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Abstract. We transform the Lurie indirect control equations into Liénard type integro-

differential equations. Depending on the number of zero eigenvalues of the matrix in the

Lurie equations, we obtain a pure Liénard equation, a Liénard equation with memory and

an exponentially decaying forcing function, and a Liénard-Volterra-Levin equation. Using

the good Liapunov functions known for these type of equations, we prove stability results

for the Liénard equations and consequently for the indirect control Lurie problem. The

results are then extended to the delay form of the Lurie problem.
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1 Introduction

The problem of Lurie began in 1951 [10] and has attracted much interest
to the present time, ever changing to encompass more sophisticated systems,
but remaining basically the same. A search of the topic ”Lurie” in the online
Mathematical Reviews will net 85 papers, which are but a fraction of the
total literature on the problem, as can be seen by then searching the publi-
cations of the authors listed in that first 85. The last 55 of that 85 paper set
have appeared since 1995; thus, there is a great resurgence of interest in the
subject.

The basic problem is how to ensure the stability of a linearized plant
equation using a scalar control that is a non-linear function of the error.

We assume that the plant equation is given by

x′ = Ax

where A is a d × d real constant matrix having m zero characteristic roots
and n roots with negative real parts.
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A control is added to the system and a transformation is made resulting
in the (d+ 1)−dimensional system,

x′ = Ax+ bf(σ) (1.1)

σ′ = cTx− rf(σ)

known as the Lurie’s indirect control problem.
Here x is the transformed state vector, σ is the scalar control, b and c are

constant d−vectors, r is a positive constant, and f is an admissible function,
defined below.

The task is to give conditions on b and c to ensure that the zero solution
of (1.1) is globally asymptotically stable for every admissible f .

We say that f : R→ R is admissible if:

f is continuous; (1.2)

σf(σ) > 0 if σ 6= 0; (1.3)

∫ ±∞

0

f(s)ds = ∞. (1.4)

The books by LaSalle and Lefschetz [5] and by Lefschetz [6] give fine
summaries of the problem. The entire book by Lefschetz is devoted to the
problem, but Section 19 of [6] is more closely related to our work here. The
main efforts by investigators have involved the construction of Liapunov func-
tions (Lurie-Postnikov and Popov are other designations) yielding stability
results.

Our thesis here is that the control function, σ, satisfies a Liénard-Volterra-
Levin equation for which there are already very effective Liapunov functions.

The Liénard equation in the Liénard plane may be written as

σ′ = z − F (σ)

z′ = −g(σ)

where σF (σ) > 0 and σg(σ) > 0 for σ 6= 0. It has been widely studied in
many contexts since about 1928 when Liénard [9] introduced the Liénard
plane.

The equation has also been widely studied when there is a delay. (See
Krasovskii [4] [ p. 173] and Zhang [14], for example.) In the Zhang pa-
per a Liapunov functional is given, together with necessary and sufficient
conditions for global asymptotic stability.

Again in 1928 Volterra [13] began a study of a biological problem de-
scribed by a truncated form of

σ′ = −

∫ t

0

a(t − s)f(σ(s))ds
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with a(t) ≥ 0, a′(t) ≤ 0, and a′′(t) ≥ 0. Volterra suggested that a Liapunov
function could be constructed and Levin [7] carried out the details creating

V (t, σ) =

∫ σ

0

f(s)ds

+ (1/2)a(t)[

∫ t

0

f(σ(s))ds]2 − (1/2)

∫ t

0

a′(t− s)[

∫ t

s

f(σ(u))du]2ds.

A long line of papers followed Levin’s work and some important sum-
maries are found in Krasovskii [4] [pp. 158-160]. It is now understood, but
not simple to see, that the Volterra-Levin equation is an integrated form of
the Liénard equation and that their Liapunov functions are related.

Let us rewrite now the Lurie control equation in the form of a Liénard
equation.

