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1. Introduction. Consider the system of nonlinear integrodifferential equation

(E) x′(t) = Dx(t) +

∫ ∞

−∞

[dsE(t, s)]g(x(t + s)) + f(t, x(t)),

where D ∈ Rn×n is a constant matrix; E : R×R → Rn×n is measurable, is continuous to

the left (or to the right) in s, has bounded total variation in s for each t and the function

Q(t) :=

∫ ∞

−∞

|dsE(t, s)| (t ∈ R)

is continuous. Here, | · | denotes the matrix norm induced by a norm, also denoted by

| · |, on Rn. We assume that g : Rn → Rn, f : R × Rn → Rn are continuous; E(·, s) and

f(·, x) are T -periodic (T > 0) for every s ∈ R, x ∈ Rn. This equation is important in

applications [1, 2, 4], e.g., in population dynamics [7], in which the special case

(C) x′(t) = Dx(t) +
∞
∑

k=1

Ak(t)gk(x(t − τk)) +

∫ 0

−∞

C(t, s)g(x(t + s))ds

often appears where Ak : R → Rn×n, gk : Rn → Rn, C : R × (−∞, 0] → Rn×n are

continuous, Ak, C(·, s) are T -periodic for all s, and the functions

Q1(t) :=
∞
∑

k=1

|Ak(t)| < ∞, Q2(t) :=

∫ 0

−∞

|C(t, s)|ds

are continuous, and g(u) := sup{|gk(u)| : 1 ≤ k < ∞} < ∞ for all u ∈ Rn; g(u) is bounded

for u bounded.

Our purpose is to give conditions guaranteeing the existence of T -periodic solutions of

equation (E) or (C). We apply the Leray-Schauder continuation method [8, 13, 14]. This

method has been developed for FDE’s with finite delay [10, 12, 15]. Burton, Eloe and

Islam [3] used the Granas version [9] of the continuation method for the special case of

(C) when Ak ≡ 0, f(t, x) = h(x) + p(t). They have given a general theorem requiring a

uniform a priori bound on all the periodic solutions of the family of homotopic equations.

They applied their theorem to the scalar case of (C) and found the desired a priori bound

by a Lyapunov functional technique.

We consider (E) as a perturbed equation of the ODE x′ = Dx + f(t, x) and try to

select the properties of f which give rise to the existence of periodic solutions. When D is
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hyperbolic (i.e., D has no eigenvalues which are pure imaginary) we give a “sign condition”

for f . In this case we also use a Lyapunov functional to find an a priori bound for the

periodic solutions of the family of homotopic equations. For the same purpose, in the

general case we can use a very simple Lyapunov function. The condition obtained for this

case works very well for the stable and totally unstable matrices (i.e., when all the real

parts of the eigenvalues of D are of the same sign). Both in the hyperbolic and the general

case the conditions are much simpler technically for scalar equations which are, therefore,

treated separately.

2. The continuation method for equation (E). We suppose that the reader is familiar

with the definitions of the Brouwer degree and the Leray-Schauder degree and with their

most basic properties (see, e.g., [5, 6, 8, 14]).

The following notation will be used:

BC := {φ ∈ C(R;Rn) : φ is bounded on R};

‖φ‖ := sup{|φ(t)| : t ∈ R}, (φ ∈ BC);

CT := {φ ∈ C(R;Rn) : φ(t + T ) ≡ φ(t) for t ∈ R};

B(ρ) := {φ ∈ CT : ‖φ‖ < ρ}, (ρ > 0).

By a solution of (E) or (C) we mean a function x ∈ BC ∩ C1(R;Rn) satisfying (E) or

(C), respectively.

Consider now the linear inhomogeneous ODE

(2.1) x′(t) = Dx(t) + h(t) (h ∈ CT ).

