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Inspiration

The following theorem in point-set topology is due to Ginsburg and
Sands (1979).

Theorem (Ginsburg and Sands, 1979)

Every infinite topological space has a subspace homeomorphic to
one of the following topologies on ω:

1 Indiscrete (only ∅ and ω are open)

2 Initial segment (the open sets are ∅, ω and all intervals [0,n]
for n ∈ ω)

3 Final segment (the open sets are ∅, ω and all intervals [n,∞)
for n ∈ ω)

4 Discrete (all subsets are open)

5 Cofinite (the open sets are ∅, ω, and all cofinite subsets of ω)



Proof Sketch

Fix an infinite topological space X and let cl(x) denote the closure
of the singleton {x}. The proof of the Ginsburg–Sands Theorem is
done in the following way.

Define the equivalence relation ∼ on X by

x ∼ y ⇐⇒ cl(x) = cl(y)

for all x , y ∈ X .

If there is an infinite equivalence class, it forms an infinite
indiscrete subspace.

If all equivalence classes are finite, there infinitely many of
them.

Pick a representative from each class. This is an infinite T0

subspace, so assume X was T0 to begin with.



It follows that the relation ≤X given by

x ≤X y ⇐⇒ x ∈ cl(y)

is a partial order.

By CAC (Chain–Antichain Principle) there is either an infinite
chain or infinite antichain

If there is an infinite chain, then, by ADS
(Ascending–Descending Sequence Principle) there is either:

An infinite ascending sequence, which gives us a subspace
homeomorphic to the final segment topology, or
An infinite descending sequence which gives us a subspace
homeomorphic to the initial segment topology

If it is an infinite antichain, then it forms an infinite T1

subspace, so assume X is T1

If there is no infinite cofinite subspace, we form an infinite
discrete subspace by induction



Motivation for Project

Looking at the proof, there are several natural ways to break this
theorem up:

Use of the closure operator

Use of CAC (separating T0 from T1)

Use of ADS (initial and final segment)

The T1 case and induction

Some natural questions that arose were:

Questions

What axioms are necessary to prove the existence of the
closure operator for a topological space?

Were CAC and ADS necessary?

Can the induction in the T1 case be simplified?



Computable Topology

In order to study the Ginsburg–Sands Theorem in Reverse
Mathematics, we restrict to a special type of topological space, first
formalized for the language of second order arithmetic by Dorais.

Definition (Dorais, 2011)

A countable, second countable (CSC) space is a triple (X ,U , k)
where X is a countable set, U is a countable sequence U = (Ui )i∈N
of subsets of X , and k is a function k : X ×N×N → N, such that

for all x ∈ X , there is i ∈ N such that x ∈ Ui

if x ∈ Ui ∩ Uj , then x ∈ Uk(x ,i ,j) ⊆ Ui ∩ Uj .



Full Ginsburg–Sands

We now have a way to define the Ginsburg–Sands Theorem as a
reverse mathematical principle.

Definition

GS is the statement that every infinite CSC space has an infinite
subspace which is indiscrete; has the initial segment topology; has
the final segment topology; is discrete; or has the cofinite topology.

Theorem (Benham, DeLapo, Dzhafarov, Solomon, and Villano)

The following are equivalent over RCA0:

1 ACA0

2 GS

3 The statement that for every CSC space, the closure relation
exists.



Restrictions of GS

Definition

GScl is the restriction of GS to CSC spaces for which the
closure relation exists

wGS is the statement that every infinite CSC space has an
infinite subspace which is indiscrete; has the initial segment
topology; has the final segment topology; or is T1

wGScl is the restriction of wGS to CSC spaces for which the
closure relation exists

GST1 is the restriction of GS to T1 CSC spaces

The following implications are immediate:

GS → GScl → wGScl

GS → wGS → wGScl

GS → GST1



Theorem (BDDSV)

The following are equivalent over RCA0:

1 ACA0

2 GS

3 wGS

Theorem (BDDSV)

The following are equivalent over RCA0:

1 CAC

2 wGScl

Theorem (BDDSV)

The following are equivalent over RCA0:

1 GST1

2 GScl



Reverse Math Zoo of Ginsburg–Sands



Observation

The proof that RCA0 ⊢ CAC → wGScl uses both CAC and ADS.

Recall from original Ginsburg–Sands Theorem proof, this
would involve:

Using CAC to separate T1 case from the non-T1 case
Using ADS to separate the final segment topology from the
initial segment topology

This does not matter when we look at subsystems of second
order arithmetic

This could tell us something interesting about the Weihrauch
degree of wGScl



Problems, Computable Reducibility, Weihrauch Reducibility

Many principles of second order arithmetic can be thought of as
instance-solution problems.

Definition

An (instance-solution) problem is a partial function P : A → P(B)
for some sets A and B. Elements of dom(P) are P-instances and
elements of P(x) for x ∈ A are P-solutions to x .

Any theorem of the form ∀x(φ(x) → ∃yψ(x , y)) can be thought of
as an instance-solution problem.



Definition

A problem P is computably reducible to a problem Q (P ≤c Q) if
every P-instance X computes a Q-instance X̂ such that if Ŷ is any
Q-solution to X̂ , then X ⊕ Ŷ computes a P-solution to X .

