
A Wave Equation Viewed as an Ordinary
Differential Equation

T.A. BURTON, JOZSEF TERJÉKI and BO ZHANG

1. Introduction.

Through dynamical system theory, many properties of evolution equations
are found to be parallel to those of special ordinary differential equations. The
theory of inertial manifolds (cf. [11]) establishes deep theoretical connections
between infinite dimensional and finite dimensional dynamical systems in terms
of limit sets which are exponentially asymptotically stable. Central to so much
of the application of this theory is the use of energy methods or the equivalent
use of Liapunov functions.

This work takes a close look at six very well known classical problems associ-
ated with the ordinary differential equation

(1) u′′ + f(t)g(u) = 0, ug(u) > 0 if u 6= 0, f(t) ≥ 0,

and shows that these problems have parallels for the equation

(2) utt = f(t)g(ux)x, u(t, 0) = u(t, 1) = 0,

both in terms of results and methods of solution. These problems concern oscil-
lation, continuation of solutions, decay of solutions, limit circle considerations,
and limiting behavior of solutions.

The study actually began in [1] where it was noted that there were striking
similarities between the classical Liénard equation

(L) u′′ + f(u)u′ + g(u) = 0, f(u) > 0, ug(u) > 0 if u 6= 0,
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and several forms of the damped wave equation such as

(W ) utt = g(ux)x − f(u)ut, u(t, 0) = u(t, 1) = 0.

In particular:

(i) Each of (L) and (W) has a natural Liapunov function with derivative which
is negative semi-definite.

(ii) Each of (L) and (W) has a Liénard transformation, the transformed form
of which has a natural Liapunov function whose derivative is negative semi-
definite.

(iii) A combination of the Liapunov function in (i) and (ii) produces a Liapunov
function whose derivative is negative definite.

(iv) The forms of the Liapunov functions for (L) and (W) are very similar, as
are the consequences derivable from them.

Here, we continue that type of study, selecting a Liapunov function for (1),
converting it to a Liapunov function for (2), and deducing parallel results for
oscillation, continuation, and other qualitative behavior of solutions.

2. Oscillation.

Wintner [14] considered the linear equation

(3) u′′ + f(t)u = 0

and generalized the following idea. Suppose that f : [0,∞) → [0,∞) is con-
tinuous and

∫ ∞

0 f(t)dt = ∞; then every solution oscillates. He proved this by
assuming that a solution u(t) has no zero past some t0 and formed a Chetayev
type Liapunov function

V (t) = u′(t)/u(t) for t > t0.

Then
V ′(t) = [uu′′ − (u′)2]/u2 = −f(t) − V 2(t),

a Riccati equation having a solution reaching negative infinity in finite time
t > t0.

To extend the result to (2) we must first decide how to define oscillation for
(2). Recall that a solution u(t) of (1) is oscillatory if there is a sequence {tn} ↑ ∞
with u(tn) = 0, u(t) 6≡ 0. But a reading of classical oscillation papers reveals
that for f(t) ≥ 0 the property of most interest was the equivalent fact that
u′′(t) = −f(t)g(u(t)) oscillated. If we take that as a definition, then Wintner’s
proof works for (2).

In fact, such arguments showing oscillations have been equally effective for
delay equations and instead of (2) we deal here with

(2∗)

{

utt = f(t)g(ux(t − h, x))x

u(t, 0) = u(t, 1) = 0
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where h is a nonnegative constant. It may be noted that if h > 0 then (2∗) can
be solved by the method of steps, but it requires very smooth initial functions.

Definition 1. A solution of (2∗) is oscillatory if there are sequences {tn} ↑ ∞
and {xn} ⊂ (0, 1) such that g(ux(tn, xn))x and g(ux(tn+1, xn+1))x have opposite
sign.

The reader may consider a vibrating string and conclude that Def. 1 is what
we would intuitively mean by the string vibrating.

Theorem 1. Suppose that for each t1 ≥ 0, the only solution of (2∗) satisfying
u(t1 + θ, x) = ut(t1 + θ, x) ≡ 0 for −h ≤ θ ≤ 0 is the zero solution. Assume that
f(t) ≥ 0, that

∫ ∞

0
f(s)ds = ∞, and that g′(r) ≥ g0 > 0. Let u(t, x) satisfy (2∗)

on [0,∞) and be nonoscillatory. Then u(t, x) is zero.

Proof. Taking into account the boundary conditions, we follow Wintner and
write

V (t) =

∫ 1

0

ut(t, x)dx/

∫ 1

0

u(t− h, x)dx

for an assumed nonoscillatory solution u. This means that there is a t0 ≥ 0 such
that uxx has one sign for t ≥ t0. Suppose, to be definite, that uxx(t, x) ≤ 0 for
t ≥ t0. Since u(t, 0) = u(t, 1) = 0 we will suppose that u(t, x) ≥ 0 on [t0,∞).
From (2∗) we have utt(t, x) ≤ 0 and so ut(t, x) is decreasing on [t0+h,∞) for each
fixed x ∈ [0, 1]. Hence, ut(t, x) ≥ 0 for all t ≥ t0+h and x ∈ [0, 1]. If u(t1, x1) = 0
for some t1 > t0 + h and x1 ∈ (0, 1) then uxx(t1, x) ≤ 0 and u(t1, x) ≥ 0 imply
that u(t1, x) = 0 for all x ∈ [0, 1]. Consequently, u(t, x) has a minimum at t = t1
for all fixed x, so ut(t1, x) = 0 for all x ∈ [0, 1]. Therefore we conclude that
either u(t, x) > 0 for all t > t0 and x ∈ (0, 1) or u(t, x) ≡ 0, ut(t, x) ≡ 0 for all
x ∈ [0, 1] and all large t. By the assumed uniqueness, u(t, x) ≡ 0.

