
Jensen’s Inequality and Liapunov’s Direct Method

Leigh C. Becker T. A. Burton

Department of Mathematics Northwest Research Institute

Christian Brothers University 732 Caroline St.

650 E. Parkway South Port Angeles, WA 98362

Memphis, TN 38104-5581

1. Introduction

In the theory of Liapunov’s direct method for finite delay equations, four distinct

types of problems arise which have been the focus of much investigation over the last 50

years. We note here that, with the aid of Jensen’s inequality, all four can be collapsed into

basically the same kind of problem. All four types can arise from a simple scalar equation

of the form

x′(t) = −a(t)x + b(t)x(t − 1) − c(t)x3

and their treatment leads the investigator easily to attack far more general problems in

much the same way. The classical Liapunov functional for this equation usually appears

in the form of

V (t, xt) = x2(t) +
∫ t

t−1

|b(s + 1)|x2(s)ds

or

V (t, xt) = |x(t)| +
∫ t

t−1

|b(s + 1)||x(s)|ds

with the required relations varying slightly depending on the choice of these two functionals;

both have been used extensively and they have counterparts for systems in which a and b

are matrices, while c(t)x3 is replaced by a more general nonlinear vector-valued function.

For this equation it is usually assumed that a(t) is positive and dominates b(t) in some

way, while the real focus is on c(t). Interesting things happen when:

1. b(t) is bounded and c(t) = 1; this is the classical uniform asymptotic stability

theorem.

2. c(t) = 1, while b is not bounded.
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3. c(t) = 1/t and b is not bounded.

4. c(t) = | sin t| − sin t.

Our discussion here centers around certain functional differential equations but the

basic difficulties we wish to attack can be seen in equations without delay. These will be

used in our first two sections for simplicity. Let f : R × Rn → Rn be continuous and

consider the system of differential equations

(1.1) x′ = f(t, x)

in which x′ = dx/dt. It is supposed that

(1.2) f(t, 0) = 0

so that x(t) = 0 is a solution. The basic problem we consider is finding conditions so that

solutions starting near the zero solution converge to zero. In the theory of Liapunov’s

direct method, we seek a differentiable scalar function V : R×Rn → [0,∞), together with

scalar functions Wi : [0,∞) → [0,∞), called wedges, which are continuous, Wi(0) = 0, and

Wi strictly increasing. The idea is to choose functions so shrewdly that

(1.3) W1(|x|) ≤ V (t, x), V (t, 0) = 0

and the derivative of V along a solution of (1.1) satisfies

(1.4) V ′
(1.1)(t, x(t)) = gradV · f + ∂V/∂t ≤ −W2(|x|).

This can be obtained by the chain rule which involves only (1.1) and the partial derivatives

of V . Thus, the virtue of the method is that (1.4) can be computed directly from the

differential equation itself, rather than from the unknown solution.

An existence theorem is invoked to prove that a solution x(t, t0, x0) =: x(t) exists

through an arbitrary point (t0, x0). Then we integrate (1.4) and say that

V (t, x(t)) ≤ V (t0, x0) −
∫ t

t0

W2(|x(s)|)ds.

If we can show that the solution exists for all future time and if we assume that the solution

is bounded strictly away from zero, then the integral of W2(|x(s)|) tends to −∞, driving

V (t, x(t)) to −∞, a contradiction to (1.3) since 0 ≤ W1(|x|) ≤ V (t, x).
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If functions can be found satisfying (1.3) and (1.4), then V is called a Liapunov

function for (1.1). Construction of Liapunov functions is an art, rather than a science, yet

investigators have been very successful at constructing effective Liapunov functions. Also,

there are three instances of note when Liapunov functions can be constructed:

(i) The total energy of the system can constitute a suitable Liapunov function. Indeed,

the method is often referred to as energy methods.

(ii) For a linear constant coefficient system, the Liapunov function is found from the

solution of algebraic equations.

(iii) A first integral of an equation can often serve as a Liapunov function.

Liapunov’s original work appeared in 1892 in Russian. It was translated into French in

1907. A modern English translation was published in 1992 [10]; it includes a photograph

of Liapunov and a short biography. We were introduced to Liapunov’s direct method

primarily through the book by Yoshizawa [16]. Our own point of view is conveyed through

the two monographs [3] and [4]; the second of which is dedicated to Prof. Yoshizawa and

contains a photograph of him.

2. The Annulus Argument

The purpose of this section is to introduce the reader to the hypothesis of Marachkoff

[13], introduced in 1940, and which has been used in both ordinary and functional differ-

ential equations to prove asymptotic stability. It simply asks that the right-hand side of

the differential equation be bounded when the state variable (x or xt) is bounded. While

it is useful, it is highly objectionable for two reasons:

(a) It drastically limits the class of problems which we can consider.

(b) It actually detracts from the very properties which often promote strong asymp-

totic stability. For example, solutions of the scalar equation x′ = −x go to zero exponen-

tially, but those of x′ = −(1 + t2)x tend to zero far more quickly.

In our first result here we show the reader exactly how the hypothesis is used. The

remainder of the paper is devoted to showing ways in which we can avoid that objectionable

condition by the use of Jensen’s inequality.

DEFINITION. The zero solution of (1.1) is stable if for each ε > 0 and t0 ≥ 0, there

is a δ > 0 such that [|x0| < δ, t ≥ t0] implies that |x(t, t0, x0)| < ε.

3



DEFINITION. The zero solution of (1.1) is asymptotically stable if it is stable and if

for each t0 ≥ 0 there is a µ > 0 such that |x0| < µ implies that x(t, t0, x0) → 0 as t → ∞.

Let us focus on (1.1) through (1.4). In the first part of our proof of Theorem 2.1

we will show that (1.3) and V ′(t, x(t)) ≤ 0 imply that the zero solution of (1.1) is stable.

The early investigators always believed that (1.3) and (1.4) would suffice for asymptotic

stability, but they do not, as the reader may see in Burton [4; p.230]. If we add a wedge

above V then we can get a much stronger result, namely uniform asymptotic stability

(which we do not define here). But, to this very day, investigators do not know exactly

what is needed to conclude asymptotic stability. In 1940 Marachkoff offered the following

result. Hatvani [7] presents many contexts in which Marachkoff’s assumption is used.

THEOREM 2.1. Suppose there is a function V satisfying (1.3) and (1.4). If, in

addition, f is bounded for x bounded, then the zero solution of (1.1) is asymptotically

stable.

