
FIXED POINTS, STABILITY, AND HARMLESS PERTURBATIONS

T. A. Burton

Abstract. Much has been written about systems in which each constant is a solution

and each solution approaches a constant. It is a small step to conjecture that functions

promoting such behavior constitute harmless perturbations of stable equations. That idea

leads to a new way of avoiding delay terms in a functional differential equation. In this

paper we use fixed point theory to show that such a conjecture is valid for a set of classical

equations.
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1. Introduction

There is a large literature concerning equations typified by

x′(t) = g(x(t)) − g(x(t − L)) (1.1)

(as well as distributed delays) where g is an arbitrary Lipschitz function and L is a positive

constant. Under suitable conditions three dominant properties emerge:

{i} Every constant function is a solution.

{ii} Every solution approaches a constant.

{iii} The differential equation has a first integral.

It is but a small step, then, to conjecture that such a pair of terms as those appearing

in the r-h-s of (1.1) constitute a harmless perturbation of a stable equation. While this

can be helpful in a given equation, there is a very important additional application. For if

we have a difficult stability problem of the form

x′(t) = −g(x(t − L)) (1.2)

then we can study

x′(t) = −g(x(t − L)) + g(x(t)) − g(x(t)), (1.3)
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having the aforementioned harmless perturbation so that we need only study

x′(t) = −g(x(t)). (1.4)

The idea of ignoring the delay is ancient when the delay is small or when there is consid-

erable monotonicity; neither will be present in this discussion.

The thesis of this paper is that the conjecture is substantially correct and the solution

is applied in a uniformly simple way using fixed point theory regardless of whether the

delay is constant, variable, pointwise, distributed, finite, or infinite.

2. The conjecture

Cooke and Yorke [10] introduced a population model of the form of (1.1) where g(x(t))

is the birth rate and g(x(t − L)) is the death rate. They also introduced other models

with distributed delays and they posed a number of questions. The unusual aspect of their

study centered on the fact that g is an arbitrary Lipschitz function, laying to rest the

controversy over just what the growth properties should be in a given population.

That paper generated a host of studies which continue to this day, as may be seen

in [1-3,13-15,18-19,21], to mention just a few. Most of the subsequent studies asked that

g be monotone in some sense. Recently we noted [8] that every question raised in the

Cooke-Yorke paper can be answered with two applications of the contraction mapping

principle.

This paper begins a study of the conjecture that the r-h-s of (1.1) is a harmless

perturbation. Thus, we list a number of classical delay equations of both first and second

order to test the conjecture. Our aim is to continue using fixed point mappings to establish

stability, as we have done in numerous earlier papers, including [6-9].

In [6] we investigated the question of the relative effectiveness of fixed point theory

versus Liapunov theory on stability problems. That question arises here again. It turns

out that for the examples we consider, contraction mappings are very suitable for studying

scalar delay equations, while Liapunov’s direct method is perfectly suited for studying our

second order problems. Those are observations concerning these specific problems and not

in the way of a general conjecture.
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The problems we consider here using contractions are:

x′ = −

∫ t

t−L

p(s − t)g(x(s))ds, (2.1)

x′ = −

∫ t

0

e−a(t−s) sin(t − s)g(x(s))ds, (2.2)

x′ = −

∫ t

−∞

q(s − t)g(x(s))ds, (2.3)

and

x′ = −a(t)g(x(q(t))). (2.4)

We always have xg(x) > 0 for x 6= 0, so that each of these equations can be written as

x′ = −g(x) + a harmless perturbation

and then we use contraction mappings to show that the equation is stable. In this way we

can show the fixed point technique working on a distributed bounded delay, a distributed

unbounded delay, a distributed infinite delay, and a pointwise variable delay. Moreover,

the fixed point arguments are simple and unified with promise of application to a very

wide class of problems.