Now assume that
∫ 1

0
u(t, x)dx > 0 for t ≥ t0 so V (t) is defined and V (t) ≥ 0

for t ≥ t0 + h. We then have

V ′(t) =

[
∫ 1

0

u(t− h, x)dx

∫ 1

0

f(t)g(ux(t − h, x))xdx

−
∫ 1

0

ut(t, x)dx

∫ 1

0

ut(t− h, x)dx

]

/

[
∫ 1

0

u(t− h, x)dx

]2

=

[

f(t)

∫ 1

0

g′(ux(t− h, x))uxx(t − h, x)dx/

∫ 1

0

u(t− h, x)dx

]

−
{

∫ 1

0

ut(t, x)dx

∫ 1

0

ut(t− h, x)dx/

[
∫ 1

0

u(t− h, x)dx

]2}

.
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Now g′(r) ≥ g0 > 0 and u(t, x) ≥ 0, uxx ≤ 0, so for fixed t ≥ t0 + h we have

−
∫ 1

0

g′(ux(t− h, x))uxx(t − h, x)dx/

∫ 1

0

u(t− h, x)dx

≥ g0

∫ 1

0

|uxx(t − h, x)|dx/
∫ 1

0

u(t− h, x)dx

≥ g0

∫ 1

0

|uxx(t − h, x)|dx/u(c)

where u(c) = sup
0≤x≤1

u(t− h, x) > 0 (t is fixed). But u(t, 0) = u(t, 1) = 0 so there

is an ξ ∈ (0, 1) with ux(t − h, ξ) = 0. This means that

∫ 1

0

|uxx(t− h, x)|dx≥ sup
0≤x≤1

|ux(t− h, x)| ≥
∫ 1

0

|ux(t − h, x)|dx

≥ sup
0≤x≤1

|u(t− h, x)| = u(c).

Hence,

g0

∫ 1

0

|uxx(t − h, x)|dx/u(c) ≥ g0.

Moreover, since utt(t, x) ≤ 0, ut(t, x) ≥ 0, for t ≥ t0 + h, we have

∫ 1

0

ut(t, x)dx ≤
∫ 1

0

ut(t − h, x)dx for t ≥ t0 + 2h

and

−
∫ 1

0

ut(t, x)dx

∫ 1

0

ut(t− h, x)dx ≤ −
(

∫ 1

0

ut(t, x)dx

)2

.

Thus,

V ′(t) ≤ −f(t)g0 − V 2

a Riccati equation with V (t1) = −∞ for some t1 > t0. It then follows that there

is a t1 > t0 + 2h with
∫ 1

0
u(t1, x)dx = 0 and so u(t1, x) ≡ 0 on [0, 1], as required.

Remark. Zlámal [15] generalized Wintner’s theorem and showed that if

(∗)
{

there exists a function w(t) > 0 such that
∫ ∞

0
w(t)f(t)dt = ∞ and

∫ ∞

0
(w′(t))2w−1(t)dt <∞

then solutions of (3) oscillate. Our theorem also remains valid if we assume (*)
instead of

∫ ∞

0
f(t)dt = ∞. To see this we have to finish the proof in a different
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way: From the inequality V ′(t) ≤ −f(t)g0 −V 2 we get for T > t2 ≥ t0 +2h that

g0

∫ T

t2

f(t)w(t)dt ≤ −w(T )V (T ) +w(t2)V (t2) +

∫ T

t2

w′(t)V (t)dt

−
∫ T

t2

w(t)V 2(t)dt ≤ w(t2)V (t2)

+

(
∫ ∞

t2

(w′(t))2w−1(t)dt

)1/2(∫ T

t2

w(t)V 2(t)dt

)1/2

−
∫ T

t2

w(t)V 2(t)dt

≤ w(t2)V (t2) +

∫ ∞

t2

(w′(t))2w−1(t)dt/4

−
[

1

2

(
∫ ∞

t2

(w′(t))2w−1(t)dt

)1/2

−
(

∫ T

t2

w(t)V 2(t)dt

)1/2]2

≤ w(t2)V (t2) +

∫ T

t2

(w′(t))2w−1(t)dt/4 <∞,

a contradiction as T → ∞.

3. Continuation of solutions

Frequently, in oscillation problems concerning (1), the function f(t) is allowed
to become negative some of the time. But then special care must be taken
concerning the growth of g to be sure that a solution will not have finite escape
time. In [2] it was shown that if f(t1) < 0 for some t1 > 0 and if

G(x) :=

∫ x

0

g(s)ds,

then (1) has a solution not continuable to t = ∞ provided that either

(a)
∫ ∞

0
[1 +G(x)]−1/2dx <∞ or

(b)
∫ −∞

0
[1 +G(x)]−1/2dx > −∞.

A partial converse was also obtained. Here, a similar result for (2) holds. It is
to be noted that (1) can have a solution defined for t ≥ 0 having u(t) > 0 and
u(t) → ∞; thus the conditions (a) and (b) are separate. The behavior of g(u)
for u < 0 is immaterial. But for (2); because of the boundary condition and the

inequality
∫ 1

0
π2u2dx ≤

∫ 1

0
u2

xdx, if u(t, x) → +∞, then g(ux) → ±∞. Hence,
the parallel result for (2) will involve g for both positive and negative values of
its argument.