Proof. Let ε > 0 and t0 ≥ 0 be given. From (1.3) we see that V (t0, 0) = 0 and, by

continuity of V , there is a δ > 0 such that |x0| < δ implies that V (t0, x0) < W1(ε). By

(1.4) we have

W1(|x(t, t0, x0)|) ≤ V (t, x(t, t0, x0)) ≤ V (t0, x0) < W1(ε)

for t ≥ t0 so that |x(t, t0, x0)| < ε since W1 is increasing and V ′ ≤ 0. This proves that the

zero solution is stable.

For the given ε > 0 and t0 ≥ 0, let δ > 0 be found for stability. We claim that if

|x0| < δ, then x(t) := x(t, t0, x0) → 0 as t → ∞. By way of contradiction, if this is false

then there is a γ > 0 and a sequence {tn} ↑ ∞ with |x(tn)| ≥ γ. But from (1.3) and (1.4)

we see that for V (t) := V (t, x(t)) we have

0 ≤ V (t) ≤ V (t0) −
∫ t

t0

W2(|x(s)|)ds.

Clearly, if |x(t)| remained larger than γ/2 on some interval [t∗,∞), then we would have

0 ≤ V (t) ≤ V (t∗) −
∫ t

t∗
W2(γ/2)ds → −∞,

a contradiction. Thus, there is a sequence {sn} ↑ ∞ with |x(sn)| ≤ γ/2.
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The solution is racing back and forth across an annulus with radii γ and γ/2. It is

from this that the name annulus argument comes.

Here is the critical part in which Marachkoff’s condition is used. Since |x(t)| < ε,

there is a number M > 0 with |f(t, x(t))| ≤ M for all t ≥ 0. We will now show that there

is a number T > 0 such that |x(t)| > γ/2 for tn ≤ t ≤ tn + T. For suppose there is a

Tn > tn with |x(Tn)| = γ/2. We would then have

x(Tn) = x(tn) +
∫ Tn

tn

f(s, x(s))ds

so that

γ/2 ≤ |x(Tn) − x(tn)| ≤
∫ Tn

tn

Mds = M(Tn − tn)

or

Tn − tn ≥ γ/2M.

The desired number T can be taken as

T = γ/4M.

Now, renumber the sequence {tn} so that tn + T < tn+1. Then V (tn + T ) − V (tn) ≤
−TW2(γ/2) from (1.4). Hence, V (t) → −∞, a contradiction. The proof is complete.

There is also a functional differential equation analogue of Theorem 2.1: the zero

solution of the delay equation (3.1) in Section 3 is asymptotically stable if a Marachkoff-

like condition that F be bounded for xt bounded holds and if a Liapunov functional V (t, xt)

satisfying (1.3) and (1.4) exists. A precise statement and proof of this is found in Burton

[4;p. 261, Theorem 4.2.5 (c)]. A proof that looks precisely like that of Theorem 2.1, apart

from some notational adjustments, can also be given.

The entire point of this paper is to derive an alternative to the annulus argument which

will not require that f be bounded for x bounded. The integral form of Jensen’s inequality,

stated in Section 3, plays a central role. We have mentioned before that Hatvani [7] presents

many contexts in which the annulus argument is used in conjunction with Liapunov’s direct

method. A good research project might begin with a study of that paper to see how the

results can be improved using Jensen’s inequality.
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3. Uniform Asymptotic Stability through Convex-Downward Wedges

The use of wedges is an inherent part of Liapunov’s direct method. A wedge W

becomes even more potent in a stability argument if it also happens to be convex down-

ward; for then the problems mentioned in Section 2 can be avoided by means of Jensen’s

inequality. Fortunately, as we will see below, ordinary wedges can even be converted to

convex-downward wedges. We prefer the term convex downward to the more widely used

convex to describe a function whose graph has the property that every point on each of

its chords lies either above or on the portion of the graph subtended by the chord; more

precisely:

DEFINITION. A function G : [a, b] → (−∞,∞) is said to be convex downward on

[a, b] if

G((1 − λ)t1 + λt2) ≤ (1 − λ)G(t1) + λG(t2)

whenever t1, t2 ∈ [a, b] and 0 ≤ λ ≤ 1.

Some authors, such as Natanson [14;p. 38], just use the midpoint of each chord in their

definition: G([t1 + t2]/2) ≤ [G(t1) + G(t2)]/2. Nevertheless, it implies the first inequality

when G is continuous on [a, b] (cf. Stromberg [15; p. 204]). When it comes to wedges,

properties of convex-downward functions that are of particular use are:

(i) If G is differentiable on an open interval (a, b), then G is convex downward on (a, b)

if and only if G′ is nondecreasing on (a, b).

(ii) If f : [a, b] → (−∞,∞) is increasing, then F (t) =
∫ t

a
f(u)du is convex downward

on [a, b].

NOTE. For a wedge W and a constant H > 0, it follows from (ii) that

W1(r) :=
1
H

∫ r

0

W (s)ds

is a convex-downward wedge by virtue of W increasing. Moreover, by a mean value theorem

for integrals, W1(r) ≤ W (r) for r ∈ [0, H]. Consequently, a local result, such as

V ′(t, xt) ≤ −W (|x|) for |x(t)| ≤ H,

may be replaced by V ′(t, xt) ≤ −W1(|x(t)|). In other words, we may just as well assume

that W is convex downward in the first place.
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Applying Jensen’s inequality to integrals with integrands containing convex-downward

wedges will prove to be an invaluable tool. With such wedges in mind, we state Jensen’s

inequality as given by Natanson [14; pp. 45-6], adapting it slightly to suit our uses of it.

JENSEN’S INEQUALITY. Let Φ : [0,∞) → [0,∞) be continuous and convex down-

ward. If f , p are nonnegative functions on [a, b], f measurable and finite almost everywhere,

p, f · p are integrable, and
∫ b

a
p(t)dt > 0, then

Φ
[∫ b

a

f(t)p(t)dt/

∫ b

a

p(t)dt

]
≤

∫ b

a

Φ(f(t))p(t)dt/

∫ b

a

p(t)dt.

In conjunction with Liapunov’s direct method, we show how asymptotic stability

results for certain functional differential equations can be obtained by choosing a wedge

Φ, or W , that is convex downward. In many of our uses of Jensen’s inequality, f is the

composite of a suitably chosen continuous, nonnegative function and a solution x(t) of

a scalar functional differential equation. Typically, f(t) = |x(t)| or f(t) = x2(t). For

example, for f(t) = |x(t)|, the form in which Jensen’s inequality will appear is

−
∫ b

a

p(t)W (|x(t)|)dt ≤ −
∫ b

a

p(t)dt · W
(∫ b

a

p(t)|x(t)|dt/

∫ b

a

p(t)dt

)
.

