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1. Introduction. The equation to be studied is

(B) ‘;—;‘ +Lu= / C(t, s)u(s)ds + f(u) + F(t)

— 00

where L and C are linear operators (at least L is unbounded, L is sectorial) in a real
Banach space B, f and F' are quite smooth, F(t+7T) = F(t) and C(t+T,s+T) = C(t, s)
for some T" > 0. The object is to give conditions to ensure that (E) has a T-periodic
solution. When w is in a certain space, convergence properties for the integral will be
required later.

The work proceeds as follows. First, (F) is written as a functional differential
equation with a parameter A, together with an associated homotopy h; if the homotopy
has a fixed point for A = 1, it is a periodic solution of (F). This is the content of Section
2.

In Section 3 the degree-theoretic work of Granas is summarized. This will enable
us to show that if the homotopy h is compact and admissible, then the existence of an a
priori bound on all possible T-periodic fixed points of h for 0 < A < 1 implies the existence

of a T-periodic fixed point of h for A = 1.
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In Section 4 two nonlinear heat equations with memory are written as (£) and
Liapunov function arguments yield a priori bounds on fixed points of the homotopy h. A
similar Liapunov function also shows that A is compact through a Sobolev space argument
using Rellich’s lemma. Part of the novelty of this section is that the Liapunov functions
need not have the standard upper and lower bounds; the a priori bound is derived mainly
from the derivative of the Liapunov function. Moreover, although a Liapunov function is
used on a functional differential equation, it does not utilize a Razumikhin technique. The
argument does not yield a dissipative structure of the type discussed by Hale [10] in the

search for periodic solutions as we show in Theorem 4.

2. A homotopy. In this section we state the conditions needed to apply the theory
of Granas. The examples of Section 4 show two ways in which these conditions can be
realized.

Lt

It is supposed that the operator e~ *" satisfies |e_Lt| < c1e” % for t > 0 where ¢;

and a are positive constants. Consider the companion to (E),

(Bx) ‘;—? +Lu=\ { /_ ; C(t, s)u(s)ds + f(u) + F(t)]

and the homotopy (on a space to be defined later)

p00 =2 [ L) [ s+ s + Fw) v

— 00 — 00

It is also supposed that a convex subset Y of a Banach space can be found such
that

¢ €Y implies ¢ : (—o0,00) — B, ot +1T) = o(t),
for a certain closed subset X of Y,
h:[0,1] x X — Y is a compact mapping,

for t > 0, h(\, ¢)(t) € D(L),
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and

if ¢ is a fixed point of h then ¢ satisfies (E}).

Obviously, these requirements induce strong conditions on C', f, and F. Briefly,

they ask that ¢ € X implies that

/ C(t,s)p(s)ds + f(o(t)) + F(t) e B

— 00

and is Holder continuous in ¢ for ¢ > 0.

3. The theory of Granas. The following definitions and results are from Granas [7].

Let Y be a convex subset of linear topological space, A C X C Y, and A closed in X. The

space Y is at least Hausdorff.

(i)

(iii)

(iv)

(v)

(vi)

DEF. (i) A continuous map ¢ : X — Y is compact if ¢(X) is compact.

hx : h(A,-) : X — Y is a compact homotopy if h is a homotopy and if for each
A€ 0,1, h]Ax X def hy is compact.

¢ X — Y is admissible with respect to A if ¢ is compact and ¢|A is fixed point
free. Let M4 (X,Y ) denote the class of admissible maps with respect to A.

¢ € Ma(X,Y) is inessential if there exists ¢ € M4(X,Y) such that ¢|A = ¥|A and
¥ is without fixed points on X. Otherwise, ¢ € M4(X,Y") is essential.

A compact homotopy h : [0,1] x X — Y is admissible if for each A € [0,1], hy is
admissible. Two mappings ¢, 1 € M4(X,Y) are homotopic in M4 (X,Y), written
¢ ~ 1, if there exists an admissible homotopy h : [0,1] x X — Y such that hg = ¢
and hi = ¢.

F* denotes the class of topological spaces which have the fixed point property for
compact maps.

THEOREM G1 (Granas). Let Y be a connected space belonging to F*, let X C Y

be closed, and let A =0X. If ¢ : X — Y is a constant map (¢(x) = p for all x € X) and

p € X\A, then ¢ is essential.



THEOREM G2 (Granas). Let A=A C X CY and f € Ma(X,Y) an admissible

function. Then the following are equivalent:
(a) f:X — Y is inessential.
(b) f~gin M4(X,Y) where g : X — Y is without fixed points.
The theory of Granas is applied in the following way:
(i) An a priori bound Bj is found for all possible T-periodic solutions of (E}).

(ii) A convex subset Y of a Banach space of T-periodic functions is found and a
set X C {p €Y :|¢| < By} is constructed with the property that h: X — Y
is a compact mapping.

(iii) In Theorem G1 we take ¢ = hg so that hg : X — 0 € X\ A, where A = 0X;

thus, hg is essential.

(iv) By Theorem G2, taking f = hg and g = hq, if h; is without fixed points,

then hg is inessential, a contradiction.

Obviously, much care is needed in the construction of ¥ and X so that h is a

compact mapping. Precise details are given in the proof of Theorem 1.

The theory of Granas has been applied to finite dimensional problems in ([1], [2]) to
show that periodic solutions exist and in ([5], [8], [9]) to show that solutions of boundary
value problems exist. Periodic solutions of infinite dimensional problems have been recently
studied by DaPrato [3], DaPrato and Lunardi [4], Hale [10], and Lunardi [12] using different

methods.

The survey book of Hale [10] describes in much detail research with dissipative sys-
tems. Periodic solutions are found when solutions are, essentially, uniformly bounded and
uniformly ultimately bounded. By contrast, the Granas theory establishes the existence
of periodic solutions, with the help of Liapunov functions, even when there are unbounded
solutions (cf. [1] and our Theorem 4). In our examples, the Liapunov functions only

operate on bounded solutions.



4. Periodic solutions. For A € [0, 1], consider the equation

(1) Ut = Ugy + AC(t, u(-, x))
where
(2) u(t,0) =wu(t,1) =0,

C(t,u(-,z)) = C(t,u(s,z), —oo < s < t) is a Volterra functional. We rewrite (1) as an
abstract equation in L?(0,1; R). Let (A¢)(x) = —0%¢(x)/0x? for a smooth function ¢ on
[0,1] and by using Friedrich’s theorem, extend A to a self-adjoint, densely defined operator
in L2(0,1; R). Then D(A) = H} N H?, where H}Y = Wy?(0,1; R), H?> = W22(0,1; R).
The norm on H7(0,1) is denoted by | - |zs. In particular, |- [go = | - |12.

The abstract version of (1) is
(3) u'(t) + Au = AC(t, u(-)).

Note that in (3), we consider C(t,u(-)) as a function C : R x L? — L? given by
Ct,u(-))(z) = C(t,u(-,z)), —oo < s < t).