Theorem 2. Suppose that there is a t1 > 0 with f(t1) < 0 and suppose that
there is a convex downward function g : R+ → R+ such that xg(x) ≥ g(x2). For

G(u) =

∫ u

0

g(ξ)dξ, if

∫ ∞

0

[1 +G(x)]−1/2dx <∞,
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then there are initial conditions for (2) such that any solution having those initial
conditions can not be defined for all t ≥ t1.

Proof. Since f(t1) < 0 and f(t) is continuous, there are positive constants δ, m,
M such that −M ≤ f(t) ≤ −m < 0 if t1 ≤ t ≤ t1 + δ. Let u(t, x) be a solution

of (2) and define z(t) =
∫ 1

0
u2(t, x)dx and y(t) = 2

∫ 1

0
u(t, x)ut(t, x)dx. We then

have the system of ordinary differential equations

(4)

{

z′ = y

y′ = 2
∫ 1

0
u2

t (t, x)dx− 2f(t)
∫ 1

0
uxg(ux)dx.

Denote by (z(t), y(t)) a solution of (4) satisfying z(t1) = 1, y(t1) = y1 with y1
large and to be determined later. So long as (z(t), y(t)) is defined on [t1, t1 + δ]
we have both y(t) and z(t) monotonically increasing. From (4) we obtain

2yy′ = 2y

∫ 1

0

u2
t (t, x)dx− 2f(t)2y(t)

∫ 1

0

uxg(ux)dx

≥ 4my(t)g

(
∫ 1

0

u2
xdx

)

≥ 4my(t)g(z(t)),

using Jensen’s inequality and then Wirtinger’s inequality, so that

y2(t) ≥ y2(t1) + 4m

∫ t

t1

z′(s)g(z(s))ds

= y2(t1) + 4mG(z(t)) − 4mG(z(t1))

and
z′(t) = y(t) ≥ [y2(t1) − 4mG(1) + 4mG(z(t))]1/2.

Divide both sides by the right-hand side and integrate from t1 to t to obtain

∫ z(t)

1

[y2(t1) − 4mG(1) + 4mG(z)]−1/2dz ≥ t− t1.

That is
∫ ∞

0

[y2(t1) − 4mG(1) + 4mG(z)]−1/2dz ≥ t− t1.

If y2(t1) ≥ 4mG(1) + 4m, then we have that

[y2(t1) − 4mG(1) + 4mG(z)]−1/2 ≤ (4m)−1/2(1 +G(z))−1/2 ∈ L1[0,∞).

On the other hand, for fixed z ∈ (0,∞) we have

[y2(t1) − 4mG(1) + 4mG(z)]−1/2 → 0 as y2(t1) → ∞.
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Therefore, by the Lebesgue dominated convergence theorem it follows that
∫ ∞

0

[y2(t1) − 4mG(1) + 4mG(z)]−1/2dz → 0

as y2(t1) → ∞. Consequently, we may take y2(t1) so large that
∫ ∞

0

[y2(t1) − 4mG(1) + 4mG(z)]−1/2dz < δ.

That is, z(t) → ∞ before t reaches t1 + δ.

4. Instability

Section 3 deals with a drastic type of instability. But if f(t) < 0 for all t ≥ 0,
then a more gentle type of instability can occur.

As motivation we again consider equation (1) and suppose that f(t) ≤ −f0 <
0 on [0,∞). Then the classical theory of Chetayev (cf. [6; p. 27], for example)
leads to the Liapunov function V = uv for the system {u′ = v, v′ = −f(t)g(u)}
so that V ′ = uv′ + u′v = v2 − f(t)g(u)u ≥ v2 + f0ug(u). Therefore, V vanishes
on u = 0 and on v = 0, with V ′ > 0 on the set uv > 0. Thus, the zero solution
is unstable.

We now give a very simple parallel for (2).

Theorem 3. If f(t) ≤ 0 for t ≥ 0 ug(u) ≥ 0 for all u ∈ R, then the solution
u = 0 is unstable.

Proof. Let u(t, x) be a solution of (2) on [0,∞) with u(0, x) ≥ 0, ut(0, x) ≥ 0,

and
∫ 1

0
u(0, x)ut(0, x)dx > 0. Define {ut = v, vt = f(t)g(ux)x} and

V (t) =

∫ 1

0

u(t, x)v(t, x)dx

so that

V ′(t) =

∫ 1

0

utvdx+

∫ 1

0

uvtdx =

∫ 1

0

v2dx+

∫ 1

0

f(t)(g(ux))xudx

=

∫ 1

0

v2dx−
∫ 1

0

f(t)g(ux)uxdx ≥
∫ 1

0

u2
tdx.

Suppose that u = 0 is stable. Then for a given ε > 0 and t1 ≥ 0 there is

a δ > 0 such that
∫ 1

0
u2

t (t1, x)dx < δ2 and
∫ 1

0
u2(t1, x)dx < δ2 imply that any

solution u(t, x) satisfying those initial conditions will satisfy
∫ 1

0 u
2(t, x)dx < ε2

and
∫ 1

0
u2

t (t, x)dx < ε2 for t ≥ t1. Now

V (t1) ≤ V (t) ≤
(

∫ 1

0

u2dx

∫ 1

0

u2
tdx

)1/2

≤ ε

(
∫ 1

0

u2
t

)1/2

.
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Hence

(V (t1)/ε)
2 ≤

∫ 1

0

u2
t (t, x)dx.

Then
V ′(t) ≥ (V (t1)/ε)

2

and so
ε2 ≥ V (t) ≥ V (t1) + (V (t1)/ε)

2(t− t1)

for all t ≥ t1 is a contradiction.