Our actual study begins with a functional differential equation with finite delay

(3.1) x′(t) = F (t, xt), F (t, 0) = 0,′ = d/dt

where xt(s) = x(t+ s) for −r ≤ s ≤ 0 with r a positive constant. We assume that we have

found a Liapunov functional V (t, xt) and wedges Wi satisfying

(3.2) W1(|x(t)|) ≤ V (t, xt) ≤ W2(|x(t)| +
∫ t

t−r

W3(|x(s)|)ds)

and

(3.3) V ′(t, xt) ≤ −W4(W3(|x(t)|),

where W4 is convex downward. Much can and should be said about the derivative of V .

Its upper right-hand derivative can exist when V is only continuous. But for our purposes
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here we will assume that V is at least Lipschitz and usually differentiable. The reader is

referred to Yoshizawa [16; p.186 ff.] for a discussion.

The form in which the right-hand side of (3.3) is written does not pose a problem

since

V ′(t, xt) ≤ −W5(|x(t)|),

where W5 is an arbitrary wedge, can always be replaced by an inequality of the form (3.3).

Simply rewrite W5 as

W5(s) = W5(W−1
3 (W3(s))) = (W5 ◦ W−1

3 )(W3(s))

and then integrate the wedge (W5 ◦ W−1
3 )(s) as is done in the note following (ii). The

result is a convex-downward wedge W4 with W4(s) ≤ (W5 ◦ W−1
3 )(s).

For a constant A > 0, the set CA denotes the open A−ball in the Banach space C of

continuous functions φ : [−r, 0] → Rn with the supremum norm ‖φ‖ = sup−r≤s≤0 |φ(s)|,
where | · | is any convenient norm on Rn. As is common throughout the literature, | · |
will also represent absolute value. We allow A = ∞ in which case CA denotes the entire

space C. It is assumed that F : R × CA → Rn is continuous and takes closed bounded

sets into bounded sets. From standard existence results (cf. Burton[4; p. 186 ff.]), for

each (t0, φ) ∈ R×CA there is at least one solution x(t) := x(t, t0, φ) defined on an interval

[t0, α) with xt0 = φ; if there is a B < A with |x(t)| < B so long as it is defined, then

α = +∞.

DEFINITION. The zero solution of (3.1) is:

a) stable if for each ε > 0 and for each t0 ∈ R there is a δ > 0 such that

[φ ∈ Cδ, t ≥ t0] =⇒ |x(t, t0, φ)| < ε.

b) uniformly stable (US) if for each ε > 0 there exists δ > 0 such that

[φ ∈ Cδ, t0 ∈ R, t ≥ t0] =⇒ |x(t, t0, φ)| < ε.

c) asymptotically stable (AS) if it is stable and if for each t0 ∈ R there is an η > 0

such that

[φ ∈ Cη] =⇒ |x(t, t0, φ)| → 0 as t → ∞.
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If, in addition, every solution x(t, t0, φ), where φ ∈ C, tends to zero, then the zero solution

is asymptotically stable in the large or globally asymptotically stable.

d) uniformly asymptotically stable (UAS) if it is uniformly stable and if there is a

γ > 0 and for each µ > 0 there is a T > 0 such that

[φ ∈ Cγ , t0 ∈ R, t ≥ t0 + T ] =⇒ |x(t, t0, φ)| < µ.

LEMMA 1. Suppose there is a differentiable functional V and wedges Wi so that on

R × CA we have

(i) W5(|x(t)|) ≤ V (t, xt) ≤ W6(‖xt‖)
and

(ii) V ′
(3.1)(t, xt) ≤ 0.

Then the zero solution of (3.1) is uniformly stable.

Proof. Let ε < A be given and find δ > 0 so that W6(δ) < W5(ε). Then for

‖φ‖ < δ, t0 ∈ R, t ≥ t0

we have from (ii) that

W5(|x(t, t0, φ)|) ≤ V (t, xt) ≤ V (t0, φ) ≤ W6(‖φ‖) < W6(δ)

so |x(t, t0, φ)| < ε. This completes the proof.

EXERCISE. Show that if (3.2) holds then (i) holds.

REMARK. It was long conjectured that

(I) W1(|x(t)|) ≤ V (t, xt) ≤ W2(‖xt‖)
and

(II) V ′
(3.1)(t, xt) ≤ −W3(|x(t)|) implied UAS; but it does not. Exactly 100 years after

the publication of Liapunov’s original article, Kato [8] produced a counterexample. A

considerably simplified version was given by Makay [11].

Strengthening (I) to (3.2) does suffice for UAS and that is the basic result on the

subject. It may be found in Burton [2] with a different proof. Much earlier Krasovskii

[9] had obtained the weaker conclusion of asymptotic stability under the same conditions.
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The proof plays the upper wedge against the derivative; this idea was introduced in the

original proof [2] and has been used very effectively since then in other problems.

REMARK. In any uniform asymptotic stability proof, there are many details which

need to be correctly put in order before the actual argument begins. In the proof below,

the critical argument begins with the use of intervals defined in (3.7). The argument we

see there is the one which will be repeated, with additional conditions, throughout the rest

of the paper.

THEOREM 3.1. If (3.2) and (3.3) hold on R × CA, then the zero solution of (3.1) is

uniformly asymptotically stable.

Proof. For A/2 > 0 find B of uniform stability; that is, for a solution x(t, t0, φ) with

an initial function φ satisfying ‖φ‖ < B, then |x(t, t0, φ)| < A/2 for t ≥ t0. Denote by

x(t) := x(t, t0, φ) any fixed but arbitrary such solution.

Let ε > 0 be given. We will find T > 0 such that [‖φ‖ < B, t0 ∈ R, t ≥ t0 + T ] imply

that |x(t)| < ε. Notice that by (3.2) we have

(3.4) V (t0, φ) ≤ W2(B + rW3(B)) =: L

and let

(3.5) M := W1(ε).

We will find a T so that for any such solution x(t) we have

V (t0 + T, xt0+T ) < M

and, hence,

(3.6) W1(|x(t)|) ≤ V (t) < W1(ε),

for t ≥ t0 + T , where V (t) := V (t, xt).

