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Abstract.
In a series of papers [2,4,5] we have studied scalar linear integral equations and

the role of the resolvent in duplicating the forcing function so that large forcing
functions frequently have little effect on the solution, while small forcing functions
can exert enormous control over the behavior of solutions. Much of that work
depends entirely on linearity. The purpose of this paper is to see what can be
proved in the nonlinear case and just how much techniques must be changed. The
following question is forever before us. What is the qualitative difference between
the solutions of

x(t) = (t + 1)1/2 sin(t + 1)1/3 + sin t −
∫ t

0

C(t, s)x(s)ds

and

x(t) = sin t −
∫ t

0

C(t, s)x(s)ds

under “reasonable” conditions on C(t, s)? There would be no story to tell un-
less it were true that there is essentially no difference at all. The large function
(t + 1)1/2 sin(t + 1)1/3 is simply swallowed up, while the tiny function sin t exerts
enormous control over everything. The example presents us with three problems.
Replace x(s) in the integral by g(x(s)) where g(x) has the sign of x. First, deter-
mine exactly which properties on C(t, s) constitute “reasonable” conditions. Then
determine a vector space of big functions, like a(t) = t, which have little effect on
solutions. Finally, determine a vector space of small functions, a(t), which “rule
the solution with an iron hand.”
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1. Introduction

In a series of papers [2, 4, 5] we have studied a scalar linear integral
equation

(1) x(t) = a(t) −
∫ t

0

C(t, s)x(s)ds,

together with the resolvent equation

(2) R(t, s) = C(t, s) −
∫ t

s

R(t, u)C(u, s)du,

and variation of parameters formula

(3) x(t) = a(t) −
∫ t

0

R(t, s)a(s)ds.

Those formulas are found in Burton [1; Chapter 7] and Miller [9; p.
190], for example.

All of the work is motivated by the following question. Under “rea-
sonable” conditions on the kernel C(t, s), what is the qualitative dif-
ference between the solutions of

(4a) x(t) = (t+ 1)1/2 sin(t+ 1)1/3 + sin t−
∫ t

0

C(t, s)x(s)ds

and

(4b) x(t) = sin t−
∫ t

0

C(t, s)x(s)ds?

In fact, the solutions are almost indistinguishable. Moreover, there are
large vector spaces containing unbounded functions for which

∫ t

0
R(t, s)a(s)ds

is almost an exact copy of a(t), while there are also large vector spaces
of small functions which that integral is totally unable to copy. Those
results depend strongly on the linearity.

The application to physical problems is obvious. There will be large
disturbances which will have little effect on the problem, while some
small disturbances will have continuing effect. Ignoring small pertur-
bations can lead to disaster, while worrying over large perturbations
may be totally unnecessary.
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2. An Effective Liapunov Functional

Here, we begin the study of similar properties in a nonlinear case,
trying to see exactly how the techniques must be changed to accom-
modate the nonlinearities. Our work will center on the equation

(6) x(t) = a(t) −
∫ t

0

C(t, s)g(x(s))ds

where a : [0,∞) → �, g : � → �, and C : � × � → � are at least
continuous and

(7) xg(x) > 0 for x �= 0.

These conditions are sufficient to ensure that (6) has at least one solu-
tion which, if it remains bounded, can be continued to [0,∞). One
may consult Burton [1; Chapter 7], Miller [9], Corduneanu [6], or
Grippenburg-Londen-Staffans [7] for details. We will now offer two
results to the general effect that if a′ ∈ Lp then any solution of (6)
satisfies g(x(t)) ∈ Lp. Here, C1 or Ct means the partial derivative of
C(t, s) with respect to t. If a derivative is indicated, we assume it to
be continuous. We use C1 and Ct interchangeably to avoid confusion
with dummy variables. Our first result is exactly the same as the linear
case, but notice how (8) integrates only the first coordinate and how
well a(t) and x(t) separate in V ′; that will be a major concern here.

