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Abstract

Schaefer’s fixed point theorem or degree theory is used to study the existence of periodic
solutions in functional differential equations x′ = F (t, xt) by constructing a compact homotopy.
The construction of such a homotopy is very difficult in practice for nonlinear equations. In this
paper we use the direct fixed point mapping technique to link the homotopy to the right-hand
side of the equation directly and avoid those difficulties. Applications to linear and nonlinear
systems are given. This appeared in Differential Equations and Dynamical Systems, Vol. 6, No.
4, (1998), p. 413-424.

1 Introduction.

We consider the system of functional differential equations

x′(t) = F (t, xt) (1.1)

in which F : R × BC → Rn is continuous and T -periodic in t. BC is the space of
bounded continuous functions φ : (−∞, 0] → Rn with the supremum norm ‖ · ‖. For
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each t ∈ R, xt is defined by xt(s) = (t+ s) for s ≤ 0.

The existence of periodic solutions of Eq.(1.1) has been the subject of extensive
investigations for many years. Our interest here centers on degree-theoretic results,
including Schaefer’s fixed point theorem. Examples of these may be found in Burton,
Eloe, and Islam [2,3], Erbe, Krawcewicz, and Wu [4], Gustafson and Schmitt [5], Hale
and Mawhin [6], Krasnoselskii [7], Mawhin [8], Sadovski [9], Serra [10], and Zhang
[13]. A common method consists of writing the differential equation as an integral
equation which then defines a mapping; if the mapping has a fixed point, then it is
a solution of the differential equation. In this paper we use the direct fixed point
mapping technique introduced in Burton [1] to construct a homotopy directly from
F (t, φ). This involves writing the solution as an integral equation and it eliminates
many of the problems encountered in writing the differential equation as an inte-
gral equation. The main difficulty is in selecting the constant of integration. Several
different kinds of examples are given which illustrate methods of finding that constant.

Let R−, R+, R denote the intervals (−∞, 0], [0,+∞), and (−∞,+∞) respectively.
|·| denotes the Euclidean norm on Rn. Let (PT , ‖·‖) be the Banach space of continuous
T -periodic functions φ : R→ Rn with the supremum norm and

P 0
T = {φ ∈ PT |

∫ T

0
φ(s)ds = 0}.

2 The main result.

Our result rests on a fixed point theorem of Schaefer [11]. Its relation to Leray-
Schauder degree theorem is explained in Smart [12].

Theorem A (Schaefer). Let V be a normed space, H a continuous mapping of V
into V which is compact on each bounded subset of V . Then either

(i) the equation x = λHx has a solution for λ = 1, or

(ii) the set of all such solutions x, for 0 < λ < 1, is unbounded.

Theorem 2.1. Suppose that the following conditions hold.

(i) for each φ ∈ P 0
T , there is a constant kφ ∈ R such that

∫ T
0 F (t,Φt)dt = 0

where Φ(t) = kφ +
∫ t
0 φ(s)ds for each t ∈ R,
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(ii) E : P 0
T → PT defined by E(φ)(t) = Φ(t) in (i) is continuous and for each α > 0,

there exists a constant Lα > 0 such that |kφ| ≤ Lα whenever ‖φ‖ ≤ α.

(iii) there is a constant B > 0 such that ‖φ‖ < B whenever φ is a fixed point of
Gλ : P 0

T → P 0
T defined by Gλ(φ)(t) = λF (t,Φt) for 0 < λ < 1.

Then Eq.(1.1) has a T -periodic solution.

Proof. Let Gλ be defined in (iii). It follows from (i) and the continuity of F that
Gλ(φ) ∈ P 0

T . For each α > 0, consider {E(φ) : φ ∈ P 0
T , ‖φ‖ ≤ α}. This set is

uniformly bounded by (ii) and is equicontinuous by the definition of Φ. Thus, E
is compact by Ascoli-Arzela’s theorem. This implies that Gλ is compact since F is
continuous. By (iii), ‖φ‖ < B whenever φ is a fixed point of Gλ. Applying Schaefer’s
theorem with λH = Gλ, we conclude that Gλ has a fixed point φ for λ = 1. That is
φ = G1(φ) or Φ′(t) = F (t,Φt). Thus, Φ is a T -periodic solution of Eq.(1.1) and the
proof is complete.

Corollary 2.1. Suppose that conditions (i), (ii) of Theorem 2.1 hold and

(iv) F : R × PT → Rn maps bounded sets into bounded sets,

(v) there exists a constant B > 0 such that ‖x‖ < B whenever x = x(t) is a
T -periodic solution of

x′(t) = λF (t, xt), λ ∈ (0, 1). (2.1)

Then Eq.(1.1) has a T -periodic solution.

