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Abstract. In this paper we consider the equations

x(t) = a(t) +

∫ t

0

D(t, s, x(s))ds +

∫

∞

t

E(t, s, x(s))ds, t ∈ R+

and

x(t) = a(t) +

∫ t

−∞

D(t, s, x(s))ds +

∫

∞

t

E(t, s, x(s))ds, t ∈ R

and discuss the existence of periodic and asymptotically periodic solutions by means of
fixed point theorems.

0. Introduction

In this paper we study the equations

(1A) x(t) = a(t) +

∫ t

0

D(t, s, x(s))ds +

∫

∞

t

E(t, s, x(s))ds, t ∈ R+

and

(1B) x(t) = a(t) +

∫ t

−∞

D(t, s, x(s))ds +

∫

∞

t

E(t, s, x(s))ds, t ∈ R

where R+ := [0,∞), R := (−∞,∞), a : R→ Rn, D : ∆−×Rn → Rn, and E : ∆+×Rn →

Rn are continuous, and where

∆− := {(t, s) : s ≤ t} and ∆+ := {(t, s) : s ≥ t}.
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We will suppose that

(2A) a(t) is bounded on R+

or

(2B) a(t) is bounded on R

and that for any J > 0 there are continuous functions DJ : ∆− → R+ and EJ : ∆+ → R+

such that |D(t, s, x)| ≤ DJ (t, s) if (t, s) ∈ ∆− and |x| ≤ J , where | · | denotes the Euclidean

norm on Rn, |E(t, s, x)| ≤ EJ(t, s) if (t, s) ∈ ∆+ and |x| ≤ J ,

(3A)

∫ t

0

DJ (t, s)ds +

∫

∞

t

EJ (t, s)ds is bounded on R+

or

(3B)

∫ t

−∞

DJ (t, s)ds +

∫

∞

t

EJ(t, s)ds is bounded on R,

and

∫ max(0,t−τ)

0

DJ (t, s)ds +

∫

∞

t+τ

EJ (t, s)ds → 0(4A)

uniformly for t ∈ R+ as τ → ∞

or

∫ t−τ

−∞

DJ (t, s)ds +

∫

∞

t+τ

EJ(t, s)ds → 0(4B)

uniformly for t ∈ R as τ → ∞.

Under various conditions we prove that (1A) and (1B) have solutions and that (1B)

has a periodic solution.

As some readers may find these equations unmotivated, we now show that they can

represent very common variation of parameters formulae.
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As a simple starting place, consider a system

y′ = Cy+ f(t)

where we begin with C a real constant n × n matrix having no root with 0 real part and

f : R → Rn is continuous and T -periodic. We would like to actually display a periodic

solution. A general solution is expressed by the variation of parameters formula as

y(t) = eCty(0) +

∫ t

0

eC(t−s)f(s)ds;

not only is this poorly related to (1A), but we have no way of selecting y(0) to find that

periodic solution. But worst of all, we can not control the size of eC(t−s).

Since no root of C has zero real part, there is a matrix P so that the transformation

y = Px yields

x′ = P−1CPx+ P−1f(t)

where

P−1CP =

(

C1, 0
0, C2

)

and the roots of C1 have positive real parts, while those of C2 have negative real parts.

Taking

x =

(

z

w

)

and f =

(

f1
f2

)

we have independent systems

z′ = C1z + f1(t) or (e−C1tz)′ = e−C1tf1(t)

and

w′ = C2z + f2(t) or (e−C2tw)′ = e−C2tf2(t).
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Now we will obtain (1A) or (1B) depending on the assumptions made at this point.

If we seek a solution bounded on R we integrate the first partitioned system from t to ∞

and the second from −∞ to t. This yields

z(t) = −
∫

∞

t

eC1(t−s)f1(s)ds

and

w(t) =

∫ t

−∞

eC2(t−s)f2(s)ds.

If we now take x =
(

z(t)
w(t)

)

and y = Px, then we obtain (1B). In this very simple case which

we have just described we obtain a compact formula for the periodic solution.

Parallel work for (1A) is found prominently in the literature. In the study of instability,

Coppel [4; pp. 74–75] considers

y′ = C(t)y + f(t, y)

and denotes by Y (t) a matrix solution of the linear part. Using projections P1 and P2 he

gives a variation of parameters argument to get

x(t) = Y (t)P1x(t0) +

∫ t

t0

Y (t)P1Y
−1(s)f(s, x(s))ds

−
∫

∞

t

Y (t)P2Y
−1(s)f(s, x(s))ds.

Independent assumptions and arguments are given to ensure that the last integral con-

verges. The lower limit of t0 is taken because no assumptions concerning a bounded

solution are made. From the form of x(t), Coppel obtains an instability result. This ex-

tends similar earlier work of Coddington and Levinson [3; pp. 330–332] for an unstable

manifold when C is constant.

These are, of course, elementary examples of (1A) and (1B). Parallel considerations

for

x′ = C(t)x+

∫ t

0

D(t, s)x(s)ds + f(t, x(·))
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are also of interest when f is a general functional since the full linear part has a variation

of parameters formula.

Just as differential equations are special cases of integral equations, so are these special

cases of (1A) and (1B). Differential equations need only initial conditions x(t0) ∈ Rn. But

(1A) and (1B) will have initial functions on [0, t0), on (−∞, t0), or on [0, t0) ∪ (k,∞),

for example. For differential equations initial functions can cause discontinuities in the

derivative of a solution. But for integral equations, discontinuities may occur in the solution

itself. We now illustrate how that can happen.

Given a scalar functional differential equation

x′ = f(t, x, x(t − 1))

and an initial function φ : [−1, 0] → R, we seek a solution x(t, φ) satisfying the equation for

t ≥ 0 which is continuous on [−1,∞); in particular, x(0, φ) = φ(0). With this experience,

investigators are usually surprised to learn that the solution of an integral equation often

lacks continuity at the point where it joins the initial function. And this lack of continuity

is something to be noticed throughout the sequel.

We will give two elementary examples which we believe will shed considerable light on

the abstract work which follows. Sometimes initial conditions are a natural part of (1B)

and at other times we need a solution on all of R; in the latter case we often introduce

artificial initial functions, obtain a solution, and parlay that into a solution on all of R. In

any event, initial functions are an essential part of the problem and these examples let the

reader see what is happening.