It is well-known [11, 14] that if 2kπi/T (for k = 0,±1,±2, . . . ) are not eigenvalues of D,

then K : CT → CT defined by

(Kh)(t) :=

∫ T

0

[e−AT − I]−1e−Ash(t + s)ds

(I ∈ Rn×n is the unit matrix) is a bounded linear operator yielding the unique T -periodic

solution of (2.1).
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For φ ∈ CT , λ ∈ [0, 1] we shall use the notation:

(Dφ)(t) := Dφ(t);

(Gφ)(t) :=

∫ ∞

−∞

[dsE(t, s)]g(φ(t + s));

(Fφ)(t) := f(t, φ(t));

M(φ, λ) := λK{Gφ +Fφ}.

From our assumptions it follows that D, G, F : CT → CT and M : CT × [0, 1] → CT . By

the definition of K, a function xλ is a T -periodic solution of the equation

(E1
λ) x′ = Dx + λ{Gx + Fx}, (0 ≤ λ ≤ 1)

if and only if xλ is a fixed point of Mλ := M(·, λ).

LEMMA 2.1. Suppose that

(i) det[D − (2kπi/T )I] 6= 0, (k = 0,±1,±2, . . . )

and that

(ii) there is a bounded open set Ω ⊂ CT such that 0 ∈ Ω and for every λ ∈ (0, 1),

every T -periodic solution xλ of (E1
λ) satisfies xλ /∈ ∂Ω.

Then equation (E) has a T -periodic solution in Ω.

PROOF. For any bounded set H ⊂ CT the family of functions {Kh : h ∈ H} is uniformly

bounded and equicontinuous, so K is a compact operator by the Arzela-Ascoli theorem.

Since, in addition, G + F maps bounded sets into bounded sets, M is compact, too. The

Leray-Schauder degree of a compact perturbation of the identity map I : CT → CT is

invariant with respect to homotopy [5, 6, 14]; hence

d[I −M(·, 1),Ω, 0] = d[I −M(·, 0),Ω, 0] = d[I,Ω, 0] = 1.

By the Kronecker existence theorem [5, 6, 14], M(·, 1) has a fixed point in Ω; i.e., equation

(E) has at least one T -periodic solution in Ω. This completes the proof.
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We now consider the so-called critical case when condition (i) in Lemma 2.1 is not

fulfilled. The following notation is used:

P : BC → Rn, Pφ := (1/T )

∫ T

0

φ(t)dt;

C0
T := {φ ∈ CT : Pφ = 0}.

Let Cc
T denote the n-dimensional subspace of CT consisting of the constant functions, and

use the simple notation a ∈ Cc
T for the function φ ∈ Cc

T , φ(t) ≡ a ∈ Rn. Then define

Ωc := Ω ∩ Cc
T .

LEMMA 2.2. Suppose that the following conditions are fulfilled:

(i) there is a bounded open set Ω ⊂ CT such that 0 ∈ Ω, and for every λ ∈ (0, 1),

every T -periodic solution xλ of the equation

(E2
λ) x′ = λ{Dx + Gx + Fx}, (0 ≤ λ ≤ 1)

satisfies xλ /∈ ∂Ω;

(ii) if for a ∈ Rn, h(a) := P [D + G + F ]a = 0, then a /∈ ∂Ω;

(iii) the Brouwer degree d[h,Ωc, 0] of the function h : Rn → Rn defined in (ii) is

different from zero.

Then equation (E) has a T -periodic solution in Ω.

PROOF. Since the operator K can not be used here we need to transform (E) into a fixed

point problem. Thus, a new operator N to replace M is defined as follows:

J : BC → C1(R;Rn), (J φ)(t) :=

∫ t

0

φ(s)ds;

H : BC → C1(R;Rn), H := (I − P)J ;

N : CT × [0, 1] → CT ,

N (φ, λ) := Pφ− P [D + G + F ]φ + λH(I − P)[D + G + F ]φ.