Proof. We need to show that condition (iii) of Theorem 2.1 holds. Notice that any
fixed point φ of Gλ corresponds to a T - periodic solution of Eq.(2.1). By (iv), there
exists a constant L = L(B) > 0 such that |F (t,Φt)| ≤ L whenever ‖Φ‖ ≤ B. If φ is
a fixed point of Gλ, then φ(t) = Φ′(t) = λF (t,Φt). By (v), we have ‖Φ‖ < B. Thus
‖φ‖ < L and (iii) of Theorem 2.1 is satisfied.

Corollary 2.2. Suppose that conditions (i), (ii) of Theorem 2.1 hold and there exist
positive constants M, q, 0 < q < 1, such that

(vi) |F (t,Φt)| ≤ q‖φ‖+M, for all φ ∈ P 0
T

where Φ is defined in (i). Then Eq.(1.1) has a T -periodic solution.

Proof. Let φ be a fixed point of Gλ. Then

|φ(t)| = λ|F (t,Φt)| ≤ q‖φ‖+M.
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Thus, ‖φ‖ ≤M/(1 − q). By Theorem 2.1, Eq.(1.1) has a T -periodic solution.

Finally in this section, we consider the equation

x′(t) = L(t, xt) + p(t) (2.2)

where L : R × BC → Rn is continuous, linear in φ, T -periodic in t, and p ∈ PT .

Theorem 2.2. Supoose there is an n × n matrix L(t, ·) such that for every k ∈ Rn

there is the relation L(t, ·)k = L(t, k). If the linear function
∫ T
0 L(t, ·)dt is invertible

and

(v∗) there exists a constant B > 0 such that ‖x‖ < B whenever x = x(t) is a
T -periodic solution of

x′(t) = λ[L(t, xt) + p(t)], λ ∈ (0, 1). (2.3)

Then Eq.(2.2) has a T -periodic solution.

Proof. Define F (t, φt) = L(t, φt) + p(t). In view of Corollary 2.1, we need to verify
conditions (i) and (ii) of Theorem 2.1. Let φ ∈ P 0

T and k ∈ Rn. Consider

∫ T

0
L
(

t, (k +
∫ t

0
φ(s)ds)t

)

dt+
∫ T

0
p(s)ds = 0.

Since L is linear with respect to the second argument, we have

∫ T

0
L(t, k)dt+

∫ T

0
L
(

t, (
∫ t

0
φ(s)ds)t

)

dt+
∫ T

0
p(s)ds = 0.

Thus,

k =
(

∫ T

0
L(t, ·)dt

)−1[

−
∫ T

0
L
(

t, (
∫ t

0
φ(s)ds)t

)

dt−
∫ T

0
p(s)ds

]

.

We designate that unique constant as kφ. It is clear that E : P 0
T → PT defined by

E(φ) = Φ with Φ(t) = kφ +
∫ t
0 φ(s)ds is continuous and

∫ T
0 F (t,Φt)dt = 0. Moreover,

there exists a constant γ > 0 such that |L(t, ψt)| ≤ γ‖ψ‖ for any ψ ∈ BC since L is
continuous and linear in ψ. Thus,

∣

∣

∣L
(

t, (
∫ t

0
φ(s)ds)t

)∣

∣

∣ ≤ γT‖φ‖
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and

|kφ| ≤
∣

∣

∣

(

∫ T

0
L(t, ·)dt

)−1∣
∣

∣(γTα+ ‖p‖)T =: Lα

for ‖φ‖ ≤ α. This completes the proof.

Remark 2.1. If L(t, xt) = A(t)x(t)+
∫ t
−∞B(t, s)x(s)ds+

∑+∞

k=1 Ak(t)x(t−hk), where

A(t), B(t, s), and Ak(t) are n × n matrices and hk > 0, then
∫ T
0 L(t, ·)dt is invertible

if and only if the matrix

∫ T

0

(

A(t) +
∫ t

−∞

B(t, s)ds+
+∞
∑

k=1

Ak(t)
)

dt

has an inverse.

3 Examples.

In this section, we give several examples to illustrate how to apply Theorem 2.1 to
some linear and nonlinear delay equations. Our emphasis will be on proving the
existence of kφ described in Theorem 2.1 and the use Liapunov functions to derive
a priori bounds on periodic solutions. The examples are shown in simple forms for
illustrative purposes and they can be easily generalized.