Consider the set of intervals

(3.7) [tn−1, tn] := [t0 + 2(n − 1)r, t0 + 2nr]
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for n = 1, 2, 3, .... We will find a positive integer N so that V (tN ) < W1(ε). Consider the

intervals for which this does not hold. In that case,

W1(ε) ≤ V (t) ≤ W2

(
|x(t)| +

∫ t

t−r

W3(|x(s)|)ds

)
;

equivalently,

(3.8) |x(t)| +
∫ t

t−r

W3(|x(s)|)ds ≥ 2K

for some K > 0.

Integrate (3.3) and obtain

V (tn) − V (tn−1) ≤ −
∫ tn

tn−1

W4(W3(|x(s)|))ds ≤ −
∫ tn

tn−r

W4(W3(|x(s)|))ds.

There are two possibilities:

1. |x(t)| ≥ K on [tn − r, tn], so V (tn) − V (tn−1) ≤ −rW4(W3(K)) =: −D;

or

2. there is a t∗n ∈ [tn − r, tn] with |x(t∗n)| < K so that

∫ t∗n

t∗n−r

W3(|x(s)|)ds > K.

In the latter case we have by Jensen’s inequality,

V (t∗n) − V (t∗n − r) ≤ −rW4(
∫ t∗n

t∗n−r

W3(|x(s)|)ds/r) < −rW4(K/r) =: −Q.

Notice that tn−1 ≤ t∗n − r ≤ t∗n ≤ tn so that V (tn) − V (tn−1) ≤ V (t∗n) − V (t∗n − r) since

V ′ ≤ 0. If we let C = min[D, Q], then V (tn) − V (tn−1) ≤ −C. Take NC > L − M

so that V (tN ) ≤ V (tN−1) − C ≤ ... ≤ V (t0) − NC ≤ L − NC < M. In other words,

V (t0 + T ) < W1(ε), where T = 2Nr.

This completes the proof.

EXAMPLE 3.1. Consider the scalar equation

(3.9) x′ = −a(t)x + b(t)x(t − r) − c(t)x3
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where a, b, c : R → R are continuous functions. Suppose that a(t) > 0 and constants β > 0

and m ≥ 0 exist such that

∫ t+r

t

b2(s)ds ≤ β and 2a(t) − |b(t)| − |b(t + r)| ≥ m

for t ≥ 0. If [m > 0 and c(t) ≥ 0] or if [m = 0 and c(t) ≥ λ, λ a positive constant], then

the zero solution of (3.9) is uniformly asymptotically stable.

Proof. The result follows from applying Theorem 3.1 to the classical Liapunov func-

tional

V (t, xt) = x2(t) +
∫ t

t−r

|b(s + r)|x2(s)ds.

To see this, along a solution of (3.9), we have

V ′(t, xt) = −2a(t)x2(t) + 2b(t)x(t)x(t− r) − 2c(t)x4(t) + |b(t + r)|x2(t) − |b(t)|x2(t − r)

≤ −2a(t)x2(t) + |b(t)|x2(t) + |b(t)|x2(t − r)| + |b(t + r)|x2(t) − |b(t)|x2(t − r) − 2c(t)x4(t)

≤ −(2a(t) − |b(t)| − |b(t + r)|)x2(t) − 2c(t)x4(t)

≤ −mx2(t) − 2c(t)x4(t).

It is an interesting and important exercise to reconcile the wedges in this example

with those in Theorem 3.1.

By Schwarz’s inequality,

V (t, xt) ≤ x2(t) +
(∫ t

t−r

b2(s + r)ds

)1/2(∫ t

t−r

x4(s)ds

)1/2

≤ x2(t) + β1/2

(∫ t

t−r

x4(s)ds

)1/2

≤ kx2(t) + k

(∫ t

t−r

x4(s)ds

)1/2

,

where k := max[1, β1/2].

Define W (u) = max[u1/2, u2]. Then,

V (t, xt) ≤ kW (|x(t)|) + kW

(∫ t

t−r

x4(s)ds

)
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≤ 2kW

(
|x(t)| +

∫ t

t−r

x4(s)ds

)
,

as W (u) + W (v) ≤ 2W (u + v). It follows that

W1(|x(t)|) ≤ V (t, xt) ≤ W2

(
|x(t)| +

∫ t

t−r

W3(|x(s)|)ds

)
,

where W1(u) = u2, W2(u) = 2kW (u), and W3(u) = u4, showing that (3.2) holds.

Finally, define the wedge W5 by W5(u) = mu2 if m > 0 and c(t) ≥ 0 or by W5(u) =

2λu4 if m = 0 and c(t) ≥ λ. Then as V ′(t, xt) ≤ −W5(|x(t)|), it follows from previous

remarks that a convex-downward wedge W4 can be found so that (3.3) is satisfied in a

neighborhood of the zero solution of (3.9). This concludes the proof.

It is easy to see that this stability result holds for any equation

x′ = −a(t)x(t) + b(t)x(t − r) − c(t)x2n+1

where n is a positive integer.

4. Constructing Upper Bounds on Liapunov Functionals with Jensen’s Inequality

We are now going to go through a series of examples, adding some degree of difficulty

each time. Since so many of the classical problems can be seen in the equation

(3.9) x′ = −a(t)x + b(t)x(t − 1) − c(t)x3,

we focus on (3.9) in the rest of the paper, setting r = 1 for the sake of simplicity. The

reader can easily adapt the computations for

x′ = −a(t)x3(t) + b(t)x3(t − 1) − c(t)x2n+1

by using the Liapunov functional

V (t, xt) = (1/4)x4 + (1/2)
∫ t

t−1

|b(s + 1)|x6(s)ds.

It is very interesting to compare the results, especially for n = 0, in the latter equation.
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The integral condition in Example 3.1 was crucial in proving the uniform asymptotic

stability of the zero solution of (3.9) in that it led to an upper bound on the Liapunov

functional. With the aid of Jensen’s inequality, other integral conditions may be found that

also lead to upper bounds from which asymptotic stability results can be obtained. Our

goal in the next example is to demonstrate this by inserting a suitably chosen function in

a polynomial bounding the derivative V ′ of a Liapunov functional V and then integrating

V ′ and using Jensen’s inequality to obtain an upper bound on V itself.

EXAMPLE 4.1. Consider the scalar equation

(4.1) x′ = −a(t)x + b(t)x(t − 1) − x3

where a, b : R → R are continuous, b vanishes at no more than a countably infinite number

of points in every bounded interval, and

(4.2) 2a(t) ≥ |b(t)| + |b(t + 1)|.