We first show that, for λ ∈ (0, 1], xλ ∈ CT is a solution of (E2
λ) if and only if it is a fixed

point of Nλ := N (·, λ). To see this, suppose that xλ ∈ CT is a solution of (E2
λ). By virtue
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of Px′
λ = 0 and λ 6= 0 we have

(2.2) P [D + G + F ]xλ = 0.

Integrating (E2
λ) and using (2.2) we have

xλ − xλ(0) = λJ (I − P){D + G + F}xλ

whence

xλ − Pxλ = λH(I − P){D + G +F}xλ

= N (xλ, λ) − Pxλ.

Conversely, if xλ is a fixed point of N (·, λ), then an application of P to both sides of

xλ = N (xλ, λ) yields (2.2). Differentiating the same equality and using (2.2) we obtain

x′
λ = λ(I − P)[D + G + F ]xλ = λ[D + G +F ]xλ;

that is, xλ is a solution of (E2
λ).

Obviously, the fixed points of N (·, 0) are the constant vectors a ∈ Rn satisfying h(a) = 0.

The compactness of N can be proved by observing that the range of P is of finite

dimension, D + G + F maps bounded sets into bounded sets, and H is compact by the

Arzela-Ascoli theorem.

The Leray-Schauder degree is invariant with respect to homotopy; therefore,

d : = d[I − N (·, 1),Ω, 0] = d[I − N (·, 0),Ω, 0]

= d[I − (P − P{D + G + F}),Ω, 0].

By the definition of the Leray-Schauder degree [5, 6, 14] we get

d = d[I − (P − P{D + G + F})|Cc
T ,Ωc, 0]

= d[P{D + G + F}|Cc
T ,Ωc, 0].

By condition (iii), d 6= 0, which implies the existence of a fixed point of N (·, 1) according

to the Kronecker existence theorem. This completes the proof.

Remark. Lemma 2.1 (Lemma 2.2) generalizes Theorem 3 (Theorem 4) of J. Mawhin [12]

for a case of infinite delay.
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3. The main theorems. The first theorem is concerned with equation (C) in the hyper-

bolic case, i.e., when the matrix D has no eigenvalue on the imaginary axis. It is known

[1] that in this case there exists a symmetric matrix L ∈ Rn×n with DT L + LD = −I.

For the functions Qi defined immediately after (C), assume that

Q0
1 := sup

0≤t≤T
Q1(t) > 0, Q0

2 := sup
0≤t≤T

Q2(t) > 0

and let

[a]+ := (|a| + a)/2, [a]− := (|a| − a)/2.

THEOREM 3.1. Suppose that D has no eigenvalues on the imaginary axis and the

following conditions are fulfilled:

(i)
∫ 0

−∞

∫ T

0
|C(t, s)|2dtds < ∞;

(ii)
∫ t

−∞

∫ u−t

−∞
|C(u − s, s)|ds < ∞, (t ∈ R);

(iii)
∫ 0

−∞
|C(t − s, s)|ds > 0, (t ∈ R);

(iv)
∞
∑

k=1

∫ t

t−τk

|Ak(u + τk)|du < ∞, (t ∈ R);

(v) there are β ∈ (0, 1) and M1 ∈ R such that

β{|x|2/2 + 2λ[fT (t, x)Lx]−} + M1 ≥

2λ[fT (t, x)Lx]+ + 4|L|2λ{Q0
1(g(x))2

∞
∑

k=1

|Ak(t + τk)|

+ Q0
2|g(x)|2

∫ 0

−∞

|C(t− s, s)|ds}

for all t ∈ R, x ∈ Rn, λ ∈ [0, 1];

(vi) there are constants γ1, γ2, M2 such that

|f(t, x)| ≤ γ1|x|
2 + γ2[f

T (t, x)Lx]− + M2

for all t ∈ R, x ∈ Rn.

Then equation (C) has a T -periodic solution.