Theorem 2.1. Suppose that a′ ∈ L1[0,∞) and there is an α > 0 with

(8) −C(t, t) +

∫ ∞

0

|C1(u+ t, t)|du ≤ −α.

If x is a solution of (6) then g(x) ∈ L1[0,∞) and x is bounded so
g(x) ∈ Lp for p ≥ 1.

Proof. If x(t) solves (6) then it also solves

(9) x′(t) = a′(t) − C(t, t)g(x(t)) −
∫ t

0

C1(t, s)g(x(s))ds

and we define a Liapunov functional by

(10) V (t, x(·)) = |x(t)| +
∫ t

0

∫ ∞

t−s

|C1(u+ s, s)|ds|g(x(s))|ds.
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We let V (t) := V (t, x(·)) and find that

V ′(t) ≤ |a′(t)| − C(t, t)|g(x(t))| +
∫ t

0

|C1(t, s)g(x(s))|ds

+ |g(x(t))|
∫ ∞

0

|C1(u+ t, t)|du−
∫ t

0

|C1(t, s))g(x(s))|ds
≤ |a′(t)| − α|g(x(t))|.

Thus, so long as the solution is defined then

|x(t)| ≤ V (t) ≤ V (0) +

∫ t

0

|a′(s)|ds− α

∫ t

0

|g(x(s))|ds.

Hence, |x(t)| ≤ V (0) +
∫ ∞

0
|a′(s)|ds so x can be continued on [0,∞).

Moreover, g(x) ∈ L1[0,∞). �

One may note that we do not need a′ integrable on the half-line to
parlay the above proof into existence of the solution for t > 0 using
only (8). It is also a curious fact that we did not need

∫ x

0
g(s)ds to

diverge with x in order to obtain boundedness. This will change in the
next result.

In this result a′ and g(x) separate completely in V ′ so that we can in-
tegrate them separately and achieve the conclusion. In the next result
our main problem is to contrive a Liapunov functional so that a′ and
g(x) will separate in V ′ in such a way that no assumption on the non-
linearity need be made. That is a significant challenge, but it can be
conquered exactly as desired. In a later result we will be forced to use
Young’s inequality to achieve a separation that will require monotonic-
ity of g.

The reader should note that it is a′ ∈ L2n[0,∞), resulting in g(x) ∈
L2n[0,∞). Notice also how both coordinates of C are integrated, but
the burden falls on the second coordinate as n becomes large in marked
contrast to the last result. These properties are so important to help
us understand the richness of the nonconvolution case.

Theorem 2.2. Suppose there is a positive integer n with a′(t) ∈ L2n[0,∞),
a constant α > 0, and a constant N > 0 with
(11)
2n− 1

2nN
2n

2n−1

−C(t, t)+
2n− 1

2n

∫ t

0

|C1(t, s)|ds+ 1

2n

∫ ∞

0

|C1(u+t, t)|du ≤ −α.

If x is a solution on [0,∞), then g(x) ∈ L2n[0,∞). If
∫ x

0
g2n−1(s)ds→

∞ as |x| → ∞ then any solution x of (6) is bounded.
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Proof. Define

V (t, x(·)) =

∫ x

0

g2n−1(s)ds+
1

2n

∫ t

0

∫ ∞

t−s

|Ct(u+ s, s)|du g2n(x(s))ds.

Then we have

V ′(t) = a′(t)g2n−1(x) − C(t, t)g2n(x) − g2n−1(x)

∫ t

0

C1(t, s)g(x(s))ds

+
1

2n

∫ ∞

0

|C1(u+ t, t)|dug2n(x(t)) − 1

2n

∫ t

0

|C1(t, s)|g2n(x(s))ds

≤ (2n− 1)g2n(x)

2nN
2n

2n−1

+
(Na′(t))2n

2n
− C(t, t)g2n(x)

+

∫ t

0

|Ct(t, s)|
[
(2n− 1)g2n(x(t))

2n
+
g2n(x(s))

2n

]
ds

+ g2n(x(t))
1

2n

∫ ∞

0

|C1(u+ t, t)|du− 1

2n

∫ t

0

|C1(t, s)|g2n(x(s))ds

≤ (Na′(t))2n

2n
− αg2n(x(t)).