Suppose that the matrix A can be decomposed and written as

A =

(

L 0
0 J

)

where L is the m × m zero matrix, while J is an n × n real matrix all of
whose characteristic roots have negative real parts.Thus,we have the system

x′ = b1f(σ) (1.5)

y′ = Jy + b2f(σ)

σ′ = cT1 x+ cT2 y − rf(σ)

where x, b1, c1 ∈ Rm, y, b2, c2 ∈ Rn, J is an n× n constant real matrix all of
whose characteristic roots have negative real parts, r is a positive constant,
and f is an admissible control satisfying (1.2), (1.3), and (1.4).

Let (x0, y0, σ0) be any given initial condition. We can write an integral
equation for the first equation in (1.5) as

x(t) = x0 + b1

∫ t

0

f(σ(s))ds (1.6)

and for the second equation as

y(t) = eJty0 +

∫ t

0

eJ(t−s)b2f(σ(s))ds. (1.6b)

Substituting these into the third equation yields

σ′ = cT1 [x0 + b1

∫ t

0

f(σ(s))ds]

+ cT2 [eJty0 +

∫ t

0

eJ(t−s)b2f(σ(s))ds] − rf(σ). (1.7)
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Depending on the characteristic roots we have three types of equations:
1. When n = 0, then the equation in σ becomes a pure Liénard equation;

Liapunov theory is known giving necessary and sufficient conditions for global
asymptotic stability.

2. When neither n nor m is zero, then the equation in σ becomes a
classical Liénard equation with a delay. A Liapunov functional for essentially
this equation was constructed by Krasovskii in the 1950’s.

3. When m = 0, then the equation in σ becomes a Liénard-Volterra-
Levin equation. Levin used a suggestion of Volterra to construct a very good
Liapunov functional which will yield the desired stability.

One can also introduce a delay in the control, in the state equation, or in
both to obtain delay equations. We will study them in the last section.

Once we know that the σ equation is asymptotically stable we can then
make corresponding conclusions about the state variables.

2 A Pure Liénard equation.(n=0)

At this point we can note a simple and interesting relation in case c2 = b2 = 0.
This is interpreted as a decision that y need not be controlled or that y is
not even present. In that case our equation becomes

σ′ = cT1 [x0 + b1

∫ t

0

f(σ(s))ds] − rf(σ) (2.1)

which can be written as the system

σ′ = z − rf(σ)

z′ = cT1 b1f(σ). (2.2)

When z(0) = cT1 x0 then a solution of (2.2) is a solution of (2.1). When
σ(t) is a solution of (2.1), then

(σ(t), cT1 [x0 + b1

∫ t

0

f(σ(s))ds])

is a solution of (2.2). If we show that all solutions of (2.2) tend to zero, then
all solutions of (2.1) tend to zero.

REMARK 2.1. Notice that (2.2) is a differential equation involving
the control only.

The sign of cT1 b1 will determine the stability or instability of the zero
solution of (2.2).

Consider the Liapunov function

V (σ, z) = z2 − 2cT1 b1

∫ σ

0

f(s)ds (2.3)
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having a derivative along a solution (σ(t), z(t)) of (2.2) given by

V ′(σ(t), z(t)) = 2cT1 b1rf
2(σ). (2.4)

THEOREM 2.1. Let (1.2), (1.3), and (1.4) hold.
(a) If cT1 b1 < 0 then the zero solution of (2.2) is globally asymptotically

stable Moreover, each solution of (2.1) satisfies cT1 x(t) → 0 as t → ∞. In
particular, if m = 1 then x(t) → 0.

