Well-ordering principles and the reverse mathematics zoo

Anton Freund

Online Logic Seminar, 25 September 2025

A well-ordering principle

For each linear order α , consider

$$\begin{aligned} 2^{\alpha} &= \left\{ 2^{\alpha_{n-1}} + \ldots + 2^{\alpha_0} \,\middle|\, \alpha_{n-1} > \ldots > \alpha_0 \text{ in } \alpha \right\} \\ &= \left\{ \left<\alpha_{n-1}, \ldots, \alpha_0\right> \,\middle|\, \alpha_0 < \ldots < \alpha_{n-1} \text{ in } \alpha \right\} \end{aligned}$$

with the lexicographic order.

Theorem (Girard; Hirst).

The following are equivalent over RCA₀: — ACA₀, — $\alpha \mapsto 2^{\alpha}$ preserves well-foundedness.

More examples from the literature

- ACA $_0^+$ corresponds to $\alpha \mapsto \varepsilon_{\alpha}$ (Marcone&Montalbán; Afshari&Rathjen),
- ATR₀ corresponds to $\alpha \mapsto \varphi_{\alpha}(0)$ (Veblen hierarchy) (Friedman; Rathjen&Weiermann; Marcone&Montalbán),
- Π_1^1 -transfinite induction corresponds to $D \mapsto D'$ (derivatives of normal functions; F.&Rathjen),
- Π_1^1 -comprehension corresponds to $D \mapsto \vartheta D$ (Bachmann-Howard construction; F.).

A proof strategy

- Classical ordinal analysis proves, e.g., that if ε_0 is well-founded, then ACA₀ is consistent (over RCA₀). By completeness, we get a model.
- By a modified argument, if $\alpha \mapsto \varepsilon_{\alpha}$ preserves well-foundedness, we get ω -models of ACA₀ (using ω -completeness due to Shoenfield/Schütte). Having these models yields ACA₀⁺ (i.e. ω -jumps).

Application I (classical)

Kruskal's theorem says that for finite trees $T_1, T_2, ...$, we always find i < j such that T_i embeds into T_j .

Theorem (H. Friedman): Kruskal theorem is not provable in ATR₀.

Proof idea: Notations for Γ_0 can be seen as finite trees. In fact, this extends to notations somewhat above Γ_0 , involving a collapsing function ϑ (Rathjen&Weiermann).

Application II (new)

Finite trees form a 'recursive data type': One can construct them by adding a root below a collection of previously constructed trees.

Theorem (F.&Rathjen&Weiermann):

The following are equivalent (over RCA₀ due to Uftring):

- (1) a uniform Kruskal theorem for all recursive data types,
- (2) Π_1^1 -comprehension,
- (3) the 'minimal bad-sequence lemma' of Nash-Williams.

Note that $(2)\Leftrightarrow(3)$ is due to Marcone.

Application III (new)

Being a better-quasi-order (**bqo**) is equivalent to well-foundedness for linear orders but much stronger without linearity.

That the antichain $\bf 3$ with three elements is Δ_2^0 -bqo plays an important role in Montalbán's analysis of Fraïssé's conjecture. It would be great to know that this is provable in ATR₀.

Theorem (F.): If ${\bf 3}$ is Δ^0_2 -bqo, we get ATR $_0$ (over RCA $_0$).

The previous considerations took place above ACA_0 (Turing jump).

Question: Are there well-ordering principles below ACA₀?

Theorem (Uftring; known to experts).

The following are equivalent over RCA₀:

- $\alpha \mapsto \alpha^{\omega}$ preserves well-foundedness, Σ_2^0 -induction.

Are there proper second-order examples?

Are there examples from the zoo?

(diagram by Hirschfeldt&Shore)

What counts as an example?

Definition (Girard). A dilator is a functor $\alpha \mapsto D(\alpha)$ on well-orders that preserves direct limits and pullbacks; equivalently, elements of $D(\alpha)$ are terms with constants from α .

Fact. The notion of dilator is Π_2^1 -complete over ACA₀.

