Computable type: an overview

Mathieu Hoyrup, joint work with Djamel Eddine Amir Inria Nancy (France)

> Online Logic Seminar September 11, 2025

The surjection property

Topological invariants

Products

A compact set $K \subseteq \mathbb{R}^n$ is:

- Computable if the set of rational balls intersecting K is decidable,
- Semicomputable if the set of rational balls that are disjoint from K is computably enumerable (c.e.).

A compact set $K \subseteq \mathbb{R}^n$ is:

- Computable if the set of rational balls intersecting K is decidable,
- Semicomputable if the set of rational balls that are disjoint from K is computably enumerable (c.e.).

Example

There is a semicomputable disk in \mathbb{R}^2 which is not computable. Center (0,0), radius $1-\sum_{n\in\text{halting set}}2^{-n}$.

A compact set $K \subseteq \mathbb{R}^n$ is:

- Computable if the set of rational balls intersecting K is decidable,
- Semicomputable if the set of rational balls that are disjoint from K is computably enumerable (c.e.).

Example

There is a semicomputable disk in \mathbb{R}^2 which is not computable. Center (0,0), radius $1 - \sum_{n \in \text{halting set}} 2^{-n}$.

Question

Is there a semicomputable *circle* which is not computable?

Spheres

Theorem ([Miller 2002])

If $X \subseteq \mathbb{R}^m$ is homeomorphic to an n-dimensional sphere, then

X is semicomputable $\iff X$ is computable.

2-sphere

Computable type Manifolds

Theorem ([Iljazović 2013])

If $X \subseteq \mathbb{R}^m$ is a closed manifold, then

X is semicomputable $\iff X$ is computable.

Other spaces?

Definition

A compact space X has **computable type** if for every set $K \subseteq \mathbb{R}^m$ that is homeomorphic to X,

K is semicomputable $\iff K$ is computable.

Other spaces?

Definition

A compact space X has **computable type** if for every set $K \subseteq \mathbb{R}^m$ that is homeomorphic to X,

K is semicomputable $\iff K$ is computable.

We give a characterization of the simplicial complexes that have computable type.

Simplicial complexes

A simplicial complex is made of simplices of any dimensions.

- 1-simplex = edge
- 2-simplex = triangle,
- 3-simplex = tetrahedron,
- Etc.

Main question

Which finite simplicial complexes X have computable type?

Simplicial complexes

A simplicial complex is made of simplices of any dimensions.

- 1-simplex = edge
- 2-simplex = triangle,
- 3-simplex = tetrahedron,
- Etc.

Main question

Which finite simplicial complexes X have computable type?

Answer

Look at the stars...

Simplicial complexes

A star S consists of:

- A center c,
- A boundary ∂S ,
- Rays from c to ∂S .

Definition

A star $(S, \partial S)$ has the **surjection property** if every continuous function $f: S \to S$ such that $f|_{\partial S} = \mathrm{id}_{\partial S}$ is surjective.

Simplicial complexes

A star S consists of:

- A center c,
- A boundary ∂S ,
- Rays from c to ∂S .

Definition

A star $(S, \partial S)$ has the **surjection property** if every continuous function $f: S \to S$ such that $f|_{\partial S} = \mathrm{id}_{\partial S}$ is surjective.

Examples

Simplicial complexes

A star S consists of:

- A center c,
- A boundary ∂S ,
- Rays from c to ∂S .

Definition

A star $(S, \partial S)$ has the **surjection property** if every continuous function $f: S \to S$ such that $f|_{\partial S} = \mathrm{id}_{\partial S}$ is surjective.

Theorem ([Amir, H. 2021])

A finite simplicial complex has computable type \iff every star has the surjection property.

The surjection property

Topological invariants

Products

How to determine whether a star $(S, \partial S)$ has the surjection property?

- A partial characterization using (homology) cycles,
- A complete characterisation using homotopy.

The boundary of a 2-dimensional star is a graph.

The boundary of a 2-dimensional star is a graph.

Theorem ([Amir, H. 2021])

A 2-dimensional star has the surjection property \iff its boundary is a union of cycles.

The boundary of a 2-dimensional star is a graph.

Theorem ([Amir, H. 2021])

A 2-dimensional star has the surjection property \iff its boundary is a union of cycles.

Cycles

Corollary

The "crescent" does not have computable type.

Indeed, this star does not have the surjection property:

Corollary

The "house with two rooms" has computable type.

Indeed, all the stars have the surjection property:

Higher dimensions

Theorem ([Amir, H. 2021])

A pure n-dimensional star has the surjection property \iff its boundary is a union of (n-1)-dimensional cycles.

Higher-dimensional cycles are described by homology.

Higher dimensions

Theorem ([Amir, H. 2021])

A pure n-dimensional star has the surjection property \iff its boundary is a union of (n-1)-dimensional cycles.

Higher-dimensional cycles are described by homology.