First, consider the scalar equation

x(t) = a(t) +

∫ t

−∞

e−(t−s)x(s)ds +

∫

∞

t

e(t−s)x(s)ds

with initial function x(t) = 1 for −∞ < t < −π/2 and x(t) = 1 for π/2 < t < ∞ so that
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when we substitute those functions into the equation we get

x(t) = a(t) + e−π/2(et + e−t) +

∫ t

−π/2

e−(t−s)x(s)ds +

∫ π/2

t

e(t−s)x(s)ds.

In order to solve this equation and illustrate properties, we take

a(t) = 1 − e−π/2(et + e−t)

and are left with the equation

x(t) = 1 +

∫ t

−π/2

e−(t−s)x(s)ds +

∫ π/2

t

e(t−s)x(s)ds,−π/2 ≤ t ≤ π/2.

Notice that if there is a continuous solution on this interval, then it is also differentiable

and

x′(t) = −
∫ t

−π/2

e−(t−s)x(s)ds +

∫ π/2

t

e(t−s)x(s)ds.

A further calculation yields

x′′ + x = −1

with general solution

x = c1 cos t+ c2 sin t− 1.

Clearly, c1 = x(0) + 1 and c2 = x′(0).

To determine the constants, substitute the solution into the equation for x(0) and

x′(0) to obtain:

x(0) = 1 +

∫ 0

−π/2

es[(x(0) + 1) cos s + x′(0) sin s − 1]ds

+

∫ π/2

0

e−s[(x(0) + 1) cos s+ x′(0) sin s− 1]ds

and

x′(0) = −
∫ 0

−π/2

es[(x(0) + 1) cos s+ x′(0) sin s− 1]ds
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+

∫ π/2

0

e−s[(x(0) + 1) cos s+ x′(0) sin s− 1]ds.

These represent two equations in two unknowns, x(0) and x′(0). The integrals can be

simplified and evaluated. In this case we do get a unique solution

x(0) = −3,

x′(0) = 0,

and

x(t) = −2 cos t − 1.

Thus, x(−π/2) is not 1, so the solution does not agree with the initial function. It is

discontinuous.

We now give an example in which the solution does not match up with its initial

function. Moreover, for certain choices of the functions there is no solution.

Given initial functions for (1B) on (−∞, a) and (b,∞) (with a < b), we obtain an

equation which we will greatly simplify as

x(t) = 1 +

∫ t

a

r(s)x(s)ds +

∫ b

t

h(s)x(s)ds, a ≤ t ≤ b.

At this point it is impossible to tell what x(a) or x(b) is, regardless of the initial

function. It will be very instructive to solve this simple equation. We have

x′ = [r(t) − h(t)]x

so that

x(t) = x(a) exp

∫ t

a

[r(s) − h(s)]ds.

But what is x(a)? Substitute the solution into the original equation at t = a and obtain

x(a) = 1 +

∫ b

a

h(s)x(a)(exp

∫ s

a

[r(u) − h(u)]du)ds)
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or

x(a) = 1/[1 −
∫ b

a

h(s)(exp

∫ s

a

[r(u) − h(u)]du)ds].

We now know three things:

i. x(a) is uniquely determined.

ii. A solution exists if and only if

∫ b

a

h(s)(exp

∫ s

a

[r(u) − h(u)]du)ds 6= 1.

iii. For a general equation like (1B) with specified initial functions, we will never know

any value of the solution.

We will expect to prove existence, uniqueness, asymptotic behavior, and qualitative

properties such as periodicity.

One more item of interest concerns standard inequalities. When we write the standard

variation of parameters formula, we commonly take norms and use Gronwall’s inequality to

get bounds on solutions. Under fairly severe conditions it is also possible to get Gronwall-

type inequalities for neutral equations.

1. Existence of solutions of (1A)

For any t0 ∈ R+ and any bounded continuous initial function φ : [0, t0) → Rn let

x(t, t0, φ) denote a solution of Equation (1A) which agrees with φ on [0, t0) and satisfies

(1A) on [t0,∞). Here, we understand that for t0 = 0 a continuous function x(t) is a

solution of Equation (1A) if x(t) satisfies (1A) on R+. For t0 > 0, we are prepared to

accept a discontinuity in x(t, t0, φ) at t0.

1a. Existence by a contraction mapping

Suppose that for any J > 0 there are continuous functions L−

J : ∆− → R+ and
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L+
J : ∆+ → R+ such that

|D(t, s, x) −D(t, s, y)| ≤ L−

J (t, s)|x − y|(5)

if (t, s) ∈ ∆−, |x|, |y| ≤ J

and

|E(t, s, x) − E(t, s, y)| ≤ L+
J (t, s)|x − y|(6)

if (t, s) ∈ ∆+, |x|, |y| ≤ J.

Then we have the following result.

THEOREM 1. In addition to (2A), (3A), (4A), (5) and (6), suppose that

(7) λ := sup{λJ : J > 0} < 1

holds, where

λJ := sup{
∫ t

0

L−

J (t, s)ds +

∫

∞

t

L+
J (t, s)ds : t ∈ R+}.

Then for any t0 ∈ R+ and any bounded continuous function φ : [0, t0) → Rn, Equation

(1A) has a unique R+-bounded solution which agrees with φ on [0, t0) and satisfies (1A)

on [t0,∞).

PROOF. For any t0 ∈ R+, let C(t0) be the set of bounded continuous functions

ξ : [t0,∞) → Rn. For any ξ ∈ C(t0), define ‖ξ‖t0 by

‖ξ‖t0 := sup{|ξ(t)| : t ≥ t0}.

Then clearly ‖ · ‖t0 is a norm on C(t0) and (C(t0), ‖ · ‖t0) is a Banach space. For any

ξ ∈ C(t0) define a map H on C(t0) by

(Hξ)(t) := a(t) +

∫ t0

0

D(t, s, φ(s))ds +

∫ t

t0

D(t, s, ξ(s))ds +

∫

∞

t

E(t, s, ξ(s))ds, t ≥ t0.
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Then, from (2A), (3A) and (4A), it is easy to see that H maps C(t0) into C(t0). Moreover,

for any ξi ∈ C(t0) with ‖ξi‖t0 ≤ J (i = 1, 2) for some J > 0 we have

|(Hξ1)(t) − (Hξ2)(t)|

≤
∫ t

t0

L−

J (t, s)|ξ1(s) − ξ2(s)|ds +

∫

∞

t

L+
J (t, s)|ξ1(s) − ξ2(s)|ds

≤ λJ‖ξ1 − ξ2‖t0 , t ≥ t0,

which, together with (7), yields ‖Hξ1−Hξ2‖t0 ≤ λ‖ξ1−ξ2‖t0 . Thus, H : C(t0) → C(t0) is

a contraction mapping and so it has a unique fixed point η ∈ C(t0). Clearly, the function

x defined by

x(t) :=

{

φ(t), 0 ≤ t < t0

η(t), t ≥ t0

is a unique R+-bounded solution of Equation (1A) which agrees with φ on [0, t0) and

satisfies (1A) on [t0,∞).