There is also a uniform version of this

Definition

A problem P is Weihrauch reducible to a problem Q (P ≤W Q) if
there exist Turing functional Φ and Ψ such that whenever X is a
P-instance, Φ(X ) is a Q-instance and if Ŷ is any Q-solution to
Φ(X ), then Ψ(X ⊕ Ŷ ) is a P-solution to X .

There are also strong versions of each of these in which the
original P-instance X is not referenced at the last step to compute
a P-solution to X .



Note that both wGScl and CAC can be viewed as problems.

Theorem (Benham)

wGScl ̸≤c CAC

Showing this would be greatly simplified if we could find aproblem
that more closely resembles CAC that is Weihrauch-equivalent to
wGScl.



Definition

QADAC is the problem the instances of which are infinite
quasi-orders ≤ on ω and the solutions of which are infinite
sets S that are either an antichain under ≤, a clique under ≤,
an ascending sequence under ≤, or a descending sequence
under ≤.

ADAC is the problem the instances of which are infinite
partial orders ≤ on ω and the solutions of which are infinite
sets S that are either an antichain under ≤, an ascending
sequence under ≤, or a descending sequence under ≤.

The following implications over RCA0 are immediate.

QADAC → ADAC → CAC → ADS.



Theorem (Benham)

QADAC ≡sW wGScl.

Proof Idea: We have the following correspondences:

1 Clique ↔ indiscrete topology

2 Antichain ↔ T1 topology

3 Descending sequence ↔ initial segment topology

4 Ascending sequence ↔ final segment topology



Theorem (Benham)

QADAC ≤c ADAC.

Proof Sketch:

If the QADAC-instance contains an infinite equivalence class,
we can make an ADAC-instance by making a partial order
that consists of only the elements of the equivalence class
that is ordered so that every thing is incomparable. Then the
only solution is an antichain, and this precisely corresponds to
the clique in the QADAC-instance

Otherwise, thin the QADAC-instance so that there are no
nontrivial equivalence classes. This is now a partial order and
thus an ADAC-instance. Any ADAC-solution to this partial
order is a QADAC-solution to the original quasiorder



Conjecture

QADAC ̸≤W ADAC.

Definition

QADS is the problem the instances of which are infinite
quasi-linear orders ≤ on ω and the solutions of which are infinite
sets S that are either an clique under ≤, an ascending sequence
under ≤, or a descending sequence under ≤.

Theorem (Benham)

QADS ̸≤W ADS.



Proof Sketch

We start by building a quasi-linear order that looks something like:

. . .

. . .



With this quasi-linear order, we build a new quasi-linear order that
looks something like:

Computable Linear order
with no computable solutions

Fragment of quasi-
linear order



Theorem (Benham)

ADAC ̸≤c CAC.

In order to show this, we use a definition introduced by Patey:

Definition (Patey, 2016)

A problem P admits preservation of p among k hyperimmunities if
for each collection of k hyperimmune sets and each computable
P-instance X there is P-solution Y to X such that p of the k
hyperimmune sets are Y -hyperimmune.



Lemma (Benham)

CAC preserves two among three hyperimmunities.

Proof Sketch:

To show this, we fix a computable partial order and 3
hyperimmune sets

Via forcing, we construct a chain C and an antichain A such
that each of the hyperimmune sets are hyperimmune relative
to A or C

By the Pigeonhole Principle, this means that there are 2 of
the hyperimmune sets are either A-hyperimmune or
C -hyperimmune



Lemma (Benham)

ADAC does not preserve two among three hyperimmunities. That
is, there is an instance of ADAC such that, there are three
hyperimmune sets such that two of the three are not hyperimmune
relative to any solution to the instance.

Proof Sketch:

Prove that there is a computable weakly stable partial
ordering such that each pairwise union of the set of small
elements, the set of large elements, and the set of isolated
elements are hyperimmune

The pairwise unions of these sets are also hyperimmune

An ADAC-solution to this partial order would be an antichain,
an ascending sequence, or a descending sequence



An antichain would be a subset of the pairwise unions
containing the set of isolated points

An ascending sequence would be a subset of the pairwise
unions containing the set of small elements

A descending sequence would be a subset of the pairwise
unions containing the set of large elements

In any of these cases, there will be two out of three sets that
are not hyperimmune relative to the solution



Proof Sketch of ADAC ̸≤c CAC

Suppose to the contrary

We use the same hyperimmune sets and partial order from the
previous theorem

Then, any CAC-instance computable from this partial order
has a CAC-solution C , which, together with the partial order,
computes an ADAC-solution A

Two of the hyperimmune sets are C -hyperimmune

Thus, no C -computable function dominates either of the
principle functions these sets

For any ADAC-solution A computable from C , any
A-computable function also cannot dominate these principle
functions, which is a contradiction



Wrapping it Up

We can now prove the following theorem:

Theorem

wGScl ̸≤c CAC.

We have that ADAC ≤c QADAC. Thus, we must have that
QADAC ̸≤c CAC for, otherwise, by transitivity, ADAC ≤c CAC,
which is a contradiction. Since wGScl ≡sW QADAC, it is also true
that wGScl ̸≤c CAC.
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Questions?



Thank you!