PROOF. We find a ρ > 0 such that for all the T -periodic solutions xλ of

x′(t) = Dx(t) + λ

{

∞
∑

k=1

Ak(t)gk(x(t − τk))+

∫ 0

−∞

C(t, s)g(x(t + s))ds + f(t, x(t))

}

(Cλ)
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are located in B(ρ) for every λ ∈ (0, 1). Then we apply Lemma 2.1.

For a T -periodic solution xλ of (Cλ) define

V (t, xλ(·)) := xT
λ (t)Lxλ(t)

+ 4Q0
1|L|

2λ2

∞
∑

k=1

∫ t

t−τk

|Ak(u + τk)||gk(xλ(u))|2du

+ 4Q0
2|L|

2λ2

∫ t

−∞

∫ u−t

−∞

|C(u − s, s)|ds|g(xλ(u))|2du.

Then the derivative V ′(t, xλ(·)) with respect to (Cλ) of V can be estimated as follows:

V ′(t, xλ(·)) ≤ I0 + I1 + I2

where

I0 : = xT
λ (t)[DT L + LD]xλ(t) + 2λfT (t, xλ(t))Lxλ(t)

= −|xλ(t)|2 + 2λfT (t, xλ(t))Lxλ(t),

I1 = 2λ|L|
∞
∑

k=1

|Ak(t)||gk(xλ(t − τk))||xλ(t)|

− 4Q0
1|L|

2λ2

∞
∑

k=1

{|Ak(t)||gk(xλ(t − τk))|2

− |Ak(t + τk)||gk(xλ(t))|2}

≤ −(1/4Q0
1)

∞
∑

k=1

|Ak(t)|{|xλ(t)| − 4|L|λQ0
1|gk(xλ(t − τk))|}2

+ (1/4)|xλ(t)|2 + 4Q0
1|L|

2λ2

∞
∑

k=1

|Ak(t + τk)||gk(xλ(t))|2 ,

I2 : = 2λ|L|

∫ 0

−∞

|C(t, s)||g(xλ(t + s))||xλ(t)|ds

− 4Q0
2|L|

2λ2

[
∫ t

−∞

|C(t, u − t)||g(xλ(u))|2du

−

∫ 0

−∞

|C(t− s, s)|ds|g(xλ(t))|2
]

≤ −(1/4Q0
2)

∫ 0

−∞

|C(t, s)|{|xλ(t)| − 4|L|λQ0
2|g(xλ(t + s))|}2ds

+ (1/4)|xλ(t)|2 + 4Q0
2|L|

2λ2

∫ 0

−∞

|C(t − s, s)|ds|g(xλ(t))|2 .
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Therefore, we have

V ′(t, xλ(·)) ≤ −(xλ(t))2/2− 2λ[fT (t, xλ(t))Lxλ(t)]−

+ 2λ[fT (t, xλ(t))Lxλ(t)]+

+ 4|L|2λ2

{

Q0
1(g(xλ(t)))2

∞
∑

k=1

|Ak(t + τk)|

+Q0
2|g(xλ(t))|2

∫ 0

−∞

|C(t− s, s)|ds

}

.

From assumption (v) it follows that

(3.1)
V ′(t, xλ(·)) ≤ −(1 − β){|xλ(t)|2/2)

+ 2λ[fT (t, xλ(t))Lxλ(t)]−} + M1

for all t ∈ R. Since the function v(t) := V (t, xλ(·)) is T -periodic we get

0 = v(t + T ) − v(t) ≤

∫ t+T

t

V ′(s, xλ(·))ds,

whence, using (3.1) we obtain

(3.2)

∫ t+T

t

|xλ|
2 ≤ 2M1T/(1 − β);λ

∫ t+T

t

[fT (s, xλ(s))Lxλ(s)]−ds ≤ M1T/2(1 − β)

for all t ∈ R.

