 3D
(
[[']]

)
[[�']] = �D

(
[[']]

)
.

A formula ' holds in (A,D, [[�]]) if and only if [[']] = >A: we then write

(A,D, [[�]]) j= '.

We are interested in structures (A,3D,�D) where D � A.

3 / 32



What is the complete logic of approximation structures (A,D)?

Class of substructures D Class of algebras Corresponding modal logic

C KC Log(KC)

KC :=
{
(A, c, k) j 9D 2 C, c = 3D and k = �D

}
Log(K) := f' 2 L jM j= ' for allM 2 Kg
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What is the complete logic of approximation structures (A,D)?

Class of substructures D Class of algebras Corresponding modal logic

C KC Log(KC)

arbitrary sets ? ?

sublattices ? ?

subalgebras ? ?

complete sublattices ? ?

complete subalgebras ? ?

(representation theorem) (completeness theorem)

KC :=
{
(A, c, k) j 9D 2 C, c = 3D and k = �D

}
Log(K) := f' 2 L jM j= ' for all M 2 Kg
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Closure-kernel algebras

A CK algebra is a structure (A, c, k) with c a closure operator and k a kernel

operator with c(?) = ? and k(>) = >.

Closure operator: a map c : A ! A such that, for all a, b 2 A:

a � c(a);

c(c(a)) = c(a);

if a � b then c(a) � c(b).

Kernel operator: map k : A ! A such that, for every a, b 2 A:

k(a) � a;

k(k(a)) = k(a);

if a � b then k(a) � k(b).

Let D � A. Then 3D is a closure operator and �D a kernel operator.
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(T) '! 3'

(4) 33'! 3'

'!  

3'! 3 
(M3)

Kernel operator: map k : A ! A such that, for every a, b 2 A:

k(a) � a;

k(k(a)) = k(a);

if a � b then k(a) � k(b).

(T�) �'! '

(4�) �'! ��'

'!  

�'! � 
(M�)

Let D � A. Then 3D is a closure operator and �D a kernel operator.
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Modal validities for closures and kernels

Inference rules:
' '!  

 
(MP)

'!  

3'! 3 
(M3)

'!  

�'! � 
(M�)

Axioms:

(E) Propositional tautologies and dual axioms:

(Du3) 2'$ :3:'

(Du�) �'$ :�:'

Axioms for the 3 modality:

(N) 2>

(T) '! 3'

(4) 33'! 3'

Axioms for the � modality:

(N�) �>

(T�) �'! '

(4�) �'! ��'

All approximation operators validate EMNT4� EMNT4.
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Approximation operators from complete sublattices

Let D a complete sublattice of A (with >A,?A 2 D).

3D is completely

∨
-distributive:

3D(
∨

X) =
∨
f3D(x) j x 2 Xg

�D is completely

∧
-distributive:

�D(
∧

X) =
∧
f�D(x) j x 2 Xg

We have 3D �D (a) = �D (a)

�D3D (a) = 3D (a)
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Logic for complete sublattices?

Inference rules:
' '!  

 
(MP)

'!  

3'! 3 
(M3)

'!  

�'! � 
(M�)

Axioms:
(E) Propositional tautologies and

dual axioms:

(Du3) 2'$ :3:'

(Du�) �'$ :�:'

Interaction axioms:

(F3) 3�'$ �'

(F�) �3'$ 3'

Axioms for the 3 modality:

(N) 2>

(T) '! 3'

(4) 33'! 3'

(C3) 3('_ )! (3'_3 )

Axioms for the � modality:

(N�) �>

(T�) �'! '

(4�) �'! ��'

(C�) (�'^� )! �('^ )

S4t is sound for the class of closure-kernel algebras generated by complete

sublattices.
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Complete Sublattices: a duality

Tarski [1955] proved the following duality result for complete meet-semilattices:

(A, c)

=

(A,3
fp(c))

(A, fp(c))

G

FP

(A,3D)

(A, fp(3D))

=

(A,D)

G

FP
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Complete Sublattices: a duality