Example 3.1. Consider the scalar equation

x′(t) = a(t)x(t) + b(t)x(t− h) + p(t) (3.1)

where h ≥ 0 and a, b, p are continuous and T -periodic. If a(t) is of one sign with
∫ T
0 a(t)dt 6= 0 and there exists a constant N > 1 such that |a(t)| − N |b(t + h)| ≥ 0,

then Eq.(3.1) has a T -periodic solution.

Proof. Let L(t, xt) = a(t)x(t) + b(t)x(t− h). Then L(t, ·) = a(t) + b(t). We claim
that

∫ T
0 L(t, ·)dt 6= 0. Without loss of generality, we assume that a(t) ≥ 0. Since

b(t+ h) is also T -periodic, it follows that
∫ T

0
|b(t)|dt =

∫ T−h

−h
|b(s+ h)|ds =

∫ T

0
|b(s+ h)|ds.

Using the condition |a(t)| −N |b(t+ h)| ≥ 0, we have
∫ T

0

(

a(t) + b(t)
)

dt ≥
∫ T

0

(

|a(t)| − |b(t)|
)

dt =
∫ T

0

(

|a(t)| − |b(t+ h)|
)

dt
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=
N − 1

N

∫ T

0
a(t)dt+

1

N

∫ T

0

(

a(t)−N |b(t+ h)|
)

dt ≥
N − 1

N

∫ T

0
a(t)dt > 0.

Next, let V (x) = |x| and x = x(t) be a T -periodic solution of

x′(t) = λ[a(t)x(t) + b(t)x(t− h) + p(t)]. (3.2)

Then
V ′(x(t)) ≥ λ[a(t)|x(t)| − |b(t)||x(t− h)| − |p(t)|].

Integrate the above inequality from 0 to T to obtain

0 = V (x(T ))− V (x(0))

≥ λ
[

∫ T

0
a(t)|x(t)|dt−

∫ T

0
|b(t)||x(t− h)|dt−

∫ T

0
|p(t)|dt

]

= λ
[

∫ T

0
a(t)|x(t)|dt−

∫ T−h

−h
|b(t+ h)||x(t)|dt−

∫ T

0
|p(t)|dt

]

Notice that b(t+ h)x(t) is T -periodic. We have

0 ≥ λ
[

∫ T

0
a(t)|x(t)|dt−

∫ T

0
|b(t+ h)||x(t)|dt−

∫ T

0
|p(t)|dt

]

= λ
[

∫ T

0
(a(t)− |b(t+ h)|)|x(t)|dt−

∫ T

0
|p(t)|dt

]

= λ
[N − 1

N

∫ T

0
a(t)|x(t)|dt+

1

N

∫ T

0
(a(t)−N |b(t+ h)|)|x(t)|dt−

∫ T

0
|p(t)|dt

]

≥ λ
[N − 1

N

∫ T

0
a(t)|x(t)|dt− ‖p‖T

]

.

This implies that
∫ T
0 |a(t)||x(t)|dt ≤ ‖p‖TN/(N − 1) =: B1. There exists t∗ ∈ [0, T ]

such that |x(t∗)|
∫ T
0 |a(t)|dt ≤ ‖p‖TN/(N − 1). Thus,

|x(t∗)| ≤ ‖p‖TN
/[

(N − 1)
∫ T

0
|a(t)|dt

]

=: B2.

It follows from Eq.(3.2) that
∫ T

0
|x′(t)|dt ≤

∫ T

0
|a(t)||x(t)|dt+

∫ T

0
|b(t)||x(t− h)|dt+ ‖p‖T

=
∫ T

0
|a(t)||x(t)|dt+

∫ T

0
|b(t+ h)||x(t)|dt+ ‖p‖T
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≤ 2
∫ T

0
|a(t)||x(t)|dt+ ‖p‖T ≤ 2B1 + ‖p‖T.

For t ∈ [0, T ], we have

|x(t)| ≤ |x(t∗)| +
∫ T

0
|x′(s)|ds ≤ B2 + 2B1 + ‖p‖T =: B.

By Theorem 2.2, Eq.(3.1) has a T -periodic solution.