(b) If cT1 b1 > 0 the the zero solution of (2.2) is unstable, and so is the
solution of (2.1)

Proof
(a) First, notice that V is positive definite so the zero solution of (2.2) is

stable. Moreover, V ′ is negative semi-definite, with the set on which V ′ = 0
containing no positively invariant sets except the origin. (See Krasovskii [4]
[p. 67]. Uniqueness is not needed. We see that V (σ(t), z(t)) tends to a
constant and σ(t) → 0 so σ′ → z1. If z1 is not zero, then from the first equa-
tion in (2.2) we see that σ′ approaches a nonzero constant, a contradiction
to σ(t) → 0.) Hence, the zero solution is asymptotically stable and every
bounded solution approaches the origin. Condition cT1 b1 < 0 implies that V
is radially unbounded so every solution is bounded.

To prove the last part of the theorem, notice that when the zero solution
of (2.2) is asymptotically stable then from (2.2) we see that both σ(t) and
σ′(t) tend to zero. Using this in the third equation of (1.5) with c2 = 0 proves
that cT1 x(t) → 0. This completes the proof of (a).

(b) Consider the curves given by the equation V (x, σ) = 0 . In the open

domain defined by {(z, σ)|z >
√

2cT1 b1
∫ σ

0
f(s)ds} we have V > 0 and in the

boundary V = 0. The origin belongs to the boundary. The derivative along
the solutions of (2.2) satisfies V ′ ≥ 0 thus the domain is invariant. We would
like to apply Chetaev’s Theorem (See Burton [2] Theorem 4.1.25, pg 243),
but in that domain the derivative V ′ = 0 when σ = 0, so the Theorem does
not apply directly.

Let us define an invariant subdomain D in which V ′ > 0.

D :

{

(z, σ) | σ > 0, z >

√

2cT1 b1

∫ σ

0

f(s)ds

}

On the part of the boundary of D where σ = 0 we have σ′ > 0 except at the
origin where σ′ = 0 , thus D is invariant. Observe also that for any (σ0, z0)
in D the region z > z0 is also invariant, since on the line z = z0, we have
z′ = cT1 b1f(σ) ≥ 0. Moreover, if (σ0, z0) is any point in D with z0 > rf(σ0),
then no solution in D crosses the vertical line through σ0 from right to left.

Suppose, by way of contradiction, that the zero solution is stable. Then
for ε = 1 there is a δ > 0 such that |(σ0, z0)| < δ and t ≥ 0 imply that the
solution through that given point satisfies |(σ(t), z(t))| < 1. Find a point in
D with z0 > rf(σ0), σ0 > 0, and |(σ0, z0)| < δ. Then V ′ = 2cT1 b1rf

2(σ) and
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σ0 ≤ σ(t) ≤ 1 implies that there is a γ > 0 with V ′ ≥ γ for t ≥ 0. Integrate
that expression for a contradiction.

3 Liénard equation with delay. (n > 0,m > 0).

Let us work now with the full Liénard control equation

σ′ = cT1 [x0 + b1

∫ t

0

f(σ(s))ds]

+ cT2 [eJty0 +

∫ t

0

eJ(t−s)b2f(σ(s))ds] − rf(σ). (3.1)

Calling

z(t) = cT1 [x0 + b1

∫ t

0

f(σ(s))ds] + cT2 e
Jty0

the equation (3.1) can be written as

σ′ = z − rf(σ) + cT2

∫ t

0

eJ(t−s)b2f(σ(s))ds (3.2)

z′ = cT1 b1f(σ) + cT2 Je
Jty0,

which is a Liénard equation with memory and with an exponentially decaying
forcing function.

Note again that if (σ(t), z(t)) is a solution of (3.2) with z(0) = cT1 x0+c
T
2 y0,

then the equation

z′ = cT1 b1f(σ) + cT2 Je
Jty0.

z(0) = cT1 x0 + cT2 y0

has a solution z = cT1 [x0 + b1
∫ t

0
f(σ(s))ds] + cT2 e

Jty0, so σ(t) satisfies (3.1),
and conversely.