We assume that C(t + T,u(-)) = C(t,u(-)) for some T > 0. For ¢ € L?(0,1; R),
define

W = {6 € C(R HL(0.1) ‘ ot +T) = 6(1))
(4)

|57 = sup{|¢(t)|m |0 <t <T}.

The following result is probably known and easy to prove.

LEMMA 1. The space (W, | - defined by (4) is a Banach space.

)
THEOREM 1. Suppose the following conditions hold:

(i) there exists By > 0 such that if u(¢) is a T-periodic solution of (3), then

luly < Bi;



(ii) C(-,¢(-)) : R — HY is Holder continuous whenever ¢ € (W, | ) and is

Holder continuous;
(ili) C :[0,T] x W — HO takes bounded sets into bounded sets.
(iv) For any a > 0, there exists § > 0 such that [¢, ¢ € W, Pl < o, [Y < o,
t > 0] imply that
1C(t, () = Ct ()0 < 8 sup |p(t) — p(t)|mo.
te[0,T]
Then (3) has a T-periodic solution for A = 1.
PROOF. First, we set up the spaces for the Granas theory. By definition of the

operator A, we refer to Henry [11; pp. 21,26] and find ¢ > 0, a > 0 with

(a)  fe | <ee™™

Y

(5) (b)  [AV2e ) < et 1/2e,

(¢) (e = D)g|go < ct'/?|AY2p| o for all ¢ € D(AY?).

For the By > 0 given in (i), by (iii) there exists a constant C* > 0 such that

(6) sup |C(t,¢(+))|go < C™ whenever [¢| < Bi.
t€[0,T]

Let

L =c¢(TY? + cE)C*,

where FE = fooo t=1/2¢=atqt. Consider

Y ={ue W ||u(ty) — u(te)|mo < Llt1 — ta|V/2, t1,t5 € [0, T}
(7) and
X ={ueY||uy < Bi}.

LEMMA 2. If h: R x X — Y is defined by

h(X\, @)t z) = A / e A=) (s, ¢(-))ds

— 00

and if ¢ is a fixed point of h, then ¢ satisfies (3).
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PROOF. Let J(t) = h(), ¢)(t),

T(8) = Jo(t) + Ju(8), Jo(t) = X / A0 (s, 6())ds,

and Jy(t) = )\ffoo e~ A=) C (s, ¢(-))ds. Since C(t,$(:)) is Holder continuous, by Henry
[11; p. 50]

(8) (dJo(t)/dt) + AJo(t) = AC(t, (:))-

As
0 0
/ e*C(s,4(-))ds and / e~ A=) (s, ¢())ds

— 00 — 00

exist, by Friedman [6; p. 94, Lemma 1.2 and p. 101, Theorem 2.1], we have
0 0
| erc s = [ ercis o )ds

— 00

and
(9) (dJ1(t)/dt) + AJ1(t) = 0.

By (8) and (9),
(dJ(t)/dt) + AJ(t) = AC(t, ¢(-)).

Thus, if ¢ is a fixed point of h, then the right-hand-side of h is differentiable and, hence,
the left-hand-side is also; this means that ¢ satisfies (3).

To see that h(A\,¢) € Y, let 0 <ty <t; <T and ¢ € X; then

h(A, @) (t1) — h(A, &) (t2)
) / A= s, (s — A / * At 0, 6())ds

— 00 — 00

N A/ " A0 (s, 6())ds

to

s s s



Note that

‘A/ tle_A(tl‘S)C‘(s,as(-))ds

to

o

t1

S/ ce M 72|C (s, () mods
to

<clty —ta| sup |C(t, é())|mo
t€[0,T]

< CC*T1/2|t1 _ t2|1/2

by (6). Also
to
|(em A =t2) — 1)) / e~ 2790 (s, 4(-))ds]| gro
to
< ety — to] /2] 412 / A0 (s, 6())ds
—0o0 HO
to
< ofty — to]1/2 / A2~ A9 |O(s, 6()) | prods
to
<eltr = a2 [ clts = o726 s, () o
S 62E0*|t1 — t2|1/2
by (6). Thus,

|h()‘7¢)(t1) - h(Av¢)(t2)|H0 < L|t1 — t2|1/2

and so h(\, ¢) € Y.
LEMMA 3. The homotopy h(), ¢) is compact.
PROOF. We first show that there is an o > 0 such that

(10) o — Tl SatGSBIJT]IC(t,¢(')) — O, 9())|mo

where J¢ = h(\, ¢) and Jip = h(A, ). By Lemma 2 it follows that

(d/dt)(Jo — J) + A(J¢ — Jy) = MC(t,¢() = C, ¥(-)))-

Define
V() = /0 (T — T + (Jo— Ju)2)da
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so that

V/(t) = /O [(J6 — ) (T — Tb)e + (Jb— J)a(Jd— Jb)ue]da

(integration by parts)

= 2/0 [— (Jo = TY); + X(Jo = JY)(C (L, ¢(-) — O(t,¥()))]dz

#2 [ [= (0= J0 + A6~ JOU(CUE60) - 00 de

There then exist p,v > 0 such that

VI(t) < —pV (1) +’Y/0 C(t, 6(-)) = Ot ¢())Pda.

Since V (t) is T-periodic, there exists a > 0 such that (10) holds. Incidentally, this shows
that h(\, ¢) is continuous in ¢ for fixed . Since h(A, ¢) is uniformly continuous in A for
fixed ¢, it follows that h is jointly continuous in (A, ¢).

Let {¢,} be a sequence in X; we will show that there is a subsequence {¢,,, } such

that sup |¢pn, (t) — ¢n,, (t)|go — 0 as k,m — oo. This means that {J¢,,} is a Cauchy
t€[0,T]

sequence in W, a Banach space, and so h is a compact mapping.

Let {t,} be the sequence of all rationals in [0,7]. Since {¢,(t1)} is bounded
in X C H'(0,1), by Rellich’s lemma, there is a subsequence {¢, 1(t1)} converging in
H?(0,1). Next, the sequence {¢,.1(t2)} has a convergent subsequence {¢,, 2(t2)} converg-
ing in H°(0,1). In the k-th step we extract a convergent subsequence {¢, x(tx)}. Write
tYn = ¢n.n. Then {1, (tr)} converges in HY(0,1) for every k. Since {1} C X, {¢,} is
equicontinuous: for each € > 0 there exists § > 0(e = 20L) such that |s; — sa| < § implies
that |y, (s1) —¥n(s2)|go < €. Since [0, 7] is compact, there exists a finite number of points
tg, say t1,ts,...,txN, such that the intervals By = {t}|t—tk| <d/2}, k=1,2,...,N covers

[0,T]. Then for each t € [0,T] there exists ¢, with t € By. Thus,
|n () — Ym () o < [¥n(t) — ()] mo
+ |Un (k) = Y (k)| o + [om (Er) — Ym (8)| 1o
< 2¢ + [¢n(te) — Ym(te)] mo-
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For each k£, 1 < k < N, there is a positive integer n; with
|t (tk) — Vm (t) | o < € if m,n > ny.