Example 3.2. Consider the linear Volterra equation

x′(t) = A(t)x(t) +
∫ t

−∞

B(t, s)x(s)ds+ p(t) (3.3)

where A,B are n × n matrix functions, A(t), p(t) are continuous on R, and B(t, s)
is continuous on −∞ < s ≤ t + ∞. There exists a constant T > 0 such that
A(t + T ) = A(t), B(t + T, s + T ) = B(t, s), p(t + T ) = p(t) for all t ∈ R and
−∞ < s ≤ t < +∞. Suppose that

(i) D =
∫ T

0

(

A(t) +
∫ t

−∞

B(t, s)ds
)

dt is invertible

(ii) sup
t∈[0,T ]

[
∣

∣

∣A(t) +
∫ t

−∞

B(t, s)ds
∣

∣

∣KT +
(

|A(t)|+
∫ t

−∞

|B(t, s)|ds
)

T
]

=: α < 1

where K = |D−1|
∫ T
0 (|A(u)| +

∫ u
−∞

|B(u, s)|ds)du. Then Eq.(3.3) has a T -periodic
solution.

Proof. Let F (t, xt) = A(t)x(t)+
∫ t
−∞

B(t, s)x(s)ds+p(t). It follows from Theorem 2.2

and (i) that for each φ ∈ P 0
T , there exists a unique kφ ∈ R such that

∫ T
0 F (t,Φt)dt = 0

where Φ(t) = kφ +
∫ t
0 φ(s)ds. Moreover, the function E : P 0

T → PT defined by
E(φ) = Φ is continuous on P 0

T and

kφ = −D−1
∫ T

0

(

A(t)
∫ t

0
φ(s)ds+

∫ t

−∞

B(t, s)
∫ s

0
φ(u)duds+ p(t)

)

dt.

Thus, |kφ| ≤ KT‖φ‖+ |D−1|‖p‖T and

|F (t,Φt)| ≤
∣

∣

∣A(t) +
∫ t

−∞

B(t, s)ds
∣

∣

∣|kφ| +
(

|A(t)|+
∫ t

−∞

|B(t, s)|ds
)

T‖φ‖ + ‖p‖
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≤
∣

∣

∣A(t) +
∫ t

−∞

B(t, s)ds
∣

∣

∣(KT‖φ‖+ |D−1|‖p‖T )

+(|A(t)|+
∫ t

−∞

|B(t, s)|ds)T‖φ‖+ ‖p‖

≤ α‖φ‖ + M

whereM = supt∈[0,T ] |A(t)+
∫ t
−∞B(t, s)ds||D−1|‖p‖T+‖p‖. By Corollary 2.2, Eq.(3.3)

has a T -periodic solution.

Example 3.3. Consider the two dimensional nonlinear system

x′(t) = Ag(x(t)) +
∫ t

−∞

C(t− s)g(x(s))ds+ p(t) (3.4)

where A = diag(1,−1), C(t) = (cij(t))2×2, g(x) = (x3
1, x

3
2)

T , x = (x1, x2)
T , p ∈ P 0

T .
If

∫ 0

−∞

(|c1j(s)| + |c2j(s)|)ds < 1, j = 1, 2,

then Eq.(3.4) has a T -periodic solution.

Proof. We verify that all conditions of Corollary 2.1 hold. Let

F (t, xt) = (F1(t, xt), F2(t, xt))
T = Ag(x(t)) +

∫ t

−∞

C(t− s)g(x(s))ds+ p(t).

For φ = (φ1, φ2)
T ∈ P 0

T and k ∈ R, we define Q(k) =
∫ T
0 (k+

∫ t
0 φ1(s)ds)

3dt. Since the
quadratic function Q′(k) = 3

∫ T
0 (k +

∫ t
0 φ1(s)ds)

2dt ≥ 0 and limk→±∞Q(k) = ±∞,
there exists a unique k1φ ∈ R such that Q(k1φ) = 0. Similarly, there exists k2φ ∈ R

such that
∫ T
0 (k2φ +

∫ t
0 φ2(s)ds)

3dt = 0. Define kφ = (k1φ, k2φ)
T . We claim that

∫ T
0 F (t,Φt)dt = 0, where Φ(t) = (Φ1(t),Φ2(t))

T = kφ +
∫ t
0 φ(s)ds. Since

∫ t
0 φ(s)ds is

T -periodic, for each s ∈ R we have

∫ T

0

(

kjφ +
∫ t+s

0
φj(u)du

)3
dt =

∫ T

0

(

kjφ +
∫ t

0
φj(u)du

)3
dt =

∫ T

0
Φ3

j (t)dt = 0.