If the function

B(t) :=
(∫ t

t−1

b2(s + 1)ds

)−1

satisfies the condition

(4.3)
∞∑

i=1

B(ti) = ∞

for every nondecreasing sequence {ti}∞i=1 ↑ ∞ satisfying ti+1 − ti ≤ 2, then every solution

of (4.1) tends to zero as t → ∞.

Proof. Using the Liapunov functional

(4.4) V (t, xt) = x2 +
∫ t

t−1

|b(s + 1)|x2(s)ds,

the derivative of V along a solution of (4.1) is

V ′(t, xt) ≤ −2a(t)x2(t)+ |b(t)|x2(t)+ |b(t)|x2(t−1)+ |b(t+1)|x2(t)−|b(t)|x2(t−1)−2x4(t)

or

(4.5) V ′(t, xt) ≤ −2x4(t) ≤ −(x2(t))2.
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Integration of (4.5) will yield x4(t) integrable. However, this alone does not guarantee

that x(t) will go to zero since Marachkoff’s condition that the right-hand side of (4.1)

be bounded for xt bounded is no longer one of the hypotheses. In fact, the divergent

series condition (4.3) allows b(t) to grow (e.g., see (4.13)) while there is no upper bound

restriction at all on a(t).

At this point, obtaining asymptotic stability by integrating V ′ seems futile–and yet,

one of the strategies in Liapunov’s direct method is to use the upper bound on V found

by integrating V ′, along with V itself, to show that a zero solution exhibits some kind of

stability. Basically the root of the problem is that the integrand in the Liapunov functional

(4.4) contains the function b whereas the integral of (4.5) does not. In other words, we

need an upper bound on V that includes∫ t

t−1

|b(s + 1)|x2(s)ds.

Nevertheless, there is a way of obtaining such an upper bound by essentially inserting b

into the right-hand side of (4.5) before integrating.

First, define the function

b̂(t) :=
{

b(t), if b(t) 
= 0
1, if b(t) = 0

and rewrite (4.5) as

(4.6) V ′(t, xt) ≤ −b̂2(t + 1)
(

x2

|b̂(t + 1)|

)2

.

Now integrate both sides from t−1 to t and then use Jensen’s inequality. In the statement of

Jensen’s inequality given in Section 3, set p(t) = b̂2(t+1) and f(t) = x2(t)/|b̂(t+1)|. Since

f , p, and f · p are continuous a.e. on [t − 1, t], they are measurable functions. Moreover,

as the latter two are also bounded on the interval, they are also Riemann integrable.

Letting Φ(u) = u2, we apply Jensen’s inequality to the integral of the first term of the

right-hand side of (4.6). Note that the resulting integrals do not change their values if

b(s+1) is substituted for b̂(s+1), since they are equal except for at most countably many

s ∈ [t − 1, t]. With this substitution and letting V (t) := V (t, xt), we obtain

(4.7) V (t) − V (t − 1) ≤ −B(t)
(∫ t

t−1

|b(s + 1)|x2(s)ds

)2

.
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With the aid of (4.7), we can now show that an arbitrary solution tends to zero as

t → ∞. Imagine that we have a solution x(t) on an interval, say [0,∞). Since the Liapunov

functional along x(t) is given by (4.4), we have

x2(t) ≤ V (t)

and so it suffices to show that V (t) → 0 as t → ∞. By way of contradiction, if V (t) does

not tend to zero, then as V ′ ≤ 0, there is a positive constant c with

(4.8) V (t) = x2 +
∫ t

t−1

|b(s + 1)|x2(s)ds ≥ c.

Consider the decreases in V over the successive intervals [i− 1, i] for i = 2, 3, 4, .... If there

is not a point ti ∈ [i − 1, i] with x(ti) ≤ c/2, then by (4.5) we have

(4.9) V (i) − V (i − 1) < −c2/4;

but if there is such a point, then from (4.8) we have

(4.10)
∫ ti

ti−1

|b(s + 1)|x2(s)ds ≥ c/2.

In the latter case, it follows that V (ti)−V (ti−1) ≤ −B(ti)c2/4, or as i−2 ≤ ti−1 < ti ≤ i,

(4.11) V (i) − V (i − 2) ≤ −B(ti)c2/4.

We first note that (4.9) can hold for at most a finite number of values of i. To be definite,

for a fixed solution, there is an integer N so that (4.9) fails for all i ≥ N and so (4.11)

holds from that point on. The terms of the sequence {ti}∞i=N satisfy ti+1 − ti ≤ 2 and

approach ∞ since ti ∈ [i − 1, i]. As a result, by (4.3) the sum from i = N to ∞ of the

right-hand side of (4.11) is −∞. This forces V (t) → −∞, a contradiction. This concludes

the proof.

Consider the sentence after (3.9) with the new and more general equation. You can

get a hint about solving it by examining (4.6) above.
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We would like to find a simple sufficient condition for (4.3) to hold. One that comes

to mind is for B(t) ≥ 1/[k(t + 1)] or

(4.12)
∫ t

t−1

b2(s + 1)ds ≤ k(t + 1)

for t ≥ M , where M ≥ 0 and k > 0 are constants. Then, for a nondecreasing sequence

{ti}∞i=0 ↑ ∞ with t0 ∈ [n, n + 1], n a nonnegative integer, and ti+1 − ti ≤ 2, we have

B(ti) ≥ 1
k(ti + 1)

≥ 1
k(n + 2(i + 1))

for ti ≥ M . By the integral test,
∞∑

i=0

1
k(n + 2(i + 1))

= ∞,

from which condition (4.3) follows. It is also worth noting that the condition

(4.13) |b(t + 1)| ≤ c(t + 1)1/2,

for t ≥ M and a constant c > 0, implies (4.12) and hence (4.3), since t+1/2 =
∫ t

t−1
(s+1)ds.