Define

C(t− s) = −(1/2)cT1 b1|c
T
2 e

J(t−s)b2| (3.3)

and then define the classical Liapunov functional

V (t, σ, z) = (1/2)z2 − cT1 b1

∫ σ

0

f(s)ds +

∫ t

0

∫ ∞

t−s

C(u)duf2(σ(s))ds. (3.4)

THEOREM 3.1. Let cT1 b1 < 0 and suppose that there is an α > 0 with

cT1 b1(r −

∫ ∞

0

|cT2 e
Jub2|du) ≤ −α < 0 (3.5)
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Then the zero solution of (3.2) is globally asymptotically stable for each
admissible f . Moreover, when σ(t) → 0, so does y(t), while cT1 x(t) → 0.

Proof. Taking the derivative of V along a solution of (3.2) yields

V ′ = −cT1 b1f(σ)[z − rf(σ) + cT2

∫ t

0

eJ(t−s)b2f(σ(s))ds]

+ z[cT1 b1f(σ) + cT2 Je
Jty0] + f2(σ (t))

∫ ∞

0

C(u)du

−

∫ t

0

C(t− s)f2(σ(s))ds

≤ cT1 b1rf
2(σ) − cT1 b1

∫ t

0

|cT2 e
J(t−s)b2| |f(σ (t))f(σ(s))|ds

+

∫ ∞

0

C(u)duf2(σ) −

∫ t

0

C(t− s)f2(σ(s))ds+ zcT2 Je
Jty0.

Then

V ′ ≤ +cT1 b1rf
2(σ)

− cT1 b1
1

2

{
∫ t

0

|cT2 e
J(t−s)b2||f(σ (t))|ˆ2ds+

∫ t

0

|cT2 e
J(t−s)b2||f(σ (s))|ˆ2ds

}

+

∫

∞

0

C(u)duf2(σ) −

∫ t

0

C(t− s)f2(σ(s))ds+ zcT2 Je
Jty0

≤ cT1 b1f
2(σ)

{

r −

∫ t

0

1

2
|cT2 e

J(t−s)b2| |f(σ (t))|ˆ2ds

}

+

∫ ∞

0

C(u)duf2(σ)

+ zcT2 Je
Jty0

where we used the definition of C(t− s), (3.3). Substituting again for C(u)

V ′ ≤ cT1 b1f
2(σ)

{

r −

∫ ∞

0

1

2
|cT2 e

J(t−s)b2| ds− (1/2)

∫ ∞

0

|cT2 e
J(t−s)b2|du

}

+ zcT2 Je
Jty0

= cT1 b1f
2(σ)

{

r −

∫

∞

0

|cT2 e
J(t−s)b2| ds

}

+ zcT2 Je
Jty0

≤ −αf2(σ) +M(V + 1)e−βt.

for positive constants β and M . Here we used (3.5), the fact that all the
eigenvalues of J have negative real parts, and |z| < (V + 1).

Define a new function of the form

W (t, σ, z) = [V (t, σ, z) + 1]e−
R

t

0
Me−βsds
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and obtain

W ′(t, σ, z) = V ′e−
R

t

0
Me−βsds + (V + 1)(−Me−

R

t

0
Me−βsdse−βt)

≤ −αf2(σ)e−
R

t

0
Me−βsds.

From this, we argue (in the same way Krasovskii does in [4] [p. 67]) that
f2(σ) → 0. Then we see that V (t, σ, z) → z2/2 which tends to a constant. If
z2 does not tend to zero, then σ′ → z implies that σ does not tend to zero.

Looking now at (1.6b) we see that the integral is the convolution of an
L1 function with a function tending to zero so the convolution tends to zero.
Hence, y tends to zero. Then looking at the last equation in (1.5) we see that
σ′, f(σ), y all tend to zero. This means that cT1 x→ 0; if m = 1, then x→ 0.
This completes the proof.

COROLLARY 1. If bT1 c1 < 0 , cT2 e
J(t)b2 > 0 and r+ cT2 J

−1b2 > 0 then
the zero solution of (3.2) is globally asymptotically stable for every admissible
f .

