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ABSTRACT. In this paper we study three neutral integral equations of the form

(a) u(®) = ft e =)+ [ Qls.yls)yls — O — s)ds +p(e),
(b) z(t) = azx(t —h) — [ [Bz(s) +yx(s — h)]C(t, s)ds + p(t),
and

(c) o(t) =as(t = 1)~ [ [8%(s) +9°(s — WIC(E, 5)ds + ().

Using a contraction mapping theorem on (a) and Liapunov functions on (b) and (c) we
find appropriate norms and metrics for the solutions. When the equations are periodic we
use a modification of Krasnoselskii’s fixed point theorem to prove that there is a periodic
solution. These equations arise from the inversion of well-known problems such as neutral
logistic equations.

1. INTRODUCTION.

Krasnoselski noted that inversion of a perturbed differential operator frequently yields
the sum of a contraction and compact operator. When a system of perturbed neutral dif-
ferential operators are inverted we obtain very interesting and unusual compact operators
of advanced and retarded types. In the earlier papers ([1] and [2]) we studied the advanced
kinds. Here, we look at retarded types. The first results are parallel to the earlier ones, but
then they become strikingly different. We are most interested in studying the appropriate

fixed point theorems for such operators.
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These operators can be motivated by inverting a system of neutral predator-prey equa-
tions which have now become quite common ([5], [7]).

Consider the system

x = O!IL’/(t - h) +ar — Q(tvxvyvx(t - h)vy(t - h))

y =08y (t—h)—ky+rt,zyxt—h),yt—h)),
which we write as

[(z — ax(t — h))e_at}/ = laax(t —h) — q(t,z,y,x(t — h),y(t — h)] ™,

[(y = Byt = h)e™] = [=Bhy(t — h) + r(t, 2y, 2(t — h),y(t — h)] .

If we integrate the first equations from ¢ to co and the second from —oo to ¢, we obtain a

system

t

X(t) = F(t,X(t 1), /

— 00

G(s,X(s),X(s —h))ds, /too H(s,X(s),X(s— h))ds).

With a view to eventually understanding such systems, in ([1], [2]) we studied scalar

equations of the type

x(t) = f(t,z(t — h / H(s,x(s — h))ds

by means of contraction mappings and by a combination of Liapunov’s direct method and
Krasnoselskii-type fixed point theorems (See [6] and [9;p. 31].). Here, we offer a parallel

study of

1) y(t) = F(t.y(t — h / Qs y(s), y(s — W)C(t — s)ds + p(t).



2. SMALL KERNELS

We suppose that in
t
(1) y@) =[Gyl —nh) +/ Q(s,y(s),y(s —h))C(t — s)ds +p(t) =0,
there are constants «, k and Cj so that

(2) a € [0,1) and |f(t,z1) — f(t,22)| < a|z; — 23] for (t,z;) € RT x R,
(3) k€0,1] and |Q(t,x1,22) — Q(t,x3,24)| < k|x1 — 23| + (1 — k)|x2 — 24| fOT t, 22, € R,
4) / |C(s)|ds =: Cy < o0,

0

(5) p € C([0,00),R), C € C([0,),R), f € C([0,00) x R,R), Q € C(R* R).

From elementary considerations of the method of undetermined coefficients for ordinary
differential equations with constant coefficients, we expect a solution of (1) to follow p(t).
Given a p € C((—oo,O],]R), we seek a solution y(t,0,®) satisfying (1) for ¢ > 0 and
y(t,0,%) = @(t) for t < 0. Then for y to be continuous at ¢t = 0, we would need $(0) = y(0),

but
0
(6) y(0) = £(0,2(=h)) + /_ Q(s,2(s),@(s — h))C(=s)ds + p(0),
so unless p is such that
0
(7) 2(0) = £(0,(=h)) + /_ Q(s,2(s),9(s — h))C(=s)ds + p(0),

there will be a discontinuity in y(¢,0,%) at t = 0, and hence at ¢t = nh.

Remark.. We could show, as in [3], that for a @ as above satisfying

0
(8) I(t,9) := /_ Q(s,(s),@(s — h))C(t — s)ds € C([0,00), R),
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there is a ¢* arbitrarily near @ for which y(¢,0,¢*) is continuous. In fact, this will be
necessary if we are to use Liapunov functions requiring integration by parts on problems
with initial functions. But for Theorem 1 no such continuity is required.

These last two paragraphs tell us the main properties of solutions and how to find them.

First, examine p(t) and in order to construct a weight for a norm on a Banach space,

find a D € C([—h, ), (0,00)) with

|Q(¢,0,0)] |f(¢,0,0)] p(t)]
9 = < o, P22 < oo, <
) wobm S ST bm < Wb <%
D(t — . .
and sup (t—h) =k for some k£ > 0.
>0 D(t)
(10) /t ot — )] 2 g5 < o
su —s .
20 Jo D(t)
Moreover, for the mapping we use to be a contraction, we ask
(11) ak+ (k4 (1 -k sup/ IC(t — s) )d.s::,u<1.
>0 D(t)

Define the Banach space (B,]|- |p) where

o(8)]
12 = d
(12) elo od Dy
B ={¢:[-h,o0) — R, ¢ continuous on [(n — 1)h,nh) forn = 0,1,..., lim ¢(¢)

t—nh—

exists and |p|p < oo}.

Theorem 1. Let (2)-(5) hold and D(t) be such that (9)-(12) hold. Then for each

I(t,p
p € C((—00,0],R) satisfying (9) and Sup% < 00, there is a unique function y :
>0
R — R, y‘[_h o) € B, such that y(t,0,%) = p(t) for t < 0, y(t,0,9) satisfies (1) for t > 0
y(t,0,9)|
and sup ———~——
=0 D)

Proof of Theorem 1. B* is the complete metric space of functions {¢ : R — ]R‘(p(t) =
P(t) for t < 0,4,0}[_h sy € B} with the metric d(p,¥) = |@[—p.00) — @D[_h’oo)}D. Define a
mapping P : B* — B* by ¢ € B* implies

Fltoot — 1) + 1 Q(s,0(s), (s — h)C(t — s)ds +p(t) >0
P(t) t <0.