On the other hand, by equation (Cλ) and the Schwarz inequality

∫ t+T

t

|x′
λ| ≤ |D|T 1/2

[

∫ t+T

t

|xλ|
2

]1/2

+ λ

∫ t+T

t

|f(s, xλ(s))|ds

+ λ

[

∫ t+T

t

(

∞
∑

k=1

|Ak(s + τk)|

)

ds

]1/2 [
∫ t+T

t

(g(xλ(s)))2

(

∞
∑

k=1

|Ak(s + τk)|

)

ds

]1/2

+ λ

[

∫ t+T

t

|g(xλ(s))|2ds

]1/2
∫ 0

−∞

[

∫ t+T

t

|C(s, u)|2ds

]1/2

du.

From (v), (vi), (3.2), and the other conditions of the theorem there follows the existence

of constants K1, K2 such that
∫ t+T

t

|xλ| ≤ K1,

∫ t+T

t

|x′
λ| ≤ K2

for all t ∈ R; whence, by Sobolev’s inequality we get

‖xλ‖ ≤ (1/T )K1 + K2 =: ρ.

The application of Lemma 2.1 with Ω = B(ρ) completes the proof.
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COROLLARY 3.1. Suppose that conditions (i)-(iv) in Theorem 3.1 are satisfied. If, in

addition,

(v′) f(t, x) = o(|x|), g(x) = o(|x|), g(x) = o(|x|), (|x| → ∞),

then equation (C) has a T -periodic solution.

In [3] scalar equations are treated. In order to make the results more comparable with

one another we develop the method for this case. It is much simpler for scalar equations

owing to the fact that if x ∈ C1(R;R)∩CT then x′(τ ) = 0 provided that |x| has a maximum

at τ .

Introduce the notation

g∗(r) := max {|g(x)| : x ∈ Rn, |x| ≤ r}.

THEOREM 3.2. Consider equation (E) in the scalar case (n = 1), and assume D 6= 0.

Suppose there exist ρ, η > 0 with

|D|ρ + λ[(sign D)f(t, ρ)]+ > λ[(sign D)f(t, ρ)]− + λQ(t)g∗(ρ),

|Dη| + λ[(sign D)f(t,−η)]− > λ[(sign D)f(t,−η)]+ + λQ(t)g∗(η)

for all t ∈ R, λ ∈ [0, 1].

Then equation (E) has T -periodic solutions in (−η, ρ).

PROOF. Define V (x) := Lx2 = −(1/(2D))x2 . Then the derivative V ′(t, xλ(·)) of V with

respect to the equation

(E1
λ) x′(t) = Dx(t) + λ{f(t, x(t)) +

∫ ∞

−∞

[dsE(t, s)]g(x(t + s))ds}

satisfies the following estimate: if |xλ(τ )| is the maximal value of |xλ|, then

0 = V ′(τ, xλ(·)) ≤

− (|xλ(τ )|/|D|){|D||xλ(τ )| + (λ/|xλ(τ )|)[xλ(τ )f(τ, xλ(τ ))/sign D)]+

− (λ/|x(τ )|)[xλ(τ )f(τ, xλ(τ ))/sign D]−

− λg∗(|xλ(τ )|)

∫ ∞

−∞

|dsE(t, s)|.
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By the condition of the theorem we obtain

xλ ∈ Ω := {φ ∈ C1(R;R) ∩ C+ : −η < φ(t) < ρ for all t ∈ R}.

The statement now follows from Lemma 2.1.

In the following theorem we require nothing of the eigenvalues of D in advance. The

method is the same for the case of T -periodically varying matrix D, so we immediately

formulate our theorem for the equation

(E∗) x′(t) = D(t)x(t) + f(t, x(t)) +

∫ ∞

−∞

[dsE(t, s)]g(x(t + s)),

where f, g, E are the same as in (E), and D : R → Rn is continuous and T -periodic.

THEOREM 3.3. A) Let n > 1 and suppose there exists a ρ > 0 such that |x| = ρ

implies that

|xT (DT (t) + D(t))x + 2fT (t, x)x| > 2ρQ(t)g∗(ρ)

for all t ∈ [0, T ].

