# Relation Algebra and Sumset Problems in Abelian Groups

Jeremy F. Alm

Southern Illinois University

2 Oct 2025

An abstract relation algebra (RA)  $\langle A,+,\cdot,-,;,,1' \rangle$  has operations intended to mimic those of a concrete relation algebra

$$\langle \mathcal{P}(U \times U), \cup, \cap, {}^{c}, \circ, {}^{-1}, \mathrm{Id} \rangle$$

An RA is *representable* if it embeds in a concrete RA Representability is undeciable for finite RAs Restrict the search space to find representations

Representations "are" edge-colorings of complete graphs  $K_n$  with c colors,  $\sim c^{n^2}$  colorings First restriction: consider only cyclic colorings

$$\mathbb{Z}_8$$
:  $\{1,4,7\},\{2,3,5,6\}$ 

reduces complexity to  $\sim c^n$  but requires communitativity of the RA

Second restriction: cyclic reps over  $\mathbb{Z}_p$ , p prime, where the color classes are the cosets of some multiplicative subgroup of  $\mathbb{Z}_p^{\times}$ 

requires commutativity and  $\mathbb{Z}_c \hookrightarrow \operatorname{Aut}$ 

Significant upside: we get decidability

For an RA saisfying the above, we can check for this type of rep in  $\mathcal{O}\left(\frac{c^8}{\log c}\right)$  time

# Outline of proof

• We need check only primes  $p \le c^4 + 5$  [A., 2017]

Argument uses discrete Fourier analysis

One can count solutions (x,y,z) inside  $A\subset \mathbb{Z}_p^{\times}$  to the equation x+y=z via the exponential sum

$$\frac{1}{\rho} \sum_{k=0}^{\rho-1} \sum_{x \in A} \sum_{y \in A} \sum_{z \in A} e^{\frac{-2\pi i k}{\rho} (x+y-z)}$$
 (1)

(1) can be rearranged to get

$$\frac{1}{\rho} \sum_{k=0}^{\rho-1} \widehat{\mathsf{Ch}}_{\mathcal{A}}(k)^2 \cdot \widehat{\mathsf{Ch}}_{\mathcal{A}}(-k) \tag{2}$$

#### Proof con't

Pull the k = 0 term out of (2) to get

$$\delta^3 p^2 + \frac{1}{p} \sum_{k=1}^{p-1} \widehat{\mathsf{Ch}}_{\mathcal{A}}(k)^2 \cdot \widehat{\mathsf{Ch}}_{\mathcal{A}}(-k) \tag{3}$$

and then bound the "error term."

By a slight modification, generalize to ax + by = cz.

#### Proof con't

② Each prime can be checked in  $\mathcal{O}(p)$  [A., Ylvisaker 2019] Checking  $H_0 + H_i \supseteq H_j$  is sufficient

$$H_0 + H_i \supseteq H_j \Leftrightarrow (g^j - H_0) \cap H_i \neq \emptyset$$

① Using estimates on primes, we can check all primes under  $c^4+5$  in  $\mathcal{O}\left(\frac{c^8}{\log c}\right)$ . [A., 2019]

## Examples

All known reps of Ramsey algebras (one tiny exception!) are these multiplicative subgroup reps

RA 34<sub>65</sub> - Three colors: red, blue, green

blue-blue-green and green-green-blue forbidden

Look for a cyclic RA with colors  $a_1, \ldots, a_n$  such that triangles of the form  $a_i$ - $a_i$ - $a_{n/2}$  are forbidden.

Map blue to  $H_0$  and green to  $H_{n/2}$ .

Let p = 3597, and let  $H_0$  be the multiplicative subgroup of  $\mathbb{Z}_p^{\times}$  of index n = 24.

Then  $a_i$ - $a_i$ - $a_{i+12}$  are the only forbidden triangles.

## Another Decidability Result

If an RA has no mandatory 3-cycles, i.e., "rainbow triangles," then it is decidable whether the RA is representable. [Maddux 2006]

This is another strong restriction.

## Reps over abelian groups

The problem of representability can be stated in terms of sumsets.

Given G, does there exist a partition

$$G = \{0\} \cup A \cup B$$

such that

- $\bullet \ A = -A$
- B = -B
- A + A = G
- $A + B = G \setminus \{0\}$
- $B + B = \{0\} \cup A$ ???

This question is open, but solved for cyclic groups [ABCCC 2024]

#### Generalize to *n* shades of blue

For which *G* does there exist a partition

$$G = \{0\} \cup A \cup B_1 \cup \cdots \cup B_n$$

such that

- A = -A
- $B_i = -B_i$
- A + A = G
- $A + B_i = G \setminus \{0\}$
- $B_i + B_i = \{0\} \cup A$
- $B_i + B_j = A \ (i \neq j)$  ???

#### Sum-free sets

In this case,  $B_1 \cup \cdots \cup B_n$  is a sum-free set.

For every finite abelian G, there is a subset X of G of order  $\alpha|G|$ , where  $\alpha \in [2/7, 1/2]$ , such that X is sum-free. [Green, Ruza 2005]

There is NO  $\alpha > 0$  such that every finite group G has a product-free subset of order at least  $\alpha |G|$ . [Gowers 2008]

In fact, one cannot even replace  $\alpha |G|$  by  $\alpha |G|^{8/9}$ .

# Sum-free sets in $\mathbb{Z}_2^n$ – the state of the art

Consider 
$$G = \mathbb{Z}_2^{3k+1}$$
.

Define  $A = \{x \in G : x \text{ has between } 1 \text{ and } 2k \text{ ones}\}$  and

 $B = \{x \in G : x \text{ has more than } 2k \text{ ones}\}.$ 

B can be split randomly into  $B_1, \ldots, B_n$  if  $2^{3k+1} > n^{6+o(1)}$ . [ALMMPSX 2022]

### The Special Case n=2



## The Special Case n=2

The case n = 2 has received extra attention.

The smallest known rep is over  $\mathbb{Z}_2^{10}$ , 1024 points.

The smallest known cyclic rep is over  $\mathbb{Z}_{751181}$ .

The best known lower bound for general reps is 26 points.

The best known lower bound for cyclic reps is 121 points.

# An Open Problem

Find a group G and partition  $G = \{0\} \cup A \cup B \cup C$  such that

• 
$$A = -A$$
,  $B = -B$ ,  $C = -C$ 

- A + A = G
- $A + B = G \setminus \{0\}$
- $A + C = G \setminus \{0\}$
- $B + B = \{0\} \cup A \cup B$
- B + C = A
- $C + C = \{0\} \cup A$ .

This is RA 33<sub>65</sub>.

Thank you for your attention.