(Pe)(t) = {



Since 4,0‘ [ hoo) € Band g € C((—o0,0],R), we have that ¢(t—h) is right continuous at ¢t = 0
and then by the continuity properties in (5) and (8), f(t,p(t — h)), ono Q(s,2(s), p(s —
h))C(t—s)ds and fg Q(s,¢(s), p(s—h))C(t—s)ds, and hence (Pp)(t), are right continuous
at t = 0.

Similarly, (Py)(t) is continuous on [(n — 1)h,nh) forn = 0,1,... Moreover, by a

similar argument lim Pp(t) exists for n =0,1,... Since for ¢ > 0, we have that
t—nh—

|[f(t, ot = R)| = [f(£,0)]| < [f(t,o(t = h)) = f(t,0)] < alp(t = R)],

then by (9)

aup B2 =) ot = )| D~ h) | FO)

>0 D(t) >0 D(t—h) D(t) D(t)

Similarly [Q(¢, (1), o(t — h))| < Kklo@®)] + (1 = k)lp(t = k)| + |Q(0,0)], and

QU (), olt — 1)
e D(#) =
So
(PO® _  f et =) . [ 1Qs e(s), (s — W) D(s) .
HS S T R S 0T0) +/o D(s) Dipy 1O~ )lds

0 — S
+ [ 1Q6wenpts - s+ B < o

— 00

and

(Pe)(1) e [Pe()]

= Inax su )
D(t) _neizo D(t) i20 DY)

|Po|p = sup
t>—h

Then ng‘[_h ooy € B and Py € B*.



For ¢, € B*,

P - P
d(Pep, Py) = }P<P|[—h,oo) - P¢|[—h,oo)}D = S>up [Po(t) () <

D) =

|f(t,o(t —h)) — f(t,(t —h) |+f o(s), (s = h)) —Q(s,%(s),¥(s — h))] ||C(t — s)|ds
sup
>0 D(t)

lo(t —h) —(t — h)| D(t — h) “T Je(s) —4(s)| D(s)

S TR D@)'*A F D) D)

(el = h) = wls W\ Ds =W D)
+a ’“)( D(s — ) ) D) D(t)]'c“ i

> lo(t) —¥(1)| lo(t) —¥(1)] > lo(t) —v®)I]  [* D(s) ~ lds
< o o S oo S 0wk ] - [t

< d(g.w) o+ (k-4 (L= 0 sup [ ZEIC(0 = o)lds] = o)

Thus P is a contraction on B* and has a unique fixed point in B*.

Now consider (1) on the whole axis

()" ) = ftylt—h / Q(s,y(s —h))C(t—s)ds +p(t) teR

where now there are positive constants 7', «, k and p so that
(2) a € [0,1) and |f(t,z2) — f(t,22)| < a|r; — 29 fort e R, z; € R

k€ [0,1] and |Q(t,x1,22) — Q(t,x3,24) < k|21 — 23|+ (1 — k)|z2 — 24| fort e R, z; € R

(4) oz-i-/ooo |IC(s)|ds = p < 1

(5)’ peCR,R), CeCRR), feCR’R), QcCR"R)

p(t-i—T) :p(t)v f(t+T7x) = f(tvx) Q(t+T,$1,$2) :Q(tvxlaxQ) for t:xi €eR



Proposition 1. If (2)-(5) hold, then (1) has a continuous T-periodic solution on R.

Proof of Proposition 1. Let Pr:={p € C(R,R),p(t+T) = ¢(t) te R} and (Pr,]||-]||)
denote the Banach space of continuous T-periodic functions on R with the norm ||¢|| =

sup [p(s)] -
0<t<T

Define P : Pr — Pr by ¢ € Pr implies
¢
(PO = f(t.olt = 1)+ | Qlowp(s)oils ~ MO = s)ds + )
By ¢ € Pr and (5),

t+T
(Po)(t+T)=f(t+T,p(t+T—h))+ /_ Q(s,0(s),p(s —h)C(t+T —s)ds+pt+1T)

= f(t,o(t —h)) + /_ Q' +T,0(s" +T),p(s +T —h)C(t — s")ds" + p(t)

= (Py)(t), so Py € Pr.

For ¢, € Pr, we have for each t € R

|Po(t) = Pyt)] < [f(E, ot —h)) = ft, ¢t —h))l
+ / Q(s,0(s), p(s — h)) — Q(s,9(s), ¥(s — h))[|[C(t — s)|ds

— 00

t

< al(t — ) — (t — h)| + / klo(s) — (s)]

— 00

+ (1= k)le(s —h) = (s = W[||C(t - s)|ds

< (a+ [T1cEds) o - vl

so ||Py — PY|| < ullg — || and P is a contraction on Pr and so has a unique fixed

point in Pr.
Remark. In [1] we had considered the advanced case
z(t) = f(t,z(t —h)) + / p(s,2(s), (s = h))C(t = s)ds + p(t)
t

and had obtained a result completely parallel to Theorem 1. An example of the following
sort showed that contractions work in the stable case; that is, we now construct a simple

example satisfying the conditions of the theorem in which solutions go to zero.
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Example 1. Consider

t

(DE) () = aylt — )+ / 2O, y(5), y(s — h))e=tVds 4 =P 10,

— 00

where Q € C(R?,R), sup |Q(t,0,0)|e’" < oo andfor k € [0,1], |Q(t, x1,22)—Q(t, x5, 24)| <
t>0

klxy — x3| + (1 — k)|xa — x4| for t > 0,2, € R, and o« € [0,1), B < a and

et + (k+(1+ k)eﬁh)a|z|ﬁ =<l

Then for each ¢ € C((—00,0],R) with f_OOOQ(s,go(s),gp(s — h))e*®ds < oo, there is
a unique solution of (DE), y(t,0, ¢), satisfying |y(¢,0,¢)| < Me™5* for t > 0 and some

constant M ().