Extend Tarski’s result to a duality between pairs of operators and complete

sublattices:

(A, c, k)

=

(A,3
fp(c),�fp(c))

(A, fp(c))

G

FP

(A,3D,�D)

(A, fp(3D))

=

(A,D)

G

FP

This yields a representation result:

A CK algebra (A, c, k) is representable by a complete sublattice iff we have

c � k = k, k � c = c, and

c(
∨

X) =
∨
fc(x) j x 2 Xg

k(
∧

X) =
∧
fk(x) j x 2 Xg

11 / 32



Complete sublattices and tense S4

A tense algebra is a Boolean algebra A with two normal
1
and additive operators

p, f and their respective duals defined as h(x) := :p(:x) and g(x) := :f (:x),

which satisfy

for all a 2 A, a � g(p(a)) and a � h(f (a)). (1)

An S4 tense algebra is a tense algebra where the operators p and f are both

inflationary and idempotent.

Proposition

The class of CK algebras representable by complete sublattices corresponds exactly to

complete S4 tense algebras.

1

An operator m is normal if m(?) = ?.
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Complete sublattices and tense S4

Theorem

The logic of approximation operators generated by complete sublattices is the

tense logic S4t:

Log(CSLat) = S4t
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Representable closure-kernel algebras

What is the logic of approximation operators for arbitrary sets?

A CK algebra (A, c, k) representable if there exists some D � A such that 3D = c

and �D = k.

Example: Let (X , � ) a T1 topological space. Then (P(X), cl� , id) is a representable

CK algebra: let D consist of the closed sets.

Non-example: Let (X , � ) an non-trivial, connected topological space. Consider

the algebra (P(X), cl, int) with cl and int the closure and interior operators

generated by the topology � .
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Representable closure-kernel algebras

Proposition (Representability Criterion)

Let (A, c, k) a CK algebra. The following are equivalent:

(1) (A, c, k) is representable;

(2) Any fixpoint is expressible by common fixpoints:

fp(c) = M[fp(c) \ fp(k)]

fp(k) = J[fp(c) \ fp(k)]

Notation: M[F ] := f
∧

S j S � Fg for the set of F -meets and J[F ] := f
∨

S j S � Fg

for the F -joins.

If c and k are representable, then taking D := fp(c) \ fp(k) generates c and k.
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General duality for representable algebras

(A, c, k)

=

(A,3F(c,k),�F(c,k))

(A,F(c, k))

G

FP

(A,3D,�D)

(A,F(3D,�D))

�

(A,D)

G

FP

Dualities: here, F(c, k) := fp(c) \ fp(k) is the set of shared fixpoints.
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Representable closure-kernel algebras

The representable algebras do not form an algebraic variety (not even closed under

subalgebras).

>

:b:d :a

a
b

d

?

(a) (A, c, k) with fp(c) \ fp(k) shaded.

>

b :b

?

k

c

(b) A non-representable subalgebra ofA.

Subnormal logic: the distributivity formula M('!  )! (M'! M ) is not valid on

representable CK algebras for M 2 f2,�g.
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Representable closure-kernel algebras

The logic of CK algebras is EMNT4� EMNT4.

Axioms for the 3 modality:

(N) 2>

(T) '! 3'

(4) 33'! 3'

Axioms for the � modality:

(N�) �>

(T�) �'! '

(4�) �'! ��'

Does representability force any new validities?

No.

Theorem

The logic EMNT4� EMNT4 is sound and complete with respect to representable

CK algebras.

Proof idea: showing that every complete CK algebra is isomorphically embeddable

into a representable CK algebra.
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Representable closure-kernel algebras

Embedding Lemma:
Every complete CK algebra is isomorphically embeddable into a representable

CK algebra.

c-defective elements Nc := fp(c) nM[F(c, k)]

k-defective elements Nk := fp(k) n J[F(c, k)]

Take the direct product A
A and let

D :=
{
(x, x) j x 2 F(c, k)

}
[
{
(x,>), (>, x)

∣∣ x 2 Nc

}
[
{
(x,?), (?, x)

∣∣ x 2 Nk

}
.