Using this in the above result, we get

sup | Yn(t) — Ym(t)| go < 3€ if m,n > max{nqy,...,n;} dlef Q.
t€[0,T]

Thus,

sup [¥n(t) — Y (t)|mo < 3eif myn > Q.
t€[0,T]

This means that

| Tt — Jtmlg < 3eB(v/p)"/?

where f is defined in (iv) for a« = By, so {J,} is a Cauchy sequence in w. Also, Y is

closed in W and so the limit function is in Y. This proves Lemma 3.

Now we are ready to complete the proof of Theorem 1. The sets X and Y are

defined by (7). Define
A={peY||ély = Bi}

Now Y is a convex subset of a Banach space which is an F* space. Also, X is closed in Y

and for A defined above, A =0X in the topological space Y.

Referring to Granas’ Theorem G1, we take ¢ = hg so that hg : X — 0 € X\g

implies that hg is essential. Thus, in Granas’ Theorem G2 we take f = hg and g = hy. If

h1 is without fixed points, then hg is inessential, a contradiction. Hence, h; has a fixed

point in Y which satisfies (3) by Lemma 2. This completes the proof.
EXAMPLE 1. Consider the equation

(11) Up = Ugy + A {f(u) + F(t) + /_ B(t, s)ut(s, x)ds
where
(12) u(t,0) =wu(t,1) =0,
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uf(u) < ku?+ M for some k € (0,72) and M > 0;

(13) F(t+T)=F(t), Bt +T,s+T) = B(ts)
for some T' > 0; f € C''; B continuous,

(14) (a)  B(t,t) is differentiable on [0, 77,

0
(b) / B(w)dv < 1, where B(v) = sup {|B(t+ )|},
—oo t€[0,T]

0
(c) / | By (t,t + v)|dv < D for some Dy > 0, all t € [0,7],
(d)  |By(t,t+v) — By(s,s +v)| < |t — 5/"b(v) for t,s € [0,T]

where 6 € (0,1] and b(t) € L'(—o0, 0],

(15) (a) for each D > 0 there is a K > 0 such that |t |s| < D
imply that |f(t) — f(s)| < K|t — s
(this is not independent of (13));

(b) there is a K7 > 0 such that |F(t) — F(s)| < Ki|t — s|.
We rewrite (11) as an abstract equation
(16) ug + Au = AC(t,u(+))

where

C(tyu(s,z), —oo<s<t)
— f(u(t,z) + F(t) + B(t, Hu(t, z) — /0 Byt t + v)ult + v, z)dv

— 00

(17)

for a bounded function wu.
LEMMA 4. Suppose that (13),(14)(b) hold. Then there is a constant By > 0 such

that if u(t) is a T-periodic solution of (16), then |u|y < Bi.

11



(Note that we are dealing with an element of the equivalence class of L? in the proof
of Lemma 4.)

PROOF. Let u(t, ) be a T-periodic solution of (11) and define

V1(t):/0 u?(t, z)dx

so that

Vi(t) = 2/0 u(t, z)u(t, x)dx

_9 /0 ult.2) {u + (1) + AF(E) + A / B(t, $)us (s)ds | da.

— 00

Integration by parts and use of (12) yield fol Ul g dr = — fol u2dz so that by (13) we have
1 1
V() < — / 2d9:+2)\k/ u*dz + 2AM
+2)\/ lu| | F(t |d93+/ 2)\|u|/ B(t, s)| |ut(s, x)|ds dzx.
0
Now, find 6 > 0 so small that k + 6272 < 72. We then have

1
Vi) < / =202 4 2k + 2AM + 2A[u| [F(2)]
0

t

+ )\52u2/ |B(t, s)|ds + (1/52)/ |B(t, 5)|u? (s, z)ds]|dz.

— 00 — 00

Using the facts that |F(t)| is bounded, k < 72, fol m2uldr < fol u2dz, f_oooé(v)dv <1,

find positive constants aq, 51,1 with

1 1 pt
(i) Vi) <Ay —a / (u? + ui)dw + A\G1 / / | B(t, 3)|uf(s, x)dsdx.
0 0 — 00

Valt) = / 1 {(1/2>u§ A / ’ f(f)dg] 0

Vi(t) = /0 {Uatiar — Nf(u)uy bda.

Next, define

and obtain
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From (12) we have u:(t,0) = u(t,1) = 0 so that
1

1 1 1
/ UpUgrdr = / Uplpr dT = Ugty| — / UpUg e dx
0 0 0 0

1 1
= —/ UtUpedT = —/ Ut [Ut — AMf(u) = AF (1)
0 0

Y / " B s)ut(s,x)ds] do

— 00

and hence

(ii) Vo(t) = /0 {—u? + )\ut/_ B(t, s)ui(s, x)ds + A F(t) }dx

(1—1/t B(t, s)|ds) /Olufdx-i-)\/ol el | F (1)) da
/ / B(t, s)|u? (s, z)ds dx.

As u and V5 are T-periodic we have

0= Va(T) — V2(0

T 1
1——// dxdt+//|ut||F(t)|dxdt
0
/// B(t,t 4 5)| Jus(s + t)|*ds dx dt
g——/ /ufdazdt+/ / g |F (1) |da it
2Jo Jo o Jo
1 /b0 T
+§// |B(s)|/ ul(t + s)dtds dx

(because u is T-periodic)

—_%{1_/ ds}// dxdt+//|ut||F Vda d.

By (14)(b) and the fact that |F(t)| is bounded, there is a f2 > 0 with

/ / dazdtﬁﬁg.

In the same way we consider V; and find that

0=Vi(T) - V1(0)

T 1 o _ T 1
< —ozl/ / (u? + u?)dx dt + )\61/ B(s)ds/ / u?dzx dt
o Jo —o0 o Jo

+ AT
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Thus,

T 1

a1 / / (U2 + ui)dx dt < (102 + )\"le.
o Jo

Hence, there is an M > 0 with

T 1 L
(iii) / / (u? +uZ +ui)de dt < M.
Now, let V(t) = Vi(t) + Va(t) and use (i) and (ii) to obtain

V'(t) < a/(u +ul +up dx-i—ﬁ// B(t,s)|u?(s,x)ds dx + v

for some positive constants «, 3,7. Now w and u, are continuous, so by (iii) there is a

t] € [O,T] with

1 T 1
T/ (uQ(tl,x)Jrui(tl,x))dx:/ / (u? +u2)drdt < M.
0 0 0

Thus, by Sobolev’s inequality

1

(iv) sup |u(ty, z)| S/ (lu(ts, 2)| + |ua(ty, 2)|)dz < 24 (M /T)
0<z<1 0

since |u| + |uz| < 2+ u? 4+ u2. We write this as

) sup [u(ty,z)| <2+ @T/T) < .

0<z<1

u(t1,x) U def
[ 0| < e | [ 0]

(Vii) V(tl) S/O (u2(t1, )+ ;u (tl, ))d$+62.