Proof. With Q(t, (1), ¢(t — h)) = ¥Q(t, ¢(t), p(t — b)), f(t, ot — h)) = ap(t = h),C(t) =
e~ conditions(2)-(5) of Theorem 1 are satisfied and with D(t) = e #(+") conditions

(8)-(11) are satisfied:

D(t —h) _ sn
S IO B

K D(s) 1
3121%))/0 |C’(t—s)|D(t)d3§ T

et 4+ (B + (1 - k)eﬁh)|’y|ﬁ =p<l.

t,0
Then by Theorem 1, y(t,0,¢) exists and SupM
>0 D(t)

[y(1,0,¢)] < MD(t) < Me PR < Mem0t,

< M < o0, so for each t > 0,

Remark.. We have just used a fixed point theorem to prove an asymptotic stability result.

We now consider a linear equation

t

(13) x(t) = ax(t — h) — /_ [Bz(s) + vz (s — h)]C(t, s)ds + p(t) t>0,
where
(14) p € C([0,00),R),C € C(Q,R) Q={(t,s)| —oco<s<t< oo},



there exists J > 1 such that

(15) jgg{lo(t,t)l /_ (C(t )| +1Cs(t, s)l(t = s)(t — s+ 1) + |C(t, 5)[*)ds} < J,

(16) Cs(t,s) >0, Csi(t,s) <0 for (t,5) € Q
lim sC(t,s) =0 for t € [0, 00),

S§——00

(17) laf <1, f—laf—~]—lay[>0.

We also consider its periodic analogue on the whole axis

t

(13) x(t) = ax(t —h) — / [Bx(s) + vz (s — h)]C(t, s)ds + p(t) teR

— 00

where

pe CR,R),Ce C(QR) Q={(t,s)| —oco<s<t< oo}, thereisa T >0 with
(14)
p(t+T)=p(t) forteR, C(t+T,s+7T)=C(t,s) for (¢,5) € Q,

there exists J > 1 such that

(15) sup{|C’(t,t)|/_ |C(t,8)| + |Cs(t, s)|(t —s)(t —s+T)+ |C(t, 3)|2ds} < J,

t>0

(16)’ Cs(t,s) >0, Cs(t,s) <0 for (¢,8) € Q, lim sC(t,s) =0 fort € R,

S§——00

(17)’ laf <1, B> l]af =7+ ]av].



Theorem 2. Suppose (14)-(17) hold. Then there are constants ¢; > 0 such that whenever
a continuous solution x(t,ty, p) of (13) satisfies |x(t,to, p)| < X for t € (—o0,ty] for some

to > 0 and X > 0, we have that
(i) for t 2 t()

1/2 1/2

([ o) sume( )

(Here, the c; are independent of the solution.)

(ii) ift > tg andn=0,1,... are such that t — nh > to, with
lx(t)| < |x(t —h)| < |z(t —2h)| < -+ < |x(t — nh)]
and with |x(t — nh)| > |z(t — (n 4+ 1)h)|, then
t 1/2
o) < s lpte = n] 4 eaX b o [ 4200as)
to
(iii) for each t > to, thereisann =0,1... such that t —nh >ty and

1/2

500 < ot — ) + X +eo ([ F0as)

(iv) for t > to,

1/2

(0] < ey s o)+ e o ([ 2(000s)

to<s<t

Theorem 3. Suppose (14)'-(17)" hold. Then there are constants ¢; > 0 such that any
solution x € Pr of (13) satisfies
(i) fOT 2%(s)ds < 1 fOT p?(s)ds

.. T 1/2
(i) lloll < Hiagllpll + ez (Jo p(s)ds)

10



. . e1ter .
Proof of Theorem 2 (i). Using (18), choose ¢; > 0 so that f—|af—y|—|ay|+<52 = § > 0.

Let z(t,0, ) be a continuous solution of (13). Define the Liapunov functional

2

V(t,z) = /_too Cs(t, s) {/:(ﬁx(u) + ya(u — h)du] ds

t
+ (2| + [af — ] + 62)/ 22 (u)du.
t—h

Differentiating it along the solution z(t,0, ¢) of (13) yields

2

VI(t) = /_ Cse(t, s) {/ (Bz(u) + vyx(u — h))du] ds
+ (2lav] + |aB — 9] + €)[z?(t) — 2*(t — h)]
4 2(Ba(t) + ya(t — b)) /_ Calt, 5) / (B() + va(u — h))duds

< (2lay] +[af = y] + e2)a?(t) — 2*(t — h)]

+2[Be(t) + yalt — b)) {C(t, 5) / (Be(u) + y2(u — h)du

— 00

=/ ; C(t,3)[(30(s) + el ~ 1lds|

— (2lay| + af — 7]+ e2)a?(t) — 2(t — )

+2(9a(t) +1a(t ) | ; C(t,5)]B2(s) +yals — W)ds

— Rlar| + [aB - 2] + eal[s3(t) — %t )]

+ 20Ba(t) + 7t — W)faw(t — b) + plt) - a(t)

— Rlar| + [aB - 1] + eal[s3(t) — 3t )]

+ 2afz(t)x(t — h) + 26x(t)p(t)

—2B2%(t) + 20yx2(t — h) + 2yx(t — h)p(t) — 2yx(t — h)x(t)
< R2lar] + |aB - 1| + eal[e?(t) - *(t — )]

— 2627 (t) + |af — 7| (2% (t) + 2*(t — h)) + 2|ay|z*(t — h)

2

2
+ e12?(t) + f—po(t) +eax?(t — h) + Z—sz(t)

2 ﬁz 72 2
< [=26 4 2|lay| + 2[af — ] + €1 + e2] 2°(t) + (g + g) p=(t)

=: —px?(t) + Mp*(t).
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Then for ¢t >0

(18) V'(t) < —pz?(t) + Mp(t).

We next show that there is a J* > 0, independent of tp and X so that if |z(¢,0,¢)| < X

on (—oo, to], then V(tg) < J*X2. To see this we have

2

Vi = [ Cuttos) | " (Bau) + (o — h)du)| ds

— 00

to
+ (2lar] + |af — ] + e) / 22(u)
to—h

to
< [ Cultos)tto ~ 981+ 1P X?ds + (2| + faB = 7] + )b X?
< X2 (I8l + IYD?T + 2lay] + af — 3 + e2)h] = J*X?,
where J* is independent of ¢ty and X.
Then integrating (18) yields

[ vis < 22(s)ds + / My (s)ds

to

Vt) < Vity) — ,u/t 22(s)ds +/t Mp?(s)ds

t * 2 t
J*X M
(19) / z2(s)ds < +— [ p*(s)ds,
to 1% B S
and then
t 1/2 t 1/2
(19) (/ xQ(s)ds) <X +eo (/ pQ(S)) ,
to to
where ¢; and ¢ are independent of ¢y, X, and the solution. [ |

Proof of Theorem 2 (ii).