This paper is directed to a fixed point theory journal and our study will focus only

on the above examples. But in a study to follow this one we continue to test the idea by

applying Lapunov theory to study

x′′ + f(x)x′ + g(x(t − L)) = 0, (2.5)

x′′ + f(x)x′ +

∫ t

t−L

p(s − t)g(x(s))ds = 0, (2.6)

x′′ + f(x)x′ +

∫ t

−∞

q(s − t)g(x(s))ds = 0, (2.7)

x′′ + f(x)x′ + a(t)g(x(q(t)) = 0, (2.8)

and

x′′ + a(t)g(x(q(t))) = 0, a(t) → ∞. (2.9)
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In all of these, f(x) ≥ 0 and xg(x) ≥ 0. All of these problems bear out the conjecture that

the functions in (1.1) represent a harmless perturbation.

All of these are important classical problems and are not merely contrived to make

our point here. Equation (2.1) was studied by Volterra [25] in connection with a biological

application, by Ergen [11] and Brownell and Ergen [4] in the study of a circulating fuel

nuclear reactor, by Levin and Nohel [22] in numerous contexts, and by Hale [16; p. 458]

in stability theory, all with convex kernels. We ask much less on the kernels here, but

more on g. Equation (2.1) was studied by MacCamy and Wong [23; p. 16] concerning

positive kernel theory and they note that their methods fail to establish stability for that

equation. Equation (2.3) has been studied by Hale [17; p. 52] concerning limit sets when

the kernel is convex. Equation (2.4) has been studied in many contexts, especially as a

so-called 3/2−problem as may be seen in Graef et al [12] and Krisztin [20], together with

their many references. Equations (2.5)-(2.8) are all delayed Liénard equations about which

there is much literature (see Zhang [26]). An early application was an automatic steering

device for the large ship The New Mexico by Minorsky [24] or Burton [5; p. 140]. Equation

(2.9) has been an enduring problem when there is no delay. Investigators strive to give

conditions ensuring that all solutions tend to zero.

Our study shows that the conjecture is valid for these nine classical problems. But the

major focus of this investigation is on the fact that many papers have been written following

the Cooke-Yorke model in which functions have been derived which follow (i)-(iii) and,

hence, may very well represent harmless perturbations. Here, we present an elementary

technique available to a wide group of investigators, on a wide range of problems, and it

illustrates the fact that fixed point theory is a viable stability tool. It remains to be seen

if it will be as successful on the problems in the aforementioned papers.

3. Stability by contraction mappings

In all of our examples in this section we will have a function g : R→ R satisfying:

|g(x) − g(y)| ≤ K|x− y| (3.1)
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for some K > 0 and all x, y ∈ R,

g(x)

x
≥ 0 and lim

x→0

g(x)

x
exits, (3.2)

and sometimes
g(x)

x
≥ β (3.3)

for some β > 0.

We have spoken in terms of stability. But each of our theorems claim that solutions

are bounded and, with an additional assumption, that these solutions tend to zero. It is a

simple, but lengthy, exercise to show that these statements could be extended to say that

the zero solution is stable and globally asymptotically stable. One defines the mapping set

in terms of the given ε > 0 in the stability argument.

Existence theory is found in Chapter 3 of Burton [5], for example. Briefly, for the type

of initial function which we will give, owing to the continuity and the Lipschitz condition,

there will be a unique solution. Because of the Lipschitz growth condition, that solution

can be continued for all future time.

Example 3.1. Consider the scalar equation

x′ = −

∫ t

t−L

p(s − t)g(x(s))ds (3.4)

with L > 0, p continuous,
∫ 0

−L

p(s)ds = 1, (3.5)

and for the K of (3.1) let

2K

∫ 0

−L

|p(v)v|dv =: α < 1. (3.6)

THEOREM 3.1. If (3.1), (3.2), (3.5), and (3.6) hold, then every solution of (3.3) is

bounded. Moreover, if (3.3) also holds, then every solution tends to zero.