Hence, if t; <t <t; 4+ T we have

V(t)=V(t1)+ /t V'(s)ds

This means that

(vi)

t1+7T
<V(t) +ﬁ / / B(v,v + s)|ui (v + s)dsdx dv +~T

V(t1) +ﬂ/// B(v,v + s)|ui (v + s)dsdx dv +~T

< V(t1)+ﬁ/_w§(s)/0 /0 2(t, 2)dt do + AT

< V(t1)+ BM +~T

14



by (iii) and (14)(b). But V(t;) < c2 + M /T and so

V(t) < co + I +~T + 3T .

From (13) we have

(viii) uf(u) < ku?>+ M, ke (0,72).
Define
c¢* = sup / f(s)ds
lu|<11J0

and use V (t) < ¢3 to write

(ix) /01 [u? + %uﬂdax <cs+ )\/01 /Ou f(s)dsdx.
Case 1. If |u| < 1, then
| o<
Case 2. Suppose |u| > 1.

(a) If u(t,x) > 1, then
/0 f(s)ds = /0 f(s)ds +/1 f(s)ds
<c* +/1 [sf(s)/s]ds (using (viii))
<c"+ /u(ks + (M/s))ds
§c*+%(k+1)u2+M*, some M™* > 0.

(b) If u(t,z) < —1, then

<c"+ 5(16 + Du? + M*,  as before.



Thus,
u 1
)\/ F(s)ds < ¢* + S(k+ 1)u + M
0
and

1 u 1 1
)\/ / f(s)dsdx < c* + §(k+1)/ u?dr + M*.
0o Jo 0
From (ix) we have
/ [u? + ~ullde < cz+c* + = (k + 1)/ u?dx + M*.
0 2 2 0
This yields
1 M
5/ [u? + (1 — (k/7*))uilde < c3+ c* + M*.
0

Hence, there is a B; > 0 with

1
sup / [u? +u2]dz < B.
t€[0,7] J0

This completes the proof.

We remark that when B is of convolution type then (14)(d) is not needed in the
next result.

LEMMA 5. Suppose that (13)—(15) hold. Then C(t,¢(-)) given in (17) is Holder
continuous whenever ¢ € (W, | - [77) with ¢ Hélder continuous.

PROOF. Let ¢ € (W, ||577) be Holder continuous. Then thereisa k € (0,1], L1 >0

such that

|p(t1) — B(ta)| o < Lilt:s — tafF.

For t1,t2 € [0,T], we have

|B(t1,t1)@(t1) — Blta, t2)d(t2)] o
< [B(t1; t1)o(tr) — Bt t1)9(t2)| mo
+[B(t1,t1)¢(t2) — Btz, ta)¢(t2)|mo
< |B(ty, t1)]|o(t1) — d(t2)] a0
+[B(t1,t1) — Bta, t2)[ |p(t2)| mo-
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From (14) we have

|B(t,t)] < B* for some B* >0, all t € [0,T],
(18)
|B(t,t) — B(s,s)| < Lp|t —s| for some Lp >0 and all ¢,s € [0,T].
Thus
|B(t1,t1)d(t1) — B(t2,t2)d(t2)|mo
(19)
< B*Ly |ty — to|" 4 Lplt: — ta[¢]5-
Next,
0 0
} / Bv(tl,tl + v)qb(tl + v)dv — / Bv(tz,tz + U)qb(tz + v)dv
— 00 — 00 HO
0 0
< ‘/ Bv(tl,tl + v)qb(tl + v)dv — / Bv(tl,tl + U)qb(tz + v)dv
—00 —00 HO
0 0
+ / Bv(tl,t1 + U)qb(tz + v)dv — / Bv(tg,tz + U)qb(tz + v)dv
(20) 0 > > HE
g/ By (tr, t1 + 0)| |6(t2 + v) — d(t1 + 0)| grodv
0
+/ |By(t1,t1 +v) — By(ta,ta + v)| |¢(t2 + v)|godv
- 0
< LDt~ ol + ol [ bo)dolts — taf’
Note that
|f(p(t1)) — f(P(t2))|mo + [F(t1) — F(t2)|go
(21)
< KL1|t1 — t2|k + K1|t1 —t2|.

Combining (19), (20), (21), there is an a € (0,1] and a constant k2 depending on |¢|

such that

|C(t1,6(-)) — C(ta, ¢(-)) | mo < kaltr — t2|”.

This proves Lemma 5.
LEMMA 6. Suppose (13)—(15) hold. Then C : [0, 7] x W — H° takes bounded sets

into bounded sets and condition (iv) of Theorem 1 holds.
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PROOF. By (15), for any ¢ € (W, |- |377), there is a K > 0 depending on |¢|3 such

that

[f(@)|mo < K|lmo + | f(0)].

Let | F|| = sup{|F(t)| : 0 <t < T}; then
|C(t, @) o < (K + B + Di)l¢|lmo + | f(0)] + [|F]

for all ¢t € [0, 7.
For ¢,1 € X we have

C @, 0(-) = Ct,0()me < (K + B* + D1) sup [¢(t) — ¢(t)| o-

t€[0,T]

Thus (iv) of Theorem 1 holds. This completes the proof.

THEOREM 2. Suppose that (13), (14), (15) hold. Then (16) has a T-periodic

solution for A = 1.

We note that by Lemmas 4, 5, 6 all conditions of Theorem 1 are satisfied for C'
defined by (17).

EXAMPLE 2. We now consider the scalar equation

(22) Up = Ugy + A {f(u) + F(t) + /_ B(t, s)uzs (s, z)ds
where
(23) u(t,0) = u(t,1) =0,

F(t), B(t,s) are continuous and satisfy
(24)
Fit+T)=F(t), Bt+T,s+T)=DB(t,s) for some T > 0,

18



(25) (a)  B(t,t) is differentiable on [0, 77,

(b)  B(s) € L'(—00,0] where B(s) = sup {|B(t,t+ s)|},
t€[0,T]

t
(c) / |Bt(t, s)|ds < Ds for some Dy > 0 and all ¢t € [0,T],

— 00

(d)  |B(t1,s) — B(ta,s)| < b(s)[t; — ta]’ for some 6 € (0,1],

be L'(—o0,T)], and for all t;,t, € 0,77,

(e)  [(8/01)B(t1,t1 +v) — (9/01)B(tz2, t2 + v)| < b™(v)[t1 — t2|®
for all t1,t2 € [0,T],
for some o € (0,1] and b*(v) € L(—o00,0], where (0/01)B(t, s) denotes the derivative of
B with respect to the first argument,

(26) there is a continuous function ¢ : R — RT with

+oo

(u)du| < oo and there is a k € RT with f'(u) <k + ¢(u);

0

(27) for the k£ in (26) we have

(k/72) +/0 B(v)dv < 1.

REMARK. Note that if we integrate f’(u) < k+@(u) we obtain uf(u) < ku?+ M |u]
for some constant M > 0.