The diagonal map � : a 7! (a, a) embeds the full algebra (A, c, k) into the

representable algebra (A
A,3D,�D).
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Completeness for arbitrary set approximations

Theorem

The logic EMNT4� EMNT4 is sound and complete with respect to representable

CK algebras.

Step 1: For any non-theorem, get a countermodelM by taking a canonical

neighbourhood model (routine).

Step 2: Switching perspectives, the canonical model gives us a complete CK algebra

AM. So we have a countermodel based on a CK-algebra.

Step 3: By the embedding lemma, the embedding AM 
AM with the obvious

valuation gives a countermodel based on a representable CK-algebra.
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Sublattice-based approximation operators

Now consider the case where D is a sublattice.

The fusion S4� S4 is sound with respect to sublattice-generated

approximation structures.

Axioms for the 3 modality:

(N) 2>

(T) '! 3'

(4) 33'! 3'

(C3) 3('_ )! (3'_3 )

Axioms for the � modality:

(N�) �>

(T�) �'! '

(4�) �'! ��'

(C�) (�'^� )! �('^ )
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Sublattices: finite algebraic models?

Consider

' = 3p ^:�3p

Note that 3p! �3p is valid on any complete sublattice model. But any

sublattice of a finite lattice is complete sublattice, so ' has no

sublattice-countermodel based on any finite algebra.

Yet ' is satisfiable: take (P(R),O) where O are the standard opens, and set

V (p) = [0, 1].

Observation

The logic S4� S4 does not have the finite model property with respect to

sublattice-based CK algebras.
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Sublattices: finite algebraic models?

A slightly less trivial example: the convergence formula 3�'! �3'.

For sublattice-based approximations, this holds in any finite approximation

structure.

But it fails for sublattice-based approximations in general. Consider the structure

(P(N),D) where

D := COF[1] [P<!(N n f1, 2g)

D is the sublattice of P(N) consisting of all cofinite sets containing 1 and all finite

sets containing neither 1 nor 2. Now let A := f2n j n 2 Ng.

3�A = (A n f2g) [ f1g

�3A = A n f2g
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Sublattices: a topological connection

A bitopological space is a structure (X , �1, �2) where both �1 and �2 are topologies

on X . The representability criterion gives us:

Lemma

A bitopological space (X , �1, �2) is pairwise zero-dimensional if and only if the

algebra (P(X), cl�1 , int�2 ) is sublattice-representable.

The algebra (P(X), cl�1 , int�2 ) is representable exactly if:

fp(cl�1 ) = M
(
fp(cl�1 ) \ fp(int�2 )

)
fp(int�2 ) = J

(
fp(cl�1 ) \ fp(int�2 )

) C1 = M(C1 \O2)

O2 = J(C1 \O2)

i.e., �1 admits a basis of �2-closed sets, and vice-versa.
2

For Alexandrov bitopologies generated by a Kripke frame, this means

C1 = O2. For S4� S4 frames, this means R1 = R�1

2
. So we cannot obtain

completeness via canonical Kripke frames.

2

Notion introduced by I. L Reilly [1973].
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Sublattices: a topological connection

Let � the standard subspace topology on Q inherited from R.

The horizontal-vertical bitopology on Q�Q is given by the horizontal topologyH

generated by the basis

{
B� fqg j q 2 Q, B 2 �

}
and the vertical topology V

generated by

{
fqg � B j q 2 Q, B 2 �

}
.

Theorem (Van Benthem, Bezhanishvili, Sarenac, ten Cate 2006)

S4� S4 is topologically complete with respect to the space Q�Q equipped with the

horizontal-vertical bitopology.
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Sublattices: a topological connection

Theorem

S4� S4 is complete with respect to sublattice-representable CK algebras.

From any topological countermodel on (Q�Q,H,V) we obtain an algebraic

countermodel

(
P(Q�Q), clH, intV

)
. To show this sublattice-representable,

enough to observe that (Q�Q,H,V) is pairwise zero-dimensional.