EXAMPLE 1. Consider the scalar linear equation

(8) x(t) = a(t) + α

∫ t

0

es−t cos sx(s)ds +

∫

∞

t

et−s sin sx(s)ds, t ∈ R+,

where a : R+ → R is a bounded continuous function, and α and β are constants with

|α| + |β| < 1. Equation (8) is obtained from Equation (1A) taking n = 1, D(t, s, x) =

αxes−t cos s, and E(t, s, x) = β xet−s sin s. For any J > 0 we can take the following

functions as DJ , EJ , L−

J and L+
J :

DJ (t, s) := |α|J es−t, (t, s) ∈ ∆−,

EJ(t, s) := |β|J et−s, (t, s) ∈ ∆+,

L−

J (t, s) := |α|es−t, (t, s) ∈ ∆−,

and

L+
J (t, s) := |β|et−s, (t, s) ∈ ∆+.
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It is easy to see that a(t) and these functions satisfy (2A), (3A), (4A), (5) and (6). More-

over, (7) holds with λ = |α|+ |β|. Thus, by Theorem 1, for any t0 ∈ R+ and any bounded

continuous function φ : [0, t0) → R, Equation (8) has a unique R+-bounded solution

x(t, t0, φ).

1b. Existence by Schauder’s second theorem

Conditions (5)–(7) of Theorem 1 are very strong. We now discuss the existence of

R+-bounded solutions without those assumptions.

For a given t0 > 0, let φ : [0, t0) → Rn be a given bounded continuous function. Let

K be the set of positive integers. For any k ∈ K with k > t0, let (C+
k , ‖ · ‖) be the Banach

space of continuous functions ξ : [t0, k] → Rn with the supremum norm ‖ · ‖. For any

J > 0 with J ≥ sup{|φ(t)| : 0 ≤ t < t0}, let C+
k (J) := {ξ ∈ C+

k : ‖ξ‖ ≤ J}, and let

Y +
k (J) be the space of functions η : R+ → Rn such that η(t) = φ(t) for 0 ≤ t < t0, η(t)

is continuous on [t0,∞) except at some m, and ‖η‖0 ≤ J , where m ∈ K, m ≥ k, and

‖η‖0 := sup{|η(t)| : t ∈ R+}. Then C+
k (J) is convex, and any ξ ∈ C+

k (J) can be extended

on R+ by taking an η ∈ Y +
k (J) such that η(t) = ξ(t) for t0 ≤ t ≤ k. For any ξ ∈ C+

k (J),

let η ∈ Y +
k (J) be an extension of ξ. We define a map H = Hk,η on C+

k (J) by ξ ∈ C+
k (J)

implies that

(9) (Hξ)(t) := a(t) +

∫ t

0

D(t, s, η(s))ds +

∫

∞

t

E(t, s, η(s))ds, t0 ≤ t ≤ k.

then we have the following result.

LEMMA 1. Under assumption (4A), for any k ∈ K and J > 0 with k > t0 and

J ≥ sup{|φ(t)| : 0 ≤ t < t0}, there is a continuous increasing function δ = δk,J(ε) :

(0,∞) → (0,∞) such that

|(Hξ)(t1) − (Hξ)(t2)| < ε if ξ ∈ C+
k (J), η ∈ Y +

k (J),(10)

t0 ≤ t1 < t2 ≤ k and t2 < t1 + δ,
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where η is any extension of ξ.

PROOF. First, it is clear that there is a continuous increasing function δ1 = δ1(ε) :

(0,∞) → (0,∞) with

(11) |a(t1) − a(t2)| <
ε

3
if t0 ≤ t1 < t2 ≤ k and t2 < t1 + δ1.

Next we prove that there is a continuous increasing function δ− = δ−(ε) : (0,∞) → (0,∞)

such that

|(H−ξ)(t1) − (H−ξ)(t2)| <
ε

3
if ξ ∈ C+

k (J),(12)

η ∈ Y +
k (J), t0 ≤ t1 < t2 ≤ k and t2 < t1 + δ−

holds, where η is any extension of ξ and H− on C+
k (J) is defined by

(H−ξ)(t) :=

∫ t

0

D(t, s, η(s))ds, t0 ≤ t ≤ k.

From (4A), for any ε > 0 there is a τ ≥ k such that

(13)

∫ max(0,t−τ)

0

DJ (t, s)ds +

∫

∞

t+τ

EJ (t, s)ds <
ε

12
if t ∈ R+.

For any ξ ∈ C+
k (J), any extension η ∈ Y +

k (J) of ξ, and for t1 and t2 with t0 ≤ t1 < t2 ≤ k,

we have

|(H−ξ)(t1) − (H−ξ)(t2)|

=

∣

∣

∣

∣

∫ t1

0

D(t1, s, η(s))ds −
∫ t2

0

D(t2, s, η(s))ds

∣

∣

∣

∣

≤
∫ t1

0

|D(t1, s, η(s)) −D(t2, s, η(s))|ds +

∫ t2

t1

DJ (t2, s)ds.(14)

Since D(t, s, x) is uniformly continuous on U1 := {(t, s, x) : t0 ≤ t ≤ k, 0 ≤ s ≤ t

and |x| ≤ J}, for the ε there is a δ2 > 0 such that |D(t1, s, x) − D(t2, s, x)| < ε/6τ if
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(t1, s, x), (t2 , s, x) ∈ U1 and |t1 − t2| < δ2. From this, if t0 ≤ t1 < t2 ≤ k and t2 < t1 + δ2,

then we obtain

(15)

∫ t1

0

|D(t1, s, η(s)) −D(t2, s, η(s))|ds <
ε

6
.

Moreover, for the ε there is a δ3 > 0 such that

(16)

∫ t2

t1

DJ (t2, s)ds <
ε

6
if t0 ≤ t1 < t2 ≤ k and t2 < t1 + δ3.