Theorem (Uftring). There is no countable dilator D such that $\mathsf{WKL}_0 \iff D \text{ preserves well-foundedness}$ holds in all $\omega\text{-models}$ of $\mathsf{RCA}_0.$

For each linear order $L=(\mathbb{N},\leq_L)$, define permutations π_n^L of $\{0,\ldots,n-1\}$ by $\pi_n^L(i)\leq_{\mathbb{N}}\pi_n^L(j)\quad\Leftrightarrow\quad i\leq_L j.$

Definition. Let D_L be the dilator given by

$$D_L(\alpha) = \left\{ \left\langle \alpha_{\pi_n^L(0)}, \dots, \alpha_{\pi_n^L(n-1)} \right\rangle \, \middle| \, \alpha_0 < \dots < \alpha_{n-1} \text{ in } \alpha \right\}$$
 with lexicographic comparisons.

Example. For $L = -\omega = (\mathbb{N}, >)$, we have

$$D_L(\alpha) = 2^{\alpha} = \{ \langle \alpha_{n-1}, \dots, \alpha_0 \rangle \mid \alpha_0 < \dots < \alpha_{n-1} \text{ in } \alpha \}.$$

Fact (ACA₀). D_L preserves well-foundedness iff L is ill-founded.

Well-ordering principles and the reverse mathematics zoo

Recall. If $\alpha \mapsto D_{-\omega}(\alpha) = 2^{\alpha}$ preserves well-foundedness, we have ACA₀ or equivalently (Hirst) arithmetical transfinite induction.

Theorem (F.; RCA₀). If D_L preserves well-foundedness for some L, we have **slow transfinite** Π_2^0 -**induction** (Π_2^0 -**TI***): whenever 2^{α} is well-founded, Π_2^0 -induction along α holds.

Fun Fact. The proof uses $2^{-\omega} \cong 1 + \mathbb{Q}$.

When L has finite Hausdorff rank, the conclusion of the theorem can be strengthened from Π_2^0 -TI* to ACA₀.

Question. How strong is the statement that $D_{\mathbb{Q}}$ preserves well-foundedness?

How strong is slow transfinite Π_2^0 -induction?

Theorem.

- (1) Π_2^0 -TI* does not hold in all ω -models of WKL₀ (with help from Aguilera&Pakhomov).
- (2) Π_2^0 -TI* is not provable in WKL $_0 + RT_2^2 + I\Sigma_0^1$ (with help from Beklemishev).

The proof of (2) uses a result of Le Houérou, Patey and Yokoyama.

Conjecture. Π_2^0 -TI* is Π_1^1 -conservative over RCA₀ + I Σ_2^0 .

We write $RCA_0 \vDash_{\omega} \varphi$ if there is an $X \subseteq \mathbb{N}$ such that $\mathcal{M} \vDash \varphi$ holds for all ω -models $\mathcal{M} \ni X$ of RCA₀ (i.e., on a cone).

Theorem (F.).

For each countable dilator D, precisely one of the following holds:

- RCA₀ \vDash_{ω} '*D* preserves well-foundedness';
 RCA₀ \vDash_{ω} '*D* preserves well-foundedness' \to Π_2^0 -TI*.

The proof exploits the fine structure of dilators: It asks whether one of the dilators D_I can be embedded into D.

Corollary (F.). If we have $RCA_0 \nvDash_{\omega} \psi$ but $WKL_0 + RT_2^2 + I\Sigma_0^1 \vdash \psi$, there is no computable dilator D with

$${\sf RCA_0+I\Sigma_0^1} \vdash \psi \leftrightarrow `D \text{ preserves well-foundedness'}.$$
 In particular, we can take $\psi={\sf RT}_2^2.$

This negative result should not be over-interpreted: in fact, well-orders play a central role in the analysis of RT₂² (cf. the result that $\omega^{300n} \to (\omega^n)_2^2$ due to Kołodziejczyk and Yokoyama).

Thank you very much!

Do you have questions or comments?

Details and references can be found in:

Anton Freund, *Dilators and the reverse mathematics zoo*, Journal of Mathematical Logic, to appear,

https://doi.org/10.1142/S0219061325500102.