Thus,∫ x

0

g2n−1(s)ds ≤ V (t) ≤ V (0) +

∫ t

0

(Na′(s))2n

2n
ds− α

∫ t

0

g2n(x(s))ds.

When the solution can be defined for all future time, g(x) ∈ L2n[0,∞).
If the integral on the left diverges with |x|, then x is bounded. �

This result shows that when (11) holds and
∫ x

0
g(s)ds→ ∞ as |x| →

∞ then for 0 < β < 1 and

(12) a(t) = (t+ 1)β + sin(t+ 1)β + (t+ 1)1/2 sin(t+ 1)1/3

then we have g(x) ∈ L2n[0,∞) for some n > 0.
The fact that no condition on divergence of the integral of g is needed

for boundedness in Theorem 2.1, but divergence is needed in Theo-
rem 2.2 is a common problem usually traceable to method of proof
rather than a property of the equation. Even if

∫ x

0
g(s)ds fails to di-

verge, one may use g ∈ L2n in several ways to obtain boundedness
of the solution. For example, by squaring (6) we get (1/2)x2(t) ≤
a2(t)+

∫ t

0
C2(t, s)ds

∫ t

0
g2(x(s))ds. Moreover, if |g(x)| ≤ |x| and C(t, s)

is continuous, then the solution of (6) is continuable for every contin-
uous a(t); thus, failure of

∫ x

0
g(s)ds to diverge in both directions and

the solution being noncontinuable would require an exceedingly chaotic
g(x).
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3. Asymptotic Periodicity

Let PT be the set of continuous T−periodic scalar functions and
let Q be the set of continuous functions q : [0,∞) → R such that
q(t) → 0 as t→ ∞. Denote by (Y, ‖ · ‖) the Banach space of functions
φ : [0,∞) → R where φ ∈ Y implies that φ = p + q with p ∈ PT and
q ∈ Q.

In our work here, we will use a contraction mapping and that will
require that g have a bounded derivative, as required in (15) below.
But that is a requirement based only on the method of proof and it
can likely be removed using a different kind of proof, possibly by the
method of a priori bounds.

Suppose that

(13) C(t+ T, s+ T ) = C(t, s),

that

(14)

∫ t

−∞
C(t, s)ds is bounded and continuous,

and that g has a continuous derivative, denoted by g∗, with

(15) |g∗(x)| ≤ 1.

For a fixed φ = p+ q ∈ Y by the mean value theorem for derivatives
we have

g(φ(t)) = g(p(t)) + g(p(t) + q(t)) − g(p(t)) = g(p(t)) + g∗(ξ(t))q(t)

where ξ(t) is between p(t) + q(t) and q(t). This means that g(φ) ∈ Y .
Note that this did not require (15) since g∗ would be bounded along
the fixed function, φ. Thus, the ideas seem fully nonlinear.

We will also require

(16)

∫ 0

−∞
|C(t, s)|ds→ 0 as t→ ∞

and for q ∈ Q then

(17)

∫ t

0

C(t, s)q(s)ds→ 0 as t→ ∞.

In order to have a contraction we ask that there exists an α < 1 with

(18)

∫ t

0

|C(t, s)|ds ≤ α.
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To prove that (6) has an asymptotically periodic solution, we begin
by defining a mapping from (6) by φ = p+ q ∈ Y implies that

(19) (Pφ)(t) = a(t) −
∫ t

0

C(t, s)g(φ(s))ds.

The next result is a nonlinear version of Theorem 2.3 in Burton [5].

Theorem 3.1. If (13 - 18) hold and if a ∈ Y , so is the unique solution
of (6).

Proof. Clearly, (19) is a contraction, but we must show that P : Y →
Y . Write a = p∗ + q∗ ∈ Y and for φ = p+ q ∈ Y and

(Pφ)(t) = p(t) −
∫ t

−∞
C(t, s)g(p(s))ds−

∫ t

0

C(t, s)g∗(ξ(s))q(s)ds

+

∫ 0

−∞
C(t, s)g(p(s))ds.