Thus, from (14)–(16) we have (12) with δ− = δ4 := min(δ2, δ3), since we may assume that

δ2(ε) and δ3(ε) are continuous and increasing.

Finally, we prove that there is a continuous increasing function δ+ = δ+(ε) : (0,∞) →

(0,∞) such that

|(H+ξ)(t1) − (H+ξ)(t2)| <
ε

3
if ξ ∈ C+

k (J),(17)

η ∈ Y +
k (J), t0 ≤ t1 < t2 ≤ k and t2 < t1 + δ+,

where η is any extension of ξ, and H+ on C+
k (J) is defined by

(H+ξ)(t) :=

∫

∞

t

E(t, s, η(s))ds, t0 ≤ t ≤ k.

Let τ ≥ k be a number in (13). For any ξ ∈ C+
k (J), any extension η ∈ D+

k (J) of ξ, t1 and

t2 with t0 ≤ t1 < t2 ≤ k we have

(18)

|(H+ξ)(t1) − (H+ξ)(t2)|

=

∣

∣

∣

∣

∫

∞

t1

E(t1, s, η(s))ds −
∫

∞

t2

E(t2, s, η(s))ds

∣

∣

∣

∣

≤
∫ t2+τ

t2

|E(t1, s, η(s)) −E(t2, s, η(s))|ds

+

∫

∞

t2+τ

EJ(t1, s)ds +

∫

∞

t2+τ

EJ (t2, s)ds +

∫ t2

t1

EJ (t1, s)ds

<

∫ t2+τ

t2

|E(t1, s, η(s)) −E(t2, s, η(s))|ds +

∫ t2

t1

EJ(t1, s)ds +
ε

6
.
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Since E(t, s, x) is uniformly continuous on U2 := {(t, s, x) : t0 ≤ t ≤ k, t ≤ s ≤ t + τ + 1,

|x| ≤ J}, for the ε there is a δ5 such that 0 < δ5 < 1 and |E(t1, s, x) −E(t2, s, x)| < ε/12τ

if (t1, s, x), (t2 , s, x) ∈ U2 and |t1 − t2| < δ5. From this, if t0 ≤ t1 < t2 ≤ k and t2 < t1 + δ5,

then we obtain

(19)

∫ t2+τ

t2

|E(t1, s, η(s)) − E(t2, s, η(s))|ds <
ε

12
.

Moreover for the ε there is a δ6 > 0 such that

(20)

∫ t2

t1

EJ (t1, s)ds <
ε

12
if t0 ≤ t1 < t2 ≤ k and t2 < t1 + δ6.

Thus, from (18)–(20), we have (17) with δ+ = δ7 := min(δ5, δ6), since we may assume that

δ5(ε) and δ6(ε) are continuous and increasing.

Hence, from (11), (12), and (17) we can easily conclude that (10) holds for δ :=

min(δ1, δ
−, δ+).

This lemma enables us to prove the following result.

THEOREM 2. In addition to (4A), let

(21) |a(t)| +
∫ t

0

DJ (t, s)ds +

∫

∞

t

EJ(t, s)ds ≤ J, t0 ≤ t ≤ k

hold for some k ∈ K and J > 0 with k > t0 and J ≥ sup{|φ(t)| : 0 ≤ t < t0}. Then for

any ξ0 ∈ C(t0) with ‖ξ0‖t0 ≤ J the equation

(22) x(t) = a(t) +

∫ t

0

D(t, s, x(s))ds +

∫

∞

t

E(t, s, x(s))ds, t0 ≤ t ≤ k

has a solution x(t) on [t0, k] such that ‖x‖0 ≤ J , x(t) = φ(t) for 0 ≤ t < t0, and x(t) = ξ0(t)

for t > k.

PROOF. Let ξ0 ∈ C(t0) be any fixed function with ‖ξ0‖t0 ≤ J . Then any ξ ∈ C+
k (J)

can be extended on R+ by defining ξ(t) = φ(t) if 0 ≤ t < t0, and ξ(t) = ξ0(t) if t > k. Then

the extended function of ξ is an element of Y +
k (J), and we denote it by η. Let H be a map
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on C+
k (J) defined by (9). Then from Lemma 1, (4A), and (21), the set {Hξ : ξ ∈ C+

k (J)} is

equicontinuous, and it is easy to see that H maps C+
k (J) into C+

k (J) continuously. Thus,

by Schauder’s second theorem (cf. Smart [6; p. 25]), H has a fixed point, which yields

a solution x(t) of Equation (22) such that ‖x‖0 ≤ J , x(t) = φ(t) for 0 ≤ t < t0, and

x(t) = ξ0(t) for t > k.

By using Lemma 1 and Theorem 2, we obtain the following result.

THEOREM 3. In addition to (4A), let

(23) |a(t)| +
∫ t

0

DJ (t, s)ds +

∫

∞

t

EJ(t, s)ds ≤ J, t ≥ t0

hold for some J > 0 with J ≥ sup{|φ(t)| : 0 ≤ t < t0}. Then Equation (1A) has a solution

y(t) such that ‖y‖0 ≤ J , y(t) = φ(t) for 0 ≤ t < t0, and y(t) satisfies (1A) on [t0,∞).

PROOF. Let k > t0 be any integer, and let ξ0 be a function with ξ0(t) ≡ 0 on R+.

Then Theorem 2 implies that Equation (22) has a solution xk(t) such that ‖xk‖0 ≤ J ,

xk(t) = φ(t) for 0 ≤ t < t0, and xk(t) = 0 for t > k. Thus, we have a sequence of

functions {xk(t)}. Let m > t0 be any fixed integer, and for any integer k > t0 let ξk(t) be

the restriction of xk(t) on [t0,m]. Then Lemma 1 implies that the set {ξk(t) : k ≥ m} is

equicontinuous on [t0,m]. Hence, the sequence {xk(t)} contains a subsequence, say {x1
k(t)},

which converges uniformly on [t0, t0 + 1]. The sequence {x2
k(t)} also has a subsequence

converging uniformly on [t0, t0 + 2]. If we continue in this way we obtain a sequence of

sequences {xm
k (t)}, m = 1, 2, . . . , each of which is a subsequence of all the preceding ones,

such that for each integer m > t0, x
m
k (t) converges uniformly on [t0, t0 + m]. Consider

the sequence of functions yk(t) = xk
k(t), where k > t0 is an integer. Then the sequence

{yk(t)} is a subsequence of {xk(t)} and is, in fact, a subsequence of each of the sequences

{xm
k (t)}, for k large. If we define a function y(t) on R+ by y(t) = φ(t) for 0 ≤ t < t0,

and y(t) = lim
k→∞

yk(t) for t ≥ t0, then for any integer m > t0, {yk(t)} converges to y(t)

uniformly on [t0,m] as k → ∞.