The surjection property Homotopy

ullet Let X be a space,

- Let X be a space,
- Let $x \in X$ have a neighborhood $U \cong \mathbb{R}^n$,

- Let X be a space,
- Let $x \in X$ have a neighborhood $U \cong \mathbb{R}^n$,
- The quotient space X/U^c is \mathbb{S}_n ,

- Let X be a space,
- Let $x \in X$ have a neighborhood $U \cong \mathbb{R}^n$,
- The quotient space X/U^c is \mathbb{S}_n ,
- Let $q_x: X \to \mathbb{S}_n$ be the quotient map.

- Let X be a space,
- Let $x \in X$ have a neighborhood $U \cong \mathbb{R}^n$,
- The quotient space X/U^c is \mathbb{S}_n ,
- Let $q_x: X \to \mathbb{S}_n$ be the quotient map.

- Let X be a space,
- Let $x \in X$ have a neighborhood $U \cong \mathbb{R}^n$,
- The quotient space X/U^c is \mathbb{S}_n ,
- Let $q_x: X \to \mathbb{S}_n$ be the quotient map.

- Let X be a space,
- Let $x \in X$ have a neighborhood $U \cong \mathbb{R}^n$,
- The quotient space X/U^c is \mathbb{S}_n ,
- Let $q_x: X \to \mathbb{S}_n$ be the quotient map.

- Let X be a space,
- Let $x \in X$ have a neighborhood $U \cong \mathbb{R}^n$,
- The quotient space X/U^c is \mathbb{S}_n ,
- Let $q_x: X \to \mathbb{S}_n$ be the quotient map.

The surjection property Homotopy

Theorem

A star $(S, \partial S)$ has the surjection property $\iff \forall x \in \partial S$, the quotient map $q_x : \partial S \to \mathbb{S}_n$ is not homotopic to a constant.

The surjection property Homotopy

Theorem

A star $(S, \partial S)$ has the surjection property $\iff \forall x \in \partial S$, the quotient map $q_x : \partial S \to \mathbb{S}_n$ is not homotopic to a constant.

Corollary

Whether a finite simplicial complex has computable type is decidable.

Proof.

The article [1] shows that homotopy between maps is decidable.

[1] M. Filakovský, L. Vokrínek, **Are two given maps** homotopic? **An algorithmic viewpoint**, Found. Comput. Math. 20 (2) (2020) 311–330

The surjection property

Topological invariants

Products

Topological invariants

Let X be a compact space and \mathcal{P} a topological invariant.

Theorem ([Amir, H. 2021])

If X is minimal satisfying \mathcal{P} and \mathcal{P} is Σ_2^0 , then X has computable type.

Let X be a compact space and \mathcal{P} a topological invariant.

Theorem ([Amir, H. 2021])

If X is minimal satisfying \mathcal{P} and \mathcal{P} is Σ_2^0 , then X has computable type.

Proof idea.

• Let $K \cong X$ be semicomputable,

Let X be a compact space and \mathcal{P} a topological invariant.

Theorem ([Amir, H. 2021])

If X is minimal satisfying \mathcal{P} and \mathcal{P} is Σ_2^0 , then X has computable type.

- Let $K \cong X$ be semicomputable,
- $\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathcal{P}_n$ where \mathcal{P}_n are Π_1^0 ,

Let X be a compact space and \mathcal{P} a topological invariant.

Theorem ([Amir, H. 2021])

If X is minimal satisfying \mathcal{P} and \mathcal{P} is Σ_2^0 , then X has computable type.

- Let $K \cong X$ be semicomputable,
- $\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathcal{P}_n$ where \mathcal{P}_n are Π_1^0 ,
- $K \in \mathcal{P}_n$ for some n,

Let X be a compact space and \mathcal{P} a topological invariant.

Theorem ([Amir, H. 2021])

If X is minimal satisfying \mathcal{P} and \mathcal{P} is Σ_2^0 , then X has computable type.

- Let $K \cong X$ be semicomputable,
- $\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathcal{P}_n$ where \mathcal{P}_n are Π_1^0 ,
- $K \in \mathcal{P}_n$ for some n,
- A rational ball B intersects $K \iff K \setminus B \notin \mathcal{P}_n$,

Let X be a compact space and \mathcal{P} a topological invariant.

Theorem ([Amir, H. 2021])

If X is minimal satisfying \mathcal{P} and \mathcal{P} is Σ_2^0 , then X has computable type.

- Let $K \cong X$ be semicomputable,
- $\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathcal{P}_n$ where \mathcal{P}_n are Π_1^0 ,
- $K \in \mathcal{P}_n$ for some n,
- A rational ball B intersects $K \iff K \setminus B \notin \mathcal{P}_n$,
- As \mathcal{P}_n is Π_1^0 , the latter can be effectively tested.

Miller and Iljazović proved that spheres, more generally closed manifolds, have computable type. Are they minimal for some Σ_2^0 invariant?

Miller and Iljazović proved that spheres, more generally closed manifolds, have computable type. Are they minimal for some Σ_2^0 invariant?