In view of existing literature, is this a good condition? It is, indeed. Burton and

Makay [5] use very sophisticated methods to find conditions for asymptotic stability. One

of them is that a(t) + |b(t)| ≤ c(t + 1) ln(t + 2) for some constant c > 0. Consequently, if

b(t) = c ln(t + 2), then this condition requires that a(t) ≤ ct ln(t + 2). However, note that

b(t) = c ln(t+2) easily satisfies condition (4.13) and all that is required for all solutions to

approach zero as t → ∞ is that (4.2) hold, namely, 2a(t) ≥ |b(t)| + |b(t + 1)|.
Whenever we write specific functions in an equation instead of working with general

functions, results are almost always greatly improved. To understand what is happening

in such problems we propose the following exercises:

1. Rework Example 4.1, obtaining a counterpart for (4.13) when (4.1) is replaced by

x′ = −a(t)x + b(t)x(t − 1) − x7

2. Assume that you have some general equation and have constructed a Liapunov

functional yielding the pair

W1(|x|) ≤ V (t, xt) ≤ W2(|x|) + W3(
∫ t

t−1

|b(s)|W4(|x(s)|)ds)
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and

V ′(t, xt) ≤ −W5(|x|).

Follow the work in Example 4.1 to obtain an asymptotic stability result based on this pair.

5. Asymptotic Stability through Divergent Series

The asymptotic stability result for (4.1) invites us to look for similar results for

x′ = −a(t)x + b(t)x(t − 1) − c(t)x2n+1

when n > 1 and the function c is different from c(t) ≡ 1 and not constant. Such a function

will now appear explicitly in the upper bound on the derivative of the Liapunov functional

(4.4). This then brings up questions regarding the use of Jensen’s inequality, how this

changes the divergent series condition (4.3), and whether other conditions are needed.

Rather than answering these questions directly, we invite the reader to investigate them

at this point. The information gleaned from doing this leads to even more general results,

such as the next theorem.

THEOREM 5.1. Let

(5.1) x′(t) = F (t, xt), F (t, 0) = 0

be a functional differential equation with finite delay r > 0, where F : R × CA → Rn

is continuous and takes closed bounded sets into bounded sets. Suppose a differentiable

functional V and wedges Wi exist that satisfy

(5.2) W1(|x(t)|) ≤ V (t, xt) ≤ W2(|x(t)|) + W3

(∫ t

t−r

|λ(s)|W4(|x(s)|)ds

)

and

(5.3) V ′
(5.1)(t, xt) ≤ −η(t)

(
W4(|x(t)|))2

on R ×CA, where λ, η : R → R are continuous functions with η nonnegative. In addition,

suppose that a sequence {ti}∞i=1 with ti+1 − ti ≥ 2r and a constant α > 0 exist so that

(5.4)
∫ ti

ti−r

η(t)dt ≥ α
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and that on each of the intervals [ti − 2r, ti], η is nowhere zero whereas λ is nonzero a.e.

If, for every sequence {τi}∞i=1 with τi ∈ [ti − r, ti], the series with terms

(5.5) B(τi) :=
(∫ τi

τi−r

λ2(t)
η(t)

dt

)−1

diverges to ∞, i.e.,

(5.6)
∞∑

i=1

B(τi) = ∞,

then the zero solution of (5.1) is asymptotically stable. Moreover, if CA = C, the zero

solution is globally asymptotically stable.

Proof. For a given t0 ∈ R, define the wedge W by

(5.7) W (u) := W2(u) + W3

(
W4(u)

∫ t0

t0−r

|λ(s)|ds

)
.

For ε ∈ (0, A), where 0 < A ≤ ∞, find a δ > 0 so that W (δ) < W1(ε). For an initial

function φ ∈ Cδ, let x(t) := x(t, t0, φ) be a solution of (5.1). For t ≥ t0, it follows from

(5.2) and (5.3) that

W1(|x(t)|) ≤ V (t, xt) ≤ V (t0, φ) < W (δ) < W1(ε)

and so |x(t)| < ε whenever t ≥ t0. Thus, x(t) is defined on [t0,∞) and the zero solution is

stable.

Next, we prove that x(t) tends to the zero solution as t → ∞. Since V (t) := V (t, xt) ≥
W1(|x(t)|), we can prove this by arguing that V (t) → 0. If this were not the case, then as

V ′(t) ≤ 0,

(5.8) V (t) ≥ µ for t ≥ t0

for some constant µ > 0. Select a term tn from {ti}∞i=1 so that tn ≥ t0 + 2r. On each

interval [ti − r, ti] with i ≥ n, either

1. W2(|x(t)|) > µ/2, or

2. W2(|x(τi)|) ≤ µ/2 for some τi ∈ [ti − r, ti].
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In the first case, for all t in that interval we have W4(|x(t)|) > W4(W−1
2 (µ/2)) =: k.

Consequently, from (5.3) and (5.4), it follows that

(5.9) V (ti) − V (ti − r) < −k2

∫ ti

ti−r

η(t)dt ≤ −αk2.

As for the second case, (5.2) implies that

(5.10)
∫ τi

τi−r

|λ(s)|W4(|x(s)|)ds ≥ W−1
3 (µ/2) =: K.

Define the function λ̂ by λ̂(t) = 1 if λ(t) = 0; otherwise, λ̂(t) = λ(t). For t ∈ [ti−2r, ti],

we can rewrite (5.3) as

V ′(t) ≤ − λ̂2(t)
η(t)

(
η(t)

|λ̂(t)|W4(|x(t)|)
)2

since η(t) 
= 0. Integrating from τi − r to τi, we obtain

(5.11) V (τi) − V (τi − r) ≤ −
∫ τi

τi−r

λ̂2(t)
η(t)

(
η(t)

|λ̂(t)|W4(|x(t)|)
)2

dt.

Now apply Jensen’s inequality with Φ(t) = t2, p(t) = λ̂2(t)/η(t), and f(t) =
η(t)

|λ̂(t)|W4(|x(t)|). Since λ̂ = λ a.e., we replace λ̂ with λ in the resulting integrals to ob-

tain

V (τi) − V (τi − r) ≤ −B(τi)
(∫ τi

τi−r

|λ(t)|W4(|x(t)|)dt

)2

.

Since ti − 2r ≤ τi − r < τi ≤ ti, from V ′(t) ≤ 0 and (5.10) it follows that

(5.12) V (ti) − V (ti − 2r) ≤ −B(τi)K2.

For i ≥ n, either (5.9) or (5.12) holds at each ti. However, as V is always decreasing, (5.9)

can hold at only finitely many of these ti since V is nonnegative. Consequently, (5.12)

must hold at the remaining ti. Summing both sides of (5.12) over these infinitely many

ti and using (5.6), we conclude that V (t) → −∞ as t → ∞; but this contradicts (5.8).

