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Computable type

A compact set K ⊆ Rn is:
• Computable if the set of rational balls intersecting K is

decidable,
• Semicomputable if the set of rational balls that are

disjoint from K is computably enumerable (c.e.).

Example
There is a semicomputable disk in R2 which is not computable.
Center (0, 0), radius 1−

∑
n∈halting set 2

−n.

Question
Is there a semicomputable circle which is not computable?
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Computable type
Spheres

Theorem ([Miller 2002])

If X ⊆ Rm is homeomorphic to an n-dimensional sphere, then

X is semicomputable ⇐⇒ X is computable.

1-sphere 2-sphere
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Computable type
Manifolds

Theorem ([Iljazović 2013])

If X ⊆ Rm is a closed manifold, then

X is semicomputable ⇐⇒ X is computable.

Torus
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Computable type
Other spaces?

Definition
A compact space X has computable type if for every
set K ⊆ Rm that is homeomorphic to X,

K is semicomputable ⇐⇒ K is computable.

We give a characterization of the simplicial complexes that have
computable type.
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Computable type
Simplicial complexes

A simplicial complex is made of
simplices of any dimensions.
• 1-simplex = edge
• 2-simplex = triangle,
• 3-simplex = tetrahedron,
• Etc.

Main question
Which finite simplicial complexes X have computable type?

Answer
Look at the stars...
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Computable type
Simplicial complexes

A star S consists of:
• A center c,
• A boundary ∂S,
• Rays from c to ∂S.

c

∂S

Definition
A star (S, ∂S) has the surjection property if every continuous
function f : S → S such that f |∂S = id∂S is surjective.
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Simplicial complexes

A star S consists of:
• A center c,
• A boundary ∂S,
• Rays from c to ∂S.

c

∂S

Definition
A star (S, ∂S) has the surjection property if every continuous
function f : S → S such that f |∂S = id∂S is surjective.

Theorem ([Amir, H. 2021])

A finite simplicial complex has computable type ⇐⇒ every star
has the surjection property.
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The surjection property

How to determine whether a star (S, ∂S) has the surjection
property?

• A partial characterization using (homology) cycles,
• A complete characterisation using homotopy.
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The surjection property
Cycles

The boundary of a 2-dimensional star is a graph.

a b c

✗ ✓ ✓ ✓

Theorem ([Amir, H. 2021])

A 2-dimensional star has the surjection property ⇐⇒ its
boundary is a union of cycles.
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The surjection property
Cycles

(a) Crescent

(b) House with two rooms + half-cut
12 / 30



The surjection property
Cycles

Corollary

The “crescent” does not have computable type.

Indeed, this star does not have the surjection property:
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The surjection property
Cycles

Corollary

The “house with two rooms” has computable type.

Indeed, all the stars have the surjection property:

a

b

c
c

a b

c
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The surjection property
Cycles

Higher dimensions

Theorem ([Amir, H. 2021])

A pure n-dimensional star has the surjection property ⇐⇒ its
boundary is a union of (n− 1)-dimensional cycles.

Higher-dimensional cycles are described by homology.

✓Union of cycles ✗Not a union of cycles
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The surjection property
Homotopy

• Let X be a space,

• Let x ∈ X have a neighborhood U ∼= Rn,
• The quotient space X/U c is Sn,
• Let qx : X → Sn be the quotient map.
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The surjection property
Homotopy

Theorem
A star (S, ∂S) has the surjection property ⇐⇒ ∀x ∈ ∂S, the
quotient map qx : ∂S → Sn is not homotopic to a constant.

Corollary

Whether a finite simplicial complex has computable type is
decidable.

Proof.
The article [1] shows that homotopy between maps is
decidable.

[1] M. Filakovský, L. Vokrínek, Are two given maps
homotopic? An algorithmic viewpoint, Found. Comput.
Math. 20 (2) (2020) 311–330
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Topological invariants

Let X be a compact space and P a topological invariant.

Theorem ([Amir, H. 2021])

If X is minimal satisfying P and P is Σ0
2, then X has

computable type.

Proof idea.

• Let K ∼= X be semicomputable,
• P =

⋃
n∈N Pn where Pn are Π0

1,
• K ∈ Pn for some n,
• A rational ball B intersects K ⇐⇒ K \B /∈ Pn,
• As Pn is Π0

1, the latter can be effectively tested.
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Topological invariants

Miller and Iljazović proved that spheres, more generally closed
manifolds, have computable type. Are they minimal for
some Σ0

2 invariant?

Definition (The invariant Hn)

A space X satisfies Hn iff ∃f : X → Sn which is not homotopic
to a constant.

• Hn is Σ0
2,

• Every closed n-manifold is minimal satisfying Hn.
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Products

Question [Čelar, Iljazović 2021]
If X and Y both have computabe type, does X × Y have
computable type?

Answer [Amir, H. 2023]
No. There exists X that has computable type, but X × S1 does
not.
Again, we reduce the problem to homotopy of maps.
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Suspension

The suspension of a space X is the space ΣX obtained as
follows:

• Add two points a, b to X,
• For each x ∈ X, add a segment from x to a, and a segment

from x to b.

X

(a) X

a

b

X

(b) ΣX
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Suspension

The suspension of a sphere is a sphere:

ΣSn = Sn+1.

S1

(a) S1

S1

(b) ΣS1
∼= S2
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Suspension

The suspension of a function f : X → Y is Σf : ΣX → ΣY .

X
f

Y

X
Σf

Y
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Suspension

When X is a simplicial complex, we obtain a further
characterization of the X’s such that ΣX has computable type.
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A family of spaces
• The boundary of the ball Bn+1 is Sn.

• Let f : Sn → Sp. We attach Bn+1 to Bp+1 along
their boundaries using f : each x ∈ Sn is glued
to f(x) ∈ Sp.

• We obtain the space Xf = Bp+1 ∪f Bn+1 (click on

the picture below to launch animation, the file ajunction.mp4

should be stored in the same folder as the slides)

B2 S1

Figure: Xf where f : S1 → S1 is the doubling map
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A family of spaces
Theorem
ΣXf has computable type ⇐⇒ Σf is not homotopic to a
constant.
ΣXf × S1 has computable type ⇐⇒ Σ2f is not homotopic to a
constant.

From the literature on homotopy groups of spheres
(Freudenthal, Whitehead, Toda, 1950s), there exists f : S7 → S3
such that:

• Σf : S8 → S4 is not homotopic to a constant,
• Σ2f : S9 → S5 is homotopic to a constant.

Corollary

ΣXf and S1 have computable type, but ΣXf × S1 does not.
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Summary

We give topological characterization of computable type, in
terms of:

• the surjection property,
• homology,
• homotopy.

We derive applications: computable type is:
• visually decidable for 2-dimensional spaces,
• decidable,
• not preserved by products.
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An open question

Reminder
If X is minimal satisfying some Σ0

2 invariant, then X has
computable type.

The converse implication fails in general. Does it hold for finite
simplicial complexes?

Thank you for your attention!
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