Clearly, the first two terms on the right are periodic, while the remain-
der is in Q. Thus, P : Y → Y and there is a fixed point. �

As shown in [5] for the linear case, under mild conditions the solution
approaches a non-constant periodic function.

4. Another Liapunov Function

We come now to a Liapunov functional which will require much more
about the behavior of C, but it is a naturally nonlinear functional. It
is closely adapted from work of Levin [8] and we have used it several
times in our linear work in Burton [2-5], for example.

Theorem 4.1. Let H(t, s) := Ct(t, s), and suppose there is an α > 0
with C(t, t) ≥ α and

(23) H(t, s) ≥ 0, Ht(t, s) ≤ 0, Hs(t, s) ≥ 0, Hst(t, s) ≤ 0.

(i) If a′ ∈ L2[0,∞), then any solution of (6) or (9) on [0,∞) satisfies
g(x) ∈ L2[0,∞).

(ii) If a′ is bounded, if g2(x) → ∞ as |x| → ∞, and if there is an
M > 0 with

(24)

∫ t

0

Hs(t, s)(t− s)

∫ t

s

|a′(u)|2duds+H(t, 0)t

∫ t

0

|a′(u)|2du ≤M,

then any solution of (6) or (9) has
∫ x

0
g(s)ds bounded.
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Proof. Define

V (t) =

∫ x

0

g(s)ds+ (1/2)

∫ t

0

Hs(t, s)

(∫ t

s

g(x(u))du

)2

ds

+ (1/2)H(t, 0)

(∫ t

0

g(x(s))ds

)2

=

∫ x

0

g(s)ds+ (1/2)

∫ t

0

Cst(t, s)

(∫ t

s

g(x(u))du

)2

ds

+ (1/2)Ct(t, 0)

(∫ t

0

g(x(s))ds

)2

(25)

so that if V (t) is bounded, so is
∫ x

0
g(s)ds. Next, write

x′ = a′(t) − C(t, t)g(x) −
∫ t

0

H(t, s)g(x(s))ds.

Then the derivative of V along a solution is

V ′(t) = a′(t)g(x) − C(t, t)g2(x) − g(x)

∫ t

0

Ct(t, s)g(x(s))ds

+ (1/2)

∫ t

0

Hst(t, s)

(∫ t

s

g(x(u))du

)2

ds

+ g(x(t))

∫ t

0

Hs(t, s)

∫ t

s

g(x(u))duds

+ (1/2)Ht(t, 0)

(∫ t

0

g(x(s))ds

)2

+H(t, 0)g(x(t))

∫ t

0

g(x(s))ds.

We integrate the fifth term on the right by parts and obtain

g(x(t))[H(t, s)

∫ t

s

g(x(u))du

∣∣∣∣
t

0

+

∫ t

0

H(t, s)g(x(s))ds]

= −g(x(t))H(t, 0)

∫ t

0

g(x(u))du+ g(x(t))

∫ t

0

H(t, s)g(x(s))ds.

Cancelling terms and taking into account sign conditions yields

V ′(t) ≤ a′(t)g(x) − C(t, t)g(x)2 ≤ (1/2α)|a′(t)|2 + (α/2)g2(x) − αg2(x)

≤ (1/2)(|a′(t)|2)/α− (α/2)g2(x)).