LEMMA 7. If (24), (25), (26), (27) hold, then there is a B; > 0 such that if u(¢, x)
is a T-periodic solution of (22), then |u|y < Bi.

PROOF. Let u(t, ) be a T-periodic solution of (22) and define

1
Vi(t) :/ u?(t, x)dx
0
so that
1
Vi(t) = 2/ wudx
0

t

Q/OIu{um + Af(u) + AF(t) + A/ B(t, s)uye (s, v)ds| dx.

— 00
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Note that fol Ulgpdr = — fol u2dz so that by setting t —s = —v and using uf(u) < ku?+ M

we obtain

1 1 1 1
Vi) < —2/ ugdaz+2k/ u2dx+2M/ |u|d93-|—2/ (| |[F()|da
0 0 0 0

0 1
- 2)\/ B(t,t+ s) / u(t, ) ugy (t + s, z)dx ds.
0

— 00

Integration of the last term by parts yields

1 1 1 1
Vi) < —2/ ugdagmk/ u2dx+2M/ |u|d93-|—2/ (| |[F()|da
0 0 0 0

0 1
- 2)\/ B(t,t+ s) / Ug(t, x)ug (t + s, z)dx ds
0

— 00

and so

1 1 1
Vi) < —2/ ulde + 2k/ u?dx + 2M/ |uldz
0 0 0

1 0 1
+2/ |u |F(t)|dx+/ |B(t,t+s)|ds/ udx
0 0

— 0o

0 1
-l—/ |B(t,t+s)|/ u?(t + s,x)dx ds
0

— 00

1 1 1
< —2/ uidx-i—Qk/ uzdx-i—QM/ |u|dz
0 0 0
1 0o _ 1
+2/ ul |F(t)|dx+/ B(v)dv/ ul(t, x)dx
0 0

— 00

0 1
+/ B(v)/ u?(t +v,z)dx dv.
0

— 00

Hence,

T 1 T 1
Vi(T) — V1(0) < —2/ / u?dz dt +2k/ / u?dx dt
o Jo o Jo
T 1 T 1
+2M/ / |u|dxdt+2/ / (| |F(#)]dz dt
o Jo o Jo
o _ T 1
+/ B(v)dv/ / u?(t, x)dx dt
—o00 0 0
o _ T 1
+/ B(v)/ / u(t + v, z)dx dv
—o00 0 0
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0o _ T 1 T 1
< —2(1—/ B(v)dv)/ / uidazdt+(2k/7r2)/ / udz dt
—0o0 0 0 0 0
T 1 T 1
+2M/ / |u|dxdt+2/ / | |[F(8)]da dt
0 0 0 0

where we have used 72 fol wldr < fol uidaz. By this and (27), there is a ¢; > 0 with

T 1
(28) / / wldxdt < cq.
0 0

Next, define
1
Va(t) :/ u?(t, x)dx
0

so that

1 1
-2 / UpUg e dx
0 0

t

1
_ 9 /0 U {um-l-)\f(u) FAF() £ A / B(t, $)tan (s, 2)ds | da

— 00

1
Vo(t) = 2/ UpUptdT = 2Uply
0

1 1 1
= —2/ u? dr — 2)\/ f(w)ugde — 2)\/ Uy F(t)dz
0 0 0

1 0
- 2)\/ Uz (t, ) / B(t,t + s)uzy(t + s,x)ds dx.
0

— 00

Call the last term —I'(¢) and obtain
1 1 1
Vy(t) = —2/ u? dx — 2)\/ Uge f(u)dz — 2)\/ U F(t)dz + T'(t)
0 0 0

1 1
+ 2)\/ f(w)uida
0 0

1
= —2/ u?, dr — 20 f(u)uy
0
1
_9) / Upa F(t)dz + (1)
0
1 1 1
< —2/ u?_dx — 2)f(0) / Ugpdr + 2)\/ [k + o(uw)|udx
0 0 0
1
—_9) / Upe P (t)dz + (1)
0

1 1 1
< —2(1— 5)/ u?_dr + 2)\k/ u?dz + 2)\/ o(u)uzuydr
0 0 0

+T@)+M
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(where § > 0 is as small as we please and M > 0). We now integrate the third term
fioo gp(s)ds‘ < o0

this last term is bounded by D fo |tge|dz for some D > 0. Therefore, this term can be

by parts and obtain fol Ugp(u)uzdr = —fo U fo s)dsdz. Since

absorbed into the § and M relations in our last calculation of VJ, yielding
1 1 o
Vi (t) < —2(1 —6) / u? dx + 2Ak/ u2dx +T'(t) + M.
0 0
Still, 0 > 0 is as small as we please. Hence

0=V(T) -

V(0)
T 1 T 1
—2(1 - 5)/ / uixdxdt-i-Q)\k/ / udx dt
o Jo o Jo

T
+ / L (t)dt + MT
0

T 1 T
—2(1-9) / / u?_dx + 2ke; + / L(t)dt + MT
o Jo 0

using (28). Now
T T 1 0
/ C(t)dt = —2\ Uz (T, ) / B(t,t + s)uzy(t + s,x)dsdx dt
0 o Jo —o0

T 1 0
< / / |B(t,t+ 8)| (u2,(t,x) + uZ, (t + s,z))dsdx dt
0 0

— 00

0 T 1
§/ B(s)ds/ / u?, dx dt +/ / / L(t+ s, x)dxedtds
—00 0 0
0o _ T 1
:2/ B(s)ds/ / u?_ dx dt.
—00 0 0

This yields

0 T 1
0< -2 (1 —0— / B(s)ds) / / u? dx + Mycy + MT
—00 0 0

T 1
(29) / / u? (t,x)dxdt < cy.
o Jo
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By (28), there is a t; € [0,T] with

1
T/ ui(tl,x)da: <ec

0
so that Va(t1) < ¢1/T. Then for t; <t <t; + T we have

t1+T 1 t1+T o
Va(t) §V2(t1)+2)\k/ / ugdagdt+/ IT(¢)|dt + MT
t1 0

t1
< Vg(tl) +Pforte [tl,tl +T], some P > 0.

But
1
Va(t) = / ude
0
and
1 1
7r2/ widr < / uidaz
0 0
SO
1
sup / [uZ(t, ) +u?(t, z)dr < 2(P + (c1/T)).
t1<t<t1+T JO
Thus

sup |u(t)|gr < By, some By > 0.
t€[0,T]

This completes the proof of Lemma 7.
Suppose that
(30) f € C', F is Lipschitz. Thus, we write

(a) for each D > 0, there is a K > 0 such that |¢|,|s| < D implies that
[f(t) = f(s)| < Kt — s],
(b) there is a K7 > 0 such that |F(t) — F(s)| < Ki|t — s|.
Let R(t,s) be the unique solution of
t
(31) R(ts) + A / B(t,u)R(u, s)du =1, R(s,s) = 1.
We note that there is an M > 0 with
t
(a) / |R4(t,s)|ds < M for all t,
(32) o
(b) R(t+T,s+T)=R(t,s).
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To see (a), we have from (31) that
t
R4(t,s) — AB(t,s)R(s,s) + )\/ B(t,u)Rs(u, s)du = 0.