Suppose t > tg and n =0,1,2,... are such that t — nh > t,

lx(t)| < |x(t —h)| < |z(t —2h)| < -+ < |x(t — nh)]

12



and |z(t —nh)| > |z(t — (n + 1)h)|.
Then from (13)

t—nh
(1= falatt = nh)| < [ 181 la(e)] + 111 ols = B)) IOt = nh,9)lds + lp(t = nb)
< [ U814 WDXIC( = nh,)lds + lp(t ~ nb)

t—nh t—nh
4 / 18] |e(s)| |C(¢ — nh, s)|ds + / iy l2(s — W) [C(t — nh, 5)|ds
to to

t—nh
/ C(t = nh, s)|2ds>
to

1/2

1/2 1/2

t—nh
< J(IB8l+ W)X + [p(t — nh)| + </t |ﬁ|2|93(8)|2d8>

t—nh 1/2 t—nh
+ </ V| |x(s — h)|2ds> </ |C(t — nh, s)|*ds
to to

t—nh 1/2 t—nh 1/2
< J(I8) + W)X + Ip(t —nh)| + < / |ﬁ|2lw(8)|2d8> / C(t - nh, s>2ds>

t—(n+1)h 1/2 t—nh
+ </ |’y|2|a:(s)|2ds> </ |C(t — nh, 3)|2ds>
to—h to

< T80+ DX +lpte =) + 9081+ 1) ([ lnto)as)

1/2

1/2

1/2

< J(B) + W)X + p(t — nk)| + 7(8] + ) (th - |x<s>|2ds)
. 1/2
< (F(BI+ D) + 207X + [p(t — nh)| + T(8] + A])2 ( / |x<s>|2ds) .
So,
. 1/2
(20) 0] < X+ ot o) s ([ ee)Pas)

and using the results of Theorem 2 (i)

. 1/2
@) O] < X + g lp(t—nh)| + <c1X re ([ eras) )

1/2

t
<caxter( [ #0as) o+ hglote -l
to

13



where the ¢; are independent of ¢ty and X. [ |

Proof of Theorem 2 (iii).
Given t > tg, choose n = 0,1... so that t — nh € [to,to + h]. If 1 is such that

|x(t — nh)| > |x(t — (7 — 1)h)| > --- > |z(t)|, then following the proof of Theorem 2(ii),

2t — #h)| <
t—nh
alle(t — (7 + 1)k)| + / (18 12(s)] + 7] [2(s — B)|) |C(¢ — uh, s)\ds + [p(t — #h)|
to

< JalX + / (181 + 1)) XIC(¢ — ih, )|ds + |p(t — ith)|

t—nh = t—nh
+ / 18] ()| |C(t — b, )| ds + / (s — B)| |C(t — Ak, 5)|ds

to to

1/2

< (lal + T8 + D) + h2)X + Ip(t — )] + (18] + ) ( / |x<s>|2ds)

and using Theorem 2(i),

1/2

2(0)] < [o(t — )] < X + [p(t — Ah)] + cs ( / |x<s>|2ds)

t 1/2
<3 X +|p(t —nh)| +cf <01X +c2 (/t pQ(S)dS) )
0

t 1/2
<eoXber( [ 00s) ot - an)l
to

where the ¢; are independent of ¢ty and X.

k=n

Alternatively, if {|az(t — kh)|} fails to be a strictly increasing sequence, then for the
k=0 -

largest n € {0,...n — 1} for which {|az(t — kh)|} is a strictly increasing sequence, we
k=0

have that |z(t —nh)| > |z(t — (n — 1)h)| > --- > |z(t)], and |z(t — (n + 1)h)| < |z(t —nh)|.

Using the results of Theorem 2 (i) and (ii) we have

t 1/2
ol <X +ex ([ P0s)  + glote - un)
to
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where the ¢; are independent of ¢y and X. This proves (iii). In particular then (iv) is also

true. |

Proof of Theorem 3.

From the proof of Theorem 2 (i), V'(t, z;) < —px?(t) + Mp?(t) and then since z € Pr
implies V(t) = V(0), we have by integration fo V'(s)ds < ,ufo s)ds + Mfo s)ds
or fo s)ds < M fo s)ds.

Note that I(u) = [28%2%(u) + 2v?2?(u — h)] is T-periodic in u, so that its integral over

every interval of length 7' is given by

T
/ (262 + 2v*) 2% (u) du,
0

and then for any s,t : —o00o < s < t < oo if we denote the greatest integer function by

19222 | we have

/ 23222 (u) + 2v22?(u — h)]du =

=122 it
Z / ( I)T[2ﬁ2x2 (u) 4 2v*2*(u — h)]du
i=1 s+(i—

t
+/ 23222 (u) + 2v22? (u — h)]du
+HLIFT)
i=1 42 ] ¢
[26% +2 d 232%2? 2v22? (u — h)]d
> [ et [ o) + 222wl

< <L|“T—)|J +020 +277) [ P

IN

t—s

S(T

T
S0 4297 [

2 0l [T,
<(t—s+T)26°+ 2y ]T/ x*(u)du.
0

Using this inequality, we integrate by parts, use Schwarz’ inequality, and then Cauchy’s

15



inequality to obtain

[x(t) — ax(t — h) — p(t)]*

<[/ " (Ba(s) +vals — ) Clt.s) 3

— 00

< 1) / Colt,s)(t — ) / 28222 () + 24222 (u — h)]duds

— 00

t T
§C(t,t)/ C’S(t,s)(t—s)(t—s+T)ds[2ﬁ2+272]%/0 z?(u) du,

and using Theorem 3(i)

1/2

T
2(t)] < la]a(t — )] + |p(8)] + ¢ < / x2<s>ds>

T 1/2
< lal |e(t — h)| + |p(t)| + 2 < / p2<s>ds> .