Proof. Let ψ : [−L, 0] → R be a given continuous initial function and let x1(t) := x(t, 0, ψ)

be the unique resulting solution. By the growth condition on g, x1(t) exists on [0,∞). If

we add and subtract g(x) we can write the equation as

x′ = −g(x) +
d

dt

∫ 0

−L

p(s)

∫ t

t+s

g(x(u))duds.
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Define a continuous non-negative function a : [0,∞) → [0,∞) by

a(t) :=
g(x1(t))

x1(t)
.

Since a is the quotient of continuous functions it is continuous when assigned the limit at

x1(t) = 0, if such a point exists.

Thus, for the fixed solution, our equation is

x′ = −a(t)x +
d

dt

∫ 0

−L

p(s)

∫ t

t+s

g(x(u))duds

which, by the variation of parameters formula, followed by integration by parts, can then

be written as

x(t) = ψ(0)e
−

∫

t

0

a(s)ds

+

∫ t

0

e
−

∫

t

v

a(s)ds d

dv

∫ 0

−L

p(s)

∫ v

v+s

g(x(u))dudsdv

= ψ(0)e
−

∫

t

0

a(s)ds
+ e

−
∫

t

v

a(s)ds

∫ 0

−L

p(s)

∫ v

v+s

g(x(u))duds

∣

∣

∣

∣

t

0

−

∫ t

0

a(v)e
−

∫

t

v

a(s)ds

∫ 0

−L

p(s)

∫ v

v+s

g(x(u))dudsdv

= ψ(0)e
−

∫

t

0

a(s)ds
+

∫ 0

−L

p(s)

∫ t

t+s

g(x(u))duds

− e
−

∫

t

0
a(s)ds

∫ 0

−L

p(s)

∫ 0

s

g(ψ(u))duds

−

∫ t

0

e
−

∫

t

v

a(s)ds
a(v)

∫ 0

−L

p(s)

∫ v

v+s

g(x(u))dudsdv.

Let

M = {φ : [−L,∞) → R|φ0 = ψ, φ ∈ C,φ bounded}

and define P : M →M using the above equation in x(t). For φ ∈M define (Pφ)(t) = ψ(t)

if −L ≤ t ≤ 0. If t ≥ 0, then define

(Pφ)(t) = ψ(0)e
−

∫

t

0
a(s)ds

+

∫ 0

−L

p(s)

∫ t

t+s

g(φ(u))duds

− e
−

∫

t

0

a(s)ds

∫ 0

−L

p(s)

∫ 0

s

g(ψ(u))duds

−

∫ t

0

e
−

∫

t

v

a(s)ds
a(v)

∫ 0

−L

p(s)

∫ v

v+s

g(φ(u))dudsdv.
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To see that P is a contraction, if φ, η ∈M then

|(Pφ)(t) − (Pη)(t)| ≤

∫ 0

−L

|p(s)|

∫ t

t+s

|g(φ(u)) − g(η(u))|duds

+

∫ t

0

e
−

∫

t

v

a(s)ds
a(v)

∫ 0

−L

|p(s)|

∫ v

v+s

|g(φ(u)) − g(η(u))|dudsdv

≤ 2K‖φ− η‖

∫ 0

−L

|p(s)s|ds

≤ α‖φ− η‖.

Hence, there is a unique fixed point, a bounded solution.

If g(x)
x

≥ β > 0, then add to M the condition that φ(t) → 0 as t→ ∞. We can show

that (Pφ)(t) → 0 whenever φ(t) → 0 and, hence, that the fixed point tends to zero.

The next example concerns a problem of Halanay and later of MacCamy and Wong

[23; p.16] in stability investigation using positive kernels. They mention that the positive

kernel technique works on

x′ = −

∫ t

0

e−a(t−s) cos(t− s)g(x(s))ds

but does not work on

x′ = −

∫ t

0

e−a(t−s) sin(t − s)g(x(s))ds.

The idea of adding and subtracting the same thing which we use here works in exactly

the same way for both of them. It would even work if the right-hand-side began with an

unstable term such as +γg(x) where γ < β, although we do not take the space to show it.