Thus,
t
|Rs(t,s)] < [B(t, s)] +/ |B(t, u)| [Rs(u, s)|du.

For any a <t we have

t t t ot
/|R5(t,s)|ds§/ |B(t,s)|ds+/ / |B(t,u)||Rs(u, s)|duds
so that
t t t u
/ |R5(t,s)|d3§/ |B(t,s)|ds+/ |B(t,u)|/ |Rs(u, s)|ds du.
Let y(t) = fi |Rs(t, s)|ds; then
0

y(t) < / IB(t,w)ly(u)du + / Bw)dv, y(a) =0.

Consider t > a for which y(s) < y(t) for a < s <t. Then

t 0

vy <o) [ B wldut [ Bl
so that
y(t) < /_OOO E(v)dv/(1 —/_Oooé(v)dv) —: M.

Letting @ — —oo and recalling that f_ooo B(v)dv < 1 we obtain ffoo |Rs(t,s)|ds < M, as
claimed. Now we prove (b). We have
T+t
R(t-i—T,s-i—T)-l—)\/ Bt+T,u)R(u,s +T)du =1
s+T

and

t
R(t-l—T,s-i—T)-i—)\/ B(t,v)R(T +v,T + s)dv = 1.

Note that R(T' +t¢,T+t) =1, so R(t+T,s+T) is also the solution of (31). By uniqueness
we have R(t +T,s+T) = R(t,s). This proves (b).

24



Let u(t) € W be given and consider the integral equation in W
t
(33) o(t) + )\/ B(t, s)p(s)ds = u(t).
LEMMA 8. Suppose that (24), (25) hold. Then

(34) u(t) = u(t) —/ Rs(t, s)u(s)ds

is a T-periodic solution of (33), u € w.
PROOF. We need only show that (34) satisfies (33). Since u(t) € W and (32)(b)
holds, then ffoo Ry(t,s)u(s)ds € W . Now
t t t
u(t) + )\/OO B(t,s)u(s)ds = u(t) — /_OO Rs(t, s)u(s)ds + )\/_OO B(t, s)u(s)ds.

Next, we show that

- / ; Ri(t, s)u(s)ds + X / ; B(t, s)(s)ds = 0.

We have
t
Rs(t,s) — AB(t, s) + )\/ B(t,u)Rs(u, s)du =0

and

_ / "Rt s)uls)ds — / ") {—)\B(t, 9+ / Bt )R, (. s)du] ds

— 00 — 00

:—)\/t B(t,v) {u(v)—/v Rs(v,s)u(s)ds] dv.

Thus, B . h
_ /_ too Ry(t, s)u(s)ds = —A /_ Bt v)iv)d

This completes the proof.
Consider the following equation in w
t
(35) Up = Ugy + A [f(ﬁ) + F(t) + B(t, t)u(t) + / By (t, s)u(s)ds

— 00
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where u(t,0) = u(t,1) = 0 and
t
u(t) = u(t) — / R (t, s)u(s)ds.
LEMMA 9. If u(t) is a T-periodic solution of (35), then |u|z < (14 M)Bj (where
M is defined in (32) and B is given in Lemma 7) and (22) has a T-periodic solution.
PROOF. Since u satisfies u(t) = u(t) — fioo R (t, s)u(s)ds, according to Lemma 8
we have that u(t) is a T-periodic solution of (33):
t
u(t) + )\/ B(t, s)u(s)ds = u(t).
Now we show that u(t) is a T-periodic solution of (22). In fact,

t

(36) i = o(t) + AB(t, )Ti(t) + A / Bu(t, )ii(s)ds
and
(37) Upy = Uz + A / t B(t, 8)tys(s)ds

(since u(t) = u(t) — ffoo R (t, s)u(s)ds € D(A)). Now, substitute (36), (37) into (35) to

obtain
t

Up = Ugy + )\{f(ﬁ) + F(t) +/

— 00

B(t, s)ﬂm(s)ds] .
Thus, u is a T-periodic solution of (22). By Lemma 7, it follows that
t

wwgmw+/ IB(t, s)|ds[al-

i+ /OO}W)&.

This proves Lemma 9.

Let

t

(38) C(t,u(-)) = f(u) + F(t) + B(t, t)u(t) +/ By(t,s)u(s)ds

— 00
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with u defined in (34).

LEMMA 10. Suppose (24), (25), (30) hold. Then C(¢,¢(-)) given in (38) is Holder

continuous for ¢ € W and ¢ Holder continuous.

PROOF. Let ¢ € W be Hélder continuous. Thus, there is a k € (0,1 and an Ly >0

such that

lp(t1) — @(t2)|mo < Lilty — taf".

For t; >ty and t1,t2 € [0,7], we have

(39)  13(t) — Flt2)lmo =
o) — ot~ ([ " s - [ Rt otoris)|
< le(t1) — @(t2)|mo +‘/ s(t1,8) )ds—/_t; Ry(t2, 8)p(s)ds »
< lo(tr) - plta |Ho+\ / ino)pls)as|

\ / J(t1,5) = Rults, 5))o(s)ds
< |p(t1) — p(t2)|go + R*|plgrlts — t2|

to
+ / Ra(tr, ) — Ru(ta, )|dslol

— 00

HO

where R* = sup{|Rs(t,s)| : (t,s) € [0,T] x [0,T]}. For s < t;1, we have

Rs(tl,s) — RS(tQ,S) = B(tl,S) — B(tQ,S)

+/1(B(t1,v)—B(tg,v))RS(v,s)dv

t1
+/ B(ta,v)Rs (v, s)dv

to
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so that

|Rs(t1,s) — Rs(ta,s)| < |B(t1,s) — B(ta,s)]

+/1|B<t1, ) — Bltz,0)] |Ra(v, 8)|dv
+/1| (t2,0)] | Ra (v, 5)|dv

t2
<|t1—t2| b(s )+|t1—t2| / v)|Rs(v, s)|dv
t1
+B*/ Ru(v, 5)|do,
to

where B* = sup{|B(t, s)| : (t,s) € [0,7] x [0,T]}. Then

to
/ Ru(t1,s) — Ru(ta, )|ds

< |ty — ta|? / v)dv + |t — o)’ / / v)|Rs (v, s)|dv ds
/ / (v, s)|dv ds
to

t1 v
<l|t1 — t2|9/ b(v)dv + |t —t2|9/ b(v)/ |Rs(v, s)|ds dv

— 00 — 00

/ / (v, s)|dsdv
to

<l|t1 —t2|9(/ b(v )dv) (1+ M)+ B*M|t; — to|
(where M is defined in (32)) so that there is an My > 0 with

to
(40) / Ru(t1, ) — Ralts, s)|ds < Molty — ta]”.