15



Now we show that y(t) satisfies (1A) on [t0,∞). For any t ≥ t0, let m be an integer

with |t| ≤ m. From the definition of yk(t), we have yk(t) = xκ(t) for some integer κ ≥ k.

Thus for any integer k ≥ m we obtain

(24) yk(t) = a(t) +

∫ t

0

D(t, s, yk(s))ds +

∫

∞

t

E(t, s, yk(s))ds, t0 ≤ t ≤ κ,

where κ = κ(k) ∈ K and yk(s) = 0 for s > κ. Clearly we have

lim
k→∞

∫ t

0

D(t, s, yk(s))ds =

∫ t

0

D(t, s, y(s))ds.

Next we prove that

lim
k→∞

∫

∞

t

E(t, s, yk(s))ds =

∫

∞

t

E(t, s, y(s))ds.

From (4A), for any ε > 0 there is a τ > 0 with
∞
∫

t+τ

EJ (t, s)ds < ε if t ∈ R+. From this we

obtain

lim sup
k→∞

∣

∣

∣

∣

∫

∞

t

(E(t, s, yk(s)) − E(t, s, y(s))ds

∣

∣

∣

∣

≤ lim sup
k→∞

∣

∣

∣

∣

∫ t+τ

t

(E(t, s, yk(s)) − E(t, s, y(s))ds

∣

∣

∣

∣

+ 2

∫

∞

t+τ

EJ (t, s)ds < 2ε,

which implies that

lim
k→∞

∫

∞

t

E(t, s, yk(s))ds =

∫

∞

t

E(t, s, y(s))ds.

Thus, letting k → ∞ in (24), we have

(25) y(t) = a(t) +

∫ t

0

D(t, s, y(s))ds +

∫

∞

t

E(t, s, y(s))ds.

Since t ≥ t0 is arbitrary, (25) shows that y(t) is a solution of Equation (1A) such that

‖y‖0 ≤ J , y(t) = φ(t) for 0 < t < t0, and y(t) satisfies (1A) on [t0,∞).
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The following example illustrates the result. In work we cited earlier by Coppel and

by Coddington and Levinson, a Lipschitz condition was assumed on the functions in the

differential equations. Our result does not require that.

EXAMPLE 2. Consider the scalar nonlinear equation

(26) x(t) = arctan t+

∫ t

0

es−t
√

|x(s)|ds+

∫

∞

t

et−s
√

|x(s)|ds, t ∈ R+.

This equation is obtained from (1A) taking n = 1, a(t) = arctan t, D(t, s, x) = es−t
√

|x|,

and E(t, s, x) = et−s
√

|x|. For any J > 0 we can take

DJ (t, s) = es−t
√
J, (t, s) ∈ ∆−

and

EJ (t, s) = et−s
√
J, (t, s) ∈ ∆+.

For any t0 ∈ R+, and any bounded continuous function φ : [0, t0) → R with t0 > 0, let

J ≥ max
[

sup{|φ(t)| : 0 ≤ t < t0}, 2
√
J +

π

2

]

.

Then it is easy to see that the conditions (4A) and (23) are satisfied for that J . Thus,

by Theorem 3, Equation (26) has a solution x(t) such that ‖x‖0 ≤ J , x(t) = φ(t) for

0 ≤ t < t0, and x(t) satisfies (1A) on [t0,∞).

2. Existence of solutions of (1B)

We now show that existence of solutions of (1B) can be obtained by methods similar

to those in Section 1. Thus, for any t0 ∈ R and any bounded continuous initial function

φ : (−∞, t0) → Rn, let x(t, t0, φ) again denote a solution of Equation (1B) which agrees

with φ on (−∞, t0) and satisfies (1B) on [t0,∞).

2a. Existence by a contraction mapping
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Let

λJ := sup

{
∫ t

−∞

L−

J (t, s)ds +

∫

∞

t

L+
J (t, s)ds : t ∈ R

}

.

Then we have the following result.

THEOREM 4. Suppose that (2A), (3B), (4B), (5)–(7) hold. Then for any t0 ∈ R

and any bounded continuous function φ : (−∞, t0) → Rn, Equation (1B) has a unique R-

bounded solution which agrees with φ on (−∞, t0) and satisfies (1B) on [t0,∞). Moreover,

if (2B) holds, then Equation (1B) has a unique R-bounded solution which satisfies (1B)

on R.

The first part of the theorem can be proved by a proof similar to that given for

Theorem 1 by defining a map H on C(t0) by

(Hξ)(t) := a(t) +

∫ t0

−∞

D(t, s, φ(s))ds +

∫ t

t0

D(t, s, ξ(s))ds

+

∫

∞

t

E(t, s, ξ(s))ds, t ≥ t0.

The second part can be proved by defining H on C by

(Hξ)(t) := a(t) +

∫ t

−∞

D(t, s, ξ(s))ds +

∫

∞

t

E(t, s, ξ(s))ds, t ∈ R,

where (C, ‖ · ‖) is the Banach space of bounded continuous functions ξ : R→ Rn with the

supremum norm ‖ · ‖. The details will not be given.

EXAMPLE 3. Corresponding to Equation (8) in Example 1, consider the scalar linear

equation

(27) x(t) = a(t) + α

∫ t

−∞

es−t cos sx(s)ds + β

∫

∞

t

et−s sin sx(s)ds, t ∈ R,

where a : R → R is a bounded continuous function, and α and β are constants with

|α| + |β| < 1. It is easy to see that the assumptions of Theorem 4 are satisfied. Thus, for

any t0 ∈ R and any bounded continuous function φ : (−∞, t0) → Rn, Equation (27) has a
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unique R-bounded solution which agrees with φ on (−∞, t0) and satisfies (1B) on [t0,∞).

Moreover, Equation (27) has a unique R-bounded solution which satisfies (27) on R.