Proof. Consider

r −

∫ ∞

0

|cT2 e
J(s)b2| ds = r −

∫ ∞

0

cT2 e
J(s)b2 ds

= r − cT2 J
−1eJu

∣

∣

∣

∣

∞

0

b2

= r + cT2 J
−1b2.

Thus the condition (3.5)

cT1 b1(r −

∫ ∞

0

|cT2 e
Jub2|du) = cT1 b1(r + cT2 J

−1b2) := −α < 0

obtains, and we can apply the theorem.

NOTE: We encounter here the condition r + cT2 J
−1b2 > 0 with a long

tradition in the literature. See the books by LaSalle and Lefschetz [5], [6]
and the papers by Burton [2], Moser [11] and Somolinos [12].

COROLLARY 2. Suppose that cT1 b1 < 0 and that J has a real char-
acteristic root −λ < 0. Let us assume that b2 or c2 can be selected as a
characteristic vector belonging to −λ

Jb2 = −λb2, or c2J = −λc2.

Then, if cT2 b2 > 0, the zero solution of (3.2) is globally asymptotically
stable for every admissible f .
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Proof. We have

r −

∫ ∞

0

|cT2 e
J(s)b2| ds = r −

∫ ∞

0

|cT2 b2e
−λu|du

= r +
e−λ

λ
|∞0 cT2 b2

= r +
cT2 b2
λ

and the condition 3.5 is satisfied.

The proof for c2 is similar.

COROLLARY 3. Suppose that cT1 b1 < 0 and that J has a real
characteristic root −λ < 0. Let us assume that b2 and c2 can be selected as
a characteristic vector b belonging to −λ, Jb = −λb

Then the zero solution of (3.2) is globally asymptotically stable for every
admissible f .

Proof. As in the previous Corollary 2. Observe that in the last line we
have now bT b > 0.

4 The Liénard-Volterra-Levin equation

Something needs to be said about the case in which m = 0 relative to the use
of the Liénard equation for stability analysis. In that case, the Lurie plant
equation is

y(t) = eJty0 +

∫ t

0

eJ(t−s)b2f(σ(s))ds (4.0)

and the Liénard equation (1.7), becomes

σ′ = −rf(σ) +

∫ t

0

cT2 e
J(t−s)b2f(σ(s))ds + cT2 e

Jty0. (4.1)

That equation has the form of one studied by Levin in [7] and for
which he constructed a very exact Liapunov function using a suggestion of
Volterra [13]. But it still falls in the Liénard category because it can be
shown that Levin’s equation is an integrated Liénard equation.

Levin requires that

a(t) := cT2 e
Jtb2 ≤ 0, a′(t) ≥ 0, a′′(t) ≤ 0. (4.2)

This condition is satisfied, for example, if J has a real root −λ < 0.
Picking c2 = −b2 = −b, where b is a characteristic vector belonging to −λ,
we have

a(t) = −bT eJtb = −bT be−λt
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and (4.2) is satisfied. It will then be the case that every solution of (4.1)
tends to zero, that σ′ → 0, and then from (3.6) that y(t) → 0 for any f(σ)
which is admissible.

THEOREM 4.1. If (4.2) is satisfied then every solution of (4.1) tends
to zero as t → ∞ for every admissible f and for r > 0, and the same is true
of y in equation (4.0)

Proof. With a(t) defined in (4.2) we define a Liapunov functional by

V (t, σ) =

∫ σ

0

f(s)ds − (1/2)a(t)

[
∫ t

0

f(σ(u))du

]2

+ (1/2)

∫ t

0

a′(t− s)

[
∫ t

s

f(σ(u))du

]2

ds.