— 00

Thus,

|5(t1) — B(t2)|mo < |(t1) — (t2)| 0 + R |olip [t — to| + M|l [t — ta|°

< Lilts — to|" + Rl [t1 — to| + |l Malts — ta|’

(41) |P(t1) — P(ta)|go < M|ty — to|?
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where v = min{f, k} and M3 depends on |p|;-

For t1,t2 € [0,T] we have

|B(t1,t1)p(t1) — B(tz,t2)p(t2)] mo
< |B(t1,t1)p(t1) — B(t1, t1)p(t2)|mo
+ [B(t1,t1)@(t2) — B(t2, t2)p(t2)| mo

< |B(t1,t1)| |o(t1) — ¢(t2)|mo + |B(t1, t1) — Btz t2)||o(t2)|mo.

From (25), we have

|B(t,t)] < By for some By >0 and all t € [0, 7]

) B(t.1) = B(s.s)] < Llt —
for some Lp > 0 and all ¢,s € [0,T].

Thus,

|B(t1,t1)9(t1) — B(t2, t2)@(t2)| mo

< Bi|g(t1) — @(t2)| o + Lplts — t2| [@(t2)] fo-

Note that from (41)

|P(t1) — @(ta)| o < M3ty — ta|7,

while
1Pl < 1+ M)|oly

where M is defined in (32). Then there is an My > 0 depending on || such that
(43) |B(t1,t2)@(t1) — B(t2, t2)@(t2)[ o < Malty —ta.

As before, we denote by (0/01)B(t, s) the derivative of B with respect to the first
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argument of B. Then

(44) } / :Bt<t1, p)s — [ Btz 30510

— 00

HO

= ' /0 (6/61)B(t1,t1 + S)(,Z(tl + S)dS

_ /0 (0/01)B(t2,ta 4 s)p(t2 + s)ds

— 00

HO

0
< [ 1@0/0)B(t. 11+ 9|31 +5) ~ Blta + 5] ds

— 00

-l—/o |(0/01)B(t1,t1 + s)

— 00

—(0/01)B(ta,t2 + s)| |@(ta + 8)|mo ds
0
S D2M3|t1 — t2|7 + |§0|W(1 +M)/ b*(’U)d’U|t1 — t2|a

— 00

< Mslty — to| ™

where a; = min{a,v} and Ms is a positive constant depending on |¢|g. In (30) for
D = (14 M) |pls , there is a K > 0 such that | f(u) — f(v)| < Klu —v| for |ul,|v] < D.

Using (41) we have

(45) [f(@(t1) = f(@(t2))|mo < K[@(tr) — & (t2)]mo

< KMslty — ta]”

and

IF(t) — F(t2)|go < Ki|t1 — ta].

Combining (43), (44), (45), there is a 3 € (0,1] and a constant K> depending on |¢|
such that

C(t1,¢(-)) = Clta, ()| mo < Kalty —t2]”
This completes the proof of Lemma 10.

LEMMA 11. Suppose that (24), (25), (26), and (30) hold. Then C': [0, T xW — HO

takes bounded sets into bounded sets and condition (iv) of Theorem 1 holds.
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PROOF. By (30)(a), for any ¢ € W there is a ks > 0 depending on |57 such that
[f(@)mo < kalelmo + [f(0). Let [[F|| = sup{|F(¢)| : 0 <t < T}; then

Ot o(Nlao < (ks + B1 + D2)(1 + M)lelg + [£(0)] + |1 F|

(where Bj is defined in (42), M is given in (32)) for all ¢ € [0, 7.
For ¢,v € X we have

C(t, o(-)) = C(t, 4 () |mo < (K + By + D2)(1 + M) e |0 () = b (8)] z0-

Thus, (iv) of Theorem 1 holds and the proof is complete.

THEOREM 3. Suppose that (24), (25), (26), and (30) hold. Then (22) has a
T-periodic solution for A = 1.

PROOF. By Lemmas 9, 10, 11, we know that (35) has a T-periodic solution for
A = 1. From Lemma 9 it follows that (22) has a T-periodic solution for A = 1.

We now show that the methods of establishing boundedness in this paper do not es-
tablish dissipativeness; in fact, the conditions can be satisfied and there are still unbounded
solutions.

EXAMPLE 3. Consider the scalar equation

t
(46) up = —(2/72) / e~ (s)ds + AF(t)

with u(t,0) = u(t,1) =0, F(t+T) = F(t) for some T > 0. Also, let F' be differentiable.
THEOREM 4. There is an M > 0 such that any T-periodic solution of (46) satisfies

1
sup / {u?(t, ) +u(t, ) }dx < M.
t€[0,7]J0

Moreover, if (46) has a T-periodic solution, then it has unbounded solutions.

LEMMA 12. Let ¢ be a continuous T-periodic function and a > 0. Then

T t T t 2
/ SO(t)/ e~ =) (s)ds dt = a/ {/ e~ (s)ds| dt.
0 —o0 0 —0o0
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PROOF. Define

so that
Vi) = -a | ; ~at=9)5(s)ds = p(t) — aV (1
and
VOV'(t) = o)V (E) — aV2(D)
Thus,
/OT V)V (t)dt = /OTgo( YW (t)dt —a/OTVQ( )d
so that

Lo 2 _ g _ g 2
§(V (T) — V=(0)) —/0 p(t)V(t)dt a/o Ve(t)dt.

Since V/(t) is a T-periodic function, we have V(T') = V(0) so that
T T
/ S0V (1)t = a/ V2(t)dt
0 0

T ; ot 2
= a/ (/ e_”(t_s)go(s)ds) dt,
0 —00

as required.

Now, to prove Theorem 4 define

V(t)zlf 24 2)da,

/ / =) (s, 2)ds da,

and
Va(t) = Vi(t) + Va(t).
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1 1
Vi (t) :/ UgUgrdT = —/ Uplgrd
0 0
1 t
= (2/71'2)/ uxl’(tvx)/ 6_(t_5)uxx(8,x)d8da§
0

— 00

— \F(t) /0 Uy (t, z)d,

1t
’t)// e~ Dy (s, x)ds dx

+ )\F(t)/ Uge (t, z)dr — AF(t / / —(t= S)UM (s,z)dsdx
0

Vi(t) = (2/m )/ Uga (T, 93)/ e~y (s, x)ds d

+ \F'(t / / —(t= S)UM (s,x)dsdx
— AF(t / / —(t= S)UM (s,z)dsdx.

Use the fact that V3 is T-periodic and integrate (49) to obtain

0=V3(T)—

= (2/7?) / / Uge (L, T / e (t_s)um(s,x)dsdxdt
-l-)\/ / F’(t)/ e~y (s, x)ds du dt

0 0 —00

T t
— )\/ / F(t)/ e~y (s, x)ds da dt.

0 0 —00

By Lemma 12 it follows that

i) | 1 / ' I ; (5,01 dtda
=) [ [ ) [ s, st

<[ [rw) [ s

o[ [ o [ et i

dx dt

dx dt.