Definition (The invariant \mathcal{H}_n)

A space X satisfies \mathcal{H}_n iff $\exists f: X \to \mathbb{S}_n$ which is not homotopic to a constant.

- \mathcal{H}_n is Σ_2^0 ,
- Every closed *n*-manifold is minimal satisfying \mathcal{H}_n .

Computable type

The surjection property

Topological invariants

Products

Products

Question [Čelar, Iljazović 2021]

If X and Y both have computable type, does $X \times Y$ have computable type?

Products

Question [Čelar, Iljazović 2021]

If X and Y both have computable type, does $X \times Y$ have computable type?

Answer [Amir, H. 2023]

No. There exists X that has computable type, but $X \times \mathbb{S}_1$ does not.

Products

Question [Čelar, Iljazović 2021]

If X and Y both have computable type, does $X \times Y$ have computable type?

Answer [Amir, H. 2023]

No. There exists X that has computable type, but $X \times \mathbb{S}_1$ does not.

Again, we reduce the problem to homotopy of maps.

The **suspension** of a space X is the space ΣX obtained as follows:

- Add two points a, b to X,
- For each $x \in X$, add a segment from x to a, and a segment from x to b.

The suspension of a sphere is a sphere:

$$\Sigma S_n = S_{n+1}$$
.

The **suspension** of a function $f: X \to Y$ is $\Sigma f: \Sigma X \to \Sigma Y$.

When X is a simplicial complex, we obtain a further characterization of the X's such that ΣX has computable type.

• The boundary of the ball \mathbb{B}_{n+1} is \mathbb{S}_n .

- The boundary of the ball \mathbb{B}_{n+1} is \mathbb{S}_n .
- Let $f: \mathbb{S}_n \to \mathbb{S}_p$. We attach \mathbb{B}_{n+1} to \mathbb{B}_{p+1} along their boundaries using f: each $x \in \mathbb{S}_n$ is glued to $f(x) \in \mathbb{S}_p$.

- The boundary of the ball \mathbb{B}_{n+1} is \mathbb{S}_n .
- Let $f: \mathbb{S}_n \to \mathbb{S}_p$. We attach \mathbb{B}_{n+1} to \mathbb{B}_{p+1} along their boundaries using f: each $x \in \mathbb{S}_n$ is glued to $f(x) \in \mathbb{S}_p$.
- We obtain the space $X_f = \mathbb{B}_{p+1} \cup_f \mathbb{B}_{n+1}$ (click on the picture below to launch animation, the file ajunction.mp4 should be stored in the same folder as the slides)

Figure: X_f where $f: \mathbb{S}_1 \to \mathbb{S}_1$ is the doubling map

Theorem

 ΣX_f has computable type $\iff \Sigma f$ is not homotopic to a constant.

 $\Sigma X_f \times \mathbb{S}_1$ has computable type $\iff \Sigma^2 f$ is not homotopic to a constant.

Theorem

 ΣX_f has computable type $\iff \Sigma f$ is not homotopic to a constant.

 $\Sigma X_f \times \mathbb{S}_1$ has computable type $\iff \Sigma^2 f$ is not homotopic to a constant.

From the literature on homotopy groups of spheres (Freudenthal, Whitehead, Toda, 1950s), there exists $f: \mathbb{S}_7 \to \mathbb{S}_3$ such that:

- $\Sigma f: \mathbb{S}_8 \to \mathbb{S}_4$ is not homotopic to a constant,
- $\Sigma^2 f: \mathbb{S}_9 \to \mathbb{S}_5$ is homotopic to a constant.

Theorem

 ΣX_f has computable type $\iff \Sigma f$ is not homotopic to a constant.

 $\Sigma X_f \times \mathbb{S}_1$ has computable type $\iff \Sigma^2 f$ is not homotopic to a constant.

From the literature on homotopy groups of spheres (Freudenthal, Whitehead, Toda, 1950s), there exists $f: \mathbb{S}_7 \to \mathbb{S}_3$ such that:

- $\Sigma f: \mathbb{S}_8 \to \mathbb{S}_4$ is not homotopic to a constant,
- $\Sigma^2 f: \mathbb{S}_9 \to \mathbb{S}_5$ is homotopic to a constant.

Corollary

 ΣX_f and \mathbb{S}_1 have computable type, but $\Sigma X_f \times \mathbb{S}_1$ does not.

Summary

We give topological characterization of computable type, in terms of:

- the surjection property,
- homology,
- homotopy.

We derive applications: computable type is:

- visually decidable for 2-dimensional spaces,
- decidable,
- not preserved by products.

An open question

Reminder

If X is minimal satisfying some Σ_2^0 invariant, then X has computable type.

The converse implication fails in general. Does it hold for finite simplicial complexes?

An open question

Reminder

If X is minimal satisfying some Σ_2^0 invariant, then X has computable type.

The converse implication fails in general. Does it hold for finite simplicial complexes?

Thank you for your attention!