Then taking the supremum for ¢ € [0,7], in the above inequality and rearranging we get

Theorem 3(ii). [

Definition. For z : [0,00) — R, define the norm

1/2
2(0)] + ( fo #*(s)ds)
|z[p = sup

1/2°
01+ sup [p(s)| + (Jy p2(s)ds)
0<s<t

if it exists, and for x,p € Pr, the norm

t o 1/2
|z|py = sup I (fo v (S)ds)

ST (o) + (f ps)as)

Theorem 4. Suppose (14)'-(17)" hold. Then there are constants ¢; > 0 such that

(i) any solution x € Pr of (13)' satisfies

T 1/2
|2lpr < Tpgrsup[p(t)] + c1 </ pQ(S)dS> :
t>0 0

16



(ii) any continuous solution z(t, 0, ¢) of (13) with bounded ¢ satisfies

- 1/2
ol < eallel + g sup lpto)] +er | [ p*)ds )
>0 0

where ||ip|| = sup [p(s)].
t<0

Proof of Theorem 4.

(i) Using the result of Theorem 3,

=Bl + (f(f 332(8)(18)1/2 1+|a||p(t)| +c3 (f()T192(8)c18)1/2
|z|p, = sup

ST )]+ ( 192(8)‘13)1/2 Sl () p2(3)d3)1/2

. - 1/2
< sup |p(t)] + c4 / p?(s)ds .
1 —|af o<e<r 0

(ii) Using the results of Theorem 2 (iv),

1/2
1/2
z(t)] + (f(;f xz(s)ds) / 1_1|a| Sup [p(s)| + c1llp]| + c2 (fo ds)
lz|p = sup 77 < Sup == 7
209 4 sup [p(s) |+<f0 ) £20 1+ sup |p(s) |-|—<f0 )
0<s<t 0<s<t
1/2

t
< sl + allell+er ([ 2as) .
1—lal >0 0
Remark. There are other forms for Theorem 4. Clearly, |z|p, < c3+ 7= | > but that does
not reflect the fact that |z|p, — 0 as |[p|| — 0. Also, |z|p < 1= |a| + cg||¢]|; but that also

fails to reflect smallness related to p.

Theorem 5. Suppose p € L?[0,00) and x(t,0,¢) is a continuous solution of (14), and
V (t) is the Liapunov function in the proof of Theorem 2 (i).

Then x € L?[0,00), V(o0) = lim V(¢) exists and

/t 22 (s)ds < %[V(t) —V(o0)] + % too p2(s)ds.

17



Proof of Theorem 5. By the inequality in the proof of Theorem 2(i)

V'(t) < —px?(t) + Mp*(t)  t>0,

so for any p > 0

t+p t+p t+p
/ V'(s)ds < —,u/ x2(s)ds + M/ p*(s)ds
t t t

and taking the lim yields
p—00
V(oo) + ,u/ 22 (s)ds < V(t) + M/ p(s)ds. W
t t

We now use a combination of results of Krasnoselskii [5] and Schaefer [7].

Theorem (Burton-Kirk[3]). Let (S,|| - ||) be a Banach space, A,B : § — S, B a

contraction, A continuous and compact. Either

(i) = = AB(x/)\) + Mz has a solution for A\ =1 or

(ii) the set of all such solutions, 0 < A < 1, is unbounded.

Proposition 2. If (14)'-(17) hold, then (13) has a continuous T-periodic solution on R.

Proof of Proposition 2. Let (Pr,||-||) denote the Banach space of T-periodic continuous
functions on R with the sup norm.
Define A, B : Pr — Pr by x € Pr implies
t

(Az)(t) = —/ [B(s) +ya(s — h)|C(t, s) + p(t)

— 00

(Bz)(t) = ax(t — h).

Then B is a contraction on Pr.

If z,, — x in Pp, then

|(Azy)(t) — (Az)(t)] = I/_ Blan(s) = 2(s)] + v[zn(s —h) —2(s — H)]C(E, 5)ds]
< JUBI+ IvDlwn — x];

18



thus, ||Az, — Az|| — 0 if ||z, — z|| — 0, and A is continuous in Pr. Let z; € Pr, then
(A1) (t) — (Az2) ()] < J(IB] + Y)llzr — 22| or [[(Az1)(t) — (Az2)(®)[| < Cllzy — 22| so
A takes Pr into an equicontinuous set. If K is a bounded set in Pr and x € K with
l|z|| < M, then ||Az|| < J(|8] + |[vDIlzl| + |Ip|]| < M’ so AK is uniformly bounded and

equicontinuous, hence precompact in Pr. So A is a compact map.

Consider then

3 [B2(s) +~vx(s — h)]C(t, s)ds + p(t)| teR

(1) :ax(t—h)—AU
and for A and B defined as in the proof of Proposition 2 we write this as
(13)% x = AB(z/\) + MAz.

For z € Pp, A € (0,1) and €3 as in the proof of Theorem 2 (i), define

Wi(t) = /_too Cs(t, s) {/:()\ﬁx(u) + Mya(u — h))du] : ds

t
+ (2aXy + |aAB — M| + )\62)/ 2% (u)du
t—h
so V{(t) < —pAx?(t) + MAp?(t) and
t t T
/ Vi(s)ds < —,u)\/ xQ(s)ds-i-M)\/ p*(s)ds.
0 0 0
But V(t) = V(0) since z € Pr and so for x € Pr
T M [T R
(22) / 22 (s)ds < —/ p?(s)ds := M.
0 K Jo

By the same argument used in the proof of Theorem 3, for any s, : —c0 < s <t < 00 we

have

t 1 T
/ 26222 (u) + (v + 1)z%(u — h)]du < (||t — s|| + T)[26% ++* + HT /0 22 (u)du.