Corollary

S4� S4 is complete with respect to pairwise zero-dimensional bitopological spaces.
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Subalgebras: the collapse of modalities

When D is a subalgebra of A, the operators 3D and �D become duals:

3D(a) = :�D(:a)

(1) S5 is the complete logic of approximation structures (A,D) where D is a

complete subalgebra of A.

(2) The complete logic of subalgebra-generated approximation operators is

monomodal S4.

(1): immediate via (taking the complex algebras of) Kripke frames.

(2): by completeness of S4 with respect to Q.

S4 and S5 can be seen as logics of approximation through subalgebras.
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Summary of results

Class of (A,D) structures Duality? Representation for
(A, c, k)

Corresponding modal
logic

[No duality with (A,D)

structures]

no c closure, k kernel,

c(?) = ?, k(>) = >

EMNT43 � EMNT4�

All quasi as above, plus

fp(c) � M
[
fp(c) \ fp(k)

]
fp(k) � J

[
fp(c) \ fp(k)

]
[representable algebras]

EMNT43 � EMNT4�

D is a sublattice with

?,> 2 D

quasi representable additive CK

algebras

S4� S4

(add distributivity axioms)

D is a subalgebra quasi as above, plus

k(a) = :c(:a)

S4

(S43 with �'$ :3:')

D is a complete sublattice

with ?,> 2 D

�= CK algebras with

c � k = k, k � c = c,

c(
∨

X) =
∨

x2X c(x),

k(
∧

X) =
∧

x2X k(x)

S4t = (S43 � S4�)�

f3�'$ �',�3'$ 3'g

D is a complete subalgebra
�= as above, plus

k(a) = :c(:a)

S5

(S53 with �'$ :3:')
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Conclusion

(A, c, k)

=

(A,3F(c,k),�F(c,k))

(A,F(c, k))

G

FP

(A,3D,�D)

(A,F(3D,�D))

�

(A,D)

G

FP

We determined the modal logics of approximation for the most salient types of

approximation structures: in each case, we identified the corresponding class of

algebras.

The emergence of various modal laws traced to simple structural features of

the generating set;

We recovered several well-known bimodal logics as logics of approximation;

Interplay of algebraic and topological methods in modal logic:

Duality between CK algebras and approximation structures;

Bitopological spaces.
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Other directions?

Multimodal case: algebra of substructures.

3D ,�D (D 2 D) given by a class D of substructures D � A, itself equipped with

its own algebraic operations for merging or combining approximating sets. E.g.

operations on partitions. Interaction laws between operators 3Π1^Π2
, �Π1_Π2

,

etc.

Uniform Interpolation

Take the Lindenbaum algebra of a locally tabular logic. Let D(Λ) the collection of

(equivalence classes of) formulas in the sublanguage generated by

Λ = fq1, ..., qng. Then 3D(Λ)([']) =
∧{

[ ] 2 D(Λ)
∣∣ ` '!  

}
is the

(equivalence class of) the uniform post-interpolant of ', and �D(Λ) yields the

uniform pre-interpolant.

Stone-type dualities:

There is a natural duality between complete-sublattice-representable CK algebras

(i.e. tense S4 algebras) and bicompact, strongly pairwise-zero-dimensional

bitopologies [Bezhanishvili et al., 2010]. Is there a natural Stone duality for

sublattice-representable CK algebras?

Thank you!
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3'! 3 
(M3)

'!  

�'! � 
(M�)

Axioms:
(E) Propositional tautologies and

dual axioms:

(Du3) 2'$ :3:'

(Du�) �'$ :�:'

Axioms for the 3 modality:

(N) 2>

(T) '! 3'

(4) 33'! 3'

(C3) 3('_ )! (3'_3 )

Axioms for the � modality:

(N�) �>

(T�) �'! '

(4�) �'! ��'

(C�) (�'^� )! �('^ )

Interaction axioms:

(F3) 3�'$ �'

(F�) �3'$ 3'

Systems:
S4t: all rules and axioms above.

S4� S4 = ECMNT4� ECMNT4 = S4t n fF3, F�g
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