Then

V ′ = f(σ)

[

−rf(σ) +

∫ t

0

a(t − s)f(σ(s))ds + cT2 e
Jty0

]

− a(t)

∫ t

0

f(σ(u))duf(σ) − (1/2)a′(t)

[
∫ t

0

f(σ(u))du

]2

+ (1/2)

∫ t

0

a′′(t− s)[

∫ t

s

f(σ(u))du]2ds

+

∫ t

0

a′(t− s)

∫ t

s

f(σ(u))dudsf(σ).

We integrate the last term by parts and obtain

a(t)

∫ t

0

f(σ(u))duf(σ) −

∫ t

0

a(t− s)f(σ(s))dsf(σ).

This yields

V ′ = −rf2(σ) + f(σ)cT2 e
Jty0 − (1/2)a′(t)

[
∫ t

0

f(σ(u))du

]2

+ (1/2)

∫ t

0

a′′(t − s)

[
∫ t

s

f(σ(u))du

]2

ds.

Now
|f(σ)cT2 e

Jty0| ≤ (1/2)(rf2(σ) +Me−βt)

for positive constants M, β. Thus, define

W (t, σ) = [V (t, σ) + 1]e−
R

t

0
Me−βsds

and obtain

W ′(t, σ) ≤ [V ′(t, σ) −Me−βt]e−
R

t

0
Me−βsds

≤ [−rf2(σ) + (1/2)(rf2(σ) +Me−βt) −Me−βt]e−
R

t

0
Me−βsds

≤ −(1/2)rf2(σ)e−
R

∞

0
Me−βsds.
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Hence, we can argue with Krasovskii that f(σ) → 0. Looking now at
(4.1) we see that the integral is the convolution of an L1 function with a
function tending to zero. Hence, σ′(t) → 0. Next, looking back at (4.0) we
give the same argument to show that y(t) → 0. This completes the proof.

5 Equations with delay.

It has long been recognized that there may be a time delay involved in the
control. We first consider the system in which the roots of A are all zero,
n = 0.

Thus, we look at

x′ = bf(σ(t))

σ′ = cTx(t− L) − rf(σ) (5.1)

where L is a positive constant. When L = 0 we recover equation (2.2).
As before, we obtain

x(t) = x0 + b

∫ t

0

f(σ(s))ds

and then

σ′ = cT [x0 + b

∫ t−L

0

f(σ(s))ds] − rf(σ). (5.2)

Let us rewrite it as a Lienard equation

σ′ = z − rf(σ) − cT b

∫ t

t−L

f(σ(s))ds

z′ = cT bf(σ). (5.3)

where z = cT [x0 + b
∫ t

0
f(σ(s))ds]

One can show that, for a given initial condition, a solution of equation
(5.3) is also a solution of (5.2).

Equation (5.3) is the delayed Liénard equation which is extensively dis-
cussed in the literature. See Zhang [14], for example. For Lurie problems
with delay see Cao-Li-Ho [3].

THEOREM 5.1. Suppose that cT b < 0 and

r + LcT b > 0. (5.4)

Then the zero solution of (5.3) is asymptotically stable and cTx(t) → 0 as
t → ∞.

Proof. Define

V (t, σ, z) = z2 − 2

∫ σ

0

cT bf(s)ds +

∫ 0

−L

∫ t

t+v

(cT b)2f2(σ(u))dudv.
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The derivative along the solutions satisfies

V ′ = +2zcT bf(σ)

− 2cT bf(σ)[z − rf(σ) − cT b

∫ t

t−L

f(σ(s))ds]

+

∫ 0

−L

(cT b)2f2(σ(t))dv −

∫ 0

−L

(cT b)2f2(σ(t + v))dv

= 2rcT bf2(σ) + 2(cT b)2
∫ t

t−L

f(σ(t))f(σ(s))ds]

+ L(cT b)2f2(σ(t) −

∫ t

t−L

(cT b)2f2(σ(v))dv

V ′ ≤ 2rcT bf2(σ) + (cT b)2
∫ t

t−L

(f2(σ(t)) + f2(σ(s)))ds

+ L(cT b)2f2(σ(t) −

∫ t

t−L

(cT b)2f2(σ(v))dv

≤ 2rcT bf2(σ) + (cT b)2Lf2(σ(t)) + (cT b)2
∫ t

t−L

f2(σ(s))ds

+ L(cT b)2f2(σ(t) −

∫ t

t−L

(cT b)2f2(σ(v))dv

≤ (2rcT b+ 2(cT b)2L)f2(σ(t)) ≤ 2cT b(r + LcT b)f2(σ(t)) ≤ 0.