19



Then by (13)4

: [Bx(s) +vz(s — h)|C(t, s)ds]

(z(t) — az(t — h) — Ap(t))? < A {/

<\ | —C(t, s)/ Bz (u) + yx(u — h)du

< A2 -/t Cs(t, s) /:ﬁx(u) + vx(u — h)du ds]

— 00

t

. +/t Cult, s) /: Ba(u) + vz (u — h)duds 2

— 00

2

< [ VGV [ feta) + 2ot~ s 2

< A2 /t Cs(t, s)ds /t Cs(t, s) {/: Br(u) + ya(u — h)du] ds

— 0o — 00

t

< 20(t1) /_ it / " 2du / (Br(un) + vl — h)Pduds

< A2C(t,t) /_too Cy(t,s)(t — s) /:[2ﬁ2x2(u) + 2v%2% (u — h)]du ds

< N2C(t,t) /_too Cs(t,s)(t — 8)(t — s+ T)[23° + 2v%]ds % /OT 2 (u)du < Y2,
for some Y.

So, |t —ax(t —h) — Ap(t)] <Y and |z(t)| < alz(t —h)|+ Y + A||p|| < alz(t —h)|+ 0,
and for 0 < ¢t < T, the same argument can be applied as in Theorem 3 to establish that
nli—>Holo |z(t+nh)| = §/(1—|ca|). Then by periodicity, |z(t)| < §/(1—|a]) for all t € R; that is
solutions of = AB(xz/\) + AAxz for 0 < A < 1 are bounded. Then (ii) of the Burton-Kirk
theorem cannot happen and since all the conditions are present, (i) must be fulfilled; that
is, (13)) has a solution in Pr for A = 1. This means that (13)" has a T-periodic continuous

solution on R. [ |

Remark. In Theorem 2 the inclusion of ¢y as the lower limit of the integrals, instead of fg
is crucial to understanding the behavior of the solution. If we take ¢ty = 0, then a solution
x(t) could remain very small and fg 22(s)ds could remain very small for a very long time

so that f(f p?(s)ds could become very large, even if |p(t)| remains very small. Suddenly,
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|z(t)| could become very large. With the inclusion of ¢y, we can see that the growth of
|z(t)| is controlled by |p(t)|.

Equation (19) will define a weighted norm on a solution space and can be used to obtain
existence results. But this weight ceases to make a norm in the nonlinear case, as we now
show.

It is now interesting to see how nonlinearities affect (19). We consider an equation

t

x(t) = ax(t — h) — / [g(x(s)) + r(x(s — h))|C(t, s)ds + p(t).

— 00

The inequalities which we encounter work when

g(xz) = ZanxQ"H an, > 0,

and r(z) is dominated by g(x), but the details became cumbersome. All of the ideas
emerge in the equation

t

(23)  a(t) = aw(t — h) — / 823(s) + 425 (s — W)|C(t, s)ds + p(t) ¢ >0,

— 00

(24) pe C[[0,0),R], CeC,R) Q={(t,s)—0<s<t< oo},
there is a J > 1 such that

t
(25) sup|C(t,t)|/ IC(t,8)|+ C4(t, s) + |Cs(t, s)|(t — s+ h)/3(t — s+ 1)ds < J,
t>0 —00

(26) Cs(t,s) >0, Csi(t,s) <0 for (t,s) € Q@ lim sC(t,s) =0 for t € [0,00),

S§— 00

(27) laf <1 B> aB[+ v+ |ayl.

We also consider its periodic analogue on the whole axis
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(23) x(t) = {aaz(t —h) — / [B2°(s) + ya®(s — h)]ds + p(t) | A, teR

— 0
where

(24)
peCR,R), CeC(QR) Q={(t,s)] —o0 <s<t<oo} and thereis a T > 0 with

pt+T)=pt) teR Cit+T,s+T)=C(t,s) for(ts) €

there is J > 1 such that

t
(25)"  sup|C(t,1)] / IC(t,8)| + CA(t, s) + |Cs(t, s)|(t — s+ h)/3(t — s+ T)ds < J,
t>0 —00

(26) Cs(t,s) >0, Cs(t,s) <0 for (t,s) € Q2 lim sC(t,s) =0 for t € [0, 00),

S§——00

and

(28)’ laf <1 B> aB[+ v+ |ayl.

Theorem 6. Suppose (24)-(27) hold. Then there are constants ¢; > 0 such that whenever
a continuous solution x(t,ty, p) of (23) satisfies |x(t,to, p)| < X for t € (—o0,ty] for some

to > 0 and X > 1, we have

(i) for t 2 t()

1/4 1/4

([orom)” st s o)

(ii) ift > to and n =0,1... are such that t — nh > ty,
|z(t)] < |z(t —h)| <--- < |z(t —nh)|
and |x(t —nh)| > |x(t — (n + 1)h), then

t 3/4
ol0) < hlpte = nil 4 eax® o [ pelas)
to
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(iii) for each t > to, thereisann =0,1... such that t —nh >ty and

+ 3/4
ol0) < glole =) + s X o ([ )5
to

(iv) for t > to,

Proof of Theorem 6(i). Using (27), choose €; > 0 so that |3] — |aB| — |v| — |ay| + <2 =

£ > 0. Let x(¢,0, ) be a continuous solution of (23).

Define



Then
2

V'(t) < /_t Cyt(t, s) {/:(ﬂxg’(u) + v (u — h)du] ds

+2 Cs(t, s)[Bx>(t) + v (t — h)] / (B2 (u) + y2*(u — h)duds

(Tﬁ 2|ary| + g|’y| + 262) [ (t) — 2*(t — h)]
(Tﬁ 2|ay| + g|’y| + 262) [z*(t) — *(t — h)]

t

+ 2[B2° (t) + x> (t — h)] {C(t, s) / (B2®(u) + v (u — h)du

— 00

-l—/_ (B2*(s) + yx3(s — h))C(¢, s)ds]

< |94 gty 4 21+ 2| [ (1) — 2t - )

+2[ﬁx (t) +2’(t —h)][%(t —h) +p(t) —x(t)]
[ |aB] ﬂl

< +2lay|+ 5 |’Y|+2€2 [ (t) —a*(t — h)]

+2[ﬁa$ (Dt — h) + B2 (Op(t) — B () + yala (¢ — )
+y2’(t = h)p(t) — 7$3(t—h) (®)]

< {ﬂ +2lay| + 1 +2ez] 24 (1) — 2t — b))

+2 lag | Jo'(0) + J'(e - )| + )]

33/4 gl \ \ )
T 47/4 3/4 ( ) = Bx™(t) + |yalz™(t — h) + e22™(t — h)
33/ 71/4 P OE
+47/4 3/4p()+|’)’|( 1 +ZZE (t—h))

<2zt {Z|Ofﬁ|+€1—ﬁ+|4ﬂ]+$(t ){|w|+|ya|+ez+ le

# o O1+ (1574 2o+ Sl +260) 40 - - )
= 20+ [ + il + e+ e a1t + N1 1)
So

(28) V'(t) < —pat(t) + Mp(t).
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Next, we note that there is a J* > 1 with

to
Vi) < [ Cut o]+ XS - 92 + 11 gl + 2yl + 20| nx?