Example 3.2. Consider the scalar equation

x′ = −

∫ t

0

e−a(t−s) sin(t − s)g(x(s))ds (3.7)

where a > 0, and for the K of (3.1) we have

α := 2K sup
t≥0

∫ t

0

∫ ∞

t−u

e−av| sin v|dvdu < 1. (3.8)
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Notice that

k :=

∫ ∞

0

e−av sin vdv =
1

a2 + 1
. (3.9)

Because of the Lipschitz condition on g we can show that for each x(0) there is a unique

solution x(t, 0, x(0)) defined for all future t.

THEOREM 3.2. If (3.1), (3.2), and (3.8) hold, then every solution of (3.7) is bounded.

If, in addition, (3.3) holds then every solution tends to zero as t→ ∞.

Proof. Let x(0) = x0 be given, resulting in a unique solution x1(t). With the k defined

above, write the equation as

x′ = −kg(x) +
d

dt

∫ t

0

∫ ∞

t−s

e−av sin vdvg(x(s))ds.

Define a function c(t) by

c(t) :=
g(x1(t))

x1(t)

so that the equation can be written as

x′ = −kc(t)x+
d

dt

∫ t

0

∫ ∞

t−s

e−av sin vdvg(x(s))ds

which will still have the unique solution x1(t) for the given initial condition x(0) = x0. We

can then use the variation of parameters formula to write the solution as

x(t) = x0e
−k

∫

t

0

c(s)ds
+

∫ t

0

e
−k

∫

t

u

c(s)ds d

du

∫ u

0

∫ ∞

u−s

e−av sin vdvg(x(s))dsdu

= x0e
−k

∫

t

0

c(s)ds
+ e

−k
∫

t

u

c(s)ds

∫ u

0

∫ ∞

u−s

e−av sin vdvg(x(s))ds

∣

∣

∣

∣

t

0

−

∫ t

0

e
−k

∫

t

u

c(s)ds
kc(u)

∫ u

0

∫ ∞

u−s

e−av sin vdvg(x(s))dsdu

= x0e
−k

∫

t

0

c(s)ds
+

∫ t

0

∫ ∞

t−s

e−av sin vdvg(x(s))ds

−

∫ t

0

e
−k

∫

t

u

c(s)ds
kc(u)

∫ u

0

∫ ∞

u−s

e−av sin vdvg(x(s))dsdu.

Let M be defined as the set of bounded continuous φ : [0,∞) → R, φ(0) = x0, and

define P : M → M using the above equation for x(t) as we did in the proof of Theorem

3.1. To see that P is a contraction, if φ, η ∈M then

|(Pφ)(t) − (Pη)(t)| ≤ 2K sup
t≥0

∫ t

0

∫ ∞

t−u

e−av| sin v|dvdu‖φ− η‖.
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Thus, P will have a unique fixed point, a bounded function satisfying the differential

equation.

If g(x)
x

≥ β > 0 then we can show that (Pφ)(t) → 0 whenever φ(t) → 0, thereby

concluding that all solutions tend to zero.

Example 3.3. We next consider the equation

x′(t) = −

∫ t

−∞

q(s − t)g(x(s))ds (3.10)

where
∫ 0

−∞

q(s)ds = 1 and

∫ 0

−∞

∫ v

−∞

|q(u)|dudv exists, (3.11)

and there is a positive number α < 1 with

2K sup
t≥0

∫ t

0

∫ s−t

−∞

|q(u)|duds ≤ α (3.12)

where K is from (3.1).

THEOREM 3.3. Suppose that (3.1), (3.2), (3.11), and (3.12) hold. Then every solution

of (3.10) with bounded continuous initial function ψ : (−∞, 0] → R is bounded. If, in

addition, (3.3) holds then those solutions tend to zero as t→ ∞.

Proof. Write (3.10) as

x′ = −g(x(t)) +
d

dt

∫ t

−∞

∫ s−t

−∞

q(u)dug(x(s))ds.