Because of the special form of this equation, the result is actually stronger
than its ODE counterpart using the Chetayev theorem. We now give a simple
generalization of Chetayev’s theorem to abstract equations.

Consider the ordinary differential equation

(5) u′(t) = F (t, u(t)), F (t, 0) = 0,

in a Banach space X with norm | · |X .

Theorem 4. Let A be an open subset of X with O ∈ ∂A and let B > 0.
Suppose that V : A → R+, that V (u) is bounded on {u ∈ A : |u|X ≤ B}, that
V (u) > 0 for u ∈ A and |u|X ≤ B, and that V (u) = 0 for u ∈ ∂A and |u|X ≤ B.
In addition, suppose that V ′

(5)(u(t)) ≥ α(t)W (u(t)) for u ∈ A and |u|X ≤ B

where α(t) ≥ 0,
∫ ∞

0
α(t)dt = ∞, and W (u) ≥ 0 for u ∈ A. Moreover, suppose

that for any µ > 0 there exists µ̃ > 0 such that [u ∈ A, V (u) ≥ µ] imply that
W (u) ≥ µ̃. Then the zero solution of (5) is unstable.

Proof. If the theorem is false, then for ε = B/2 there is a δ > 0 such that
|u0|X < δ and t > 0 imply that |u(t, 0, u0)|X < ε, where u(t, 0, u0) is a solution
satisfying u(0, 0, u0) = u0; we also let u(t, 0, u0) = u(t). Choose u0 ∈ A, |u0|X =
δ/2. Then V (u0) > 0 and so long as u(t, 0, u0) ∈ A we have V ′(u(t, 0, u0)) > 0
so that

(6) V (u(t, 0, u0)) ≥ V (u0) > 0.

This means that u(t) ∈ {ξ ∈ A : |ξ|X ≤ B} and there is a µ̃ > 0 such that
W (u(t)) ≥ µ̃ by (6). This yields

V ′
(5)(u(t)) ≥ α(t)W (u(t)) ≥ α(t)µ̃

for all t > 0. An integration yields a contradiction to V being bounded on A
whenever |u|X ≤ B. This completes the proof.

The reader may verify the conditions of Theorem 4 for (2), X = H1
0 × H0,

A = {(u, v) ∈ X|
∫ 1

0
uv dx > 0}, B = 1, α(t) ≡ 1, W (u, v) =

∫ 1

0
v2dx and

V (u(t), v(t)) =
∫ 1

0
u(t)v(t)dx. Jensen’s inequality is used in this exercise.
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5. Limiting behavior

In 1893 Kneser [11] considered (3) with f(t) ≤ 0 and gave conditions to ensure
the “Kneser condition” that every solution u(t) satisfies u(t) → 0 or |u(t)| → ∞.
In 1962 Utz [13], motivated by Kneser’s work, considered

(7) u′′ = f(t)u2n−1, n a positive integer

and proved the following result.

Theorem (Utz). Let f(t) > 0 and continuous on [0,∞) and suppose that for
each u0, u

′
0 there is a unique solution on [t0,∞) for each t0 ≥ 0. Then (7) has

a solution u(t) 6≡ 0 such that u(t) → 0 and u′(t) → 0, both monotonically, as
t → ∞.

In view of our Theorem 2 and the continuation assumption, this result is valid
only for n = 1; that is, (7) must be linear. Moreover, more must be added to
the conditions on f(t) to obtain the “Kneser condition” since u(t) = 1 + e−t is
a solution of

u′′ = [1/(1 + et)]u

and it tends to 1 as t → ∞. In fact, equation (3), in the case f(t) ≤ 0, has the
Kneser property if and only if

∫ ∞

0 sf(s)ds = ∞ ([7; p. 103] and [10; Lemma
1]). This assertion is valid for the nonlinear case too as can be seen in the same
way as in [7] when things are defined as follows. Let h : [0,∞) × R → R be
continuous and locally Lipschitz in the second variable, h(t, u)u > 0 for u 6= 0,
and suppose in addition that h(t, u) is monotone increasing with respect to u
for fixed t. If

∫ ∞

0
th(t, c)dt <∞ for some c > 0, then u′′ = h(t, u) has a solution

u(t) such that u(t) > 0, u′(t) < 0, u′(t) → 0, u(t) → α as t→ ∞.

This will motivate the next result for (2) in that we, therefore, see that more
is needed on f(t).

Theorem 5. Let f(t) ≤ 0, g(u)/u ≥ α if u 6= 0 for some α > 0, and let
∫ ∞

0
tf(t)dt = −∞. If u(t, x) is a solution of (2) on [0,∞), then either

(a)
∫ 1

0
u2(t, x)dx→ 0 as t → ∞ or

(b)
∫ 1

0
u2(t, x)dx→ ∞ as t→ ∞.

Proof. Let u(t) = u(t, x) be a solution of (2) on [0,∞). Then

(d/dt)

∫ 1

0

u2(t, x)dx =

∫ 1

0

2uutdx

and

(d2/dt2)

∫ 1

0

u2(t, x)dx = 2

∫ 1

0

[u2
t + uutt]dx

= 2

∫ 1

0

[u2
t − 2f(t)uxg(ux)]dx ≥ 0
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after use of (2) and an integration by parts. This implies that either

lim
t→∞

∫ 1

0

u2dx = ∞

or (since the quantity is nonnegative)

lim
t→∞

∫ 1

0

u2dx = c,

where c is a nonnegative constant. We claim that c = 0 in the latter case.