— 00

< JBI+ 9] PX° +ex?t < J*X°.

Then integrating (28)

t t t
/ V'(s)ds < —,u/ z*(s)ds + M [ p*(s)ds,

to to to

SO
t ot
0<V(t) <V(ty) — ,u/ z(s)ds + M/ p*(s)ds
to to
t t
(29) / x(s)ds <& X° + Eg/ p*(s)ds
to to
and
1/4 1/4

o ([

t
<1 X324 e (/ p4(s)ds) . i
to

Proof of Theorem 6 (ii). Suppose t > ton =0,1,... are such that ¢t — nh > o,

[z(®)] <[zt =h)] <--- <zt —nh)|
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and |z(t —nh)| > |z(t — (n + 1)h)|. Then from (23)

t—nh

(1 = laf)z(t = nh)| < / 181 1z(s)° + [y[ (s — h)P|IC(t — nh, s)|ds + |p(t — nh)|

— 00

to
< / (18] + W) XP|C(t — nh, 5)|ds

— 00

t—nh
T / 18 12(5)P1|C(t — nh, s)|ds

to

t—nh
[ llals = WPICG = nhs)lds +1p(0 — nh)

to

< p(t = nh)| + (18] + [v) X7 T

t—nh 3/4 t—nh 1/4
+ </ |93(3)|4ds> </ 1B[*C*(t — nh, s)ds>
to to
t—nmh—h 1/4 t—(n+1)h 3/4
4 </ O s + h)|ds> </ |x(s)|4ds>
to—h to—h

< ot~ )|+ (151 + DT + 1317 ([ latoras)
3/4

¢
+ [y[J (/ |93(S)4d8) < |p(t —nh)| + (18] + 7)) X>J
to—h
t 3/4 t 3/4
+ |B|J ( |93(3)4d3) + |v|J (X4h + |93(3)|4ds)
to to

t 3/4
< |p(t — nh)| + 3 X3+ ¢4 (/ |93(3)|4ds)
to

t 3/4
<|p(t —nh)| +e3X> +24 (61X6 -l—Ez/ |p(s)|4ds) :
to

Then

—le

t 3/4
z(t)] < |z(t — nh)| < == |p(t — nh)| + 3 X% ¢y (/ |p4(3)|ds) . |
to

Proof of Theorem 6(iii). Given t > ty, choose n =0,1... so that t —nh € [to,to + h|. If
n is such that |z(t — nh)| > |z(t — (R — 1)h)| > --- > |z(t)|, then following the proof of
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Theorem 6(ii),

|z(t —nh)| <
t—ih

|afz(t — (2 +1)h)| + / (18l12(s)I* + Iyl |z(s = b)) |C(t — h, 5)|ds + [p(t — @h))|

— 00

to
< |alX + / (181 + |y]) XP|C(t — ivh, )|ds + [p(t — 7h)]

t—nh t—nh
4 / 18] () |C (¢ — i, 5)|ds + / il le(s — WP |C(t — ih, 5)|ds
to to

< (lol + J (I8l + [41)) X7 + [p(t — 2h)]

t—nh 3/4 t—nh
</ |93(3)|4ds> </ |B]*C*(t — nh, s)ds>
to to
t—Ah—h 1/4 t—(h+1)h 3/4
+ </ |7|4|C4(t,s+h)|ds> </ |x(s)|4ds>
to—h to—h

0—

1/4

t 3/4
< |p(t — ah)| + (lo| + J (18] + V) X> + |8]J (/ |93(8)4d8)
to
t 3/4
il ([ letertas) < lote— )+ eax?
to—h
t 3/4 t 3/4
+ |5|J ( |93(3)4d3) + |v|J (X4h + |93(3)|4d3)
to to
t 3/4
< |p(t —ah)| +e3 X3 + 24 (/ |93(3)|4d3)
to
t 3/4
< |p(t —nh)| +EX> +¢ (61X6 +62/ |p(s)|4ds) ,
to

by (29). Thus,

t 3/4
()| < |o(t — Ah)| < 3 X% + |p(t — Ah)| + cs (/ p4(8)d8)
to

3/4

t
< eaX? gl an) ex ([ (o))
to
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where the ¢; are independent of ¢y and X.

k=n

Alternatively, if {|az(t — kh)|} fails to be a strictly increasing sequence, then for the
F=0 k=n

largest n € {0,...n — 1} for which {|az(t — kh)| is a strictly increasing sequence, we
=0

k
have that |z(t —nh)| > |z(t — (n — 1)h)| > --- > |z(t)], and |z(t — (n + 1)h)| < |z(t —nh)|.
Using the results of Theorem 6 (i) and (ii) we have
t 3/4
o0 < @ax? er ([ pAas) o+ hglote - un)
to
where the ¢; are independent of ¢y and X. Also, (iv) follows from (iii). [

Theorem 7. Suppose (24)'-(27) hold. Then there are constants ¢; > 0 such that any

solution x € Pr of (23) satisfies
(i) fOT 2t (s)ds < 1 fOT pi(s)ds
N T 3/4
(i) [2(t)] < arllpll + ez (fo pH(s)ds)