We now argue (as did Krasovskii) that f(σ(t)) → 0. Then V → z2 and
so z → 0. Hence σ′ → 0. Finally, cTx(t) → 0. This completes the proof.

Note that when L = 0 the condition cT b < 0 is enough to ensure absolute
stability as we expected from Theorem 2.1.

We now consider

x′ = b1f(σ)

y′ = Jy + b2f(σ)

σ′ = cT1 x(t − L) + cT2 y(t − L) − rf(σ) (5.5)

where the characteristic roots of J have negative real parts.

THEOREM 5.2. Let us select

cT1 b1 < 0 and L(|cT1 b1|+ |cT2 b2|) < r. (5.6)

If
a(t) := −cT2 e

J(t−L)b2 ≥ 0 and a′(t) ≤ 0, a′′(t) ≥ 0 (5.7)
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then each solution of (5.5) satisfies σ(t), σ′(t), cTx(t), y(t) → 0 as t→ ∞.

Proof. As we have done before, write

x(t) = x0 + b1

∫ t

0

f(σ(s))ds

y(t) = eJty0 +

∫ t

0

eJ(t−s)b2f(σ(s))ds

so that

σ′ = cT1 [x0 + b1

∫ t

0

f(σ(s))ds − b1

∫ t

t−L

f(σ(s))ds] − rf(σ) (5.8)

+ cT2 [eJ(t−L)y0 +

∫ t

0

eJ(t−L−s)b2f(σ(s))ds −

∫ t

t−L

eJ(t−L−s)b2(f(σ(s))ds].

Let z = cT1 [x0 + b1
∫ t

0 f(σ(s))ds] + cT2 e
J(t−L)y0. We will now use our

definition of a(t) and write

σ′ = z − cT1 b1

∫ t

t−L

f(σ(s))ds −

∫ t

0

a(t− s)f(σ(s))ds

+

∫ t

t−L

a(t− s)f(σ(s))ds − rf(σ)

z′ = cT1 b1f(σ) + cT2 Je
J(t−L)y0. (5.9)

Next, define a Liapunov functional by

V (t, σ, z) = −cT1 b1

∫ σ

0

f(s)ds + (1/2)z2 − (1/2)cT1 b1a(t)[

∫ t

0

f(σ(s))ds]2

+ (1/2)cT1 b1

∫ t

0

a′(t− s)[

∫ t

s

f(σ(u))du]2ds

+ (1/2)

∫ 0

−L

∫ t

t+s

[(cT1 b1)
2 + |cT1 b1c

T
2 b2|]f

2(σ(u))duds.
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The derivative of V along a solution satisfies

V ′ = −cT1 b1f(σ)[z − cT1 b1

∫ t

t−L

f(σ(s))ds −

∫ t

0

a(t− s)f(σ(s))ds

+

∫ t

t−L

a(t− s)f(σ(s))ds − rf(σ)] + zcT1 b1f(σ) + zcT2 Je
J(t−L)y0

− (1/2)cT1 b1a
′(t)[

∫ t

0

f(σ(s))ds]2 − a(t)f(σ(t))

∫ t

0

cT1 b1f(σ(s))ds

+ (1/2)cT1 b1

∫ t

0

a′′(t− s)[

∫ t

s

f(σ(u))du]2ds

+ cT1 b1

∫ t

0

a′(t− s)

∫ t

s

f(σ(u))dudsf(σ)

+ (1/2)

∫ 0

−L

[(cT1 b1)
2 + |cT1 b1c

T
2 b2|][f

2(σ(t) − f2(σ(t + s)]ds.