Thus, there is a C'; > 0 such that

1 T t 2
(50) / / { / e—<t—5>um(s,x)ds] dtdz < Cj.
0 0 —00

From (48) we have

)\F(t)/o Ugy (t, x)dx = V5 (t)

+ A\F(t / / —(t= S)UM (s,z)dsdx
— \F'(t / / —(t= S)UM (s,z)dsdx.

Choose t; € [0,7] such that
VQ(tl) = maX{Vg(t) 1t e [tl,tl + T]}

Then for each t € [t1,t1 + T we have

)\/:F(T)/IUII(T x)dxdT—/t Vy(T)dr
/ / / =) (s, x)ds da dr
/ / / =) (s, ¥)ds da dr
. /m
) /m
:/0T<|F< )+ 1P (r >|>/0

Using (50) we see that for each t € [t1,t1 + T we have

(T_S)UM(S, x)ds|dx dr

e (T_S)UM(S, x)ds|dx dr

T

e~ uga (s, 2)ds|dx dr.

— 00

t 1
)\/ F(T)/ Uge (T, T)dx dT < Co, some Ca > 0.
ty 0
Thus,
T 1
(51) )\/ F(T)/ Uge (T, x)dx dT < Cy for all ¢t € [0,T.
0 0
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From (47) we have
1 t
(2/7r2)/ um(t,az)/ e~y (s, 2)ds da
0 —00
1
=V/(t)+ )\F(t)/ Uz (t, x)dx.
0
Find t; € [0, 7] such that
Vl(tz) = maX{Vl(t) 1t e [tQ,tQ + T]}

Then for all ¢ € [ta,t2 + T we have

2/7r //ume/ (T_S)um(s,x)dsdxdT

_/tl Vi(r )dr-l—)\/tlt (T)/Olum(r,x)dxdr

t 1
§)\/ F(T)/ Uge (T, x)dx dT < O

t 0
by (51). Thus, for all ¢ € [0,T] we have

(52) (2/7%) //umT:L"/ ) (s, x)ds da dr < C.

From (48) we write

1 1t
—)\F(t)/ Uzr (t, )dx = =V (1) +)\F’(t)/ / e~ D uyu (s, x)ds dx
0

— AF(t / / —(t= S)UM (s,z)dsdx

Vg(tg) = mln{Vg(t) 1t € [tg,tg + T]}

and find t3 € [0, 7] such that

Then for all ¢ € [t3,t3 + 1| we have

¢ 1 ¢
—)\/ F(T)/ Uge (T, 2)dx dT :—/ Vy(T)dr
ts 0 ts
t 1 T
)\/ F/(T)/ / e~ uga(s, 2)ds da dr
/ / / —(r— S)UM (s,z)dsdxdr

ts+T T
s/ (F@)+ PO [

ts

_(T_S)UM(S, x)ds|dx dT.

— 00
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Using (50) and boundedness of F, F" we obtain

t 1
—)\/ F(T)/ Uge (T, x)dz dT < C5 for some C3 > 0.

ts 0
Thus,

(53) —)\/Ot F(7) /01 Uz (T, 2)dx dT < Cs.

Differentiating (46), we have

t

Ui + 2/ Uy = (2/7r2)/ e~ D, (s, x)ds + NF'(t).

— 00

Multiplying by u(t, z) and integrating from 0 to 1 with respect to z and from 0 to T" with

respect to t we obtain

T 1 T 1
(54) / /uttdxdt+(2/7r2)/ /umda:dt
o Jo o Jo
T 1 t
= (2/7r2)/ / u(t,az)/ e~ uy, (s, x)ds da dt
0 0 —00
T 1
+/ / AF' (t)udz dt.
o Jo

T
Ut dt = uut / / dt,
0
1 1
/ U dr = uux / de = / de,
0 0

T 1 t
‘2/ / u(t,az)/ e_(t_s)um(s,x)dsdxdt‘
0 0 —00
T rl T 1 t 2
§/ /uQ(t,az)dxdt-l-/ / {/ e_(t_s)um(S,x)ds] dz dt.
0 0 —00

Thus, by (54) we get

/ / u? + (2/7*)ul]dx dt
< (1/7r2)/0 /0 u?(t,z)dw dt + (1/7%) /01 /OT {/t e_(t_s)um(s,x)ds] 2dt dx
T 1 -
-i-/o /0 |F'(t)] |u|dz dt.

Note that

S~
35

and that
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Using (50), 72 fol uldx < fol u2dz, and boundedness of F’(t), we have
T 1
/ / [u? + u2]dx dt < Cp, some Cpy > 0.
o Jo

By the mean value theorem, there is a ¢ty € [0, 7] such that

1
/ u?(to, x)dx < Co/T.
0

This implies that V;(tg) < Co/T. Integrating (47) and using (52), (53), we get

Vl(t) = Vl(to) +/ Vll(T)dT

to

< (Co/T)

t 1 T
+(2/7r2)/ / um(T,x)/ e~ gy (s, x)ds da dr
to 40 —00
1

—)\/tF(T)/ Uy (T, ¥)dT dT

to 0

<(Co/T) + Cs + Cs.
Hence, there is an M > 0 with
1
sup / [u?(t, ) + u2(t,z)de < M,
t€[0,7]J0
proving the first part of Theorem 4.
Now, let ¢ (t,x) be a T-periodic solution of (46). Consider u(t,z) = (sinwx)e® +

©oa(t,x). Clearly, u(t,0) = u(t,1). Let ¢(t,z) = (sinwz)e’ so that
Yy = (sinmx)e’

and so

t

t
—(2/7r2)/ e~y (s, 2)ds = QSinm:/ e 25 s

— 00 — 00

= (sin7x)e’.

Thus,
t

b= —(2/7?) / =) (s, 2)ds.

— 00
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Therefore, u(t, z) is a solution of (1), but unbounded.

Finally, note that if F(t) = 4/72, then p,(t,2) = M(z? — z) is a periodic solution
of (46).

REMARK. When B(t,s) = F(t) = 0, equation (11) has been the subject of exten-
sive investigation using a slightly different Liapunov function. For discussion and history
see Hale [10; pp. 75-78] (Hale’s equation is u; = (a(z)uy )z + f(u) which can be treated
in the same way.), Henry [11; pp. 4, 61, 85, 93, especially 118-125], and Walker [14]. In

those discussions it is generally required that f be at least C'! and that
(55) lim  f(u)/u <0.

The main use of (55) is in showing that solutions are bounded. The goal is to show
that all solutions tend to 0. However, if we use the V. = Vj 4+ V5 of Lemma 4, taking

B(t) = F(t) = 0, we easily get boundedness of solutions under the condition
uf(u) < ku® 4+ M

for some M > 0 and k € (0,72). By contrast, (55) asks that for each € > 0 there exist
K > 0 such that |u| > K implies that f(u)/u < € or that uf(u) < eu?. But there is an
M > 0 with uf(u) < M for |u| < K; thus (55) asks that uf(u) < eu? + M for arbitrarily

small e. Thus, our work extends the classical results even when B = F' = 0.
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