Suppose that c > 0. Then there is a t1 > 0 such that
∫ 1

0
u2dx ≥ c/2 on

[t1,∞).

(i) If there is a t2 ≥ 0 such that

(d/dt)

∫ 1

0

u2dx
∣

∣

t=t2
= 2

∫ 1

0

u(t2, x)ut(t2, x)dx =: β > 0,

then it follows readily that

∫ 1

0

u2dx ≥ β(t − t2) → ∞ as t→ ∞

(since the derivative is an increasing function), a contradiction.

(ii) If (d/dt)
∫ 1

0
u2(t, x)dx ≤ 0 on [0,∞), then

(d/dt)

∫ 1

0

u2(t, x)dx = (d/dt)

∫ 1

0

u2(t, x)dx
∣

∣

t=0

+ 2

∫ t

0

(
∫ 1

0

u2
t (s, x)dx− f(s)

∫ 1

0

ux(s, x)g(ux(s, x))dx

)

ds

(since
∫ t

0 F
′′(s)ds = F ′(t) − F ′(0)). As the left side is nonpositive, this implies

that
∫ ∞

0

(
∫ 1

0

u2
t (s, x) − f(s)

∫ 1

0

ux(s, x)g(ux(s, x))dx

)

ds <∞.

Clearly,

(d/dt)

∫ 1

0

u2(t, x)dx =: F ′(t) → 0 as t → ∞;

for F ′(t) ≤ 0, F ′′(t) ≥ 0, so if F ′(t) ≤ −d < 0 for all t ≥ t2, then F (t)−F (t2) ≤
−d(t − t2) yielding F (t) → −∞, a contradiction to F (t) =

∫ 1

0 u
2dx ≥ 0. Thus,

we have

−2

∫ 1

0

uutdx = 2

∫ ∞

t

(
∫ 1

0

u2
t (s, x)dx− f(s)

∫ 1

0

ux(s, x)g(ux(s, x))dx

)

ds.
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Let φ(x) = u(0, x), ψ(x) = ut(0, x), and then integrate the last expression from
0 to t and obtain

∫ 1

0

φ2(x)dx =

∫ 1

0

u2(t, x)dx

+ 2

∫ t

0

∫ ∞

w

(
∫ 1

0

u2
t (s, x)dx− f(s)

∫ 1

0

ux(s, x)g(ux(s, x)

)

dx ds dw

=

∫ 1

0

u2(t, x)dx+ 2

∫ t

0

∫ ∞

w

∫ 1

0

u2
t (s, x)dx ds dw

− 2

∫ t

0

sf(s)

∫ 1

0

ux(s, x)g(ux(s, x))dx ds

− 2t

∫ ∞

t

f(s)

∫ 1

0

ux(s, x)g(ux(s, x))dx ds

≥ −2α

∫ t

0

sf(s)

∫ 1

0

u2
x(s, x)dx ds.

But c/2 ≤
∫ 1

0 u
2dx on [t1,∞) so c/2 ≤

∫ 1

0 u
2dx ≤

∫ 1

0 u
2
xdx, together with

∫ ∞

0
sf(s)ds = −∞ now yields

∫ 1

0
φ2(x)dx = ∞, a contradiction. This com-

pletes the proof.

6. Decay of solutions and limit circle

Another classical problem is concerned with giving conditions on f(t) in (3)
to ensure that all solutions tend to zero. The literature is vast, but one may
loosely state that it is sufficient to ask that f(t) → ∞ monotonically and that
f ′(t)/f3/2(t) be bounded (cf. [3]). (It is not sufficient that f(t) → ∞, as may
be seen in [9].) But if one asks a bit more, then a trivial proof is available [4].
It goes as follows.

First, define a Liouville transformation s =
∫ t

0

√

f(v)dv, u(t) = w(s) and

map (3) into ẅ(s) + [f ′(t)/2f3/2(t)]ẇ(s) + w(s) = 0, where · = d/ds. Let

µ(s) = f ′(t)/4f3/2(t) and then define a system

{

ẇ = z − µ(s)w

ż = −w − µẇ + µ̇w.

Define a Liapunov function
V (s) = w2 + z2

and obtain

V̇ (s) ≤ −2µ[w2 + z2] + |µ2 + µ̇|(z2 + w2)

= [−2µ+ |µ2 + µ̇|]V (s)

so that if
∫ ∞

0

[−2µ(s) + |µ2(s) + µ̇(s)|]ds = −∞,
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then every solution tends to zero.

Precisely the same sort of thing works for (2) and it also leads to a limit circle

result. Preparatory to proving that theorem, recall that
∫ 1

0
u2

xdx ≥ |u|2∞ ≥
∫ 1

0
u2dx when u(t, 0) = u(t, 1) = 0. Thus, when rg(r) ≥ αr2 we will have

G(x) =
∫ x

0
g(s)ds and

∫ 1

0
G(ux)dx ≥ (α/2)

∫ 1

0
u2

xdx ≥ (α/2)|u|2∞.

Theorem 6. Let g′(r) ≥ 0 for all r, f(t) > 0, wg(w) ≥ αw2 for some α > 0,

απ2 ≤ 1. Suppose that for s =
∫ t

0

√

f(v)dv, for a > 0 and large, and for

µ(s) = f ′(t)/4f3/2(t) we have

(8)

∫ ∞

0

[−2µ(s) + (|µ̇(s) + µ2(s)|/απ2)]ds = −∞

and 2µ(s) ≥ |µ̇(s)+µ2(s)|/απ2 for t sufficiently large. Then any solution u(t, x)
of (2) defined on [0,∞) satisfies

∫ 1

0

G(ux(t, x))dx→ 0 as t → ∞.