Thus,

F1(t,Φt) =
(

k1φ +
∫ t

0
φ1(s)ds

)3
+
∫ 0

−∞

C11(−s)
(

k1φ +
∫ t+s

0
φ1(u)du

)3
ds

+
∫ 0

−∞

C12(−s)
(

k2φ +
∫ t+s

0
φ2(u)du

)3
ds+ p1(t)
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and
∫ T

0
F1(t,Φt)dt =

∫ T

0
Φ3

1(t)dt+
∫ 0

−∞

C11(−s)ds
∫ T

0
Φ3

1(t)dt (3.5)

+
∫ 0

−∞

C12(−s)ds
∫ T

0
Φ3

2(t)dt+
∫ T

0
p1(t)dt = 0.

Similarly, we have

∫ T

0
F2(t,Φt)dt = −

∫ T

0
Φ3

2(t)dt+
∫ 0

−∞

C21(−s)ds
∫ T

0
Φ3

1(t)dt (3.6)

+
∫ 0

−∞

C22(−s)ds
∫ T

0
Φ3

2(t)dt+
∫ T

0
p2(t)dt = 0.

Thus,
∫ T
0 F (t,Φt)dt = 0. It is clear that |kjφ| ≤ T‖φj‖ for j = 1, 2. Thus, |kφ| ≤

2T‖φ‖. We now show that E : P 0
T → PT defined by E(φ)(t) = Φ(t) = kφ +

∫ t
0 φ(s)ds

is continuous. Let {φn} be a sequence in P 0
T and φn → φ ∈ P 0

T as n → +∞. We
show that kφn

→ kφ as n → +∞. By way of contradiction, if kφn
6→ kφ, then there

exists a subsequence, say {kφn
} again, and µ > 0 with |kφn

− kφ| ≥ µ. We may
assume |k1φn

− k1φ| ≥ µ. Let φn = (φ1n, φ2n)
T and φ = (φ1, φ2)

T . By the definitions
of kφn

= (k1φn
, k2φn

)T and kφ = (k1φ, k2φ)
T , we have

0 =
∣

∣

∣

∫ T

0

(

k1φn
+
∫ t

0
φ1n(s)ds)

3dt−
∫ T

0

(

k1φ +
∫ t

0
φ1(s)ds)

3dt
∣

∣

∣

=
∣

∣

∣

∫ T

0

(

k1φn
− k1φ +

∫ t

0
φ1n(s)ds−

∫ t

0
φ1(s)ds

)(

Φ2
1n(t) + Φ1n(t)Φ1(t) + Φ2

1(t)
)

dt
∣

∣

∣

where Φ1n(t) = k1φn
+
∫ t
0 φ1n(s)ds. Since φn → φ, there exists a constant Q1 > 0

such that ‖φn‖ ≤ Q1 for all n = 1, 2, · · ·. Thus, |kφn
| ≤ 2TQ1 and there exists a

subsequence {kφnj
} of {kφn

} such that kφnj
→ k∗ = (k1∗, k2∗)

T as j → +∞. Applying

Lebesgue’s convergence theorem and letting nj → +∞ in the above equality, we have

0 =
∣

∣

∣

∫ T

0
(k1∗ − k1φ)

(

Φ2
1∗(t) + Φ1∗(t)Φ1(t) + Φ2

1(t)
)

dt
∣

∣

∣

where Φ1∗(t) = k1∗ +
∫ t
0 φ1(s)ds. Thus,

0 ≥
|k1∗ − k1φ|

2

∫ T

0

[

Φ2
1∗(t) + Φ2

1(t)
]

dt

=
|k1∗ − k1φ|

2

∫ T

0

[(

k1∗ +
∫ t

0
φ1(s)ds

)2
+
(

k1φ +
∫ t

0
φ1(s)ds

)2]

dt
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=
|k1∗ − k1φ|

2

∫ T

0

[(

k1∗ − k1φ + k1φ +
∫ t

0
φ1(s)ds

)2
+
(

k1φ +
∫ t

0
φ1(s)ds

)2]

dt

≥
|k1∗ − k1φ|

2

∫ T

0

1

2
(k1∗ − k1φ)

2dt

=
1

4
T |k1∗ − k1φ|

3 ≥
1

4
Tµ3 > 0,

a contradiction. Similarly, we can show that k2φn
→ k2φ. Thus, kφn

→ kφ as n→ +∞.

It is clear that
∣

∣

∣

∫ t
0 φn(s)ds −

∫ t
0 φ(s)ds

∣

∣

∣ ≤ T‖φn − φ‖ → 0 as n → +∞. This shows

that E : P 0
T → PT is continuous.