Proof of Theorem 7. Following the proof of Theorem 6(i), V'(t) < —ux*(t) + Mp*(t) and

then since V(t) = V(0)
T M T,
x5 (s)ds < — p*(s)ds.
0 HJo

So

olt) — (e — 1)~ ()] < | [ t

— o
3/4

o ([ o) <o)

using (25), the arguments of the proof of Theorem 3, and Theorem 7(i). Thus,
3/4

T
2()] < Jallz(t — h)| + [p(t)] + @ < / p4<s>ds> ,

so that by taking the supremum we obtain

T
|z(t)] < 1—1|a| Ipll + </0 p4(s)ds>
T 3
rarllpll + e </0 p4(s)ds>

28

(B3 (s) + va2(s — h))C(t, s)ds]

3/4

3/4
/4
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Definition. For z : [0,00) — R, define

- /4
|z|p, = sup =] + (fo r (S)ds)3

3/4°
01+ sup |p(s)] + ( fy ph(s)ds)
0<s<t

if it exists, and for x € Pp

t 4 /4
Z|py = sup |z (t)] + (fo x (3)d3)3

0<t<T 4 + |p(t)| + (f(;f p4(3)ds) 3/4

Theorem 8. Suppose (24)'-(27)" hold. Then there are constants ¢; > 0 such that

(i) for x € Pr as a solution of (23)', then

3/4

T
ol < hasulp)] +er ([ pio)as)
>0 0
(ii) for x(t,0,¢) a continuous solution of (23),

21D < esllel |2 +

sup [p(t)| + ¢,
1 —|af ¢>0

where ||| = sup [ (s)]-
s<0

Proof of Theorem 8.

(i) Using the result of Theorem 7,

(o) + (ffatds)”

T 3/4
2lp, = sup : 571 < i sup [p(t)] +es < / p4<s>ds> .
PS4 p(0)] + (Jy pH(s)ds) st ’

(ii) using the results of Theorem 6(iv)

o))+ (Ji t(s)as)

1
|z[p = sup ¢ 572 = 1—laf ub Ip(8)] + col|0l|*/? + c7.
209 4 sup |p(s)| + (fo p4(s)ds) t20
0<s<t
[ |
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Proposition 3. If (24)'-(27) hold, then (23) has a continuous T-periodic solution on R.

Proof of Proposition 3. Let (Pr,|| - ||) denote the Banach space of T-periodic continuous
functions on R with the sup norm.

Define A, B : Pr — Pr by x € Pr implies

(Az)(t) = —/_ B (s) +72° (s — h)]C(t, s)ds + p(t)
(Bz)(t) = ax(t — h).

B is a contraction on Pr.

Suppose ,, — x in Pr. Then with M such that |xn| < M for all n,

|(Azn)(t) — (Az)(t)] = / B[z (s) — 2 ()] +7[2°(s — h) — 2°(s — h)]] C(t, 5)ds
/ Blan(s) — x(9)][23(5) +2a(s)2(s) +2°(s)]

+ [z (s — h) — x(s — h)] [22(5 — h) + 2, (s — h)z(s — h) + 2*(s — h)]C(t, s)ds

< (7| + 18)3M? I ||z, — |

so ||z, — z|| = 0 = ||Az,, — Az|| — 0, and A is continuous in Prp.

If {x;} C Pr is a bounded set with bound M we have
|| Azs]| < 3J(18] + YDl P + 1lpl| < M,

so {Ax;} is uniformly bounded in Prp.

By an argument similar to that above, ||Az; — Ax;|| < M||x; — x| so {Ax;} is equicon-
tinuous in Pp. Thus, {Az;} is precompact in Pr and A is a compact map on bounded
sets.

Consider now for each A € (0, 1]

x(t) = ax(t —h) — A {/_ Bz3(s) + vz (s —h)| C(t,s)ds +p(t) teR
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which we write as
(23)% x = AB(z/)\) + AAz.

Following the proof of Theorem 6(i), for z € Pr, A € (0,1),and €2, define

Va(t,x) = /t Cs(t, s) {/: (A8 (u) + Ayz® (u — h)) alu]2 ds

— 00

{ o] + 2\ |ay| + )\|’y| + 2)\62] /tihx4(s)ds.
and then
(30) Vi(t) < —Auzt(t) + AMp*(t) for each A € (0, 1].
Integrating from 0 to 7" and observing that V(0) = V(T yields

T A R R
(31) / z(s)ds < —/ p(s)ds <Y for some Y > 0.
0 K Jo

Note that I(u) = z*(u) is T-periodic in u, so that its integral over every interval of length

T is given by

/OT 4 (u) du.

Then by an argument analagous to that in Theorem 3, for any s,t: —o0 < s <t < 00 we

have

t T
/ zt(u)du < (t—s-l—h-i—T)l/ zt(u)du.
s—h T 0
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Using this inequality in (23)} yields

|(t) — cx(t — h) = Ap(t)|

[ e - i)

< —C(t, s)/ B (u) + v (u — h)du + / Cs(t, s)/ B (u) + yx> (u — h)du ds

— 00

IN

/t Ci(t, s) /: B (u) + yx> (u — h)du ds

— 00

t t
< / CHA(t, 5)C¥4 (2, 5) / 18] e (@) + 7] [(u — h)Pduds

— 00

- (/_too et S)ds) N </_too Cs(t, s) {/: 18] |(w)|® + [y |2 (u — h)|3du] v ds) v

t t t—h 4/3 3/4
<iownlt | [ as [/ Bl lafw)*du+ ] [ |x3<u>|du] ds)
T

t 3/4
<ot / C’S(t,s)[(t—s+T)(|ﬁ|+|fy|)/0 |x3(u)|du]4/3ds>

— 00

— 00

% /OT () du]

¢ T 4/3 3/4
<|c(t / Cs(tvs)(|ﬁ|+|7|)4/3(t_3+T)4/3</0 (1/T)|933(U)|du> ds)

3/4
< J(B] + )

§ 68?3/4 =Y

Now by an argument similar to that used in the proof of Proposition 2, |x(t) — ax(t —h) —
Ap(t)] <Y implies that there exists § > 0 so that |z(t)| < 1—L|a| for every solution z(t) of
(23)} and each A € (0, 1].

Then by the Burton-Kirk Theorem, (23)’ has a solution in Pr.
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