Proof. First, the Liouville transformation

(9) s =

∫ t

0

√

f(v)dv and w(s, x) = u(t, x)

yields

ut = ws(ds/dt) = ws

√

f(t)

and

utt = wst

√

f(t) +ws

(

f ′(t)/2
√

f(t)
)

so

utt = wssf(t) +ws

(

f ′(t)/2
√

f(t)
)

.

Thus, (2) becomes

wss = g(wx)x − [f ′(t)/2f3/2(t)]ws, w(s, 0) = w(s, 1) = 0.

And this is equivalent to the system

{

ws = z − [f ′(t)/4f3/2(t)]w

zs = g(wx)x − [f ′(t)/4f3/2(t)]ws + (d/ds)[f ′(t)/4f3/2(t)]w.

This can be written as

(10)

{

ws = z − µ(s)w

zs = g(wx)x − µ(s)ws + µ̇w.
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With G(r) =
∫ r

0 g(s)ds, define a Liapunov function

V (s) =

∫ 1

0

[2G(wx) + z2]dx

and obtain the derivative of V along a solution as

V̇ =

∫ 1

0

(2g(wx)wxs + 2zzs)dx

=

∫ 1

0

{−2g(wx)xws + 2z[g(wx)x − µws + µ̇w]}dx

(by the induced boundary conditions: ws(s, 0) = ws(s, 1) = 0)

=

∫ 1

0

{−2g(wx)x[z − µw] + 2zg(wx)x − 2µzws + 2µ̇zw}dx

=

∫ 1

0

[2µg(wx)xw − 2µzws + 2µ̇zw]dx

=

∫ 1

0

[−2µg(wx)wx − 2µz(−µw + z) + 2µ̇zw]dx

=

∫ 1

0

{−2µ[g(wx)wx + z2] + 2µ2zw + 2µ̇zw}dx.

Now
∫ 1

0

w2dx ≤ (1/π2)

∫ 1

0

w2
xdx ≤ (1/απ2)

∫ 1

0

g(wx)wxdx

and since G(wx) ≤ g(wx)wx we have

V̇ ≤
∫ 1

0

{−2µ[g(wx)wx + z2] + |µ2 + µ̇|(z2 + w2)}dx

≤
∫ 1

0

{−2µ[g(wx)wx + z2] + |µ2 + µ̇|(z2 + g(wx)wx/απ
2)}dx

≤ (1/2)

∫ 1

0

{−2µ+ (|µ2 + µ̇|/απ2)}{2G(wx) + z2}dx

or

(11) V̇ ≤ {−2µ+ (|µ2 + µ̇|/απ2)}V/2
for t sufficiently large since 2µ ≥ |µ2 + µ̇|/απ2 for t sufficiently large. The
conclusion follows from this.

Note that the integral in the theorem, when changed to the variable t, is
∫ ∞

0

[−2{f ′(t)/4f3/2(t)} + |{(f ′(t))2/16απ2f3(t)}

+ {2f3/2(t)f ′′(t) − 3(f ′(t))2
√

f(t)}/8απ2f3(t)|]
√

f(t)dt

=

∫ ∞

0

[{−f ′(t)/2f(t)} + |{(f ′(t))2/16απ2f5/2(t)}

+ {2f(t)f ′′(t) − 3(f ′(t))2}/8απ2f2(t)|]dt.
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Example 1. Let f(t) = et and απ2 > 1/4 so that

∫ ∞

0

[−2µ(s) + |µ̇(s) + µ2(s)|/απ2]ds

=

∫ ∞

0

[−(1/2) + |(1/16απ2et/2) − (1/8απ2)|]dt

= −∞.

Example 2. Let f(t) = ln(1 + t) so that

∫ ∞

1

[−2µ(s) + |µ̇(s) + µ2(s)|/απ2]ds

=

∫ ∞

1

[−(1/2(1 + t) ln(1 + t)) + |{1/16απ2(1 + t)2(ln(1 + t))5/2}

− [(2 ln(1 + t) + 3)/8απ2(1 + t)2(ln(1 + t))2|]dt
= −∞.

Example 3. Let f(t) = (1 + t)β, β > 0. Then

∫ ∞

0

[−2µ(s) + |µ̇(s) + µ2(s)|/απ2]ds

=

∫ ∞

0

[−(β/2(1 + t)) + |(β2/16απ2(1 + t)2(1 + t))β/2)

− (β(2 + β)/8απ2(1 + t)2|]dt = −∞.

From (11) it is very easy to obtain a result on the classical question of limit
point-limit circle. If all solutions of (3) are in L2[0,∞), then (3) is said to be
in the limit circle case, otherwise it is in the limit point case. The terminology
is explained, for example, in Coddington and Levinson [7; pp. 225-6]. The
literature on the problem is vast and the reader is referred to Devinatz [8].

Definition. Equation (2) is in the limit circle case if every solution u(t, x) defined

on [0,∞) satisfies
∫ ∞

0

∫ 1

0 uxg(ux)dxdt <∞.

The next result is an exact counterpart of [5] for (2).

Theorem 7. Let the conditions of Theorem 6 hold, let G(r) ≥ βrg(r) for some
β > 0, and let

(12)

∫ ∞

0

{(1/
√

f(t)) exp(1/8απ2)

∫ t

0

|[f ′(x))2/2f5/2(x)]

+ [2f(x)f ′′(x) − 3(f ′(x))2]/f2(x)|dx}dt <∞.
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Then (2) is in the limit circle case.