For a given bounded continuous initial function ψ, let x1(t) be the resulting unique solution

which will be defined on [0,∞). Define a unique continuous function by

a(t) := g(x1(t))/x1(t)

and write the equation as

x′ = −a(t)x(t) +
d

dt

∫ t

−∞

∫ s−t

−∞

q(u)dug(x(s))ds
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which, for the same initial function, still has the unique solution x1(t). Use the variation

of parameters formula to write the solution as the integral equation

x(t) = ψ(0)e
−

∫

t

0
a(s)ds

+

∫ t

0

e
−

∫

t

v

a(u)du d

dv

∫ v

−∞

∫ s−v

−∞

q(u)dug(x(s))dsdv

= ψ(0)e
−

∫

t

0
a(s)ds

+ e
−

∫

t

v

a(u)du

∫ v

−∞

∫ s−v

−∞

q(u)dug(x(s))ds

∣

∣

∣

∣

t

0

−

∫ t

0

a(v)e
−

∫

t

v

a(s)ds

∫ v

−∞

∫ s−v

−∞

q(u)dug(x(s))dsdv

= ψ(0)e
−

∫

t

0

a(s)ds
+

∫ t

−∞

∫ s−t

−∞

q(u)dug(x(s))ds

− e
−

∫

t

0
a(u)du

∫ 0

−∞

∫ s

−∞

q(u)dug(ψ(s))ds

−

∫ t

0

a(v)e
−

∫

t

v

a(s)ds

∫ v

−∞

∫ s−v

−∞

q(u)dug(x(s))dsdv.

Let

M = {φ : R→ R|φ ∈ C,φ(t) = ψ(t) for t ≤ 0, φ bounded}

and define P : M → M by φ ∈ M implies (Pφ)(t) = ψ(t) for t ≤ 0 and Pφ be defined

from the last equation above for x with x replaced by φ, as we have done before. To see

that P is a contraction, if φ, η ∈M , then

|(Pφ)(t) − (Pη)(t)| ≤

∫ t

−∞

∫ s−t

−∞

|q(u)|du|g(φ(s)) − g(η(s))|ds

+

∫ t

0

a(v)e
−

∫

t

v

a(s)ds

∫ v

−∞

∫ s−v

−∞

|q(u)|du|g(φ(s)) − g(η(s))|dsdv

≤

∫ t

0

∫ s−t

−∞

|q(u)|dudsK‖φ− η‖

+

∫ t

0

a(v)e
−

∫

t

v

a(s)ds

∫ v

0

∫ s−v

−∞

|q(u)|dudsdvK‖φ− η‖

≤ 2K‖φ− η‖ sup
t≥0

∫ t

0

∫ s−t

−∞

|q(u)|duds

≤ α‖φ− η‖.

If g(x)/x ≥ β > 0, then we modify M to include φ(t) → 0 and we show that this means

that Pφ also tends to zero. That will complete the proof.
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Example 3.4. Finally, we consider a scalar equation

x′(t) = −a(t)g(x(q(t))) (3.13)

where q : [0,∞) → R is continuous and strictly increasing, q(t) < t, q has the inverse

function h(t) so that q(h(t)) = t, and a : [0,∞) → [0,∞) is continuous. We suppose that

there is an α < 1 with

2K sup
t≥0

∫ h(t)

t

a(u)du ≤ α < 1 (3.14)

where K is from (3.1).

THEOREM 3.4 Let (3.1), (3.2), and (3.14) hold. Then every solution of (3.13) is

bounded. If, in addition, (3.3) holds and

∫ t

0

a(s)ds → ∞ as t→ ∞ (3.15)

then every solution of (3.13) tends to 0 as t→ ∞.

Proof. Write (3.13) as

x′(t) = −a(h(t))h′(t)g(x(t)) −
d

dt

∫ t

h(t)

a(s)g(x(q(s)))ds.

Given a continuous initial function ψ : [q(0), 0] → R, let x1(t) denote the unique solution

having that initial function and define a continuous function by

c(t) := a(h(t))h′(t)g(x1(t))/x1(t).