It is clear that F : R × PT → R2 maps bounded sets into bounded sets. We
now show there exists a constant B > 0 such that ‖x‖ < B whenever x = x(t) is a
T -periodic solution of

x′(t) = λ
[

Ag(x(t)) +
∫ t

−∞

C(t− s)g(x(s))ds + p(t)
]

(3.7)

where 0 < λ < 1. Let x = (x1, x2)
T and define V (x) = −|x1| + |x2|. If x = x(t) is a

T -periodic solution of (3.7), then

V ′(x(t)) ≤ −λ(|x1(t)|
3 + |x2(t)|

3) + λ
∫ 0

−∞

(|c11(−s)|+ |c21(−s)|)|x1(t+ s)|3ds

+λ
∫ 0

−∞

(|c12(−s)|+ |c22(−s)|)|x2(t+ s)|3ds + λ‖p1‖ + λ‖p2‖. (3.8)

Integrating (3.8) from 0 to T , we find constants αij so that

0 = V (x(T ))− V (x(0))

≤ −λ
∫ T

0
(|x1(t)|

3 + |x2(t)|
3)dt+ λ

∫ 0

−∞

(|c11(−s)| + |c21(−s)|)ds
∫ T

0
|x1(t)|

3dt

+λ
∫ 0

−∞

(|c12(−s)|+ |c22(−s)|)ds
∫ T

0
|x2(t)|

3dt+ λT (‖p1‖ + ‖p2‖)

= −λ(1 −α11 −α21)
∫ T

0
|x1(t)|

3dt− λ(1 −α12 −α22)
∫ T

0
|x2(t)|

3dt+ λT (‖p1‖ + ‖p2‖).

Thus, there exists a constant B1 > 0 such that
∫ T
0 |x(t)|3dt < B1. It follows from

Eq.(3.7) that
∫ T

0
|x′(t)|dt ≤

∫ T

0
|A||g(x(t))|dt+

∫ T

0

∫ 0

−∞

|C(−s)||g(x(t+ s))|dsdt+ ‖p‖T
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≤ (|A| +
∫ 0

−∞

|C(−s)|ds)
∫ T

0
|x(t)|3dt+ ‖p‖T

≤ (|A| +
∫ 0

−∞

|C(−s)|ds)B1 + ‖p‖T.

By Sobolev’s inequality, there exists a constant B > 0 such that ‖x‖ < B. Since all
conditions of Corollary 2.1 are satisfied, we conclude that Eq.(3.4) has a T -periodic
solution.

Remark 3.1. It is clear from (3.5) and (3.6) that the same conclusion of Example
3.3 follows if p ∈ P 0

T is replaced by p ∈ PT and

detD 6= 0, D = A+

(

α11 α12

α21 α22

)

, αij =
∫ 0

−∞

Cij(−s)ds.

Remark 3.2. For nonlinear vector equations there is the problem of deciding the
order in which we should find the appropriate constants kφ to satisfy condition (i)
of Theorem 2.1. We now illustrate the order (but not the details) for finding those
constants for the well-known Liénard system

x′1(t) = x2(t) −N(x1(t)), (3.9)

x′2(t) = −g(x1(t− r)) + p(t, x1(t), x2(t))

where p(t, u, v) is T -periodic in t. Let F1(t, xt) = x2(t) − N(x1(t)), F2(t, xt) =
−g(x1(t − r)) + p(t, x1(t), x2(t)), and F (t, xt) = (F1(t, xt), F2(t, xt))

T . For φ =
(φ1, φ2)

T ∈ P 0
T and k = (k1, k2)

T , define Φ(t) = k +
∫ t
0 φ(s)ds. Set

∫ T

0
F1(t,Φt)dt =

∫ T

0

(

k2 +
∫ t

0
φ2(s)ds

)

dt−
∫ T

0
N
(

k1 +
∫ t

0
φ1(s)ds

)

dt = 0.

This yields,

k2 =
1

T

[

−
∫ T

0

∫ t

0
φ2(s)dsdt +

∫ T

0
N
(

k1 +
∫ t

0
φ1(s)ds

)

dt
]

. (3.10)

Substitute (3.10) into
∫ T
0 F2(t, xt)dt = 0 to solve k1 and then solve for k2 by (3.10).

Obviously, conditions on the functions must now be given to ensure the requirements
of Theorem 2.1. If p(t, u, v) ≡ p(t), we may solve k1 directly from

−
∫ T

0
g
(

k1 +
∫ t

0
φ1(s)ds

)

dt+
∫ T

0
p(s)ds = 0.
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