Proof. We have

β

∫ 1

0

uxg(ux)dx ≤
∫ 1

0

[G(ux) + z2]dx ≤ V (s)

and (11). The result now follows by integration of the bound on V obtained
from integration of (11).

The next result extends [3] for (1) to (2). One may note that f(t) = (1 + t)β,
β > 0, satisfies all conditions of this theorem.

Theorem 8. Suppose that f ′(t) ≥ 0, f(t) > 0, f ′(t)/f3/2(t) ≤ γ for some γ >
0, and there is a nonnegative decreasing function µ(t) such that f ′(t) ≥ µ(t)f(t)
and

∫ ∞

0 µ(t)dt = ∞. Let ug(u) > 0 if u 6= 0, ug(u) ≥ αG(u) for some α > 0

where G(u) =
∫ u

0
g(s)ds. If u(t) = u(t, x) is a solution of (2) on [0,∞) with

∫ 1

0
u2

xx(t, x)dx ≤M for some M > 0 and all t ≥ 0, then

∫ 1

0

G(ux(t, x))dx+ (1/f(t))

∫ 1

0

u2
t (t, x)dx→ 0 as t → ∞.

Proof. Let

V (t) = 2

∫ 1

0

G(ux(t, x))dx+ (1/f(t))

∫ 1

0

u2
t (t, x)dx.

Then by using the induced boundary conditions we obtain

V ′(t) = −[f ′(t)/f2(t)]

∫ 1

0

u2
t (t, x)dx.

Let

y(t) =

(
∫ 1

0

u2
t (t, x)dx

)1/2

/
√

f(t);

then

(13)

{

V (t) = 2
∫ 1

0 G(ux(t, x))dx+ y2(t),

V ′(t) = −[f ′(t)/f(t)]y2(t).

Now

(14) lim inf
t→∞

y(t) = 0;

for if y2(t) ≥ δ > 0 on some interval [t1,∞), then

V ′(t) ≤ −[f ′(t)/f(t)]δ2 on [t1,∞)
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and a contradiction results from the properties of f . Suppose that

lim sup
t→∞

y(t) = λ > 0;

then lim
t→∞

V (t) = c > 0, c constant. Let δ = min{1, λ/2, 3cα/8(1+ α+ γ
√
M)};

then there are sequences {tn}, {t′n} having the following properties: tn < t′n ≤
tn+1, y(tn) = y(t′n) = δ/2, y(t) > δ/2 on (tn, t

′
n) with max

s∈[tn,t′n]
y(s) > δ, while

y(t) ≤ δ on [t′n, tn+1]. To see that such sequences exist, let t0 be defined such
that t0 > 0, y(t0) < δ/2 and consider the open set {t > t0, y(t) > δ/2}. It
follows that {t > t0, y(t) > δ/2} is a union of countable disjoint open intervals

Hi (i = 1, 2, . . .); that is, {t > t0, y(t) > δ/2} =
∞
⋃

j=1

Hj. Define H = {Hj: there

exists t∗j ∈ Hj such that y(t∗j ) > δ}. Since y′(t) is continuous, and consequently

bounded on any finite interval, we may assume that H =
∞
⋃

j=1

(aj, bj), with aj <

bj ≤ aj+1, j = 1, 2, . . . . Then y(t) > δ/2 on (aj, bj), max
aj≤t≤bj

y(t) > δ, y(aj) =

y(bj) = δ/2, and y(t) ≤ δ on [bj, aj+1], j = 1, 2, . . . . So tn = an, t′n = bn are
the required sequences.

We shall show that

(15)

∫ tn+1

t′n

√

f(t)dt ≤ k

∫ t′n

tn

√

f(t) dt, n = 1, 2, . . .

where k > 0 is a fixed constant. To that end we first note that

|(d/dt)y2(t)| =

∣

∣

∣

∣

−[f ′(t)/f2(t)]

∫ 1

0

u2
tdx+ 2

∫ 1

0

ut(g(ux))xdx

∣

∣

∣

∣

5 [f ′(t)/f(t)]y2(t) +
(

2/
√

f(t)
)

(
∫ 1

0

u2
tdx

)1/2
√

f(t)

×
(

∫ 1

0

(

g(ux)
)2

x
dx

)1/2

and that

|(d/dt)y(t)| = [f ′(t)/2f3/2(t)]
√

f(t)y(t) +
√

f(t)

(
∫ 1

0

(

g(ux)
)2

x
dx

)1/2

if y(t) 6= 0.

Now [f ′(t)/f3/2(t)] and y(t) are bounded, while

(

∫ 1

0

(

g(ux)
)2

x
dx

)1/2

is

bounded since
∫ 1

0
u2

xxdx is bounded. Hence, there exists a constant k1 > 0 such

that |y′(t)| ≤ k1

√

f(t). This implies that

(16) (δ/2) ≤
∫ t′n

tn

|y′(s)|ds ≤ k1

∫ t′n

tn

√

f(s)ds.
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On the other hand,

(d/dt)

∫ 1

0

uutdx =

∫ 1

0

u2
tdx− f(t)

∫ 1

0

uxg(ux)dx

= f(t)y2(t) − f(t)

∫ 1

0

uxg(ux)dx.

Thus,

αf(t)

∫ 1

0

G(ux(t, x))dx ≤ f(t)

∫ 1

0

uxg(ux)dx

≤ f(t)y2(t) − (d/dt)

∫ 1

0

uutdx.