Hence, V (t) → 0 as t → ∞ and so |x(t)| → 0. In fact, since this argument depends only

on a solution x(t, t0, φ) existing on the entire interval [t0,∞), we have proved that every

bounded solution approaches the zero solution as t → ∞.
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To sum up, the zero solution is asymptotically stable since for each t0 ∈ R and

ε ∈ (0, A), there is a δ > 0 such that φ ∈ Cδ implies that |x(t, t0, φ)| < ε for t ≥ t0 and

|x(t, t0, φ)| → 0 as t → ∞. Finally, for the case A = ∞, every solution x(t, t0, φ), for any

φ ∈ C, is bounded since |x(t)| < W−1
1 (W (‖φ‖) for all t ≥ t0. Consequently, every solution

approaches the zero solution as t → ∞. This concludes the proof.

COROLLARY 5.1. Suppose that a differentiable functional V and wedges Wi exist

for (5.1) satisfying (5.2) and (5.3) on R×CA, where λ, η : R → R are continuous functions

and η(t) ≥ |λ(t)|. Furthermore, suppose that a sequence {ti}∞i=1 with ti+1 − ti ≥ 2r and a

constant α > 0 exist so that (5.4) holds and

(5.13)
∫ τ

τ−r

η(t)dt > 0

for all τ ∈ [ti − r, ti]. If, for every sequence {τi}∞i=1 with τi ∈ [ti − r, ti], the series with

terms

(5.14) B(τi) :=
(∫ τi

τi−r

η(t)dt

)−1

diverges to ∞, then the zero solution of (5.1) is AS and globally asymptotically stable if

CA = C.

Proof. Since |λ(t)| ≤ η(t), it follows from (5.2) that

(5.15) W1(|x(t)|) ≤ V (t, xt) ≤ W2(|x(t)|) + W3

(∫ t

t−r

η(s)W4(|x(s)|)ds

)
.

Since the same function, namely η, now appears in both right-hand sides of (5.3) and

(5.15), we can integrate the upper bound on V ′ directly without first having to insert a

function as is done in the proof of Theorem 5.1. With condition (5.13), all of the criteria of

Jensen’s inequality are met. The result of integrating (5.3) and using Jensen’s inequality

is

V (τi) − V (τi − r) ≤ −B(τi)
(∫ τi

τi−r

η(t)W4(|x(t)|)dt

)2

,

where (5.14) replaces the B(τi) of (5.5). Aside from these relatively minor changes, the

rest of the proof is exactly the same as that of Theorem 5.1.
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COROLLARY 5.2. Suppose a differentiable functional V and wedges Wi exist for

(5.1) that satisfy (5.2) and

(5.16) V ′
(5.1)(t, xt) ≤ −η(t)W4(|x(t)|)

on R×CA, where λ, η : R → R are continuous functions and η(t) ≥ 0. Also, suppose that

a sequence {ti}∞i=1 with ti+1 − ti ≥ 2r exists, along with a constant α > 0, so that

(5.17)
∫ ti

ti−r

η(t)dt ≥ α

and that there is a constant L > 0, such that for every sequence {τi}∞i=1 with τi ∈ [ti−r, ti],

(5.18) L|λ(t)| ≤ η(t)

for t ∈ [τi − r, τi]. Then the zero solution of (5.1) is AS, or globally asymptotically stable

if CA = C.

Proof. The proof is identical to that of Theorem 5.1 up through (5.10), except that

(5.9) must be slightly altered to

(5.19) V (ti) − V (ti − r) < −αk

on account of the different upper bound on V ′. The integral of (5.16) along a solution

from τi − r to τi together with (5.10) and (5.18) yields

V (τi) − V (τi − r) ≤ −
(∫ τi

τi−r

η(t)W4(|x(t)|)dt

)
≤ −L

(∫ τi

τi−r

|λ(t)|W4(|x(t)|)dt

)
≤ −LK.

Accordingly, the inequality

(5.20) V (ti) − V (ti − 2r) ≤ −LK

replaces (5.12). Thus, either (5.19) or (5.20) holds at each ti. Aside from not having to

deal with a divergent series, the rest of the proof is the same as before.

EXERCISE. Consider again Theorem 3.1. Can we obtain UAS when V ′ ≤
−c(t)W4(W3(|x(t)|)) for c(t) ≥ 0 and

∫ t

t−r

c(s)ds ≥ α > 0?
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6. Examples

EXAMPLE 6.1. Consider the scalar equation

(6.1) x′ = −a(t)x + b(t)x(t − r) − c(t)x2n+1,

where n is a positive integer and a, b, c : R → R are continuous. Let c be nonnegative and

(6.2) 2a(t) ≥ |b(t)| + |b(t + r)|.

Suppose that a sequence {ti}∞i=1 with ti+1 − ti ≥ 2r exists such that λ(t) := b(t + r) and

η(t) := c(t) satisfy all of the conditions associated with (5.4) and (5.5) in Theorem 5.1.

Furthermore, for n > 1 suppose that a constant β > 0 exists such that

(6.3)
∫ t+r

t

|b(s)|ds ≤ β

for t ∈ R. Then the zero solution of (6.1) is globally asymptotically stable.

Proof. The derivative of the Liapunov functional

(6.4) V (t, xt) = x2(t) +
∫ t

t−r

|b(s + r)|x2(s)ds,

along a solution of (6.1) is

(6.5) V ′(t, xt) ≤ −2c(t)x2n+2(t) ≤ −c(t)
(|x(t)|n+1

)2
.

Thus, (5.3) holds with W4(u) = un+1. We can use Jensen’s inequality to find a wedge

W3 to show that (5.2) also holds. Take p(t) = |b(t + 1)| and f(t) = |x(t)|n+1. Define

Φ(t) = t
2

n+1 so that Φ(f(t)) = x2(t). Note, however, that as Φ′ is decreasing when n > 1,

Φ is concave downward; that is, −Φ is convex downward on [0,∞). Consequently, use of

this particular Φ reverses the inequality with the result that

(6.6)
∫ t

t−r

|b(s + r)|x2(s)ds ≤
(∫ t

t−r

|b(s + r)|ds

)n−1
n+1

(∫ t

t−r

|b(s + r)|W4(|x(s)|)ds

) 2
n+1

.

This inequality trivially holds for n = 1. This, together with (6.3), shows that (5.2) holds

for n ≥ 1 with W3(u) = β
n−1
n+1 u

2
n+1 and W1(u) = W2(u) = u2. Thus, all of the conditions

in Theorem 5.1 are satisfied.
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Remark. When n = 1, it follows from (6.6) that the integral condition (6.3) is actually

unnecessary; in this case, W3(u) = u. Wedges of the type W (u) = um are convex downward

for 1 ≤ m < ∞ but concave downward for 0 < m ≤ 1. So, W3 acts as a boundary between

the two types.