Hence,

2

∫ x

0

g(s)ds ≤ 2V (t) ≤ 2V (0) + (1/α)

∫ t

0

|a′(s)|2ds− α

∫ t

0

g2(x(s))ds

so (i) follows. Note that
∫ x

0
g(s)ds is bounded if V is bounded.
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Now, assume a′(t) bounded and let (24) hold; we will bound V and,
hence,

∫ x

0
g(s)ds. From V ′ we see that there is a µ > 0 such that if

V ′(t) > 0 then |x(t)| < µ. Suppose, by way of contradiction, that V is
not bounded. Then there is a sequence {tn} ↑ ∞ with V ′(tn) ≥ 0 and
V (tn) ≥ V (s) for 0 ≤ s ≤ tn; thus, |x(tn)| ≤ µ. If 0 ≤ s ≤ tn then

0 ≤ 2V (tn) − 2V (s) ≤ −α
∫ tn

s

g2(x(u))du+ (1/α)

∫ tn

s

|a′(u)|2du.
Using these values in the formula for V , taking |x(tn)| ≤ µ, t = tn, and
applying the Schwarz inequality yields

V (t) ≤
∫ ±µ

0

g(s)ds+

∫ t

0

Hs(t, s)(t− s)

∫ t

s

(1/α2)|a′(u)|2duds

+H(t, 0)t(1/α2)

∫ t

0

|a′(u)|2du =

∫ ±µ

0

g(s)ds+ (1/α2)M

Thus, V (t) and
∫ x

0
g(s)ds are bounded. �

5. A functional for the integral equation

In working with our next Liapuov functional we find

(26) V ′(t) = 2a(t)g(x) − 2xg(x)

and we need to separate a(t)g(x). There are many ad hoc ways of
doing that but under certain conditions there is a very exact result.

Lemma 5.1. Let g(x) = −g(−x), g be strictly increasing, for x ≥ 0
let φ(x) := d

dx
xg−1(x) be monotone increasing to infinity with φ(0) = 0.

Then

(27) 2|a(t)g(x)| ≤ xg(x) +

∫ 2|a(t)|

0

φ−1(s)ds.

Proof. Young’s inequality states that if φ : [0,∞) → [0,∞) is continu-
ous, strictly increasing, satisfies φ(0) = 0 and limx→∞ φ(x) = ∞, and
if ψ = φ−1 then for Φ(x) =

∫ x

0
φ(u)du and Ψ(x) =

∫ x

0
ψ(u)du we have

(28) 2|a(t)g(x)| ≤ Φ(g(x)) + Ψ(2|a(t)|).
But

Φ(g(x)) =

∫ g(x)

0

d

ds
sg−1(s)ds = g(x)g−1(g(x)) = xg(x),

as required. �
Our next result has its roots in Volterra [10] in 1928, in Levin [8]

in 1963, and in Burton [3] in 1993. A much expanded linear version
appeared in Burton [4]. Part (ii) is new.
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Theorem 5.2. If a : [0,∞) → R is continuous, while

(29) C(t, s) ≥ 0, Cs(t, s) ≥ 0, Ct(t, s) ≤ 0, Cst(t, s) ≤ 0

then along the solution of (6) the functional

(30) V (t) =

∫ t

0

Cs(t, s)

(∫ t

s

g(x(u))du

)2

ds+C(t, 0)

(∫ t

0

g(x(s))ds

)2

satisfies

V ′(t) ≤ 2a(t)g(x) − 2xg(x).

(i) If there are constants B and K with

(31) sup
t≥0

∫ t

0

Cs(t, s)ds = B <∞ and sup
t≥0

C(t, 0) = K <∞

then along the solution of (6) we have

(32) (a(t) − x(t))2 ≤ 2(B +K)V (t)

(ii) If the conditions of Lemma 5.1 hold then along a solution of (6)
we have

V ′(t) ≤ −x(t)g(x(t)) +

∫ 2|a(t)|

0

φ−1(s)ds.

Hence, if the last term is L1[0,∞) then so is x(t)g(x(t). Moreover, V
is then bounded so if (31) holds then |a(t) − x(t)| is bounded.

Proof. We have

V (t) =

∫ t

0

Cs(t, s)

(∫ t

s

g(x(u))du

)2

ds+ C(t, 0)

(∫ t

0

g(x(s))ds

)2

and differentiate along a solution of (6) to obtain

V ′(t) =

∫ t

0

Cst(t, s)

(∫ t

s

g(x(u))du

)2

ds+ 2g(x)

∫ t

0

Cs(t, s)

∫ t

s

g(x(u))duds

+ Ct(t, 0)

(∫ t

0

g(x(s))ds

)2

+ 2g(x)C(t, 0)

∫ t

0

g(x(s))ds.