Integrating by parts the expression cT1 b1
∫ t

0 a
′(t−s)

∫ t

s
f(σ(u))dudsf(σ(t)) we

obtain

− [a(t− s)

∫ t

s

cT1 b1f(σ(u))du

∣

∣

∣

∣

t

0

−

∫ t

0

a(t − s)cT1 b1f(σ(s))ds]f(σ)

= +a(t)

∫ t

0

cT1 b1f(σ(u))duf(σ) −

∫ t

0

a(t − s)cT1 b1f(σ(s))dsf(σ).

Taking into account that a′(t) ≤ 0, a(t − s) := −cT2 e
J(t−s−L)b2 ≥ 0, is

decreasing in [t− L, t], we have a(t − s) ≤ −cT2 b2 = |cT2 b2| and thus

V ′ ≤ (1/2)

∫ t

t−L

[(cT1 b1)
2 − cT1 b1a(t− s)](f2(σ(s)) + f2(σ(t)))ds

+ cT1 b1rf
2(σ) + zcT2 Je

J(t−L)y0

+ (1/2)

∫ 0

−L

[(cT1 b1)
2 + |cT1 b1c

T
2 b2|][f

2(σ(t) − f2(σ(t + s)]ds

≤ {L[(cT1 b1)
2 + |cT1 b1c

T
2 b2|] + cT1 b1r}f

2(σ) + zcT2 Je
J(t−L)y0.

The first term on that last line is negative, while the last term can be
handled as before by defining W in terms of V . The conclusion will now
follow as before.

Now we look briefly at the case in which σ is delayed in all the connections.
It actually can be handled the same way as the problem just solved, except
that L is replaced by 2L.
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Consider the system

x′ = b1f(σ(t − L))

y′ = Jy + b2f(σ(t − L))

σ′ = cT1 x(t− L) + c2y(t − L) − rf(σ)

where the characteristic roots of J have negative real parts.
As before, we write

x(t) = x0 + b1

∫ t

0

f(σ(s − L))ds

y(t) = eJty0 +

∫ t

0

eJ(t−s)b2f(σ(s − L))ds

σ′(t) = cT1 [x0 + b1

∫ t−L

0

f(σ(s − L))ds] − rf(σ)

+ cT2 [eJ(t−L)y0 +

∫ t−L

0

eJ(t−s−L)b2f(σ(s − L))ds.

Rewriting the last equation

σ′(t) = cT1 [x0 + b1

∫ 0

−L

f(σ(s))ds + b1

∫ t−2L

0

f(σ(s))ds] − rf(σ

+ cT2 [eJ(t−L)y0 +

∫ 0

−L

eJ(t−s−2L)b2f(σ(s))ds

+

∫ t−2L

0

eJ(t−s−2L)b2f(σ(s))ds.

We need initial conditions of the form x0, y0, and ψ : [−L, 0] → R which
is an initial function for σ(t). In the above integrals from −L to 0 we will
write σ(s) = ψ(s). Then this is just our old problem with

x0 replaced by x0 + b1

∫ 0

−L

f(ψ(s))ds

cT2 e
Jty0 replaced by cT2 [eJ(t−L)y0 + eJ(t−2L)

∫ 0

−L

e−Jsb2f(ψ(s))ds].

We readily prove the following result.

THEOREM 5.3. Let us select

cT1 b1 < 0 and 2L(|cT1 b1|+ |cT2 b2|) < r

and suppose that

a(t) = −cT2 e
J(t−2L)b2 ≥ 0, a′ ≤ 0, and a′′ ≥ 0. (5.10)
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Then each solution of (5.8) satisfies

σ(t), σ′(t), cT x(t), y(t) → 0

as t → ∞.
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