REMARK. In Section 3 we will consider periodic solutions. For both differential and

integral equations it is possible to give periodicity conditions on the functions involved so

that whenever x(t) is a solution, so is x(t + T ), where T is the period. Thus, when such

conditions are in place, then x(t) and x(t+T ) are both bounded solutions; if we know that

there is a unique bounded solution on R, then we conclude that x(t) = x(t+ T ). Thus, in

Section 3 we parlay Theorem 3 into the existence of a periodic solution.

2b. Existence by Schauder’s second theorem

For a given t0 ∈ R, let φ : (−∞, t0) → Rn be a given bounded continuous function.

For any k ∈ K with k > t0, let (C+
k , ‖ · ‖) be the Banach space of continuous functions

ξ : [t0, k] → Rn with the supremum norm ‖·‖. For any J > 0 with J ≥ sup{|φ(t)| : t < t0},

let C+
k (J) := {ξ ∈ C+

k : ‖ξ‖ ≤ J}, and let Y +
k (J) be the space of functions η : R → Rn

satisfying η(t) = φ(t) for t < t0, η(t) is continuous on [t0,∞) except at some m, and

|η(t)| ≤ J for t ∈ R, where m ∈ K and m ≥ k. Then C+
k (J) is convex, and any ξ ∈ C+

k (J)

can be extended on R by taking an η ∈ Y +
k (J) such that η(t) = ξ(t) for t0 ≤ t ≤ k. For

any ξ ∈ C+
k (J), let η ∈ Y +

k (J) be an extension of ξ. We define a map H = Hk,η on C+
k (J)

by ξ ∈ C+
k (J) implies that

(Hξ)(t) := a(t) +

∫ t

−∞

D(t, s, η(s))ds +

∫

∞

t

E(t, s, η(s))ds, t0 ≤ t ≤ k.

Corresponding to Lemma 1, we have the following result.

LEMMA 2. Under assumption (4B), for any k ∈ K and J > 0 with k > t0 and J ≥

sup{|φ(t)| : t < t0}, there is a continuous increasing function δ = δk,J (ε) : (0,∞) → (0,∞)

such that

|(Hξ)(t1) − (Hξ)(t2)| < ε if ξ ∈ C+
k (J), η ∈ Y +

k (J),

t0 ≤ t1 < t2 ≤ k and t2 < t1 + δ,
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where η is any extension of ξ.

Since we can prove this lemma by a similar method to the one of Lemma 1, we omit

the proof.

The next two results are parallel to Theorems 2 and 3.

THEOREM 5. In addition to (4B), let

|a(t)| +
∫ t

−∞

DJ (t, s)ds +

∫

∞

t

EJ (t, s)ds ≤ J, t0 ≤ t ≤ k

hold for some k ∈ K and J > 0 with k > t0 and J ≥ sup{|φ(t)| : t < t0}. Then for any

ξ0 ∈ C(t0) with ‖ξ0‖t0 ≤ J the equation

x(t) = a(t) +

∫ t

−∞

D(t, s, x(s))ds +

∫

∞

t

E(t, s, x(s))ds, t0 ≤ t ≤ k

has a solution x(t) satisfying the equation on [t0, k] such that |x(t)| ≤ J for t ∈ R,

x(t) = φ(t) for t < t0, and x(t) = ξ0(t) for t > k.

THEOREM 6. In addition to (4B), let the inequality

|a(t)| +
∫ t

−∞

DJ (t, s)ds +

∫

∞

t

EJ (t, s)ds ≤ J, t ≥ t0

hold for some J > 0 with J ≥ sup{φ(t)| : t < t0}. Then Equation (1B) has a solution x(t)

such that |x(t)| ≤ J for t ∈ R, x(t) = φ(t) for t < t0, and x(t) satisfies (1B) on [t0,∞).

Since the proofs of these two theorems are similar to the proofs of Theorems 2 and 3,

respectively, we omit them.

Next, we discuss the existence of R-bounded solutions of Equation (1B) which satisfy

(1B) on R by employing Schauder’s second theorem without assumptions (5) and (6).

For any k ∈ K, let (Ck, ‖·‖) be the Banach space of continuous functions ξ : [−k, k] →

Rn with the supremum norm ‖ · ‖. For any J > 0, let Ck(J) := {ξ ∈ Ck : ‖ξ‖ ≤ J}, and

let Yk(J) be the space of functions η : R→ Rn such that η(t) is continuous on R except at

some ±m, and |η(t)| ≤ J for t ∈ R, where m ∈ K and m ≥ k. Then Ck(J) is convex and
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any ξ ∈ Ck(J) can be extended on R by taking an η ∈ Yk(J) with η(t) = ξ(t) on [−k, k].

We define a map H = Hk,η on Ck(J) by ξ ∈ Ck(J) implies that

(28) (Hξ)(t) := a(t) +

∫ t

−∞

D(t, s, η(s))ds +

∫

∞

t

E(t, s, η(s))ds, −k ≤ t ≤ k,

where η ∈ Yk(J) is an extension of ξ. Then, corresponding to Lemma 1, we have the

following result which we state without proof.

LEMMA 3. Under assumption (4B), for any k ∈ K and J > 0, there is a continuous

increasing function δ = δk,J : (0,∞) → (0,∞) such that

|(Hξ)(t1) − (Hξ)(t2)| < ε if ξ ∈ Ck(J), η ∈ Yk(J),

−k ≤ t1 < t2 ≤ k and t2 < t1 + δ,

where η is any extension of ξ.

THEOREM 7. In addition to (4B), let the inequality

(29) |a(t)| +
∫ t

−∞

DJ (t, s)ds +

∫

∞

t

EJ (t, s)ds ≤ J, −k ≤ t ≤ k,

hold for some k ∈ N and J > 0. Then for any continuous function ξ0 : R → Rn with

|ξ0(t)| ≤ J for t ∈ R the equation

(30) x(t) = a(t) +

∫ t

−∞

D(t, s, x(s))ds +

∫

∞

t

E(t, s, x(s))ds, −k ≤ t ≤ k,

has a solution x(t) on [−k, k] such that |x(t)| ≤ J for t ∈ R, and x(t) = ξ0(t) if |t| > k.

PROOF. Let ξ0 : R→ Rn be any fixed function with |ξ0(t)| ≤ J for t ∈ R. Then any

ξ ∈ Ck(J) can be extended on R by defining ξ(t) = ξ0(t) if |t| > k. Then the extended

function of ξ is an element of Yk(J), and we denote it by ξ again for simplicity. Let H

be a map on Ck(J) defined by (28). Then, from Lemma 3 and (29), H maps Ck(J) into

Ck(J) continuously, and the set {Hξ : ξ ∈ Ck(J)} is equicontinuous. Thus, by Schauder’s
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second theorem, H has a fixed point, which yields a solution x(t) of Equation (30) such

that |x(t)| ≤ J for t ∈ R, and x(t) = ξ0(t) if |t| > k.