For that fixed solution x1(t) and that initital function ψ it follows that

x′ = −c(t)x−
d

dt

∫ t

h(t)

a(s)g(x(q(s)))ds

has the unique solution x1(t) and, by the Lipschitz condition, we can argue that it exits

on [0,∞).
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By the variation of parameters formula we have

x(t) = ψ(0)e
−

∫

t

0
c(s)ds

−

∫ t

0

e
−

∫

t

s

c(u)du d

ds

∫ s

h(s)

a(u)g(x(q(u)))duds

= ψ(0)e
−

∫

t

0

c(s)ds
− e

∫

t

s

c(u)du

∫ s

h(s)

a(u)g(x(q(u)))du

∣

∣

∣

∣

t

0

+

∫ t

0

c(s)e
−

∫

t

s

c(u)du

∫ s

h(s)

a(u)g(x(q(u)))duds

= ψ(0)e
−

∫

t

0

c(s)ds
−

∫ t

h(t)

a(u)g(x(q(u)))du

+ e
−

∫

t

0

c(u)du

∫ 0

h(0)

a(u)g(x(q(u)))du

+

∫ t

0

c(s)e
−

∫

t

s

c(u)du

∫ s

h(s)

a(u)g(x(q(u)))duds.

We would define the complete metric space of bounded continuous functions which agree

with ψ and use the above equation for x to define a mapping. That mapping would be a

contraction because of (3.14). We would complete the proof as before.

Remark 3.1. This is a general method applied to four very different problems which

have been studied closely by other methods for many years. Yet, new information is found

in each case. In Theorem 3.1, far less is required on the kernel than in traditional ap-

proaches. Theorem 3.2 succeeds where the positive kernel method failed. Theorem 3.3

again requires less on the kernel than the traditional Liapunov functional did. Something

intriguing occurs in Theorem 3.4. This problem has been studied intensively by many

investigators for at least 54 years, using techniques devised specifically for it. Thus, it is

unreasonable to expect a general technique to compare favorably with the special tech-

niques. Yet, something new does occur. Our measure is in the integral with limits from t

to h(t), while traditional techniques measure from t to t + r(t). It is known that h(t) is

smaller than t+ r(t) when r(t) is decreasing. But the real value of the technique is that it

is simple, can be applied to many problems with little difficulty, and indicates once more

that fixed point theory is a viable stability tool.

Remark 3.2. This paper concerns stability by fixed point methods and condition

(3.3) provides us with a simple way of showing that solutions tend to zero by endowing
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the mapping set with this property. But (3.3) can often be relaxed using an old technique

from Liapunov theory called the annulus argument. See, for example, [5; p. 231]. The

idea works in all problems in which x′(t) is bounded whenever x(t) is a bounded function.

Instead of (3.3), strengthen (3.2) to

g(x)

x
> 0 for x 6= 0 and lim

x→0

g(x)

x
exists.

Consider the proof of Theorem 3.1 at the point where we have shown that x1(t) is

bounded, say |x1(t)| ≤ H, and suppose this means that |x′1(t)| ≤ L for some L > 0. We

will now show that x1(t) → 0. By way of contradiction, if it does not, then there is an

ε > 0 and sequence {tn} ↑ ∞ with |x1(tn)| ≥ ε. Now, from g(x)
x

> 0 for x 6= 0, there is a

γ > 0 with g(x)
x

≥ γ for ε/2 ≤ |x| ≤ H. Moreover, since |x′(t)| ≤ L, there is a µ > 0 with

|x1(t)| ≥ ε/2 for |tn − t| ≤ µ. Hence, g(x1(t))
x1(t)

≥ γ for |tn − t| ≤ µ. Thus,
∫ ∞

0
a(t)dt = ∞.

Now, add to M the condition that φ(t) → 0 as t → ∞. It follows that (Pφ)(t) → 0 as

t→ ∞. Hence, the fixed point tends to zero.
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