We now integrate the third-to-last term by parts to obtain

2g(x)

[
C(t, s)

∫ t

s

g(x(u))du

∣∣∣∣
t

0

+

∫ t

0

C(t, s)g(x(s))ds

]

= 2g(x)

[
−C(t, 0)

∫ t

0

g(x(u))du+

∫ t

0

C(t, s)g(x(s))ds

]
.
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Cancel terms, use the sign conditions, and use (6) in the second line
below to unite the Liapunov functional and the equation obtaining

V ′(t) =

∫ t

0

Cst(t, s)

(∫ t

s

g(x(u))du

)2

ds+ Ct(t, 0)

(∫ t

0

g(x(s))ds

)2

+ 2g(x)[a(t) − x(t)]

≤ 2g(x)a(t) − 2xg(x) ≤ −xg(x) +

∫ 2|a(t)|

0

φ−1(s)ds.

The lower bound given in (32) may be derived as in Burton [3]. The
final conclusion is now immediate. �

6. Continuous dependence

The applied mathematician correctly claims that our conditons of a′

bounded or in Lp may be difficult to establish because of uncertain-
ties and even stochastic forces. There is a simple way around that if
d
dx
g(x) =: g∗(x) is bounded. For a given function b(t) seek a function

a(t) which satisfies one of our boundedness theorems with |a(t)− b(t)|
bounded. Here is a sample theorem. We take a simple condition known
to imply that a ∈ BC implies that the solution of (6) is in BC when
g(x) = x. Many other conditions are known such as (29) and the
argument in the proof of Theorem 4.1.

Proposition 6.1. Suppose that |g∗(x)| ≤ 1 and that there is an α < 1

with
∫ t

0
|C(t, s)|ds ≤ α. If x(t) = a(t) − ∫ t

0
C(t, s)g(x(s))ds and y(t) =

b(t) − ∫ t

0
C(t, s)g(y(s))ds with a− b ∈ BC, so is x− y.

Proof. Note that for fixed solutions x and y we have

x(t) − y(t) = a(t) − b(t) −
∫ t

0

C(t, s)[g(x(s)) − g(y(s))]ds

= a(t) − b(t) −
∫ t

0

C(t, s)g∗(ξ(s))[x(s) − y(s)]ds

by the mean value theorem for derivatives where ξ(s) is between x(s)
and y(s). The resulting integral equation has a bounded solution. �

7. Unsolved Problems

Note the transition from Theorem 2.1 to Theorem 2.2. By contriving
a Liapunov functional with higher powers of g(x) are are able to pass
from the requirement of a′ ∈ L1 (which allows only bounded a(t)) to
a′ ∈ L2n which allows a(t) = (t + 1)β for 0 < β < 1. Now look at
Theorem 4.1 in which we allow a′ ∈ L2. This allows a(t) = ln(t + 1)
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which is surprisingly large in view of classical results. But it would
be a real coup to introduce a higher power of g(x) in the Liapunov
functional and allow a′ ∈ Lp for 0 < p < ∞. As with all Liapunov
theory, patience and imagination should achieve the result.

In [5] for the linear case we obtain the counterpart of Theorem 3.1.
But we also differentiate (6) and obtain the same result for a′ ∈ Y ;
this includes a(t) = t + sin t. It is a great surprise that the solution
is in Y since this means that the function t is completly absorbed,
yielding virtually no effect on the long-term behavior of the solution,
while sin t exerts continued influence. Again, it would be a real coup
to prove this for (9). The problem is that when g(x) = x then (9) has
x′ = −C(t, t)x+f(t, x(·)) which can be written as an integral equation,
an effective mapping of Y → Y . A clever map must be constructed for
the nonlinear case.

Finally, we have handled the terms of a(t) in (4a) and (4b) separately,
but we have not put them together in (6).
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