EXAMPLE 6.2. The zero solution of

(6.7) x′ = −(t2 + 3)x(t) + 2(t − 1)(sin t)x(t − 1) − t2 sin2(t + 1)x3(t)

is globally asymptotically stable.

Proof. Referring to Example 6.1, we have |b(t)| + |b(t + 1)| ≤ 2|t − 1| + 2|t|. Thus,

η(t) := 2 − |b(t)| − |b(t + 1)| ≥ 2(t3 + 3) − 2(|t − 1| + |t|) ≥ 2.

Letting α = 2, the integral inequality (5.4) holds for any sequence {ti}∞i=1. By defining

ti = (2i − 1)π
2
, the condition that c(t) 
= 0 on the intervals [ti − 2, ti] is satisfied. Since

b2(t + 1) = 4c(t), it follows that

B(τi) :=
(∫ τi

τi−1

b2(t + 1)
c(t)

dt

)−1

=
1
4

for any τi ∈ [ti − 1, ti]. Consequently, (5.6) holds. Since n = 1, condition (6.3) is unneces-

sary, which concludes the proof.

Solutions of (6.7) corresponding to three initial functions on [−1, 0] were graphed

below with the numerical solver DifEqu, written by Makay [12].
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We now give an example of coefficients for (6.1) that are unbounded but vanish on a

sequence of infinitely many intervals.

EXAMPLE 6.3. Let H be a square wave function defined by

H(t) =
∞∑

i=1

(−1)i+1u(t − 0.5i),

where u(t − T ) is the unit step function defined by u(t − T ) = 0 if t ≤ T , u(t − T ) = 1 if

t > T . The zero solution of

(6.8) x′ = −(|t| + |t + 1|)| sin 2πt|H(t)x(t)− 2t sin(2πt)H(t − 1)x(t − 1) − 2|t + 1|x3(t)

is globally asymptotically stable.

Proof. Let a, b, and c denote the coefficients as in (6.1) where n = 1. We show that

the conditions in Corollary 5.1 are satisfied using the Liapunov functional (6.4) with r = 1.

Clearly, (5.2) holds with λ(t) := b(t + 1), Wi(u) = u2 for i = 1, 2, 4, and W3(u) = u. Since

the period of both H and sin 2πt is 1,

|b(t)| + |b(t + 1)| = 2|t|| sin 2πt|H(t − 1) + 2|t + 1|| sin 2πt|H(t)

≤ 2(|t| + |t + 1|)| sin 2πt|H(t) = 2a(t).

Hence, it follows (cf. (6.2) and (6.5)) that (5.3) holds with η(t) := c(t) = 2|t + 1|. The

condition that η(t) ≥ |λ(t)| is met since |λ(t)| = |b(t + 1)| ≤ 2|t + 1|. Now define the

sequence {ti}∞i=1 by letting ti = 2i. From
∫ τ

τ−1

η(t)dt =
∫ τ

τ−1

2(t + 1)dt = 2τ + 1

for τ ≥ t1 − 1 = 1, it follows that (5.13) and (5.4) with α = 5 hold. Finally, the divergent

series condition is satisfied as

B(τi) =
(∫ τi

τi−1

η(t)dt

)−1

=
1

2τi + 1
≥ 1

4(i + 1)

and so
∑∞

i=1 B(τi) = ∞.

A prototypic example demonstrating Liapunov theory applied to delay differential

equations is the scalar linear equation with constant coefficients

(6.9) x′ = −ax(t) + bx(t − r), where a > |b| > 0.
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The classical Liapunov functionals in this paper can be used to show that its zero solution

is uniformly asymptotically stable (cf. Burton [4; p. 252] or Driver [6; p. 368]). As a

matter of fact, this result follows from Example 3.1. Moreover, Driver (cf. p. 244) uses a

classical Liapunov funcional to show that every solution of (6.9) is bounded and then uses

this in an ad hoc argument to prove that every solution in fact tends to zero exponentially

as t → ∞. The next example, a consequence of Corollary 5.2, can also be used to prove

that every solution tends to zero. Even though it does not show that the rate of decay

is exponential, it does give asymptotic stability results for certain linear delay equations

with variable coefficients.

EXAMPLE 6.4. Let a, b : R → R be continuous. If for η(t) := 2a(t)−|b(t)|−|b(t+r)|,
positive constants α and L exist such that

(6.10)
∫ t

t−r

η(s)ds ≥ α

and

(6.11) L|b(t + r)| ≤ η(t)

for t ≥ t1, for some t1 ∈ R, then the zero solution of

(6.12) x′ = −a(t)x + b(t)x(t − r)

is globally asymptotically stable.

Proof. Using the Liapunov functional (6.4), condition (5.2) holds with Wi(u) = u2

(i = 1, 2, 4), W3(u) = u, and λ(t) = |b(t + r)|. Condition (5.16) holds since

V ′
(6.12)(t, xt) ≤ −(a(t) − |b(t)| − |b(t + r)|)x2(t) = −η(t)W4(|x(t)|),

where η(t) = 2a(t) − |b(t)| − |b(t + r)|. Since (6.10) and (6.11) hold for all t ≥ t1, the

sequential conditions in Corollary 5.2 are met, completing the proof.

EXAMPLE 6.5. The zero solution of (6.9) is globally asymptotically stable.

Proof. This follows directly from Example 6.4. Since η(t) ≡ 2(a − |b|), (6.10) and

(6.11) hold with α = 2(a − |b|)r and L = (a − |b|)/|b|, respectively.
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EXAMPLE 6.6. The zero solution of

(6.11) x′ = −(sin 2πt + k| sin 2πt|)x(t) + (sin 2πt + | sin 2πt|)x(t− 1)

is globally asymptotically stable if k > 1.

Proof. Referring again to Example 6.4, η(t) = 2a(t)−|b(t)|−|b(t+r)| = 2(k−1)| sin 2πt|
and

∫ t

t−1

η(s)ds = 2(k − 1)
∫ t

t−1

| sin 2πs|ds = 4(k − 1)
∫ 1/2

0

sin 2πsds =
4
π

(k − 1).

Thus, for k > 1, (6.10) and (6.11) are satisfied with α = 4
π (k−1) and L = k−1, respectively.
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