As V (t) → c > 0 when t → ∞, without loss of generality we may assume that
V (t) ≥ 3c/4 for t ≥ t1. Then

2

∫ tn+1

t′n

√

f(s)

∫ 1

0

G(ux(s, x))dx ds ≥
∫ tn+1

t′n

[(3c/4)− y2(s)]
√

f(s)ds

≥
∫ tn+1

t′n

√

f(s)[(3c/4) − δ2]ds.

Hence,

α

∫ tn+1

t′n

√

f(s)ds[(3c/8)− (δ2/2)] ≤ α

∫ tn+1

t′n

√

f(s)

∫ 1

0

G(ux(s, x))dx

≤
∫ tn+1

t′n

√

f(s)y2(s)ds−
∫ tn+1

t′n

{[(d/dt)
∫ 1

0

uutdx)]/
√

f(s)}ds

and so

[(3cα/8)− (1 + (α/2))δ2)]

∫ tn+1

t′n

√

f(s)ds

≤ −
∫ tn+1

t′n

(

1/
√

f(s)
)

[(d/dt)

∫ 1

0

u(s, x)ut(s, x)dx]ds

=
(

1/
√

f(t′n)
)

∫ 1

0

u(t′n)ut(t
′
n)dx−

(

1/
√

f(tn+1)
)

∫ 1

0

u(tn+1, x)ut(tn+1, x)dx

− 1/2

∫ tn+1

t′n

[f ′(s)/f3/2(s)]

∫ 1

0

u(s, x)ut(s, x)dx ds

≤
(

∫ 1

0

u2(t′n, x)dx

)1/2

y(t′n) +

(
∫ 1

0

u2(tn+1, x)dx

)1/2

y(tn+1)

+ γ
√
M δ

∫ tn+1

t′n

√

f(s)ds
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where γ > 0 is defined in the theorem. By the definition of δ and the boundedness
of u and y(t), we have

(17)

∫ tn+1

t′n

√

f(s)ds ≤ β, for some β > 0, n = 1, 2, . . . .

By (16) and (17), (15) follows.

Since f ′(t) ≥ 0, we have

(18) tn+1 − t′n ≤ k(t′n − tn).

Let t > tn; then

V (t) ≤ V (t1) −
∫ tn

t1

[f ′(s)/f(s)]y2(s)ds

≤ V (t1) − (δ2/4)

n
∑

j=1

∫ t′j

tj

[f ′(s)/f(s)]ds

≤ V (t1) − (δ2/4)

n
∑

j=1

∫ t′j

tj

µ(s)ds

≤ V (t1) − (δ2/8)

n
∑

j=1

(
∫ t′j

tj

µ(s)ds+ 1/k

∫ tj+1

t′
j

µ(s)ds

)

≤ V (t1) − (δ2/8)min{1, 1/k}
∫ tn+1

t1

µ(s)ds → ∞ as n→ ∞,

a contradiction. This implies that y(t) → 0 as t → ∞.

Also,

(d/dt)

∫ 1

0

uutdx =

∫ 1

0

u2
tdx− f(t)

∫ 1

0

uxg(ux)dx

so that

(19)

∫ 1

0

uxg(ux)dx = y2(t) − (1/f(t))(d/dt)

∫ 1

0

uutdx.

Using the facts that
∫ 1

0
u2dx and [f ′(t)/f3/2(t)] are bounded, that f(t) → ∞

as t→ ∞, and that y(t) → 0 as t → ∞, it follows that

lim inf
t→∞

∫ 1

0

ux(t, x)g(ux(t, x))dx = 0.

In fact, suppose that there exist c > 0, t1 > 0 such that

∫ 1

0

ux(t, x)g(ux(t, x))dx ≥ c > 0
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on [t1,∞). We may assume that |y(t)| ≤ min{
√

c/2, c/4γM} for t ≥ t1. From
(19) we have

c ≤ (c/2) − (1/f(t))[(d/dt)

∫ 1

0

uutdx].

Thus

c/2(t− t1) ≤ −
∫ t

t1

{(1/f(s))(d/ds)
∫ 1

0

u(s, x)ut(s, x)dx}ds

= (1/f(t1))

∫ 1

0

u(t1, x)ut(t1, x)dx− (1/f(t))

∫ 1

0

u(t, x)ut(t, x)dx

−
∫ t

t1

{(f ′(s)/f2(s))

∫ 1

0

u(s, x)ut(s, x)dx}ds

≤ {My(t1)/
√

f(t1)} +
(

My(t)/
√

f(t)
)

+

∫ t

t1

{(f ′(s)/f3/2(s))

(
∫ 1

0

u2(s, x)dx

)1/2(∫ 1

0

u2
t (s, x)dx

)1/2

/
√

f(s)}ds

≤
(

My(t1)/
√

f(t1)
)

+
(

My(t)/
√

f(t)
)

+ γM

∫ t

t1

y(s)ds

≤
(

My(t1)/
√

f(t1)
)

+
(

My(t)/
√

f(t)
)

+ [c/4(t− t1)].

This yields

(

My(t1)/
√

f(t1)
)

+
(

My(t)/
√

f(t)
)

≥ c/4(t− t1)

which tends to infinity, a contradiction.

As the

lim inf
t→∞

∫ 1

0

ux(t, x)g(ux(t, x))dx = 0

we argue that

lim
t→∞

∫ 1

0

G(ux(t, x))dx = 0.

Since

y2(t) + 2

∫ 1

0

G(ux(t, x))dx→ c

as t→ ∞, we conclude that c = 0. This completes the proof.
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