Then equation (E∗) has a T -periodic solution in B(ρ).

B) Let n = 1 and suppose that there are ξ, η > 0 such that

|D(t)ξ + f(t, ξ)| > Q(t)g∗(max {ξ, η}),

|D(t)η − f(t,−η)| > Q(t)g∗(max {ξ, η})

for all t ∈ [0, T ], and

sign h(ξ)h(−η) < 0

where

h(x) := (1/T )

∫ T

0

{D(t)x + f(t, x) +

∫ ∞

−∞

[ds E(t, s)]g(x)}dt.

Then equation (E∗) has a T -periodic solution in (−η, ρ).

PROOF. A) First we find a ρ > 0 such that the boundary of B(ρ) does not contain any

T -periodic solution xλ of the equation

(Eλ
2 ) x′(t) = λ{D(t)x(t) + f(t, x(t)) +

∫ ∞

−∞

[dsE(t, s)]g(x(t + s))}, 0 < λ < 1.
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Define the auxiliary function V (x) := xT x. If xλ ∈ CT is a solution of (Eλ
2 ) for some

λ ∈ (0, 1), and |xλ(τ )| is a maximal value of |xλ(·)|, then V (xλ(τ )) is a maximal value of

V (xλ(·)) and, consequently, V ′(τ, xλ(τ + ·)) = 0. On the other hand,

0 = V ′(τ, xλ(τ + ·)) ≤ 2λ{xT
λ (τ )(DT (τ ) + D(τ ))xλ(τ )/2]

+ fT (τ, xλ(τ ))xλ(τ ) + |xλ(τ )|g∗(|xλ(τ )|)

∫ ∞

−∞

|dsE(t, s)|}

By our condition, |xλ(τ )| = ρ implies that V ′(τ, xλ(·)) 6= 0, which means that xλ ∈ B(ρ);

i.e., the first condition in Lemma 2.2 is met with Ω := B(ρ).

In order to check the fulfilment of the other two conditions in Lemma 2.2 we introduce

the function h : Rn → Rn,

h(a) := (1/T )

∫ T

0

{D(t)a + f(t, a) +

∫ ∞

−∞

[dsE(t, s)]g(a)}dt

and show that |a| = ρ implies that h(a) 6= 0.

Suppose that |a| = ρ. Then

aT h(a) = (1/T )

∫ T

0

{[aT (D(t) + DT (t))a/2]

+ aT f(t, a) +

∫ ∞

−∞

aT [dsE(t, s)]g(a)}dt.

Since
∣

∣

∣

∣

∫ ∞

−∞

aT [dsE(t, s)]g(a)

∣

∣

∣

∣

≤ ρQ(t)g∗(ρ)

for all t ∈ R, by the condition of the theorem the integrand has no zero, and aT h(a) 6= 0;

therefore, h(a) 6= 0.

It remains to be proved that d[h,Bn(ρ), 0] 6= 0, where Bn(ρ) := {x ∈ Rn : |x| < ρ}.

Suppose first aT h(a) > 0 if |a| = ρ. Then using the notation I : Rn → Rn for the identity

function (I(x) = x for all x ∈ Rn), and applying the Poincaré-Bohl theorem [6, 14] we get

d[h,Bn(ρ), 0] = d[I,Bn(ρ), 0] = 1.

If aT h(a) < 0 for all a with |a| = ρ, then

d[h,Bn(ρ), 0] = d[−I,Bn(ρ), 0] = (−1)n 6= 0.
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By Lemma 2.2, the proof is complete.

B) The basic ideas are the same as those of A); the details are omitted.

The condition of Theorem 3.3 works well in the stable or totally unstable case, i.e.,

when the quadratic form xT (DT (t) + D(t))x is negative definite or positive definite.

Remark. Theorem 3.1 can be formulated and proved also for equation (E∗) by using the

characteristic exponents of the equation x′ = D(t)x instead of the eigenvalues of D.
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