By using Lemma 3 and Theorem 7, we obtain the following result.

THEOREM 8. In addition to (4B), let

(31) |a(t)| +
∫ t

−∞

DJ (t, s)ds +

∫

∞

t

EJ (t, s)ds ≤ J, t ∈ R,

hold for some J > 0. Then Equation (1B) has a solution y(t) which satisfies (1B) on R,

and |y(t)| ≤ J for t ∈ R.

PROOF. Let k ∈ K be any integer, and let φ : R→ Rn be a function with φ(t) = 0 on

R. Then Theorem 7 implies that Equation (30) has a solution xk(t) such that ‖xk‖ ≤ J ,

and xk(t) = 0 if |t| > k. Thus we have a sequence of functions {xk(t)}. Let m ∈ K

be any fixed integer, and for any k ∈ K let ξk(t) be the restriction of xk(t) on [−m,m].

Then, Lemma 3 implies that the set {ξk(t) : k ≥ m} is equicontinuous on [−m,m]. By an

argument similar to the one in the proof of Theorem 3, it is easily seen that the sequence

{xk(t)} contains a subsequence {yj(t)} such that for any integer m, {yj(t)} converges

uniformly on [−m,m] as j → ∞. We define a function y(t) on R by y(t) = lim
j→∞

yj(t).

Now we show that y(t) is a solution of Equation (1B) and it satisfies (1B) on R. For

any t ∈ R, let m ∈ K be an integer with |t| ≤ m. Since {yj(t)} is a subsequence of {xk(t)},

we have yj(t) = xk(t) for some k ∈ K with k ≥ j. Thus, for any j ∈ K with j ≥ m we

obtain

(32) yj(t) = a(t) +

∫ t

−∞

D(t, s, yj (s))ds +

∫

∞

t

E(t, s, yj(s))ds, −k ≤ t ≤ k,

where k = k(j) ∈ K and yj(s) = 0 if |s| > k. By an argument similar to the one in the

proof of Theorem 3, it is easily seen that

lim
j→∞

(
∫ t

−∞

D(t, s, yj (s))ds +

∫

∞

t

E(t, s, yj(s))ds

)

=

∫ t

−∞

D(t, s, y(s))ds +

∫

∞

t

E(t, s, y(s))ds.
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Thus, letting j → ∞ in (32) we have

(33) y(t) = a(t) +

∫ t

−∞

D(t, s, y(s))ds +

∫

∞

t

E(t, s, y(s))ds.

Since t ∈ R is arbitrary, (33) shows that y(t) is a solution of Equation (1B) which satisfies

(1B) on R and |y(t)| ≤ J for t ∈ R.

EXAMPLE 4. Corresponding to Equation (26) in Example 2, consider the scalar

nonlinear equation

(34) x(t) = arctan t+

∫ t

−∞

et−s
√

|x(s)|ds+

∫

∞

t

es−t
√

|x(s)|ds, t ∈ R.

Let J be a number with J ≥ 2
√
J + π/2. Then it is easy to see that (4B) and (31) are

satisfied for the same DJ (t, s) and EJ(t, s) in Example 2. Thus, by Theorem 8, Equation

(34) has a solution x(t) which satisfies (34) on R, and |x(t)| ≤ J for t ∈ R.

3. Existence of periodic solutions

In this section we discuss the existence of periodic and asymptotically periodic solu-

tions of neutral integral equations. Thus, we consider the systems (1A) and

(35) x(t) = p(t) +

∫ t

−∞

P (t, s, x(s))ds +

∫

∞

t

Q(t, s, x(s))ds, t ∈ R

where p : R → Rn, P : ∆− × Rn → Rn and Q : ∆+ × Rn → Rn are continuous. It

will be assumed that the functions a(t), D(t, s, x), and E(t, s, x) in (1A) converge to p(t),

P (t, s, x), and Q(t, s, x), respectively, in the following sense:

(36) q(t) := a(t) − p(t) → 0 as t→ ∞,

and p(t) is T -periodic, where T > 0 is a constant;

F (t, s, x) := D(t, s, x) − P (t, s, x), and P (t + T, s+ T, x) = P (t, s, x);(37)

G(t, s, x) := E(t, s, x) −Q(t, s, x), and Q(t + T, s + T, x) = Q(t, s, x).(38)
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In addition, we assume that for any J > 0 there are continuous functions PJ and FJ :

∆− → R+, and QJ and GJ : ∆+ → R+ such that:

PJ (t+ T, s + T ) = PJ(t, s) if s ≤ t;

QJ (t+ T, s + T ) = QJ (t, s) if s ≥ t;

|P (t, s, x)| ≤ PJ(t, s) if s ≤ t and |x| ≤ J ;

|Q(t, s, x)| ≤ QJ (t, s) if s ≥ t and |x| ≤ J ;

|F (t, s, x)| ≤ FJ(t, s) if s ≤ t and |x| ≤ J ;

|G(t, s, x)| ≤ GJ (t, s) if s ≥ t and |x| ≤ J ;

∫ t−τ

−∞

PJ (t, s)ds +

∫

∞

t+τ

(QJ (t, s) +GJ (t, s))ds → 0(39)

uniformly for t ∈ R as τ → ∞;
∫ t

0

FJ (t, s)ds +

∫

∞

t

GJ (t, s)ds → 0 as t→ ∞.(40)

First, we have the following lemma.

LEMMA 4. In addition to assumptions (36)–(40), let

|a(t)| +
∫ t

0

(PJ (t, s) + FJ (t, s))ds +

∫

∞

t

(QJ (t, s) +GJ (t, s))ds ≤ J, t ≥ t0,

hold for some J > 0 with J ≥ sup{|φ(t)| : 0 ≤ t < t0}. Then Equation (1A) has an

R+-bounded solution x(t) = x(t, t0 , φ) which satisfies (1A) for t > t0. Moreover, for any

sequence {sk} of nonnegative numbers with sk → ∞ as k → ∞, the sequence of functions

{xk(t)} contains a subsequence which converges to an R-bounded solution x(t) of the

equation

(35σ)

x(t) = p(t + σ) +

∫ t

−∞

P (t + σ, s + σ, x(s))ds

+

∫

∞

t

Q(t+ σ, s + σ, x(s))ds, t ∈ R,
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uniformly on any compact subset of R, where xk(t) is defined by

xk(t) :=

{

x(0), t < −sk

x(t + sk), t ≥ −sk

t ∈ R,

and where σ is a number with 0 ≤ σ < T and z(t) satisfies Equation (35)σ on R.

Since this lemma can be easily proved by Theorem 3 and a standard argument, we

omit the proof.

DEFINITION. A function ξ : R+ → Rn is said to be asymptotically T -periodic if

ξ = ψ+µ where ψ : R+ → Rn is continuous and T -periodic, µ : R+ → Rn is bounded and

is continuous on R except at some t0 ∈ R+,

µ(t0) = µ(t0+), and µ(t) → 0 as t→ t0 + .

Concerning the existence of a T -periodic solution of Equation (35) and its attractivity,

we have the following result.

THEOREM 9. If (36)–(38) hold, and if Equation (35) has a unique R-bounded solu-

tion x0(t) which satisfies (35) on R, then the following hold:

(i) The solution x0(t) is T -periodic.

(ii) If the assumptions of Lemma 4 hold, then Equation (1A) has an R+-bounded solution

x(t) such that x(t) = φ(t) for 0 ≤ t < t0. Moreover, x(t) is asymptotically T -periodic

and approaches x0(t) as t→ ∞.

PROOF. (i) Let x1(t) be a function obtained by the T -translation of x0(t) to the left.

Then clearly x1(t) is also an R-bounded solution of Equation (35) which satisfies (35) on

R. Thus, from the uniqueness of R-bounded solutions of Equation (35) which satisfy (35)

on R, x0(t) and x1(t) must be identical on R; that is, x0(t) is T -periodic.

(ii) Lemma 4 implies that Equation (1A) has an R+-bounded solution x(t) such that

x(t) = φ(t) for 0 ≤ t < t0. Let {xk(t)} be the sequence of functions as in Lemma 4 with

sk = kT . Then, from Lemma 4 and the uniqueness of R-bounded solutions of Equation
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(35) which satisfy (35) on R, xk(t) converges to x0(t) uniformly on [0, T ]. This implies

that x(t) is asymptotically T -periodic and its T -periodic part is given by x0(t).

REMARK. By imposing the Lipschitz conditions (5)–(6) and Condition (7) on

P (t, s, x) and Q(t, s, x), we can obtain the uniqueness of R-bounded solutions of Equation

(35) which satisfy (35) on R.

We now assume that P (t, s, x) and Q(t, s, x) are linear in x so that we can use the

theory of minimal solutions to prove the existence of T -periodic solutions of Equation (35).

Consider the equations (1A) and

(41) x(t) = p(t) +

∫ t

−∞

P (t, s)x(s)ds +

∫

∞

t

Q(t, s)x(s)ds, t ∈ R,

where a(t), D(t, s, x) := P (t, s)x + F (t, s, x) and E(t, s, x) := Q(t, s)x + G(t, s, x) satisfy

(36)–(40) with PJ (t, s) := J |P (t, s)| and QJ (t, s) := J |Q(t, s)|.

Let h : R → R+ be a continuous positive function with
∫

∞

−∞
h(s)ds < ∞. For any

bounded continuous function x : R→ Rn, define a function λ(x) by

λ(x) := sup

{
∫

∞

−∞

|x(s + t)|2h(s)ds : t ∈ R

}

,

and define a number Λ by the infimum of the set of numbers λ(x), where x is an R-bounded

solution of Equation (41) such that x solves (41) on R and ‖x‖ ≤ J , and where J > 0

is a constant. Then from the theory of minimal solutions (see [5]), we have the following

lemmas which we state without proofs.

LEMMA 5. Let (36)–(40) hold with D(t, s, x) := P (t, s)x + F (t, s, x), E(t, s, x) :=

Q(t, s)x +G(t, s, x), PJ (t, s) := J |P (t, s)| and QJ (t, s) := J |Q(t, s)|, and

|a(t)| +
∫ t

0

(PJ (t, s) + FJ (t, s))ds +

∫

∞

t

(QJ (t, s) +GJ (t, s))ds ≤ J, t ≥ t0,

hold for some J > 0 with J ≥ sup{|φ(t)| : 0 ≤ t < t0}. Then Equation (41) has a minimal

solution; that is, (41) has an R-bounded solution which attains the value Λ.
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LEMMA 6. In addition to the assumptions of Lemma 5, if Ck(t) (k = 1, 2) are minimal

solutions of Equation (41), then there is a sequence {tk} with C1(t+ tk)−C2(t+ tk) → 0

uniformly on any compact subset of R as k → ∞.

Now we have the following result.

THEOREM 10. Under the assumptions of Lemma 5, Equation (41) has a T -periodic

solution.

PROOF. Let C(t) be a minimal solution of Equation (41) which is assured in Lemma

5. Clearly, C(t+T ) is also a minimal solution. Thus, from Lemma 6, there is a subsequence

{tk} with C(t+ tk) − C(t + T + tk) → 0 as k → ∞ uniformly on any compact subset of

R. For each positive integer k, let νk be an integer with νkT ≤ tk < (νk + 1)T , and let

σk := tk −νkT . Taking a subsequence if necessary, we may assume that σk → σ as k → ∞

for some σ with 0 ≤ σ ≤ T , and that for some bounded continuous function γ(t) on R,

C(t+tk) → γ(t) uniformly on any compact subset of R as k → ∞, since the set {C(t+tk)}

is uniformly bounded and equicontinuous on R. Clearly, γ(t) is T -periodic. Moreover, since

(39) holds with PJ (t, s) := J |P (t, s)| and QJ (t, s) := J |Q(t, s)|, from Lemma 4, γ(t) is an

R-bounded solution of the equation

γ(t) = p(t+ σ) +

∫ t

−∞

P (t+ σ, s + σ)γ(s)ds

+

∫

∞

t

Q(t + σ, s + σ)γ(s)ds, t ∈ R.

For δ(t) := γ(t− σ), this equation can be rewritten as

δ(t) = p(t) +

∫ t

−∞

P (t, s)δ(s)ds +

∫

∞

t

Q(t, s)δ(s)ds, t ∈ R,

and hence, δ(t) is a T -periodic solution of Equation (41).
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